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Introduction by the Organisers

The workshop Complexity Theory was organized by Peter Bürgisser (Universität
Paderborn), Joachim von zur Gathen (B-IT, Bonn), Oded Goldreich (Weizmann
Institute), and Madhu Sudan (MIT). The workshop was held on November 15th–
21st 2009, and attended by approximately 50 participants spanning a wide range
of interests within the field of Computational Complexity. The plenary program,
attended by all participants, featured few long lectures as well as short (5-minute)
reports by almost all participants. In addition, intensive interaction took place in
smaller groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic and
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Boolean complexity, the meeting has continuously evolved to cover a wide variety
of areas, most of which were not even in existence at the time of the first meeting
(in 1972). While inviting many of the most prominent researchers in the field, the
organizers try to identify and invite a fair number of promising young researchers.

Computational complexity (a.k.a. complexity theory) is a central field of com-
puter science with a remarkable list of celebrated achievements as well as a vibrant
research activity. The field is concerned with the study of the intrinsic complexity
of computational tasks, and this study tends to aim at generality : it focuses on nat-
ural computational resources, and considers the effect of limiting these resources
on the class of problems that can be solved. Computational complexity is related
to and has substantial interaction with other areas of mathematics such as alge-
bra, analysis, combinatorics, geometry, number theory, optimization, probability
theory, and quantum computation.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Efficient Simulation of Quantum Mechanics. The power of the standard
model of quantum computation (QC), demonstrated by Shor’s celebrated quantum
algorithm for integer factorization, presses the fundamental question of whether
this standard model is feasibly realizable. In the meeting, Scott Aaronson pre-
sented a different evidence to the difficulty of (classically) simulating a quantum
mechanical (QM) system. His fundamental result exhibits a specific distribution
that arises in QM and is easily generated by a QC, and he provides strong evi-
dence that no (classical) probabilistic polynomial-time algorithm can generate it.
Namely, such an algorithm would imply that any counting problem can be effi-
ciently solved using an oracle to NP (i.e., P#P would equal BPPNP). This holds
even if the classical algorithm only approximates the said distribution of the QM
system. Furthermore, the QM system is a very simple and special one; it consists
of a system of identical, non-interacting bosonic particles. This contrasts with the
efficient simulation of a system of fermions shown by Valiant.

Kakeya Sets and Extractors. In 1999 Wolff posed the finite field analogue
to the Kakeya problem, conjecturing that for every K ⊆ Fnq that contains a line
in every direction it holds that K = Ω(|F|), where the constant hidden in the
Omega-notation may depend on n. This analogue was observed to be related
to the design of randomness extractors, hence the complexity theoretic interest
in it. In the meeting, Zeev Dvir surveyed a recent series of works that settle
this conjecture and obtained almost the optimal constant in the Omega-notation.
Furthermore, he showed that the proof techniques are indeed applicable to the
analysis of constructions of randomness extractors, yielding improvements in some
of the parameters of such constructions. Recall that a (k, ε)-randomness extractor is
a function E : {0, 1}n × {0, 1}t → {0, 1}m such that for every random variable X
of min-entropy at least k, when s is selected uniformly in {0, 1}t it holds that
E(X, s) is ε-close to the uniform distribution over {0, 1}m.
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Locally Decodable Codes of Sub-exponential Length. An error-correcting
code is called locally decodable if, given a corrupted codeword, any bit in the orig-
inal message can be correctly reconstructed (with high probability) based on a
constant number of probes. Locally Decodable Codes (LDC) are closely related to
(multi-server) Private Information Retrieval (PIR) schemes, which are of interest
to cryptography. In the meeting, Klim Efremenko presented a 3-query LDC of sub-
exponential length, thus improving on a breakthrough result of Yekhanin (which
was presented in the 2007 meeting). Furthermore, in contrast to Yekhanin’s con-
struction, the current construction scheme has the pleasing feature of benefiting
from more queries (i.e., it yields shorter lengths when more queries are allowed).
The analogue of the main result for PIR yields a three-server scheme for n-bit long
databases with communication exp(Õ(

√
log n)), improving over Yekhanin’s bound

of n1/30000000.

Constructing Low-Error 2-Query PCPs. Probabilistically Checkable Proofs
(PCPs) are proofs that offer a trade-off between the number of locations inspected
at random in the alleged proof and the statistical confidence in its validity. In the
meeting, Irit Dinur presented a methodology for constructing (relatively short)
PCPs in which verification is performed by two queries such that the error prob-
ability is inversely related to the length of the answers. The core of her new
methodology is a new composition theorem that refers to “decodable PCPs” (a
notion implicit in prior work). The resulting construction matches the param-
eters of the construction of Moshkovitz and Raz, but the current construction
is significantly simpler. In contrast to prior results, her new constructions yield
inapproximability results (for many natural optimization problems such as Max-
Clique) in which approaching the “threshold of approximability” does not cause a
deterioration in the complexity of the reduction.

Parallel Repetition of Interactive Protocols. It has been known for more
than a decade that parallel repetition may fail to reduce the error in computationally-
sound proof (a.k.a. argument) systems. In the meeting, Iftach Haitner presented
a methodology for (slightly) modifying an interactive protocol such that parallel
repetition does reduce the (observable) error in the resulting protocol. The modi-
fication amounts to having the verifier abort at random with probability 1/4 (i.e.,
after each round, the verifier aborts with probability 1/4r, where r denotes the
number of rounds). In case of abort, the verifier always accepts, which means that
this modification increases the probability of error. The benefit of this modifica-
tion is that the probability of cheating in the parallel execution is not sensitive
to whether the verifier aborts in any typical individual copy, which establishes
sufficient independence between the copies.

On the Best Possible Approximation of CSPs. Constraint Satisfaction
Problems (CSPs) are specified by a finite set of finite predicates (e.g., 3-SAT is
specified by the set of predicates on at most three variables that may be written as
disjunctions of the corresponding literals). In the meeting, Prasad Raghavendra
presented an approximation threshold result for any CSP, assuming the Unique
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Game Conjecture (UGC). Specifically, for every CSP and every ε > 0, there exists
a polynomial-time algorithm that gets within a factor ε of the threshold beyond
which approximation becomes UGC-hard. Furthermore, this seemingly optimal
approximation threshold factor can be efficiently approximated.

New Notions of Computational Entropy. Omer Reingold and Salil Vadhan
presented two complementary notions of “computational entropy” (a.k.a. pseudo-
entropy, akin to pseudorandomness which refers to distributions that are compu-
tationally indistinguishable from the uniform distribution on n-bit strings). The
first notion, called next bit (or block) pseudoentropy measures the computational
unpredictability of the next bit (given the previous bits). In contrast to the ex-
treme case (of full unpredictability), in general next bit pseudoentropy does not
yield the standard notion of pseudoentropy. Nevertheless, the new notion is instru-
mental for deriving an improved construction of pseudorandom generators based
on any one-way function. The second notion, called inaccessible entropy, refers
to the infeasibility of generating a next block that is as random as expected by
an unbounded observer. For example, if some party sends a (statistically hiding)
commitment to a random value, then when asked to reveal the value it can pro-
vide at most one possible value, whereas from the (unbounded) observer’s point
of view any value is possible. Indeed, the notion of inaccessible entropy is is re-
lated to statistically hiding commitment schemes, and is actually pivotal to their
construction.

The Average-Case Complexity of k-Clique. For any constant k, constant-
depth (unbounded fan-in) circuits of size O(nk) can distinguish n-vertex graphs
having a clique of size k from graphs lacking such a clique. Ben Rossman’s pre-
sentation addressed the average case complexity of this problem, where the input
distribution corresponds to the standard random graph model with arbitrary edge
density (which may be thought of as studying the problem at the threshold edge
density, where the problem is not trivial). Interestingly, relatively tight lower and
upper bounds, asserting that the size is n(k/4)+Θ(1), can be obtained. The same
holds when considering monotone circuits (of arbitrary depth).

Poly-Logarithmic Independence Fools AC0 Circuits. Two decades ago, it
was conjectured that poly-sized constant-depth circuits (of unbounded fan-in) can-
not distinguish between any two poly-logarithmically independent distributions,
and hence any such (poly-log independent) distribution is pseudorandom with
respect to AC0 circuits. Mark Braverman presented a proof of this conjecture.
The proof combines two known approximation methods that yield different and
incomparable approximations of AC0 circuits by low degree polynomials.

Fast Polynomial Factorization and Modular Composition. Chris Umans
presented an improved randomized algorithms for factoring univariate polynomials
over a finite field. The source of the improvement is a new algorithm for modular
composition of univariate polynomials that operates in nearly linear time. In the
case of very big finite fields, the algorithm uses a sequence of reductions that first
reduce to a multivariate problem, then lift to the integers, next reduces modulo
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small primes, and finally applies a FFT. Most previous methods used only opera-
tions in the original field. As an interesting feature, the new method shows that
(at the current state of knowledge) Boolean computations beat arithmetic ones for
this algebraic problem.

Informal sessions. Besides the plenary formal program, intense interaction
between the participants took place in smaller groups, as witnessed by the following
list of afternoon or evening sessions.

• Structure problems and results on non-abelian groups (Wigderson)
• Polynomial identity testing (Shpilka)
• Compressing interactive communication (Rao)
• Security in steganography (Reischuk)
• Tutorial on group representations and matrix multiplication (Umans)
• Semantic communication (Sudan)
• On Smale’s 17th problem (Cucker)
• Informal session of “going down hill” (Reingold)
• Semantic communication (Sudan)
• Open session on probabilistic proof systems, IP and PCP (Or Meir)
• Codes (Guruswami, Saraf, Kabanets, Kopparty, Impagliazzo)
• The Generalized Linial-Nisan Conjecture and BQP vs. PH (Aaronson)
• Sum of Squares (Koiran)
• Real polynomials for Boolean functions (Lovett, Beame)
• More on non-abelian groups (Wigderson)

The rest of this report. This report contains extended abstracts of the 15
long presentations as well as abstracts of 9 short cummunications.
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Markus Bläser (joint with Christian Hoffmann, Johann A. Makowsky)
The complexity of graph polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Joachim von zur Gathen
Counting decomposable univariate polynomials . . . . . . . . . . . . . . . . . . . . . . 51

Oded Goldreich
Complexity Theoretic Aspects of Property Testing . . . . . . . . . . . . . . . . . . . . 51

Venkatesan Guruswami
Achieving capacity against additive errors and approximating
almost-satisfiable Horn-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Christian Ikenmeyer (joint with P. Bürgisser, M. Christandl)
Multiplicities arising in Geometric Complexity Theory . . . . . . . . . . . . . . . 53

Or Meir
Combinatorial Constructions of Probabilistic Proof Systems . . . . . . . . . . . 54

Claus Peter Schnorr
Average Time Fast SVP and CVP Algorithms for Low Density Lattices 56

Ronen Shaltiel (joint with Jeff Kinne, Dieter van Melkebeek)
Typically-correct derandomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Madhu Sudan (joint with Brendan Juba and Oded Goldreich)
Semantic Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Complexity Theory 9

Abstracts

Plenary Talks

Efficient simulation of quantum mechanics collapses the polynomial
hierarchy

Scott Aaronson

(joint work with Alex Arkhipov)

We give a new type of evidence that quantum mechanics is hard to simulate
classically—evidence that is more complexity-theoretic than (say) Shor’s factoring
algorithm. Specifically we show the following:

Theorem 1. Suppose there exists a BPP machine M that, given any quantum
circuit Q, approximately samples (with constant error in variation distance) from
the probability distribution over Q’s possible output strings. Then P#P = BPPNP,
so in particular the polynomial hierarchy collapses. Indeed, even if M is a BPPPH

machine, we still get that P#P = PH and the polynomial hierarchy collapses.

The proof uses a quantum algorithm that simulates a system of n identical, non-
interacting bosonic particles. We exploit an old observation: that the amplitude
for n non-interacting bosons to evolve to a particular state is given by the squared
permanent of an n×n matrix, a #P-complete function. Therefore, one might hope
that the ability to classically sample the bosons’ final distribution would put #P
in the polynomial hierarchy. However, pushing this implication through requires
some further ideas from complexity theory, including the random self-reducibility
of the permanent, noisy interpolation of polynomials, and approximate counting
in BPPNP. We also need to upper-bound the probability that two or more bosons
will occupy the same state (unlike fermions, bosons are not subject to the Pauli
exclusion principle, and can “pile on top of each other”).

Our result can be strengthened in two ways. First, even if every distribution
samplable in BQP can be approximately sampled in BPPPH, we still get that
P#P = PH and PH collapses. This provides a new sort of evidence that quantum
computers have capabilities outside the entire polynomial hierarchy.

Second, we can prove a version of our result for relational problems (problems
where the output is an n-bit string, and there could be many valid outputs), rather
than sampling problems. What remains unknown is a result for decision problems
(e.g., “if P = BQP then PH collapses”).

1. Introduction

Yes, we are literally saying that we can separate quantum from
classical computing using only standard complexity assumptions like
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P#P 6= PH, rather than cryptographic assumptions like the classical hard-
ness of factoring.

Let us explain how this can be so. As a first observation, if we removed the
word “approximately” from Theorem 1, the theorem would be straightforward to
prove. For in 2005, Aaronson [1] showed that PostBQP = PP. Here PostBQP
means BQP augmented with the ability to postselect on exponentially-unlikely
measurement outcomes, while PP is the class of problems of the form, “given a
Boolean formula ϕ, does ϕ have at least K satisfying assignments?” This already
showed that exact simulation of quantum computers was closely related to counting
problems—and that a classical algorithm to perform such simulation would have
bizarre complexity consequences. But there are easier ways to get the same
conclusion. For example, suppose we prepare the state 1

2n/2

∑
x∈{0,1}n f (x) |x〉 ,

for some efficiently-computable Boolean function f : {0, 1}n → {−1, 1}, then apply
Hadamard gates to all n qubits, and finally measure in the standard basis. Then

the probability of observing |0〉⊗n is p := 1
22n

(∑
x∈{0,1}n f (x)

)2

. So if we could
only calculate p, we could solve a #P-complete problem!

Indeed, suppose we just had a BPP algorithm M that sampled from the same
probability distribution as the quantum algorithm above. Then we could use
approximate counting to estimate the fraction of random strings r such that M (r)
outputs |0〉⊗n. Now, even estimating p to within a constant multiplicative factor
turns out to be #P-complete, basically because the function f can take both
positive and negative values. Therefore, the sampling algorithm M would let
us solve a #P-complete problem in the class BPPNP (which is known to contain
approximate counting). By Toda’s Theorem [3] that PH ⊆ P#P, this would imply
that P#P = BPPNP, and hence that the polynomial hierarchy would collapse.

2. Bringing In Bosons

These simple observations already reveal a striking connection between simulat-
ing quantum mechanics and solving #P-complete problems. However they might
be dismissed as cheating—since all the work of solving the #P-complete problem
is shoehorned into the calculation of a single, exponentially-small amplitude. If
our simulation happened to be wrong about that one amplitude, then it might no
longer compute anything #P-complete.

This immediately raises a question: can we design a quantum algorithm Q with
the property that, even if we could only sample approximately from Q’s output
distribution on a classical computer, we would still be reducing a counting problem
(which, presumably, is not in PH) to an approximate counting problem (which is)?
This is the question that we answer affirmatively in this work.

The quantum algorithm Q that we use is extremely interesting in its own right.
We will consider a system of n identical, non-interacting bosons, each of which
can be in m modes |1〉 , . . . , |m〉 for some m = poly (n). The basis states of this
system can be represented by lists S = (s1, . . . , sm) of occupation numbers: that is,
nonnegative integers such that s1 + · · ·+sm = n. In the initial state |Ψ〉, modes 1
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to n are occupied with a single boson each, while modes n+1 to m are unoccupied.
The algorithm is as follows: first, choose a random m×m unitary matrix U , and
let V be the

(
m+n−1

n

)
×
(
m+n−1

n

)
unitary matrix that corresponds to applying U

to each of n identical bosons governed by the exchange interaction. Apply V to
|Ψ〉, measure the resulting state V |Ψ〉 in the standard basis, and output the list
S of occupation numbers that are observed.

Let A be the m × n matrix that consists of the first n columns of U . Also,
given a list S of occupation numbers, let A [S] be an n×n matrix in which the ith

row of A occurs si times. Then standard quantum mechanics tells us that each
basis state |S〉 is observed with probability |Per (A [S])|2 /s1! · · · sm!.

This is the central fact we exploit. For we know from complexity theory that,
not only is the permanent of an n×n matrix a #P-complete function (as shown by
Valiant [4]), it is a particularly nice #P-complete function—one with remarkable
properties such as random self-reducibility (that is, the ability to solve any given
instance by solving random instances instead). As it turns out, the permanent
function has exactly the properties we need to prove our result.

We regret that we lack the space to sketch the proof of Theorem 1. Instead,
let us provide a “sneak preview,” by simply stating the main sub-claims in the
proof. First, the quantum algorithm Q can be simulated efficiently on a “stan-
dard” quantum computer, with qubits subject to local gates. Second, provided
the number of modes m is sufficiently large (say, at least 2n2), basis states S with
multiple bosons “bunched together in the same mode” (that is, si > 1 for some
i) contribute only negligibly to the total probability mass.1 Third, the perma-
nent function is random self-reducible not merely over large finite fields, but also
over the complex numbers C with Gaussian norm. (This is the hardest part
technically: linear interpolation no longer works, and we must instead do the in-
terpolation using random trigonometric polynomials.) Fourth, given an n × n
matrix Y of independent Gaussians with mean 0 and variance 1/m, one can ef-
fectively “smuggle” Y into an m × n bosonic transition matrix A, in such a way
that the ability to sample a submatrix A [S] of A with probability approximately
|Per (A [S])|2 /s1! · · · sm! in BPP, implies the ability to approximate |Per (Y )|2 in
BPPNP. Fifth, approximating |Per (Y )|2 is #P-complete—so that we obtain the
promised collapse of P#P with BPPNP.
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Poly-logarithmic independence fools AC0 circuits
Mark Braverman

Overview

We prove that poly-sized AC0 circuits cannot distinguish a poly-logarithmically
independent distribution from the uniform one. This settles the 1990 conjecture
by Linial and Nisan [LN90]. The only prior progress on the problem was by
Bazzi [Baz07], who showed that O(log2n)-independent distributions fool poly-size
DNF formulas. Razborov [Raz08] has later given a much simpler proof for Bazzi’s
theorem.

1. Summary

1.1. The problem. The main problem we consider is on the power of r-independence
to fool AC0 circuits. For a distribution µ on the finite support {0, 1}n, we denote
by Eµ[F ] the expected value of F on inputs drawn according to µ. For an event
X, we denote by Pµ[X] its probability under µ. When the distribution under
consideration is the uniform distribution on {0, 1}n, we suppress the subscript
and let E[F ] denote the expected value of F , and P[X] the probability of X. A
distribution µ is said to ε-fool a function F if

|Eµ[F ]−E[F ]| < ε.

The distribution µ on {0, 1}n is r-independent if every restriction of µ to r
coordinates is uniform on {0, 1}r. AC0 circuits are circuits with AND, OR and
NOT gates, where the fan-in of the gates is unbounded. The depth of a circuit C
is the maximum number of AND/OR gates between an input of C and its output.
The problem we study is
Main Problem. How large does r = r(m, d, ε) have to be in order for every r-
independent distribution µ on {0, 1}n to ε-fool every function F that is computed
by a depth-d AC0 circuit of size ≤ m?

Prior to our work, Bazzi [Baz07, Baz09], in a proof that was later simplified
by Razborov [Raz08], showed that a poly-logarithmic r is sufficient for d = 2 (i.e.
when the F ’s are DNF or CNF formulas):
Theorem 1. [Baz07, Raz08] r(m, 2, ε)-independence ε-fools depth-2 circuits, where

r(m, 2, ε) = O
(

log2 m

ε

)
.
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Our main result is that for any constant d, r(m, d, ε) is poly-logarithmic in
m/ε. This gives a huge class of distributions that look random to AC0 circuits.
For example, as in [Baz09], it implies that linear codes with poly-logarithmic seed
length can be PRGs for AC0.

1.2. Main results. We prove the following:
Main Theorem. Let s ≥ logm be any parameter. Let F be a boolean function
computed by a circuit of depth d and size m. Let µ be an r-independent distribution
where

r ≥ r(s, d) = 3 · 60d+3 · (logm)(d+1)(d+3) · sd(d+3),

then
|Eµ[F ]−E[F ]| < ε(s, d),

where ε(s, d) = 0.82s · (10m).
In particular, by taking s = 5 log 10m

ε , we get the following:
Corrolary 2. r(m, d, ε)-independence ε-fools depth-d AC0 circuits of size m,
where

r(m, d, ε) = 3 · 60d+3 · (logm)(d+1)(d+3) ·
(

5 log
10m
ε

)d(d+3)

=
(

log
m

ε

)O(d2)

.

Note that by choosing ε = 2−n
δ

for a small δ = δ(d), one sees that polynomial
independence fools AC0 circuits up to an exponentially small error. The results
carry meaning for super-constant d’s up to d = Õ(

√
logm).

The original conjecture by [LN90] was that for constant ε, r(m, d, ε) = O((logm)d−1).
Thus our results leave a gap between O(d) and O(d2) in the exponent. We believe
that the conjecture is true with O(d).

1.3. Techniques and proof outline. As in [Baz09], our strategy is to approx-
imate F with low degree polynomials over R. The reason being that degree-r
polynomials are completely fooled by r-independence.
Proposition 3. Let f : Rn → R be a degree-r polynomial, and let µ be an
r-independent distribution. Then f is completely fooled by µ:

Eµ[f ] = E[f ].

Proposition 3 is true by linearity of expectation, since every term of f is a product
of ≤ r variables, whose distribution is uniform under µ.

In our construction we combine two types of approximations of AC0 circuits
by low degree polynomials over R. The first one is combinatorial in the spirit
of [Raz87, Smo87, BRS91, Tar93] (for a comprehensive survey on polynomials in
circuit complexity see e.g. [Bei93]). These approximating polynomials agree with
F on all but a small fraction of inputs. Thus for such a polynomial f , P[f = F ] is
very close to 1. While essentially using the same construction as [BRS91, Tar93],
utilizing tools from [VV85], we repeat the construction from scratch, since we want
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to reason about details of the construction. We believe that any construction in
this spirit would fit in our proof.

The second approximation is based on Fourier analysis and uses [LMN93] where
it is shown that any AC0 function G can be approximated by a low degree poly-
nomial g so that the `2 norm ‖G− g‖22 is small. There is no guarantee, however,
that g agrees with G on any input (most likely, it doesn’t).

We use an approximation f of F of the first type as the starting point of our
construction. Thus P[f 6= F ] is very small. If we knew that ‖F − f‖22 is small
we would be done by a simple argument similar to one that appeared in [Baz09].
Unfortunately, there are no guarantees, that f is close to F on average, since f
may deviate wildly on points where f 6= F (in fact, it is likely untrue that ‖F−f‖22
is small).

Our key insight is that in the construction of f , the indicator function E of
where f fails to agree with F is an AC0 function itself. Thus E = 1 whenever
f 6= F , and P[E = 1] is very small (since f = F most of the time). We then
use a low-degree approximation Ẽ of E of the second type so that ‖Ẽ − E‖22 is
very small. We then take f ′ = f · (1 − Ẽ). The idea is that 1 − Ẽ ≈ 1 − E will
kill the values of f where it misbehaves (and thus E = 1), while leaving other
values (where E = 0) almost unchanged. Note that the values where f = 0 remain
completely unchanged, and thus f ′ is a semi-exact approximation of F . We then
show that ‖F −f ′‖22 is small. We choose f ′ to “almost agree” with F against both
the uniform distribution and the distribution µ, a property we use to finish the
proof.

It should be noted that while an inductive proof on the depth d of F is a
natural approach to the problem, a non-inductive construction appears to yield
much better parameters for the theorem.
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Overview of Geometric Complexity Theory
Peter Bürgisser

(joint work with M. Christandl, C. Ikenmeyer, J.M. Landsberg, L. Manivel,
J. Weyman )

In a seminal work, Valiant [11] proposed in 1979 an algebraic analogue of the P
versus NP question in terms of the permanent versus determinant question (VP
versus VNP). We outline Mulmuley and Sohoni’s GCT program [7, 8] towards
resolving this question, based on the overview [3], and also discuss some new
results [1]. The GCT program attempts to resolve the VP versus VNP question
by reformulating it as specific orbit closure problems, that are then analyzed by
means of tools of geometric invariant theory and representation theory.

1. Obstructions to orbit closure problems

The group GLn2 acts on the space of homogeneous complex polynomials of
degree n in the variables xij by substitution. Consider detn = det[xij ]i,j≤n and
perm = per[xij ]i,j≤m, where m < n and z := x1m+1. The following main conjec-
ture is a variant of VP 6= VNP:

Conjecture 1 ([7]). zn−mperm ∈ GLn2 · detn is impossible for n = mO(1).

If zn−mperm ∈ GLn2 · detn, then we have a surjective GLn2-module morphism

C[GLn2 · detn]→ C[GLn2 · zn−mperm].

Hence, by Schur’s lemma, any Weyl module V ∗λ (GLn2) occuring as a submodule
on the right-hand side must also occur on the left-hand side.

By a representation theoretic obstruction we understand a partition λ such that
V ∗λ (GLn2) occurs on the right-hand side, but not on the left-hand side. In [8]
some evidence is given that, if Conjecture 1 is true, then it can in fact be shown
by exhibiting obstructions. In order to actually prove this, one would need to settle
the separation conjecture [8, Conj. 12.4] on the “separating power” of Kronecker
coefficients.
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2. Stability

The following result is a consequence of the Hilbert-Mumford-Kempf criterion
for stability.

Theorem 1 ([7]). The SLn2-orbit of detn is closed. Similarly for pern.

This implies that when focusing on SLn2 -modules and ignoring multiplicities,
orbit closures can be replaced by orbits.

Corollary 1. V ∗λ (SLn2) occurs in C[GLn2 · detn] if and only if it occurs in C[SLn2 ·
detn]. Similarly for pern.

3. Symmetries of determinant and permanent

A result by Frobenius states that the stabilizer of detn is the subgroup of GLn2

consisting of the following maps:

X 7→ AXB or X 7→ AXTB, A,B ∈ GLn, det(AB) = 1.

The stabilizer of pern is generated by the above maps where A,B are both diagonal
with det(AB) = 1 or both permutation matrices [6]. Moreover, it can be shown
that detn and pern are characterized by their stabilizers.

4. Kronecker coefficients

The Kronecker coefficient gλµν can be defined as the multiplicity of the irre-
ducible GLn × GLn-module Vµ(GLn) ⊗ Vν(GLn) in Vλ(GLn2) via the morphism
GLn × GLn → GL(Cn ⊗ Cn) ' GLn2 , (A,B) 7→ A ⊗ B. Describing Kronecker
coefficients is a classical problem: but little is known.

Conjecture 2 ([10]). Deciding whether gλµν 6= 0 can be done in polynomial time.

For a special case of Kronecker coefficients, the so-called Littlewood-Richardson
coefficients, this is known. It follows [9] from their saturation property [5] and the
fact that linear programming can be solved in polynomial time. A combinato-
rial polynomial time algorithm for deciding positivity of Littlewood-Richardson
coefficients, based on optimizing flows in networks, was developed in [2].

5. How the coordinate ring of an orbit splits

Let G be a reductive group (e.g. GLN or SLN or products thereof) and H be
a closed subgroup of G. Note that G/H is isomorphic to the G-orbit of a point
with stabilizer H. The algebraic Peter Weyl Theorem implies that

(1) C[G/H] '
⊕
λ

V ∗λ (G)⊕ dimVλ(G)H ,

where Vλ(G)H denotes the space of H-invariants in Vλ(G). Hence V ∗λ (G) occurs
in C[G/H] iff Vλ(G) contains a nonzero H-invariant.
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6. Modules in the orbit closure of the determinant

The stabilizer of detn consists essentially of the maps A⊗B with A,B ∈ GLn
such that det(AB) = 1. Combining this insight with Corollary 1, Equation (1), and
using the fact that Vµ(GLn) is 1-dimensional iff µ has the rectangular shape� :=
(n, . . . , n), one can derive the following.

Theorem 2. V ∗λ (SLn2) does not occur in C[GLn2 · detn] iff gλ�� = 0.

Hence obstructions λ must satisfy gλ�� = 0. We call such λ “candidates for
obstructions”.

7. Asymptotic study of Kronecker coefficients

We normalize a partition λ `n |λ| to obtain the probability distribution λ :=
1
|λ|λ. Let u = ( 1

n , . . . ,
1
n ) denote the uniform distribution on [n]. It is a well-known

fact that

Kron(n1, n2, n3) :=
{

(λ1, λ2, λ3) : ∃D s.t. λi `ni D, gλ1λ2λ3 6= 0
}

is a rational polytope. It can be interpreted as a moment polytope, a concept of
symplectic geometry and geometric invariant theory.

Theorem 3 ([1]). We have (r, u, u) ∈ Kron(n2, n, n) for any nonincreasing prob-
ability distribution r ∈ Qn2

.

This is bad news: it shows that candidates for obstructions are rare. One can
rephrase Theorem 3 by saying that the moment polytopes of SLn2-modules in the
the orbit closure of the determinants do not provide any information. It can be
shown that the same holds true for the permanents. Hence moment polytopes
seem a too rough description for the separation goals of geometric complexity
theory.

The proof of Theorem 3 relies on a recently discovered relation of Kron(n1, n2, n3)
to the quantum marginal problem, a problem of quantum information theory [4].

8. Modules in the orbit closure of the permanent

Finding obstructions requires to exhibit irreducible modules in the coordinate
ring of the orbit closure of zn−mperm. In the case n = m we have:

Theorem 4. V ∗λ (SLn2) occurs in C[GLn2 · pern] iff |λ| = δn for some δ and there
exist µ, ν `n |λ| such that gλµν 6= 0 and Vµ(SLn2) and Vµ(SLn2) both occur in the
plethysm Symn(SymδCn).

In the case n > m the following holds (which also follows from [12]).

Theorem 5 ([8]). C[GLn2 · zn−mperm] has the same “types” of irreducible repre-
sentations as C[GLm2+1 · zn−mperm].
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One of the biggest difficulty in finding obstructions (besides Kronecker co-
efficients and plethysms) is that we currently only have weak information on
how to relate the irreducible modules in C[GLm2+1 · zn−mperm] with those in
C[GLm2 · perm].
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Composition of low-error 2-query PCPs using decodable PCPs
Irit Dinur

(joint work with Prahladh Harsha)

Probabilistically checkable proofs (PCPs) provide a proof format that enables
verification with only a constant number of queries into the proof. The celebrated
PCP Theorem [AS98, ALM+98] states that every language in NP has a verifier
that can always be convinced of a correct statement and will reject with some
probability 1 − δ a proof of a false statement. Most importantly, this can be
done while using only a logarithmic number of random coins, and reading only
q = O(1) proof bits. Naturally, (and motivated by the fruitful connection to
inapproximability due to [FGL+96]), much attention has been given to obtaining
PCPs with “good” parameters, such as q = 2, smallest possible soundness error δ,
and smallest possible alphabet size |Σ|. These are the parameters of focus in this
work.
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Proof composition is an essential ingredient of all known constructions of PCPs.
Composition of PCPs with high soundness error (greater than 1/2) is by now well
understood using the notion of PCPs of proximity [BGH+06] (called assignment
testers in [DR06]) (see also [Sze99]). These allow for modular composition, in
the high soundness error regime which in turn led to alternate proofs of the PCP
Theorem and constructions of shorter PCPs [BGH+06, Din07, BS08]. However,
these composition theorems are inapplicable when constructing PCPs with low-
soundness error (arbitrarily small soundness error or even any constant less than
1/2).

Our first contribution is a definition of an object which we call a decodable PCP,
which allows for clean and modular composition in the low error regime.

Decodable PCPs (dPCPs). Consider a probabilistically checkable proof for
the language CircuitSat (the language of all satisfiable circuits). The natural
NP proof for CircuitSat is simply a satisfying assignment. An intuitive way to
construct a PCP for CircuitSat is to encode the assignment in a way that enables
probabilistic checking. This intuition guides all known constructions, although it
is not stipulated in the definition.

In this work, we make the intuitive notion of proof encoding explicit by in-
troducing the notion of a decodable PCP (dPCP). A dPCP for CircuitSat is an
encoding of the satisfying assignment that can be both verified and decoded locally
in a probabilistic manner. In this setting, the verifier is supposed to both verify
that the dPCP is encoding a satisfying assignment, as well as to decode a symbol
in that assignment. More precisely, we define a PCP decoder for CircuitSat to
be a probabilistic algorithm that is given an input circuit C, oracle access to a
dPCP π, and, in addition, an index i. Based on C, i and the randomness r it
computes a window I and a function f (rather than a predicate). This function
is supposed to evaluate to the i-th symbol of a satisfying assignment for C; or to
reject.

• The PCP decoder is complete if for every y such that C(y) = 1 there is a
dPCP π such that Pri,I,f [f(πI) = yi] = 1.
• The PCP decoder has soundness error δ and list size L if for any (pur-

ported) dPCP π there is a list of ≤ L valid proofs such that the probability
(over the index i and (I, f)) that f(πI) is inconsistent with the list but
does not reject is at most δ.

The list of valid proofs can be viewed as a “list decoding” of the dPCP π. Since
we are interested in the low soundness error regime, list-decoding is unavoidable.

Composition. There is a natural and modular way to compose a PCP verifier
V with a PCP decoder D. The composed PCP verifier V ′ begins by simulating
V on a probabilistically checkable proof Π. It determines a set of queries into
Π (a local window I), and a local predicate f . Instead of directly querying Π
and testing if f(ΠI) = 1, V ′ relies on the inner PCP decoder D to perform this
action. For this task, the inner PCP decoder D is supplied with a dedicated
proof that is supposedly an encoding of the relevant local view ΠI . The main
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issue is consistency: the composed verifier V ′ must ensure that the dedicated
proofs supposedly encoding the various local views are consistent with the same
Π (i.e. they should be encodings of local views coming from a single valid PCP
for V ). This is achieved easily with PCP decoders: the composed verifier V ′ asks
D to decode a random value from the encoded local view, and compares it to the
appropriate symbol in Π.

Two Query Composition. Our main contribution is a composition theorem
that does not incur an extra query. The extra query above comes from the need
to check that all the inner PCP decoders decode to the same symbol. This check
was performed by comparing the decoded symbol to the symbol in the outer PCP
Π. Instead, we verify consistency by invoking all the inner PCP decoders that
involve this symbol in parallel, and then checking that they all decode to the same
symbol. This avoids the necessity to query the outer PCP Π for this symbol and
saves us the extra query.

Hardness of Label Cover, and the [MR08] result. In a recent breakthrough,
Moshkovitz and Raz [MR08] constructed almost linear-sized low-error 2-query
PCPs for every language in NP. Their result strengthens a large number of inap-
proximability results through a standard reduction from an intermediate problem
called label cover.

The main technical component of their construction is a novel composition of
certain specific PCPs. We give a modular and simpler proof of their result by
repeatedly applying the new composition theorem to known PCP components.
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[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,

March 1996. (Preliminary version in 32nd FOCS, 1991).
[MR08] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In Proc.

49th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 314–323. IEEE,

2008.



Complexity Theory 21

[Sze99] Mario Szegedy. Many-valued logics and holographic proofs. In Jiŕı Wiedermann, Peter

van Emde Boas, and Mogens Nielsen, editors, Proc. 26th International Colloquium
of Automata, Languages and Programming (ICALP), volume 1644 of LNCS, pages

676–686. Springer, 1999.

Kakeya sets and Extractors
Zeev Dvir

(joint work with S. Kopparty, S. Saraf, M. Sudan and A. Wigderson)

Let F denote a finite field of size q. A set K ⊂ Fn is called a Kakeya (the term
Besicovitch set is also used in the literature) if it contains a line in every direction.
More formally, if for every (direction) b ∈ Fn there exists a point a ∈ Fn such that
the set {a+ t · b | t ∈ F} is contained in K. In a survey paper, Wolff [Wol99] made
a conjecture about the size of such sets.

Conjecture 1 (The finite field Kakeya conjecture [Wol99]). Let K ⊂ Fn be a
Kakeya set, then

|K| ≥ Cn · qn,
where Cn is a constant depending only on n.

This conjecture originates from the famous Euclidean Kakeya conjecture which
deals with bounding the dimension of sets in Rn containing a unit line segment in
every direction. This natural question on the geometry of finite fields was posed
by Wolff as a ‘stripped down’ version of its Euclidean sibling on which new ideas
could be tested without having to deal with the technical difficulties of Euclidean
geometry.

Until recently, progress on the finite field Kakeya problem and on the Euclidean
problem went hand-in-hand. The best bounds for both problems were obtained
using a technique of Bourgain [Bou99] (later improved in [KT02]) which uses
tools from additive combinatorics. These techniques (which are still the most
effective for the Euclidean problem) give a lower bound of ≈ q

4
7n on the size of

K [Rog01, MT04]. We note that a bound of the form |K| ≥ qn/2 can be easily
obtained by observing that the difference set K −K is equal to the whole space.
Recently, the finite field Kakeya conjecture was proved [Dvi08]. The proof is
based on the observation that a polynomial of degree less than q that vanishes on
a Kakeya set must vanish identically.

Theorem 1 ([Dvi08]). Let K ⊂ Fn be a Kakeya set, then

|K| ≥ 1
n!
· qn.

The finite field Kakeya problem originated independently in the quest for con-
structing functions with ‘special’ properties used in theoretical computer science.
These functions, called randomness extractors (or just extractors for short), play
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an important role in the proofs of many results on a large number of topics in-
cluding de-randomization (the relation between deterministic and randomized al-
gorithms), error correcting codes, cryptography and many others.

Roughly speaking, an extractor is a function that ‘extracts’ randomness from
arbitrary random distributions, with the help of a short random seed. It is known
that a random function will be, with overwhelming probability, an extractor with
the best possible parameters. The challenge is therefore, not to show that good
extractors exists, but rather to give explicit (efficiently computable) constructions,
matching the parameters of a random construction.

Mergers are similar to extractors in the sense that they are functions that extract
randomness from weak distributions. However, unlike extractors, they relax two
of the conditions on the input and output distributions. The first relaxation is a
structural condition on the input X. Instead of being an arbitrary distribution
(with high min entropy), X is now divided into s blocks X1, . . . , Xs, each of
length n bits, and we are guaranteed that one of these blocks is uniform (the
dependencies between the blocks can be arbitrary). This type of source is referred
to in the literature as a ‘somewhere-random source’. The second relaxation is that,
instead of requiring the output, another n-bit string, to be close to uniform, we
only require it to have very high min-entropy (say, at least 9

10n). As is the case
with extractors, mergers have to rely on an additional short random seed.

Stated more formally, a merger is a function

M : ({0, 1}n)s × {0, 1}d 7→ {0, 1}n

such that if X = (X1, . . . , Xs) is a random variable on ({0, 1}n)s for which one of
the Xi’s is uniform, then M(X,Ud) has (up to some small statistical error) min
entropy at least 9

10n (the choice of constant 9
10 is arbitrary). It was shown in

[TS96, NTS99] that explicit constructions of good mergers (for a large number of
blocks) imply good constructions of extractors and so the task of building good
mergers became one of equal interest to that of building extractors.

In [DW08] a new merger was constructed that makes use of the fact that the
proof technique used in [Dvi08] to bound the size of Kakeya sets can be applied just
as efficiently to control intersections of low degree curves over finite fields. roughly
speaking, the merger passes a low degree curve through the s points X1, . . . , Xs ∈
Fr and outputs a random point on this curve. It was proved in [DW08] that this
construction gives a good merger and that this merger can be used (in conjunction
with other results) to give good extractors. A better analysis of the merger was
given in [DKSS09].

Theorem 2 ([DKSS09]). The output of the merger described above is ε-close (in
statistical distance) to having min entropy at least (1− δ) · n, whenever

q ≥
(

2 · s
ε

) 1
δ

.
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As a result of the merger analysis of Theorem 2, a new extractor construction
was given in [DKSS09] with parameters that were not obtainable using previous
methods.

The techniques developed in [DKSS09], which include the use of high degree
polynomials (compared to relatively low degree in previous works) give, in par-
ticular, the strongest known bound on the size of Kakeya sets which is within a
factor of 2 of the known upper bounds.

Theorem 3 ([DKSS09]). Let K ⊂ Fn be a Kakeya set. Then

|K| ≥ 1
2n
· qn.
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Locally decodable codes of subexponantial length
Klim Efremenko

1. Locally decodable codes

Locally decodable codes (LDCs) are codes that allow to retrieve any symbol
of the original message by reading only a constant number of symbols from the
codeword. Formally a code C is said to be locally decodable with parameters
(q, δ, ε) if it is possible to recover any bit xi of message x by making at most q
queries to C(x). Such that if up to a δ fraction of C(x) is corrupted then the
decoding algorithm will return the correct answer with probability at least 1− ε.

Locally decodable codes have many applications in cryptography and complex-
ity theory, see surveys in [Tre04] and [Gas04]. The first formal definition of locally
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decodable codes was given by Katz and Trevisan in [KT00]. The Hadamard code is
the most famous 2-query locally decodable code of length 2n. For a two-query LDC
tight lower bounds of 2θ(n) were given for linear codes in [GKST02] and [KdW03]
proved tight lower bounds for two queries for arbitrary codes. For an arbitrary
number of queries Katz and Trevisan [KT00] established super-linear lower bounds
of Ω(nq/(q−1)) for LDCs with q queries. This lower bound was later improved
in [KdW03] to Ω

(
( n

logn )1+1/(dq/2e−1)
)

and in [Woo07] to Ω
(
n1+1/(dq/2e−1)

logn

)
.

For many years it was conjectured that LDCs should have an exponential de-
pendence on n for any constant number of queries, until Yekhanin’s recent break-
through [Yek08]. Yekhanin obtained 3-query LDCs with sub-exponential length
of exp(exp(O( logn

log logn ))) under a highly believable conjecture that there are infin-
itely many Mersenne primes. Using the known Mersenne primes, Yekhanin also
obtained unconditional results which significantly improved the previous results
on LDCs(i.e. length of exp(n10−7

)). In [KY08] Kedlaya and Yekhanin proved
that infinitely many Mersenne numbers with large prime factors are essential for
Yekhanin’s construction. Due to the best of our knowlage Yekhanin’s construction
can not generalized for higher number of queries.
Our Results. In this paper we give an unconditional construction of 3-query LDC
with sub-exponential codeword length. The length that we achieve for 3 queries
is:

exp exp(O(
√

log n log log n)).

We also give a 2r-query LDC with a codeword length exp exp(O( r
√

log n(log log n)r−1)).
Our construction is a kind of a generalization and simplification of [Yek08]. We

extend Yekhanin’s construction to work not only with primes but also with com-
posite numbers. Raghavendra in [Rag07] gives a nice presentation of Yekhanin’s
construction using homomorphisms, and we will follow this approach. The main
ingredient in our construction is the Grolmusz construction [Gro00] of super-
polynomial size set-systems with restricted intersections over composite numbers.
Private Information Retrieval schemes: The notion of locally decodabale codes is
closely related to the notion of private information retrieval(PIR) schemes. PIR
schemes with k servers is a protocol which allows for a user to access a database dis-
tributed between k servers without yielding any information on the identity of the
accessed place to any individual server (we assume that there is no communication
between servers). The main parameter of interest in PIR schemes is the total com-
munication complexity between the user and the servers. PIR schemes were first
introduced by [CGKS95]. After that there were many works written on this topic,
see [CGKS95, Amb97, Man98, Ito99, BIK05, GKST06, KdW03, RY07, WdW05,
Yek08]. The best upper bound for 2-server PIR is O(n1/3) due to [CGKS95]. The
best upper bound of 3 and more server PIR schemes is exp

(
O
(

logn
(log logn)1−ε

))
due

to [Yek08] which is based on the construction of LDCs.
Let us define formally perfect PIR schemes:
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Definition 4. A one-round perfect private information retrieval scheme is a
randomized algorithm U (for the user), and k deterministic algorithms S1, . . .Sk
(for the servers), s.t.

(1) (a) On input i ∈ [n] the user U produces k random queries q1 . . . qk and
sends them to respective servers.

(b) Each server based on his query qj and database D produces a response
rj = Si(D, qj) and sends it back to the user.

(c) The user based on i, r1, . . . , rk and his randomness calculates D[i].
(2) The distribution of each query qj is independent of the input i.

The communication complexity of this protocol is a total number of bits exchanged
between user and servers.

It is well known that LDCs with perfectly smooth decoder imply PIR schemes.
In particular, as in [Yek08], our LDC yields a PIR schemes with communication
complexity exp(O(

√
log n log log n)) for 3-servers and exp(O( r

√
log n(log log n)r−1))

for 2r-servers.

1.1. Future work. In this paper we give a general construction of LDCs from
any S-matching set and S-decoding polynomial. Any improvement in size of a
set-system with restricted intersections will immediately yield improvement in the
rate of LDCs. We hope that this paper will give a motivation for future work
on set-systems with restricted intersections. We also believe that it is possible to
choose an S-decoding polynomial with less monomials.
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A Parallel Repetition Theorem for Any Interactive Argument
Iftach Haitner

In an interactive proof, a prover P is trying to convince the verifier V in the validity
of some statement. Typically, P has some advantage over V , such as additional
computational resources or some extra information (e.g., an NP witness that
validates the claim). The two basic properties we would like such protocols to
have are completeness and soundness. The completeness means that P convinces
V to accept valid statements, and the soundness means that no cheating prover
(of a certain class) can convince V to accept invalid statements. More generally,
(P, V ) has completeness β if for any valid statement x, V accepts in (P, V )(x)
with probability at least β (where P typically gets an advice w(x) as an additional
input). Where V has soundness 1− ε with respect to a given class of algorithms,
if no malicious P ∗ from this class can convince V to accept an invalid statement
with probability greater than ε. The bound ε is typically called the soundness
error of the protocol.

The basic distinction one may make about the soundness of a given protocol,
is whether it holds unconditionally (i.e., even an all-powerful prover cannot break
the soundness) or that it only holds against computationally bounded (uniform,
or non-uniform) provers. Protocols with unconditional soundness are called in-
teractive proofs, whereas protocols with the weaker type of soundness are called
interactive arguments. In this work we focus on computationally bounded provers.
In particular, we consider polynomial-time provers.

A common paradigm for constructing protocols with low soundness error, is
to start by constructing a protocol with noticeable soundness error, and then
manipulate the original protocol in a certain way that decreases its soundness
error while keeping its completeness high. The most natural such manipulation
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that comes to mind, is to use repetition. Namely, to repeat the protocol many times
(with independent randomness), where the verifier accepts only if the verifiers (of
the original protocol) accept in all executions. The above repetition can be done
in essentially two different ways: sequentially (known as sequential repetition),
where the (i+ 1) execution of the protocol is only started after the i’th execution
is finished, or in parallel (known as parallel repetition), where all the executions
are done simultaneously.

Sequential repetition is known to reduce the soundness error at an exponential
rate in most computational models (cf., [3]). Unfortunately, sequential repetition
has the undesired effect of increasing the round complexity. Parallel repetition on
the other hand, does preserve the round complexity, and for the case of interactive
proofs, it also reduces the soundness error at an exponential rate [4]. Unfortu-
nately, as shown by Bellare, Impagliazzo and Naor [1], in the case of interactive
arguments parallel repetition might not reduce the soundness error at all.

Let us be more precise about the latter statement. Parallel repetition does re-
duce the soundness error in the case of 3-message protocol ([1, 2, 6]) and in the
case of public-coin verifiers ([7, 5]). On the negative side, for any k ∈ N [1] pre-
sented an 8-message protocol with soundness error 1

2 , whose k-parallel repetition
soundness remains 1

2 . Recently, Pietrzak and Wikström [8] gave an example of a
single protocol for which the above phenomena holds for all polynomial k simulta-
neously. Moreover, both results extend to 4-message protocols, assuming a rather
natural limitation about the soundness proof.

1. Our Result

We present a simple method for transforming any efficient interactive argument
whose soundness error is bounded away from one, into an efficient interactive
argument with the same number of rounds and negligible soundness error. Given
an m-round interactive protocol (P, V ), we define the random-termination variant
of V , denoted by Ṽ , as follows: through the interaction with P algorithm Ṽ acts
exactly as V does, but with the following additional step: at the end of each
round, Ṽ tosses an (1− 1/4m, 1/4m) biased coin (i.e., 1 is tossed with probability
1/4m). If the outcome of the coin is 1, then Ṽ accepts the interaction and halts.
Otherwise, Ṽ proceeds as V does (where in particular, at the end of the protocol,
if reached, Ṽ accepts iff V does). Note that the completeness of (P, Ṽ ) is at
least as high as the completeness of (P, V ), where the soundness of Ṽ is at least
(1− 1

4m )m · α ≥ 3
4 · α, given that the soundness of V is at least α.

In the following we refer to (P, Ṽ ) as the random-termination variant of (P, V ).
Our main contribution is stated in the following theorem.

Theorem 1 (informal). Parallel repetition of the random-termination variant of
any interactive argument, reduces the soundness error at a weak exponential rate.

We note that our result holds with respect to any interactive protocol that
can be cast as an interactive argument. For instance, our result yields a round-
preserving binding amplification for computationally binding commitment schemes.
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Our result also extends to the more general threshold case, where the prover in
the k-fold repetition is only required to make t < k of the verifiers accept.

2. Our Technique

Let (P, V ) be an interactive argument with soundness error ε and let (P (k), V (k))
be its k’th parallel repetition. We show that if (P, V ) is a random-termination vari-
ant of some protocol, then any efficient strategy P (k)∗ that breaks the soundness
of (P (k), V (k)) with “too high” probability εk, implies an efficient algorithm P ∗

that breaks the soundness of (P, V ) with probability higher than ε. As a warm up,
we start by presenting such strategy for the parallel repetition of public-coin pro-
tocols (with no random-termination), and then explain how to adapt this strategy
the random-termination case.
Public-coin protocols. In the following we loosely follow the approach presented
by [5]. In order to interact with V , algorithm P ∗ emulates a random execution of
(P (k)∗, V (k)), where the “real” V plays the role of the i∗’th V , for i∗ that is chosen
at random from [k], and P ∗ emulates the execution of the other (k−1) verifiers and
of P (k)∗. In the j’th round, P ∗ acts as follows: upon receiving the j’th message
from V , it samples at random a value Mj = (Mj,1, . . . ,Mj,k) for the j’th messages
of emulated verifiers, and evaluates their “quality” αMj — the probability that
P (k)∗ makes V (k) accept conditioned on the current transcript and on Mj . In order
to do so, P ∗ samples many random continuations of the protocol, and measures
the fraction of accepting ones (i.e., where all the verifiers accept). If the estimated
value of αMj

is higher than some threshold βj (e.g., βj = (1− j
4m ) · εk, where we

recall that εk is the success probability of P (k)∗), then P ∗ sends M j
i∗ back to the

real V . In addition, P ∗ sets the state of the emulated verifiers and P (k)∗ according
to Mj . P ∗ keeps sampling random values for Mj until a good value is found, or
until n/εk unsuccessful attempts, where in the latter case it aborts. We note that
V accepts whenever P ∗ does not abort.

The proof that P ∗ breaks the soundness of (P ∗, V ) with high probability, goes
by showing that conditioned on P ∗ not aborting in the j’th round, the probability
that P ∗ abort in the j+1 round is small. For proving the above, it suffices to show
that P (k)∗’s conditional success probability after getting the j + 1 message from
the real verifier, is not much smaller than αMj

. While in the worst case the latter
probability might be arbitrarily small (and in particular, much smaller than αMj

),
using a result of Raz [9] one can show that for most values of i∗, this conditional
probability is with high probability close to αMj .
Random-termination protocols. When one tries to adopt the above strategy for
non public-coin protocols, he should first decide what the values of Mj and αMj

stand for in this case. The first (and the more natural) option, is to choose Mj

at random from the j’th messages of the emulated verifier that are consistent
with the current transcript, and let αMj

be the probability that P (k)∗ makes V (k)

accept conditioned on Mj and on the current transcript. The very same argument
we used above for the public-coin case, yields that P ∗ makes V accepts with high
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probability also in this settings. The problem is, however, that the above strategy
is not necessarily efficient. (Indeed, the task of sampling Mj and of estimating αMj

using the above strategy, are essentially the task of finding a random preimage of
an arbitrary function).1

The way we adopt the public-coin strategy for the non public-coin case is dif-
ferent. We assume without loss of generality that the random (private) coins that
V is using in each round are chosen uniformly at random from {0, 1}t (for some
value of t that might depend on the round). In each round, P ∗ chooses Mj uni-
formly random from {0, 1}t·(k−1), and estimates the value of αMj defined as the
probability that P (k)∗ makes V (k) accept, conditioned on the random coins flipped
by all the verifiers (emulated and real) till now, and that the random coins of the
emulated verifiers in the j’th round are set to Mj . Upon finding a good value
for Mj (i.e., the estimation of αMj

is at least βj), P ∗ fixes the random coins of
the emulated verifiers in the j’th round to Mj , and sends the message that P (k)∗

sends to the i∗ verifier in the j’th round to V (given this fixing). As in the case of
former approach, it follows that P ∗ makes V accepts with high probability.

On a first look, the above approach does not look very promising, as in general
no strategy (even not an unbounded one) can evaluate αMj

.2 Interestingly, we
show that a close variant of the above strategy can be implemented efficiently for
any random-termination verifier.

Let V be a random-termination verifier and assume without loss of generality
that it chooses all but its decision bits (the bits uses for deciding whether or not to
terminate the executions) before the interaction starts. In order to approximate
the value of αMj

, P ∗ samples the future random coins of all the verifiers condi-
tioned that the real verifier’s decision bit in the end of the j’th round is one (i.e.,
it decides to halt in the end of the j’th round). Sampling in this case is very easy,
since the real verifier sends no further messages, and the future random coins for
the emulated verifiers (under any conditioning) are simply uniform random strings.
The obvious problem with the above approach is that by adding this additional
conditioning we might reduce the success probability of P ∗. We prove that the
latter does not happen for most choices of i∗, by proving the following stronger
statement: for a given i∗ ∈ [k], consider the distribution that a random execution
of (P ∗, Ṽ ) described above induces on the value of (M1 . . . ,Mm) with respect to to
this choice of i∗ (hereafter, the “real” distribution). For such i∗, we also consider
the “ideal” version of the above distribution. In this version, P ∗ has access to the

1We mention that the proofs of all interactive argument protocols for which parallel repeti-
tion is known to reduce soundness, follow (implicitly or explicitly) the above strategy. Indeed,
such proofs were only given for protocols for which the above sampling strategy can be carried

efficiently: public-coin protocol [5], with extensions to protocols in which the last message of
the verifier (which contains its decision bit) is not necessarily efficiently samplable: 3-message

protocols [1] and “extendable and simulatable” verifiers [5].
2The random coins that the real verifier chooses in the j’th round, might only affect the

transcript on a later round. Therefore, the transcript of the protocol in the j’th round might not

contain the required information for estimating αMj
(recall that the value of αMj

is determined

by the random coined that were already flipped by the verifiers, and not by the transcript).
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random coins of the i∗ verifier, and uses them for approximating the values of αMj

well. Our main technical contribution is showing that for most values of i∗ ∈ [k]
(i.e., for (1 − (mk )Ω(1)) fraction of them), the above distributions are statistically
close.
Bounding the distance between the ideal and real distributions. Let k ≥ m · n2.
For concreteness, we consider the distribution of M1 induced by the first round of
the protocol, given an arbitrary fixing of the real verifier random coins. We say
that i∗ ∈ [k] has global effect, if by conditioning that the i∗’th verifier halts at the
end of the first round, we significantly change the probability that P ∗ finds a good
value for M1 in a single first round iteration. We say that i∗ has local effect on
some value of M1, if by conditioning on the i∗ verifier halting at the end of the
first round, we significantly change the value of αM1 (recall that αM1 was defined
as the success probability P (k)∗, conditioned that the emulated verifiers random
coins in the first round are set to M1).

We first show that the fraction of local effect indices is small for every value of
M1. Assume that the number of local effect indices on some value of M1 is larger
than m · n. Further, assume for simplicity that by conditioning on half of these
indices, we reduce the value of αM1 significantly. In this case, at least one of these
local high effect verifiers halts in almost every random continuation of the protocol
(recall that any of the verifiers halts with probability 1/4m). This means that the
value of αM1 should have been smaller than what we assume it is. A similar proof
also show that the number of global effect indices is small.

In the following we assume for simplicity that every index has local effect only
on a small portion of the possible values for M1, and let i∗ be an index with no
global effect. It is easy to verify that the following holds in a random first round
iteration of P ∗ with such choice of i∗: the probability that P ∗ picks a good value
for M1 (P ∗ estimates that αM1 > β1) and i∗ does not have local large effect on,
is much larger than the probability that P ∗ picks a good value for M1 that i∗ has
local large effect on. It follows that the probability that such choice of i∗ induces
on most value of M1, is close to the probability in which each M1 is drawn with
probability αM1

ExM1 [αM1 ] . Namely, the distribution induced by i∗ is close to the real
distribution.
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Direct-Product Decoding and Testing
Valentine Kabanets

(joint work with Russell Impagliazzo, Ragesh Jaiswal, and Avi Wigderson)

Applications of complexity theory such as cryptography and derandomization
require reliably hard problems that cannot be solved by any algorithm with a
non-trivial advantage over random guessing. Direct-product theorems are a pri-
mary tool in hardness amplification, allowing one to convert problems that are
somewhat hard into problems that are more reliably hard. In a direct-product
theorem, we start with a function f such that any feasible algorithm has a non-
negligible chance of failing to compute f(x) given a random x. We then show
that no feasible algorithm can, given multiple instances of the problem x1, . . . , xk,
compute all of the values f(xi), with even a small probability of success. (Usu-
ally, the xi’s are chosen independently, but there are also derandomized direct-
product theorems where the xi’s are chosen pseudo-randomly.) Many strong di-
rect product theorems are known for non-uniform models, such as Boolean cir-
cuits [Yao82, Lev87, GNW95, Imp95, IW97, STV01]. Unfortunately, in general,
direct-product theorems fail in completely uniform models such as probabilistic
computation.

For further discussion, it will be more convenient to view direct product the-
orems in the language of error-correcting codes. Impagliazzo [Imp02] and Tre-
visan [Tre05] pointed out that proofs of direct product theorems correspond to
(approximate) local error-correction of sparse codes. Using this view, we think of
a function f as being encoded by Code(f) = fk, its values on all k-tuples. That
is, the message is the truth table of the function f , and the encoding of f is the
truth table of the direct-product function fk.1 Given a highly corrupted encoding
C ′ of some function f , we would like to recover f . We want local decoding in the
sense that the decoding algorithm, given oracle access to C ′, should produce an
efficient circuit for f (which may also use oracle access to C ′). Having efficient
local decoding of the direct-product code immediately translates into the hard-
ness amplification properties of the direct-product construction. Intuitively, if the

1Note that if f is a Boolean function, then the message is a string over the binary alphabet

{0, 1}, whereas its encoding is a string over the larger alphabet {0, 1}k.



32 Oberwolfach Report 52

decoder can recover a small circuit computing f well on average (thereby contra-
dicting the assumed average-case hardness of f) from a small circuit C ′ that has
only ε agreement with fk, then fk must be hard to compute by small circuits on
all but less than ε fraction of inputs.

A completely uniform decoding algorithm for the direct-product encoding Code(f)
is an algorithm that constructs a single circuit C computing f well on average,
when given as input some circuit C ′ that agrees with fk on a small, say ε, fraction
of all k-tuples. When ε is sufficiently close to 1, e.g., if ε ≥ 0.9, then such uniform
decoding is possible (and easy to analyze). However, if ε ≤ 1/2, it is easy to see
that C ′ does not uniquely determine f . Indeed, consider t = 1/ε different (e.g.,
randomly chosen) functions f1, . . . , ft. Partition the set of all k-tuples into t sets
(of measure ε each). Define C ′ so that C ′ agrees with fki on the k-tuples in the
ith set of the partition. Then this C ′ has agreement ε with each of the t = 1/ε
functions f1, . . . , ft.

The example given above shows that the direct-product code Code(f) = fk is
not uniquely decodable when the fraction of corrupted symbols in the codeword is
at least 1/2. In order to tolerate high corruption rates (which is the interesting case
for hardness amplification), we need to allow list-decoding: Given C ′, a corrupted
version of fk, a decoding algorithm may output a list of circuits such that one of
them computes f well on average. The list size is an important parameter that
we would like to minimize. The example above shows the list size lower bound
1/ε (for list-decoding from C ′ that has ε agreement with the function fk which we
wish to decode).

Most previously known proofs of the direct-product theorem are highly non-
uniform in the sense that they yield decoding algorithms with the list size ex-
ponential in 1/ε. In contrast, more uniform proofs of the direct-product theo-
rem should yield list-decoding algorithms with the list size at most polynomial
in 1/ε. [IJK06] gave the first such proof of the direct-product theorem achieving
the list size poly(1/ε); however, the proof was quite complex and fell short of the
information-theoretic bounds in many respects.

We give a new uniform direct-product theorem that has the following features:
(1) Optimality: The parameters achieved by our list decoding algorithm are in-
formation theoretically optimal (to within constant factors). In particular, the list
size is O(1/ε), which matches the list-size lower bound given in the example above
(up to a constant factor). (2) Derandomization: We get the first derandomized
direct-product theorems in the uniform setting. A direct application of the above
intersection codes to subspaces yields amplification with input size O(n), instead
of the trivial bound of O(kn) when using all subsets.

Our second result concerns testing if a given oracle function is a direct-product
of some function, i.e., testing if the oracle is a DP codeword. Goldreich and Safra
[GS00] pioneered local testing of the DP code and its PCP application. A recent
result by Dinur and Goldenberg [DG08] enabled for the first time testing proximity
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to this important code in the “list-decoding” regime. In particular, they give a 2-
query test which works for polynomially small success probability 1/kα, and show
that no such test works below success probability 1/k.

Our main result is a 3-query test which works for exponentially small success
probability exp(−kα). Our techniques (based on recent simplified decoding algo-
rithms for the same code [IJKW08], discussed above) also allow us to considerably
simplify the analysis of the 2-query test of [DG08]. We then show how to de-
randomize their test, achieving a code of polynomial rate, independent of k, and
success probability 1/kα.

Finally we show the applicability of the new tests to PCPs. Starting with a
2-query PCP over an alphabet Σ and with soundness error 1 − δ, Rao [Rao08]
(building on Raz’s (k-fold) parallel repetition theorem [Raz98] and Holenstein’s
proof [Hol07]) obtains a new 2-query PCP over the alphabet Σk with sound-
ness error exp(−δ2k). Our techniques yield a 2-query PCP with soundness error
exp(−δ

√
k). Our PCP construction turns out to be essentially the same as the

miss-match proof system defined and analyzed by Feige and Kilian [FK00], but
with simpler analysis and exponentially better soundness error.
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Complexity of Constraint Satisfaction Problems: Exact and
Approximate

Prasad Raghavendra

A Constraint Satisfaction Problem (CSP) Λ is specified by a family of predicates
over a finite domain [q] = {1, 2, . . . , q}. Every instance of the CSP Λ consists of a
set of variables V, along with a set of constraints P on them. Each constraint in
P consists of a predicate from the family Λ applied to a subset of variables. Well
known examples of CSPs include MaxCut, 2-SAT and 3-SAT.

1. Perfect Satisfiability

Problem 1 (Exact-Λ). Given an instance = of the Λ-CSP, determine whether
there is an assignment satisfying all the constraints in P.

As it turns out, for most CSPs Λ, the Exact-Λ is NP-hard. In fact, the following
well known theorem lists all boolean CSPs that are tractable.

Theorem 1 (Schraefer’s Theorem). A boolean CSP Λ is NP-hard unless it is one
of the following: XOR (linear equations over F2), 2-SAT, Horn SAT, Dual

Horn SAT or a trivial CSP for which ~0 or ~1 is always a satisfying assignment.

A natural question to ask is what makes CSPs NP-hard or easy. Indeed, there
is apparently an elegant characterization of easy CSPs.

Consider the XOR problem. Fix an instance = of XOR over n variables. Given
three solutions X(1), X(2), X(3) ∈ {0, 1}n to =, one can create a new solution
Y ∈ {0, 1}n as follows:

Yi = XOR(X(1)
i , X

(2)
i , X

(3)
i ) ∀i ∈ [n] .

It is easy to check that Y is also a feasible solution to the instance =. Thus
the XOR : {0, 1}3 → {0, 1} yields a way to combine three solutions in to a new
solution for the same instance. A function of this form is known as a polymorphism.
Formally, a polymorphism of a CSP Λ is defined as follows:
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Definition 1.1 (Polymorphisms). A function F : [q]R → [q] is said to be a
polymorphism for the CSP Λ, if for every instance = of Λ, and R solutions
X(1), X(2), . . . , X(R) ∈ [q]n that satisfy all constraints in =, the vector Y ∈ [q]n

defined below is also a feasible solution.

Yi = F (X(1)
i , X

(2)
i , X

(3)
i , . . . , X

(R)
i ) ∀i ∈ [n] .

Note that the dictator functions F (x) = x(i) are polymorphisms for every CSP
Λ. These will be referred to as projections or trivial polymorphisms.

The boolean CSPs that are described in Schraefer’s theorem all have non-trivial
polymorphisms. Specifically, 2-SAT has the Majority functions, Horn-SAT has
OR functions, and Dual Horn-SAT has the AND functions as polymorphisms.

More generally, it is conjectured by Bulatov et al.[1] that the existence of non-
trivial polymorphisms characterizes CSPs that are tractable. A rough statement
of their conjecture is as follows:

Conjecture 3. Let Λ be a “core”. Exact-Λ is polynomial time tractable if there
exists F ∈ Poly(Λ) that are “not juntas”. Otherwise Exact-Λ is NP-hard.

The condition that Λ is a core enforces that there are no homomorphisms from
Λ in to itself. The above conjecture is true for CSPs over domain sizes 2 and
3. Furthermore, this conjecture seems supported by a wealth of evidence. For
instance, there are results that assume a CSP has polymorphisms of a specific
kind, and then obtain polytime algorithms for them.

2. Approximating CSPs

We now turn to the problem of approximating CSPs, specifically the Max-Λ
problem defined below.

Problem 2 (Max-Λ). Given an instance = of the Λ-CSP, find an assignment that
satisfies the maximum number (equivalently fraction) of constraints.

Generalizing the notion of polymorphisms from Exact-Λ to Max-Λ we define
a function F to be a α-approximate polymorphism if it is given R solutions of
value at least c, then the output has value at least α · c. The formal definition of
approximate polymorphisms is presented below.

Definition 2.1. A Distributional Function F outputs a probability distribution
over [q] on input from [q]R. Formally, it is a map F : [q]R → Nq where Nq is the
set of probability distributions over [q].

Alternatively, Nq is the q-dimensional simplex in Rq. A distributional function
is given by F = (F1, F2, . . . , Fq) where Fi : [q]R → R, Fi(x) ≥ 0 and

∑
i Fi(x) = 1.

Definition 2.2. A distribution over distributional functions (DDF) F is a prob-
ability distribution over distributional functions F , F : [q]R → Nq

Let val=(X) denote the objective value of an assignment X on instance =.
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Definition 2.3 (α-approximate polymorphism). A DDF F is an α-approximate
polymorphism if the following holds:

For every instance =, andR assignmentsX(1), X(2), . . . , X(R) ∈ [q]n, if val=(X(i)) ≥
c for all i then,

E
F∈F

[val=(F (X(1), . . . , X(R)))] ≥ α · c

Here, by F (X(1), . . . , X(R)) we mean a random assignment Y ∈ [q]n generated as
follows:

• For each i ∈ [n], apply F on the ith bits of X(1), X(2), . . . , X(R) to get a
distribution Di on Nq.
• Set Yi by sampling from Di independent of everything else.

val=(F (X(1), . . . , X(R))) is the expected value of the assignment Y obtained above.

Similarly define (c, α)-approximate polymorphisms by fixing the value of c in
the above definition.

For every CSP, it is easy to see that the dictator functions are 1-approximate
polymorphisms. As in the case of Exact-Λ, we will be interested in non-trivial
polymorphisms. Specifically, we make the following definition:

Definition 2.4. A DDF F is τ -pseudorandom if for every F ∈ F , and every
distribution µ on [q], all the influences of F under distribution µR are less than τ .

In analogy to Exact-Λ, it is natural to conjecture that the existence of α-
approximate and non-dictator polymorphisms capture the approximability of a
CSP. Indeed, the well-known Unique Games Conjecture of Khot [3] is equivalent
to this natural conjecture. Formally define,

• αΛ
def= largest α, such that there exists a τ -pseudorandom α-approximate

DDF for every τ > 0.
• αΛ,c

def= largest α, such that there exists a τ -pseudorandom (c, α)-approximate
DDF for every τ > 0.

We show the following theorem that settles the approximability of every CSP
under UGC:

Theorem 2. [4] Unique Games Conjecture =⇒ For every Λ, αΛ is the approxi-
mation threshold. Furthermore, Unique Games Conjecture ⇐⇒ that for every Λ
and c > 0, αΛ,c is the correct approximation threshold for instances of value c on
Λ.

There are two aspects to the above theorem. First, the following lemma fol-
lows directly from the techniques of Khot et al.[2] for producing UG hardness
reductions.

Lemma 2.1 (Hardness Part). Unique Games Conjecture =⇒ For every Λ, αΛ it is
NP-hard to approximate better than αΛ. Furthermore, Unique Games Conjecture
⇐⇒ For every Λ and c > 0, on instances of value c, it is NP-hard to approximate
better than αΛ,c.
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Lemma 2.2 (Algorithmic Part). If a CSP Λ has α-approximate polymorphisms
then there is an α− ε-approximation algorithm for Λ. (same extends to αΛ,c)

The above lemma is the core of the soundness analysis in [4], stated in a purely
algorithmic way. The algorithm is based on a simple semidefinite programming
relaxation (see [4]).
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Efficiency Improvements in Constructions of Pseudorandom
Generators from Any One-way Function

Omer Reingold

(joint work with Iftach Haitner, and Salil Vadhan)

Abstract: We give a new construction of pseudorandom generators from any
one-way function. The construction achieves better parameters and is simpler
than that given in the seminal work of H̊astad, Impagliazzo, Levin and Luby
[SICOMP ’99]. The key to our construction is a new notion of next-block pseu-
doentropy, which is inspired by the notion of “inaccessible entropy” recently in-
troduced in [Haitner, Reingold, Vadhan and Wee, STOC ’09]. An additional ad-
vantage over all previous constructions is that our pseudorandom generators are
highly parallelizable and invoke the one-way function in a non-adaptive manner.
Using [Applebaum, Ishai and Kushilevitz, SICOMP ’06], this implies the existence
of pseudorandom generators in NC0 based on the existence of one-way functions
in NC1.

1. Introduction

The result of H̊astad, Impagliazzo, Levin and Luby [6] that one-way functions
imply pseudorandom generators is one of the centerpieces of the foundations of
cryptography and the theory of pseudorandomness.

From the perspective of cryptography, it shows that a very powerful and useful
cryptographic primitive (namely, pseudorandom generators) can be constructed
from the minimal assumption for complexity-based cryptography (namely, one-
way functions). With this starting point, numerous other cryptographic primitives
can also be constructed from one-way functions, such as private-key cryptogra-
phy [1, 8], bit-commitment schemes [9], zero-knowledge proofs for NP [2], and
identification schemes [3].
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From the perspective of pseudorandomness, it provides strong evidence that
pseudorandom bits can be generated very efficiently, with smaller computational
resources than the “distinguishers” to whom the bits should look random. Such
kinds of pseudorandom generators are needed, for example, for hardness results in
learning [11] and the natural proofs barrier for circuit lower bounds [10]. Moreover,
the paper of H̊astad, Impagliazzo, Levin and Luby introduced concepts and tech-
niques that now permeate the theory of pseudorandomness, such as pseudoentropy
and the Leftover Hash Lemma.

A drawback of the construction of H̊astad, Impagliazzo, Levin and Luby, how-
ever, is that it is quite complicated. While it utilizes many elegant ideas and
notions, the final construction combines these in a rather ad hoc and indirect
fashion due to various technical issues. In addition to being less satisfactory from
an aesthetic and pedagogical perspective, the complexity of the construction also
has a significant impact on its efficiency. Indeed, it is too inefficient to be imple-
mented even for very modest settings of parameters.

In the last few years, progress has been made on simplifying the construction
of H̊astad, Impagliazzo, Levin and Luby [7] and improving its efficiency [4]. These
constructions, however, still retain the overall structure of the H̊astad, Impagliazzo,
Levin and Luby construction, and thus retain some of the complex and ad hoc
elements.

In this paper, we present a significantly more direct and efficient construction
of pseudorandom generators from one-way functions. The key to our construction
is a new notion of next-block pseudoentropy, which is inspired by the recently
introduced notion of “inaccessible entropy” [5].
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The k-Clique Problem on Random Graphs & New Conjectures on AC0

Benjamin Rossman

We discuss recent work on the average-case complexity of the k-Clique problem.
One result is a lower bound, for every constant k, of ω(nk/4) on the size of constant-
depth (AC0) circuits which approximate k-Clique on Erdős-Rényi random graph
G(n, p) where p(n) ∈ Θ(n−2/(k−1)) is any threshold function for the existence of
k-cliques [2]. We also obtain a lower bound of ω(nk/4) on the size of monotone
circuits which approximate k-Clique on both G(n, p) and G(n, p+p1+ε) (for some
small constant ε > 0) [3].

These lower bounds are essentially tight. By a result of Amano [1], there exist
constant-depth circuits of size nk/4+O(1) which approximate k-Clique on G(n, p)
for all functions p(n). We give a monotone version of these circuits in [3].

In this talk we also present two new conjectures concerning AC0. The first
concerns a notion which we call average maximal sensitivity. For boolean function
f1, . . . , fm : {0, 1}n −→ {0, 1}, let

ams(f1, . . . , fm) 4= Ex∈{0,1}n
[
maxj∈{1,...,m} sens(fj , x)

]
where sens(f, x) 4= #{i ∈ {1, . . . , n}

∣∣ f(x) 6= f(x with the ith bit flipped)}. Us-
ing H̊astad’s Switching Lemma, it can be shown that if functions f1, . . . , fm are
computed by an AC0 circuit of depth d with m = poly(n) output nodes, then
ams(f1, . . . , fm) = O((log n)d). We conjecture that there is a direct inductive proof
of this fact. Precisely, suppose f1, . . . , fn satisfy ams(f1, . . . , fn) = O((log n)d)
and let g1, . . . , gn be boolean functions where each gi is the product (i.e. AND) of
a subset of fj ’s. Must it hold that ams(g1, . . . , gn) = O((log n)d+1)? (We can ask
the same question replacing both O((log n)d) and O((log n)d+1) with no(1). Even
this modified conjecture would give a brand-new proof that Parity /∈ AC0.)

Our second conjecture is that there is no balanced AC0 graph property, i.e.,
no AC0 property of graphs that is invariant under permutations of vertices and
holds for between an ε and 1− ε fraction of n-vertex graphs for some ε > 0. This
conjecture implies a zero-one law for successor-invariant first-order logic. Resolving
this question seems to call for new techniques on AC0 (beyond the Switching
Lemma and LMN Theorem). We observe:

• there is no balanced AC0 symmetric boolean function,
• there is a balanced AC0 boolean function which is invariant under a tran-

sitive group action (the Tribes function of Ben-Or and Linial),
• there is a balanced graph property whose Fourier coefficients satisfy the

conclusion of the LMN Theorem (“there exists a k-clique of the expected
maximum size (= (2 + o(1)) log n)”).
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Recent Results on Polynomial Identity Testing
Amir Shpilka

Polynomial Identity Testing (PIT) is a fundamental problem in algebraic complex-
ity: We are given a circuit computing a multivariate polynomial, over some field
F, and we have to determine whether it is identically zero or not. Note that we
want the polynomial to be identically zero and not just to be equal to the zero
function so, for example, x2 − x is the zero function over F2 but not the zero
polynomial. The importance of this problem follows from its many applications:
Algorithms for primality testing [2, 3], for deciding if a graph contains a perfect
matching [17, 18, 7] and more, are based on reductions to the PIT problem (see
the introduction of [16] for more applications).

There are two well studied scenarios in which the PIT problem is considered.
The first is the so called black-box model in which the circuit is given as a black-
box and we can access it only by querying its value on inputs of our choice. It is
clear that every such algorithm must produce a test set for the circuit. Namely, a
set of points such that if the circuit vanishes on all the points in the set then the
circuit computes the zero polynomial. Another well studied scenario is the non
black-box case in which the circuit is given to us as input. In particular, we have
access to the polynomials that are being computed at various gates of the circuit.
Clearly this is an ‘easier’ version of the problem, yet PIT is extremely difficult in
this model as well.

Determining the complexity of PIT is one of the greatest challenges of theoret-
ical computer science. It is one of a few problems for which we have coRP algo-
rithms but no sub-exponential time deterministic algorithms. Indeed, many clever
randomized algorithms are known for the general PIT question [23, 27, 9, 8, 16, 2]
whereas sub-exponential time deterministic algorithms are known only for very
restricted models. One explanation for this state of affairs is the strong relation
between PIT and lower bounds for arithmetic circuits. Although seemingly very
different, the problem of derandomizing PIT (i.e., that of giving efficient determin-
istic algorithms for the problem) is closely related to the problem of proving super
polynomial lower bounds for arithmetic circuits. In [12] Kabanets and Impagliazzo
showed that efficient deterministic algorithms for PIT imply that NEXP does not
have polynomial size arithmetic circuits. Specifically, if PIT can be solved deter-
ministically in polynomial time, even in the non black-box model, then either the
Permanent cannot be computed by polynomial size arithmetic circuits or NEXP
6⊆ P/poly. That is, we get a super polynomial lower bound either for NEXP or
for the Permanent. In [12] it was also shown that from super-polynomial lower
bounds for arithmetic circuits one can design a deterministic quasi-polynomial
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time algorithm for PIT. In [11] we obtained analogous results for bounded depth
circuits. In [1], Agrawal observed that polynomial time derandomization of PIT,
in the black-box model, implies exponential lower bounds for arithmetic circuits.
These results show the strong connection between PIT and lower bounds and
indicate how difficult and important this problem is.

Because of the strong connection to proving lower bounds it is not surprising
that the PIT problem becomes very interesting already for bounded depth cir-
cuits. Specifically, [4] proved that polynomial time derandomization of PIT for
depth 4 circuits already implies exponential lower bounds for general arithmetic
circuits. In combination with the results of [12] this gives a quasi-polynomial time
derandomization of PIT for general arithmetic circuits. Hence, the problem of
derandomizing PIT for depth 4 circuits is as difficult (and as important) as the
problem for general arithmetic circuits.

Currently, deterministic subexponential PIT algorithms are known for non-
commutative arithmetic formulae [19], for depth 3 circuits with a small top fan-in
[10, 15, 5, 13, 22, 25, 14], for sums of read-once formulas [24, 25] and for multilinear
depth 4 circuits with bounded top fan-in (as well as several very restricted versions
of depth 4 circuits [5, 21, 25]). It is not known whether derandomizing PIT for
depth 4 multilinear circuit implies a derandomization of PIT for general multilinear
circuits. However, such a derandomization does imply an exponential lower bound
for general multilinear circuits, thus improving the slightly super linear bound of
[20].

Another line of research concerning PIT is better understanding its relation to
other computational problems. In [26] a relation between PIT and multivariate
polynomial factorization was found. Specifically, [26] showed that one can deran-
domize PIT if and only if one can derandomize the problem of computing variable
disjoint factors of a multilinear given polynomial (that relation holds both in the
black-box and non black-box models). In [6] a relation between deterministic PIT
as well as circuit lower bounds and the isolation lemma was found.

In this talk we shall survey most of the recent results on PIT that were men-
tioned above and will give a list of what we think are the most accessible and
important open problems.
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Fast Polynomial Factorization and Modular Composition
Chris Umans

(joint work with Kiran Kedlaya)

One of the most prominent success stories of algorithmic algebra is the invention
of polynomial time algorithms for factoring polynomials [9, 5, 8]. In this work we
focus on the most basic version of this problem, factoring univariate polynomials
over a finite field. Classical polynomial-time algorithms for this problem are due to
Berlekamp [1], and Cantor and Zassenhaus [3]. With additional innovations [10],
these algorithms can be made to run in (nearly) quadratic time in n, the degree
of the polynomial to be factored. Subquadratic-time algorithms were devised by
Kaltofen and Shoup [6].

The bottleneck in all of these “fast” algorithms turns out to be to comput-
ing the polynomial Xqi mod A(X), where A ∈ Fq[X] is the polynomial to be
factored, and i ranges between 1 and n. It is not hard to see that this can be ac-
complished with O(log qi) = O(i log q) modular polynomial multiplications (each
costing Õ(n) arithmetic operations), by repeated squaring. Since i may be as
large as n, this strategy takes quadratic time in the worst case. A different algo-
rithm employs modular composition of degree n polynomials, and can break the
quadratic barrier. This algorithm works as follows: first, compute Xq mod A(X)
using repeated squaring, then compose Xq with itself (modulo A(X)) to obtain
Xq2 , compose that polynomial with itself (modulo A(X)) to obtain Xq4 , and so
on. The overall cost is O(log q) modular polynomial multiplications followed by
O(log i) modular polynomial compositions. One can hope to compute each modu-
lar composition in Õ(n) arithmetic operations, which would lead to an overall Õ(n)
algorithm. In fact, by slightly adapting the algorithm for polynomial factorization
presented in Kaltofen-Shoup [6], one finds that improving the exponent α in a
Õ(nα) algorithm for modular composition directly improves the exponent on the
(randomized) polynomial factorization algorithm. When α = 1, the exponent on
the polynomial factorization algorithm becomes 1.5, and this is what we achieve
in this work1.

We now focus on the modular composition problem: given degree n univariate
polynomials f(X), g(X), and A(X) with coefficients in Fq, we wish to produce the
polynomial f(g(X)) mod A(X). The best previous algorithm (Brent and Kung [2],
and Huang and Pan [4]) dates to 1978, and achieves exponent 1.667. This number
arises because the algorithm reduces the problem to matrix multiplication (and so
the best upper bound on the exponent of matrix multiplication enters the running
time). Even if the exponent of matrix multiplication is 2, this algorithm takes
Ω(n1.5) operations, so a different strategy is needed. The following sequence of
steps effectively reduces this problem to another problem, multivariate multipoint
evaluation:

1In this discussion (and in the rest of this abstract), we ignore the dependence on q, the field

size, which is always Õ(log q) or Õ(log2 q).
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• Produce the “multivariate version” of f , which is the polynomial

f(X0, X1, . . . , Xm−1)

with degree at most d− 1 in each variable for which

f(X) = f(Xd0 , Xd1 , . . . , Xdm−1
).

For concreteness it helps to think of m = log n and d = 2 (so f is a multi-
linear polynomial), although the actual choice of m, d will be different.
• Compute g(X)d

i

mod A(X) for i = 1, . . .m − 1. Call these polynomials
gi(X). This requires Õ(n) operations using repeated squaring and fact
algorithms for polynomial multiplication and division with remainder.
• Observe that f(g0(X), . . . , gm−1(X)) ≡ f(g(X)) (mod A(X)). Since the

former polynomial has degree only ndm = Õ(n), we can afford to write it
down and then reduce modulo A(X) one final time. To do this we use an
evaluation/interpolation approach.
• Select ndm distinct points in Fq and evaluate each gi(X) at all of them.

This requires Õ(ndm) operations using fast univariate multipoint evalua-
tion algorithms. Each evaluation point α yields the vector

(g0(α), . . . , gm−1(α)) ∈ Fmq .
We evaluate f at each of these points, and finally perform fast univariate
interpolation to recover the polynomial f(g0(X), . . . , gm−1(X)) ≡ f(g(X)).

Note that the only step that is not already within Õ(n) operations, is the final
multipoint evaluation of the multivariate polynomial f . Hence we have reduced
the problem of modular composition to that of multivariate multipoint evaluation.

In contrast to the univariate case (where nearly-linear algorithms are well-
known), very little was known about multivariate multipoint evaluation. Nüsken
& Ziegler [7] have a non-trivial algorithm that again relies on fast matrix multi-
plication, but it is not enough to yield an improvement to modular composition
algorithms via the above reduction. We devise a completely different algorithm for
multivariate multipoint evaluation that runs in “nearly-linear” time in its input.
It is interesting to note that our algorithm is not algebraic. We describe the main
ideas next.

We are given a polynomial h(X0, X1, . . . , Xm−1) with coefficients in Fq, and
N = dm evaluation points in Fmq . For simplicity, let us assume q is a prime. We
first note that if the N points happened to be all of Fmq , then we could solve the
problem in Õ(N) times by computing the evaluations of h over the entire domain
via the multidimensional, finite-field FFT. We will essentially reach this case via
the following transformation: first, lift the coefficients of h and the coordinates of
the evaluation points to the integers {0, 1, 2, . . . , q− 1}. Note that in the integers,
an evaluation has magnitude at most dmqdm = M . Select small primes p1, . . . , pk
whose product exceedsM (so pi = O(logM)) and solve the multivariate multipoint
evaluation problem modulo each pi. Each evaluation can be reconstructed via the
Chinese Remainder Theorem from these reduced instances. After several rounds of
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this multimodular reduction (it turns out 3 is sufficient), we end up with a small
number of instances of the original problem relative to primes p of magnitude
≈ dm. At this point we can use the aforementioned multidimensional FFT to
evaluate over the entire domain. To see why this is near-optimal, observe that
the optimal algorithm takes at least dm time, while each of the small number of
instance we end up with takes Õ(pm) = Õ((dm)m) time, and we can make m
small (say, a large constant). With slightly more effort, the same idea (lifting to
the integers, followed by multimodular reduction) can be made to work when q is
any prime power, and indeed for a class of extension rings that properly contains
the finite fields.

Retracing the sequence of implications, we obtain Õ(n) time algorithms for
modular composition, and in turn Õ(n1.5) time algorithms for polynomial fac-
torization. It turns out that fast computation of Xqi mod A(X) lies at the core
of other algebraic algorithms. Among other applications, we also obtain “expo-
nent 1” algorithms for irreducibility testing and finding minimal polynomials. For
all of these problems, our algorithms are (currently) the asymptotically fastest
known. It is also possible to interpret our algorithm as giving a data structure
supporting polynomial evaluation: given a degree n univariate polynomial f(X)
with coefficients in Fq, we can produce in nearly-linear time, a nearly-linear sized
data structure (namely, the tables of evaluations modulo the small primes) that
answers evaluation queries (given α ∈ Fq, return f(α)) in polylogarithmic time.

Open problems include improving the exponent of polynomial factorization, ide-
ally to 1, and giving a nearly-linear algebraic algorithm for multivariate multipoint
evalation and/or modular composition.
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Inaccessible Entropy
Salil Vadhan

(joint work with Iftach Haitner, Omer Reingold, and Hoeteck Wee)

Computational analogues of information-theoretic notions have given rise to some
of the most interesting phenomena in the theory of computation. For exam-
ple, a computational analogue of entropy, known as pseudoentropy, introduced
by H̊astad, Impagliazzo, Levin, and Luby [HILL], was the key to their fundamen-
tal result establishing the equivalence of pseudorandom generators and one-way
functions, and has also now become a basic concept in complexity theory and
cryptography.

In this work, we introduce another computational analogue of entropy, which we
call accessible entropy, and present several applications of it to the foundations of
cryptography. Before describing accessible entropy (and a complementary notion
of inaccessible entropy), we recall the standard information-theoretic notion of
entropy and the computational notion of pseudoentropy of H̊astad et al.

Entropy and Pseudoentropy. Recall that the entropy of a random variable
X is defined to be H(X) := E

x
R←X

[log(1/Pr[X = x]), which measures the number
of “bits of randomness” in X (on average). We will refer to H(X) as the real
entropy of X to contrast with the computational analogues that we study. H̊astad
et al. [HILL] say that a random variable X has pseudoentropy (at least) k if
there exists a random variable Y of entropy (at least) k such that X and Y are
computationally indistinguishable.

The reason that pseudoentropy is interesting and useful is that there exist ran-
dom variables X whose pseudoentropy is larger than their real entropy. For exam-
ple, the output of a pseudorandom generator G : {0, 1}` → {0, 1}n on a uniformly
random seed has entropy at most `, but has pseudoentropy n (by definition).
H̊astad et al. proved that in fact, from any efficiently samplable distribution X
whose pseudoentropy is noticeably larger than its real entropy, it is possible to
construct a pseudorandom generator. By showing, in addition, how to construct
such a distribution X from any one-way function, H̊astad et al. prove their theo-
rem that the existence of one-way functions implies the existence of pseudorandom
generators.

The notion of pseudoentropy is only useful, however, as a lower bound on the
“computational entropy” in a distribution. Indeed, it can be shown that every
distribution on {0, 1}n is computationally indistinguishable from a distribution
of entropy at most poly(log n). While several other computational analogues of
entropy have been studied in the literature (cf., [BSW]), all of these are also meant
to serve as ways of capturing the idea that a distribution “behaves like” one of
higher entropy. In this paper, we explore a way in which a distribution can “behave
like” one of much lower entropy.

Accessible Entropy. We motivate the idea of accessible entropy with an
example. Consider an algorithm G that gets as input a random function h :



Complexity Theory 47

{0, 1}n → {0, 1}m from a family of collision-resistant hash functions (where m�
n), chooses a random x

R←{0, 1}n, sets y = h(x), and outputs the pair (y, x).
Now, information-theoretically, the second block of G’s output (namely x) has

entropy at least n−m conditioned on the input h and the first block y, because y =
h(x) reveals only m bits of information about x. However, the collision-resistance
property says that given the state of G after the first block, there is at most one
consistent value of x that G can reveal with nonnegligible probability. (Otherwise,
G would be able find two distinct messages x 6= x′ such that h(x) = h(x′).) This
holds even if G is replaced by any polynomial-time adversary G∗. Thus, there
is “real entropy” in x (conditioned on the history) but it is “computationally
inaccessible” to G∗, to whom x effectively has entropy 0.

We generalize this basic idea to allow the upper bound on the “accessible en-
tropy” to be a parameter k, and to consider both the real and accessible entropy
accumulated over several blocks. In more detail, consider an m-block generator G
that on input z, outputs a sequence (y1, . . . , ym) of blocks, and let (Z, Y1, . . . , Ym)
be random variables denoting a random input Z to G and the output blocks of
G(Z) (when G’s coin tosses are chosen uniformly at random). We define the real
entropy of G to be ∑

i

H(Yi|Z, Y1, . . . , Yi−1),

where H(X|Y ) = E
y

R←Y
[H(X|Y=y)] is the standard notion of conditional entropy.

To define accessible entropy, consider a probabilistic polynomial-time adversary
G∗ that receives an input z, and then in sequence of m stages, tosses some fresh
random coins si and computes and outputs a block yi. At the end it should also
justify that it has behaved consistently with the honest algorithm G by producing
coin tosses r for G such that G would have output (y1, . . . , ym) on input z and
coin tosses r. (For simplicity we restrict attention to G∗ that always produce
correct justifications, though our definitions and results can be generalized also to
handle G∗ that sometimes fail to do so.) Now, let (Z, S1, Y1, S2, Y2, . . . , Sm, Ym)
be random variables corresponding to the sequence of coins Si and outputs Yi of
G∗ on a random input Z. Then we define the accessible entropy achieved by G∗ to
be ∑

i

H(Yi|Z, S1, . . . , Si−1).

The key point is that now we compute the entropy conditioned not just on the
previous blocks, but on the entire local state of G∗ prior to generating the i’th
block. (We don’t need to include Yj for j < i since these are determined by Z and
S1, . . . , Sj .)

The collision resistance example given earlier shows that there can be gener-
ators G whose computationally accessible entropy is much smaller than the real
Shannon entropy. Indeed, in that protocol, the real entropy of G’s blocks is n
(namely, the total entropy in x), but the computationally accessible entropy is
at most m + neg(n), where m � n is the output length of the collision-resistant
hash function. (Here we are counting the conditional entropy in all of G’s blocks
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for simplicity, but the definitions generalize naturally if we only want to sum the
conditional entropies over some subset of blocks.) Thus, in contrast to pseudoen-
tropy, accessible entropy is useful for expressing the idea that the “computational
entropy” in a distribution is smaller than its real entropy. We refer to the difference
(real entropy)− (accessible entropy) as the inaccessible entropy of G.

Applications. We have used the notion of inaccessible entropy and variants
to:

• Give a much simpler and more efficient construction of statistically hiding
commitment schemes from arbitrary one-way functions.
• Prove that constant-round statistically hiding commitments are necessary

for constructing constant-round zero-knowledge proof systems for NP that
remain secure under parallel composition (assuming the existence of one-
way functions).
• Give a simpler construction of universal one-way hash functions and hence

digital signature schemes from one-way functions. This appears in a follow-
up subsequent paper [HRVW2]
• Inspire a simpler and more efficient construction of pseudorandom gener-

ators from one-way functions [HRV].
Bibliographic Note. Our paper [HRVW1] utilizes a more general (and more

involved) notion of inaccessible entropy for protocols. The simpler notion of inac-
cessible entropy generators described above and the simple construction of such
generators from one-way functions described in the talk will eventually be incor-
porated into the paper.
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Some Observations on Holographic Algorithms
Leslie G. Valiant

The theory of holographic algorithms is based on a notion of reduction that en-
ables computational problems to be interrelated with unusual fluidity. The theory
offers three basic reduction techniques:
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(a) Holographic transformations that relate pairs of problems by simply taking
a different view or basis,

(b) Holographic gadgets that use internal cancelations custom designed for the
problems at hand, and

(c) Interpolation techniques for recovering information from the outputs of com-
putations on a set of specially prepared variants of the problem instance at hand.

The overarching open question in the theory is whether this combination of
techniques can bridge the gap between classical polynomial algorithms on the one
hand, and the class of #P-complete (or NP- or ⊕P-complete) problems as defined
by classical reductions, on the other.

In this talk we first review the basic notions of holographic algorithms as defined
in [5, 7]. We then give an overview of our current understanding of this area,
including some results from [1-7, 9].

We go on to introduce the notion of diversity for finite functions [8], in terms
of which some limitations of the simplest kinds of holographic algorithms that we
discussed in an earlier paper [6] can be explored more explicitly. These simplest
holographic algorithms are those obtained from what we define as elementary
reductions. We show that such algorithms do impose a limitation on the diversity
of the functions that can be realized. It remains unresolved, however, whether
holographic algorithms that are not bound by the constraints of elementarity,
such as those given below, can evade this diversity limitation.

We then proceed to give some polynomial time holographic algorithms that
evade this elementarity constraint, for three natural problems for undirected graphs
of degree three [8]. These compute the parity of the number of solutions of each
of the following three problems: feedback vertex sets (or, equivalently, induced
forests), connected vertex covers, and vertex 3-colorings up to permutations of
colors.

Besides evading the elementarity constraint our algorithms have other features
that put them outside the currently better understood regions of holographic the-
ory. For one thing the use of the three element basis b3 from [7] puts them outside
the collapse theorem of Cai and Lu [3], and hence outside any known classification
such as that of symmetric signatures realized by two element bases [2]. Second,
the results hold for parity rather than counting. For parity problems, or fixed
finite fields in general, holographic transformations and interpolation both appear
to offer less flexibility than they do for general counting problems. In particu-
lar, understanding the complexity of the counting problems modulo three for the
structures we analyze here modulo two, appears to remain a challenge.
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Short Communications

The complexity of graph polynomials
Markus Bläser

(joint work with Christian Hoffmann, Johann A. Makowsky)

A graph polynomial P maps graphs to polynomials PG over some ring R such that
isomorphic graphs are mapped to the same polynomial. If we now fix some point ξ
and map G to PG(ξ), we get a new graph invariant that maps graphs to elements
of R, i.e, we evaluate the graph polynomial at ξ. For many graph polynomials
that appear in the literature, results of the following types are known:

• The polynomial is #P -hard to evaluate almost everywhere (in the Zariski
sense).
• The polynomial can be evaluated in vertex-exponential time.

(This is nontrivial in most cases, since the “obvious” ways of evaluating
give edge-exponential running times.)
• The evaluation of the polynomial is fixed parameter tractable on graphs

of bounded tree width.
The “order of quantifiers” is always: for all polynomials there is a proof that shows
the three items. We are currently working on reversing the order of quantifiers,
that is, we are looking for proofs that work for large classes of graph polynomials
uniformly. This is work in progress. Possible classes are polynomials that are
definable in some logic or polynomials that are p-definable (in Valiant’s algebraic
classes). For the third item, such a result was shown by Courcelle, Makowsky, and
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others for the class of monadic second order logic definable polynomials. For the
first item, this is Makowsky’s difficult point conjecture.

Counting decomposable univariate polynomials
Joachim von zur Gathen

A univariate polynomial f over a field is decomposable if it is the composition
f = g ◦ h of two polynomials g and h whose degree is at least 2. We determine an
approximation to the number of decomposables over a finite field. The tame case,
where the field characteristic p does not divide the degree n of f , is reasonably well
understood, and we obtain exponentially decreasing relative error bounds. The
wild case, where p divides n, is more challenging and our error bounds are weaker.

The two central technical tools are a decomposition algorithm that works for
most, but not all, inputs, and a normal form for the polynomials in Ritt’s Sec-
ond Theorem, where two essentially different pairs of polynomials yield the same
composition.

The paper is available at http://arxiv.org/abs/0901.0054.

Complexity Theoretic Aspects of Property Testing
Oded Goldreich

Some complexity theorists may view property testers as PCPs of Proximity with-
out the proof part. In general, property testing is concerned with approximate
decisions, where the task is distinguishing between objects having a predetermined
property and objects that are “far” from having this property. A potential tester
is a randomized algorithm that queries the (representation of the) tested object
at locations of its choice.

On the relation between adaptive and non-adaptive query complexity of graph prop-
erties in the adjacency matrix model. For any fixed property Π, let q denote the
query complexity of (general, i.e., adaptive) testing of Π, and Q denote the corre-
sponding non-adaptive query complexity (i.e., which refers to non-adaptive testers
of Π). Following is a list of known and conjectured results, where Ω̃ and Θ̃ denote
bounds with a slackness of a polylogarithmic factor.

• Theorem (see [3]): For any graph property in the adjacency matrix model,
it holds that Q = O(q2).
• Theorem in [2]: There exist graph properties in the adjacency matrix

model such that Q = Θ̃(q). Actually, Q = O(q) and even Q = q are
known too.
• Theorem in [2]: There exists a graph property in the adjacency matrix

model such that Q = Θ̃(q4/3).
• Theorem in [2]: There exists a graph property in the adjacency matrix

model such that Q = Ω̃(q3/2).
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• Conjecture in [2]: For every integer t > 2, there exists a graph property in
the adjacency matrix model such that Q = Θ̃(q2−(2/t)). This conjecture
is supported by a theorem that establish the same relation relation for a
promise problem.

All existential results are proved using natural graph properties.

Hierarchy Theorems for Property Testing. Such results are proved for three central
models of property testing: the general model of generic function, the model of
bounded-degree graph properties, and the model of dense graph properties (in the
adjacency matrix model). From a technical perspective, the treatment of the latter
is most interesting, since it raises and resolves various natural questions regarding
graph blow-up. For details, see [1].
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Achieving capacity against additive errors and approximating
almost-satisfiable Horn-SAT

Venkatesan Guruswami

Abstract

I gave a short report announcing two recent results, one from coding theory
and another from hardness of approximation.

Explicit capacity-achieving binary codes for worst-case additive errors.
We prove that explicit codes of optimal rate approaching capacity can be con-
structed against worst-case errors which are oblivious to the codeword (but not
necessarily the message). Formally, we prove the following result [1]: there is an
explicit, efficient stochastic encoding E(·, ·) of messages combined with a small
number of auxiliary random bits, such that for every message m and every error
vector e that contains at most a fraction p of ones, with high probability over
the random bits r chosen by the encoder, m can be efficiently recovered from the
corrupted codeword E(m, r) + e by a decoder without knowledge of the encoder’s
randomness r. (Indeed such a result is rather easy to obtain if the encoder and
decoder share random bits that are hidden from the channel.)

Our construction for additive errors also yields explicit deterministic codes of
rate approaching 1−H(p) for the “average error” criterion: for every error vector
e of at most p fraction 1’s, most messages m can be efficiently (uniquely) decoded
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from the corrupted codeword C(m) + e. Note that such codes cannot be linear,
as the bad error patterns for all messages are the same in a linear code. We also
give a new proof of the existence of such codes based on list decoding and certain
algebraic manipulation detection codes. Our proof is simpler than the previous
proofs from the literature on arbitrarily varying channels.

Tight inapproximability bound for almost-satisfiable Horn-SAT. By Schae-
fer’s theorem, we know that linear equations mod 2, 2SAT, and Horn-SAT are
essentially the only three distinct non-trivial constraint satisfaction problems over
the Boolean domain for which satisfiability can de decided in polynomial time.

What if the instance is not perfectly satisfiable, but only “almost-satisfiable,”
i.e., it admits an assignment satisfying (1 − ε) of the constraints for some small
ε > 0? Do there exist “robust” satisfiability algorithms that can find an assign-
ment satisfying 1− g(ε) fraction of constraints for some g(ε)→ 0 as ε→ 0, given
a (1− ε)-satisfiable instance? H̊astad’s celebrated hardness result for Linear equa-
tions rules out such an algorithm for linear equations mod 2: it is NP-hard to
satisfy even (1/2 + ε) of the equations given a (1− ε)-satisfiable instance. In sharp
contrast, Zwick showed that robust satisfiability algorithms exist for 2SAT and
Horn-SAT. For almost-satisfiable instances of 2SAT, he showed that using semi-
definite programming one can efficiently satisfy 1 − O(ε1/3) of the constraints.
This bound was later improved by Charikar, Makarychev, and Makarychev to
1−O(

√
ε) which is known to be best possible under the Unique Games conjecture

of Khot. For Horn-SAT, Zwick gave a linear programming based algorithm that
could satisfy a fraction 1−O( log log(1/ε)

log(1/ε) ) of the Horn clauses.
We prove that this exponentially worse bound on the fraction of unsatisfied

clauses for Horn-SAT (as a function of ε, compared to the 2SAT case) is inherent.
Specifically, in [2] we prove that it is Unique-Games hard to find an assignment
satisfying (1 − 1

O(log(1/ε)) ) of the constraints of a (1 − ε)-satisfiable instance of
Horn-3SAT.
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Multiplicities arising in Geometric Complexity Theory
Christian Ikenmeyer

(joint work with P. Bürgisser, M. Christandl)

In 1979 Valiant [Val79] conjectured the separation of complexity classes VP 6=
VNP. The Geometric Complexity Theory approach by Mulmuley and Sohoni
(see for example [MS01, MS08]) tries to prove a conjecture, which implies a variant
of VP 6= VNP. To state the conjecture let detn :=

∑
π∈Sn sgn(π)

∏n
i=1Xiπ(i),
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perm :=
∑
π∈Sm

∏m
i=1Xiπ(i) and z := Xm+1,m+1 a variable that is not used by

the permanent polynomial. Note that both zn−mperm and detn are homogeneous
polynomials of degree n. The group GLn2 := GLn2(C) acts on detn and zn−mperm
by replacing variables with linear combinations.
Conjecture ([MS01]). For all positive polynomials p and all m0 ∈ N we find
m ≥ m0 such that there does not exist a GLp(m)2 -equivariant surjection of the
coordinate rings of orbit closures

C[GLp(m)2 · detp(m)]→ C[GLp(m)2 · zp(m)−mperm].

Note that both coordinate rings are GLp(m)-representations. A proof certificate
for the nonexistence of a surjection from left to right can theoretically be given by
an irreducible representation that occurs on the right but not on the left. The oc-
curing irreducible representations of the coordinate rings can be described in terms
of so-called Kronecker coefficients. Thus an important step in this approach is the
understanding of these coefficients. We gave asymptotic positivity properties for
specific interesting families of Kronecker coefficients [BCI09], we showed that the
computation of Kronecker coefficients is #P-hard [BI08] and we gave a combinato-
rial polynomial-time algorithm for computing “small” Kronecker coefficients that
lie in an interesting subcase, namely the Littlewood-Richardson-coefficients [BI09].
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Combinatorial Constructions of Probabilistic Proof Systems
Or Meir

Probabilistic proof systems, and in particular interactive proofs and PCPs, are
by now a flourishing research area that has lead to many interesting results and
applications. Maybe the most famous results in this area are the PCP theorem
[2, 1], stating that NP has a PCP that uses a constant number of queries to a
proof of polynomial length, and the IP theorem [6, 9], stating that PSPACE has
interactive proofs with polynomial number of rounds.
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The original proofs of both those results, as well as many subsequent results in
this area, were based on algebraic techniques: Given a claim to be verified, they
construct a PCP for the claim by “arithmetizing” the claim, i.e., reducing the claim
to a related “algebraic” claim about polynomials over finite fields, and then asking
the prover to prove this algebraic claim. Proving the algebraic claim, in turn,
requires an arsenal of tools that employ the algebraic structure of polynomials.
While those algebraic techniques are very important and useful, it seems somewhat
odd that one has to go through algebra in order to prove those theorems, since the
theorems themselves say nothing about algebra. Furthermore, those techniques
seem to give little intuition for why those theorems hold.

Given this state of affairs, it is an important goal to gain a better understand-
ing of probabilistic proof systems and the fundamental reasons that make them
possible. In her seminar paper, Dinur [4] has made a big step toward achieving
this goal by giving an alternative proof for the PCP theorem using a combinatorial
approach. Her proof is not only considerably simpler than the original proof, but
also sheds more light on the intuitions that underlay the theorem.

In my research, I pursue this direction further, trying to prove all the main
results of this area using a combinatorial approach. One published result of this
flavor is a combinatorial PCPs that have verifiers that run in poly-logarithmic time
[7], which also yields a combinatorial proof of MIP = NEXP. Two additional on-
going works concern with the combinatorial construction of PCPs that have short
proof length (trying to match the result of [3]), and the combinatorial construction
of PCPs that have sub-constant soundness (trying to match the result [8, 5]).
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Average Time Fast SVP and CVP Algorithms for Low Density
Lattices

Claus Peter Schnorr

Previous SVP and CVP algorithms of Kannan and Fincke, Pohst perform the
stages of exhaustive enumeration of short/close lattice vectors in a straight forward
order disregarding the success rate of stages. Our algorithm New Enum for SVP
/ CVP performs all stages in order of decreasing success rate, stages with high
success rate are done first.

[S09] shows under GSA that New Enum runs in exponential time n
n
32 +o(n)

and in polynomial time for moderately small rd(L). We define the relative density
rd(L) of the lattice L by the equation λ1(L) = rd(L) γ1/2

n det(L)1/n, where γn is
the Hermite constant of dimension n and λ1 is the length of a shortest nonzero
lattice vector. Let the lattice basis B =∈ Zm×n be given with the unique QR
factorization, where R = [ri,j ]1≤i,j≤n ∈ Rn×n is upper triangular with positive
diagonal entries.

GSA Let B = QR = Q[ri,j ] satisfy r2
i,i/r

2
i−1,i−1 = q for i = 2, ..., n for some

q > 0.

Here q < 1, otherwise the basis B = [b1, ...,bn] starts with a shortest lattice
vector b1, ‖b1‖ = λ1. The basis B satisfies GSA if its reduction is ” locally
uniform”. Our worst case time bounds under GSA hold approximately in practice
as all quotients ri,i/ri+1,i+1 of well reduced bases nearly coincide on the average.
It is easier to work with the idealized requirement that the ri,i/ri−1,i−1 are all
equal.

Theorem 1. Given a lattice basis satisfying GSA and ‖b1‖ ≤
√

2eπ nb λ1 for
some b ≥ 0, New Enum runs in time nO(1) + (O(n

1
2 +brd(L) )

n+1
4 .

Conclusions. New Enum runs in polynomial time if rd(L) ≤ n−
1
2−ε and ε > b.

Then the vector b1 required in Theorem 1 satisfies

‖b1‖ ≤
√

2eπ nb rd(L) γ1/2
n det(L)

1
n = O(n

1
2 +b−ε)det(L)

1
n .

Satisfying this bound for arbitrary lattices seems hard. But it is possible to simply
extend the basis B and the lattice L(B) by the required nearly shortest vector b1

without solving SVP with approximation factor
√

2eπ nb. Therefore, SVP for L
with rd(L) ≤ n− 1

2−ε is easy under GSA even if ‖b1‖ >
√

2eπ nbλ1.

Lovász (1986) proves in section 1.2.21 a result that is similar to the case rd(L) ≤
n−

1
2−ε, ε > b of Theorem 1 where ‖b1‖ = O(n

1
2 +b−ε)det(L)

1
n . Given such short

vectors for all orthogonally projected lattices Lk = πk(L) and some dual lattices
L ∗k for k = 1, ..., n SVP for L can easily be solved in polynomial time.
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Typically-correct derandomization
Ronen Shaltiel

(joint work with Jeff Kinne, Dieter van Melkebeek)

A fundamental open problem in Complexity Theory is whether BPP=P, that is
can every polynomial time randomized algorithm be simulated by a polynomial
time deterministic algorithm. Goldreich and Wigderson [1] considered a relaxed
notion of deterministic simulation in which the deterministic algorithm may err
on few inputs of every input length. We call such a simulation “typically-correct
derandomization”. Goldreich and Wigderson showed that this relaxed goal can
be achieved under assumptions that are incomparable to those used in Hardness
versus randomness tradeoffs [4, 2] to obtain BPP=P.

In [5, 3] we consider typically-correct derandomization in various algorithmic
settings. For the case of BPP we show how to achieve typically correct derandom-
ization under a weaker assumption than that used in [1]. Our assumption requires
lower bounds for deterministic circuits while [1] requires lower bounds for nonde-
terministic circuits. While the assumption is still incomparable to that used in
hardness versus randomness tradeoffs we argue that it seems weaker in the follow-
ing sense: For randomized algorithms implemented by uniform poly-size constant
depth circuits, plugging existing lower bounds for AC0 into our technique give
polynomial time typically-correct derandomization whereas plugging the known
lower bounds in hardness versus randomness tradeoffs only yields a deterministic
simulation that runs in quasi-polynomial time.

We also show how to achieve explicit typically-correct derandomization in al-
gorithmic settings where derandomization on all inputs is impossible. Examples
of such settings are communication protocols, decision trees and streaming algo-
rithms.
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Semantic Communication
Madhu Sudan

(joint work with Brendan Juba and Oded Goldreich)

This talk reports on our efforts to formalize the notion of meaning of bits,
especially in the context of communication. We assert that communication ought
to be a means to achieving some end goal; and that achievement of the goal is the
functional test of achieving understanding between parties. In earlier work with
Brendan Juba [1], we proposed an example goal for communication and how it can
be achieved even in the presence of potential misunderstanding. In the current
work [2] we attempt to extend the study to all possible goals of communication.
We propose a formal definition of a generic goal. We formalize the notion that
in order to achieve the goal in the presence of misunderstanding, an interacting
player must have the ability to sense progress. We show that sensing essentially is
also sufficient to achieving the goal. We illustrate our model and theory by various
examples
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