
Mathematisches Forschungsinstitut Oberwolfach

Report No. 54/2021

DOI: 10.4171/OWR/2021/54

Complexity Theory
(hybrid meeting)

Organized by

Peter Bürgisser, Berlin

Irit Dinur, Rehovot

Salil Vadhan, Cambridge MA

14 November – 20 November 2021

Abstract. Computational Complexity Theory is the mathematical study
of the intrinsic power and limitations of computational resources like time,
space, or randomness. The current workshop focused on recent developments
in various sub-areas including interactive proof systems, quantum information
and computation, algorithmic coding theory, arithmetic complexity, expan-
sion of hypergraphs and simplicial complexes, Markov chain Monte Carlo, and
pseudorandomness. Many of the developments are related to diverse mathe-
matical fields such as algebraic geometry, extremal combinatorics, combina-
torial number theory, probability theory, representation theory, and operator
algebras.

Mathematics Subject Classification (2010): 68Q01, 68Q17, 68Q15.

Introduction by the Organizers

The workshop Complexity Theory was organized by Peter Bürgisser (TU Berlin),
Irit Dinur (Weizmann Institute), and Salil Vadhan (Harvard). The workshop was
held on November 11–20 2021 in hybrid format. It was attended by approximately
50 participants spanning a wide range of interests within the field of Computational
Complexity. Among those, around 30 participated in person and the rest virtually.
The plenary program featured twelve long lectures and two short (10-minute)
reports by students and postdocs. In addition, intensive interaction took place in
smaller groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic
and Boolean complexity, the meeting has continuously evolved to cover a wide
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variety of areas, most of which were not even in existence at the time of the first
meeting (in 1972). While inviting many of the most prominent researchers in the
field, the organizers try to identify and invite a fair number of promising young
researchers. The meeting usually features a couple of special focus topics which
vary from meeting to meeting. The special focus topics of the current meeting
were quantum computation and algorithmic aspects of error-correcting codes.

Computational complexity (a.k.a. complexity theory) is a central field of theo-
retical computer science with a remarkable list of celebrated achievements as well
as a vibrant research community. The field is concerned with the study of the
intrinsic complexity of computational tasks, and this study tends to aim at gen-
erality: it focuses on natural computational resources, and considers the effect of
limiting these resources on the class of problems that can be solved. Computa-
tional complexity is related to and has substantial interaction with other areas of
mathematics such as algebra, analysis, combinatorics, geometry, number theory,
optimization, probability theory, and quantum computation.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Interactive proofs with quantum provers sharing entanglement. Thomas
Vidick gave an overview of his spectacular 2020 breakthrough with Ji, Natarajan,
Wright, and Yuen, which connects quantum computation, operator algebras and
computational complexity. This was complemented by a plenary talk of his coau-
thor Henry Yuen on noncommutative property testing in which more details were
provided.

A classic result due to Babai, Fortnow and Lund (1991) showed that any lan-
guage in nondeterministic exponential time has a two-prover interactive (proba-
bilistically checkable) proof, in short: MIP = NEXP. This early result and its
method of proof (arithmetization) were influential for the discovery of the PCP
theorem, another fundamental result characterizing the complexity class NP in
terms of extremely efficient probabilistically checkable proofs.

One may wonder what are the changes when bringing in quantum computa-
tion into the game. In 2004 the quantum analogue MIP

∗ was introduced, which
is characterized by a classical polynomial-time verifier interacting with multiple
quantum provers sharing entanglement. Entanglement goes back to a famous pa-
per by Einstein, Podolsky and Rosen, and for a long time, the correlations afforded
by quantum mechanics were considered by most physicists as an oddity with lit-
tle practical relevance. The situation changed drastically in the early 1990s with
the discovery that entanglement could act as a resource for quantum information
tasks. In the early 1980s Tsirelson wrote a series of papers laying out the mathe-
matical formalism for the systematic study of the nonlocal properties of quantum
mechanics. Tsirelson had stated an open problem that much later was realized to
be essentially equivalent to Connes’ embedding problem, a major question from
the 1970s in the theory of operator algebras (von Neumann algebras).

A complete characterization of the classMIP
∗ was finally obtained in 2020, lead-

ing to an utterly surprising and counterintuitive answer: the class MIP
∗ coincides
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with the class of recursively enumerable languages: MIP
∗ = RE. In particular,

MIP
∗ contains the (undecidable) Halting Problem! This has significant conse-

quences in mathematics: it leads to a strict inclusion in Tsirelson’s problem and
provides a refutation of Connes’ embedding conjecture from the theory of von
Neumann algebras.

In his excellent talk, Thomas Vidick outlined the proof of this breakthrough
result: a difficult task since the original paper is around 200 pages long. Thomas
focused on the design of a “compression procedure” for multiprover interactive
proofs and illuminated the differences between the classical and the quantum set-
ting.

The talk by Henry Yuen followed up on this by explaining low degree tests with
quantum functions. Essential features were illustrated by discussing the Magic
Square Game in detail.

A breakthrough in locally testable codes. A (linear) error-correcting code is
a linear subspace of n-bit strings that are pairwise far apart in Hamming distance.
These strings can be used to encode messages so that even if a small fraction
of the bits are flipped, there is a way to figure out what the original codeword
has been and thus recover the original message. The theory of error-correcting
codes is well developed with origins dating back to the works of Shannon and
Hamming from the late 1940s and early 1950s. The two important parameters of
an error-correcting code are the rate and the distance, and the golden standard
of error-correcting codes requires both of these to be a constant multiple of the
length n.

Local testability is a much newer notion that emerged from complexity works
in the 1990s on probabilistically checkable proofs (PCPs) that have lead to the
area of property testing. A locally testable code is a code that comes together
with a property tester, namely, an algorithm that can check if a given codeword
carries many errors by reading only a small number of bits. Constructions of
locally testable code are typically based on low degree polynomial functions and
codes such as the Reed–Muller code. These codes require significant redundancy
to achieve the local testability property and therefore fell short of meeting the
golden standard in terms of rate and distance.

The meeting featured two plenary talks on recent breakthroughs in this area.
The first, by Irit Dinur, described a new construction of locally testable codes
by her and coauthors that have the so-called c3 property: they have constant
relative distance, constant relative rate, and are testable with a constant number
of queries. The codes are constructed similar in spirit to expander codes. Instead
of an expander graph, one starts out with a new object called a left-right Cayley
complex. This complex is a graph that, in addition to vertices and edges, also
has squares. The bits are placed on the squares and the second level is somehow
used for proving testability. The second talk, by Ryan O’Donnell, described a
new work by Panteleev and Kalachev that was posted on arXiv just a couple of
weeks before the meeting took place. This work achieves both c3 LTCs as well
as the first known quantum LDPC codes that are asymptotically good, namely
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have constant relative rate and distance. Quantum LDPC codes are given by two
subspaces CX , CZ with the property that C⊥

X ⊆ CZ and C⊥
Z ⊆ CX . The talk

focused on describing the concrete construction through a highly symmetric chain
of vertices edges and squares.

Superpolynomial lower bounds for low depth arithmetic circuits. The
computational complexity of computing a polynomial over a field is defined as the
minimum size of an arithmetic (or algebraic) circuit computing it. While it is well
known that almost all polynomials have a complexity that is essentially its number
of monomial terms, proving superpolynomial lower complexity bounds for specific
polynomials (like the permanent) has remained elusive. Doing so would amount
to proving the separation VP 6= VNP, which is an algebraic analogue of the famous
P 6= NP problem in the setting of Boolean functions.

Therefore, efforts have focused on restricted models of computation: a common
assumption is to restrict the depth of the circuits. In fact, for constant-depth
Boolean circuits, strong lower bounds have been known since the 1980s.

In her talk, Nutan Limaye presented her recent breakthrough result, where
she and coauthors establish, for the first time, superpolynomial lower bounds for
explicit polynomials in the model of constant-depth algebraic circuits over fields
of characteristic 0. In fact, these bounds apply to iterated matrix multiplication,
which is the problem of computing the trace of the product of d many n × n
matrices, whose entries are different variables.

While the general pattern of the proof follows known strategies, several signifi-
cant improvements are introduced. The first step is to focus on the more restricted
model of set-linear circuits, which was introduced by Nisan and Wigderson in 1995.
Limaye et al. managed to improve the lower bound techniques in the latter work.
The second step is an improved conversion of constant-depth algebraic circuit to
a constant-depth set-multilinear circuit.

Approximate counting, sampling and high dimensional expanders. Ap-
proximate counting is the problem of efficiently computing the approximate num-
ber of solutions to a given problem. For example, given a graph, count how many
forests of size k there are in the graph. When k = n − 1, we are counting span-
ning trees, which can be calculated exactly in polynomial time using Kirchhoff’s
Matrix–Tree Theorem, but for smaller values of k, it was a long-standing open
problem how to even approximately count forests in polynomial time. It is well
known that such approximate counting problems are equivalent to sampling, the
problem of generating a solution chosen almost uniformly at random from the
set of solutions. A very successful approach to these questions is given by the
Markov Chain Monte Carlo (MCMC) method. Devise a Markov chain that uses
simple steps to move from solution to solution in a random way. If the Markov
chain mixes sufficiently rapidly, the algorithm will quickly sample from (almost)
the desired distribution.

In his talk, Shayan Oveis Gharan described a breakthrough work in which he
and coauthors solved the problem of sampling a random basis of any given Matroid,
including the case of forests of arbitrary size as a special case. He described a
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simple and natural Markov chain that randomly moves from one basis to another.
The key idea is to understand and analyze this Markov chain by viewing it as a
random walk on a high dimensional expander. From the matroid there is a simple
way to construct a simplicial complex: the ground set is the ground set of the
matroid, and the top faces (those with highest dimension) are the bases of the
matroid. One then looks at the random walk from basis to basis as a walk on the
top faces of the simplicial complex. The mixing time of this walk can be analyzed
by analyzing the mixing time of the links of this complex, which have relatively
simple structure.

Progress on the sunflower conjecture. This online talk by Shachar Lovett
summarized the recent progress on the sunflower conjecture, which was led by
Lovett and his coauthors. The sunflower conjecture is a famous conjecture in
extremal combinatorics due to Erdös and Rado (1960). Let us fix a finite universe.
A w-set system is a collection F of subsets of cardinality at most w. We are
interested in subcollections {S1, . . . , Sr} of F with the property that all its pairwise
intersections are the same. Those are called r-sunflowers.

The talk started with Erdös and Rado’s proof of the sunflower lemma, which
states that |F| ≥ w!(r−1)w is enough to guarantee the existence of an r-sunflower
in an w-set system F . The sunflower conjecture essentially claims that w! in
this bound can be removed. More specifically, it claims that any w-set system F
contains an r-sunflower, provided the cardinality of F exceeds c(r)w , where c(r)
denotes a constant only depending on r ≥ 3. The claimed bound is easily seen
to be optimal. In the talk, also a related conjecture by Erdös and Szemeredi
involving the size of the universe was discussed. All these results and conjectures
found many applications in mathematics and theoretical computer science.

Lovett went on to outline in quite detail the proof of his new result, thereby
focusing on the case r = 3 for simplicity. The new result states that any w-set
system satisfying |F| ≥ (logw)O(w) contains a 3-sunflower. The proof emphasized
two general principles: on the one hand, structure versus randomness. On the
other hand, it was relevant to think of set systems in terms of monotone disjunctive
normal formulas, which are a standard object of study in computational complexity
but lead to a new perspective on a classic pure combinatorics problem. Ihere are
several follow-up works by combinatorialists and computer scientists which led to
improvements, applications, and/or simplified proofs.

Recent Advances on Indistinguishability Obfuscation. Obfuscation aims
to efficiently compile programs into “unintelligible ones” while preserving function-
ality. Obfuscators are a fascinating and powerful concept; if we could construct
them, they would enable a vast array of new cryptographic tasks and beyond.

The specific notion of indistinguishability obfuscation (iO) was first proposed in
a work by Barak et al., presented at 2000 Oberwolfach Meeting of Computational
Complexity. The main result of Barak et al. was negative, showing that a stronger
form of obfuscation is impossible to achieve, and for more than a decade, it was
suspected that indistinguishability obfuscation would also be impossible. Starting
in 2013, the cryptography research community became more optimistic about the



2960 Oberwolfach Report 54/2021

existence of iO, and generated a wealth of proposals for constructing it. However,
these proposals relied on heuristics or newly conjectured hardness assumptions
whose correctness was difficult to assess (and were often refuted).

In her talk, Huijia Lin described a series of breakthrough constructions of iO
where she and her coauthors rely only on well-known hardness assumptions that
have already undergone significant scrutiny and thus are very plausible. These
assumptions involve the hardness of (a) solving noisy linear equations over prime
fields, (b) breaking pseudorandom generators in which every output bit depends
on only a constant number of input bits, and (c) solving a decisional variant of the
discrete logarithm problem in bilinear groups of prime order. Surprisingly, their
construction makes no use of hardness assumptions involving high-dimensional
lattices, which had been the basis of other powerful cryptographic primitives (like
fully homomorphic encryption) and were used in prior constructions of iO.

Thresholds for random subspaces, aka LDPC codes achieve list-decoding
capacity. Random linear codes and random low-density parity-check (LDPC)
linear codes are two well-studied families of codes. The first is obtained by selecting
a random matrix and the second is obtained by selecting a random sparse matrix.
There are many algorithmic advantages to using random LDPC codes rather than
random codes. The most obvious is that for a random code we expect the decod-
ing complexity to be very high (super-polymomial), whereas random LDPC codes
have very efficient decoding algorithms. On the other hand, many combinatorial
properties are easier to prove for random codes because more randomness implies
more probabilistic independence.

In her talk, Mary Wootters defined a collection of so-called local properties of
codes. She showed that such properties can be transferred from the case of random
codes to the case of random LDPC codes. The class of local properties is quite a
rich class of properties that allows formulating many interesting features of error-
correcting codes, including distance and list-decodability. Thus, an application
of this result allowed proving, for the first time, that random LDPC codes are
list-decodable up to list-decoding capacity.

Recent progress on derandomizing space-bounded computation. A cen-
tral question in computational complexity is whether randomized algorithms can
solve problems with significantly less resources (especially, time or space) than
deterministic algorithms, or instead that all randomized algorithms can be deran-
domized with only a small loss in efficiency. Postdoctoral fellow William Hoza gave
a beautiful survey talk on recent progress (by a variety of researchers, including
Hoza) aimed at proving that BPL=L, which means that all randomized algorithms
can be made deterministic with only a constant-factor increase in memory usage.
Hoza’s talk covered four themes, and the payoffs each has yielded (e.g. in deran-
domizing subclasses of space-bounded computation). The first theme was that
of iterated pseudorandom restrictions, where portions of the algorithm’s random
bits are iteratively replaced with sequences of pseudorandom bits, which turns
out to be an easier task than trying to generate all of the pseudorandom bits
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at once. The second was exploiting a connection between derandomizing space-
bounded computation and approximately inverting directed Laplacian matrices.
A third was error-reduction procedures for approximating the behavior of ran-
domized space-bounded algorithms. The fourth was the use of expander graphs
in constructing pseudorandom generators and related objects for space-bounded
computation. One concrete consequence of some of these ideas is Hoza’s own result
that gave the first improvement in the derandomization of general space-bounded
computation in over 25 years, namely that a randomized space S algorithm can
be converted to a deterministic algorithm that uses space O(S3/2/

√
logS). (In

1995, Saks and Zhou gave the bound O(S3/2), and it is conjectured that O(S) is
possible.)

Quantum information theory, tensors and algebraic complexity. Chris-
tandl’s talk started with general comments on the connection of quantum states
and tensors. He then moved on to explain the connection to algebraic complexity.
For instance, the tensor 〈2, 2, 2〉 of 2 by 2 matrix multiplication can be seen as the
state of three qubits with pairwise EPR entanglement. In this context the notion
of the asymptotic restriction of tensors, introduced by Volker Strassen in 1988, en-
ters naturally. A tensor t′ is called an asymptotic restriction of a tensor t, written
t � t′, if the n-fold tensor power t′⊗n of t′ can be obtained as a restriction of t⊗Nn ,
when Nn is not much larger than n, namely limn→∞Nn/n = 1. This definition
has a natural interpretation from an information-theoretic point of view when the
tensors are interpreted as quantum states. The exponent of matrix multiplication
equals 2 iff 〈4〉 � 〈2, 2, 2〉, where 〈4〉 = ∑4

i=1 |iii〉 denotes the unit tensor of dimen-
sion four. Strassen proved a fundamental duality theorem stating that t � t′ iff
F (t) ≥ F (t′) for all functionals F on tensors that are additive (w.r.t. direct sum),
multiplicative (w.r.t. tensor product), and monotone with respect to restriction.
Moreover, for certain classes of tensors, Strassen described an explicit family Fθ of
“support functionals”, parameterized by θ1, θ2, θ3 ≥ 0 such that θ1 + θ2 + θ3 = 1.

Christandl briefly outlined his recent work on quantum functionals, which, in
characteristic zero, generalizes Strassen’s support functionals to cover all tensors.
Morevoer, the quantum functional Fθ(t) has a clean description in terms of the
moment polytope ∆(t) of t. The value logFθ(t) is obtained by maximizing the
convex combination of entropies θ1H(P1)+θ2H(P2)+θ3H(P3) over all probability
distributions P with support contained in ∆(t); here P1, P2, P3 denote the three
marginal distributions of P . The moment polytope is a fundamental concept at
the crossroad of symplectic geometry and geometric invariant theory that enters
here in an unexpected way.

Connecting meta-complexity and crypto. Meta complexity is the study of
computational problems that are themselves about complexity. Examples include
the Minimum Circuit Size Problem (given a the truth table of a boolean function
f , determine the size of the smallest boolean circuit computing f) and computing
time-bounded versions of Kolmogorov Complexity. In this survey talk, Rahul
Santhanam gave an overview of recent work on meta-complexity. In particular,
Santhanam discussed the surprising recent result of Liu and Pass, which showed
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that the existence of one-way functions (the minimal assumption for complexity-
based cryptography) is equivalent to the average-case hardness of computing the
polynomial-time bounded analogue of Kolmogorov complexity. This constitutes
a major advance on the long-running project of understanding the relationship
between one-way functions and the average-case hardness of natural problems.

Brief Reports. In one plenary session, graduate student Yotam Dikstein and the
postdoctoral fellow Visu Makam presented brief reports of their research agendas.

Informal specialized sessions. Outside formal plenary program, intense inter-
action between the participants took place in smaller groups. Part of these took
place in the form of specialized sessions, which included a mixture of interactive
presentations (abstracts enclosed) and discussion/brainstorming. The topics of
the specialized sessions included:

• Average-case problems and the sum-of-squares hierarchy
• The complexity of matrix multiplication
• Pseudorandomness and derandomization of space-bounded computation
• Geometric complexity theory
• Threshold phenomena in random graph models
• Spectral graph theory
• Coding theory and fault tolerance
• Algorithmic fairness

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Superpolynomial Lower Bounds against Low-Depth Algebraic Circuits

Nutan Limaye

(joint work with Srikanth Srinivasan, Sébastien Tavenas)

Algebraic circuits are algebraic algorithms for computational problems defined
by multivariate polynomials. Given a (sequence of) polynomials Pn(x1, ..., xn),
the computational problem is to evaluate Pn at a given input point x. Many
fundamental computational problems such as the determinant, the permanent,
and matrix multiplication can be cast in this language.

An algebraic circuit is an algorithm that performs such a computation by con-
structing the formal polynomial Pn using algebraic operations (linear combinations
and multiplications). The model is syntactic, as opposed to the general Boolean
circuit model, which is only defined by a set of input-output behaviours. Lower
bounds for this model should consequently be easier to prove.

Despite this, we did not have lower bounds against constant-depth algebraic
circuits (while constant-depth Boolean circuit lower bounds were known since the
1980s). In recent work, we showed the first superpolynomial lower bounds for
constant-depth algebraic circuits.

Our approach is surprisingly simple. We first prove superpolynomial lower
bounds for constant-depth Set-Multilinear circuits. While strong lower bounds
were already known against such circuits, most previous lower bounds were of the
form Ω(f(d) · poly(N)), where d denotes the degree of the polynomial. In analogy
with Parameterized complexity, we call this an FPT lower bound. We extend a
well-known technique of Nisan and Wigderson (FOCS 1995 [1]) to prove non-FPT
lower bounds against constant-depth set-multilinear circuits computing the Iter-
ated Matrix Multiplication polynomial IMMn,d (which computes a fixed entry of
the product of d n×n matrices). More precisely, we prove that any set-multilinear

circuit of depth ∆ computing IMMn,d must have size at least ndexp(−O(∆))

. This
result holds over any field, as long as d = o(log n).

We then show how to convert any constant-depth algebraic circuit of size s to
a constant-depth set-multilinear circuit with a blow-up in size that is exponential
in d but only polynomial in s over fields of characteristic 0. (For depths greater
than 3, previous results of this form increased the depth of the resulting circuit to
Ω(log s).) This implies our constant-depth circuit lower bounds.

We can also use these lower bounds to prove a Depth Hierarchy theorem for
constant-depth circuits. We show that for every depth Γ, there is an explicit
polynomial which can be computed by a depth Γ circuit of size s, but requires
circuits of size sω(1) if the depth is Γ− 1.

Finally, we observe that our superpolynomial lower bound for constant-depth
circuits implies the first deterministic sub-exponential time algorithm for solving
the Polynomial Identity Testing (PIT) problem for all small depth circuits using
the known connection between algebraic hardness and randomness.
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In this talk, we will discuss the background behind our results. We will then
give details of the lower bound proof.

References

[1] N. Nisan, A. Wigderson Lower bounds on arithmetic circuits via partial derivatives., Com-
putational Complexity 6(3), 217–234, 1997.

MIP∗=RE

Thomas Vidick

(joint work with Zhengfeng Ji, Anand Natarajan, John Wright, Henry Yuen)

The equality MIP∗=RE characterizes the class of language that have two-prover
interactive proofs with a classical polynomial-time verifier and two all-powerful
quantum provers sharing entanglement as being equal to the class of recursively
enumerable languages. The equality forms a surprising counterpart to the famous
result MIP=NEXP by Babai, Fortnow and Lund and has consequences to long-
standing open problems in the foundations of quantum mechanics (Tsirelson’s
problem) and the theory of von Neumann algebras (Connes’ Embedding Problem).

In the talk we focused on the key step in the proof of MIP∗=RE, which is
the design of a “compression procedure” for multiprover interactive proofs with
favorable properties. For simplicity we focus on two-prover one-round games:
Definition. A two-player one-round game G is specified by a tuple (X,Y,A,B, µ,D)
where

(1) X and Y are finite sets (called the question alphabets),
(2) A and B are finite sets (called the answer alphabets),
(3) µ is a probability distribution overX×Y (called the question distribution),

and
(4) D : X × Y ×A×B → {0, 1} is a function (called the decision predicate).

Let C ⊆ [0, 1]X×Y×A×B. Then to any game G = (µ,D) we can associate a value
which is the largest achievable success probability when the provers’ strategy is
required to generate distributions that lie in C:

ω(G; C) = sup
p∈C

∑

x, y, a, b

µ(x, y)D(x, y, a, b) px,y,a,b .

When C is the set of quantum correlations, i.e. those of the form px,y,a,b = 〈ψ|Ax
a⊗

By
b |ψ〉 for a state |ψ〉 and POVM {Ax

a} and {By
b } we simply write ω(G) for the

associated value.
Say that a family of games (Gn)n≥1 has a succinct representation if there is

a polynomial-time computable map G : 1n 7→ Gn, where Gn is represented by a
pair of circuits for sampling from the distribution µn (given as input a uniformly
random string) and computing the predicate Dn (given as input strings x, y, a, b)
respectively.

Suppose that there is a polynomial-time computable function Compress that
given as input a succinct representation for a family of games (GN )N≥1 returns
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a succinct representation for a family of games (G′
n)n≥1 such that the following

conditions hold for all n ≥ 1 and N = 2n:

(1) If ω(GN ) = 1 then ω(G′
n) = 1;

(2) The smallest dimension of an entangled state sufficient to succeed in G′
n

with probability at least 1
2 is at least the maximum of N and the smallest

dimension of an entangled state sufficient to succeed in GN with probabil-
ity at least 1

2 .

In the talk we showed that, provided some additional technical conditions are
satisfied, the existence of such a compression procedure leads through an (effective)
fixed-point argument to a proof of the equality MIP∗=RE.We then briefly sketched
how the desired compression procedure could be designed by combining techniques
from the classical theory of probabilistically checkable proofs with arguments on
the rigidity of quantum entanglement, leading to methods for “compressing” the
communication in an interactive proof with quantum provers.

References
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RE. arXiv preprint arXiv:2001.04383, 2020.

Tensors in Quantum Information Theory and their Relation to
Algebraic Complexity

Matthias Christandl

(joint work with Peter Vrana and Jeroen Zuiddam)

The state of a system of several quantum particles is an element in the tensor
product of Hilbert spaces. In certain situations, the inner product requirement
can be relaxed. Quantum states then turn into tensors, and tools and intuition
from quantum information and algebraic complexity can connect.

Motivated by the complexity of matrix multiplication, Strassen introduced the
asymptotic restriction problem of tensors [1]. The problem is very natural also
from a quantum information theoretic point of view, and has led us to the con-
struction of a set of obstructions for asymptotic restriction, which we call the
quantum functionals [2].

We will call elements of Cd⊗Cd⊗Cd tensors. Given two tensors t and t′, we will
write t ≥ t′ if there are matrices a, b and c s.th. a⊗ b ⊗ ct = t′ and then say that
t restricts to t′. Note that the notion of restriction is invariant under enlarging
the spaces and also results in an equivalence relation. Special is the tensor t =
α⊗β⊗γ, which, when combined with the direct sum operations ⊕ (r times) allows
to construct the unit tensor 〈r〉 = ∑

i ei ⊗ ei ⊗ ei for a basis ei of Cr. One can
also combine tensors with the Kronecker product ⊗, an operation which naturally
leads to define asymptotic restriction t � t′ by t⊗n+o(n) ≥ t′⊗n. Interestingly,
the exponent of matrix multiplication equals two if and only if 〈4〉 � 〈2, 2, 2〉,
where 〈2, 2, 2〉 is the matrix multiplication tensor for multiplying 2-by-2 matrices.
Obstructions to asymptotic restriction therefore correspond to lower bounds on
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algorithms (e.g. for matrix multiplication). Strassen showed that indeed there
is a complete set of obstructions given by restriction-monotone, multiplicative,
additive and normalised functionals on the set of tensors, but how to find those?

Given a tensor t, we can flatten it to a matrix tA ∈ Cd⊗(Cd⊗Cd) and similarly
for the other two options of grouping two spaces. Since matrix rank has all the
required properties, rank tA is an obstruction in Strassen’s sense. In our work, we
construct a family of functionals, the quantum functionals Fθ(t) := 2Eθ(t), which
in a sense interpolate between the flattening ranks. They are defined for weights
θA ≥ 0, θB ≥ 0, θC ≥ 0

∑
i θi = 1 as

Eθ(t) := sup
t≥t′

(θAH(t′A) + θBH(t′B) + θBH(t′C)) ,

where H(tA) is the Shannon entropy of the singular values squared of tA/||t||2. In
quantum information language, H(tA) is the von Neumann entropy of the reduced
density matrix (of particle A) of the quantum state t/||t||2. Asymptotic restriction
can be cast into the form of a distributed compression tasks for independent and
identically prepared triples of quantum particles (the quantum analog of i.i.d.
random variables). The proof of multiplicativity of Fθ is the most crucial one and
uses a dual characterization of the moment polytope due to Brion for the action
of GL(d)×GL(d)×GL(d) on Cd ⊗ Cd ⊗ Cd.
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New bounds for the sunflower lemma, and connections to
complexity theory

Shachar Lovett

(joint work with Ryan Alweiss, Kewen Wu, Jiapeng Zhang)

1. Introduction

We start by defining the main object of interest for us: sunflowers.

Definition 1.1 (Sunflower). A collection of sets S1, . . . , Sr is called an r-sunflower
if all their pairwise intersections are the same. Namely, if

Si ∩ Sj = S1 ∩ · · · ∩ Sr ∀i 6= j.

We call K = S1 ∩ · · · ∩ Sr the kernel of the sunflower.

Erdős and Rado [3] proved that large enough set systems must contain a sun-
flower. It is noteworthy that Erdős and Rado originally called sunflowers ∆-
systems, but the term “sunflower” was coined by Deza and Frankl [2] and is now
more widely used. To describe the lemma we need some notation: a w-set system
is a family of sets, each of size at most w.
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Lemma 1.2 (Sunflower lemma [3]). Let r ≥ 3 and F be a w-set system of size
|F| ≥ w! · (r − 1)w. Then F contains an r-sunflower.

Erdős and Rado conjectured in the same paper that the bound in Lemma 1.2
can be drastically improved.

Conjecture 1.3 (Sunflower conjecture [3]). Let r ≥ 3. There exists c = c(r) such
that any w-set system F of size |F| ≥ cw contains an r-sunflower.

The bound in Lemma 1.2 is of the form ww(1+o(1)) where the o(1) term depends
on r. Despite nearly 60 years of research, the best known bounds were still of the
form ww(1−o(1)). In this work, we vastly improve the known bounds. We prove
that any w-set system of size (logw)w(1+o(1)) must contain a sunflower. More
precisely, we prove the following:

Theorem 1.4 (Main theorem, sunflowers). Let r ≥ 3. Any w-set system F of
size |F| ≥ (logw)w(1+o(1))rO(w) contains an r-sunflower.

This bound has since been strengthened; see the subsequent works subsection
for details.

1.1. Robust sunflowers. We consider a “robust” generalization of sunflowers,
the study of which was initiated by Rossman [13], who was motivated by questions
in complexity theory. Later, it was studied by Li, Lovett and Zhang [9] in the
context of the sunflower conjecture.

Given a finite set X , we denote by U(X, p) the p-biased distribution over X ;
namely, the distribution over subsets R ⊂ X , where each element x ∈ X is included
in R independently with probability p.

Definition 1.5 (Satisfying set system). Let 0 < α, β < 1. A set system F on X
is (α, β)-satisfying if

Pr
R∼U(X,α)

[∃S ∈ F , S ⊂ R] > 1− β.

The explanation for the name “satisfying” is that if the set system is interpreted
as a disjunctive normal form (DNF) formula, then this condition is that the formula
has more than a 1 − β probability of being satisfied on α-biased inputs; see [10].
We next use this to define robust sunflowers.

Definition 1.6 (Robust sunflower). Let 0 < α, β < 1, F be a set system, and let
K =

⋂
S∈F S be the common intersection of all sets in F . F is an (α, β)-robust

sunflower if (i) K /∈ F , and (ii) FK is (α, β)-satisfying. We call K the kernel.

As the name suggests, robust sunflowers indeed generalize sunflowers.

Lemma 1.7 ([10, Corollary 15]). Any (1/r, 1/r)-robust sunflower contains an
r-sunflower.

Theorem 1.4 follows directly from the following theorem, which shows that any
large enough set system must contain a robust sunflower.
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Theorem 1.8 (Main theorem, robust sunflowers). Let 0 < α, β < 1. Any w-set

system F of size |F| ≥ log(w)w(1+o(1)) (log(1/β)/α)
O(w)

contains an (α, β)-robust
sunflower.

1.2. Proof ideas. Given a set system F on X and a set T ⊂ X , the link of F at
T is

FT = {S \ T : S ∈ F , T ⊂ S}.
We next use links to define spread set systems.

Definition 1.9 (Spread set systems, [10]). We say that a w-set system F is κ-
spread if |F| ≥ κw and |FT | ≤ κ−|T ||F| for all non-empty T , where |FT | is the
size of the link at T .

Say F is a w-set system of size |F| ≥ κw on a ground set X . Then either F is
κ-spread, or there is a link FT of size |FT | ≥ κw−|T |. In the latter “structured”
case, we can simply pass to the link and apply induction, much like in the original
proof of Erdős and Rado [3].

Thus, it suffices to consider the “pseudorandom” case of w-set systems which
are κ-spread. In [9, 10], it was conjectured that for κ = (logw)O(1), any κ-spread
set system is also (1/3, 1/3)-satisfying. We show that in fact that is true for
κ = (logw)1+o(1) and that this value is tight, up to the o(1) term in the exponent.

We next outline how we obtain the bound on κ. We will prove that a κ-
spread w-set system is (α, β)-satisfying for appropriate κ,w, α, β through a series
of reductions.

Let F be a w-set system which is κ-spread. Sample W ∼ U(X, p) for some
p = O(1/ logw). We show that with high probability over the choice of W , for
almost all sets S ∈ F , there exists a set S′ ∈ F such that: (i) S′ \W ⊂ S \W ; and
(ii) |S′ \W | ≤ w′, for some w′ which we will take to be w(1− ε) for a small ε. We
throw out sets S that do not satisfy this property (which we call the bad sets for
W ), and replace any S that does with S′ \W (we call these the good sets for W ).
This yields a w′-set system F ′ which has almost as many sets as the original F ,
and therefore will have almost the same spreadness. We continue in this manner
O(logw) steps until we reach a set system of sizes of constant size, where we can
apply standard probabilistic techniques to finish the proof.

In the language of DNFs, the width reduction step is to take a random re-
striction of a pseudorandom DNF and approximate the result by a smaller width
DNF whose clauses come from removing some variables from clauses of the orig-
inal DNF. The main idea to prove it is to use an encoding argument, inspired
by Razborov’s proof of H̊astad’s switching lemma [6, 12]. We show that pairs
(W,S) for which S is bad forW can be efficiently encoded, crucially relying on the
spreadness condition. This allows to show that for a random W it is very unlikely
that there will be many bad sets.

1.3. Subsequent works. After the current work was made available on the
ArXiv, Rao [11] simplified the proof using information theoretic techniques. Fur-
thermore, following the initial release of this work, the technique developed in this
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paper has been used by Frankston, Kahn, Narayanan, and Park [4] to resolve a
conjecture of Talagrand in random graph theory. Rao then used their refinements
to further improve the bound in Theorem 1.8 to ((C/α) log(w/β))

w
and the bound

in Theorem 1.4 to (Cr log(wr))w. Bell, Chueluecha, and Warnke [1] observed that
a small modification of the argument improves the bound in Theorem 1.4 further
to (Cr log(w))

w
. Following Rao’s proof using information theory, two more proofs

using information theory were given (in blogs) by Tao [14] and by Hu [7].
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Noncommutative Property Testing

Henry Yuen

In the standard setting of property testing, a randomized algorithm (called a
tester) is given query access to a black box that responds with deterministic eval-
uations of an unknown function f : X → A. The goal of the the algorithm is to
determine whether the function f has some property P or is far from having it,
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where we measure the distance of f from P to be the minimum fraction of values
f(x) over x ∈ X that have to be changed in order for f to have property P .

Recall one of the most important topics in property testing: testing linear func-
tions. The famous Blum-Luby-Rubinfeld (BLR) test queries an unknown function
f : Fn

2 → F2 at x, y, and x + y for uniformly random x, y ∈ Fn
2 and checks if

f(x)+f(y) = f(x+y). Blum, Luby and Rubinfeld [1] showed that any function f
accepted by the BLR test with probability 1−ǫmust be O(ǫ)-close to a linear func-
tion (i.e. a function that satisfies the linearity condition f(x)+f(y) = f(x+y) for
all pairs (x, y)). Thus, the linearity property has strong local-to-global features:
approximately satisfying linearity locally is enough to constrain the function to
approximately satisfying linearity globally.

We consider generalizing the model of property testing to more general models of
black boxes that the tester may have access to. What if we consider probabilistic
boxes? That is, whenever the tester algorithm makes a query x ∈ X to the
box, there is some probabilistic process that generates an output a ∈ A; in the
most general scenario, these probabilistic processes don’t necessarily have to be
independent of the previous queries and outputs! Guided by physical principles,
we can imagine that a reasonable model would be a box whose internal processes
are described by quantum mechanics.

We formalize a model of quantum mechanical boxes via the notion of quantum
functions. A quantum function F with input set X and output set A is specified
by the following data:

(1) A dimension d ∈ N,
(2) For all x ∈ X , a set of measurements Ax, which itself is a set of positive

semidefinite d× d matrices {Aa|x}a∈A satisfying
∑

a∈AA
2
a|x = I.

Querying a quantum function F with sequence of queries (x1, . . . , xq) ∈ X q yields
a sequence of outputs (a1, . . . , aq) ∈ Aq with probability

p(a1, . . . , aq | x1, . . . , xq) = ‖Aa1|x1
· Aa2|x2

· · ·Aaq|xq
‖2τ

where ‖X‖τ =
√

1
dTr(XX

∗) denotes the normalized Frobenius norm of a matrix

X (with Tr(·) denoting the matrix trace and X∗ denoting the adjoint of X). We
call this function p the q’th moment of F . It is easy to verify that p(a1, . . . , aq |
x1, . . . , xq) is a valid probability distribution over Aq. This formula for pF is
motivated by quantum mechanics; it corresponds to the probability of sequentially
performing measurements Ax1 , Ax2 , . . . , Axq

on a certain quantum state known as
the maximally entangled state and obtaining outcomes (a1, a2, . . . , aq).

An important aspect of quantum functions is that the output probabilities
depend on the order of queries. This is because the measurement operators Aa|x

and Ab|y need not commute (i.e., in general Aa|xAb|y 6= Ab|yAa|x). When the
measurement operators all commute, then this model essentially reduces to the
classical setting. This is formalized by the following:

Theorem 1.1. Let F be a quantum function where all measurements commute.
Then there exists a finite set Λ, a probability distribution µ over Λ, and a set
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of (classical) functions {fλ : X → A}λ∈Λ such that for all q ∈ N, the q’th mo-
ment of F is distributed the same as first sampling λ ∼ µ, and then outputting
(fλ(x1), . . . , fλ(xq)).

In other words, querying a commutative quantum function F is essentially the
same as querying a classical box that first samples a function fλ from some distri-
bution, and then deterministically responds according to fλ.

Things get much more interesting when the measurements don’t commute. This
gives rise to noncommutative property testing, in which tester algorithms are given
query access to an arbitrary quantum function F , and the goal is to deduce whether
F satisfies some global property or is far from satisfying it. A number of ques-
tions immediately come to mind. What kinds of noncommutative properties are
there? How does one measure a quantum function’s distance to a noncommutative
property? What properties of quantum functions can be tested using few queries?

Let’s revisit linearity testing. Suppose we run the BLR test with a quantum
function F : Fn

2 → F2, where now we pay attention to the fact that the tester has
to specify an order to the queries. If the test passes with probability 1− ǫ, can we
deduce anything about the structure of F? The next theorem is shows that we
have guarantees analogous to that in the classical (i.e. deterministic) setting:

Theorem 1.2. Let F be a quantum function that passes the BLR test with prob-
ability 1 − ǫ. Then there exists a commuting quantum function G that passes the
BLR test with probability 1 and F is O(

√
ǫ)-close to G.

For lack of space we omit a precise definition of closeness between quantum
functions here; however it suffices to think of it as measuring how close the mea-
surement operators of the two quantum functions are. Keep in mind that the
quantum function F could have, a priori, extremely complicated measurements in
enormous dimension. However Theorem 1.2 shows that these measurements must
be close (in the appropriate sense) to being commutative, and thus the function
F must be close to being a convex combination of deterministic functions (by
Theorem 1.1).

Let’s turn to an example where noncommutative behavior is necessary. Con-
sider the following constraint satisfaction problem called the Magic Square CSP.
There are 9 variables u1, . . . , u9 ∈ {±1} arranged in a 3 × 3 grid. Each row of
variables must multiply to +1 and each column of variables must multiply to −1.
This is clearly an unsatisfiable CSP. Consider the following tester (called the Magic
Square test) that is given query access to a function f : [9] → {±1}. It chooses a
row or column of the grid at random, and then queries the function f at the corre-
sponding cells, and checks whether the corresponding constraint is satisfied. Since
the CSP is unsatisfiable, all functions f must fail with some positive probability.

On the other hand, there exists a quantum function F that passes the Magic
Square test with probability 1! By the foregoing discussion and Theorem 1.1, it
must be that F is noncommutative and in particular the dimension of F must be
greater than 1 (in fact, the minimum dimension of any quantum function F that
passes perfectly is 4). This is a rather remarkable conclusion; the dimension of a
quantum function F is not something that is directly accessible via queries.
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What about tests for larger dimensions? Are there tradeoffs between the di-
mension guarantee, the complexity of the test, and the test’s robustness? The
quantum complexity theory result MIP* = RE [3], viewed as a result about non-
commutative property testing, implies that there are no tradeoffs necessary:

Theorem 1.3 (Corollary of MIP* = RE). There exist finite sets X ,A and a test T
for quantum functions F : X → A such that (1) the test T makes only two queries
to F , (2) if a quantum function F is finite dimensional, then Pr[T accepts F ] ≤ 1

2 ,
(3) there exists a quantum function F such that

Pr[T accepts F ] = 1.

Clearly, the function F that is accepted by the test T with certainty must have
infinite dimension. Furthermore, by the guarantees of the test T , it cannot be
approximated arbitrarily well by finite-dimensional quantum functions; thus T is
a robust test for infinite-dimensionality. This also has surprising consequences for
pure mathematics; the existence of such an inapproximable infinite-dimensional
quantum function F directly gives a negative answer to something known as
Connes’ embedding problem, which was a long-standing question in the study
of von Neumann algebras [5].

At the heart of the construction of the test T from MIP* = RE is the analysis of
the low degree test with quantum functions. Low-degree testing is a generalization
of linearity testing where instead of checking that a function is linear, one checks
that local “sections” of the function are consistent with a low-degree polynomial [6].
Just as low-degree testing was one of the key drivers of the original proofs of the
PCP Theorem, it plays a similarly central role in the construction of the test
T [2, 4].

The MIP* = RE result, when formulated in this way, illustrates the depth and
richness of the noncommutative property testing framework. There are many in-
teresting questions and avenues to explore in this subject. For example, is there
a characterization of when a test forces a quantum function to be commutative?
What happens if we try to test graph properties with quantum functions? Beyond
testing dimension, can one design tests that force a quantum function’s measure-
ments to generate a specific algebra? Are there applications of noncommutative
property testing to algorithms, complexity theory, or cryptography?
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Approximate Counting & Sampling using HDX

Shayan Oveis Gharan

(joint work with Dorna Abdolazimi, Nima Anari, Kuikui Liu, Cynthia Vinzant)

Let U be a ground set of elements and n ≥ 1 be an integer. Given a weight
function w :

(
U
n

)
→ R≥0 we consider the following tasks:

• Sample a set S ∈
(
U
n

)
with probability proportional to w(S)

• Compute the “normalizing constant” of this distribution, namely∑
S∈(Un)

w(S).

It follows by a classic result of Jerrum, Valiant and Vazirani [9] that the above two
problems are equivalent for most interesting probability distributions and more
generally even the approximate versions of these problems are equivalent.

So, in this extended abstract we will mainly address the sampling problem.
Broder [4] in his influential paper proposed to design a Markov chain with sta-

tionary distribution πn(S) :=
w(S)∑

T∈(Un)
w(T ) and then bound the mixing time of the

chain. Recall that for a Markov chain with transition probability matrix P the
mixing time is

τmix = max
S∈(Un)

min{t :
∥∥P t(S, .)− πn

∥∥
1
≤ 1/4},

where P t(S, .) is the distribution of the chain started at S after t steps. In this
extended abstract we will study the following Markov chain to sample from πn:
Given a state S, first we delete a uniformly random element from S, say i and we
go to S − {i}. Then, from all the sets T that contain S − {i} we choose one with
probability proportional to πn(T ). In other words, consider a weighted bipartite

graph G = (
(
U
n

)
,
(

U
n−1

)
, E) where a set S ∈

(
U
n

)
is connected to T ∈

(
U

n−1

)
iff T ⊆ S

and the weight of that edge is equal to πn(S)
n . The aforementioned chain is the same

as running a simple random walk on this bipartite graph where from each vertex we
jump to a neighbor with probability proportional to the weight edge connecting to
the neighbor. Since the (weighted) degree of every vertex S ∈

(
U
n

)
is exactly πn(S),

the stationary distribution on the top vertices is exactly πn(.). See the following
diagram for an example. This walk is known as the down-up walk in the high-
dimensional expander language [10], the Glauber dynamics in statistical physics
and basis exchange walk in the matroid language. For a concerete example, let
G = (V,E) be a graph with n := |V | vertices that we want to uniformly randomly
color with q colors. We define U to be the set of all vertex-color pairs, (v, c),

v ∈ V, c ∈ [q]. A set S ∈
(
U
n

)
is in support if πn if it corresponds to a valid proper

color of G and πn is simply the uniform distribution over all such sets. In such a
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S = {1, . . . , n}

πn(S)
n

S − 1

πn(S)
n

S − 2

(
U
n

)

(
U

n−1

)
πn(S)

n

S − n

case the down-up walk corresponds to first choosing a u.r. vertex of G, v; then
“un-color” v. Finally, among all valid colors we can assign to v, choose one u.a.r.

Classical Techniques: Classically there are two well-known methods to study
mixing time of random walks.

Canonical Path Method: This method was proposed in the influential
work of Jerrum and Sinclair [7]. The high-level idea is to construct a
multi-commodity flow on the graph of the Markov chain between each
pair of states and then use the connection to the sparsest cut problem to
bound the spectral gap of the chain. This method is most famously used to
sample a uniformly random perfect matching from a bipartite graph [8].
Unfortunatley, most applications of this method is limited to problems
related to matchings.

Path Coupling: In this method, one would directly bound the mixing time
by designing a “Markovian coupling” between the distribution of the chain
and the stationary distribution. This method is widely used in theory but
often it does not give the optimal result.

Write P∨
n to denote the transition probability matrix of the down-up walk we

defined above. In this extended abstract we explain a new technique to analyze
the mixing time of these family of walks called the spectral independence.

Definition 1.1. Given a probability distribution πn on
(
U
n

)
, define a matrix Ψ ∈

RU×U where for any i, j ∈ U ,

Ψπn
(i, j) = PS∼πn

[j ∈ S|i ∈ S]− PS∼πn
[j ∈ S] .

We say πn is η-spectrally independent if λmax(Ψπn
) ≤ η. We say πn is η∗-spectrally

independent if for any sequence i1, . . . , in−2 ∈ U , (πn), (πn|i1), (πn|i1, i2), . . . ,
(πn|i1, . . . , in) are η-spectrally independent.

For example, suppose πn is a product distribution. In that case for any i, j ∈ U ,
P [j|i] = P [j]. Therefore, all off-diagonal entries of Ψπn

are zero; since the diagonal
entries are at most 1, πn is 1-spectrally independent. For another example, if πn is
a negatively correlated distribution, namely for any i, j ∈ U , P [j|i] ≤ P [j], then all
off-diagonal entries of Ψπn

are non-positive and their sum in every row is exactly
-1. It follows that πn is 2-spectrally independent. Lastly, for a bad example,
suppose there are only two sets in the support of πn; namely πn({1, . . . , n}) =
πn({n+1, . . . , 2n} = 1/2. In this case the distribution is very positively correlated
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(and in fact the down-up walk explained before is not even connected). It follows

that Ψπn
= 1

2

(
Jn −Jn
−Jn Jn

)
. So, πn is n-spectrally independent.

The following “local-to-global” theorem follows from a long line of works in
theory of high dimensional expanders and extensions to the field of analysis of
random walks:

Theorem 1.2 ([6, 11, 1, 2]). If πn is η∗ spectrally independent then the down-up
walk P∨

n has spectral gap at least 1
O(n1+η) and thus it mixes in polynomial time,

assuming η ≤ O(1).

In other words, the above theorem shows that even if πn is positively correlated,
but the positive correlations are “limited” then still the simple down-up walk
mixes rapidly. Building on the above theorem over the last couple of years it was
shown that a number of well-known probability distributions are indeed spectrally
independent; this has lead to the resolution of several long standing open problems
(see below).

Sampling Bases of Matroids: Given a matroid M of rank n, defined on
the ground set of elements U , let πn be the uniform distribution over the
bases of M . In [3] it was shown that such a distribution is 2-spectrally
independent therefore the down-up walk gives a fast algorithm to sample
bases of matroids. As a consequence this work gave the first efficient algo-
rithm to sample forests of a given graph or to sample from the “reliability
polynomial” of matroids.

Sampling from the Hard-core Distribution: Given a graph G = (V,E)
with n vertices, a set S ⊆ V is an independent set if there are no edges
of E connecting vertices of S. Define U to be the set of (v, in), (v, out) for
any v ∈ V . Given an “activity threshold” λ > 0, let πn be the distribution
over

(
U
n

)
where a set S ∈

(
U
n

)
is in the support of πn if every vertex is

either in or out and the set of in vertices form an independent set of G. In
such a case we define πn(S) = λ#in vertices. This probability distribution
is called the hard-core model and it is of utmost importance in statistical
physiscs to design efficient algorithm to sample from πn for the largest
possible value of λ. In sequence of works [2, 5] it was shown for the first
time that πn is η∗ independent from η ≤ O(1) when λ ≤ λ∗(∆), the tree
uniqueness threshold above which it is NP-hard to sample from πn. Here
∆ is the maximum degree of graph G.

Open Problem. It remains an open problem to relate the canonical path method
to the spectral independence technique. Such a result could have an abundance
of applications in the field of approximate counting and sampling most notably in
sampling perfect matchings in non-bipartite graphs.
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Locally Testable Codes with constant rate, distance, and locality

Irit Dinur

(joint work with Shai Evra, Ron Livne, Alexander Lubotzky, Shahar Mozes)

A locally testable code (LTC) is an error correcting code that has a property-tester.
The tester reads q bits (randomly - but not necessarily uniformly - chosen) from a
given word, and rejects words with probability proportional to their distance from
the code. The parameter q is called the locality of the tester.

A random error-correcting code has, with high probability, constant rate and
distance, but locality that is proportional to the length. This is true even for
random LDPC codes [7], and a priori the mere existence of codes with constant
locality is not obvious. The first LTCs appear implicitly in works on program
checking [8] and on probabilistically checkable proofs (PCPs) [4, 21, 5, 3, 1]. A
formal definition of an LTC appeared simultaneously in several places [5, 23, 15,
2] (see [18] for a detailed history). Spielman, in his PhD thesis [24], discusses
the possibility of having an error-correcting code that is locally testable (he uses
the term ‘checkable code’) and explains its potential applicability: “A checker
would be able to read only a constant number of bits of a received signal and then
estimate the chance that a decoder will be able to correct the errors, then the
checker can instantly request a retransmission of that block, before the decoder has
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wasted its time trying to decode the message. Unfortunately all known codes with
local-checkers have rate approaching zero.”

Goldreich and Sudan [19] initiated a systematic study of LTCs as objects of
interest in their own right. Over the years better and better LTCs were constructed
[22, 19, 11, 6, 9, 13, 20, 16], but, nevertheless, experts went back and forth on
whether “c3-LTCs” (namely, LTCs with constant rate, constant distance, and
constant locality) are likely to exist, compare [17] with [18, Section 3.3.2].

An outstanding open question has been whether there exist “c3-LTCs”, namely
LTCs with constant rate, constant distance, and constant locality. We construct
the first such family of LTCs,

Theorem. For all 0 < r < 1, there exist δ, κ > 0 and q ∈ N and a polynomial-time
construction of an infinite family of error-correcting codes {Cn} with rate r and
distance δ, such that for all n, Cn is κ-locally testable with q queries.

Namely, every code Cn comes with a randomized local tester that reads at most
q bits from a given word w and then accepts or rejects, such that

• For all w ∈ Cn, Pr[accept] = 1.
• For all w 6∈ Cn, Pr[reject] ≥ κ · dist(w,Cn).

We remark that [20, 16] have shown (see [16, Section 1.2]) how to take an LTC
with rate arbitrarily close to 1 and with constant distance, and construct a new
LTC with rate and distance approaching the Gilbert-Varshamov bound, and only
a constant overhead in the locality q. So the theorem above holds for all r, δ > 0
that satisfy r + h(δ) < 1 where h(·) is the binary entropy function.

Expander codes, one dimension up. The celebrated expander-codes of Sipser
and Spielman [25] are a family of error-correcting codes constructed from a single
base code C0 ⊆ Fd

2 and a family of d-regular expander graphs Gn = (Vn, En) such
that the code corresponding to Gn consists of functions on En such that for every
vertex in Vn, the local view from the neighboring edges (assuming some arbitrary
fixed ordering) is itself in the base code C0,

C =
{
f : En → F2

∣∣ ∀v ∈ Vn, f |edges(v) ∈ C0

}
.

Similarly, our codes will also be defined via a fixed base-code and an infinite family
of expander graphs. Our graphs will have, in addition to vertices and edges, also
two-dimensional faces, called squares, where each square touches four edges and
four vertices.

Our codewords are functions on the squares such that for every edge, the bits
on the neighboring squares form a codeword in the base code. It is natural to view
our code as a Tanner code [26] with bits on the squares and constraints on the
edges; whereas the expander-codes have bits on the edges and constraints on the
vertices.

Inspecting our code on the set of squares neighboring a fixed vertex, we see an
intermediate code, whose constraints come from the edges neighboring that vertex.

We thus have three codes for the three dimensions of links: the base code C1

at the link of an edge, the intermediate code C0 at the link of a vertex, and the
global code C at the link of the empty face which is the set of all squares.
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Left-Right Cayley Complex. Let us describe our construction of a graph-with-
squares, namely a square complex. Let G be a finite group with two sets of
generators A,B. We define the left-right Cayley complex X = Cay2(A,G,B) as
follows

• The vertices are X(0) = G.
• The edges are X(1) = XA(1) ⊔XB(1) where

XA(1) = {{g, ag} | g ∈ G, a ∈ A} , XB(1) = {{g, gb} | g ∈ G, b ∈ B} .
The fact that with A we multiply on the left, and with B we multiply on the right,
gives a local commutativity which generates many four-cycles, namely, squares.
Indeed for every a, g, b the graph has a cycle of length 4 with alternating A and
B edges, given by the walk g, gb, agb, ag, g. We place a square for each of these
four-cycles.

• The squares are a set of the following four-cycles in the graph,

X(2) = {(g, gb, agb, ag, g) | g ∈ G, a ∈ A, b ∈ B} .
We denote by [a, g, b] the square containing the edges {g, ag} and {g, gb}.
By changing the ‘root’ of the square we get [a, g, b] = [a−1, ag, b] =
[a−1, ab, b−1] = [a, gb, b−1].

The Code. Fix a left-right Cayley complex X = Cay2(A,G,B), and fix a pair of
base codes CA ⊆ FA

2 and CB ⊆ FB
2 (assuming |A| = |B| = d we can take both to

be isomorphic to some C1 ⊆ Fd
2). Our code is defined to be

C[A,G,B,CA, CB ] =

{f : X(2)→ F2 | ∀a, g, b, f([·, g, b]) ∈ CA, and f([a, g, ·]) ∈ CB} .
Observe that for a codeword f ∈ C and a fixed vertex g ∈ G, the restriction of

f to the squares touching g is f([·, g, ·]). It is not difficult to check that this word
necessarily belongs to the tensor code CA ⊗CB. Thus, by putting the constraints
around each edge, we get an intermediate code on the squares touching a vertex,
which turns out to be a tensor code! Tensor codes have non-trivial dependencies
among the constraints defining them. This often implies local testability of tensor
codes [10, 14, 12], and turns out important for showing that our code can be locally
tested by the following simple test:

Local test: Choose a random vertex g, and accept iff f([·, g, ·]) ∈ CA ⊗ CB.

Analysis. The lower bound on the rate and distance of our codes is proven similarly
to the case of expander codes. Local testability is also shown via expansion of
the underlying complex. We show that if a received word violates only a small
amount of constraints, then locally it can be corrected, as long as the intermediate
code CA ⊗ CB is itself robustly locally testable. We describe an iterative decoding
algorithm and prove that it converges thanks to sufficient expansion of certain
edge-to-edge random walks on our square complex. Conceptually, local local-
testability (of the intermediate code CA ⊗CB), implies global local-testability (of
the entire code), through expansion.
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Recent Advances on Foundations of Indistinguishability Obfuscation

Huijia Lin

(joint work with Aayush Jain, Amit Sahai)

Indistinguishability obfuscation (iO) for general programs computable in poly-
nomial time [9] enables us to hide all implementation-specific details about any
program while preserving its functionality. iO is a fundamental and powerful
primitive, with a plethora of applications in cryptography and beyond. It is hence
extremely important to investigate how to build iO, based on as minimal assump-
tions as possible, and via as simple constructions as possible. Advances on under-
standing what assumptions imply iO and simplification of iO constructions have
immediate implications on the rest of cryptography through the many applications
of iO.

The mathematical formalization of iO is as follows:

Definition 1.1 (Indistinguishability Obfuscator (iO) for Circuits [9]). A proba-
bilistic polynomial-time algorithm iO is called a secure indistinguishability obfus-
cator for polynomial-sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n,
every input x ∈ {0, 1}n, we have that

Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1 .

• Indistinguishability: For every two ensembles {C0,λ}λ∈Z+ and
{C1,λ}λ∈Z+ of polynomial-sized circuits that have the same size, input
length, and output length, and are functionally equivalent, that is, ∀λ ∈
Z+, C0,λ(x) = C1,λ(x) for every input x, the distributions iO(1λ, C0,λ) and
iO(1λ, C1,λ) are computationally indistinguishable: that is, for every effi-
cient polynomial-time algorithm D, for every constant c > 0, there exists
a constant λ0 ∈ Z

+, such that for all λ > λ0, we have:
∣∣∣Pr

[
D(iO(1λ, C0,λ) = 1

]
− Pr

[
D(iO(1λ, C1,λ) = 1

] ∣∣∣ ≤ 1

λc

So far, through the accumulation of extensive research by a large community
since the first mathematical candidate iO proposal by [20] (see the survey in [21]
and references therein), We recently gave the first construction of iO [29] based
on four well-studied assumptions: Learning With Errors (LWE) [34], Decisional
Linear assumption (DLIN) [8] over bilinear groups, Learning Parity with Noise over

Fp [27], and Pseudo-Random Generators in NC
0 [23]. More recently, we further

improved the construction by removing the reliance on LWE [28], obtaining the
following theorem:
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Theorem 1.2 (Informal). Assume sub-exponential security of the following as-
sumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields
Fp with polynomially many LPN samples and error rate 1/kδ, where k is
the dimension of the LPN secret, and δ > 0 is any constant;
• the existence of a Boolean Pseudo-Random Generator (PRG) in NC

0 with
stretch n1+τ , where n is the length of the PRG seed, and τ > 0 is any
constant;
• the Decision Linear (DLIN) assumption on symmetric bilinear groups of
prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-
size circuits exists. Assuming only polynomial security of the assumptions above
yields polynomially secure functional encryption for all polynomial-size circuits.

We now describe each of the assumptions we need in more detail and briefly
survey their history.

The DLIN Assumption: The Decisional Linear assumption (DLIN) is stated as
follows: For an appropriate λ-bit prime p, two groupsG and GT are chosen of order
p such that there exists an efficiently computable nontrivial symmetric bilinear
map e : G×G→ GT . A canonical generator g for G is also computed. Following
the tradition of cryptography, we describe the groups above using multiplicative
notation, even though they are cyclic. The DLIN assumption requires that the
following computational indistinguishability holds:

{(
gx, gy, gxr, gys, gr+s

)
| x, y, r, s← Zp

}

≈c {(gx, gy, gxr, gys, gz) | x, y, r, s, z ← Zp}
This assumption was first introduced in the 2004 work of Boneh, Boyen, and

Shacham [13], and instantiated using appropriate elliptic curves. Since then DLIN

and assumptions implied by DLIN have seen extensive use in a wide variety of ap-
plications throughout cryptography, such as Identity-Based Encryption, Attribute-
Based Encryption, Functional Encryption for degree 2 polynomials, Non-Interac-
tive Zero Knowledge, etc. (See, e.g. [24, 16, 33, 10]).

The existence of PRGs in NC
0: The assumption of the existence of a Boolean

Pseudo-Random Generator PRG in NC
0 states that there exists a Boolean function

G : {0, 1}n → {0, 1}m where m = n1+τ for some constant τ > 0, and where each
output bit computed by G depends on a constant number of input bits, such that
the following computational indistinguishability holds:

{G(σ) | σ ← {0, 1}n} ≈c {y | y ← {0, 1}m}
Pseudorandom generators are a fundamental primitive in their own right, and

have vast applications throughout cryptography. PRGs in NC
0 are tightly con-

nected to the fundamental topic of Constraint Satisfaction Problems (CSPs) in
complexity theory, and were first proposed for cryptographic use by Goldreich [23,
19, 25] 20 years ago. The complexity theory and cryptography communities have
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jointly developed a rich body of literature on the cryptanalysis and theory of
constant-locality Boolean PRGs [23, 19, 31, 17, 4, 5, 12, 2, 32, 7, 30, 18, 6].

LPN over large fields: The Learning Parity with Noise LPN assumption over
finite fields Zp is a decoding problem. The standard LPN assumption with re-
spect to subexponential-size modulus p, dimension ℓ, sample complexity n, and a
noise rate r = 1/ℓδ for some δ ∈ (0, 1), states that the following computational
indistinguishability holds:

{A, s ·A+ e mod p | A← Zℓ×n
p , s← Z1×ℓ

p , e← D1×n
r }

≈c {A,u | A← Zℓ×n
p , u← Z1×n

p }.

Above e ← Dr is a generalized Bernoulli distribution, i.e. e is sampled randomly
from Zp with probability 1/ℓδ and set to be 0 with probability 1− 1/ℓδ. We
consider polynomial sample complexity n(ℓ), and the modulus p is an arbitrary
subexponential function in ℓ.

The origins of the LPN assumption date all the way back to the 1950s: the works
of Gilbert [22] and Varshamov [36] showed that random linear codes possessed
remarkably strong minimum distance properties. However, since then, very little
progress has been made in efficiently decoding random linear codes under random
errors. The LPN over fields assumption above formalizes this, and was introduced
over Z2 for cryptographic uses in 1994 [11], and formally defined for general finite
fields and parameters in 2009 [26], under the name “Assumption 2”.

While in [26], the assumption was used when the error rate was assumed to be
a constant, in fact, polynomially low error (in fact δ = 1/2) has an even longer
history in the LPN literature: it was used by Alekhnovitch in 2003 [1] to construct
public-key encryption with the field Z2, and used to build public-key encryption
overZp in 2015 [3]. The exact parameter settings that we describe above, with both
general fields and inverse polynomial error rate corresponding to an arbitrarily
small constant δ > 0 was explicitly posed by [15], in the context of building
efficient secure two-party and multi-party protocols for arithmetic computations.

A comprehensive review of known attacks on LPN over large fields, for the
parameter settings we are interested in, was given in [15, 14]. For our parameter

setting, the running time of all known attacks is Ω(2ℓ
1−δ

), for any choice of the
constant δ ∈ (0, 1) and for any polynomial number of samples n(ℓ).

Lattice v.s. (pairing + LPN over Fp + PRG in NC
0). An immediate conse-

quence of our theorem is that the combination of bilinear pairing, LPN over Fp, and
constant-locality PRG is sufficient for building all the primitives that are implied
by iO or Functional Encryption (FE) (and other assumptions that are implied by
one of the three assumptions). This, somewhat surprisingly, includes Fully Homo-
morphic Encryption (FHE) that support homomorphic evaluation of (unbounded)
polynomial-size circuits, as well as Attribute Based Encryption (ABE) that sup-
port policies represented by (unbounded) polynomial-size circuits. To this day, the
only known constructions of FHE and ABE for circuits are based on the hardness
of lattice-type problems – either directly from problems like LWE or Ring LWE,



Complexity Theory 2985

or slightly indirectly via problems such as the approximate GCD problem [35].
Our work hence yields the first alternative pathways towards these remarkable
primitives.
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Recent progress on derandomizing space-bounded computation

William Hoza

It is a long-standing open problem to prove that L = BPL, i.e., randomness is
unnecessary for space-efficient computation. Over the past several decades, there
has been a steady stream of exciting developments on this problem, and there is a
feeling that perhaps it will be easier to resolve than P vs. BPP and other major
problems in complexity theory. In this talk, we survey the developments of the
past few years. We organize our discussion around four recurring themes.

Theme 1: Iterated pseudorandom restrictions. To prove L = BPL, it
would suffice to design an explicit pseudorandom generator (PRG) with seed length
O(log n) that fools polynomial-width read-once branching programs (ROBPs) that
read the input variables in order (first x1, then x2, etc.) The best explicit PRG
known for this model, by Nisan, has seed length O(log2 n) [1]. In the past decade, a
line of work has studied the more general model of arbitrary-order ROBPs, mean-
ing that the variables are arbitrarily permuted. Forbes and Kelley gave a PRG for
arbitrary-order ROBPs where the seed length is O(log3 n) in the polynomial-width

case and Õ(log2 n) in the constant-width case [2].
The Forbes-Kelley PRG is based on Ajtai and Wigderson’s paradigm of iterated

pseudorandom restrictions [3]. Forbes and Kelley showed how to sample a pseu-
dorandom restriction X ∈ {0, 1, ⋆}n such that for every arbitrary-order ROBP f ,

we have E[f |X(Un)] ≈ E[f ]. For constant-width programs, X costs only Õ(logn)
truly random bits and assigns values to roughly half the input variables. From
here, our remaining job is to fool the restricted function f |X , so we can iterate the
process, assigning values to more and more input variables.

For some subclasses of ROBPs, one can improve the seed length using an early
termination approach introduced by Gopalan, Meka, Reingold, Trevisan, and Vad-
han [4]. The idea is to show that f simplifies after a few pseudorandom restric-
tions, which makes it easier to assign values to the remaining variables. Doron,
Meka, Reingold, Tal, and Vadhan used this approach to design a near-optimal
PRG for constant-width monotone ROBPs [5] (i.e., each transition is monotone
as a function of the state). Such programs can compute read-once AC0 and more.

Theme 2: The inverse Laplacian perspective. Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan recently introduced an intriguing new
viewpoint on L vs. BPL [6]. Let f be a given width-w length-n ROBP, and let
N = w · (n + 1). We would like to compute the matrix P ∈ RN×N consisting of
the expectations of all subprograms fu→v. We can start by computing the ran-
dom walk matrix W ∈ RN×N . One can show P = W 0 +W 1 + · · · +Wn, which
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simplifies to P = L−1, where L = I −W . Thus, to simulate BPL, it suffices to
approximately invert the “Laplacian matrix” L.

One benefit of this perspective is that it suggests a new way of thinking about

error. Given a candidate approximation P̂ to P , instead of measuring the error

by looking at P − P̂ , we can define the alternative error matrix E = I − P̂L.
One can show that E is the matrix of “local consistency errors,” meaning that

we compare each entry P̂u,v with the value one would expect based on the entries

P̂u,s for edges (s, v) leading into v. Cheng and Hoza used the concept of local
consistency errors to show that optimal hitting set generators (HSGs) for ROBPs
would imply L = BPL, not just L = RL [7].

Theme 3: Error reduction. Preconditioned Richardson iteration is a method
of converting a moderate-error matrix inverse into a low-error matrix inverse. Let
f be a given width-n length-n ROBP, and assume that we can deterministically
compute E[f ]±1/poly(n) in space S(n). Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan showed that preconditioned Richardson iteration can be used
in this setting, and consequently, for any ε > 0, we can deterministically compute
E[f ]± ε in space O(S(n) + logn · log logn(1/ε)) [6].

Error reduction has also been explored in black-box settings. A few years ago,
Braverman, Cohen, and Garg introduced the notion of a weighted PRG (WPRG,
aka pseudorandom pseudodistribution generator) [8], which is a pair (G, ρ), where
G : {0, 1}s → {0, 1}n and ρ : {0, 1}s → R, such that for every function f that we
are interested in, we have |Ex[f(G(x)) · ρ(x)] − E[f ]| ≤ ε. Braverman, Cohen,
and Garg constructed a WPRG for ROBPs with a better dependence on ε [8]
compared to Nisan’s PRG [1]. Several follow-up works gave improved constructions
[9, 10, 11, 12], and now we have explicit WPRGs for polynomial-width ROBPs

with seed length O(log2 n+log(1/ε)) [12]. The WPRG construction comes from an
error reduction procedure that is once again based on preconditioned Richardson
iteration. The insight that preconditioned Richardson iteration can be adapted to
the WPRG setting is due to Cohen, Doron, Renard, Sberlo, and Ta-Shma [10] and,
independently, Pyne and Vadhan [11]. Hoza recently showed that as a consequence
of this line of work, we have BPSPACE(S) ⊆ DSPACE(S3/2/

√
logS) [12], a

slight improvement over Saks and Zhou’s O(S3/2) bound [13].

Theme 4: Expander graphs. Let u and v be vertices in a directed graph G,
and let k ∈ N. To simulate BPL, it suffices to estimate the probability that a
length-k random walk from u ends at v, given (G, u, v, k). Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford, and Vadhan gave a deterministic near-logarithmic-
space algorithm for the special case that G is undirected or Eulerian [6]. Their
algorithm uses the derandomized square operation of Rozenman and Vadhan [14],
along with the inverse Laplacian perspective, error reduction techniques, and other
tools. The derandomized square of a graph G sparsifies G2 using expander graphs.

The derandomized square operation is closely related to the classic Impagliazzo-
Nisan-Wigderson (INW) PRG [15]. In the past decade, a line of work has used
the INW generator and other tools to design improved generators for so-called
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regular and permutation ROBPs. Pyne and Vadhan recently designed a WPRG
for permutation ROBPs that beats Nisan’s seed length in essentially all parameter
regimes [11], and meanwhile, for regular ROBPs with a single accept vertex, Bog-
danov, Hoza, Prakriya, and Pyne designed HSGs that beat Nisan’s seed length in
all parameter regimes except logw = Θ(log(1/ε)) = Ω(logn) [16].

Permutation ROBPs can be considered a kind of “opposite” to monotone
ROBPs. Meka, Reingold, and Tal managed to combine iterated restrictions (which
work well for monotone ROBPs) with the INW generator (which works well for

permutation ROBPs) to fool width-3 ROBPs with seed length Õ(logn) [17]. How
far these techniques can be extended remains to be seen.
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Panteleev–Kalachev codes

Ryan O’Donnell

In this talk I outlined the very recent (November 2021) work of Pavel Panteleev and
Gleb Kalachev [1], which achieved two breakthroughs on longstanding problems
in the theory of error-correcting codes:

• Asymptotically good quantum LDPC codes, meaning CSS codes of con-
stant relative distance, constant rate, and constant locality of checks.
• Asymptotically good locally testable (classical) codes, meaning classical
codes with the above properties, as well as the following local testability
condition: given any received word x, the fraction of parity checks (from
the low-density parity check matrix) that x violates is at least a constant
fraction of x’s relative distance from the code.

The second breakthrough here, asymptotically good LTCs, was independently
obtained by Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar
Mozes [2], with a similar construction and one slightly better parameter (rate
arbitrarily close to 1, whereas the Panteleev–Kalachev classical LTCs have rate
only arbitrarily close to 1/2).

To briefly recap the prior status of these important problems:

• In 1997, Kitaev introduced the toric quantum LDPC code, which has
distance Θ(

√
n) and dimension 2 (i.e., rate 2/n). A code with distance

Θ(
√
n) and dimension Θ(n) was given by Tillich and Zémor in 2009, but

as late as 2020 the largest known distance was only
√
npolylogn. In 2020,

Panteleev and Kalachev themselves gave quantum LDPC codes of distance
Θ(n1−ǫ/2/ logn) and dimension Θ(nǫ logn) (for any 0 ≤ ε < 1), but even
after this result, achieving constant relative distance and rate would still
be considered remarkable.
• Classical LTCs were defined at least 15 years ago, and have tended to
go hand in hand with constructions of probabilistically checkable proofs
(PCPs). The best known LTCs prior to this work, constructed by Ben-
Sasson–Sudan and Dinur around 2007, were LDPC codes with constant
relative distance but dimension only Θ(n/polylogn). Expert speculation
on whether asymptotically good LTCs even exist was mixed.

The Panteleev–Kalachev paper [1] that was presented achieves the new asymp-
totically good quantum LDPC codes, and asymptotically good classical LTCs, via
essentially the same construction. Roughly speaking, the construction is a pair
of Tanner codes with several additional properties: first, the incidence structure
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of the checks and bits can be thought of as a 2-dimensional chain complex, with
“vertices”, “edges”, and “squares”; second, this incidence structure is based on
the a kind of product of an expanding Cayley graph with itself; third, the “small
codes” used in the Tanner construction must have certain properties resembling
robustness of tensor product codes. At a high level, these features are also all
present in the [2] paper, though in the [1] paper the quantum code construction
needs to be “very symmetric” between the checks imposed by squares on edges
and the checks imposed by vertices on edges.

Major obvious open questions that remain are to construct asymptotically good,
locally testable quantum LDPC codes, and to construct PCPs of linear rate.
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Thresholds for Random Subspaces, aka LDPC Codes Achieve
List-Decoding Capacity

Mary Wootters

(joint work with Jonathan Mosheiff, Noga Ron-Zewi, Nicolas Resch,
Shashwat Silas)

1. Introduction

What combinatorial properties are likely to be satisfied by a random linear sub-
space C of dimension k over a finite field Fq? For example, is it likely that not
too many points of C lie in any Hamming ball of fixed radius? What about any
combinatorial rectangle of fixed side length? In this work, we give a simple charac-
terization of the threshold on k/n below which this is very likely and above which
this is very unlikely.

Our motivation comes from error correcting codes. In coding theoretic language,
a random linear subspace C of dimension k in Fn

q is a random linear code of
rate R = k/n. Our characterization can be used to transfer results about what
properties are likely to be satisfied by C to analogous results about much more
structured random ensembles of codes. In this work, our motivation is random
Low Density Parity-Check (LDPC) codes, more precisely, Gallager’s ensemble [1].
We use our characterization to show that these codes are list-decodable up to
list-decoding capacity.
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2. Local Properties

Let C ⊆ Fn
q be a linear code. We consider the class of local properties of such

codes. Informally, a local property is one that is defined by the exclusion of a
coordinate-permutation-invariant family of constant-sized “bad” sets. That is, let
B ⊆ 2F

n
q be a collection of subsets of Fn

q . Suppose that B is invariant under
coordinate permutations, in the sense that if B ∈ B, then {π(b) : b ∈ B} ∈ B for
any coordinate permutation π ∈ Sn. Moreover, suppose that |B| ≤ ℓ for all B ∈ B,
for some parameter ℓ (that is independent of n). We say that a subspace C ⊆ Fn

q

satisfies the property PB if there is no B ∈ B so that B ⊂ C. The property PB is
called an ℓ-local property.

Some ℓ-local properties of note in coding theory include:

• Distance: A code C has distance at least d if any pair of distinct codewords
c, c′ ∈ C have ∆(c, c′) ≥ d, where ∆ denotes Hamming distance.
• List-Decoding: A code C is (p, L)-list-decodable if for any z ∈ Fn

q , the
number of codewords c ∈ C so that ∆(z, c) ≤ pn is strictly less than L.
• List-Recovery: A code C is (ℓ, L)-(zero-error)-list-recoverable if for any
S1, . . . , Sn ⊂ Fq of size ℓ, the number of codewords c ∈ C so that ci ∈ Si

for all i ∈ [n] is strictly less than L.

3. Characterization of Threshold

Let PB be a local property. Our main result is a simple characterization (in terms
of B) of a threshold R∗ so that for any ǫ > 0:

• If R < R∗ − ǫ, then with probability 1 − o(1), a random linear code C of
rate R satisfies PB.
• If R > R∗ + ǫ, then with probability 1 − o(1), a random linear code C of
rate R does not satisfy PB.

Our characterization is easiest to understand in the case when B consists of a single
orbit under coordinate permuation. Let B ∈ B, and suppose that B is generated
by all coordinate permutations of B.

Let RE(B) be the rate at which the expected number of bad sets is contained
in a random subspace of dimension RE(B). Call this the expectation threshold for
B. This quantity is easy to compute in terms of the size of B, using linearity of
expectation.

It would be quite nice if R∗(B) = RE(B). Unfortunately, while we always have

RE(B) ≤ R∗(B),
(this follows from Markov’s inequality), there are simple examples that show that
they are not always equal. However, we show that it is almost the case. More
precisely, consider a class B′ obtained by a linear projection of B. That is, B′ is
the class generated by coordinate permutations of {Ab : b ∈ B} for some matrix

A ∈ Fℓ′×ℓ for some ℓ′ < ℓ. It is not hard to see that

RE(B′) ≤ R∗(B′) ≤ R∗(B).
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It turns out that this lower bound is tight, at least for some A. Our main theorem
says that

R∗(B) = max
A

RE(AB),

where AB represents the projection B′ of B under A as discussed above.
When B is comprised of multiple orbits under coordinate permutation, a similar

characterization holds; one simply takes the minimum over all of the orbits.

4. Applications to LDPC Codes

The formulation above can be used to transfer any (positive) results that hold for
random linear codes to random LDPC codes in a black-box way. The idea is as
follows.

Let C′ be a random code according to some other random ensemble; in our
case, a random LDPC code according to Gallager’s ensemble. Let C be a random
linear code of approximately the same rate as C′. Since the above characterizion
only relies on first-moment computations (that is, the computation of RE), if C′

shares first-moment properties with C (that is, if the probability that a fixed bad
set B is contained in C or C′ is roughly the same), then C′ should satisfy PB with
high probability if C does.

It turns out that this can be made precise, and in fact applies to random LDPC
codes. This implies that Gallager’s ensemble of LDPC codes are list-decodable
to capacity, following a long line of work that established this for random linear
codes.

5. Open Questions

Our main open question is to find other applications of this characterization; a
few have already been found [3, 2]. A second open question, about LDPC codes in
particular, is whether we can efficiently achieve list-decoding capacity for LDPC
codes, as the result described above is combinatorial.
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Connecting Meta-Complexity and Crypto

Rahul Santhanam

“Meta-complexity” refers to the computational complexity of problems that are
themselves about complexity, eg., the Minimum Circuit Size Problem MCSP and
the problem Kpoly of computing the polynomial-time bounded Kolmogorov com-
plexity of a string. Meta-complexity is central to many areas of theoretical com-
puter science, including circuit complexity, proof complexity, pseudorandomness,
average-case complexity, cryptography and learning.

In this plenary talk, I gave a brief overview of recent work on meta-complexity,
with an emphasis on characterizations of one-way functions by average-case hard-
ness of various meta-complexity problems [2, 4, 3, 1], including MCSP, Kpoly and
the (uncomputable) problem of computing Kolmogorov complexity.

The relevant characterizations are:

(1) The breakthrough in [2] where the first characterization of one-way func-
tions by average-case hardness of a natural problem is given. They show
that one-way functions exist if and only if Kpoly is mildly hard on average
over the uniform distribution.

(2) The surprising phenomenon uncovered by [2] and [4], where one-way func-
tions can be characterized by the (bounded-error) average-case hardness
of a meta-computational problem, namely the problem of computing the
Levin time-bounded Kolmogorov complexity of a string, that is complete
for exponential time. As shown in [2], the zero-error average-case hard-
ness of this problem is equivalent to the worst-case hardness of exponential
time with respect to probabilistic poly-time algorithms.

(3) The characterization in [4] of parallel cryptography (i.e., one way functions
computable in NC1) by the average-case hardness of the KT problem over
the uniform distribution..

(4) The characterization in [1] of one-way functions by average-case hardness
over any samplable distribution of a gap version of the problem of comput-
ing Kolmogorov complexity, and also by average-case hardness over any
locally samplable distribution of a gap version of MCSP.
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Other Informal Talks

Testing thresholds for geometric random graphs

Tselil Schramm

(joint work with Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang)

In the geometric random graph model G(d, n, p), we sample an n-vertex graph by
choosing n vectors uniformly at random from the sphere Sd−1 in d dimensions, and
then connecting pairs of points corresponding to vectors vi, vj which are sufficiently
close, satisfying 〈vi, vj〉 ≥ τ(p) for τ(p) chosen so that the marginal probability of
each edge is p. Though this model is well-studied in low-dimensions (where d is held
fixed while n→∞), the high-dimensional case, in which d→∞ as a function of n,
has received relatively little attention. In this talk, we address the following basic
question: for which dimensions d is a graph G sampled from G(d, n, p) recognizable
as a geometric random graph, and for which d is it indistinguishable from a graph
from the distribution G(n, p) in which each edge is sampled independently? We
show that when the average degree is constant, the total variation distance between
G(n, p) and G(d, n, p) goes to zero when d = Ω(polylog(n)), resolving a conjecture
of Bubeck, Ding, Eldan, and Rácz [1] up to logarithmic factors.

Generalizing Strassen’s 3n/2 border rank lower bound

Pascal Koiran

I gave a proof sketch of Strassen’s 3n/2 border rank lower bound, and suggested
some directions for possible generalizations. One compelling reason to look again
at Strassen’s proof is that it is not a “rank method.” It is therefore not subject
to the barrier results obtained by Efremenko, Garg, Oliveira and Wigderson [2]
(these barrier results show that one cannot obtain superlinear lower bounds on
the rank of order 3 tensors using rank methods).

Quantum linearity and low-degree tests

Thomas Vidick

(joint work with Zhengfeng Ji, Anand Natarajan, John Wright, and Henry Yuen)

I first described the soundness analysis of the BLR linearity test when executed
with quantum provers. I then explained the construction of the quantum linearity
test, which combines two executions of the BLR linearity test, in two conjugate
bases, with the Magic Square game to check that the bases used by the provers
are indeed conjugate. I stated the main theorem on soundness of this test, which
informally guarantees that successful provers must reply to the verifier’s queries
according to a (near-)uniform distribution over linear functions. We briefly dis-
cussed improvements provided by the quantum low-degree test. [3]
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Algorithms for Fermionic Hamiltonians

Ryan O’Donnell

(joint work with Matthew B. Hastings)

Perhaps the most fundamental problem in computational quantum chemistry is
the following matrix analogue of the weighted 4XOR CSP: Compute (or approx-
imate) the maximum eigenvalue of h =

∑
S=(j1<j2<j3<j4) aSXj1Xj2Xj3Xj4 over

all assignments of D × D matrices to X1, ..., Xn that satisfy Xj∗ = Xj , X
2
j = 1

(the identity matrix), and XjXk = −XkXj (for all distinct Xj and Xk). The
average-case version of this problem, where the aS ’s are independent Gaussian
random variables with variance 1/

(
n
4

)
, is known as the SYK Model. Physicists

conjecture that the optimum value for SYK is Θ(sqrt(n)) with high probability,
and we verify this via efficient algorithms: we show that degree-6 SOS certifies
that the optimum is O(sqrt(n)), and we give an efficient quantum algorithm that
finds a state certifying that the optimum is Ω(sqrt(n)). [4]

Circuits Resilient to Short-Circuit Errors

Yael Kalai

(joint work with Klim Efremenko, Bernhard Haeupler, Pritish Kamath, Gillat
Kol, Nicolas Resch, and Raghuvansh Saxena)

Given a Boolean circuit C, we wish to convert it to a circuit C′ that computes the
same function as C even if some of its gates suffer from adversarial short circuit
errors, i.e., their output is replaced by the value of one of their inputs [5]. Can we
design such a resilient circuit C′ whose size is roughly comparable to that of C?
Prior work gave a positive answer for the special case where C is a formula.

We study the general case and show that any Boolean circuit C of size s can be
converted to a new circuit C′ of quasi-polynomial size sO(log s) that computes the
same function as C even if a 1/51 fraction of the gates on any root-to-leaf path in
C′ are short circuited. Moreover, if the original circuit C is a formula, the resilient
circuit C′ is of near-linear size s1+ǫ. The construction of our resilient circuits
utilizes the connection between circuits and DAG-like communication protocols
[Raz95, Pud10, Sok17], originally introduced in the context of proof complexity.

On the Complexity of Evaluating Highest Weight Vectors

Markus Bläser

(joint work with Julian Dörfler, and Christian Ikenmeyer)

Geometric complexity theory (GCT) is an approach towards separating algebraic
complexity classes through algebraic geometry and representation theory. Origi-
nally Mulmuley and Sohoni proposed (SIAM J Comput 2001, 2008) to use occur-
rence obstructions to prove Valiant’s determinant vs permanent conjecture, but
recently Bürgisser, Ikenmeyer, and Panova (Journal of the AMS 2019) proved this



Complexity Theory 2997

impossible. However, fundamental theorems of algebraic geometry and represen-
tation theory grant that every lower bound in GCT can be proved by the use
of so-called highest weight vectors (HWVs). In the setting of interest in GCT
(namely in the setting of polynomials) we prove the NP-hardness of the evalua-
tion of HWVs in general, and we give efficient algorithms if the treewidth of the
corresponding Young-tableau is small, where the point of evaluation is concisely
encoded as a noncommutative algebraic branching program! In particular, this
gives a large new class of separating functions that can be efficiently evaluated at
points with low (border) Waring rank. As a structural side result we prove that
border Waring rank is bounded from above by the ABP width complexity. [6].

Dense subsets of VNP - beyond border complexity

Christian Ikenmeyer

(joint work with Abhiroop Sanyal)

The classes VF, VBP, and VP of polynomially bounded border formula complexity,
polynomially bounded border algebaic branching program size, and polynomially
bounded border circuit size are currently of high interest due to their fundamental
connection to geometric complexity theory and all geometric methods for resolving
the VP vs VNP and related questions. We introduce a topology on the space of
sequences of polynomials with the property that the closure of VP is precisely
VP, and analogously for VF and VBP. This topology is a box topology and not
sequential, which means that the notion of limits of sets must be replaced by
limits of nets. The notation VP that is commonly used nowadays instead of VP
is therefore now finally justified. [7].

The Space Complexity of Sampling

David Zuckerman

(joint work with Eshan Chattopadhyay, and Jesse Goodman)

Recently, there has been exciting progress in understanding the complexity of
distributions. Here, the goal is to quantify the resources required to generate
(or sample) a distribution. Proving lower bounds in this new setting is more
challenging than in the classical setting, and has yielded interesting new techniques
and surprising applications. In this work, we initiate a study of the complexity
of sampling with limited memory, and obtain the first nontrivial sampling lower
bounds against oblivious read-once branching programs (ROBPs). In our first
main result, we show a lower bound on the space to even weakly approximately
sample the uniform distribution on a good code. In our second main result, we
give a direct product theorem.
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Hitting Sets for Regular Branching Programs

William Hoza

(joint work with Andrej Bogdanov, Gautam Prakriya, and Edward Pyne)

In this short informal talk, we discuss two constructions of improved hitting set
generators for regular read-once branching programs (ROBPs). We focus on a
lemma that is used in the analysis of both generators. The lemma says that any
pseudorandom generator for regular ROBPs also fools a more general model called
regular “unanimity programs.” A unanimity program is defined like an ROBP,
except that every vertex (not just those in the last layer) is labeled as either
accepting or rejecting; the program accepts an input if every vertex visited on
that input is an accepting vertex.

Asymptotic spectra: Theory, applications and extensions

Jeroen Zuiddam

(joint work with Avi Wigderson)

In 1969, Strassen shocked the computational world with his subcubic algorithm
for multiplying matrices. Attempting to understand the best possible algorithm
for this problem, Strassen went on to develop his magnificent theory of asymp-
totic spectra in three papers between 1986–1991 [9, 10, 8]. Expressed in the great
generality of partially ordered semirings, the centerpiece of this theory is a duality
theorem between the asymptotic “rank” of elements, and a topological space which
is called asymptotic spectrum. This duality theorem is a vast generalization of lin-
ear programming duality (in which we have a semigroup rather than a semiring),
and indeed also of certain versions of the Positivstellensatz, the duality theorem
of polynomial inequalities over the Reals. Focusing on understanding the struc-
ture of the asymptotic spectrum of matrix multiplication, the theory has provided
surprising connectivity and convexity theorems for it. Strassen’s theory has led to
many subsequent results, especially new algorithmic, structural and barrier results
on matrix multiplication, and more generally for the semiring of tensors (which
includes the matrix multiplication tensors). Perhaps even more impressively, the
generality of Strassen’s theory has been applied recently to the study of a variety of
very different settings and parameters, in diverse fields including communication
theory, graph theory, probability theory, quantum information theory and com-
putational complexity. We feel that these developments call for an exposition of
this growing field. Our paper [11] provides a comprehensive, self-contained, mod-
ern survey of Strassen’s theory of asymptotic spectra and its various old and new
application areas. In this talk I gave a brief overview of our paper, highlighting
several important components and theorems.
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Rigid Continuation Paths II: Structured Polynomial Systems

Peter Bürgisser

(joint work with Felipe Cucker and Pierre Lairez)

We study the average complexity of solving structured polynomial systems that
are characterised by a low evaluation cost, as opposed to the dense random model
previously used. Firstly, we design a continuation algorithm that computes, with
high probability, an approximate zero of a polynomial system given only as black-
box evaluation program. Secondly, we introduce a universal model of random
polynomial systems with prescribed evaluation complexity L. Combining both, we
show that we can compute an approximate zero of a random structured polynomial
system with n equations of degree at most d in n variables with only poly(n, d)L
operations with high probability. This exceeds the expectations implicit in Smale’s
17th problem. The preprint is at [12].

Pseudorandom Generators for Read-Once Monotone
Branching Programs

Avishay Tal

(joint work with Dean Doron, Raghu Meka, Omer Reingold, and Salil Vadhan)

Motivated by the derandomization of space-bounded computation, a long line of
work constructed pseudorandom generators (PRGs) against various forms of read-
once branching programs (ROBPs), with a goal of improving the O(log2(n)) seed
length of Nisan’s classic construction [13] to the optimal O(logn). In this work,

we construct an explicit PRG with seed length Õ(logn) against constant-width
ROBPs that are monotone, in the sense that the transition function from one
layer to the next is a monotone function of the state. Our PRG also works against
monotone ROBPs that can read the input bits in any order, which are strictly
more powerful than read-once AC0. Thus, we provide state-of-the-art PRGs for
the latter class as well, improving upon [15].

References
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