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Introduction by the Organisers

The workshop Complexity Theory was organized by Peter Bürgisser (TU Berlin),
Oded Goldreich (Weizmann Institute), Madhu Sudan (Harvard), and Salil Vadhan
(Harvard). The workshop was held on November 15th–21st 2015, and attended by
approximately 50 participants spanning a wide range of interests within the field of
Computational Complexity. The plenary program, attended by all participants,
featured fifteen long lectures and five short (8-minute) reports by students and
postdocs. In addition, intensive interaction took place in smaller groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic and
Boolean complexity, the meeting has continuously evolved to cover a wide variety
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of areas, most of which were not even in existence at the time of the first meeting
(in 1972). While inviting many of the most prominent researchers in the field, the
organizers try to identify and invite a fair number of promising young researchers.

Computational complexity (a.k.a. complexity theory) is a central field of com-
puter science with a remarkable list of celebrated achievements as well as a vibrant
research activity. The field is concerned with the study of the intrinsic complexity
of computational tasks, and this study tends to aim at generality: it focuses on nat-
ural computational resources, and considers the effect of limiting these resources
on the class of problems that can be solved. Computational complexity is related
to and has substantial interaction with other areas of mathematics such as alge-
bra, analysis, combinatorics, geometry, number theory, optimization, probability
theory, and quantum computation.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Randomness Extraction. The problem of extracting almost perfect ran-
domness from sources of highly defected randomness is of great theoretical and
practical importance, since perfect randomness is essential to cryptography and
has numerous applications in algorithmic design, whereas the natural sources of
randomness are quite defected. One important setting of the problem refers to
the case in which one is given samples drawn from two independent sources of
defected randomness, where the level of defect is captured by a lower bound on
the probability that the outcome equals any specific value. The logarithm of the
reciprocal of this probability, called min-entropy, is a main parameter in these
studies.

While it is easy to prove the existence of two-source (randomness) extractors
for sources of logarithmic min-entropy, the explicit construction of extractors that
can handle min-entropy rate below half was open since 1985. In 2005, Jean Bour-
gain obtained an explicit construction for min-entropy rate slightly below half
(i.e., 0.499), but no progress on this problem has been reported till July 2015,
when Eshan Chattopadhyay and David Zuckerman announced a construction that
can handle poly-logarithmic min-entropy.

The workshop’s actual program started with a special session devoted to this
breakthrough, with both authors present. David Zuckerman presented the history
and wide context of the problem of constructing two-source extractors, and Gil
Cohen presented an overview of the construction. One informal specialized ses-
sion, which took place on a later day, featured more detailed descriptions of two
components of the construction. Specifically, Eshan Chattopadhyay presented con-
structions of “non-malleable extractors” and Raghu Meka presented constructions
of “resilient functions”.

One interesting point regarding the construction of Chattopadhyay and Zuck-
erman is that its analysis makes explicit use of a celebrated result about the com-
putational limitations of bounded-depth Boolean circuits (which was presented
by Mark Braverman in the 2009 complexity meeting at Oberwolfach). This is
remarkable because these two areas of complexity theory did not seem related
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before and their history did not register any actual interaction so far. Another
peculiar connection is the use of Uri Feige’s leader election protocol for the con-
struction of non-malleable extractors, whereas this protocol was discovered in the
1998 complexity meeting at Oberwolfach, following the presentation of a differ-
ent protocol by David Zuckerman (which in turn drew on ideas from the area of
pseudorandomness).

Boolean Circuit Lower Bounds. The project of establishing circuit lower
bounds calls for presenting explicit functions that cannot be computed within
limited computational resources. One direction of research is aimed at better
understanding of very restricted computation devices such as (unbounded fan-in)
bounded-depth circuits and formulae.

Ben Rossman outlined his proof that shows that the simple conversion of circuits
of size s and depth d into formulae of size sd and depth d is essentially the best
possible. Specifically, he showed that the parity of n variables, which can be
computed by a depth d circuit of size exp(n1/(d−1)), requires depth d formula of
size exp(Ω(d · n1/d)).

Avishay Tal addressed the problem of presenting explicit functions that require
depth-three circuits of size exp(ω(

√
n)). He presented a proof of such a result in

a restricted model of depth three circuits, which arises from a natural model of
multi-linear circuits for computing multi-linear functions, by studying the “rigid-
ity” of random Boolean Toeplitz matrices. Specifically, he showed that such a

random matrix disagrees with any rank r matrix on at least Ω̃(n3/r2) entries,
which improves over the previously known bound of Ω(n2/r) when r < n/ log2 n.

Fine-grained complexity. A relatively recent direction of research refers to
the study of problems that are known to have polynomial-time algorithms, where
the aim is to provide evidence that the known algorithms are actually the best
possible. Ryan Williams surveyed research in this direction, known as fine-grained
complexity, while highlighting the connection between it and the study of the exact
complexity of problems that seem to require exponential-time such as 3SAT.

Doubly-efficient interactive proof systems. The invention of interactive
proof systems and the exploration of their power are among the greatest suc-
cess stories of computational complexity. While research in the 1980s referred to
polynomial-time verification aided by a computationally unbounded prover, the
term doubly-efficient refers to almost linear-time verification aided by a polynomial-
time prover. Clearly, only polynomial-time solvable problems can have such a
proof system, even if the soundness condition is relaxed to hold only with respect
to polynomial-time cheating provers (who attempt to prove false claims).

This upper bound (on the complexity of problems having doubly-efficient in-
teractive proof systems) is met by a result presented by Ron Rothblum, which
uses only one round of communication and relies on standard intractability as-
sumptions. A different system, presented by Rothblum in a specialized session,
achieves information theoretic soundness (in a larger constant number of rounds)
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for any problem that can be solved in polynomial time and space no(1). (The space
bound is the best possible, up to a constant power.)

Two-server PIR with improved communication complexity. While the
computational assumption used by Rothblum refers to one-server computational
Private Information Retrieval (PIR) schemes, two-server PIRs offer information
theoretic security. Specifically, one can retrieve any desired bit in an n-bit long
string, held by each of the two servers, by exchanging O(n1/3) bits of commu-
nication with each server such that no single server gets information about the
identity of the desired bit. The simple scheme, invented in 1995, stood unim-
proved for two decades. Zeev Dvir presented a vast improvement on this simple
scheme, by building on results of Yekhanin and Efremenko, which were presented
in past Oberwolfach meetings (in 2007 and 2009, resp). The new scheme uses

exp(Õ(
√
logn)) = no(1) bits of communication, and relies on a construction of

“matching vectors” family over a finite ring.

High-rate locally-testable and locally-correctable codes. The aforemen-
tioned results of Yekhanin and Efremenko refer to the construction of codes that
support the recovery of any bit in a corrupted codeword based on a constant num-
ber of random probes (i.e., it achieves constant “locality”). These known results
refer to codes of sub-exponential length (i.e., the codeword has length that is sub-
exponential in the length of the message), and it is also known that such level of
locality cannot be supported by codes of almost linear length. In his presentation,
Or Meir considered the opposite extreme of the length-vs-locality trade-off: The
case in which one requires the code to have linear length (or even length that is op-
timal with respect to its distance), and tries to minimize the number of probes that

suffices for recovering a single bit. The new result asserts exp(Õ(
√
logn)) = no(1)

proves suffice to the n-bit codeword, whereas the prior bound was n1/O(1).
With respect to local testability (i.e., testing whether a string is a valid codeword

or far from it by making few queries), the results are better. In the constant-probe
regime codes of almost-linear length are known, whereas the new work present
linear-length codes that are testable by a quasi-poly-logarithmic number of probes
(i.e., the number of probes is (log n)O(log logn)).

Computational assumptions in cryptography. Modern cryptography is
based on computational assumptions, since its most basic primitive such as secure
encryption and unforgeable signatures imply the existence of one-way functions
(OWF), which in turn is a very strong version of the famous conjecture by which
P 6= NP . In recent years, far stronger computational assumptions became popu-
lar in cryptographic research. One such assumption, known as the IO conjecture,
postulates that it is feasible to obfuscate computer programs such that the ob-
fuscations of functionally equivalent programs cannot be distinguished. Vinod
Vaikuntanathan presented a unified framework in which a wide spectrum of cryp-
tographic assumptions, ranging from the (very minimal) assumption by which
OWF exist to the highly speculative IO conjecture. He also noted that the IO
conjecture does not imply OWF (nor does it even imply P 6= NP ).
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Preventing false discovery in interactive data analysis. It may seem weird
that such a title fits in a complexity theoretic workshop, but it turns out that
a natural formulation of adaptive (or interactive) data analysis yields a natural
computational problem. As explained by Jon Ullman, interactive data analysis
refers to a setting in which first one obtains a sample of the data, and then one
conducts a study of this sample by issuing queries and examining the answers (e.g.,
testing various hypotheses regarding the data). The point is that these queries are
selected adaptively based on prior answers, and the problem is to avoid (false)
discoveries that are tailored on the sample but do not reflect the original data.
One key observation is that avoiding such a phenomenon is closely related to
devising a “privacy preserving mechanism” for answering statistical queries to the
data, whereas the design of such mechanisms is related to complexity theory. In
particular, it was shown that if one-way functions exist, then false discoveries

cannot be prevented when the researcher makes more than Õ(n2) queries to a
sample of size n.

Additional surveys of wide areas. In addition to the aforementioned survey
on fine-grained complexity, the meeting featured a large number of surveys of wide
areas. These included:

• A survey on lower bounds for low-depth arithmetic circuits. The survey,
presented by Neeraj Kayal, visited some of the main themes and techniques
in this area, starting from the observation that sufficiently strong lower
bound on the size of depth four circuits would yield such lower bounds for
general arithmetic circuits (of unbounded depth).

• Two surveys of recent directions in communication complexity. The first
survey, given by Mark Braverman, focused on the gap between the total
length of the messages exchanged between two parties and the information
contents of their interaction, raising the question of the extent by which an
interactive communication can be compressed to its information contents.
It is known that, in general, the best compression is to an exponential
amount, but a quadratic amount is possible when the distribution of each
input is independent of the distribution of the other input.

The relation between multi-party communication complexity and dis-
tributed computing was the focus of Rotem Oshman’s presentation, which
highlighted the difference between the “local” model (where messages of
unbounded length are allowed in each round) and the “congest” model (in
which only short messages are allowed in each round). In both models,
in each round, each party can only communicate with its neighbors in the
fixed communication network.

• Machine learning and complexity theory. Rocco Servedio surveyed some
of the known algorithms and lower bounds on the complexity of machine
learning. He concluded his presentation suggesting to lower the expecta-
tions; that is, aim at better-than-obvious algorithms rather at algorithms
that meet or approach the information-theoretic bound.
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• Random CSP instances and complexity theory. Ryan O’Donnell surveyed
the state-of-art regarding the complexity of solving random CSP instances,
focusing on the use of the conjecture that it is hard to solve random
instances of density that is close to the satisfiability threshold.

Informal specialized sessions. In addition to the formal plenary program,
intense interaction between the participants took place in smaller groups. Part of
these took place in the form of specialized sessions, some of which were already
mentioned above. Other specialized sessions featured the following presentations.

• Amir Shpilka provided an inspiring exposition of a very recent construc-
tion of a (deterministic) quasi-NC algorithm for the bipartite matching
problem. The said result by Fenner, Gurjar, and Thierauf was posted on
ECCC a few days before the meeting (see TR15-177).

• Peter Bürgisser organized a specialized session on geometric complexity
theory. This started by an outline of the geometric complexity theory
program by him and then was followed by a report of Christian Ikenmeyer
on recent advances in our understanding of the complexity of Kronecker
coefficients. Klim Efremenko sketched the main ideas of his result on the
limits of the method of shifted partial derivatives, which lead to an intense
discussion with Neeraj Kayal and Pascal Koiran.

• In a specialized session on Coding theory, Venkatesan Guruswami reported
recent advances on recovery of Reed-Solomon codes, and Amir Shpilka
showed that Reed-Muller codes achieve the capacity of certain channels
and gave a decoding algorithm from random errors in these codes.

• Or Meir organized a special session on open problems in Boolean circuit
complexity. He presented a open question, which asks whether solving a
computational problem on one of several distinct instances is easier than
solving a single instance (this question is a close variant of a question
posed by Beimel, Ben-Daniel, Kushilevitz, and Weinreb). Pascal Koiran
presented an open problem in arithmetic circuit complexity which con-
cerns finding an explicit polynomial that is hard to compute by polyno-
mials of very restricted form. Oded Goldreich presented a line of research
that concerns derandomization of randomized algorithms with very small
error, and in particular, with respect to constant-depth circuits. Prasad
Raghavendra presented an observation regarding a connection between the
circuit complexity of a function and the properties of related polytopes.

• Avi Wigderson described (including extensive historical comments) his
recent deterministic polynomial time algorithm for noncommutative ra-
tional identity testing (with Garg, Gurvits, and Oliveira). He highlighted
the fact that questions and methods from very different origins (including
invariant and representation theory, quantum information theorem, and
optimization) interconnect and naturally combine for the solution of this
problem.

• Boaz Barak talked about a Sum-of-Squares lower bound for the planted
clique problem. He outlined the ideas behind a work in progress which
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has still not been fully verified (with Sam Hopkins, Jon Kelner, Pravesh
Kothari, Ankur Moitra and Aaron Potechin) showing that for every con-
stant degree d and ǫ > 0, the degree d Sum-of-Squares algorithm cannot
certify that a random Erős-Rényi graph on n vertices does not contain a
clique of size n1/2−ǫ.

• Separations in query and communication complexity: The aim of this ses-
sion was to showcase some striking recent results (both for their strength
and simplicity) giving separations, often tight, between various notions
of query complexity for decision trees, and the surprising lifting of these
bounds to similar separations between various models of communication
complexity. These constitute progress on 30 year old questions in complex-
ity theory. The first talk (given by Venkat Guruswami) discussed results
for query complexity and the second talk (given by Raghu Meka) discussed
the lifting approach for rectangle based measures of communication com-
plexity.

– The first talk was titled ”Pointer Functions and Query complexity,”
given by Venkat Guruswami. It discussed a clever Boolean function
construction of Goos-Pitassi-Watson which gives an optimal separa-
tion between nondeterministic and unambiguous decision tree com-
plexities. It then discussed subsequent work by other authors show-
ing that this function was also very useful in giving optimal quadratic
separations between randomized and deterministic decision tree com-
plexities and refuting an old 1986 conjecture by Saks and Wigderson
on the largest possible gap between these models. The new devel-
opments lead to many more separations, such as between quantum
query complexity and classical models, but this wasn’t discussed in
the talk.

– Raghu Meka described the general method to transform query lower
bounds into communication lower bounds for ”composed functions”.
This is based on his recent works (with Mika Goos, Shachar Lovett,
Thomas Watson, and David Zuckerman, and with Pravesh Kothari
and Prasad Raghavendra). He presented ideas of the main struc-
ture theorem, which states that each rectangle in the communication
matrix of the composed function can be simulated by a nonnegative
combination of juntas. Consequently, this allows a characterization
of the complexity of the composed functions in most known one-sided
zero-communication models (capturing NP, co-NP, lower-bound mea-
sures such as corruption, smooth-rectangle bound, relaxed partition
bound, etc) by a corresponding query complexity measure.

• Li-Yang Tan talked about his joint work with Ben Rossman and Rocco
Servedio, where they proved an average-case depth hierarchy theorem for
Boolean circuits over the standard basis of AND, OR, and NOT gates. The
hierarchy theorem says that for every d ≥ 2, there is an explicit n-variable
Boolean function f , computed by a linear-size depth-d formula, which is
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such that any depth-(d − 1) circuit that agrees with f on (1/2 + on(1))
fraction of all inputs must have size exp(nΩ(1/d)). This answers an open
question posed by H̊astad in his Ph.D. thesis.

• Gil Cohen presented his recent work on improved explicit constructions
of Ramsey graphs. Erdős, in 1947 proved the existence of 2 logn-Ramsey
graphs on n vertices, and matching this result with a constructive proof
is considered a central problem in combinatorics. The new result achieves
an exponential improvement over previous results, and provides explicit
exp((log logn)c)-Ramsey graphs.

• Or Meir presented a new proof for a special case of the Karchmer, Raz,
and Wigderson conjecture. If this conjecture is proved in full generality, it
will imply super-polynomial formula lower bounds which is one of major
challenges of the research in circuit complexity. While this case was already
proved implicitly in H̊astad’s work on random restrictions, the new proof
uses an entirely different approach based on communication complexity,
and seems more likely to be generalizable to other cases of the conjecture.

• Alexander Razborov described recent work on Continuous Combinatorics
as well as its context. He noted that Combinatorics was conceived, and
then developed over centuries as a discipline about finite structures. How-
ever, currently, its applications increasingly pertain to structures that,
although finite, are extremely large (e.g., the Internet network, social net-
works, statistical physics, to name just a few). Moreover, the numerical
characteristics that researchers are normally interested in are “continuous”
in the sense that small perturbations in the structure do not change the
output very much. This makes it very natural to try to think of the “limit
theory” of such objects by pretending that “very large” actually means
“infinite”. It turns out that this mathematical abstraction is very use-
ful and instructive and leads to unexpected connections with many other
things, both in mathematics and computer science. Two complement-
ing approaches to constructing such a theory and applying it elsewhere
are known as graph limits and flag algebras, and some of this theory was
reviewed.

• Prasad Raghavendra presented exciting new results on lower bounds for
linear programs and semidefinite programs based on his work (with Lee
and Steurer).

• Zvika Brakerski described progress in the study of Fully Homomorphic En-
cryption (FHE) in the past couple of years. FHE is an encryption scheme
that allows to compute arbitrary function “underneath” the encryption;
that is, to go from Enc(x) to Enc(f(x)) for all f , without any knowl-
edge of the key. This allows to “outsource” computation to a third party
without foregoing privacy. In particular, he focused on the “approximate
eigenvector approach” based on work by Gentry, Sahai and Waters, and
optimizing its performance via “sequentalization” based on joint his work
with Vaikuntanathan.
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• Raghu Meka described progress on constructing pseudorandom generators
for small-space computation. His talk was based on his work with Gopalan
and Daniel Kane.

• Zeev Dvir reviewed the Brascamp-Lieb Inequality and described its proof
given by Franck Brathe. The proof introduces a normalization technique
which allows one to apply a change of basis that puts a set of directions in
radial isotropic positions. This technique has found several applications
including Foster’s sign-rank lower bound and recent work on Sylvester-
Gallai type theorems and Locally-Correctable Codes.

• Salil Vadhan, following up on Ryan O’Donnell’s plenary survey talk, de-
scribed the proof of Daniely, Linial, and Shalev-Shwartz that polynomial-
time PAC learning of DNF formulas (a long-standing open problem) is
impossible if random k-SAT formulas on nf(k) clauses are hard to “refute”
for some f(k) → ∞. This led to an intensive small-group discussion on di-
rections for obtaining stronger hardness results, and better understanding
the relationship between learning and refutation.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Two-Source Randomness Extractors: History and Context

David Zuckerman

(joint work with Eshan Chattopadhyay)

The area of randomness extraction deals with the problem of obtaining nearly
uniform bits from sources that are only weakly random. This is motivated by
the ubiquitous use of randomness in various branches of computer science like
algorithms, cryptography, and more. Further, most applications require truly
random, uncorrelated bits, but most easily-obtainable sources of randomness do
not satisfy these conditions. In particular, pseudorandom generators in practice
try to accumulate entropy by using thermal noise or clock drift, but then this
needs to be purified before using it to seed a pseudorandom generator.

We model a weak source on n bits using min-entropy. A source X on n bits is
said to have min-entropy at least k if for any x, Pr[X = x] ≤ 2−k. Any source X
on {0, 1}n with min-entropy at least k is called an (n, k)-source.

An extractor Ext : {0, 1}n → {0, 1}m is a deterministic function that takes
input from a weak source with sufficient min-entropy and produces nearly uniform
bits. Unfortunately, a simple argument shows that it is impossible to design an
extractor to extract even 1 bit for sources with min-entropy n−1. To get past this
difficulty, Santha and Vazirani [SV86], and Chor and Goldreich [CG88] suggested
designing extractors for two or more independent sources, each with sufficient min-
entropy. When the extractor has access to just two sources, it is called a two-source
extractor. An efficient two-source extractor could be quite useful in practice, if
just two independent sources of entropy can be found.

We measure the error of the extractor by statistical distance, or variation dis-
tance. We say D1 ≈ǫ D2 if |D1 −D2| = 1

2

∑
x |Pr[D1 = x]− Pr[D2 = x]|.

We can now define a two-source extractor. A function Ext : {0, 1}n×{0, 1}n →
{0, 1}m is called a two-source extractor for min-entropy k and error ǫ if for any
independent (n, k)-sources X and Y , we have Ext(X,Y ) ≈ǫ Um, where Um is the
uniform distribution on m bits. Further, Ext is strong in Y if it also satisfies
|(Ext(X,Y ), Y ) − (Um, Y )| ≤ ǫ, where Um is independent from Y . Note that for
m = 1, this corresponds to an N ×N matrix with entries in {0, 1} such that every
K ×K submatrix has 1/2± ε fraction of 1’s, where N = 2n and K = 2k.

A simple probabilistic argument shows the existence of 2-source extractors for
min-entropy k ≥ 2 logn+10 log(1/ǫ). However, in computer science, it is important
to construct such functions explicitly, and this has drawn a lot of attention in the
last three decades. Chor and Goldreich [CG88] used Lindsey’s Lemma to show
that the inner-product function is a 2-source extractor for min-entropy more than
n/2. However, no progress was made on this problem for around 20 years, when
Bourgain [Bou05] broke the “half-barrier” for min-entropy, and constructed a 2-
source extractor for min-entropy 0.499n. This remained the best known result prior
to this work. Raz [Raz05] obtained an improvement in terms of total min-entropy,



3062 Oberwolfach Report 54/2015

and constructed 2-source extractors requiring one source with min-entropy more
than n/2 and the other source with min-entropy O(log n).

The lack of progress on constructing two-source extractors motivated researchers
to use more than two sources. Several researchers managed to construct excellent
extractors using a constant number of sources, culminating in Li’s construction of
a 3-source extractor for polylogarithmic min-entropy [Li15c].

However, despite much attention and progress over the last 30 years, it re-
mained open to explicitly construct two-source extractors for min-entropy rate
significantly smaller than 1/2. Our main result is an explicit two-source extractor
for polylogarithmic min-entropy.

Main theorem: There exists a constant C > 0 such that for all n ∈ N, there
exists a polynomial time computable construction of a 2-source extractor 2Ext :
{0, 1}n×{0, 1}n → {0, 1} for min-entropy at least logC(n) and error n−Ω(1). (C=75
suffices.)

By an argument of Barak, every 2-source extractor is also a strong 2-source
extractor with similar parameters.

Note that an improvement of the output length of the above extractor to c logn
bits, for a large enough constant c, will immediately allow one to extract Ω(k) bits
using a standard trick of composition with a strong-seeded extractor.

Furthermore, improving the error to negligible while outputting many bits
would have applications in cryptography and distributed computing.

Subsequent Work: Recently, Li [Li15b] extended our construction to achieve
an explicit strong 2-extractor with output length kα bits, for some small constant
α. By our observation above, this immediately implies a 2-source extractor for

min-entropy k ≥ logC
′

n, for some large enough constant C′, with output length
Ω(k); in fact, the output can be k bits.

Li also used our construction to build an affine extractor for polylogarithmic
min-entropy [Li15a].

Ramsey Graphs: A key application is to Ramsey graphs. A graph on N vertices
is called a K-Ramsey graph if does not contain any independent set or clique of
size K. It was shown by Erdös in one of the first applications of the probabilistic
method that there exists K-Ramsey graphs for K = (2 + o(1)) logN . Since then,
many researchers have tried to construct such Ramsey graphs explicitly. By ex-
plicit, we mean a polynomial-time algorithm that determines whether there is an
edge between two nodes, i.e., the running time should be polylogarithmic in the
number of nodes. The best construction before our work was due to Barak, Rao,

Shaltiel, and Wigderson [BRSW12], who achieved K = 22
log1−α(log N)

, for some
absolute constant α.

In fact, these graphs are bipartite Ramsey graphs, which are harder to construct.
A bipartite graph with N left vertices and N right vertices is called a bipartite
K-Ramsey graph if it does not contain any complete K×K-bipartite sub-graph or
empty K×K sub-graph. Given any bipartite K-Ramsey graph, a simple reduction
gives a K/2-Ramsey graph on N vertices.
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It is easy to show that a 2-source extractor gives a bipartite Ramsey graph.
Thus, as an immediate consequence of our Main Theorem, we obtain the following
result.

Explicit Ramsey Graphs: There exists a constant C > 0 such that for all large
enough n ∈ N, there exists an explicit construction of a bipartite K-Ramsey graph

on 2N vertices, where N = 2n and K = 2(log logN)C . (As before, C=75 suffices.)
In independent work1, Cohen [Coh15] obtained an alternate explicit construc-

tions of bipartite-Ramsey graphs with K = 2(log logN)O(1)

.

Resilient Functions: A key ingredient in our construction is an explicit construc-
tion of a monotone, almost-balanced boolean function on n bits that is resilient
to coalitions of size n1−δ, for any δ > 0. In fact, our construction is stronger in
that it gives an explicit extractor for a generalization of non-oblivious bit-fixing
sources on n bits, where some unknown n− q bits are chosen almost polylog(n)-
wise independently, and the remaining q = n1−δ bits are chosen by an adversary
as an arbitrary function of the n − q bits. The best previous construction, by
Viola [Vio14], achieved q = n1/2−δ. Subsequently, Meka improved our result to

q = cn/ log2 n [Mek15], which improves the constant C in our two-source extractor
to 18 or 10 for polynomial and constant error, respectively.
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3064 Oberwolfach Report 54/2015

Explicit Two-Source Extractors and Resilient Functions

Gil Cohen

Generally speaking, an extractor is an algorithm that produces truly random bits
given a sample from one or more “defective” sources of randomness. Many natural
types of extractors are obtained by instantiating the notion of a defective source.
One prominent example is a multi-source extractor. In this setting, the extractor
is given s samples from independent sources, each supported on n-bit strings, and
has min-entropy k (that is, no point is sampled by the source with probability
higher than 2−k). The goal is to design efficient extractors for small values of s, k.
Computational aspects aside, one can prove the existence of an extractor for s = 2
sources with min-entropy k = logn + O(1). We refer to an extractor for s = 2
sources as a two-source extractor.

A long line of research was designated to match this existential result with an
explicit construction, starting with the influential paper by Chor and Goldreich [6]
who gave an explicit and simple construction of a two-source extractor for min-
entropy k > n/2. Unlike extractors for s > 2 sources, constructing two-source
extractors has witnessed very little progress, where only two improvements upon [6]
were made. Raz [11] constructed a two-source extractor that is guaranteed to work
assuming one source has min-entropy larger than n/2 while the second can have
min-entropy as low as O(log n). Bourgain [3] designed a two-source extractor for
min-entropy (1/2 − δ) · n for some (small) universal constant δ > 0. While the
construction of Raz was based on small-biased sample spaces, the extractor of
Bourgain applied deep results from additive combinatorics. Both techniques seem
inadequate for supporting logarithmic or even poly-logarithmic min-entropy.

In this talk we present a striking recent result by Chattopadhyay and Zucker-
man [5] who construct a two-source extractor for poly-logarithmic min-entropy.
The construction makes use of three other types of extractors – non-malleable
extractors, extractors for non-oblivious bit-fixing (NOBF) sources, and (the more
familiar) strong seeded extractors. We start by giving a short account of the first
two types of extractors.

Dodis and Wichs [8] introduced the notion of a non-malleable extractor as a tool
for devising privacy amplification protocols against active adversaries. Informally
speaking, a non-malleable extractor is a randomized algorithm that gets a single
sample from a source with sufficient min-entropy, and has the following guarantee.
With high probability over its internal randomness, the output of a non-malleable
extractor is uniform even conditioned on the output obtained using an adversarial
choice of internal randomness. After a fairly extensive study, we now have close-
to-optimal explicit non-malleable extractors [4, 7].

A second tool used in the construction of [5] is an extractor for NOBF sources.
This is a function that outputs a low biased bit given a sample from a distribution
on n-bit stings having the following guarantee. Some n−q of the bits of the sample
are uniform and independent whereas the remaining q “bad” bits can be arbitrary
functions of the n− q “good” bits.
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Constructing extractors for NOBF sources is related to the classical problem of
collective coin flipping. Ajtai and Linial [1] proved the existence of an extractor

for NOBF sources for q = O(n/ log2 n), and this is tight up to a logarithmic factor,
as implied by [9]. As for explicit constructions, the largest value for q supported
prior to [5] is n0.63, which is attained by the recursive majority of three function.

One contribution of [5] is an explicit construction of an extractor for NOBF
sources, denoted by NOBFExt, with q = n1−δ for any desired constant δ > 0.
Further, their construction, which can be viewed as a derandomization of [1], has
two important properties: (1) It is a monotone function, and (2) it is computable
by a constant depth Boolean circuit of polynomial size in the input length. We
mention here that a followup work by Meka [10] matches [1] with an explicit
construction that also has these two properties.

Using these building blocks, we can present the two-source extractor of [5]. Let
x ∼ X , y ∼ Y be the two samples from the independent n-bit sources X,Y . First,
one takes an optimal strong seeded extractor Ext and iterates over all N = poly(n)
seeds i = 1, . . . , N to collect all N possible outputs {Ext(x, i)}i. We set D, the
output length of Ext, to equal the seed length for a non-malleable extractor nmExt

with one output bit and error guarantee 2− logc n for some suitable choice of a
constant c. We then compute a length N string, which is denoted by z = z(x, y),
where zi = nmExt(y,Ext(x, i)).

The analysis proceeds by showing that the random variable Z = Z(X,Y ) is
close to a random variable with the following structure: There exists some small
universal constant δ > 0 such that N − N1−δ of the bits of Z are jointly t-wise
independent, where t is some constant that depends on our choice of c. Moreover,
the identity of these N −N1−δ “good” bits is a function of the underlining distri-
butions X,Y and is fixed with respect to the samples x, y. The remaining N1−δ

bits of Z are arbitrary functions of the good bits. This almost amount to saying
that Z is a NOBF source with q = N1−δ, though not quite – we are only guar-
anteed that the joint distribution of any t-tuple is uniform, though there might
be strong correlations between these good bits. One can control the value of t
but that will affect the entropy required by the sources. In particular, to support
poly-logarithmic entropy in n, t can be taken to be no larger than poly-logarithmic
in n.

To overcome this problem, Chattopadhyay and Zuckerman make use of the two
properties of their extractor NOBFExt to show that this structure of Z suffices to
conclude that NOBFExt(Z) has low bias. The reason for this lies in a fundamental
result by Braverman [2] that shows that a constant depth circuit of polynomial-
size cannot distinguish a truly uniform string on N bits from one that is sampled
by a (logN)b-wise independent distribution, where the value of b depends on the
depth of the circuit. Using also the fact that their extractor is monotone, [5] shows
that the bias of NOBFExt(Z) is close to the bias of NOBFExt(Z ′) where Z ′ is the
distribution obtained by replacing the good bits of Z by truly uniform bits. This
concludes the analysis.
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Preventing False Discovery in Interactive Data Analysis

Jonathan Ullman

Multiple hypothesis testing is a ubiquitous task in empirical research. A finite
sample of data is drawn from some unknown population, and several analyses are
performed on that sample. The outcome of an analysis is deemed significant if it
is unlikely to have occurred by chance alone, and a “false discovery” occurs if the
analyst incorrectly declares an outcome to be significant. False discovery has been
identified as a substantial problem in the scientific community (see e.g. [7, 5]).
This problem persists despite decades of research by statisticians on methods for
preventing false discovery.

In this extended abstract we briefly summarize a recent attempt by the the-
oretical computer science community to understand the role of interactive data
analysis—repeatedly querying the same dataset in a way that depends on pre-
vious interactions with the dataset—in false discovery. This has quickly grown
into a rich literature, giving new algorithms for preventing false discovery, and
showing inherent computational and information-theoretic barriers to preventing
false discovery. The problem of interactive data analysis was formalized by Dwork,
Feldman, Hardt, Pitassi, Reingold, and Roth [3] and of Hardt and Ullman [6] as
follows.

The object of study is a population P over some domain X . We
would like to estimate the answer to some sequence of queries
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q1, . . . , qk on P . The queries are interactive in the sense that they
are chosen online and qi may depend on the answers to q1, . . . , qi−1.
We would like an accurate answer ai to each query qi such that
ai ≈ qi(P ).

Of course P cannot be queried directly, so we assume that we
have access to a sample S consisting of n independent draws from
P . Can we design a (possibly randomized) procedure M(S) such
that for any interactive sequence of queries, with high probability
over S and the randomness ofM , M(S) outputs accurate answers?

There are many types of queries that are considered in the literature [1], but
for this discussion we focus on Kearns’ statistical queries model [8]. These queries
are specified by an efficiently computable predicate φ : X → {±1} and qφ(P ) is
defined to be Ez←P [φ(z)].

The most natural procedure M(S) is to answer each query qφ(P ) with the
empirical answer qφ(S). If the queries were chosen non-interactively, then this

approach answers accurately1 as long as k = 2o(n). However, when the queries
are chosen interactively it can fail to answer accurately even when k = O(n), an
exponential gap.

In our opinion, the three most relevant messages of this literature are:

(1) Answering interactive queries is intimately related to differential privacy [4].
(2) There are much better procedures than the näıve mechanism.
(3) There are serious computational barriers to solving this formulation of the

problem.

Of course, we refer the reader to many papers written on this subject, but we
will now give a brief personally summary of this area.

We start with the definition of differential privacy. Informally, an algorithm is
differentially private if changing one element of the sample does not change the
distribution of the algorithm’s outputs substantially. This can be viewed as a much
stronger version of the types of stability conditions that are known to prevent false
discovery in non-interactive data analysis.

Definition 1 ([4]). A randomized algorithm A : Xn → R is (ε, δ)-differentially
private if for every pair of samples S, S′ that differ on at most one element, and
every R ⊆ R

P[A(S) ∈ R] ≤ eεP[A(S′) ∈ R] + δ.

The key lemma to the whole endeavor states that differentially private algo-
rithms cannot output queries that distinguish the sample from the population.

Informal Theorem 1 ([3, 1]). Suppose A is a (ε, δ)-differentially private algo-
rithm that takes a sample S ∈ Xn and outputs a statistical query q. Then

P[|q(P )− q(S)| ≤ O(ε)] ≥ 1−O(δ/ε),

where the probability is taken over the choice of S and the randomness of A.

1For brevity, we are intentionally suppressing some parameters such as the precise definition
of accuracy.
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Once this lemma is in hand, it is not too hard to show that any procedure that
is simultaneously accurate with respect to its sample S and differentially private
must also give accurate answers with respect to the population P . Surprisingly,
there is a rich literature on differential privacy giving algorithms with exactly those
properties! This leads to the following “corollary.”

Informal Corollary 1 ([3, 1]). There are procedures that prevent false discovery
better than the näıve procedure. Specifically.

(1) There is a procedure M that runs in time poly(n, log |X |) per query and is
accurate for k & n2 queries.

(2) There is a procedure M that runs in time poly(n, |X |) per query and is

accurate for k & 2n/ log1/2 |X | queries.

We believe this is a strong result. However, the second bullet leads to some
natural questions. Given that |X | can be huge—imagine the setting where X = 2d

where d is the dimensionality of the data—the second bullet point leads to an
algorithm that is both computationally inefficient and useless when n is smaller
than the square root of the dimensionality of the data. Can we remove these
limitations? Unfortunately the answer was shown to be no.

Informal Theorem 2 ([6, 9]). There are two strong limitations to preventing
false discovery in interactive data analysis.

(1) If one-way functions exist2, then there is no procedure that runs in time
poly(n, log |X |) per query and answers significantly more than n2 interac-
tive queries.

(2) Unconditionally, there is no procedure that answers significantly more than

n2 interactive queries when n ≪
√
log |X |, regardless of the running time

of the procedure.

We conclude with a remark about the way we formulated the problem. In prac-
tice, there are many common sources of interaction that likely capture a majority
of relevant scenarios, so it may seem overly challenging for us to ask for this sort of
“universal” procedure M to prevent false discovery. Certainly positive results in
this challenging model are very strong, but more generally this model is tailored to
asking questions about the inherent cost of allowing interactivity in data analysis.
My personal hope is that researchers will use these results as a starting point to
guide a more detailed investigation into the most useful procedures for interactive
data analysis. In particular, we would like to highlight the work of Blum and
Hardt [2], which investigates the application to data science competitions more
closely, as an encouraging step in this direction.

2Equivalently, if secure private key cryptography exists.
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Recent Work in Fine-Grained Complexity

Ryan Williams

(joint work with Russell Impagliazzo, Daniel Marx, Mohan Paturi, and Virginia
Vassilevksa Williams)

This survey talk reported on some of the concepts and motivations behind the
current semester-long program at the Simons Institute (UC Berkeley), entitled
“Fine-Grained Complexity and Algorithm Design.” Here, I outline some of the
main points from the survey talk.

A Focus on Time Complexity. In Fine-Grained Complexity as it is presently
studied, one commits firmly to studying the running time complexity of problems
in LOGSPACE, P, NP, PSPACE, and other well-studied classes. Since we believe
all these complexity classes are different, we have different expectations for the
time complexities. For example:

• For NP and PSPACE problems, we generally expect Θ(cn) time complexity,
for some constant c > 1. We attempt to minimize c as much as possible,
by developing asymptotically faster algorithms. We observe the pure time
complexity of some problems do not always match the original intuitions
from complexity: while it is believed that the NP-complete SAT problem
requires Ω(cn) time for all c < 2 ([3]), the PSPACE-complete QBF problem
can be solved in O(1.8n) time when the number of quantifier alternations
is sufficiently high ([5]).

• For LOGSPACE and P problems, we expect Θ(nc) time complexity, and
attempt to minimize c similarly. But even some LOGSPACE problems



3070 Oberwolfach Report 54/2015

are probably very difficult to solve. For example, according to parameter-
ized complexity theory, the k-clique problem, easily solvable in LOGSPACE

for every constant k, is likely to require nΩ(k) time to solve on n-node
graphs [4].

Fine-Grained Reductions. Another defining characteristic of this subject
is the notion of a “Fine-Grained reduction” ([6, 7]). Informally, the setup is as
follows. Suppose we have two problems A and B and we believe that the time
complexity of both problems is t(n)1−o(1). Very roughly speaking, a Fine-Grained
reduction from A to B is an oracle reduction which for all ε > 0, there is some
δ > 0 such that, assuming B runs in t(n)1−ε time, the oracle reduction solves A in
t(n)1−δ time. (The actual definition is a little more technical but captures exactly
this intuition, allowing many calls to B, even a variable adaptive number.)

That is, our philosophy is to allow for the strongest possible kind of reduction
from A to B, such that if there is a significantly faster-than-t(n)1−o(1) algorithm
for B, then the oracle reduction yields a faster algorithm for A. Because our
reducibility notion is designed to be as strong as possible, wemaximize our chances
of proving a relationship between two problems A and B with similar running
times. By choosing the most relaxed reducibility notion that is still sensible, we are
able to prove reductions (and in some cases, equivalences) between many problems
which would not be considered equivalent under weaker reducibility notions. See,
for instance, [6, 2].

Cornerstones. Another aspect of Fine-Grained complexity is its focus on
specific basic problems that have received considerable study, and have defied
many attempts to be solved significantly faster:

• SAT. The SAT problem is the canonical NP-complete problem. Two key
versions of the SAT problem are k-SAT and Circuit-SAT. While it is known
that k-SAT is in 2n(1−1/O(k)) time for all constant k, it is conjectured that
there is no δ > 0 such that k-SAT is in 2n(1−δ) time for all constant k;
this is called the Strong Exponential Time Hypothesis (SETH) [3]. SETH
has many intriguing consequences to the solvability of problems in both P

and NP (see [1, 7]). There are also rather surprising consequences of faster
Circuit-SAT algorithms to the area of circuit complexity: roughly speak-
ing, solving Circuit-SAT on circuits of s size and n inputs in O(2n ·s/nlogn)
time implies the circuit complexity lower bound NEXP 6⊂ P/poly [9].

• 3SUM. The 3SUM problem asks whether we can find three numbers in a
given set of n numbers which sum to 0. An O(n2) time algorithm is well-
known, and it is conjectured that 3SUM cannot be solved in n2−ε time for
every ε > 0.

• OV. The Orthogonal Vectors (OV) problem asks whether we can find a pair
of vectors among n Boolean vectors (of d dimensions) which are orthogonal.
An O(n2d) time algorithm is obvious, and it is conjectured that OV cannot
be solved in n2−ε · 2o(d) time for every ε > 0. (In fact it is known that a
refutation of this conjecture would also refute SETH [8].)
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• APSP. The all-pairs shortest paths (APSP) problem asks to compute the
shortest distance between all pairs of nodes in a given weighted graph. An
O(n3) time algorithm is well-known, and the exponent of 3 is conjectured
to be optimal.

In Fine-Grained Complexity, one conjectures that basic problems such as the above
cannot be solved much faster than their best known algorithms; from these prob-
lems and a large tapestry of Fine-Grained reductions among the problems, many
fascinating consequences can be derived from the conjectures. The survey [7] gives
many examples.
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Lower bounds for bounded-depth formulas

Benjamin Rossman

In this talk, I present a result (from a paper that appeared in FOCS 2015) showing
that unbounded fan-in boolean formulas of depth d + 1 and size s have average

sensitivity O( 1d log s)
d. In particular, this gives a tight 2Ω(d(n1/d−1)) lower bound

on the size of depth d + 1 formulas computing the parity function. These re-
sults strengthen the corresponding bounds for circuits due to H̊astad (1986) and
Boppana (1997).

Lower bounds against bounded-depth circuits were first proved in the 1980s [1,
3, 8, 4], culminating in a tight size-depth tradeoff for circuits computing the parity
function. The technique, based on random restrictions, applies more generally to
boolean functions with high average sensitivity.
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Theorem 1 (H̊astad [4]). Depth d + 1 circuits computing parity have size

2Ω(n1/d).

Theorem 2 (Boppana [2]). Depth d+1 circuits of size s have average sensitivity
O(log s)d.

Our results give stronger versions of Theorems 1 and 2 for bounded-depth for-
mulas:

Theorem 3. Depth d+ 1 formulas computing parity have size 2Ω(d(n1/d−1)).

Theorem 4. Depth d+1 formulas of size s have average sensitivity O( 1d log s)
d.

Theorems 3 and 4 directly strengthen Theorems 1 and 2 in light of the elemen-
tary fact that every depth d + 1 circuit of size s is equivalent to a depth d + 1
formula of size at most sd. Moreover, Theorems 1,2,3,4 are asymptotically tight,

since parity is computable by depth d+1 circuits (resp. formulas) of size n2O(n1/d)

(resp. 2O(d(n1/d−1))).
The main tool in the proof of Theorems 3 and 4 is H̊astad’s Switching Lemma

[4]. The Switching Lemma states that every small-width CNF or DNF simplifies,
with high probability under a random restriction, to a small-depth decision tree.
This yields lower bounds against bounded-depth circuits via a straightforward
depth-reduction argument. In this paper we show how the Switching Lemma can
be applied more efficiently to bounded-depth formulas, though in a less straight-
forward manner.

In more detail: for independent uniformly distributed random σ ∈ {0, 1}n (“as-
signment”) and τ ∈ [0, 1]n (“timestamp”), we consider the family of restrictions
{Rσ,τ

p }0≤p≤1 (i.e. functions [n] → {0, 1, ∗} representing partial assignments to in-
put variables x1, . . . , xn) where Rσ,τ

p sets the variable xi to σi if τi < p and leaves
xi unset if τi ≥ p. In the usual application of the Switching Lemma to circuits of
depth d + 1, all subcircuits of depth k + 1 are hit with the restriction Rσ,τ

pk
for a

fixed sequence p1 > · · · > pd (typically pk = n−k/(d+1)). In this paper we achieve
sharper bounds against formulas by hitting each subformula Φ with the restriction
Rσ,τ

q(Φ) where the parameter q(Φ) (= qσ,τ (Φ)) is defined inductively, according to

a random process indexed by subformulas of Φ. Our technical main theorem is a
tail bound on q(Φ), viewed as a random variable determined by σ and τ .
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Recent results concerning random kSAT

Ryan O’Donnell

In this talk I gave a summary of some recent research concerning random constraint
satisfaction problems (CSPs). As a prototypical example, consider the random
4SAT problem, with n variables and m independent random constraints (each
chosen uniformly from the

(
n
4

)
24 possibilities). Naturally, the larger m is, the

more like the CSP is to be unsatisfiable. As a rather trivial bound, suppose
m = 11n. Then for each fixed x ∈ {0, 1}n, the probability it satisfies all constraints
is (1516 )

11n ≈ .49n. Thus by union-bounding over all 2n x’s, we see that the random
4SAT instances is unsatisfiable with overwhelming probability provided m ≥ 11n.
On the other hand, for m ≤ .99n, say, it is not hard to show that the random
4SAT instance will be satisfied even “as 4XOR” with high probability. Thus
the transition from satisfiability to unsatisfiability occurs somewhere in the range
m ∈ [.99n, 11n]. Somewhat sharper bounds are known. For example, Frieze and
Suen [1] gave an efficient algorithm that finds a satisfying assignment with high
probability provided m ≤ 5.54n.

Circa 2002–2005, sophisticated methods from statistical physics were used to
(conjecturally) determine the exact threshold for satisfiability for random kSAT as
a function of k, using the 1-Step Replica Symmetry Breaking (1RSB) method. [2,
3]. For example, the threshold for 4SAT is m = 9.93n. Here the number 9.93 . . .
is not an empirical estimation but is rather empirically determined: it is the least
zero of a certain function related to a certain recurrence relation on probability
distributions on [0, 1]. As mentioned, although these physics methods are highly
sophisticated, they are ultimately conjectural. However, in a recent breakthrough,
the 1RSB-based threshold predictions were rigorously mathematically verified by
Ding, Sly, and Sun [4] (partly building on [5]) for all sufficiently large k.

When m is less than the satisfiability threshold, the natural algorithmic task is
to efficiently find a satisfying assignment (with high probability). As mentioned,
for 4SAT there is a rigorously proven efficient algorithm for finding a satisfy-
ing assignment for m as large as 5.54n. Furthermore, certain statistical physics
methods work for larger values of m, and there are sophisticated analytic meth-
ods used by the physicists to (conjecturally) determine the largest m for which
they apply. For example, the Belief Propagation Guided Decimation method is
“known” (by physics standards) to work for m as large as 9.05n [6]. Statistical
physicists have also suggested heuristic algorithms — such as Survey Inspired Dec-
imation [7] — that seem to work for even larger m, but which currently cannot be
analyzed using physics methods. Instead, the statistical physicists analyze them
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experimentally. A very notable recent example is the work of Marino, Parisi, and
Ricci-Tersenghi [8], proposing the Backtracking Survey Propagation (BSP) algo-
rithm. For 4SAT, this algorithm seems to efficiently find satisfying assignments
for m as large as 9.90n.

The general belief of physicists seems to be that efficient algorithms can work
form as large as, but not beyond, the “freezing threshold”; this is the least value of
m for which all solutions belong to solution-“clusters” in which a constant fraction
of the variables are all “frozen” to the same value. (There is also a slightly lower
threshold called the “rigidity threshold”, at which almost all solutions belong to
frozen clusters. The speaker admits to being slightly confused about the difference
between the freezing and rigidity thresholds.) It seems that the BSP algorithm
works beyond the rigidity threshold (by finding the “subdominant”, non-frozen
clusters) but possibly not beyond the freezing threshold. We remark that Achliop-
tas and Ricci-Tersenghi have rigorously shown [9] that for sufficiently large k, the
freezing threshold for kSAT is strictly below the satisfiability threshold. Thus it is
expected that efficient algorithms can not work up to the satisfiability threshold
for kSAT, k sufficiently large. On the other hand, for the most famous case of
k = 3, it is a matter of debate whether or not the freezing threshold and the
satisfiability threshold coincide. In particular, when applied to 3SAT, the BSP
algorithm appears to work for m up to “essentially” the satisfiability threshold of
4.2667n (though it is difficult to be 100% certain of such empirically-drawn con-
clusions). In any case, it is certainly true that practical SAT-solvers do extremely
well at solving random 3SAT for m very close to the threshold [10].

For m larger than the satisfiability threshold, the natural algorithmic task is
to efficiently find a (with high probability) a refutation — i.e., a proof of unsat-
isfiability. In contrast to solving satisfiable instances just below the threshold,
refuting random kSAT instances just above the threshold seems very difficulty,
both theoretically and practically. (E.g., SAT-solving competitions for this prob-
lem have been canceled due to lack of successful entrants.) Indeed, for 4SAT, it
is only known how to efficiently refute random instances (with high probability)
once m ≫ n2. (Herein the notation ≫ glosses over log-factors.) This was first
shown by Goerdt and Krivelevich [11], using spectral methods. They also showed
that in general, random kSAT can be efficiently refuted once m ≫ n⌈k/2⌉; and, for
k = 3 specifically, Friedman and Goerdt [12] showed that m ≫ n3/2 suffices. Very
recently, it was shown [13] that m ≫ nk/2 suffices for all k. Intriguingly, Feige,
Kim, and Ofek [14] showed that one can go below n3/2 for random 3SAT by using a
nondeterministic algorithm. Specifically, once m ≫ n1.4 a random 3SAT formula
has a polynomial-size refutation with high probability (but it is not known how to
find it efficiently). Unpublished recent work of Feige and Witmer generalized this
to kSAT for higher k; e.g., for 4SAT, polynomial-size refutations exist with high
probability once m ≫ n2−1/6, and for kSAT, once m ≫ nk/2−1/2+ok(1).

Feige’s “R3SAT Hypothesis” [15] essentially states that for m = n1.01, there is
no efficient refutation algorithm for random 3SAT. (Actually, the hypothesis is for
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m ≥ Cn for all sufficiently large C, and he prefers to conjecture that there is no al-
gorithm that can prove a random instance is at most (1− ǫ)-satisfiable.) One may
also consider the stronger, nondeterministic conjecture, that short refutations with
high probability do not exist. The R3SAT Hypothesis is known to have many appli-
cations in inapproximability. Recently, Daniely and Shalev–Shwartz [16] made the
related “RSAT Hypothesis”, that there exists some function c(k) = ωk→∞(1) such
that there is no efficient refutation algorithm for random kSAT when m = nc(k).
Using this hypothesis, they showed a remarkable hardness-of-learning consequence:
there is no efficient PAC-learning algorithm (even an improper one) for the class
of DNF of size ω(logn). (The work [16] was based on earlier work with Linial [17],
which obtained stronger learning hardness results based on a stronger hypothesis
about hardness of refuting random CSP; unfortunately, the stronger hypothesis
was refuted [13].) One might even make an extremely strong conjecture: a random
kSAT instance with m = n.4k (say) does not have a polynomial-size refutation,
with high probability. Perhaps this conjecture might have further consequences
for inapproximability or hardness of learning.
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(Non)-compressibility of interactive communication: progress and
challenges

Mark Braverman

In this talk we discussed the following question, which has recently received quite
a bit of attention:

“Alice and Bob communicate by executing a protocol π on their inputs. When can
π be compressed — i.e. simulated by a shorter protocol — and by how much?”

This interactive compression question turns out to be equivalent to the direct
sum and direct product problems for randomized two-party communication com-
plexity [4, 5, 7]. The question is formalized in terms of Shannon’s information
theory. A detailed discussion of the question as well as the definitions and back-
ground can be found in the recent survey [12].

Alice and Bob are given inputs (X,Y ) distributed according to a joint distri-
bution µ. The information cost of a protocol π is the amount of information Alice
and Bob learn about each other’s inputs from executing π. π is allowed to use
both public randomness (available to both Alice and Bob) and private randomness
(generated privately by each party, and not accessible to the other party). Let Π
denote the random variable representing the transcript of the execution of π, in-
cluding its public but not private randomness. Then the (internal) information
cost of π is given by

(1) IC(π, µ) := I(X ; Π|Y ) + I(Y ; Π|X).

The first term in the sum represents the (expected) amount of information ob-
serving Π reveals to Bob (who knows Y ) about X . The second term represents
the amount of information Alice learns about Y . Note that this quantity does not
only depend on π but also on µ. For example, if µ is a distribution supported on
a single value {(x, y)}, then IC(π, µ) = 0 for any protocol π.

The external information cost of π is defined as the amount of information
observing Π reveals to an external observer:

(2) ICext(π, µ) := I(XY ; Π).

Denote by |π| the communication cost of π, that is, the maximum number of
bits exchanged by the participants of π. It is not hard to prove that

IC(π, µ) ≤ ICext(π, µ) ≤ |π|.
Moreover, the first ≤ is an equality when µ = µx × µy is a product distribution
over the inputs.

The interactive compression problem can be formulated as follows: given a
protocol π with information cost, external information cost, and communication



Complexity Theory 3077

cost I, Iext, and C, respectively, what is the communication cost of the shortest
protocol π′ that can simulate π to within error, say, 1/3?

Classical results of Shannon and Huffman, which show that a single message X
can be transmitted using at most H(X) + 1 bits can be viewed as a special case
of this problem where Y = ⊥ is an empty input.

General state-of-the-art compression results are as follows [1, 2]:

• communication can be compressed to Õ(
√
I · C);

• communication can be compressed to O(Iext · polylog(C));
• communication can be compressed to 2O(I).

These compression results left the question of whether compression to O(I)
communication is possible open. In a series of recent papers by Ganor, Kol, and
Raz [8, 9, 10], a negative answer has been given to this question. Specifically, these
papers show that:

• There exists a protocol whose communication cost is C = 22
k

, and whose
information cost is k, but which are not compressible to less than 2O(k)

communication. This means that the last upper bound above cannot be
improved, and the first upper bound cannot be improved to anything
better than O(I · logC). We still do not know whether O(I · logC) or

O(
√
I · C) is the right answer.

• There exists a protocol whose communication cost is C = 22
2k

, and whose
external information cost is k, but which are not compressible to less than
2O(k) communication. This means that the second upper bound above
cannot be improved to better than O(Iext · log logC).

In the talk we discussed the proof of the second result, which was very recently
given in [10]. It relies on analyzing a variant of the “Hidden Layers Game” pro-
posed in [3]. The hardness of this game relies, among other things, on the fact that
solving the Greater Than function on n-bit integers requires Ω(logn) communica-
tion [11, 6]. What is remarkable about the [10] reduction is that it is “protocol
dependent”: it does not use the protocol as a black box, but rather uses the as-
sumption that the too-good-to-be-true simulation protocol exists to turn it into
a too-good-to-be-true protocol for a different problem for which a lower bound is
known.
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The Role of Communication Complexity in Distributed Computing

Rotem Oshman

(joint work with Mark Braverman, Andrew Drucker, Fabian Kuhn)

Distributed algorithms must deal with several challenges that sequential algo-
rithms do not have to face. First, the input to the computation is usually divided
between the participants, with no single participant having a global picture; for
example, in distributed graph algorithms, no single node knows the entire graph,
and yet the nodes wish to compute some globally consistent solution (e.g., a span-
ning tree or a coloring). Second, communication between the participants is costly
and sometimes restricted. Congestion is a serious issue, so we want to reduce the
number of messages and bits sent; in addition, it is expensive to synchronize the
participants, so we want to use as few communication rounds as possible. These
restrictions have led to a distributed algorithms that strongly focus on communi-
cation efficiency.

One popular model that brings out the communication aspect is the CONGEST
model, defined as follows: we have a network of n nodes, modelled as a (usually
undirected) graph G. The edges of G represent communication links between
the nodes. The nodes have unique identifiers, but they initially do not know the
graph G. Various goals are considered, including testing properties of G, finding
various subgraphs in G (e.g., a spanning tree or a Hamiltonian cycle), or computing
functions of local inputs to the nodes. The computation proceeds in synchronous
rounds: in each round, each node sends at most B bits on each of its edges in
G, receives the messages sent by its neighbors, and then the next round begins.
Lower bounds in this model typically seek to show that certain tasks require many
rounds — usually even when the diameter of the network graph G is small —
because of the communication restriction.

Many lower bounds for the CONGEST model proceed by reduction from Yao’s
two-party communication model [1]. In Yao’s classical model, there are two players,
Alice and Bob, who receive private inputs X,Y respectively, and wish to compute
a joint function f(X,Y ) of their inputs. We study how many bits Alice and Bob
must exchange in order to compute f , possibly using randomization and with some
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probability of error; this is called the communication complexity of f . Crucially,
Alice and Bob are not restricted in computation power.

A typical reduction from 2-party communication complexity to CONGEST pro-
ceeds as follows. We fix some “hard” function f , for which we know a high com-
munication complexity lower bound. We assume for the sake of contradiction that
there is a distributed algorithm A for some task T using a small number of rounds
in the CONGEST model. We then construct a two-player protocol PA from the
protocol A, where the players construct some network graph using their inputs to
f , simulate the execution of A in this network, and finally use the output of A
to compute the output to f . If the reduction is designed cleverly, simulating the
execution of A does not require much communication between the two players, so
we get a protocol for f that does not have high enough communication complexity,
violating the lower bound for f .

This type of reduction has led to many lower bounds in the CONGEST model
(see, e.g., [2]), but it has some inherent weaknesses: by “splitting” the network
between only two players, we may give away too much of what makes the original
distributed problem hard. Therefore, recent work has started looking at multi-
party communication complexity, where instead of two players we have a larger
number k > 2, and we directly study the amount of communication or the number
of rounds required to solve various problems. We consider both point-to-point
communication, where participants send each other individual messages (as in the
CONGEST model), and broadcast communication, where each participant can
send a single message to all the other participants together (this is the classical
shared blackboard model).

The symmetrization technique, introduced by Phillips, Verbin and Zhang in [3],
allows us to lift two-part lower bounds to k-party lower bounds in some scenar-
ios. However, for some lower bounds, symmetrization is not sufficient; proving
a lower bound on the Set Disjointness problem, where the players receive inputs
X1, . . . , Xk and wish to check whether X1 ∩ . . . ∩Xk = ∅, required the use of in-
formation complexity, extending notions from classical information theory to the
multi-party interactive setting [4, 5].

We also consider some novel ways in which the input can be partitioned between
the participants; for example, in some cloud applications, it can be beneficial to
duplicate parts of the input across different nodes, so that more than one node
can look at each part of the input at the same time. Having nodes share parts
of their input can make it harder to prove lower bounds, as can be witnessed by
the notorious difficulty of proving lower bounds in the number-on-forehead model
(where each player sees the entire input except one small part). Nevertheless, in
our setting only a small part of the input is shared between any two nodes, and we
hope that this will make lower bounds more tractable. In this context, one simple
question that remains open is the hardness of triangle detection, in a model where
vertex of the graph is “assigned” to some player, and this player receives all the
edges adjacent to the vertex. Because we are interested in undirected graphs, each
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edge of the graph is known to two players (those assigned its endpoints). What is
the communication complexity of randomized triangle detection in this model?
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Lower bounds for low-depth arithmetic circuits

Neeraj Kayal

(joint work with Chandan Saha, Ramprasad Saptharishi)

An arithmetic circuit computes a polynomial function over some underlying field F

via a sequence of operations involving + and × starting from its inputs x1, x2, . . . ,
xN . We typically allow arbitrary constants from F on the incoming edges to a
+ gate so that a + gate can in fact compute an arbitrary F-linear combination
of its inputs. The complexity of a circuit is measured in terms of its size (the
number of edges in the corresponding graph) and depth (the maximum length of a
path in the corresponding graph). A central open problem in this area is to prove
arithmetic circuit lower bounds (for some explicit family of polynomials). In this
talk we highlight an ongoing effort towards proving lower bounds for (subclasses
of) arithmetic circuits via proving strong enough lower bounds for low-depth arith-
metic circuits. We illustrate this via a superpolynomial lower bound for a subclass
of arithmetic circuits that we refer to as regular arithmetic formulas (based on [1]).

Definition (Regular Arithmetic Formulas). We say that an arithmetic circuit
is a regular formula if:

(1) The underlying graph is a tree consisting of alternating layers of + and ×
gates, and

(2) all the nodes at a layer have the same fanin, and
(3) the formal degree of the output node is at most a constant factor (say

twice) more than d, the degree of the polynomial computed by the formula.

In this talk a we presented a nΩ(logn) lower bound for regular arithmetic formulas.
The proof highlights the theme of trying to prove lower bounds for large-depth
circuits/formulas via proving lower bounds for low-depth circuits/formulas. The
proof consists of the following four steps.
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(1) Depth Reduction. In the case of regular formulas one reduces to depth

four - if Φ is a regular formula of size 2o(log
2d) computing a polynomial fd

of degree d then for some t = Ω(log d) there exists a representation of f of
the form

f = T1 + T2 + . . .+ Ts,

where each Ti is a product of O(dt )-many polynomials of degree t and

s = 2o(
d
t ·log d).

(2) Identifying a Geometric Property π. One then tries to identify
a weakness of such representations by pinpointing interesting geometric
properties of the geometric variety of a term Ti. Recall that the variety
corresponding to a polynomial T , denoted V(T ), is the set of all zeroes of
the polynomial T , i.e.

V(T ) = {a ∈ F
n : T (a) = 0}.

In our case, we note that when T is a product of many polynomials then
V(T ) has lots of high-order singularities. This is the geometric property
that we use.

(3) Translating the property π into smallness of rank of a matrix.
We then try to associate a matrix M(f) to any polynomial f such that
the following two properties hold:
(a) Linearity. For any two polynomials f and g and any two constants

α, β ∈ F, it holds that M(f + g) = M(f) +M(g), and
(b) Smallness of rank. If the variety of any polynomial f has the

property π identified above then the rank of M(f) is significantly
smaller than its size.

In our case, we do this by looking at the set of polynomials (x=ℓ) · (∂=kf),
view polynomial as a row of an appropriate matrix and look at the rank
of the matrix.

(4) Finding an explicit polynomial f such that rank of M(f) is large.
We finally find an explicit polynomial f such that M(f) has large rank.
The matrix M(f) is typically very huge but remarkably we are able to
prove lower bounds on rank of M(f) via two simple tools:
(a) Via existence of a large triangular submatrix. IfM(f) contains

an upper-triangular square submatrix U (with nonzero entries on the
diagonal) then the size of U is a lower bound on the rank of M(f).

(b) Via near-orthogonality of the columns of the matrix. A beau-
tiful lemma commonly attributed to Noga Alon intuitively says that
if the columns (or the rows) of a matrix are almost orthogonal then
the matrix has nearly full rank. Specifically for any matrix M over
the real numbers:

rank(M) ≥ Tr(MT ·M)2

Tr((MT ·M)2)
.
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In our case we construct an explicit family of polynomials based on Nisan-
Wigderson designs for which rank M(f) can be shown to be large using
either of the two observations above.

Discussion. We ere able to successfully implement the proof strategy outlined
above in the case of regular formulas but we hope that this can be successfully
implemented for more general and interesting classes of circuits. It is one of the
ongoing lines of research in the area.
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Recent developments in high-rate locally-testable and
locally-decodable codes.

Or Meir

(joint work with Swastik Kopparty, Noga Ron-Zewi, and Shubhangi Saraf)

Locally-decodable codes [2, 17] and locally-testable codes [9, 20, 10] are error-
correcting codes that admit local algorithms for decoding and testing respectively.
More specifically, those algorithms are only allowed to make a small number of
queries to their input, and this number is called the query complexity. Clearly,
such algorithms must be randomized, and err with some probability.

LDCs and LTCs were originally studied in the setting where the query complex-
ity was either constant or poly-logarithmic. In those settings, it is believed that
LDCs and LTCs must be very redundant. Hence, we do not expect such codes to
achieve a high rate. In particular, in the setting of constant query complexity, it
is known that LDCs cannot have constant rate [17, 22, 23], and that LTCs with
certain restrictions cannot have constant rate [7, 4]. On the other hand, the best-
known constant-query LDCs have super-polynomial length length [24, 8, 16, 5], and
the best-known constant-query LTCs have quasi-linear length (see e.g. [3, 6, 21]).

It turns out that the picture is completely different when allowing the query
complexity to be much larger. In this setting, it has long been known that one can
have LDCs and LTCs with constant rate and query complexity O(nβ) for constant
β > 0 [2, 20]. More recently, it has been discovered that both LDCs [18, 11, 14] and
LTCs [21, 11] can simultaneously achieve rates that are arbitrarily close to 1 and
query complexity O(nβ) for an arbitrary constant β > 0. This is in contrast with
the general belief that local correctability and testability require much redundancy.

In this work, we show that there are LDCs and LTCs with constant rate (which
can in fact be taken to be arbitrarily close to 1) and constant relative distance,
whose associated local algorithms have no(1) query complexity and running time.
We find it quite surprising in light of the fact that there were several quite different
constructions of LDCs and LTCs [2, 20, 18, 21, 11, 14] with constant rate and
constant relative distance, all of which had Ω(nβ) query complexity. Specifically:
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• For LDCs, we obtain query complexity and running time
exp(

√
logn · log logn).

• For LTCs, we obtain query complexity and running time (logn)
O(log logn)

.

Furthermore, we show that such codes can achieve stronger trade-offs between the
rate and relative distance than was known before. Specifically:

• Over the binary alphabet, our codes meet the Zyablov bound, which is a
much better trade-off than what seemed achievable in the past.

• Over large alphabets (of constant size), our codes approach the Single-
ton bound: they achieve a tradeoff between rate and distance which is
essentially as good as possible for general error-correcting codes. This
means that, remarkably, local correctability and local testability with no(1)

queries over large alphabets is not only possible with constant rate and
constant relative distance, but it also does not require “paying” anything
in terms of rate and relative distance.

Such results were previously not known for any o(n) query complexity.
Our constructions are based on a technique of Alon, Edmonds, and Luby [1]. We

observe that this technique can be viewed as a method for distance amplification.
This distance amplifier, based on a d-regular expander, converts an error-correcting
code with relative distance ≫ 1/d into an error-correcting code with larger relative
distance δ, while reducing the rate only by a factor of ≈ (1− δ). Thus for a large
enough constant d, if we start with a code of rate 1−ε and relative distance ≫ 1/d,
where ε ≪ δ, then after distance amplification with a d-regular expander, we get
a code with rate (1− δ)(1− ε) ≈ (1− δ) and relative distance δ.

This technique was used in [1, 12] to construct linear-time codes, in [13] to
construct list-decodable codes with small alphabet, and (following our work) in [15]
to construct linear-time list-recoverable codes. All those constructions shared a
similar outline: One first constructs codes with high rate with some (possibly very
small) constant relative distance and a certain desirable property. Then, applying
distance amplification with a (possibly very large) constant-degree expander, one
obtains a code with a much better tradeoff between its rate and relative distance.
Finally one shows that the distance amplification with a constant degree expander
preserves the desirable property.

The first main observation of this paper is that the distance-amplification tech-
nique also preserves the property of being an LDC or an LTC. Specifically, if we
start with an LDC or LTC with query complexity q, and then apply distance am-
plification with a d-regular expander, then the resulting code is an LDC/LTC with
query complexity q · poly(d).

The next main observation is that this connection continues to hold even if
we take d to be super-constant, and take the LDC or LTC to have sub-constant
relative distance Θ(1/d). This is potentially useful, since we only blow up the
query complexity by a factor of poly(d), and perhaps LDCs/LTCs with high rate
and sub-constant relative distance can have improved query complexity over their
constant relative distance counterparts. As far as we are aware, there have been no
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previous uses of the distance-amplification technique using an expander of super-
constant degree.

We construct our LDCs by showing that an existing family of high-rate LDCs
can achieve sub-polynomial query complexity if we only require them to have sub-
constant relative distance. Specifically, multiplicity codes [18] in a super-constant
number of variables give us the desired LDCs. In order to obtain LTCs with query

complexity (logn)O(log logn), we use an iterative construction that combines tensor
products and the AEL distance-amplification in a sophisticated way, following [19].
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Rigidity of Random Toeplitz Matrices with an Application to
Depth-Three Circuits

Avishay Tal

(joint work with Oded Goldreich)

This talk concerns the construction of rigid matrices, a central open problem
posed by Valiant [7], and its application to lower bounds on canonical depth-three
Boolean circuits (where “canonical” is as defined by Goldreich and Wigderson [2]).
In particular, we improve the known lower bound on matrix rigidity, but the
improvement is for a range of parameters that is not the one motivated by Valiant’s
problem, but rather the one that arises from [2]. Indeed, this improvement resolves
open problems posed by Goldreich and Wigderson [2].

Matrix Rigidity. The “Matrix Rigidity Problem” (i.e., providing explicit ma-
trices of high rigidity) is one of the most alluring problems in arithmetic circuits
lower bounds. Introduced in 1977 by Valiant [7], the problem was originally mo-
tivated by proving lower bounds for the computation of linear transformations. A
matrix A over a field F has rigidity s for rank r if every matrix of rank at most r
(over F) disagrees with A on more than s entries.

Valiant showed that any matrix with rigidity n1+δ for rank ω(n/ log log n),
where δ is some constant greater than 0, cannot be computed by a linear circuit of
size O(n) and depth O(log n). Valiant also proved that almost all n-by-n matrices,
over a finite field F (e.g., the two-element field F2), have rigidity Ω((n− r)2/ logn)
for rank r. Since then, coming up with an explicit (i.e., matrices that can be
computed by a polynomial time algorithm) rigid matrix has remained a challenge.

The best techniques to date provide explicit n-by-n matrices of rigidity n2

r log n
r

for rank r (see [4] for a survey about matrix rigidity).
To the best of our knowledge, this state of affairs also holds for “simple” ran-

domized constructions that use O(n) random bits. The common belief is that
rigidity bounds for such randomized constructions can be used for proving lower
bounds for explicit computational problems that are related to the original ones.
For example, an adequate rigidity lower bound for random Toeplitz (or Hankel)
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matrices1 would yield a lower bound on the complexity of computing explicit bi-
linear transformations. Indeed, this is analogous to Andreev’s proof of formula
lower bounds [1], where a lower bound for a randomized function is transformed
into a lower bound for an explicit function (which takes the random bits of the
construction as part of its input). Our main result is the following

Theorem 1 (on the rigidity of random Toeplitz/Hankel matrices). Let A ∈ F
n×n
2

be a random Toeplitz/Hankel matrix. Then, for every r ∈ [
√
n, n/32], with proba-

bility 1− o(1), the matrix A has rigidity Ω( n3

r2 log n ) for rank r.

Our bounds are asymptotically better than Ω(n
2

r log n
r ) for rank r =

o( n
log n·log logn ), alas Valiant’s original motivation refers to r > n/ log logn. For

rank r = n0.5+ε, where ε ∈ (0, 0.5), our bound yields a significant improvement

(i.e., n3

r2 = n2−2ε ≫ n1.5−ε = n2

r ), and this is actually the range that is relevant
for the project of [2].

The Project of Goldreich-Wigderson. The work of Goldreich and Wigder-
son [2] provides another motivation for the study of matrix rigidity. In fact,
the problem of improving the rigidity bounds for random Toeplitz matrices was
posed explicitly there. Specifically, proving a rigidity bound of n1.5+Ω(1) for rank
n0.5+Ω(1) for random Toeplitz matrices was proposed there as a possible next step.

Lower Bounds for Depth Three Canonical Circuits. H̊astad [3] showed that any
depth-three Boolean circuit2 computing the n-way parity function must be of size
at least exp(

√
n). Though H̊astad’s bound was refined during the years [6, 5], to

date, exp(Ω(
√
n)) is the best lower bound for an explicit function in the model of

depth-three Boolean circuits. The work of Goldreich and Wigderson [2] put for-
ward a model of depth three canonical circuits, with the underlying long-term goal
to exhibit better lower bounds for general depth-three Boolean circuits. Canonical
circuits are restricted type of such depth-three circuits, which can be illustrated by
considering the smallest known depth-three circuits for n-way parity. The latter

Õ(2
√
n)-size circuits are obtained by combining a CNF that computes a

√
n-way

parity with
√
n DNFs that compute

√
n-way parities of disjoint blocks of the input

bits. The construction, and its optimality by [3, 6], suggests the following scheme
for obtaining Boolean circuits that compute multilinear functions. First, construct
an arithmetic circuit that uses arbitrary multilinear gates of parameterized arity,
and then convert it to a Boolean circuit whose size is exponential in the maxi-
mum between the arity and the number of gates in the arithmetic circuit. The
arithmetic model is outlined next.

1Recall that a Toeplitz matrix T = (Ti,j) has constant diagonals (i.e., Ti,j = Ti+1,j+1 for

every i, j). Hankel matrices are obtained by turning Toeplitz matrices upside down; that is, a
Hankel matrix H = (Hi,j) has constant skew-diagonals (i.e., Hi,j = Hi+1,j−1 for every i, j).

2That is, a circuit of unbounded fan-in OR and AND gates with leaves that are variables or
their negations.
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Lower Bounds for Multilinear Circuits. Suppose we wish to compute a t-linear
function that depends on t blocks of inputs, x(1), . . . , x(t), each of length n; that is,
the function is linear in each of the x(j)’s. We consider circuits that use arbitrary
t-linear gates of parameterized arity. That is, the circuits are directed acyclic
graphs, where each internal node computes a t-linear function of its inputs. We
further restrict our circuit such that each internal gate computes a multilinear
formal polynomial in the inputs x(1) . . . , x(t). We say that such a multilinear
circuit is of AN-complexity3 m if m equals the maximum between the number
of the circuit gates and the maximal arity of the gates. For a t-linear function
F , we denote by C(F ) the minimal AN-complexity of a multilinear circuit which
compute the function F . (We will abuse notation and refer to the AN-complexity
of a tensor/matrix as the AN-complexity of the corresponding t-linear function.)

In the example of parity, we have a bottom layer of
√
n gates each taking

√
n

inputs and computing their parity. Above these gates, we have a gate which takes
the

√
n results and computes their parity. Overall, we got a (multi)-linear circuit

of AN-complexity
√
n+ 1.

Goldreich and Wigderson showed that any multilinear circuit of AN-complexity
m yields a depth-three Boolean circuit of size exp(m) computing the same function
(see [2, Prop. 2.9]). In fact, the Boolean circuits have much more structure, and
are referred to by Goldreich and Wigderson as canonical circuits. Thus, a prelimi-
nary step towards beating the exp(Ω(

√
n)) lower bound on the size of depth-three

Boolean circuits for explicit O(1)-linear functions,4 will be to beat the Ω(
√
n) AN-

complexity lower bound for such functions in the model of multilinear circuits.
Again, as in Valiant’s question, if we just ask about the existence of hard t-linear

functions, then almost all t-linear functions cannot be computed by a multilinear
circuit of AN-complexity smaller than (nt)t/(t+1): See [2, Thm. 4.1], which uses a
counting argument. The more important and challenging problem is to came up
with an explicit t-linear function for which such bounds, or even just ω(

√
n) lower

bounds, can be proved.

Reduction to Matrix Rigidity. Goldreich and Wigderson reduces the problem of
proving lower bounds for bilinear circuits to the problem of rigidity [2, Sec. 4.2].
They show that if a bilinear circuit is of AN-complexity m/2, then its correspond-
ing matrix is not m3 rigid for rank m (i.e., it can be expressed as a sum of an
m3-sparse matrix and a matrix of rank at most m over F2). Hence, any matrix
that has rigidity m3 for rank m corresponds to a bilinear function that cannot be
computed by a bilinear circuit of AN-complexity at most m/2.

Open Problems in Goldreich-Wigderson. One open problem posed by Goldreich
and Wigderson is proving that random Toeplitz matrices have rigidity m3 for
rank m = n0.5+Ω(1). This would yield an AN-complexity lower bound of m for the

3where AN stands for Arity and Number of gates.
4Indeed, this suggestion presumes that there exist O(1)-linear functions that require depth-

three Boolean circuits of size exp(ω(
√
n)), which is also an open problem suggested in [2].
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corresponding bilinear function (via the reduction in [2, Thm. 4.4]) as well as a
similar lower bound for the following explicit trilinear function (via [2, Prop. 4.6]):

(1) Ftet(x, y, z) =
∑

i1,i2,i3∈[n]:∑3
j=1 |ij−n/2|≤n/2

xi1yi2zi3 .

Resolving the Foregoing Open Problems. We resolve the aforementioned
open problem by proving that random Toeplitz matrices have rigidity m3 for rank

m = Θ( n3/5

log1/5 n
), with high probability. This follows from Theorem 1 by choosing

r = m. This implies that the AN-complexity of a random Toeplitz matrix is

Ω̃(n3/5), and ditto for the explicit trilinear function Ftet from Eq. (1).
A natural open problem is to prove better than exp(

√
n) lower bounds on the

size of (standard) depth-three circuits computing Ftet.

References

[1] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987. In Russian.

[2] O. Goldreich and A. Wigderson. On the size of depth-three boolean circuits for computing
multilinear functions. Electronic Colloquium on Computational Complexity (ECCC), 20:43,
2013.

[3] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th
Annual STOC, pages 6–20, 1986.

[4] S. V. Lokam. Complexity lower bounds using linear algebra. Foundations and Trends in
Theoretical Computer Science, 4(1-2):1–155, 2009.

[5] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k -sat. J. ACM, 52(3):337–364, 2005.

[6] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago J. Theor. Comput.
Sci., 1999, 1999.

[7] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Lecture notes in Com-
puter Science, volume 53, pages 162–176. Springer, 1977.

How to Delegate Computations: the Power of No-Signaling Proofs

Ron Rothblum

(joint work with Yael Tauman Kalai, Ran Raz)

The problem of delegating computation considers a setting where one party, the
delegator (or verifier), wishes to delegate the computation of a function f to an-
other party, the worker (or prover). The challenge is that the delegator may not
trust the worker, and thus it is desirable to have the worker “prove” that the com-
putation was done correctly. We require that verifying this proof is significantly
easier than doing the computation itself; that is, the delegator’s running time is
significantly smaller than the time complexity of f . Moreover, we require that the
running time of the worker is not much larger than the time complexity of f .

The problem of delegating computation has become a central problem in cryp-
tography, especially with the increasing popularity of cloud computing, where weak
devices use cloud platforms to run their computations.
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We focus on the problem of constructing one-round delegation protocols, where
the delegator wants to verify a statement of the form x ∈ L. The delegator
sends x to the worker together with some query q; then the worker computes
b = L(x), and based on the query q provides a non-interactive proof π for the
fact that b = L(x). The delegator should be able to verify the correctness of the
proof π very efficiently, and the worker should run in time polynomial in the time
it takes to compute f . Throughout this work (similarly to all previous works that
consider the problem of one-round delegation), the security requirement is against
computationally bounded cheating workers. Namely, we consider the computational
setting, where the security (i.e., soundness) of our scheme relies on a cryptographic
assumption, and the guarantee is that any cheating worker, who cannot break the
underlying assumption, cannot prove the correctness of an incorrect statement.

Previously, a combination of a result of Goldwasser, Kalai and Rothblum
[GKR08] with a result of Kalai and Raz [KR09] yielded a one-round delegation
scheme for any function f that can be computed by a LOGSPACE-uniform cir-
cuit C of size t = t(n) and depth d = d(n), where the running time of the verifier

is Õ(n+ d), and the running time of the prover is poly(t) (assuming the existence
of a sub-exponentially secure computational private information retrieval scheme).
Note however that for circuits with large depth d this delegation scheme does not
satisfy the efficiency criterion.

A fundamental question is: Do there exist efficient 1-round delegation schemes
for all deterministic computations? There are several works that (partially) answer
this question in the preprocessing model, or under non-falsifiable assumptions.1

We elaborate on these prior works in the full version [KRR13].
In this work, we answer the above question positively, by constructing a 1-

round delegation scheme for every deterministic computation, assuming a sub-
exponentially secure computational private information retrieval (PIR) scheme.
More specifically, we show a delegation scheme for every language computable in
time t = t(n), where the running time of the verifier is n · polylog(t), and the
running time of the prover is poly(t). The underlying assumption is that there
exists a computational PIR scheme (or a fully homomorphic encryption scheme)
that cannot be broken in time tpolylog(t) for security parameter k ≤ poly(n).2

Our delegation scheme exploits a connection to the seemingly unrelated model
of multi-prover interactive proof systems (MIP) in which soundness holds even
against no-signaling cheating provers. Loosely speaking, no-signaling provers are
allowed to use arbitrary strategies (as opposed to local ones, where the reply of
each prover is a function only of her own input), as long as their strategies cannot
be used for communication between any two disjoint sets of provers.

We show that any MIP that is sound against no-signaling cheating provers
can be converted into a 1-round delegation scheme, using a fully-homomorphic

1We note that under non-falsifiable assumptions, there are known positive results even for
non-deterministic computations. The focus of this work is on deterministic computations.

2In particular, for languages in P we only require a PIR scheme with quasi-polynomial
security.
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encryption scheme (FHE), or alternatively, using a computational private infor-
mation retrieval (PIR) scheme. This connection is based on a heuristic that was
originally suggested by Aiello et-al [ABOR00].

We then construct a new MIP , for every deterministic language, with sound-
ness against no-signaling cheating provers. This, together with the transformation
above, gives us our 1-round delegation scheme.
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2-Server PIR with sub-polynomial communication

Zeev Dvir

(joint work with Sivakanth Gopi)

Private Information Retrieval (PIR) was first introduced by Chor, Goldreich,
Kushilevitz and Sudan [CKGS98]. In a k-server PIR scheme, a user can retrieve
the ith bit ai of a n-bit database replicated among k servers (which do not commu-
nicate) while giving no information about i to any server. The goal is to design PIR
schemes that minimize the communication cost which is the worst case number
of bits transferred between the user and the servers in the protocol. The trivial
solution which works even with one server is to ask a server to send the entire
database, which has communication cost n.

When k = 1 the trivial solution cannot be improved [CKGS98]. But when k ≥ 2,
the communication cost can be brought down significantly. In [CKGS98], a 2-server
PIR scheme with communication cost O(n1/3) and a k-server PIR scheme with
cost O(k2 log kn1/k) were presented. The k-server PIR schemes were improved
further in subsequent papers [Amb97, BI01, BIKR02]. This was the best for a
long time until the breakthrough results of Yekhanin[Yek08] and Efremenko[Efr09]
gave k-server PIR schemes with sub-polynomial cost for k ≥ 3 which were slightly
improved in [IS10]. These PIR schemes follow from the constructions of constant
query smooth Locally Decodable Codes (LDCs) of sub-exponential length called
Matching Vector Codes (MVCs)[DGY10]. A k-query LDC [KT00] is an error
correcting code which allows the receiver of a corrupted encoding of a message
to recover the ith bit of the message using only k (random) queries. In a smooth
LDC, each query of the reconstruction algorithm is uniformly distributed among
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the code word symbols. Given a k-query smooth LDC, one can construct a k-
server PIR scheme by letting each server simulate one of the queries. Despite the
advances in 3-server PIR schemes, the 2-server PIR case is still stuck at O(n1/3)
since 2-query LDCs provably require exponential size encoding [KdW03] (which
translates to polynomial communication cost in the corresponding PIR schemes).

On the lower bounds side, there is very little known. The best known lower
bound for the communication cost of a 2-server PIR is 5 logn [WdW05] whereas
the trivial lower bound is logn. In [CKGS98], a lower bound of Ω(n1/3) is conjec-
tured. An Ω(n1/3) lower bound was proved for a restricted model of 2-server PIR
called bilinear group based PIR in [RY06]. This model encompasses all the previ-
ously known constructions which achieve O(n1/3) cost for 2-server PIR. So to beat
O(n1/3), we need to go beyond this bilinear group based model and fortunately
the constructions of Yekhanin [Yek08] and Efremenko [Efr09] are not captured by
this model. Thus they provide us some clues to break the O(n1/3) barrier.

Our main result gives the first 2-server PIR scheme with sub polynomial com-
munication. Our proof augments the Matching vector based protocols of Yekhanin
and Efremenko with the use of partial derivatives.
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The complexity of learning Boolean functions: past progress and
future frontiers

Rocco A. Servedio

The talk surveyed computationally efficient learning algorithms for concept classes
(classes of Boolean functions, i.e. functions mapping {0, 1}n to {−1, 1}) that are
interesting and natural from a complexity theoretic perspective. It focused on
algorithms in the Probably Approximately Correct (PAC) learning model that was
introduced and studied by Vapnik and Chervonenkis [VC71] and Valiant [Val84],
and in the closely related model of exact learning from equivalence queries [Ang88]
(also known as the online mistake-bound model [Lit88]).

One technique that has proved highly effective in developing efficient learning
algorithms is based on applying polynomial-time linear programming over an ex-
panded “feature space” of all low-degree monomials. Since there are O(nd) such
monomials of degree at most d, this leads to nO(d) time learning algorithms for
concept classes which are such that every function in the class has a polynomial
threshold function representation of degree at most d. This approach has been
used to obtain the fastest known algorithms for learning decision trees (implicit
in [Blu92]), DNF formulas [KS01], de Morgan formulas of bounded size [Lee09],
and intersections of low-weight halfspaces [BRS95, KOS04]. However, strong lower
bounds have been given on the polynomial threshold function degree of intersec-
tions of halfspaces [She09, She10] and AC0 circuits [She14, She15], giving corre-
sponding limitations on the efficiency of algorithms based on learning polynomial
threshold functions for these concept classes. More generally, Razborov and Sher-
stov [RS10] have established limitations on the ability of linear programming based
methods to efficiently learn DNF formulas regardless of the particular feature space
that is employed (as long as it is fixed a priori in advance of running the learning
algorithm).

Another technique, based on linear algebra, employs a “closure algorithm” to
learn all AND-of-XOR-of-ANDd circuits (where the bottom level AND gates have
maximum fan-in d, but higher-level gates have unbounded fanin) in nO(d) time
[FS92, HSW92]; however, it is not clear what concept classes have representations
of this sort when d is constrained to be significantly less than n. Other techniques,
based on an augmentation of Rivest’s [Riv87] “top-down” algorithm for learning
decision lists [HS07] and based on an “agnostic boosting” technique of Kalai,
Mansour and Verbin [KMV08], were also briefly surveyed.

A final question is whether learning rich concept classes (such as intersections
of halfspaces, AC0 circuits, etc) is a sufficiently hard computational task that the
correct perspective on algorithms for these problems is to measure the savings
that can be achieved over a brute-force running time of 2n. (This seems to be
the correct perspective for related computational problems, such as counting sat-
isfying assignments, for some of these classes; see e.g. [BIS12, IPS13].) The talk
concluded with a sketch of a “proof of concept” result of this sort, establishing that
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any poly(n)-size, depth-d AC0 circuit can be learned in the online mistake-bound

learning model with running time at most 2n−n
1/d

.
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