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Abstract

This note refers to the effect of the proximity parameter on the operation of (standard)
property testers. Its bottom-line is that, except in pathological cases, the effect of the proximity
parameter is restricted to determining the query complexity of the tester. The point is that, in
non-pathological cases, the mapping of the proximity parameter to the query complexity can be
reversed in an adequate manner.

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approximate decision mak-
ing. These algorithms are given direct access to items of a huge data set, and determine whether
this data set has some predetermined (global) property or is far from having this property. Re-
markably, this approximate decision is made by accessing a small portion of the data set. Thus,
property testing is a relaxation of decision problems and it focuses on algorithms, called testers,
that can only read parts of the input.

A basic consequence of the foregoing description is that the testers should be modeled as oracle
machines and the input should be modeled as a function to which the tester has oracle access. This
modeling convention is explicit in almost all studies of property testing, but what is sometimes not
explicit is that the tester also gets ordinary inputs (i.e., inputs that are given as strings and are
read for free by the tester). These inputs include (1) the proximity parameter, denoted ǫ, and (2)
parameters that describe the domain of the function (at the very least the size of the domain is
given as input).1 Note that the description of the domain must be provided so to allow the tester
to make adequate queries.2 The proximity parameter must also be provided, for reasons detailed
next.

Recall that the standard definition of a tester (see Section 2)3 requires that it accepts (with
probability at least 2/3) any function that has some predetermined property but rejects (with

1For example, if the domain is a finite field, then one may need to provide its representation (and not merely its
size), especially when no standard representation can be assumed (e.g., as in the case that the field has 2n elements).
Another example refers to the bounded-degree graph model (cf. [3]), where one should also provide the degree bound
rather than just its product with the number of vertices; actually, one typically provides the degree bound and the
number of vertices (and does not provide their multiple).

2This crucial fact was overlooked in [5], as pointed out in [1, 6].
3We refer to the standard definition (as in, e.g., [2, 7]), and not to the definition of a proximity-oblivious tester

(cf. [4]).
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probability at least 2/3) any function that is ǫ-far from the set of functions having the property,
where distances between functions are defined as the fraction of the domain on which the functions
disagree. Note that, except in degenerated cases, one may avoid querying the function on its entire
domain D only if ǫ > 1/|D|. Thus, the tester must know that this is the case (i.e., that ǫ > 1/|D|),
if it is to make less than |D| queries. In general, the query complexity of the tester typically depends
on ǫ, and so the tester must obtain ǫ in order to determine its query complexity. The question
addressed in this note is whether or not ǫ is needed for any other purpose.

The foregoing natural question has also a concrete motivation. Various studies of property
testing seem to assume that the tester only uses the proximity parameter to determine its query
complexity (see, e.g., [5, 6]). We show that this assumption is essentially justified: See Section 2.

2 Technical Treatment

An asymptotic analysis is enabled by considering an infinite (indexed) sequence of domains, func-
tions, and properties. That is, for any s ∈ N, we consider functions from Ds to Rs. Indeed, s may
be thought of as a description of the domain Ds, and typically it is related to |Ds| (e.g., s = |Ds|).

Definition 1 Let Π =
⋃

s∈N Πs, where Πs contains functions defined over the domain Ds and
range Rs. A tester for a property Π is a probabilistic oracle machine T that satisfies the following
two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every s ∈ N and
f ∈ Πs (and every ǫ > 0), it holds that Pr[T f (s, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester rejects with probability
at least 2/3; that is, for every ǫ > 0 and s ∈ N, if f : Ds → Rs is ǫ-far from Πs, then
Pr[T f (s, ǫ)=0] ≥ 2/3, where f is ǫ-far from Πs if, for every g ∈ Πs, it holds that |{e ∈ Ds :
f(e) 6= g(e)}| ≥ ǫ · |Ds|.

If the tester accepts every function in Π with probability 1, then we say that it has one-sided error;
that is, T has one-sided error if for every f ∈ Πs and every ǫ > 0, it holds that Pr[T f (s, ǫ)=1] = 1.
A tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses
(and the parameters n and ǫ); otherwise it is called adaptive.

The query complexity of T , viewed as a function of |Ds| and ǫ, is an upper bound (which holds for
all f : Ds → Rs) on the number of queries that T makes on (explicit) input (s, ǫ).

For the sake of simplicity, we assume that s = |Ds|, which means that the function domain is
fully specified by its size. The following proposition holds also when s is an arbitrary specification
of the function’s domain, which determines the domain’s size (or just allows to determine q(|Ds|, ǫ)
for any given ǫ).

Proposition 2 (on the use of the proximity parameter): Let q : N × (0, 1] → N be a computable
function that is monotonically non-increasing in its second variable. Suppose that property Π has
a tester T of query complexity q. Then, Π has a tester T ′ of query complexity q that only uses
the proximity parameter to determine its query complexity (i.e., on input parameters (s, ǫ), this
tester first computes and records q(s, ǫ), and then continues after omitting ǫ from its record).
Furthermore, if T has one-sided error and/or is non-adaptive, then so is T ′.

A typical case of a function q for which the hypothesis holds is q(s, ǫ)
def
= ⌈fs(ǫ)⌉ for some collection

of continuous and monotonically decreasing functions fs : (0, 1] → N (e.g., fs(ǫ) = 100/ǫ2 or
fs(ǫ) = 25/ǫ · log2 s).
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Proof. Consider the following algorithm T ′:

1. On input parameters s and ǫ, algorithm T ′ computes ρ← ⌈sǫ⌉/s and v ← q(s, ρ).

2. Next, T ′ computes the minimal k ∈ N such that q(s, k/s)=v.

3. Algorithm T ′ invokes T on input parameters s and k/s.

Note that T ′ only uses ǫ to determine its query complexity, and that it maintains many features of
T (e.g., non-adaptivity and one-sided error probability). In typical cases, the overhead in the time
complexity is not significant (since k can be determined by a binary search). The monotonicity of
q is used to infer that the query complexity does not increased when the proximity parameter is
rounded-up to the next multiple of 1/s.

In analyzing T ′, we first consider any s ∈ N and f ∈ Πs. Then, for every ǫ′, it holds that
Pr[T f (s, ǫ′) = 1] ≥ c, where c = 1 if T has one-sided error and c = 2/3 otherwise. Clearly, this
holds also for ǫ′ = k/s, where k is as determined in Step 1, and therefore Pr[T ′f (s, ǫ) = 1] =
Pr[T f (s, k/s) = 1] ≥ c. Suppose, on the other hand, that f : Ds → Rs is ǫ-far from Π. Since
k/s ≤ ρ = ⌈sǫ⌉/s (and the distance between functions over Ds is a multiple of 1/s), it follows that
f is k/s-far from Π, and therefore Pr[T ′f (s, ǫ) = 0] = Pr[T f (s, k/s) = 0] ≥ 2/3. The proposition
follows.

Comment. An alternative presentation may suggest to invoke T on proximity parameter ǫ′ that
is chosen as the minimum for which q(s, ǫ′) = v holds. This, seemingly more elegant approach,
requires assuming that for every s, v ∈ N the set {ǫ ∈ (0, 1] : q(s, ǫ) = v} is either empty or has a
minimum element. More annoyingly, this minimum may have an infinite binary expansion, and so
an actual algorithm will need to use a truncation of it anyhow. Indeed, one may always assume
that the value of the proximity parameter is a multiple of 1/s.
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