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Summary: This is the first lecture in an introductory course on property testing. In
this lecture, we introduce and illustrate the basic notions of property testing, empha-
sizing the themes of approximate decision and sub-linear complexity. In particular, we
discuss the key role of representation, point out the focus on properties that are not
fully symmetric, present the definitions of (standard) testers and of proximity-oblivious
testers (POTs), and make some general observations regarding POTs, testing, and
learning. All is preceded by a discussion of the potential benefits of testing.

1 Introduction

Big data is a broad term for data sets so large or complex that traditional data

processing applications are inadequate.

Wikipedia entry on Big Data, 17-Feb-2016.

Everybody talks of Big Data. The issue is, of course, making good use of the data, which requires
analyzing it. But such an analysis may mean various things. At one extreme, it may mean locating
tiny and possible rare (but valuable) pieces of information. On the other extreme, it may means
detecting global structures or estimating global parameters of the data as a whole.

The field of property testing is related to the latter meaning. It is concerned with the analysis
of global features of the data, like determining whether the data as a whole has some structural
property or estimating some global parameter of its structure. The focus is on properties and
parameters that go beyond a simple statistics that refers to the frequency of occurrence of various
local patterns. This is not intended to say that such simple statistics are not of value, but rather
that not everything of interest can be reduced to them.

In general, the data is a set of records that may be related in various ways. Its contents and
meaning is reflected not only in the individual records, but also in the relations between them. The
mere existence of relations between pairs of records can be modeled as a graph. Needless to say, this
captures only one aspect of the data, and this aspect is an abstract structure. Nevertheless, when
such a model is used, checking whether the graph that arises has certain structiral properties is of
natural interest. Indeed, testing natural properties of huge graphs or estimating various parameters
of such graphs is part of the agenda of property testing. More generally, property testing is concerned
with testing structural properties of huge objects or estimating such structural parameters.
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Important as it is, big data is not the only source of huge objects that are considered by property
testing. Another type of huge objects are the functions that are computed by various programs or
other computing devices. We stress that these objects do not appear in explicit form in reality;
they are merely defined implicitly (and concisely) by these devices.

Our repeated reference to the huge size of the objects is meant to emphasize a salient feature
of property testing. We refer to the fact that property testing seeks super-fast algorithms. In
particular, it refers to algorithms that do not read the full description of the object, but rather
inspect relatively small portions of the object.

The reader may justifiably wonder how it is possible to say anything meaningful about an
object without looking at all of it. But on second thought, one may note that we are aware of
such cases: All frequency statistics are of these forms. It is worthwhile to highlight two features of
these statistics: They are approximate rather than exact, and they are generated based on random
choices. Indeed, a notion of approximation and the use of randomness are pivotal to property
testing. (Yet, we stress again that property testing goes beyond frequency statistics.)

1.1 Property testing at a glance

As will be detailed in this lecture, property testing is primarily concerned with super-fact approxi-
mate decisions, where the task is distinguishing between objects having a predetermined property
and objects that are “far” from having this property. Related tasks such as estimating structural
parameters of such objects or finding related substructures are also addressed. In all cases, the
algorithms sought are such of sub-linear complexity, and in particular they only inspect realtively
small portions of the object.

Typically, objects are modeled by functions, and distance between functions is measured as the
fraction of the domain on which the functions differ. An object is considered far from having the
property if its distance from any object that has the property exceeds a given proximity parameter.
We consider (randomized) algorithms that may query the function at arguments of their choice,
where this modeling allows for discussing algorithms that only inspect part of their input.

Cases in which such super-fact approximate decision is possible include testing properties of
functions such as being a low degree polynomial, being monotone, and depending on a specified
number of attributes; testing properties of graphs such as being bipartite and being triangle-free;
and testing properties of geometric objects such as being well-clustered and being a convex body.

In the next section, we review the potential benefits of property testers. But before doing so,
we wish to stress that, like with any theoretical research, the value of research in property testing
is not confined to the suggested algorithms (i.e., resulting testers). The development and study of
conceptual frameworks, let alone the development of algorithmic design and analysis techniques, is
even more important for the theory of computation at large as well as for computer practice. While
the impact on practice is typically hard to trace, the tight relations between property testing and
the rest of the theory of computing are evident (and will be pointed out in adequate parts of this
course).

1.2 On the benefits of property testers

Property testing is associated with approximate decision algorithms that run in sub-linear time or
at least make a sub-linear number of queries to their input. The benefit of sub-linear complexity
is significant when the input is huge, but this benefit comes at the cost of having an approximate
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decision rather than an exact one. The question addressed at this section is whether (or rather when
can) this trading of accuracy for efficiency be worthwhile. The answer is application-dependent
rather than universal: We discuss several different general settings is which such a trading is
worthwhile.1

It is infeasible to fully recover the object. This may be the case either because linear time is
infeasible for the huge objects being considered in the application or because probes to the object
are too expensive to allows for inspecting all of it. In such settings, there is no choice but to use
algorithms of sub-linear query complexity and settle for whatever they can provide (of course, the
more – the better).

Objects either have the property or are far from having it. That is, we refer to applications
in which we know a priori that the objects that we will encounter either have the property or are
far from any object having the property. Intuitively, in such a case, objects are either perfect (i.e.,
have the property) or are very bad (i.e., far from it). In this case, we should not care about inputs
that violate the promise (i.e., are neither in the set nor far from it), because such inputs correspond
to objects that we are unlikely to encounter.

Objects that are close to having the property are good enough. That is, we refer to
applications in which the utility of objects that are close to having the property is almost as good
as the utility of objects that have the property. Alternatively, it may be possible to modify the
object at a cost related to its distance from having the property. In such cases, we may not care
too much about deciding that the object has the property while in reality the object may only be
close to having this property.2

Testing as a preliminary step before deciding. That is, we refer to the possibility of using
the approximate decision procedure as a preliminary step, and using the more costly exact decision
procedure only if the preliminary step was completed successfully (i.e., the approximate decider
accepted the input). This is advantageous provided that objects that are far from having the
property are not very rare, since we definitely save resources when rejecting on such objects based
on the preliminary step.

Testing as a preliminary step before reconstructing. This refers to settings in which we
wish to fully recover the object, either by reading all of it or by running a learning algorithm, but
we need to do so only if the object has the property. Hence, before invoking the reconstruction
procedure, we want to (approximately) decide whether the object has the property. (In the case of
reconstruction by a learning algorithm, this makes sense only if the approximate decision procedure
is more efficient than the learning algorithm.) Again, using the approximate decision procedure is
advantageous provided that objects that are far from having the property are not very rare.

1Recall “Paris is well worth a Mass” [Paris vaut bien une messe, King Henry IV, 1593].
2One may argue that in such cases, “tolerant testing” (see Section 3.2) is even more adequate. Yet, tolerant testing

may be harder than standard testing (cf. [25]).
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1.3 On the flavor of property testing research

Property testing seems to stand between algorithmic research and complexity theory. While the
field’s primary goal is the design of a certain type of algorithms (i.e., sublinear ones) for a certain
type of problems (i.e., approximate decision), it often needs to determine the limits of such algo-
rithms, which is a question of lower bounds having a complexity theoretic flavor. Furthermore,
historically, property testing was associated with the study of Probabilistically Checkable Proofs
(PCPs), and some connections do exist between the two, but property testing is not confined to
PCPs (and/or to the study of “locally testable codes”).

In addition to standing in between these two areas, the results of property testing have a
color that makes the different from the maintream results in both areas. Its positive results are
not perceived as mainstream algorithmic research and its negative results are not perceived as
mainstream complexity theory. In both cases, the specific flavor of propery testing (i.e., sub-linear
approximate decision) makes them stand out. But property testing is not the only research are that
has this fate: The same can be said of Machine Learning and Distributed Computing, to mention
just two examples.

One additional charateristic of property testing is that the positive results tend to be established
by simple algorithms that are backed by a complex analysis. The simplicity of these algorithms
has met the lack of respect of a few researchers, but this is a fundamental mistake on their side.
The simplicity of algorithms is a virtue if one really considers using them, whereas the complexity
of their analysis has no cost in terms of their applicability. Hence, simple algorithms that require a
complex analysis are actually the greatest achievement that algorithmic research should strive at.

1.4 Organization and some notations

As stated above, we view property testing as primarily concerned with approximate decisions, a
notion that is discussed in Section 2.2. (For perspective, we precede it with Section 2.1, which
recall the notion of approximate search problems.) Next, in Section 2.3, we discuss the second key
feature of property testing – its focus on sub-linear complexity. Then, in Section 2.4, we highlight
yet another feature of property testing – its focus on properties that are not fully symmetric (i.e.,
are not invariant under arbitrary re-ordering of the sequence of values that represent the object).
The general relation between objects and their reprwesentation is discussed in Section 2.5.

The core of this chapter is presented in Section 3. The basic notions, definitions, and goals of
property testing will be presented in Section 3.1, and will be used extensively throughout the entire
lecture series (with very few exceptions). In contrast, the ramifications discussed in Section 3.2 will
be lightly used (if at all), and ditto for the general observations made in Sections 3.4 and 3.5 (which
refer to the “algebra of property testing” and to its relation to learning, respectively). In Section 3.3,
we shall present another notion that will be used quite a lot – that of a proximity-oblivious tester
(POT).

Historical perspectives and suggestions for further reading are provided in Sections 4 and 5,
respectively. Finally, in Section 6 we re-iterate some of issues discussed in the current lecture, in
light of their importance to the rest of the course.

Some notation. We shall be using the following standard notations:

• For n ∈ N, we let [n]
def
= {1, ..., n}.
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• For x ∈ {0, 1}∗, we let |x| denote the length of x and let xi denote the ith bit of x; that is, if
n = |x|, then x = x1 · · · xn such that xi ∈ {0, 1} for every i ∈ [n].

• The Hamming weight of a string x, denoted wt(x), is the number of locations that hold the
value one; that is,

wt(x) = |{i∈ [|x|] : xi =1}| =

|x|
∑

i=1

xi.

Suggested preliminaries for the course include basic familiarity with

1. the notions of decision, search and promise problems (see, e.g., [27, Sec. 1.2]);

2. probabilistic algorithms (see, e.g., [27, Sec. 6.1] or [49]); and

3. probabilistic inequalities such as the Union Bound and Chernoff Bound (see, e.g., [27, Apdx. D.1]
or [49]).

Teaching note: It is quite likely that covering the material presented in these notes

will require more than a single lecture.

2 Approximate decisions

The notion of approximation is well known in the context of optimization problems, which are a
special type of search problems. We start by recalling these notions.

2.1 A detour: approximate search problems

Recall that search problems are defined in terms of binary relations, denoted R ⊆ {0, 1}∗ × {0, 1}∗,
and consist of finding a “valid solution” y to a given instance x, where y is a valid solution to x

if (x, y) ∈ R. The set of solutions for the instance x is denoted R(x)
def
= {y : (x, y)∈R}, and the

computation of function corresponds to the special case in which this set is a singleton.
In optimization problems, the valid solutions are assigned a value (or a cost), captured by a

function ν : {0, 1}∗ → R, and one is asked to find a solution of maximum value (resp., minimum
cost); that is, given x, the task is to find y ∈ R(x) such that ν(y) = maxz∈R(x){ν(z)} (resp.,
ν(y) = minz∈R(x){ν(z)}).3

A corresponding approximation problem is defined as finding a solution having value (resp., cost)
close to the optimum; that is, given x the task is to find y ∈ R(x) such that ν(y) is “close” to
maxz∈R(x){ν(z)} (resp., to minz∈R(x){ν(z)}). One may also talk about the estimation problem, in
which the task is to approximate the value of the optimal solution (rather than finding a solution
that obtains that value).

The point we wish to make here is that, once a function ν and a proximity parameter are fixed,
it is clear what one means by seeking an approximation solution for a search problem. But, what
do we mean when we talk about approximate decision problems?

3Greater flexibility is achieved by allowing the value (resp., cost) to depend also on the instance; that is, use
ν(x, y) rather than ν(y). Actually, this does not buy any additional generality, because we can always augment the
solution y by the instance x and use ν′(〈y, x〉) = ν(x, y). On the other hand, using the more flexible formulation, one
can get rid of the relation R by letting ν(x, y) = −∞ (resp., ν(x, y) = ∞) if (x, y) 6∈ R.
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2.2 Property testing: approximate decision problems

Indeed, what can an approximate decision problem actually mean?
Unfortunately, there is no decisive answer to such questions; one can only propose an answer

and articulate its natural appeal. Indeed, we believe that a natural notion of approximate decision
(or a relaxation of the decision problem) is obtained by ignoring “borderline” cases, which are
captured by inputs that are close to the set but do not reside in it. That is, instead of asking
whether an input x is in the set S, we consider the problem of distinguishing between the case that
x ∈ S and the case that x is “far” from S. Hence, we consider a promise problem (cf. [22] or [27,
Sec. 2.4.1]), in which the yes-instances are the elements of S and the no-instances are “far” from
S.

Of course, we need to clarify what “far” means. To this end, we fixed a metric, which will be the
(relative) Hamming distance, and introduce a proximity parameter, denoted ǫ. Specifically, letting
δ(x, z) = |{i ∈ [|x|] : xi 6= zi}|/|x| if |x| = |z| and δ(x, z) = ∞ otherwise, we define the distance

of x ∈ {0, 1}∗ from S as δS(x)
def
= minz∈S{δ(x, z)}. Now, for a fixed value of ǫ > 0, the foregoing

promise problem consists of distinguishing S from {x : δS(x) > ǫ}, which means that inputs in
{x : 0 < δ(x) ≤ ǫ} are ignored.

Notation. Throughout the text, unless explicitly said differently, ǫ will denote a proximity pa-
rameter, which determines what is considered far. We shall say that x is ǫ-far from S if δS(x) > ǫ,
and otherwise (i.e., when δS(x) ≤ ǫ) we shall say that x is ǫ-close to S. Recall that δS(x) de-
notes the relative Hamming distance of x from S; that is, δS(x) is the minimum, taken over all
z ∈ S ∩ {0, 1}|x|, of |{i∈ [|x|] : xi 6=zi}|/|x|.

Lastly, we note that the set S will be associated with the property of being in it, which for
simplicity will also be referred to as the property S. Approximate decision will be later called
property testing; that is, approximate decision for a set S corresponds to testing the property S.

2.3 Property testing: sub-linear complexity

But why did we relax standard decision problems into approximate decision problems? The answer
is, as in the case of approximate search problems, that this is done in order to allow for more
efficient algorithms.

This answer is clear enough when the best known (or best possible) decision procedure requires
more than linear time, let alone when the original decision problem is NP-Hard. But property
testing deals also with properties that have linear-time algorithms. In these cases as well as in
the former cases, the relaxation to approximate decision suggests the possibility of sublinear-time
algorithms; that is, algorithms that do not even read their entire input. Such algorithms are
particularly beneficial when the input is huge (see Section 1.2).

The latter suggestion requires a clarification. Talking about algorithms that do not read their
entire input calls for a model of computation in which the algorithms have direct access to bits of
the input. Unlike in complexity theory, such a model is quite common in algorithmic research: It
is the standard RAM model. (For sake of abstraction, we will actually prefer to use the model of
oracle machines, while viewing the oracle as the input device.)

Except in degenerate cases (in which the decision problem is essentially insensitive to many bits
in the input), the relaxation to approximate decision seems necessary for avoiding the reading of
the entire input. For example, if S is the set of strings having even parity, then an exact decision
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procedure must read all the bits of the input (since flipping a single bit will change the decision),
but the approximate decision problem is trivial (since each n-bit string is 1/n-close to S). A more
interesting case is presented next.

The case of majority. Let MAJ = {x :
∑|x|

i=1 xi > |x|/2}. We shall show that the corresponding
approximate decision problem can be solved by a (randomized) poly(1/ǫ)-time algorithm, whereas
no sublinear-time (randomized) algorithm can solve the corresponding (exact) decision problem.
We shall also show that randomness is essential for the positive result.

Proposition 1 (a fast approximate decision procedure for MAJ): There exists a randomized O(1/ǫ2)-
time algorithm that decides whether x is in MAJ or is ǫ-far from MAJ.

As usual in the context of rqandomized algorithms, deciding means outputting the correct answer
with probability at least 2/3.

Proof: The algorithm queries the input x at m = O(1/ǫ2) uniformly and independently dis-
tributed locations, denoted i1, ..., im, and accepts if and only if the average value of these bits (i.e.,
∑

j∈[m] xij/m) exceeds (1 − ǫ)/2. In the analysis, we use the Chernoff Bound (or alternatively

Chebyshev’s Inequality)4, which implies that, with probability at least 2/3, the average of the
sample is within ǫ/2 of the actual average; that is,

Pri1,...,im∈[|x|]





∣

∣

∣

∣

∣

∣

m−1 ·
∑

j∈[m]

xij − |x|
−1 ·

|x|
∑

i=1

xi

∣

∣

∣

∣

∣

∣

≤ ǫ/2



 ≥ 2/3.

It follows that the algorithm accepts each x ∈ MAJ with probability at least 2/3, since
∑|x|

i=1 xi >
|x|/2. Likewise, it rejects each x that is ǫ-far from MAJ with probability at least 2/3, since |x|−1 ·
∑|x|

i=1 xi < 0.5− ǫ.

Proposition 2 (lower bound on decision procedures for MAJ): Any randomized algorithm that
exactly decides membership in MAJ must make Ω(n) queries, where n is the length of the input.

Teaching note: The following proof may be harder to follow than all other proofs in

this lecture, with the exception of the proof of Proposition 11, which is also a lower

bound. Some readers may prefer to skip these proof at the current time, and return to

them at a latter time (e.g., after the lecture on lower bounds). I prefer to keep the proofs

in place, but warn the readers not to stall at them.

Proof: For every n ∈ N, we consider two probability distributions: A distribution Xn that is
uniform over n-bit strings having Hamming weight ⌊n/2⌋+1, and a distribution Zn that is uniform
over n-bit strings having Hamming weight ⌊n/2⌋. Hence, Pr[Xn ∈ MAJ] = 1 and Pr[Zn ∈ MAJ] = 0.
However, as shown in Claim 2.1, a randomized algorithm that queries either Xn or Zn at o(n)
locations cannot distinguish these two cases with probabilistic gap that exceeds o(1), and hence
must be wrong on one of the two cases.

4Indeed, both inequalities are essentially equivalent when one seeks constant error probability. See discussion
in [27, Apdx. D.1.2.4].
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(Note that the randomized decision procedure must be correct on each input. The proof tech-
nique employed here shows that such a procedure fails even in the potentially simpler task of
distinguishing between some distribution of yes-instances and some distribution of no-instances.
Failing to distinguish these two distributions implies that the procedure errs with too large proba-
bility on at least one of these two distributions, which in turn implies that there exist at least one
input on which the procedure errs with too large probability.)

Claim 2.1 (indistinguishability claim): Let A be an algorithm that queries its n-bit long input at
q locations. Then, |Pr[A(Xn)=1]−Pr[A(Zn)=1]| ≤ q/n.

We stress that the claim holds even if the algorithm is randomized and selects its queries adaptively
(based on answers to prior queries).

Proof: It is instructive to view Xn as generated by the following random process: First i ∈ [n] is
selected uniformly, then y ∈ {0, 1}n is selected uniformly among the strings of Hamming weight
⌊n/2⌋ that have zero in position i, and finally Xn is set to y⊕ 0i−110n−i. Likewise, Zn is generated
by letting Zn ← y. (This is indeed a complicated way to present these random variables, but is
greatly facilitates the following analysis.)5 Now, observe that, as long as A does not query location
i, it behaves in exactly the same way on Xn and Zn, since in both cases it effectively queries the
same random y. The claim follows.

By the indistinguishability claim (Claim 2.1), if algorithm A queries its n-bit long input on less
than n/3 locations, then |Pr[A(Xn)=1]−Pr[A(Zn)=1]| < 1/3. Hence, either Pr[A(Xn)=1] < 2/3,
which means that A errs (w.p. greater than 1/3) on some x ∈ MAJ, or Pr[A(Zn)=1] > 1/3, which
means that A errs (w.p. greater than 1/3) on some z 6∈ MAJ. The proposition follows.

Proposition 3 (randomization is essential for Proposition 1): Any deterministic algorithm that
distinguishes between inputs in MAJ and inputs that are 0.5-far from MAJ must make at least n/2
queries, where n is the length of the input.

Proof: Considering an arbitrary deterministic algorithm that makes q < n/2 queries and accepts
all inputs in MAJ, we shall show that this algorithm also accepts the all-zero string, which is 0.5-far
from MAJ. Denoting this algorithm by A, consider the (unique) execution of A in which all queries
of A are answered by zero, and denote the set of queried locations by Q. We now consider two
different n-bit long strings that are consistent with these answers. The first string, denoted x, is
defined such that xj = 1 if and only if j 6∈ Q, and the second string is z = 0n. Note that x ∈ MAJ

(since wt(x) = n− q > n/2), which mandates A(x) = 1. It follows that A(z) = 1, since A behaves
identically on x and z, whereas z is 0.5-far from MAJ. Hence, any deterministic that makes q < n/2
queries fails to distinguish between inputs in MAJ and inputs that are 0.5-far from MAJ.

Digest. We have seen that sub-linear time algorithms for approximate decision problems exist
in cases in which exact decision requires linear time. The benefit of the former is significant when
the input is huge, although this benefit comes at the cost of having an approximate decision rather
than an exact one.

5See Exercise 2 for details.
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2.4 Symmetries and invariants

The proof of Proposition 1 reflects the well known practice of using sampling in order to estimate
the average value of a function defined over a huge population. The same practice applies to any
problem that refers to the statistics of binary values, while totally ignoring the identity of the
entities to which these values are assigned. In particular, this refers to symmetric properties (of
binary sequences), which are defined as sets S such that for every x ∈ {0, 1}∗ and every permutation
π over [|x|] it holds that x ∈ S if and only if xπ(1) · · · xπ(|x|) ∈ S.

Theorem 4 (testing symmetric properties of binary sequences): For every symmetric property (of
binary sequences), S, there exists a randomized algorithm that makes O(1/ǫ2) queries and decides
whether x is in S or is ǫ-far from S.

(The result can be generalized to symmetric properties of sequences over any finite alphabet.6

The result does not generalize to sequences over infinite alphabet. In fact, there exist (natural)
properties (see, e.g., [62, Sec. 5.5]) for which approximate decision requires an almost linear number
of queries (i.e., almost linear in the number of different elements in the sequence).)

Proof: The key observation is for every n there exists a set (of weights) Wn ⊆ {0, 1, ..., n} such
that for every x ∈ {0, 1}n it holds that x ∈ S if and only if wt(x) ∈Wn. (In the case of MAJ, the set
Wn is {⌊n/2⌋+1, ..., n}.) Hence, deciding whether x is in S or is ǫ-far from S reduces to estimating
wt(x) and comparing it to W|x|. Specifically, on input x, the algorithm proceeds as follows:

1. Queries the input x at m = O(1/ǫ2) uniformly and independently distributed locations,
denoted i1, ..., im, and computes the value v =

∑

j∈[m] xij/m.

2. Accepts if and only if there exists w ∈W|x| such that |v − (w/|x|)| ≤ ǫ/2.

Note that this step requires knowledge of |x| (as well as of the set W|x|) but no queries to
x; its computational complexity depends on the “structure” of W|x| (or, equivalently, on the
unary set S ∩ {1}∗).

As in the proof of Proposition 1, the analysis of this algorithm reduces to (1) noting that Pr[|v −
wt(x)/|x|| ≤ ǫ/2] ≥ 2/3, and (2) observing that the distance of x from S (i.e., δS(x) · |x|) equals to
minw∈W|x|

{|w − wt(x)|}.

Beyond symmetric properties. The focus of property testing is on asymmetric properties
(although there are exceptions, see for example [1]). By asymmetric properties we mean ones that
are not invariant under all permutation of the bit locations, although they may be invariant under
some (non-trivial) permutations. In the extreme case the property is not invariant under any non-
trivial permutation of the bit locations; that is, x ∈ S if and only if xπ(1) · · · xπ(|x|) ∈ S holds only
when π is the identity permutation. This is the case for the “sorted-ness” property discussed next.

We say that a string x ∈ {0, 1}∗ is sorted if xi ≤ xi+1 for every i ∈ [|x| − 1]. Denote the set of
sorted n-bit long strings by SORTEDn, and let SORTED = ∪n∈NSORTEDn. Although SORTEDn is not
invariant under any non-trivial permutation of [n], we present an O(1/ǫ)-time approximate decision
procedure for it.

6When generalizing the result to the finite alphabet Σ = {0, 1, .., t}, we consider the set (of frequency patterns)
Fn ⊆ ({0, 1, ..., n})t such that for every x ∈ Σn it holds that x ∈ S if and only if (wt1(x), ..., wtt(x)) ∈ Fn, where
wtj(x) = |{i∈ [n] : xi =j}. The generalized tester will approximate each wti(x) up to a deviation of ǫ/2t.
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Proposition 5 (a fast approximate decision procedure for SORTED): There exists a randomized
O(ǫ−1)-time algorithm, that decides whether a given string is in SORTED or is ǫ-far from SORTED.

(The set SORTED can be defined with respect to sequences over any set that is equipped with a total
order. This generalization will be considered in a subsequent lecture. We note that the algorithm
presented next does not extend to this general case; see [21, 24].)

Proof: On input x ∈ {0, 1}n, the algorithm proceeds as follows.

1. For F = {iǫn/2 : i ∈ [2/ǫ]}, query x at each j ∈ F .

Let us denoted the retrieved |F |-bit long substring by y; that is, y = xǫn/2xǫnx3ǫn/2 · · · xn.

2. Queries x at m = O(1/ǫ) uniformly and independently distributed locations, denoted i1, ..., im.

3. Accept if and only if the induced substring is sorted; that is, let m′ = |F |+ m and j1 ≤ j2 ≤
· · · ≤ jm′ such that {j1, ..., jm′} = F ∪ {ik : k ∈ [m]} (as multi-sets), and accept if and only if
xjk
≤ xjk+1

for every k ∈ [m′ − 1].

This algorithm always accepts any x ∈ SORTED, since any substring of such a sorted x is also sorted.
Now, suppose that x is ǫ-far from SORTEDn. We consider two cases:

Case 1: the |F |-bit long substring y retrieved in Step 1 is not sorted. In this case, the al-
gorithm rejects in Step 3, regardless of the values retrieved in Step 2.

Case 2: the |F |-bit long substring y retrieved in Step 1 is sorted. In this case, sorted strings
that are “consistent” with the |F |-bit long substring y = xǫn/2xǫnx3ǫn/2 · · · xn retrieved in
Step 1 are determined up to the assignment in a single interval of the form [tǫn/2, (t+1)ǫn/2],
where t is such that y = 0t1|F |−t. But since x is ǫ-far from SORTED, with high probability,
Step 2 chooses a location on which x differs from the determined value (i.e., the value as
determined for sorted strings). Details follow.

As stated above, in this case, there exists a t ∈ {0, 1, ..., |F |} such that y = 0t1|F |−t; that
is, xiǫ/2 = 0 if i ∈ [t] and xiǫ/2 = 1 if i ∈ [t + 1, |F |]. We say that a position j ∈ [n] is
violating if either j ∈ [tǫn/2] and xj = 1 or j ∈ [(t + 1)ǫn/2, n] and xj = 0. Note that
any violating position j (which is not in [tǫn/2, (t + 1)ǫn/2]) causes rejection at Step 3 (if
chosen in Step 2).7 On the other hand, there must be at least ǫn/2 violating positions, since
otherwise x is ǫ-close to SORTEDn (because we can make x sorted by modifying it at positions
V ∪ [tǫn/2, (t + 1)ǫn/2], where V denotes the set of violating positions). It follows that, in
this case, the algorithm rejects with probability at least 1− (1− ǫ/2)m > 2/3.

The proposition follows.

7In the first case (i.e., j ∈ [tǫn/2] and xj = 1) rejection is caused since xtǫn/2 = 0, whereas in the second case (i.e.,
j ∈ [(t + 1)ǫn/2, n] and xj = 0) rejection is caused since x(t+1)ǫn/2 = 1.
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Invariances (or symmetries) versus asymmetries. The properties MAJ and SORTED reside on
opposite extremes of the invariance-vs-asymmetry axis: MAJ is invariant under each permutation
of the domain [n], which is totally symmetric w.r.t MAJ, whereas SORTED refers to the domain [n]
as a totally ordered set (and admit no invariance except the trivial one). In subsequent lectures,
we shall see properties that are invariant under some non-trivial permutations but not under all
permutations; that is, these properties are invariant under a non-trivial subgroup of the group of all
permutations of [n]. Examples include low-degree multi-variate polynomials (which are invariant
under affine transformations of the domain) and graph properties (which are invariant under any
relabelling of vertex names).8

Indeed, while the role of symmetries in property testing is often highlighted (see, e.g., [60, 30]),
here we call attention to the fact that the focus of property testing is on properties that are not
fully symmetric (i.e., are somewhat asymmetric). In these cases, the testers and their analyses do
not reduce to estimating average values via a uniformly distributed sample.

2.5 Objects and representation

So far we have referred to the instances of the (approximate) decision problems as abstract in-
puts, but it is time to recall that the instances are actually objects and that the inputs represent
their description. The distinction between objects and their representation is typically blurred in
computer science; nevertheless, this distinction is important. Indeed, reasonable and/or natural
representations are always assumed either explicitly or implicitly (see, e.g., [27, Sec. 1.2.1]).9 The
specific choice of a reasonable and/or natural representation becomes crucial when one considers
the exact complexity of algorithms (as is common in algorithmic research), rather than their general
“ball park” (e.g., being in the complexity class P or not).

The representation is even more crucial in our context (i.e., in the study of property testing).
This is the case for two reasons, which transcend the standard algorithmic concerns:10

1. We shall be interested in sub-linear time algorithms, which means that these algorithms
query bits in the representation of the object. Needless to say, different representations mean
different types of queries, and this difference is crucial when one does not fully recover the
object by queries.

2. We shall be interested in the distance between objects (or, actually, in the distance between
objects and sets of objects), whereas this distance will be measured in terms of the distance
between their representations. In such a case, different representations of objects may yield
vastly different distances between the same objects.

8For advanced studies of the role of invariances in property testing see [60] and [30], focusing on algebraic and
combinatorial properties, respectively.

9For example, the computational problem that underlies the RSA cryptosystem is phrases as follows: Given
integers N, e and y, find x such that y ≡ xe (mod N). This computational problem is believed to be hard when
each of these integers is presented by its binary expansion, but it is easy when N is presented by its prime factorization.
Likewise, factoring integers is believed to be hard when the integer is presented by its binary expansion, but it is easy
when the integer is presented in unary (since this allows the solver to run in time that is exponential in the binary
representation of the integer). Indeed, these two examples refer to unnatural representations of the inputs.

10One obvious concern, which is common to standard algorithmic research, is that one should either state com-
plexities in terms of parameters of the object (e.g., the number of vertices and/or edges in a graph) or disallow overly
redundant representations when complexities are stated in terms of the representation length.
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To illustrate these concerns, suppose that the objects are represented by applying a good error
correcting code to their standard representation, where a good error correcting code is one of
constant relative distance and constant rate.11 (This is indeed a contrived representation, and it is
merely used to illustrate the above concerns.) Assuming that the code is efficiently decodable (even
just in the case when no error occurs), the difference between this representation and the standard
representation will have almost no impact on standard algorithmic research. In contrast, in such
a case, the representation of every two objects will be far apart, which means that approximate
decision (w.r.t this representation) will collapse to exact decision (w.r.t the objects). On the other
hand, it may be impossible to recover single bits in the original representation by probing the
codeword at a sub-linear number of locations.

In light of the above, when considering property testing, we always detail the exact represen-
tation of the objects. This representation will be presented either as a sequence, where the queries
correspond to locations in the sequence, or as a function with queries corresponding to the ele-
ments in its domain. These two presentations are clearly equivalent via the obvious correspondence
between sequences and functions (i.e., x = (x1, ..., xn) ∈ Σn correspond to f : [n] → Σ such that
xi = f(i) for every i ∈ [n]).

The choice of which presentation to use is determined either by the natural way we think of the
corresponding objects or by mere technical convenience. For example, when discussing m-variate
polynomials over a finite field F , it is natural to present them as functions from Fm to F . On the
other hand, when discussing the set of strings that are accepted by a fixed finite-state automaton,
it is natural to present them as sequences over {0, 1}.

The presentation of the object as a function is particularly appealing when the object has a
concise implicit representation as a device (say a Boolean or Arithmetic circuit) that can be invoked
on inputs of one’s choice. Actually, in such a case, the function is the explicit representation of the
object. On the other hand, when the object is a huge database that one can query at will, both
presentation seem equally appealing.

3 Notions, definitions, goals, and basic observations

Following the property testing literature, we shall refer to approximate decision algorithms by the
name “(property) testers”. Likewise, we shall talk about “properties” rather than about sets. That
is, a tester for property Π is an approximate decision algorithm for the set Π, where in both cases
we refer to the same notion of distance and to the same proximity parameter ǫ.

The basic notions, definitions, and goals of property testing will be presented in Section 3.1,
and will be used extensively throughout the entire lecture series (with very few exceptions). In
contrast, the ramifications discussed in Section 3.2 will be lightly used (if at all), and ditto for the
general observations made in Sections 3.4 and 3.5. In Section 3.3, we shall present another notion
that will be used quite a lot – that of a proximity-oblivious tester (POT).

3.1 Basics

The properties that we shall focus on are properties of functions, which represent objects that we
can probe by querying the function on the corresponding points. The size of the domain of these

11An error correcting code of relative distance γ ∈ (0, 1] and rate ρ ∈ (0, 1] is a mapping C : {0, 1}ρn → {0, 1}n

such that every two images of C are at relative Hamming distance at least γ.
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functions is a parameter, denoted n. Without loss of generality, we consider the domain [n]. The
range may also depend on n, and is denoted Rn. Hence, a property is a set Πn of functions from
[n] to Rn.

The inputs. For sake of algorithmic uniformity and asymptotic analysis12, we let n vary, and
consider testers for Π = ∪n∈NΠn, while providing these testers with the parameter n as explicit
input (i.e., the tester can read this input at no cost). Hence, the same algorithm (tester) is used for
all values of n. The main input of the tester is a function f : [n]→Rn, which is viewed as an oracle
to which the tester has a query access. Another explicit input that is given to the tester is the
proximity parameter, denoted ǫ. Indeed, this means that the tester is uniform across all possible
values of ǫ > 0.

These conventions make positive results more useful; when presenting (query complexity) lower
bounds, we will typically consider also non-uniform algorithms that may depend arbitrarily on n
and ǫ. Indeed, in exceptional cases, typically in lower bounds, we may consider testers that operate
only for some fixed value of the proximity parameter ǫ. We shall refer to such testers as ǫ-testers.

In some other cases, for the sake of usefulness, we may desire testers that are uniform across
other parameters of the property at stake. For example, when considering properties of graphs of
bounded degree, we should provide the tester with this degree bound. Likewise, when we consider
properties of functions defined over a finite field, we should provide the tester with a representation
of this finite field. (A more acute need for providing such an auxiliary input arises in the context
of massively parametrized properties.)13

Distance. In accordance with the discussion in Section 2, we consider the relative distance be-
tween functions, denoted δ. Specifically, for f, g : [n]→Rn, we let δ(f, g) = |{i∈ [n] : f(i) 6=g(i)}|/n;
that is,

δ(f, g)
def
= Pri∈[n][f(i) 6=g(i)], (1)

where i is uniformly distributed in [n]. For f : [n]→Rn and Π = ∪n∈NΠn such that Πn contains
functions defined over [n], we let δΠ(f) denote the distance of f from Πn; that is,

δΠ(f)
def
= min

g∈Πn

{δ(f, g)} (2)

where δΠ(f)
def
= ∞ if Πn = ∅.

Oracle machines. We model the testers as probabilistic oracle machines that access their main
input via queries. Hence, the output of such a machine, denoted T , when given explicit inputs n
and ǫ, and oracle access to f : [n]→Rn, is a random variable, denoted T f (n, ǫ). Indeed, for sake
of simplicity, we consider the basic case in which no auxiliary inputs of the aforementioned type

12By algorithmic uniformity we mean presenting a single algorithm for all instances of the problem, rather than
presenting a different algorithm per each value of the size parameter n (and/or the proximity parameter ǫ). By
asymptotic analysis we mean a functional presentation of complexity measures in terms of the size and proximity
parameters, while ignoring constant multiplicative factors (i.e., using the O(·) and Ω(·) notation).

13For example, one may consider the property of being isomorphic to an explicitly given graph, which is viewed as
a parameter. In this case, one graph is a parameter, while another graph (of the same size) is considered the main
input: the tester is given free access to the parameter, and oracle access (for which it is charged) to the main input.
See survey on massively parametrized problems [50].
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are given. We shall associate the output 1 (resp., 0) with the decision to accept (resp., reject) the
main input. We are now ready to present the main definition of property testing.

Definition 6 (a tester for property Π): Let Π = ∪n∈NΠn such that Πn contains functions defined
over [n]. A tester for Π is a probabilistic oracle machine, denoted T , that satisfies the following two
conditions.

1. T accepts inputs in Π: For every n ∈ N and ǫ > 0, and for every f ∈ Πn, it holds that
Pr[T f (n, ǫ)=1] ≥ 2/3.

2. T rejects inputs that are ǫ-far from Π: For every n ∈ N and ǫ > 0, and for every f : [n]→Rn

such that δΠ(f) > ǫ, it holds that Pr[T f (n, ǫ)=0] ≥ 2/3.

If the first condition holds with probability 1 (i.e., Pr[T f (n, ǫ) = 1] = 1), then we say that T has
one-sided error; otherwise, we say that T has two-sided error.

Indeed, the error probability of the tester is bounded by 1/3. As with the definition of BPP (and
coRP), the choice of the error bound is rather arbitrary as long as it is a constant smaller than
1/2; the error can be decreased by repeated application of the tester (while ruling by majority; see
Exercise 3). Specifically, by using t repetitions, the error can be reduced to exp(−Ω(t)).

Focus: query complexity. Our main focus will be on the query complexity of the tester, when
considered as a function of n and ǫ: We say that the tester has query complexity q : N× (0, 1]→ N

if, on input n, ǫ and oracle access to any f : [n]→ Rn, the tester makes at most q(n, ǫ) queries.
Clearly, any property can be tested in query complexity q(n, ǫ) = n. The first priority is to have
the query complexity be sub-linear in n, and the slower it grows with n, the better. The ultimate
goal, which is not always achievablele, is to have the query complexity be independent of n. We
shall also care about the dependence of the query complexity on ǫ, and in particular whether it is
O(1/ǫ), poly(1/ǫ) or worse.

The time complexity of the tester will be our secondary focus, although it is obviously important.
We shall say that a tester is efficient if its time complexity is almost linear in its query complexity.
As in algorithmic research, we allow standard manipulation of the symbols (i.e., elements of Rn) and
addresses (i.e., elements of [n]) at unit costs; for example, uniformly selecting i ∈ [n] or comparing
f(i) to v ∈ Rn are considered as performed in a single computational step.

Illustrating the foregoing terminology. Let us rephrase some of the results presented in
Section 2 using the forgoing terminology.

• Proposition 1: There exists a O(1/ǫ2)-time tester for MAJ.

• Proposition 3: Every deterministic tester (or even a deterministic 0.5-tester) for MAJ has query
complexity Ω(n).

• Theorem 4: Every symmetric property of Boolean functions can be tested in query complexity
O(1/ǫ2).

• Proposition 5: There exists a O(1/ǫ)-time one-sided error tester for SORTED.

14



Non-adaptivity. We also distinguish between adaptive and non-adaptive testers, where a tester
is called non-adaptive if it determines all its queries based on its explicit inputs and internal coin
tosses, independently of the specific function to which it is given oracle access. In contrast, an
adaptive tester may determine it i + 1st query based on the answers it has received to the prior i
queries. Note the all the aforementioned testers are non-adaptive.

A non-adaptive tester T can be de-composed into two modules, denoted Q and D, such that Q
uses the randomness r of T in order to generate queries i1, ..., iq , whereas D decides according to r
and the answers obtained; that is, T f (n, ǫ; r) = D(r, f(i1), ..., f(iq)), where (i1, ..., iq)← Q(n, ǫ; r).

Global versus local. Property testers of “low” query complexity give rise to a global-versus-
local phenomenon. In this case, a global property of the function f : [n]→Rn (i.e., its belonging to
Πn) is reflected by its “local behavior” (i.e., the pattern seen in the portion of f that is inspected
by the tester (as determined by the random outcome of its coin tosses)).14 This perspective is more
appealing when the tester is non-adaptive. In this case, and using the foregoing de-coupling, the
“local behavior” refers to the values of f on the points in the sequence (i1, ..., iq)← Q(n, ǫ; r), where
each choice of r corresponds to a different portion of [n]. This perspective is even more appealing
when the tester has one-sided error and its final decision (i.e., D(r, f(i1), ..., f(iq))) only depends
on the answers obtained (i.e., is independent of r).

Common abuses. When describing specific testers, we often neglect to mention their explicit
inputs (i.e., n and ǫ), which are always clear from the context. Likewise, even when we discuss
auxiliary parameters (like degree bounds for graphs or descriptions of finite fields), we neglect to
write them as explicit inputs of the tester. Finally, for simplicity, we often use Π rather than Πn,
even when we refer to inputs of length n. Likewise, we may define Π as a finite set consisting of
functions over a fixed domain [n] and a fixed range. In any case, unless explicitly stated differently,
the value of the size parameter n has to be thought of as generic (and ditto for the value of the
proximity parameter ǫ).

3.2 Ramifications

Recall that distance between functions (having the same domain [n]) was defined in Eq. (1) as the
probability that they disagree on a uniformly distributed point in their domain. A more general
definition may refer to the disagreement with respect to an arbitrary distribution Dn over [n]; that
is, we may have

δDn(f, g)
def
= Pri∼Dn [f(i) 6=g(i)], (3)

where i ∼ Dn means that i is distributed according to Dn. In such a case, for a “distribution

ensemble” D = {Dn}, we let δΠ,D(f)
def
= ming∈Πn{δDn(f, g)}. This leads to a definition of testing

with respect to an arbitrary distribution ensemble D, viewing Definition 6 as a special case in which
Dn is the uniform distribution over [n].

One step farther is to consider distribution-free testers. Such a tester should satisfy the foregoing
requirement for all possible distributions D, and it is typically equipped with a special device that
provides it with samples drawn according to the distribution in question (i.e., the distribution Dn

14Indeed, the portions of [n] observed when considering all possible outcomes of the tester’s randomness are likely
to cover [n], but the tester’s decision on a specific outcome depends only on the function’s values on the corresponding
portion of [n].
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used in the definition of distance). That is, a distribution-free tester for Π is an oracle machine
that can query the function f : [n]→Rn as well as obtain samples drawn from any distribution Dn,
and its performance should refer to δΠ,D(f) (i.e., the distance of f from Πn as measured according
to the distribution Dn).15 In such a case, one may consider both the tester’s query complexity and
its sample complexity.16

The aforementioned use of samples raises the question of what can be done, even with respect
to the uniform distribution, when the tester only obtains samples; that is, when it cannot query the
function on points of its choice. We call such a tester sample-based, and clarify that, when testing a
function f : [n]→Rn, this tester is given a sequence of f -labeled samples, ((i1, f(i1)), ..., (is, f(is))),
where i1, ..., is are drawn independently and uniformly in [n]. As we shall see in subsequent lectures,
the ability to make queries is very powerful: even when the queries are selected non-adaptively, they
may be selected to depend on one another. In contrast, a sample-based tester is quite restricted (i.e.,
it cannot obtain related samples), nevertheless it is desirable in many applications where obtaining
samples is far more feasible than obtaining answers to queries of one’s choice. (An extensive study
of sample-based testers was initiated by Goldreich and Ron [36].)

Testing distributions. A seemingly related, but actually different, notion is that of testing
properties of distributions. Here we do not test properties of functions (with respect to a distance
defined according to some distribution), but rather test properties of distributions, when given
samples drawn independently from a target distribution. Note that the formalism presented so
far does not apply to this notion, and a different formalism will be used. (The study of testing
properties of distributions was initiated by Batu et al. [8], and we shall devote a subsequent lecture
to it).

Tolerant testing. Getting back to the basic framework of Definition 6 and recalling some of
the settings discussed in Section 1.2, we note that a natural generalization of testing refers to
distinguishing between objects that are ǫ′-close to the property and objects that are ǫ-far from the
property, for parameters ǫ′ < ǫ. Indeed, standard property testing refers to the case of ǫ′ = 0,
and tolerant testing may be viewed as “tolerating” small deviation of the object from having the
property.17 (The study of tolerant testing properties of functions was initiated by Parnas, Ron,
and Rubinfeld [51].)

15Specifically, a distribution-free tester for Π is a probabilistic oracle machine, denoted T , such that for every n ∈ N

and every distribution Dn over [n], the following two conditions hold:

1. For every f ∈ Πn, it holds that Pr[T f,Dn(n, ǫ)=1] ≥ 2/3.

2. For every f : [n]→Rn such that δΠ,D(f) > ǫ, it holds that Pr[T f,Dn(n, ǫ)=0] ≥ 2/3.

In both items, T f,Dn(n, ǫ) denotes the output of T when given oracle access to f : [n] → Rn as well as access to
samples from Dn (and explicit inputs n and ǫ).

16In particular, one may also consider the case that the tester does not query the function on each sample obtained
from Dn; see [7].

17Tolerant testing is related to distance approximation, where no proximity parameter is given and the tester
is required to output an approximation (up to a given parameter) of the distance of the object to the property.
Typically, the term “tolerant testing” is used when the parameter ǫ′ is a fixed function of ǫ (e.g., ǫ′ = ǫ/2), and
“distance approximation” is used when one seeks an approximation scheme that is governed by an approximation
parameter (which corresponds to ǫ−ǫ′ when the sought approximation is additive and to ǫ/ǫ′ when it is multiplicative).
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Other distance measures. As stated above, almost all research in property testing focuses
on the distance measure defined in Eq. (1), which corresponds to the relative Hamming distance
between sequences. We already saw a deviation from this archetypical case in Eq. (3). Different
distance measures, which are natural in some settings, include the edit distance and the L1-distance.
(The study of property testing with respect to the edit distance was initiated by Batu et al. [9],
and a study of testing with respect to the Lp-distance was initiated by Berman, Raskhodnikova,
and Yaroslavtsev [13].)

3.3 Proximity-oblivious testers (POTs)

How does the tester use the proximity parameter?
In the examples presented in Section 2, the proximity parameter was used to determine the

number of queries. These testers were quite simple, and it was not clear how to decompose them
to repetitions of even simpler testers. Nevertheless, as we shall see in subsequent lectures, in many
cases such a decomposing is conceptually helpful. Furthermore, in many cases the basic testers do
not use the proximity parameter at all (see Proposition 8), but are rather repeated for a number
of times that depend on this parameter. This leads to the notion of a proximity-oblivious tester
(POT), which is defined next.

Below, we present a general notion of a POT, which allows two-sided error probability. The
notion of a one-sided error POT, obtained as a special case by setting the threshold τ = 1, emerges
much more naturally in applications in the sense that one may actually first think of a POT and
then get to a standard tester (as per Definition 6) from this POT. In contrast, two-sided error
POTs seem quite contrived, and may be viewed as an afterthought or as an exercise. Indeed, the
reader may want to focus on the one-sided error version (and just substitute τ by 1), at least in
first reading.

We stress that the POT does not obtain a proximity parameter as input, but its rejection
probability is a function of the distance of the tested object from the property. In the case of the
one-sided error version, the rejection probability is zero when the object has the property, and it
increases with the distance of the object from the property. In the case of the two-sided error
version, the rejection probability is at most 1− τ when the object has the property, and it increases
above 1− τ with the distance of the object from the property. In the following definition, we refer
to the acceptance probability of the POT, and state that it decreases below τ as a function of the
distance of the object from the property. The latter function is denoted ̺.

Definition 7 (Proximity Oblivious Testers): Let Π = ∪n∈NΠn such that Πn contains functions
defined over [n] (as in Definition 6). Let τ ∈ (0, 1] be a constant and ̺ : (0, 1]→ (0, 1] be monoton-
ically non-decreasing. A proximity-oblivious tester (POT) with threshold probability τ and detection
probability ̺ for Π is a probabilistic oracle machine, denoted T , that satisfies the following two
conditions.

1. T accepts inputs in Π with probability at least τ : For every n ∈ N and every f ∈ Πn, it holds
that Pr[T f (n)=1] ≥ τ .

2. T accepts inputs that not in Π with probability that decreases below τ as a function of their
distance from Π: For every n ∈ N and every f : [n]→ Rn that is not in Π, it holds that
Pr[T f (n)=1] ≤ τ − ̺(δΠ(f)).
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When τ = 1, we say that T has one-sided error.

Hence, f 6∈ Π is rejected with probability at least (1 − τ) + ̺(δΠ(f)). The postulate that ̺
is monotonically non-decreasing means that any function that is ǫ-far from Π is rejected with
probability at least (1− τ)+̺(ǫ); that is, if δΠ(f) > ǫ (and not only if δΠ(f) = ǫ), then f is rejected
with probability at least (1− τ) + ̺(ǫ).

Note that if τ < 1, then it is not necessarily the case that all f ∈ Π are accepted with the same
probability (e.g., τ); it may be that some are accepted with probability τ and others are accepted
with probability greater than τ (see [38]). We also mentioned that Definition 7 can be generalized
such that both the detection probability function ̺ and the threshold τ depend on n, but we shall
not use this generalization. Before making any additional comments, let us see an example of a
proximity-oblivious tester.

Proposition 8 (a two-query POT for SORTED): There exists a (one-sided error) proximity oblivious
tester for SORTED using two queries and having quadratic detection probability, where SORTED is as
in Proposition 5.

Proof: (Here it will be more convenient to view the input as a bit string.) On input n and oracle
access to x ∈ {0, 1}n, the tester selects uniformly i, j ∈ [n] such that i < j and accepts if and
only if xi ≤ xj. To lower-bound the detection probability of this tester, we consider an arbitrary

x ∈ {0, 1}n at distance δS(x) > 0 from S
def
= SORTED.

Observing that x′ = 0n−wt(x)1wt(x) is the sorted version of x, consider the disagreements between
x and x′. Specifically, let D1 denote the set of locations in the (n − wt(x))-bit long prefix of x
that hold 1’s (i.e., D1 = {i ∈ [n − wt(x)] : xi = 1}). Likewise, denote the set of locations in the
wt(x)-bit long suffix of x that hold 0’s by D0 (i.e., D0 = {i ∈ [n − wt(x) + 1, n] : xi = 0}), and
note that |D0| = |D1|. Now, on the one hand, δS(x) ≤ δ(x, x′) = (|D1| + |D0|)/n, which implies

that d
def
= |D1| ≥ δS(x) · n/2.18 On the other hand, for each pair (i, j) ∈ D1 × D0 it holds that

1 ≤ i < j ≤ n and xi = 1 > 0 = xj . Hence,

Pri,j∈[n]:i<j[xi > xj] ≥
|D1| · |D0|

(n
2

)

=
d2

n(n− 1)/2

>
(δS(x) · n/2)2

n2/2

= 0.5 · δ(x)2.

The proposition follows.

General observations about POTs. The query complexity of POTs is stated as a function
of n, and at times – as in Proposition 8 – their query complexity will be a constant (independent

18The fact that δS(x) ≥ d/n is not used here. This fact can be established by considering a matching between D1

and D0, and observing that any string in S must differ from x on at least one endpoint of each pair in the mattching.
We also mention that this lower bound is tight (e.g., consider the case of x = 0n−w−d1d0d1w−d).
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of n). All POTs we shall see in these lectures have one-sided error.19 Nevertheless, we observe
that the threshold constant in two-sided error POTs is immaterial, as long as it is not one: See
Exercise 4. More importantly, we show how to derive standard testers out of POTs, while noting
that for one-sided testers (resp., two-sided error) the resulting tester has query complexity that is
linear (resp., quadratic) in 1/̺:

Theorem 9 (deriving standard testers from POTs):

1. If Π has a one-sided error POT of query complexity q with detection probability ̺, then Π has
a one-sided error tester of query complexity q′ = O(q/̺).

2. If Π has a POT of query complexity q with threshold probability τ ∈ (0, 1) and detection
probability ̺, then Π has a tester of query complexity q′ = O(q/̺2).

The time complexity of the derived tester relates to that of the POT in a similar manner. If the
POT is non-adaptive, then so is the derived tester.

Proof: On input proximity parameter ǫ > 0, the standard tester invokes the POT for a number
of times that depends on ̺(ǫ). Specifically, if the POT has one-sided error, then the tester invokes
it for O(1/̺(ǫ)) times and accepts if and only if all invocations accepted. If the POT has threshold
probability τ ∈ (0, 1), then the tester invokes it for O(1/̺(ǫ)2) times and accepts if and only if at
least a τ − 0.5 · ̺(ǫ) fraction of the invocations accepted. The analysis of this tester reduces to
observing that a function that is ǫ-far from Π is accepted by the POT with probability at most
τ − ̺(ǫ) (whereas any function in Π is accepted with probability at least τ).20

Discussion. Note that the standard tester for SORTED obtained from the POT of Proposition 8
(by applying Theorem 9) is inferior to the tester of Proposition 5. This is not a singular case
(see [35]). Furthermore, some properties have good testers, but do not have good POTs; that is,
there exist natural properties that have poly(1/ǫ)-time testers but have no constant-query POTs.21

3.4 The algebra of property testing

In this section we show that natural classes of testable properties are closed under union but
not under intersection (and complementation). That is, if Π′ and Π′′ are testable within some
complexity bounds, then so is Π′ ∪Π′′ (up to a constant factor), but Π′ ∩Π′′ may be much harder
to test.22

19Rather contrived exceptions are presented in Exercises 5 and 6.
20The first assertion relies on the postulation that ̺ is monotonically non-decreasing. This postulate implies that

any function that is ǫ-far from Π (rather than only functions that are at distance exactly ǫ from Π) is rejected with
probability at least (1 − τ ) + ̺(ǫ).

21One such example is of testing bipartitness in the dense graph model: See [29] and [35], respectively. We would
certainly welcome a simpler example.

22This is a general result that refers to all possible Π′ and Π′′. In contrast, in some cases, both Π′∪Π′′ and Π′∩Π′′

may be much easier to test than Π′ and Π′′.
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Unions. The basic idea is that if Π′ and Π′′ are testable by algorithms T ′ and T ′′, respectively,
then one may test Π′∪Π′′ by invoking both testers and accepting if and only if at least one of these
invocations accepted. This procedure doubles the error probability of ordinary testers and squares
the detection probability of one-sided error POTs, so in the former case we should first apply error
reduction.

Theorem 10 (testing the union of properties):

1. If Π′ and Π′′ are each testable within query complexity q, then Π′∪Π′′ is testable within query
complexity O(q). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∪Π′′ has a 2q-query one-sided error POT with detection probability
̺2.

Furthermore, the time complexity is preserved up to a constant factor.

(Indeed, it is unclear how to handle the case of two-sided error POTs. The issue is that, in
this case, inputs in Π′ \ Π′′ may be rejected by the foregoing procedure with probability 1 − τ ,
where τ is the threshold probability, whereas inputs that are at distance δ from Π′ ∪ Π′′ may be
rejected with probability (1 − τ + ̺(δ))2. But for τ < 1 and sufficiently small δ > 0, it holds that
1−τ > (1−τ +̺(δ))2. In contrast, for τ = 1 and any δ > 0, it holds that 1−τ = 0 < (1−τ +̺(δ))2.)

Proof: By the hypothesis of Part 1, each of the two properties is testable within query complexity
q, but these testers may have error probability as large as 1/3. Hence, we first obtain corresponding
testers of error probability at most 1/6, by invoking each of the original testers for a constant number
of times. Combining the two resulting testers, as described above, we establish Part 1.

Turning to Part 2, we note that no error reduction is needed here; the claimed result follows
by merely lower-bounding the probability that both testers reject when the input is at distance δ
from Π′ ∪Π′′.

Hardness for testing. The negative results regarding intersection and complementation rely on
properties that are hard to test. For concreteness we start by presenting one such hardness result.

Proposition 11 (hardness of testing membership in a linear code): Let G be a 0.5n-by-n Boolean
matrix in which every 0.05n columns are linearly independent and every non-empty linear combi-
nation of the rows has Hamming weight at least 0.1n > 1. Let Π = {xG : x ∈ {0, 1}0.5n} be the
linear code generated by G. Then, 0.1-testing Π requires more than 0.05n queries.

The existence of a matrix G that satisfies the hypothesis can be proved using the probabilistic
method (see Exercise 8). The proof of Proposition 11 only uses the fact that every 0.05n columns
are linearly independent (and that there are 0.5n rows). The fact that the code has distance greater
than one will be used later (when using Π to show the negative result regarding complementation).

Teaching note: See teaching note following proposition 2. In short, some readers may

prefer to skip the following proof, and return to it at a latter time (e.g., after the lecture

on lower bounds).
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Proof: We shall use the following two observations.

Observation 1: An algorithm that makes 0.05n queries cannot distinguish the case that its input is
uniformly distributed in Π from the case that its input is uniformly distributed in {0, 1}n.

This is the case since, for a uniformly distributed x ∈ {0, 1}0.5n, each 0.05n-bit long subse-
quence of xG is uniformly distributed in {0, 1}0.05 (see Exercise 9).

Observation 2: All but 20.99n of the strings in {0, 1}n are 0.1-far from Π (see Exercise 10).

This follows by straightforward counting.

Observation 2 implies that a 0.1-tester must reject a uniformly distributed n-bit string with prob-
ability at least (1 − 2−0.01n) · 2/3 > 0.6. On the other hand, such a tester must acceptt any string
in Π with probability at least 2/3 (and so reject with probability at most 1/3). But Observation 1
asserts that no gap in the rejection probability is possible when making at most 0.05n queries.

Intersection (and complementation). Proposition 11 yields an example in which the com-
plexity of testing a property is vastly different from the complexity of testing its complement.
Specifically, consider the property Π′ = {0, 1}n \ Π, where Π is as in Proposition 11. Note that
every n-bit string is 1/n-close to Π′ (since each string in Π is surrounded by strings in Π′); hence,
testing Π′ is trivial (i.e., if ǫ ≥ 1/n, then we may accept the input without examining it at all, and
otherwise reading the entire input means making at most 1/ǫ queries). But, testing the complement
of Π′ (i.e., Π) is utmost hard (i.e., requires a linear number of queries)!

A small twist on the foregoing argument allows proving the following result.

Theorem 12 (testing the intersection of properties): There exist Π′ and Π′′ such that the following
holds:

1. Each of these two properties is testable within query complexity 1/ǫ; actually, they are each
testable with query complexity q such that q(n, ǫ) = 0 if ǫ ≥ 1/n and q(n, ǫ) = n otherwise.

2. Testing Π′∩Π′′ requires a linear number of queries; actually, 0.1-testing Π′∩Π′′ requires more
than 0.05n queries.

Proof: Starting with Π as in Proposition 11, we consider Π′ = Π ∪ {0x′ : x′ ∈ {0, 1}n−1} and
Π′′ = Π∪ {1x′ : x′ ∈ {0, 1}n−1}. Part 1 follows from the fact that every n-bit string is 1/n-close to
Π′ (resp., Π′′). Part 2 follows from the fact that Π′ ∩Π′′ = Π.

The case of monotone properties. We say that Π ⊆ {0, 1}∗ is monotone if for every x ∈ Π
and w ∈ {0, 1}∗ it holds that x ∨w = (x1 ∨ w1, ..., xn ∨ wn) is in Π; that is, Π is preserved under
resetting some bits to 1. We first note that the discrepancy between the complexity of testing a
property and the complexity of testing its complement is maintained also for monotone properties
(see Exercise 11). More importantly, in contrast to Theorem 12, we have

Theorem 13 (testing the intersection of monotone properties): Let Π′ and Π′′ be monotone prop-
erties.
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1. If Π′ and Π′′ are testable within query complexity q′ and q′′, respectively, then, for every
ǫ′ ∈ (0, ǫ), the property Π′ ∩ Π′′ is ǫ-testable within query complexity q(n, ǫ) = O(q′(n, ǫ′) +
q′′(n, ǫ− ǫ′)). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∩Π′′ has a 2q-query one-sided error POT with detection probability
̺′(δ) = ̺(δ/2).

Furthermore, the time complexity is preserved up to a constant factor.

Theorem 13 is generalized and abstracted in Exercise 12. A totally different case in which testability
is preserved under intersection is presented in the notes on testing dictatorship.

Proof: The basic idea is that if Π′ and Π′′ are testable by algorithms T ′ and T ′′, respectively, then
one may test Π′ ∩Π′′ by invoking both testers and accepting if and only if both these invocations
accepted.23 While this procedure fails for general properties, we show that it works for monotone
ones. The key observation is that if x is ǫ′-close to Π′ and ǫ′′-close to Π′′, then it is (ǫ′ + ǫ′′)-close
to Π′ ∩Π′′. This is shown next.

We first show that if Π ⊆ {0, 1}n is monotone, then, for every x ∈ {0, 1}n there exists w ∈
{0, 1}n such that x∨w ∈ Π and wt(w) ≤ δΠ(x) ·n. This is shown by observing that (by definition)
there exist w1, w0 ∈ {0, 1}

n such that wt(w1) + wt(w0) = δΠ(x) · n and (x ∨ w1) ⊕ w0 ∈ Π. Now,
by monotonicity, ((x ∨ w1) ⊕ w0) ∨ w0) ∈ Π, whereas ((x ∨ w1) ⊕ w0) ∨ w0) = x ∨ w1 ∨ w0 (since
(σ ⊕ τ) ∨ τ = σ ∨ τ for any σ, τ ∈ {0, 1}). The proof is completed by letting w = w1 ∨w0.

We then show that, for every x ∈ {0, 1}n it holds δΠ′∩Π′′(x) ≤ δΠ′(x) + δΠ′′(x). Let w′ (resp.,
w′′) be such that x∨w′ ∈ Π′ and wt(w′) ≤ δΠ′(x) · n (resp., x∨w′′ ∈ Π′′ and wt(w′′) ≤ δΠ′′(x) · n).
Now, by using monotonicity again, we have x ∨ w′ ∨ w′′ ∈ Π′ and x ∨ w′ ∨ w′′ ∈ Π′′, whereas
wt(w′ ∨ w′′) ≤ wt(w′) + wt(w′′). The theorem follows.

Warning: subsets and supersets. Recall that the complexity of decision problems does not
always decrease or increase when considering decision problems that correspond to subsets of the
original set.24 The same holds in the context of property testing: A trivial example can be obtained
by starting with Π as in Proposition 11, and considering ∅ ⊂ Π ⊂ {0, 1}n (or {0n} ⊂ Π ⊂
{0, 1}n \ {x} for any x ∈ {0, 1}n \Π).

3.5 Testing via learning

A general observation, which is rarely used, is that property testing reduces to learning. The reason
we shall not use this observation is that we typically seek testers that are more efficient than the
corresponding learners. Still, for sake of perspective, we detail the said connection.

To streamline the presentation, we use the terminology of Definition 6 in our definition of
learning. (In the learning literature the set Π is called a concept class, the functions f : [n]→ Rn

23In the case of two-sided error tester, this is done after reducing the error probability to 1/6. In any case, for
Part 1, the tester selects an appropriate ǫ′, and invokes the ǫ′-tester for Π′ and the (ǫ − ǫ′)-tester for Π′′.

24In contrast, a promise problem, (Syes, Sno), never becomes harder (resp., easier) when taking subsets (resp.,
supersets) of both Syes and Sno. The point is for S′ ⊂ S, moving from the promise problem (S, {0, 1}∗ \ S) to the
promise problem (S′, {0, 1}∗ \ S′) means moving the border between yes-instances and no-instances, rather than
omitting instances from the promise set (which equals {0, 1}∗ in both cases).

22



are called concepts, one usually focuses on Rn = {0, 1} and n = 2ℓ, and views ℓ as the main
parameter. More importantly, as in Definition 6 we provide the learner with oracle access to the
function (rather than with labeled examples as is standard in the learning literature), focus on the
uniform distribution (rather than on the distribution-free case), and fix the error probability to
equal 1/3 (rather than using an additional parameter).)25

Definition 14 (learning and proper learning for Π, following [63] and [52]): Let Π = ∪n∈NΠn

such that Πn contains functions defined over [n]. A learner for Π is a probabilistic oracle machine,
denoted L, such that for every n ∈ N and every f ∈ Πn, with probability at least 2/3, it holds that
Lf (n, ǫ) is a description of a function that is ǫ-close to f . If the output function always belongs to
Π, then we say that L performs proper learning.

Note that, in contrast to testing, nothing is required in case f is ǫ-far from Π (let alone when it
only holds that f 6∈ Π). On the other hand, and again in contrast to testing, when f ∈ Π, the
learner is required to output a function (called a hypothesis) that is ǫ-close to the target function
f (and not only say “yes”). When considering the computational complexity of the learner, one
typically requires that the learner outputs a concise representation of the function, and in case of
proper learning this representation should fit the prescribed representation of functions in Π.

We note that every Π can be properly learned within query complexity q(n, ǫ) = min(n,O(ǫ−1 log |Πn|)),
where the second bound follows by an algorithm that scans all possible h ∈ Πn and uses the same
sample of O(ǫ−1 log |Πn|) random points to estimate the distance between h and the target function
f (see Exercise 13). Such an estimation procedure is pivotal for establishing the following result.

Theorem 15 (learning implies testing): Let Π = ∪n∈NΠn be as in Definition 14, and suppose that
Π can be learned within query complexity q(n, ǫ). Then, Π can be tested within query complexity
q′(n, ǫ) = q(n, 0.3ǫ) + O(1/ǫ). Furthermore, if the learning algorithm is proper, runs in time t(n, ǫ)
and outputs descriptions of functions such that, with respect to that representation, evaluating these
functions and checking their membership in Π can be done in time T (n), then Π can be tested within
query complexity q′(n, ǫ) = q(n, 0.7ǫ)+O(1/ǫ) and time complexity t′(n, ǫ) = t(n, 0.7ǫ)+O(T (n)/ǫ).

We mention that similar results hold with respect to a variety of models including sample-based
learning and testing and distribution-free learning and testing. Note that in the case of non-
proper learning we invoke the learner with a proximity parameter that is strictly smaller than ǫ/2,
whereas in the case of proper learning we may use a proximity parameter that is larger than ǫ/2
(as long as it is strictly smaller than ǫ). More importantly, the stated bound on time complexity
(i.e., t′(n, ǫ) = t(n, 0.7ǫ) + O(T (n)/ǫ)) does not hold in the case of non-proper learning (see [29,
Sec. 3.2]).

Proof: On input f and proximity parameter ǫ, the tester proceeds as follows:

1. The tester invokes the non-proper (resp., proper) learner on f with proximity parameter 0.3ǫ
(resp., 0.7ǫ), obtaining a description of a hypothesis h : [n]→ Rn.

25The last deviation from the standard presentation of learning algorithm weakens the definition, since error-
reduction is not available in this context (akin the situation with randomized algorithms for search problems; cf. [27,
Sec. 6.1.2]). Specifically, if we invoke the learner t times and obtain hypotheses h1, ..., ht, then it is not clear how
to combine them in order to obtain (with probability 1 − exp(−|Omega(t))) a function that is ǫ-close to the target
function f .
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2. The tester checks whether h is 0.3ǫ-close to Πn (resp., is in Πn):

Case of non-proper learning: The tester checks whether h is 0.3ǫ-close to Πn, and if the answer
is negative it rejects.

This step requires no access to f , but it may require going over all functions in Πn and
comparing each of them to h.

(If f ∈ Πn, then, with probability at least 2/3, it holds that h is 0.3ǫ-close to Πn, but
otherwise noting is guaranteed.)

Case of proper learning: The tester checks whether h ∈ Πn, and if the answer is negative it
rejects.

This step can be implemented in time T (n), and requires no access to f .

(If f ∈ Πn, then, with probability at least 2/3, it holds that h ∈ Πn (since the learner is
proper), but otherwise noting is guaranteed.)

(If the tester did not reject, then it proceeds to the next step.)

3. The tester uses an auxiliary sample of O(1/ǫ) in order to estimate the distance between h
and f up to an additive term of 0.1ǫ, with error probability 0.1.

Case of non-proper learning: The tester accepts if and only if according to this estimate, the
distance between h and f is at most 0.5ǫ.

Case of proper learning: The tester accepts if and only if according to this estimate, the dis-
tance between h and f is at most 0.85ǫ.

(In the case of proper learning, the estimate is performed in time O(1/ǫ) · T (n).)

We start with the case of non-proper learning. If f ∈ Πn, then, with probability at least 2/3, the
hypothesis h is 0.3ǫ-close to f , and in this case, with probability at least 0.9, the tester will accept
(since h is 0.3ǫ-close to Πn and with high probability the estimated distance between h and f is
at most 0.4ǫ). On the other hand, if f is ǫ-far from Πn, then either h is 0.3ǫ-far from Πn or h is
0.7ǫ-far from f , and in the latter case, with probability at least 0.9, the tester will reject (since in
the later case and h is estimated to be 0.6ǫ-far from f).

We now turn to the case of proper learning. If f ∈ Πn, then, with probability at least 2/3, the
hypothesis h ∈ Πn is 0.7ǫ-close to f , and in this case, with probability at least 0.9, the tester will
accept (since h is estimated to be 0.8ǫ-close to f). On the other hand, if f is ǫ-far from Πn, then
either h 6∈ Πn or h ∈ Πn is ǫ-far from f , and in the latter case, with probability at least 0.9, the
tester will reject (since in the later case and h is estimated to be 0.9ǫ-far from f).

Hence, in both cases, the tester accepts any f ∈ Πn with probability at least (2/3) · 0.9 = 0.6,
and rejects any f that is ǫ-far from π with probability at least 0.9. By modifying the tester such that
it accepts obliviously from the input with probability 0.2, we obtain a tester than accepts functions
in Π with probability at least 0.2+0.8·0.6 > 2/3 and rejects ǫ-far functions with probability greater
than 0.9− 0.2 > 2/3.

4 Historical notes

Property testing emerged, implicitly, in the work of Blum, Luby and Rubinfeld [15], which presents,
among other things, a tester for linearity (or rather group homomorphism). This line of research
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was pursued in [26, 57], culminating in the work of Rubinfeld and Sudan [58], where the approach
was abstracted and captured by the notion of robust characterization.

The starting point of Rubinfeld and Sudan [58] is the observation that the (algebraic) properties
considered in [15, 26, 57] have a local characterization; that is, a function f has the property Π if
and only if the values assigned by f to every “admissible local neighborhood” satisfy some local
property. Hence, the definition of a local characterization specifies a set of local neighborhoods (i.e.,
O(1)-long sequences of elements in the function’s domain) as well as a local property (i.e., a set
of corresponding O(1)-long sequences of values that are admissible for each local neighborhood)26,
and f ∈ Π if and only if the values assigned by f to each local neighborhood satisfy the local
property.

A robust characterization is then defined as a local characterization in which the distance of a
function from the property is reflected by the number of local conditions that it violates. That is,
an (ǫ, ρ)-robust characterization of Π is a local characterization of Π such that every function that
is ǫ-far from Π violates at least a ρ fraction of the local conditions (i.e., the values assigned by f
to at least a ρ fraction of the local neighborhoods violate the local property).

As noted by Rubinfeld and Sudan [58], the existence of a (ǫ, ρ)-robust characterization of Π
implies an ǫ-tester for Π, which samples 2/ρ random neighborhoods, queries the function values
at the corresponding points, and accepts if and only if the corresponding local conditions are all
satisfied. Note that the resulting tester is non-adaptive and has one-sided error.

A general and systematic study of property testers was initiated by Goldreich, Goldwasser, and
Ron [29]. Their notion of a tester allows for adaptive queries and two-sided error probability, while
viewing non-adaptivity and one-sided error as special cases. The bulk of [29] focuses on testing
graph properties (see [29, Sec. 5-10]), but the paper also contains general results (see [29, Sec. 3-4]).
It is worthy mentioning that their main point of reference was the model of PAC learning.

The work of Goldreich, Goldwasser, and Ron [29] advocated viewing property testing as a new
type of computational problems, rather than as a tool towards program checking [14] (as viewed
in [15]) or towards the construction of PCP systems (see below). The instances of these problems
were viewed as descriptions of objects and their representation as functions became a non-obvious
step, which required justification. For example, in the case of testing graph properties, the starting
point is the graph itself, and its representation as a function is an auxiliary conceptual step.27

The distinction between objects and their representations became more clear when alternative
representations of graphs were studied in [32, 33, 44]. At this point, query complexity that is
polynomially related to the size of the object (e.g., its square root) was no longer considered
inhibiting. This shift in scale is discussed next.

Initially, property testing was viewed as referring to functions that are implicitly defined by
some succinct programs (as in the context of program checking) or by “transcendental” entities
(as in the context of PAC learning). From this perspective the yardstick for efficiency is being
polynomial in the length of the query, which means being polylogarithmic in the size of the object.
However, when viewing property testing as being applied to (huge) objects that may exist in explicit
form in reality, it is evident that any sub-linear complexity may be beneficial.

26Alternatively, the local property may be defined as a set of pairs, where each pair consists of a local neighborhood
and a corresponding sequence of values.

27In [29] graphs are represented by their adjacency relation (or matrix), which is not overly redundant when dense
graphs are concerned. In contrast, in [32] bounded-degree graphs are considered and they are represented by their
sequence of incidence lists.
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Proximity Oblivious Testers. The notion of (one-sided error) proximity oblivious testing is
implicit in many works, starting with [15]. Its systematic study was initiated by Goldreich and
Ron [35]. The notion of two-sided error proximity oblivious testing was defined and studied in [38].

Ramifications. Property testing with respect to general distributions as well as distribution-free
testing, sample-based testing, and tolerant testing were all mentioned in [29, Sec. 2]. However, the
focus of [29] as well as of almost all subsequent works was on the basic framework of Definition 6
(i.e., using queries in testing w.r.t the uniform distribution). An explicit study of the various
ramifications started (later) in [41, 36, 51], respectively.

The PCP connection. All known PCP constructions rely on testing codewords of some code.
In the “first generation” of PCP constructions (i.e., [5, 6, 23, 4, 3]), the relevant codes were the
Hadamard code and (generalized) Reed-Muller codes, which led to the use of linearity testers and
low-degree tests, respectively. In the “second generation” of PCP constructions (e.g., [10, 42, 43]),
the use and testing of the long-code (suggested for these applications by [10]) became pivotal.28

Some works that belong to the “third generation” of PCP constructions return to (generalized)
Reed-Muller codes (e.g., [39, 11, 48, 18]), whereas for some (e.g., [17]) any “basic PCPP” will
do.29 In all cases, codeword testing is performed by using a constant number of queries, and the
corresponding codes are called locally testable. A systematic study of such codes has been initiated
in [39], and the subject will be treated is a subsequent lecture.

5 Suggested reading and exercises

Needless to say, this lecture series will only cover a tiny fraction of the research in the area of
property testing, let alone research in areas that are closely related to it. Several surveys of
property testing and sub-areas of it have appeared in the past. A collection of such surveys appears
in [28], which contains also some examples of contemporary research (dated 2010). Two more
extensive surveys were written by Ron [55, 56]: The first offers a computational learning theoretic
perspective [55], and the second is organized according to techniques [56].

Most current research in property testing is listed and annotated in the Property Testing Review
(http://ptreview.sublinear.info/). (This is a good opportunity to thank the moderators, Eric
Blais, Sourav Chakraborty, and C. Seshadhri, for their service to the property testing community.)
Some works of complexity theoretic flavor are also posted on ECCC (http://eccc-preview.hpi-web.de/).

The benefit of adaptivity. One natural question regarding property testing refers to the benefit
of adaptive queries over non-adaptive ones. Indeed, the same question arises in any query-based

28Our periodicity scheme defines the first generation of constructions as those culminating in the (original proof
of the) PCP Theorem [4, 3], and the second generation of constructions as focused on optimizing parameters of
the (binary) query complexity (e.g., [10, 42, 43, 59]). The works of the “third generation” tend to focus on other
considerations such as proof length (e.g., [39, 11]), combinatorial constructions (e.g., [19, 17]), and lower error via
few multi-valued queries (e.g., [48, 18]). Actually, the second generation should be characterized as focusing on the
optimization of the “inner verifier” (while relying on an “outer verifier” derived by applying the Parallel Repetition
Theorem [54] to a two-prover system derived from the PCP Theorem), whereas works of the third generation also pay
attention to the construction of the “outer verifier” (placing works such as [20, 45, 47, 46] in the third generation).

29In her alphabet reduction, Dinur [17] can use any “PCP of Proximity” (as defined in [11, 19]) for membership in
a code of constant relative distance.
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model. Adaptive queries can always be emulated at exponential cost; that is, q adaptive queries to
a function f : [n]→R can be emulated by less than |R|q non-adaptive queries.30 The question is
whether a cheaper emulation is possible. Within the context of property testing, the answer seems
to vary according to the type of properties. Types of properties for which the emulation has no
overhead are shown in [12, 24]. In the context of graph properties, the answer varies according to
the specific model: See [40, 34] versus [53].

One-sided versus two-sided error. Another natural question regarding property testing refers
to the difference between one-sided and two-sided error probability. Needless to say, the same
question arises in any model of probabilistic computation (see, for example, BPP-versus-RP).
Interestingly, in the context of property testing, a huge gap may exist between these two versions.
For example, Proposition 1 asserts an O(1/ǫ2)-time tester of two-sided error probability for MAJ,
whereas any one-sided error tester for MAJ must make a linear number of queries (see Exercise 7).
Gaps exist also in models of testing graphs properties (see the results regarding ρ-Clique in [29]
and the results regarding cycle-freeness in [32, 16]).

We mention that the “reverse type of one-sided error” testing, where the tester is required to
always reject (i.e., reject with probability 1) objects that are far from the property, has not been
studied for a good reason (see [61, Prop. 5.6]).

Hierarchy. Complexity hierarchies are known in many computational models (see, for example,
the classical computational complexity hierarchies [27, Chap. 4]). It turns out that such hierarchies
(i.e., query hierarchies) exist also in property testing [31].

Basic Exercises

The following exercises detail some claims that were made in the main text.

Exercise 1 (details for the proof of Proposition 1): Use the Chernoff Bound (or alternatively
Chebyshev’s Inequality) to prove that the average value of the sample points approximates the aver-
age value of all xi’s. The details involve defining m random variables, and using the aforementioned
inequality.

Exercise 2 (details for the proof of Claim 2.1): Prove that Xn (resp., Zn) as redefined in the proof
of Claim 2.1 is uniformly distributed over n-bit strings of Hamming weight ⌊n/2⌋+1 (resp., ⌊n/2⌋).

Guideline: A crude solution amounts to computing the probability mass given to each string ac-
cording to each of the definitions. A nicer solution is to show that the redefined processes yield
output distributions that are symmetric with respect to the indices.

Exercise 3 (error reduction for testers): Show that the error probability of a property tester can
be reduced to 2−k at the cost of increasing its query (and time) complexity by a factor of O(k), and
while preserving one-sided error.

30This is done by trying all possible answers to the previous queries, which defines a full |R|-ary tree of depth q− 1
with vertices at distance i from the root representing possible sequences of i answers to the first i queries. Since each
such sequence of answers determines the i + 1st query in the corresponding execution, the number of queries equals
the number of vertices in this tree (i.e.,

Pq−1
i=0 |R|i). Alternatively, the number of queries can be preserved at the cost

of decreasing the distinguishing gap of the tester by the said factor.
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Guideline: Invoke the original tester t times, while using independent randomness in each invoca-
tions, and accept if and only if the majority of these invocations accepted. The analysis reduces to
showing that if we repeat an experiment that succeeds with probability 2/3 for t times, then, with
probability 1− exp(−Ω(t)), the majority of the trials succeed.

Exercise 4 (on the threshold probability of POTs): Show that, for every τ ∈ (0, 1] and τ ′ ∈ (0, 1),
and for every ρ : (0, 1]→ (0, 1] and q : N→ N, if Π has a q-query POT with threshold probability τ
and detection probability ̺, then Π has a q-query POT with threshold probability τ ′ and detection
probability ̺′ = Ω(̺).

Guideline: Consider a POT that invokes the given POT with probability p (to be determined), and
accepts (or rejects) otherwise.

Exercise 5 (a two-sided error POT for MAJ): Show that the following algorithm constitutes a two-
sided error POT with linear detection probability for MAJ. For odd n, on input x ∈ {0, 1}n, the
algorithm selects uniformly i ∈ [n], and outputs xi. For even n, a small modification is required so
that we can still use the threshold probability τ = 1/2.

Guideline: The probability that x is accepted is wt(x)/|x|. For an even n, reducing the acceptance
probability by a factor of 1− n−1 will do, since (1− n−1) · (0.5 + n−1) ≥ 0.5.

Exercise 6 (a less trivial two-sided error POT): Since the example provided by Exercise 5 is quite
disappointing, we consider the following set BAL = {x : wt(x) = |x|/2} (of “balanced” strings).
Show that the following algorithm constitutes a two-sided error POT with threshold probability 0.5
and quadratic detection probability for BAL. On input x ∈ {0, 1}∗, the algorithm selects uniformly
i, j ∈ [n], and accepts if and only if xi 6= xj. Note that the same algorithm constitutes a POT
also for Sc = {x : c · |x| ≤ wt(x) ≤ (1 − c) · |x|}, for every constant c ∈ (0, 0.5), but the threshold
probability and the detection probability are different in this case.

Guideline: The probability that x is accepted equals 2wt(x) · (|x| − wt(x))/|x|2, which is smaller
than 1/2 if and only if wt(x) 6= |x|/2. In the case of Sc, the threshold probability is 2c(1− c), and
the detection probability function is linear.

Exercise 7 (on one-sided error testers for MAJ): Prove that MAJ has no one-sided error tester of
sub-linear query complexity.

Guideline: Consider an arbitrary sub-linear algorithm T and an execution (i.e., selection of random-
ness for T ) in which T rejects the string 0n, which is 0.5-far from MAJ. (Such an execution exists
since Pr[T 0n

(n, 0.5)=0] ≥ 2/3 > 0.) Denoting by Q the set of locations queried in this execution,
consider the string x such that xi = 0 if and only if i ∈ Q, and note that Pr[T x(n, ǫ)=1] < 1. On
the other hand, if |Q| < n/2, then x ∈ MAJ.

Exercise 8 (the existence of good linear codes): Show that there exists a 0.5n-by-n Boolean matrix
in which every 0.05n columns are linearly independent and every non-empty linear combination of
the rows has Hamming weight at least 0.1n.

Guideline: Using the probabilistic method (see [2]), upper-bound the probability that a random
matrix does not satisfy the foregoing conditions.
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Exercise 9 (detail for the proof of Proposition 11): Let G be an m-by-n Boolean matrix in which
every t columns are linearly independent. Prove that for a uniformly distributed x ∈ {0, 1}m, each
t-bit long subsequence of xG is uniformly distributed in {0, 1}t.

Guideline: Consider the corresponding m-by-t matrix G′, and note that each image of the map
x 7→ xG′ has 2m−t preimages.

Exercise 10 (another detail for the proof of Proposition 11): Let G be an 0.5n-by-n Boolean
matrix. Prove that, for sufficiently large n, the number of n-bit strings that are 0.1-close to {xG :
x ∈ {0, 1}0.5n} is at most 20.99n.

Exercise 11 (the testability of monotone properties is not closed under complementation): Show
that there is a monotone property Π such that testing Π is trivial (any n-bit string is 1/n-close to
Π), but 0.001-testing {0, 1}∗ \ Π requires a linear number of queries.

Guideline: Let G′ be a 0.05n-by-(n− 1) Boolean matrix in which every 0.001n columns are linearly
independent and every non-empty linear combination of the rows has Hamming weight at least 0.1n.
Let Π′ = {xG′ : x ∈ {0, 1}0.05n \ {00.05n} and Π′′ = {w′ ∨w′′ : w′ ∈ Π′ ∧w′′ ∈ {0, 1}n−1}; that is, Π′

is the linear code generated by G′ with the exception of the all-zero string, and Π′′ is its “monotone
closure”. Letting Π = {0, 1}n \ {1w : w ∈ Π′′}, note that each string is 1/n-close to Π, whereas
{0, 1}n \ Π = {0w : w ∈ Π′′} is hard to test.31 The latter claim is proved by showing (analogously
to the proof of Proposition 11) that the uniform distribution on Π′ is perfectly indistringuishable
(by 0.05n queries) from the uniform distribution on {0, 1}n−1, and observing that |Π′′| ≤ 20.9n · |Π′|.

Exercise 12 (generalization of Theorem 13): Let Π′ and Π′′ be properties of functions defined over
the same domain, D.

1. Prove that if, for every f : D → {0, 1}∗, it holds that δΠ′∩Π′′(f) ≤ δΠ′(f) + δΠ′′(f), then,
for every ǫ′ ∈ (0, ǫ), the property Π′ ∩ Π′′ is ǫ-testable within query complexity q(n, ǫ) =
O(q′(n, ǫ′)+q′′(n, ǫ−ǫ′)), where q′ and q′′ denote the query complexities of testing the properties
Π′ and Π′′, respectively.

2. Show that if Π′ and Π′′ are monotone properties, then δΠ′∩Π′′(f) ≤ δΠ′(f) + δΠ′′(f) holds for
any function f .

3. Generalizing Part 1, supopose that for F : (0, 1] × (0, 1] → (0, 1] it holds that δΠ′∩Π′′(f) ≤
F (δΠ′(f), δΠ′′(f)), for every f . Show that, for every ǫ > 0, if F (ǫ′, ǫ′′) ≤ ǫ, then the property
Π′ ∩Π′′ is ǫ-testable within query complexity O(q′(n, ǫ′) + q′′(n, ǫ′′)).

4. Show that a function as in Part 3 does not exist for the properties used in the proof of
Theorem 12.

Guideline: Parts 1–3 are implicit in the proof of Theorem 13. Part 4 can be proved either by direct
inspection of these properties or by arguing that the contrary hypothesis contradicts Theorem 12.

Exercise 13 (a generic learning algorithm): Show that every Π = ∪n∈NΠn can be properly learned
within query complexity q(n, ǫ) = min(n,O(ǫ−1 log |Πn|)).

31Indeed, Π is anti-monotone, so one may consider {1n ⊕ w : w ∈ Π} instead.

29



Guideline: The key observation that a sample of O(t/ǫ) random points allows for approximating
the distance between two functions up to an additive term of ǫ/2 with error probability 2−t. The
bound of O(ǫ−1 log |Πn|) follows by observing that the same sample can be used to estimate the
distance of each h ∈ Πn to the target function f , and applying a union bound.

Additional Exercises

The following exercises present a few useful observation regarding oracle machines in general.

Exercise 14 (straightforward emulation of adaptive queries): Show that the execution of any oracle
machine that makes q (possibly adaptive) queries to an unknown function f : [n] → R, can be
emulated by a non-adaptive machine that makes at most

∑q−1
i=0 |R|

i queries.

Guideline: Fixing the internal coin tosses of the machine, consider a tree that describes all its possible
q-long sequences of queries, where the vertices correspond to queries and the edges correspond to
possible answers.

Exercise 15 (upper bound on the randomness complexity of oracle machines):32 Let Π be a
promise problem regarding functions from [n] to R, where ǫ-testing a property of such functions
is a special case (in which the yes-instances are function having the property and the no-instances
are function that are ǫ-far from the property). Suppose that M is a randomized oracle machines
that solves the problem Π with error probability at most 1/4, while making q queries. Assuming that
n is sufficiently large, show that Π can be solved by a randomized oracle machines that makes at
most q queries, tosses at most log n + log log |R| coins, and has error probability at most 1/3. Note
that the randomness-efficient machine derived here is not necessarily computationally-efficient.

Guideline: Suppose that M tosses r coins, and observe that the number of possible functions that
M is required to decide about is at most |R|n. Using the probabilistic method, show that there
exists a log2 O(|R|n)-set S ⊆ {0, 1}r , such that for every function f : [n]→ R it holds that

|Prω∈S [Mf (ω) = 1]−Prω∈{0,1}r [Mf (ω) = 1]| < 1/12.

Then, a randomness-efficient machine may select ω uniformly in S, and emulate M while providing
it with ω (as the outcome of the internal coin tosses used by M).

Exercise 16 (on the tightness of the bound provided in Exercise 15):33 Let Π be a promise problem
regarding functions from [n] to R. We say that Π is ρ-evasive if there exists a function f : [n]→ R
such that for every Q ⊂ [n] of density ρ, there exists a yes-instance (of Π) denoted f1 and a no-
instance denoted f0 such that for every x ∈ Q it holds that f1(x) = f0(x) = f(x). Show that if a
ρ-evasive Π can be decided (say, with error probability 1/3) by an oracle machine M that makes q
queries, then this machine must toss at least log2(ρn/q) coins. Note that for many natural properties
and for sufficiently small constant ǫ > 0, the problem of ǫ-testing the property is Ω(1)-evasive.34

32Based on [37].
33Based on [37].
34A partial list includes sets of low degree polynomials, any code of linear distance, monotonicity, juntas, and

various graph properties. Indeed, this list is confined to examples that will appear in subsequent lectures.
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Guideline: Suppose that M tosses r coins, and let f be a function as in the ρ-evasive condition.
Consider all 2r possible executions of Mf , and let Q denote the set of queries made in these
executions. Then, |Q| ≤ 2r · q. On the other hand, |Q| > ρ · n, since otherwise these executions
cannot distinguish f0 from f1 (since all these executions will only query locations in Q).

6 Digest: The most important points

Given that the notes for this lecture are quite long, it seems good to list some of the points that
will be instrumental for the subsequent lectures. Needless to say, the definition of a property tester
(i.e., Definition 6) is pivotal for all that follows. The notion of a proximity oblivious tester (see
Definition 7) will also be used a lot (sometimes only implicitly). Two important points that underly
the study of such testers are:

• Representation. The tested objects will be (typically) represented in a natural and concise
manner, and n will denote their size. They will be presented either as sequences over an
alphabet Σ (e.g., x ∈ Σn) or as functions from [n] to Σ (i.e., in such a case we consider
x : [n]→ Σ).

Indeed, here we seized the opportunity to present these notions while referring to an arbitrary
alphabet rather than only to the binary alphabet (i.e., Σ = {0, 1}), as done in previous
sections.

• The (standard) notion of distance. For x, y ∈ Σn, we consider their relative Hamming distance,

denoted δ(x, y)
def
= |{i ∈ [n] : xi 6= yi}|/n. For x ∈ Σn and S ⊆ Σn, we denote by δS(x)

the relative Hamming distance of x from S; that is, δS(x) is the minimum, taken over all
z ∈ S ∩ {0, 1}|x|, of δ(x, z).

We shall say that x is ǫ-far from S if δS(x) > ǫ, and otherwise (i.e., when δS(x) ≤ ǫ) we
shall say that x is ǫ-close to S. Indeed, typically, ǫ will denote a proximity parameter, which
determines what is considered far.

Our main focus will be on the query complexity of standard testers (i.e., as in Definition 6), measured
in terms of the size of the tested object, denoted n, and the proximity parameter, denoted ǫ. The
first priority is to have query complexity that is sub-linear in n, and the slower this complexity
grows with n, the better. At times, especially when discussing lower bounds, we may fix the value
of the proximity parameter (i.e., set ǫ to be a small positive constant), and consider the complexity
of the residual tester, called an ǫ-tester, as a function of n only. The ultimate goal, which is not
always achievable, is to have the query complexity be independent of n. We shall also care about
the dependence of the query complexity on ǫ, and in particular whether it is O(1/ǫ), poly(1/ǫ), or
worse.

The time complexity of the tester will be our secondary focus, although it is obviously important.
We shall say that a tester is efficient if its time complexity is almost linear in its query complexity.

The forgoing refers to standard testers (i.e., as in Definition 6). In contrast, the complexity of
proximity-oblivious testers (as in Definition 7) will only depend on n, and their rejection probability
is related to the distance of the object from the property. The latter relation is captured by a
monotonically non-decreasing function, typically denoted ̺. As shown in Theorem 9, a proximity-
oblivious tester yields an ordinary tester by repeating the former for O(1/̺c(ǫ)) times, where c = 1
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in case of one-sided error testing (and c = 2 otherwise), and ǫ is the proximity parameter. This
brings us to the last point in this section.

• One-sided error probability refers to the case that the tester always accepts any object that has
the property, but may accept with bounded probability objects that are far from the property
(which means that it errs with some bounded probability).35 General testers (a.k.a two-sided
error testers) may err, with bounded probability, both in the case the object has the property
and in the case it is far from the property.
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