
Probabilistic Preliminaries for Lecture Notes on Property Testing

Oded Goldreich∗

October 10, 2015

Summary: This appendix presents background from probability theory, which will
be used extensively in the lecture notes. This background and preliminaries include
conventions regarding random variables, basic notions and facts, and three useful prob-
abilistic inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality, and Chernoff
Bound).

1 Notational Conventions

We assume that the reader is familiar with the basic notions of probability theory. In this section,
we merely present the probabilistic notations that will be used extensively in the lecture notes.

Throughout the entire text we refer only to discrete probability distributions. Specifically, the
underlying probability space consists of the set of all strings of a certain length ℓ, taken with
uniform probability distribution. That is, the sample space is the set of all ℓ-bit long strings, and
each such string is assigned probability measure 2−ℓ. Traditionally, random variables are defined as
functions from the sample space to the reals. Abusing the traditional terminology, we use the term
random variable also when referring to functions mapping the sample space into the set of binary
strings. One important case of a random variable is the output of a randomized process (e.g., a
probabilistic oracle machine).

We often do not specify the probability space, but rather talk directly about random variables.
For example, we may say that X is a 0-1 random variable such that Pr[X = 0] = 1

4 and Pr[X =
1] = 3

4 , without specifying the underlying probability space. Indeed, this random variable may be
defined over the sample space {0, 1}2, such that X(11) = 0 and X(00) = X(01) = X(10) = 1.)

Many probabilistic statements refer to random variables that are defined beforehand. Typically,
we may write Pr[χ(X)], where X is a random variable defined beforehand and χ is a predicate
(e.g., we may write f(X) = v, when f :R→R is a function and v ∈ R). In other cases, we may write
Prx∼D[χ(x)], meaning that x is drawn according to a predetermined distribution D. In case D is
the uniform distribution over some finite set S, we may write Prx∈S[χ(x)] instead of Prx∼D[χ(x)].

2 Some basic notions and facts

We shall often use the following notions and facts.
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Union bound. An obvious fact regarding finite sets is that the size of their union is upper-
bounded by the sum of their sizes; that is, if S1, ..., St are finite sets, then | ∪i∈[t] Si| ≤

∑

i∈[t] |Si|.
It follows that

Prr∈U [r ∈ ∪i∈[t]Si] ≤
∑

i∈[t]

Prr∈U [r ∈ Si],

where S1, ..., St ⊆ U . Recalling that events over a probability space are merely subsets of that
space, and considering the events E1, ..., Et, it holds that Pr[∨i∈[t]Ei] ≤

∑

i∈[t] Pr[Ei].

Independent random variables. A sequence of random variables, X1, ...,Xn, is called indepen-

dent if for every x1, ..., xn it holds that

Pr[(X1, ...,Xn) = (x1, ..., xn)] =
∏

i∈[n]

Pr[Xi =xi].

This is often written in terms of conditional probabilities; namely, by writing Pr[X1 = x1|(X2, ...,Xn) =
(x2, ..., xn)] = Pr[X1 = x1], which implies Pr[(X2, ...,Xn) = (x2, ..., xn)|X1 = x1] = Pr[(X2, ...,Xn) =
(x2, ..., xn)|X1 = x1]. The latter assertion is based on Bayes’ Law, which asserts that

Pr[A|B] =
Pr[B|A] · Pr[A]

Pr[B]

since both sides equal Pr[A&B]
Pr[B] .

Statistical difference. The statistical distance (a.k.a variation distance) between the random
variables X and Y is defined as

1

2
·
∑

v

|Pr[X = v] − Pr[Y = v]| = max
S

{Pr[X ∈ S] − Pr[Y ∈ S]}. (1)

(The equality can be verified by considering the set S = {v : Pr[X =v] > Pr[Y =v]}.) We say that
X is δ-close (resp., δ-far) to Y if the statistical distance between them is at most (resp., at least)
δ. A useful fact is that statistical distance may only decease when the same function (or even the
same random process) is applied to both random variables.

Claim 1 (statistical distance is non-increasing): Let X and Y be random variables X and Y , and

A be an arbitrary randomized algorithm. Then, the statistical distance between A(X) and A(Y ) is

upper-bounded by the statistical distance between X and Y .

Proof: We first prove the claim for a deterministic algorithm or rather any function, denoted f .
In that case

∑

v

|Pr[f(X) = v] − Pr[f(Y ) = v]| =
∑

v

∣

∣

∣

∣

∣

∣

∑

z∈f−1(v)

Pr[X = z] −
∑

z∈f−1(v)

Pr[Y = z]

∣

∣

∣

∣

∣

∣

≤
∑

v

∑

z∈f−1(v)

|Pr[X = z] − Pr[Y = z]|

=
∑

z

|Pr[X = z] − Pr[Y = z]|
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We next observe that the statistical distance is preserved when appending an independent random
variable to a given pair of random variables; that is, let Z be a random variable independent of
both X and Y , then

∑

v,w

|Pr[(X,Z) = (v,w)] − Pr[(Y,Z) = (v,w)]| =
∑

v,w

|Pr[X = v] ·Pr[Z = w] − Pr[Y = v] · Pr[Z = w]|

=
∑

v,w

Pr[Z = w] · |Pr[X = v] − Pr[Y = v]|

=
∑

v

|Pr[X = v] − Pr[Y = v]|

Finally, letting f(z, r) denote the output of a randomized algorithm A on input z when using
internal coins r, we observe that the random variable A(z) is represented by f(z,R), where R is a
random variable representing the internal coin tosses of A. Denoting the statistical distance by ∆,
we have

∆(A(X), A(Y )) = ∆(f(X,R), f(Y,R))

≤ ∆((X,R), (Y,R))

= ∆(X,Y )

establishing the claim.

3 Basic facts regarding expectation and variance

Throughout the rest of this appendix, we refer to discrete random variables that are assigned real
values. We first recall these two standard notions.

Definition 2 (expectation and variance): The expectation of a random variable X ∈ R, denoted

E[X], is defined as
∑

x∈R
Pr[X =x]·x, and its variance, denoted V[X], is defined as E[(X−E[X])2].

Note that since we confine ourselves to discrete (and so finite) probability distributions, the expec-
tation and variance can always be defined. This is best seen by replacing the summation over R

by a summation over the support of X (i.e., the set of values v such that Pr[X = v] > 0). Three
useful facts that we often use without reference follow.

Fact 1: Linearity of expectation. For every sequence of (possibly dependent) random vari-
ables, X1, ...,Xn, it holds that

E





∑

i∈[n]

Xi



 =
∑

i∈[n]

E[Xi].

This holds by commutativity of summation.

Fact 2: Variance and the expectation of the square. V[X] = E[X2] − E[X]2.

This follows by E[(X −E[X])2] = E[X2 − 2 ·E[X] ·X + E[X]2] and linearity of expectation.
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Fact 3: Functions of independent random variables are independent. If X1, ...,Xn are in-
dependent random variables, then for every sequence of functions f1, ..., fn : R → R it holds
that f1(X1), ..., fn(Xn) are independent random variables.

This holds by definition. Specifically, for every (v1, ..., vn), consider all (x1, ..., xn) ∈ (f−1
1 (v1)×

· · · × f−1
n (vn)).

The following two additional facts will be used in this appendix, but we shall not use them outside
it.

Fact 4: The expactation of the product of independent random variables. For every se-
quence of independent random variables X1, ...,Xn, it holds that

E





∏

i∈[n]

Xi



 =
∏

i∈[n]

E[Xi].

This holds by distributivity of multiplication.

Fact 5: Linearity of the variance of independent random variables. For every sequence of
independent random variables X1, ...,Xn, it holds that

V





∑

i∈[n]

Xi



 =
∑

i∈[n]

V[Xi].

This can be shown by letting X i = Xi − E[Xi], and using

V
[

∑

i∈[n] Xi

]

= E

[

(

∑

i∈[n] Xi

)2
]

[Fact 1]

= E
[

∑

i,j∈[n] X iXj

]

=
∑

i,j∈[n] E[X iXj ] [Fact 1]

=
∑

i∈[n] E[X
2
i ] +

∑

i,j∈[n]:i6=j E[XiXj]

=
∑

i∈[n] V[Xi] +
∑

i,j∈[n]:i6=j E[X i] · E[Xj ] [Fact 4]

=
∑

i∈[n] V[Xi]

where the last equality holds since E[Xi] = 0 and the one before it is due to the fact that Xi

and Xj are independent.

The trick of considering X i = Xi −E[Xi] is good to bear in mind. We also observe that the latter
proof only relied on the fact that each two variables are independent. For sake of future reference,
let us state the consequence of this fact.

Claim 3 (linearity of the variance of pairwise independent random variables): Let X1, ...,Xn be a

sequence of random variables such that every two variables in the sequence are independent; that

is, for every i 6= j and every y, z it holds that Pr[(Xi,Xj)=(y, z)] = Pr[Xi =y] ·Pr[Xj =z]. Then,

V





∑

i∈[n]

Xi



 =
∑

i∈[n]

V[Xi].

Indeed, a sequence as in the hypothesis of Claim 3 is called pairwise independent.
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4 Three Inequalities

The following probabilistic inequalities are very useful. These inequalities provide upper-bounds
on the probability that a random variable deviates from its expectation.

4.1 Markov’s Inequality

The most basic inequality is Markov’s Inequality that applies to any random variable with bounded
maximum or minimum value. For simplicity, this inequality is stated for random variables that are
lower-bounded by zero, and reads as follows:

Theorem 4 (Markov’s Inequality): Let X be a non-negative random variable and v be a non-

negative real number. Then

Pr [X≥v] ≤ E(X)

v
(2)

Equivalently, Pr[X ≥ t ·E(X)] ≤ 1
t . The proof amounts to the following sequence:

E(X) =
∑

x

Pr[X =x] · x

≥
∑

x<v

Pr[X =x] · 0 +
∑

x≥v

Pr[X =x] · v

= Pr[X≥v] · v

4.2 Chebyshev’s Inequality

Using Markov’s inequality, one gets a potentially stronger bound on the deviation of a random
variable from its expectation. This bound, called Chebyshev’s inequality, is useful when having
additional information concerning the random variable (specifically, a good upper bound on its
variance).

Theorem 5 (Chebyshev’s Inequality): Let X be a random variable, and δ > 0. Then

Pr [|X − E(X)|≥δ] ≤ V(X)

δ2 .
(3)

Proof: Defining a random variable Y
def
= (X − E(X))2, and applying Markov’s inequality to it,

we get

Pr [|X − E(X)|≥δ] = Pr
[

(X − E(X))2 ≥ δ2
]

≤ E[(X − E(X))2]

δ2

and the claim follows.
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Pairwise Independent Sampling: Chebyshev’s inequality is particularly useful in the analysis
of the error probability of approximation via repeated sampling. It suffices to assume that the
samples are picked in a pairwise independent manner, where X1,X2, ...,Xn are pairwise independent

if for every i 6= j and every α, β it holds that Pr[Xi =α∧Xj =β] = Pr[Xi =α] ·Pr[Xj =β]. Then,
as a corollary to Chebyshev’s inequality, we get

Corollary 6 (pairwise independent sampling): Let X1,X2, ...,Xn be pairwise independent random

variables with identical expectation, denoted µ, and identical variance, denoted σ2. Then, for every

ǫ > 0, it holds that

Pr

[∣

∣

∣

∣

∣

∑

i∈[n] Xi

n
− µ

∣

∣

∣

∣

∣

≥ ǫ

]

≤ σ2

ǫ2n .
(4)

Using ǫ = γ ·µ and m = n ·µ, and assuming that σ2 ≤ µ (which always holds when Xi ∈ [0, 1]), we
obtain a (“multiplicative”) bound of the form

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi − m

∣

∣

∣

∣

∣

∣

≥ γ · m



 ≤ 1

γ2m .

(5)

Proof: Combining Chebyshev’s inequality with Claim 3, we get

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi − n · µ

∣

∣

∣

∣

∣

∣

≥ n · ǫ



 ≤
V

[

∑

i∈[n] Xi

]

(nǫ)2

=

∑

i∈[n] V[Xi]

(nǫ)2

=
nσ2

n2ǫ2

and the claim follows.

Sampling by t-wise independent points: A sequence of random variables is called t-wise

independent if every t variables in it are totally independent. While we shall not use the following
result in this text, we find it useful in many other setting and believes that its derivation highlights
the ideas that underly the proof of Corollary 6. For simplicity, we consider the case that the random
variable range over [0, 1]; a generalization to other bounded ranges can be derived similarly to the
way this is done in the proof of Theorem 11 (in next section). Note that for X ∈ [0, 1], it holds
that E[X2] ≤ E[X], and thus V[X] ≤ E[X].

Theorem 7 (2k-wise independent sampling): Let X1,X2, ...,Xn ∈ [0, 1] be 2k-wise independent

random variables and µ =
∑

i∈[n] E[Xi]/n. Suppose that V[Xi] ≤ β for every i ∈ [n]. Then, for

every ǫ > 0, it holds that

Pr

[∣

∣

∣

∣

∣

∑

i∈[n] Xi

n
− µ

∣

∣

∣

∣

∣

≥ ǫ

]

<

(

3kβ

nǫ2

)k

(6)

Recall that for any random variable Z ranging in [0, 1], it holds that V[Z] ≤ E[Z]. Hence, if the
Xi’s have identical expectation (which equals µ), then we may use β = µ.
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Proof: Define the random variables Xi
def
= Xi−E(Xi). Note that the Xi’s are 2k-wise independent,

and each has zero expectation. Mimicking the proof of Chebyshev’s inequality, we have

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi

n
− µ

∣

∣

∣

∣

∣

∣

≥ ǫ



 ≤
E

[

(

∑

i∈[n] Xi

)2k
]

ǫ2k · n2k
(7)

The rest of the proof is devoted to upper-bounding the numerator in the r.h.s of Eq. (7). General-
izing the proof of Claim 3, we have

E











∑

i∈[n]

X i





2k





= E





∑

i1,...,i2k∈[n]

∏

j∈[2k]

X ij





=
∑

i1,...,i2k∈[n]

E





∏

j∈[2k]

X ij





Now, the key observation is that each term in this sum that has some random variable appear in
it with multiplicity 1 equals zero. More generally, for each sequence i = (i1, ..., i2k) and j ∈ [n],
denoting by mj(i) the multiplicity of j in i, we have

E





∏

j∈[2k]

X ij



 = E





∏

j∈[n]

X
mj(i)
j





=
∏

j∈[n]

E
[

X
mj(i)
j

]

where the last equality is due to the 2k-wise independence of the random variables Xi1 , ...,X i2k
.

Denoting by S the set of 2k-long sequences over [n] in which no element appears with multiplicity 1
(and recalling that E[Xj ] = 0), we get

E











∑

i∈[n]

Xi





2k





=

∑

(i1,...,i2k)∈S

∏

j∈[n]

E
[

X
mj(i1,...,i2k)
j

]

. (8)

Indeed, the maximum number of elements that may appear in any sequence (i1, ..., i2k) ∈ S in at
most k, since each element that appears in (i1, ..., i2k) must appear in it with multiplicity at least 2.
This already yields an upper bound of |S| <

(

n
k

)

· k2k < (nk2)k on Eq. (8). A better upper bound
can be obtained by partitioning S into (S1, ..., Sk) such that St ⊂ S contains all sequences such
that each sequence contains exactly t elements.

∑

(i1,...,i2k)∈S

∏

j∈[n]

E
[

X
mj(i1,...,i2k)
j

]

=
∑

t∈[k]

∑

(i1,...,i2k)∈St

∏

j∈[n]

E
[

X
mj(i1,...,i2k)
j

]

≤
∑

t∈[k]

|St| · E
[

X
2
1

]t
(9)

<
∑

t∈[k]

(en/k)t · t2k · βt
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where the first inequality uses the fact that for every m > 2 and Z ∈ [−1, 1] it holds that E[Zm] ≤
E[Z2], and the last inequality uses

(n
t

)

< (en/t)t (for t ≤ n/2). Combining Eq. (7)&(8)&(9), we
get

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi

n
− µ

∣

∣

∣

∣

∣

∣

≥ ǫ



 ≤
E

[

(

∑

i∈[n] Xi

)2k
]

ǫ2k · n2k

<

∑

t∈[k](en/k)t · t2k · βt

ǫ2k · n2k

<
k2k · ∑t∈[k](βen/k)t

ǫ2k · n2k

<
k2k · 2 · (βen/k)k

ǫ2k · n2k

<

(

3kβ

nǫ2

)k

as required.

4.3 Chernoff Bound

When using pairwise independent sample points, the error probability of the approximation de-
creases linearly with the number of sample points (see Eq. (4)). When using totally independent
sample points, the error probability in the approximation can be shown to decrease exponentially
with the number of sample points. Probability bounds supporting the foregoing statement are
commonly referred to as Chernoff Bounds. We present such a bound next.

The bound that we present first is not the most popular bound, but it is a better starting
point for deriving the popular bounds as well as other useful bounds, which we shall do later. In
particular, the following bound considers independent random variables ranging arbitrarily in [0, 1]
(rather than in {0, 1}), where these random variables are not necessarily identical.

Theorem 8 (a Chernoff Bound): Let X1,X2, ...,Xn be independent random variables ranging in

[0, 1], and β > 0. Let µ =
∑

i∈[n] E[Xi] and suppose that
∑

i∈[n] V[Xi] ≤ β. Then, for every

α ∈ (0, 2β], it holds that

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi − µ

∣

∣

∣

∣

∣

∣

> α



 < 2 · e−α2/4β (10)

Note that
∑

i∈[n] V[Xi] ≤
∑

i∈[n] E[X2
i ] = µ, where the last equality uses the fact that E[X2] ≤ E[X]

holds for every random variable X ∈ [0, 1]. Hence (assuming µ > 0)1, we can always use β = µ,
and obtain a meaningful bound whenever α > 2

√
µ.

Proof: We upper-bound Pr[
∑

i∈[n] Xi > µ + α], and Pr[
∑

i∈[n] Xi < µ − α] is bounded similarly
(or, alternatively, by letting Yi = 1 − Xi and using the bound on Pr[

∑

i∈[n] Yi > (n − µ) + α]).

Letting Xi
def
= Xi − E(Xi), we apply Markov’s inequality to the random variable eλ

Pn
i=1 Xi , where

1Note that µ = 0 implies that each Xi is identically zero.
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λ ∈ (0, 1] will be determined to optimize the expression that we derive. Specifically, we get

Pr





∑

i∈[n]

Xi > α



 = Pr
[

eλ
P

i∈[n] Xi > eλα
]

≤
E

[

eλ
P

i∈[n] Xi

]

eλα

= e−λα · E





∏

i∈[n]

eλXi





= e−λα ·
∏

i∈[n]

E
[

eλXi

]

where the last equality is due to the independence of the random variables. Now, using ex ≤
1 + x + x2 for every x ∈ [−1, 1], and observing that E[Xi] = 0, we get E[eλXi ] ≤ 1 + λ2 · E[X

2
i ],

which equals 1 + λ2 · V[Xi]. Hence,

Pr





∑

i∈[n]

Xi > α



 ≤ e−λα ·
∏

i∈[n]

E
[

eλXi

]

≤ e−λα ·
∏

i∈[n]

(

1 + λ2 · V[Xi]
)

≤ e−λα ·
∏

i∈[n]

eλ2·V[Xi]

= e−λα · eλ2·
P

i∈[n] V[Xi]

where the last inequality is due to using 1+y ≤ ey for every y ∈ [0, 1]. Recalling that
∑

i∈[n] V[Xi] ≤
β and optimizing at λ = α/2β ∈ (0, 1], we obtain

Pr





∑

i∈[n]

Xi > α



 ≤ e−λα+λ2β

= e−α2/4β

and the claim follows.

The popular Chernoff Bounds. The popular bounds refer to the case that all Xi’s are inden-
tical (and range in [0, 1]). The more popular version refers to an additive deviation of ǫ > 0.

Corollary 9 (a standard (“additive”) Chernoff Bound): Let X1,X2, ...,Xn be identical indepen-

dent random variables ranging in [0, 1], and let p = E[X1]. Then, for every ǫ ∈ (0, 2(1 − p)p], it

holds that

Pr





∣

∣

∣

∣

∣

∣

1

n
·
∑

i∈[n]

Xi − p

∣

∣

∣

∣

∣

∣

> ǫ



 < 2 · e−ǫ2n/(4p(1−p)) < 2 · e−ǫ2n. (11)
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For every ǫ ∈ (0, 1], it holds that

Pr





∣

∣

∣

∣

∣

∣

1

n
·
∑

i∈[n]

Xi − p

∣

∣

∣

∣

∣

∣

> ǫ



 < 2 · e−ǫ2n/4 (12)

Proof: We invoke Theorem 8 with µ = n · p and α = n · ǫ. For Eq. (11) we use β = n · (1 − p)p,
while noting that V[Xi] ≤ E[Xi]−E[Xi]

2 = (1− p)p (since Xi ∈ [0, 1] implies E[X2
i ] ≤ E[Xi]). For

Eq. (11) we use β = n · p, while assuming without loss of generality that p ≥ 1/2 (and considering
the 1 − Xi’s otherwise).

Corollary 10 (a standard multiplicative Chernoff Bound): Let X1,X2, ...,Xn be identical inde-

pendent random variables ranging in [0, 1], and let p = E[X1]. Then, for every γ ∈ (0, 2], it holds

that

Pr





∣

∣

∣

∣

∣

∣

1

n
·
∑

i∈[n]

Xi − p

∣

∣

∣

∣

∣

∣

> γ · p



 < 2 · e−γ2pn/4. (13)

Proof: We invoke Theorem 8 with µ = n · p and α = γ · µ, and use β = µ (while relying on
V[Xi] ≤ E[Xi]).

Generalization to an arbitrary bounded range. The case that the Xi’s range in an arbitrary
interval can be handled my using a linear transformation that maps this interval to [0, 1].

Theorem 11 (Theorem 8, generalized): Let X1,X2, ...,Xn be independent random variables rang-

ing in [a, b], and β > 0. Let µ =
∑

i∈[n] E[Xi] and suppose that
∑

i∈[n] V[Xi] ≤ β. Then, for every

α ∈ (0, 2β/(b − a)], it holds that

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi − µ

∣

∣

∣

∣

∣

∣

> α



 < 2 · e−α2/4β (14)

Note that in this case (i.e., of independent Xi’s ranging in [a, b]) it holds that
∑

i∈[n] V[Xi] ≤
(b − a) · (µ − n · a), where the inequality uses V[Xi] = (b − a)2 · V[(Xi − a)/(b − a)] and the fact
that (Xi − a)/(b − a) ∈ [0, 1].2 Hence, we may use β = (b − a) · (µ − n · a).

Before proving Theorem 11, we note that a multiplicative version of Theorem 11 can be obtained
by letting γ = α/(µ − n · a) and using β = (b − a) · (µ − n · a). Hence, for every γ ∈ (0, 2], it holds
that

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

Xi − µ

∣

∣

∣

∣

∣

∣

> γ · (µ − n · a)



 < 2 · e−γ2(µ−n·a)/4(b−a) (15)

For a = 0, the bound simplifies to 2 · e−γ2µ/4b.

Proof: We consider the random variables X ′
1, ...,X

′
n such that X ′

i = (Xi − a)/(b − a) ∈ [0, 1]. Let
α′ = α/(b − a) and β′ = β/(b − a)2, and note that

∑

i∈[n] V[X ′
i] =

∑

i∈[n] V[Xi]/(b − a)2 ≤ β′ and

that α′ ∈ (0, 2β′). Invoking Theorem 8 (with parameters α′ and β′), we get

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[n]

X ′
i −

µ

b − a

∣

∣

∣

∣

∣

∣

>
α

b − a



 < 2 · e−(α/(b−a))2/4(β/(b−a)2)

2Hence V[Xi] ≤ (b − a)2 · E[(Xi − a)/(b − a)], whereas E[(Xi − a)/(b − a)] = (E[Xi] − a)/(b − a).
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and the claim follows.

4.4 Pairwise independent versus totally independent sampling

To demonstrate the difference between the sampling bounds provided in 4.2 and 4.3, we consider
the problem of estimating the average value of a function f : Ω → [0, 1]. In general, we say that
a random variable Z provides an (ǫ, δ)-approximation of a value v if Pr[|Z − v| > ǫ] ≤ δ. By
Chernoff Bound (e.g., Corollary 9), the average value of f evaluated at n = O((ǫ−2 · log(1/δ))
independent samples (selected uniformly in Ω) yield an (ǫ, δ)-approximation of µ =

∑

x∈Ω f(x)/|Ω|.
Thus, the number of sample points is polynomially related to ǫ−1 and logarithmically related to
δ−1. In contrast, by Corollary 6 an (ǫ, δ)-approximation by n pairwise independent samples calls
for setting n = O(ǫ−2 · δ−1). We stress that, in both cases the number of samples is polynomially

related to the desired accuracy of the estimation (i.e., ǫ). The only advantage of totally independent

samples over pairwise independent ones is in the dependency of the number of samples on the error

probability (i.e., δ).
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