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Summary: Let F be a finite field of prime cardinality, and let d < |F|/2 and m ∈ N.
These notes present a low-degree tester that, given oracle access to a function f : Fm →
F , queries the function at d + 2 points and satisfies the following conditions:

1. If f is an m-variate polynomial of (total) degree d, then the tester accepts with
probability 1.

2. If f is δ-far from the set of m-variate polynomials of (total) degree d, then the
tester rejects with probability at least min(0.5δ,Ω(d−2)).

The sequence of queries is generated by selecting at random x and h uniformly in Fm,
and using x + ih as the ith query.

These notes are based on the work of Rubinfeld and Sudan [18]; specificlally, Section 4 is based
on [18, Sec. 4], whereas Section 3 is based on [18, Apdx.].

1 A brief introduction

Polynomials of bounded individual degree and of bounded total degree are the most natural classes
of functions over the vector space Fm, where F is a finite field and m ∈ N. Indeed, such polynomials
are ubiquitous in this context, and linear functions over F are an important special case.

For a finite field F and any m ∈ N, any function f : Fm → F can be written as a polynomial of
individual degree |F| − 1; that is, as a polynomial that has degree at most |F| − 1 in each variable,
and hence has total degree m · (|F|−1) (see Exercise 1). Hence, one may say that f is a low degree
polynomial if it has degree that is specifically lower than that. Specifically, in this chapter, we
call f a low degree polynomial if it has (total) degree at most d, where d < |F|/2 is a parameter.
Testing whether a function is a low degree is a natural computational problem, which has direct
applications to several areas of the theory of computation, most notably to the design of PCPs and
error correcting codes.

Notation: Fixing a finite field F and an integer m, we often distinguish m-dimentional vectors
over F from elements of F by overlining the former. In particular, ev denotes the scalar multipli-
cation of the vector v ∈ Fm by the scalar e ∈ F ; that is, if v = (v1, ..., vm), then ev = (ev1, ..., evm).
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2 A kind of intuition (which may be skipped)

In this section, we attempt to provide some intuition for the construction of low degree tests. We
start with the univariate case, and then move to the multivariate case.

2.1 The univariate case

For d ≪ |F|, a natural way of testing whether f : F → F is a (univariate) polynomial of degree
(at most) d is to check that the values of f at d + 2 distinct random points match some degree d
polynomial. Before analyzing this tester, note that it uses d + 2 queries to the function f , whereas
the size of the field F may be much larger. Note that this tester can be viewed as first finding (by
extrapolation) the (unique) degree d polynomial that fits the values of f on the first d + 1 points,
and then checking that this polynomial agrees with f on the d + 2nd point.

The analysis of this tester relies on the fact that the distance of f from the set of polynomials of
degree d is upper-bounded by the distance of f to the (unique) degree d polynomial f ′ that fits the
values of f on the first d + 1 points. Now, since the d + 2nd point is uniformly distributed among
the other |F| − (d + 1) points of F , it follows that this point hits a point of disagreement (between

f and f ′) with probability at least δ(f,f ′)·|F|
|F|−(d+1) > δ(f, f ′), which is at least the distance of f from

being a polynomial of degree d. (Indeed, the foregoing analysis is oblivious of the distribution of
the first d + 1 points, which may even be fixed; it only requires that the d + 2nd point is uniformly
distributed (conditioned on the prior points).)

An alternative low degree test. Confining ourselves to the case of finite fields of prime cardi-
nality (where the field F consists of the set Z|F| = {0, 1, ..., |F|−1} with addition and multiplication
modulo |F|), we consider an alternative low degree test (for the univariate case), since this test
will be implicitly used later. The tester selects uniformly r, s ∈ F , and checks that the values of f
at r, r + s, ..., r + (d + 1) · s match some degree d polynomial. For starters, one can show that, for
any s 6= 0, it holds that f is a degree d polynomial if and only if for every r ∈ F the values of f at
r, r + s, ..., r + (d + 1) · s match some degree d polynomial.1 But how does the rejection probability

of this tester relate to the distance of f from the set of degree d polynomials of degree d?
The answer to the foregoing question follows as a special case of the analysis of the tester

outlined below for the class of low degree m-variate polynomials. Indeed, we would welcome
a simpler analysis of the univariate case (or a simple reduction of the multivariate case to the
univariate case). But, at this point, we wish to proceed with the intuition.

1Obviously, if f has degree d, then its values at any subset of F match a degree d polynomial. As usual throughout
this lecture, the opposite direction is considerably less obvious, and its proof is outlined next. That is, we wish to show
that, for any s ∈ F \{0}, if for every r ∈ F the values of f at r, r+s, ..., r+(d+1) ·s match some degree d polynomial,
then f is a polynomial of degree d. We start by letting fr denote the (unique) degree d polynomial that agrees with f
on the points r, r+s, ..., r+d ·s, and observe that (by the hypothesis) it holds that fr(r+(d+1) ·s) = f(r+(d+1) ·s).
This implies that fr = fr+s, since fr+s(r + s+ d · s) = f(r + s+ d · s) (by the definition of fr+s), whereas fr and fr+s

are degree d polynomials (which were shown to agree on the d + 1 points r + s, ..., r + (d + 1) · s). Using the fact that
(r − r′)/s ∈ F for every r, r′ ∈ F , we infer that all the fr’s are identical, and the claim follows since f(r) = fr(r) for
each r ∈ F (by the definition of fr). We mention that this local characterization of low degree polynomials (which
refers to a fixed s ∈ F \ {0}) does not yield a good tester: see Exercise 2.
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2.2 The multivariate case

We now turn to the case of m-variate functions f : Fm → F . The first observation here is that f is
a degree d polynomial if and only if its values on each line in Fm can be described by a univariate
polynomial of degree d, where a line in Fm is a (|F|-long) sequence of the form (x + ih)i∈F such
that x, h ∈ Fm. One can readily verify that if f : Fm → F is a degree d polynomial, then its
values on each line can be described by a univariate polynomial of degree d; that is, the function
fx,h : F → F defined as fx,h(z) = f(x+zh) is a polynomial of degree d in z. The opposite direction
is less obvious, but it is indeed true (see Theorem 1).

At this point, a natural suggestion is to test that f : Fm → F is of degree d by considering the
values of f on a random line in Fm. Recall that if f is not of degree d, then there exists a line such
that the values of f on this line do not fit a degree d polynomial. But if f is ǫ-far from being a

degree d polynomial, then how far are its values on a random line from fitting a degree d univariate

polynomial?
The answer to the latter question is far from being obvious. Nevertheless, it is known that the

expected distance (of these values from a univariate polynomial) is Ω(ǫ), where the expectation is
over all possible lines with uniform probability distribution (cf. [10, 4, 13]). In Section 4, we will
show a lower bound of min(Ω(ǫ),Ω(d−2)), but we have no real intuition to offer (beyond attempting
to present the technical proof in words, an attempt we shall not venture). The actual analysis of
the foregoing (low degree) tester mimics the analysis of the linearity tester, but is more complex
(in some of its details). Specifically, we define a “self corrected” version of the tested function and
show that if the test rejects with small probability, then this corrected version is a polynomial of
degree d that is close to the tested function.2

As in the case of linearity testing, the only intuition we shall offer is an illustration as to why
the “self-corrected” version of the function is a low degree polynomial that is relatively close to
the function. The illustration will refer to a function that is obtained by slightly corrupting a low
degree polynomial, and so it will only illustrate that the voting scheme emplyed when constructing
the self-corrected version makes sense.

2.3 Linking the above intuition to the actual proof

The actual tester, presented in Section 4, tests that a function f : Fm → F is a polynomial of
degree (at most) d by checking whether the values of the function restricted to a random line fit

2The following outline of the actual analysis is not supposed to be verifiable at this point. It is provided here
mainly in order to evoke the analogy to the analysis of the linearity tester (which was presented in Chapter ??).

Assuming that f is rejected with probability ρ < 1/O(d2), we shall show that f is 2ρ-close to a low degree
polynomial, by taking the following steps (as in the analysis of the linearity tester):

• First we define a “self-corrected” version, denoted f ′, of the function f such that f ′(x) is the most frequent
vote cast by the lines passing through x.

• Next, we show that f ′ is 2ρ-close to f , by using the fact that the vote of a specific line regarding x ∈ Fm was
defined such that it equals f(x) if and only if the test does not reject when examining (the values on) this line.

• Then, we show that there is a strong majority among the votes (for each point), by lower bounding the collision
probability of the random variable that represents a vote of a random line.

• Finally, we show that f ′ is a low degree polynomial.

The last two steps are performed by showing that each of the corresponding claims can be written as the conjunction
of relatively few events that are each related to the check performed by the tester, and using the hypothesis that the
rejection probability of the tester (i.e., ρ) is sufficiently small.
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a degree d univariate polynomial, where the latter check is performed by considering the values of
this restriction on the first d + 2 points. However, the fact that this line is random means that its
starting point as well as the gap between its points are random. Specifically, considering the first
d + 2 values of f on the line (x + ih)i∈F is analogous to considering the values of f at the points

(r · x′ + i · s · h
′
)i=0,...,d+1 such that x′ = r−1 · x and h

′
= s−1 · h; and, indeed, if x, h are uniformly

distributed in Fm, then so are x′, h
′
. Hence, the tester for the m-variate case actually invokes

the (“alternative”) tester of the univariate case.3 Furthermore, we use an explicit expression (i.e.,
Eq. (2)) that captures the decision of the latter tester; that is, we spell out the relation among the
aforementioned d + 2 values of a univariate function such that this relation holds if and only if the
univariate function has degree (at most) d.

The analysis of the tester for the m-variate case combines elements of a reduction to the uni-
variate case with an analysis of a specific tester for the univariate case. Moreover, we refer to the
specific expression (i.e., Eq. (2)) used by the univariate tester in making its decision. We stress that
this analysis does not present an explicit reduction of the m-variate case to the univariate case,
although such reductions can be found elsewhere (see, e.g. [10, 4, 13]). These choices are made in
order to make the analysis more concrete and hopefully more clear.

Note: For sake of simplicity, we focus on the case of finite fields of prime cardinality. In this case,
the field F consists of the set Z|F| = {0, 1, ..., |F|−1} with addition and multiplication modulo |F|.

In the general case (of arbitrary finite fields), the sequence (x + ih)d+1
i=0 is replaced by the sequence

(x+eh, x+e1h, ..., x+ed+1h), where e is uniformly distributed in F , the ei’s are fixed (distinct) field
elements, and the αi’s used in the extrapolation formula (i.e., Eq. (2)) are determined accordingly.

Teaching note: Section 3 provides proofs of two basic facts about polynomials (specif-

ically, Theorems 1 and 2); it is highly technical and offers no intuition (for the reason

that the author has none to offer). Unfortunately, these two facts (or rather their com-

bination stated in Corollary 3) are necessary preliminaries for Section 4, which presents

the analysis of the tester (which was outlined above). Fortunately, reading Section 4

only requires reading the statement of Corollary 3, and the reader may skip its proof,

which is the bulk of Section 3.

3 Background

Throughout this lecture, F is a finite field of prime cardinality, and d,m are integers such that
d < |F|/2. We consider functions f : Fm → F , and the class Pm,d of m-variate polynomials of
total degree (at most) d. Such functions are called low degree polynomials, because their (total)
degree is significantly smaller than |F|.

As shown next, f is in Pm,d if and only if its restriction to each line in Fm can be represented as

a univariate polynomial of degree d, where a line in Fm is a sequence of the form Lx,h

def
= (x+ih)i∈F

for x, h ∈ Fm, and saying that the restriction of f to the line Lx,h is represented by the univariate

polynomial p means that p(i) = f(x + ih) for every i ∈ F . Hence, the global condition of being a

3The point made here is that although the test is described as inspecting the points 0, 1, ..., d + 1 on a random
line, it is actually equivalent to a test that inspecting the points r, r + s, ..., r + (d + 1) · s on a random line, where s
and r are uniformly and independently distributed in F .
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degree d polynomial is characterized as the conjunction of |Fm|2 local conditions, where each local
condition refers to the value of the function on |F| points (on a line in Fm).

Theorem 1 (local characterization of multivariate polynomials): Let |F| > 2d. The function

f : Fm → F is in Pm,d if and only if for every x, h ∈ Fm there exists a degree-d univariate

polynomial px,h such that px,h(i) = f(x + ih) for every i ∈ F .

Proof: Clearly, the restriction of f ∈ Pm,d to any line in Fm can be represented as a univariate
polynomial of degree d, since for every fixed x = (x1, ..., xm) ∈ Fm and h = (h1, ..., hm) ∈ Fm it
holds that f(x + zh) = f(x1 + zh1, ..., xm + zhm) is a univariate polynomial of degree d in z.

The opposite direction is not straightforward: it asserts that if the restriction of f to each
line in Fm can be represented as a univariate polynomial of degree d, hereafter referred to as
the lines-condition, then f ∈ Pm,d. This claim is proved by induction on m, where the base
case (of m = 1) is trivial. In the induction step (i.e., going from m − 1 to m), given an m-
variate polynomial f : Fm → F that satisfies the lines-condition, we need to show that f ∈ Pm,d.
Towards this end, for every fixed e ∈ F , we consider the (m − 1)-variate polynomial fe defined
by fe(x1, ...., xm−1) = f(x1, ...., xm−1, e). By the induction hypothesis, fe is an (m − 1)-variate
polynomial of degree d (since the restriction of fe to any line in Fm−1 is a degree d univariate
polynomial).4 The following claim implies that f is a polynomial of total degree at most 2d.

Claim 1.1 (the degree of f is at most 2d): For every e ∈ {0, 1, ..., d}, let δe be the unique degree d
univariate polynomial that satisfies δe(e) = 1 and δe(e

′) = 0 for every e′ ∈ {0, 1, ..., d} \ {e}. Then,

f(x) =
∑d

e=0 δe(xm)fe(x1, ..., xm−1). Hence, f has degree at most d in xm, whereas its total degree

in x1, ..., xm−1 is at most d.

Proof: Fixing any e1, ..., em−1 ∈ F , we first observe that ge1,...,em−1
(x) = f(e1, ..., em−1, x) is a

degree d univariate polynomial in x, since ge1,...,em−1
describes the restriction of f to the line

L(e1,...,em−1,0),(0,...,0,1) (and f satisfies the lines-condition). Next, we show that f(e1, ..., em−1, x) =
∑d

e=0 δe(x)fe(e1, ..., em−1). This holds since each side of the equation is a degree d univariate
polynomial in x, whereas these two polynomials agree on d + 1 points (specifically, for every e′ ∈
{0, 1, ..., d}, it holds that

∑d
e=0 δe(e

′)fe(e1, ..., em−1) equals fe′(e1, ..., em−1) = f(e1, ..., em−1, e
′)).

To show that f is actually of degree d, we consider for each h ∈ Fm the univariate polynomial
gh(z) = f(zh). On the one hand, deg(gh) ≤ d for every h ∈ Fm, since gh describes the values of f
on the line L0,h. On the other hand, we shall show next that deg(gh) = deg(f) for some h ∈ Fm,
and deg(f) ≤ d will follow.

Claim 1.2 (the degree of some gh equals the degree of f): There exists h ∈ Fm such that deg(gh) =
deg(f).

Proof: We actually prove that, with probability at least 1− deg(f)
|F| > 0 over the choice of h ∈ Fm,

it holds that deg(gh) = deg(f), where the inequality uses deg(f) ≤ 2d < |F| (established by
Claim 1.1). To prove this claim. consider the coefficient of zdeg(f) in f(zh). This non-zero coefficient
is a polynomial in h of total degree at most deg(f), whereas any non-zero polynomial of degree d′

evaluates to zero on at most a d′/|F| fraction of the points (see Exercise 3).

4This is the case since the restriction of fe to any line in Fm−1 constitutes a restriction of f to a corresponding
line in Fm, whereas f satisfies the lines-condition. In other words, if f satisfies the lines-condition, then so does fe.
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Having proved Claim 1.2, the theorem follows (since for this h it holds that deg(f) = deg(gh) ≤ d).

Notation. For i = 0, 1, .., d + 1, let αi = (−1)i+1 ·
(

d+1
i

)

. The αi’s (or rather their values reduced
modulo |F|) are viewed as elements of F .

Theorem 2 (local characterization of univariate polynomials): A univariate polynomial g : F → F
has degree d < |F| if and only if for every e ∈ F it holds that

d+1
∑

i=0

αi · g(e + i) = 0 (1)

The essence of Theorem 2 is that g is of degree d if and only if its values at d + 1 points determine
its value at any other point. The specific formulation of Theorem 2 refers to d + 2 specific points
(and to a specific extrapolation formula determined by the αi’s). This specific formulation relies
on the hypothesis that 0, 1, ..., d + 1 are distinct field elements, which holds since |F| is postulated
to be a prime (and |F| ≥ d + 2).5 In the general case (i.e., for an arbitrary finite field F of size
at least d + 2), the sequence (e + i)d+1

i=0 is replaced by the sequence (e, e1, ..., ed+1), where the ei’s
are fixed (distinct) field elements, e varies, and the αi’s used in Eq. (1) are determined accordingly
(depending on the ei’s and e).6 In both cases, the global condition of being a degree d univariate
polynomial is characterized as the conjunction of |F| local conditions, where each local condition
refers to the value of the function on d + 2 points (whereas d may be much smaller than |F|).

Proof: We shall first show that g has degree exactly d > 0 if and only if g′(x)
def
= g(x + 1)− g(x)

has degree exactly d− 1, and then use this fact in order to establish the main claim (i.e., the claim
of the theorem) by induction on d.

Given g : F → F , we consider the (“derivative”) function g′ : F → F defined by g′(x)
def
=

g(x + 1) − g(x). We first show that g has degree exactly d > 0 if and only if g′ has degree exactly

d− 1. Writing g(x) =
∑d

j=0 cj · x
j, where cd 6= 0, we get

g′(x) =
d

∑

j=0

cj · (x + 1)j −
d

∑

j=0

cj · x
j

=
d

∑

j=0

cj · ((x + 1)j − xj)

=
d

∑

j=1

cj ·

j−1
∑

k=0

(

j

k

)

· xk

It follows that the degree of g′ is at most d− 1, whereas the coefficient of xd−1 equals cd ·
(

d
d−1

)

=
cd · d 6= 0, where the inequality uses cd 6= 0 and d ∈ {1, ..., |F| − 1}. The secondary claim follows.

5The case of |F| = d + 1 holds trivially, since every function over F is a polynomial of degree at most |F| − 1.
6See Exercise 4. Indeed, in the case that |F| is a prime, we used ei = e + i for every i = 1, ..., d + 1, and the

αi’s were independent of e. Hence, in that case we used ei’s that vary with e rather than fixed ei’s. This difference
mirrors the difference between the two different testers for the univariate case presented in Section 2.
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Teaching note: Roei Tell suggests to make the rest of the proof more transparent by

explicitly introducing iterative derivatives, proving that g is of degree d if and only if its

d+1st derivative is identically zero, and showing that this derivative equals
∑

k

i=0
(−1)k−i ·

(

k

i

)

·g(x+ i). This strategy is detailed in Exercise 5. The author prefers not to introduce

an additional notion for the sake of a proof of the current nature, and notes that the

actual arguments are analogous.

We now prove the main claim (i.e., the characterization of univariate polynomials via Eq. (1))
by induction on d. For the base case (i.e., d = 0) we observe that g is a constant function if and
only if −g(e) + g(e + 1) = 0 holds for every e ∈ F . For the induction step (i.e., going from d− 1 to
d), we use the fact that g has degree d > 0 if and only if g′ has degree d− 1. Using the induction
hypothesis, the latter condition coincides with

∑d
i=0(−1)i+1 ·

(

d
i

)

· g′(e + i) = 0 for every e ∈ F .
Hence, g has degree d if and only if (for every e ∈ F)

d
∑

i=0

(−1)i+1 ·

(

d

i

)

· (g(e + i + 1)− g(e + i)) = 0.

Finally, note that

d
∑

i=0

(−1)i+1 ·

(

d

i

)

· (g(e + i + 1)− g(e + i))

=
d

∑

i=0

(−1)i+1 ·

(

d

i

)

· g(e + i + 1) −
d

∑

i=0

(−1)i+1 ·

(

d

i

)

· g(e + i)

=

d+1
∑

j=1

(−1)j ·

(

d

j − 1

)

· g(e + j) +

d
∑

i=0

(−1)i ·

(

d

i

)

· g(e + i)

= g(e) + (−1)d+1 · g(e + d + 1) +

d
∑

i=1

(−1)i ·

((

d

i− 1

)

+

(

d

i

))

· g(e + i)

= −

d+1
∑

i=0

(−1)i+1

(

d + 1

i

)

· g(e + i)

and the inductive claim follows.

Combining Theorems 1 and 2, we get:

Corollary 3 Let |F| > 2d and αi = (−1)i+1 ·
(

d+1
i

)

. The function f : Fm → F is in Pm,d if and

only if for every x, h ∈ Fm it holds that

d+1
∑

i=0

αi · f(x + ih) = 0 (2)

Proof: Clearly (by Theorem 2),7 any f ∈ Pm,d satisfies Eq. (2), for every x, h ∈ Fm. When proving
the opposite direction, for every line L = Lx,h, we use Eq. (2) on the sequence ((x + eh) + ih)d+1

i=0 ,

7Indeed, we also use the easy direction of Theorem 1.

7



for each e ∈ F , and infer (by Theorem 2) that the restriction of f to L is a univariate polynomial
of degree d. Specifically, for every line L = Lx,h, we consider the function gL(z) = f(x + zh) and

infer
∑d+1

i=0 αigL(e + i) = 0 (for each e ∈ F ) by using
∑d+1

i=0 αif((x + eh) + ih) = 0. (We complete
the proof by using the non-obvious direction of Theorem 1.)

4 The tester

Recall that we consider functions f : Fm → F , where F be a finite field of prime cardinality, and
the class Pm,d of m-variate polynomials of total degree d, which is considered “low” since d < |F|/2.

The characterization provided in Corollary 3 asserts that the global condition f ∈ Pm,d can
be decomposed into |Fm|2 local conditions, where each local condition refers to the value of f
at d + 2 points in Fm. Such a decomposition, yielding a characterization via a conjunction of
many local conditions, is a highly non-obvious phenomenon. It is even more non-obvious that the
corresponding characterization is robust in the sense that the fraction of unsatisfied local conditions
is related to the distance of the object from the global condition.8

A parenthetical discussion. Note that while a characterization states a qualitative dichotomy
(i.e., X holds if and only if Y holds), a robust characterization is a quantitative version that relates
the “level of violation” of each of its “sides” (i.e., X is “δ-close to being satisfied” if and only if
Y is “ρ-close to being satisfied”). The notion of closeness used here need not coincide with the
notion of closeness used throughout this course. Still, in the specific case discussed here there
is a correspondence: What we shall show is that f is δ-close to Pm,d if and only if a 1 − Θd(δ)
fraction of the local conditions concerning f are satisfied, where the notation Θd hides factors that
depend (polynomially) on d. Actually, we shall only show that if f ∈ Pm,d then all local conditions
are satisfied, whereas if f is δ-far from Pm,d then at least a min(Ω(δ),Ωd(1)) fraction of the local
conditions are unsatisfied.9

The foregoing discussion leads to the following tester, which selects a local condition at random
among the |Fm|2 conditions stated in Corollary 3 (or rather in the characterization provided by
it).

Algorithm 4 (testing whether f is in Pm,d): Select uniformly, x, h ∈ Fm, query f at the points

x, x + h, ..., x + (d + 1)h and accept if and only if these values satisfy Eq. (2). That is, the tester

accepts if and only if
d+1
∑

i=0

αi · f(x + ih) = 0 (3)

where αi = (−1)i+1 ·
(

d+1
i

)

.

The test checks whether the degree d univariate polynomial that interpolates the values of f on the
first d+1 points on a random line agrees with the value assigned by f to the d+2nd point (on that

8Artificial examples where a local characterization is not robust are easy to generate; for example, we can augment
any local characterization by many copies of the same local conditions (or insignificant variants of the same condition).
Natural examples also exist: one such example is provided by Exercise 2.

9The reader can easily verify that if f is δ-close to Pm,d, then at most a Od(δ) fraction of the local conditions
are unsatisfied. This follows from the fact that each of the d + 2 queries made by the following tester is uniformly
distributed in Fm.
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line). In other words, the test checks whether the value extrapolated for the d + 2nd point based
on the first d + 1 points matches the actual value of that point (according to f itself). The fact
that we use “evenly spaced” points as the d + 2 points on the (random) line is inessential to the
validity of this tester, but it allows to present an explicit extrapolation formula (in the case that
|F| is prime).

4.1 Analysis of the tester

Recall that (by Corollary 3) f ∈ Pm,d if and only if Eq. (3) holds for every x, h ∈ Fm. At times,

it will be useful to write Eq. (3) as f(x) =
∑d+1

i=1 αi · f(x + ih), which asserts that the value of
f ∈ Pm,d at x is determined (via extrapolation) by the value of f on d + 1 points on the line Lx,h.

Theorem 5 (analysis of Algorithm 4): Let δ0 = 1/(d + 2)2. Then, Algorithm 4 is a (one-sided
error) proximity oblivious tester with detection probability min(δ, δ0)/2, where δ denotes the distance

of the given function from Pm,d.

Teaching note: The following proof uses the strategy used in the (“full”) analysis of

the linearity tester of Blum, Luby, and Rubinfeld [8], as presented in the lecture on that

topic. Indeed, the implementation of this strategy is more complex in the current setting

(of low degree testing).

Proof: By (the easier direction of) Corollary 3, each f ∈ Pm,d is accepted by the tester with
probability 1. Hence, the theorem follows by proving that if f is at distance δ from Pm,d, then it is
accepted by the tester with probability at most 1−min(δ, δ0)/2. Towards this goal, we denote by
ρ the probability that f is rejected, and show that if ρ < δ0/2, then f is 2ρ-close to Pm,d.

10 This
is shown by presenting a function g and proving that g is 2ρ-close to f and that g is in Pm,d.

The intuition underlying the proof is that the hypothesis regarding f (i.e., that it is rejected with
probability ρ < δ0/2) implies that f can be modified (or “corrected”) into a low degree polynomial
by modifying f on relatively few values (i.e., on at most 2ρ·|Fm| values). Specifically, the hypothesis
that Prx,h∈Fm [f(x) 6=

∑

i∈[d+1] αi ·f(x+ih)] = ρ < 1/2(d+2)2 suggests that a “corrected” version of

f that is determined according to the most frequent value of
∑

i∈[d+1] αi ·f(x+ih), when considering

all possible choices of h ∈ Fm, is a polynomial of degree d that is relatively close to f . Suppose,
for illustration, that f is obtained by selecting an arbitrary degree d polynomial p and corrupting
it on relatively few points (say on less than |Fm|/2(d+1) points). Then, the corrected version of f
will equal p (since for a random h ∈ Fm, with probability at least 1− (d+1) ·ρ > 1/2 it holds that
∑

i∈[d+1] αi ·f(x+ih) =
∑

i∈[d+1] αi ·p(x+ih)) and both claims hold (i.e., p is a polynomial of degree

d that is relatively close to f). Needless to say, we cannot start with the foregoing assumption11,
but should rather start from an arbitrary f that satisfies

Prx,h∈Fm

[

d+1
∑

i=0

αi · f(x + ih) = 0

]

= 1− ρ, (4)

We now turn to the actual proof.

10Hence, either ρ ≥ δ0/2 or ρ ≥ δ/2, which implies ρ ≥ min(δ, δ0)/2 as claimed.
11The gap between this illustration and the actual proof is reflected in the fact that the illustration refers to

δ < 1/2(d + 1), whereas the actual proof uses ρ < 1/2(d + 2)2.
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Recall that assuming that ρ < δ0/2, we intend to present a function g : Fm → F and prove that
g is 2ρ-close to f and that g is in Pm,d. In accordance with the foregoing discussion, we define g(x)

as the most likely value of
∑d+1

i=1 αi · f(x + ih), when h is uniformly distributed. In other words,
letting MAJe∈S{ve} denote the most frequently occurring value of ve when e ∈ S (with ties broken
arbitrarily), we define

g(x)
def
= MAJh∈Fm

{

d+1
∑

i=1

αi · f(x + ih)

}

(5)

Indeed, by Eq. (4), the function g is likely to agree with f on a random x ∈ Fm, and so g is likely
to satisfy Eq. (3) on random x, h ∈ Fm. However, we need much stronger assertions than the one
just made, and stronger assertions will indeed be provided by the following claims.

Claim 5.1 (closeness): The function g is 2ρ-close to f .

Proof: This is merely an averaging argument, which counts as bad any point x such that Eq. (3)
is satisfied by at most half of the possible h’s, while noting that otherwise g agrees with f on x.
Details follow.

Let B denote the set of x’s such that Eq. (3) is satisfied by at most half of the possible h’s; that
is, x ∈ B if and only if

Prh∈Fm

[

d+1
∑

i=0

αi · f(x + ih) = 0

]

≤ 0.5.

By Eq. (4), Prx∈Fm [x ∈ B] ≤ 2ρ, because otherwise Prx,h∈Fm

[

∑d+1
i=0 αi · f(x + ih) 6= 0

]

is greater

than 2ρ · 0.5. On the other hand, for every x ∈ Fm \B, it holds that

Prh∈Fm

[

f(x) =

d+1
∑

i=1

αi · f(x + ih)

]

> 0.5,

which implies that f(x) is the majority value (obtained by the r.h.s of the foregoing random variable)
and hence f(x) = g(x).

Recall that g(x) was defined to equal the most frequent value of
∑d+1

i=1 αi · f(x + ih), where
frequencies were taken over all possible h ∈ Fm. Hence, g(x) occurs with frequency at least 1/|F|
(yet, we saw, in the proof of Claim 5.1, that on at least 1 − 2ρ of the x’s it holds that g(x) is the
majority value). We next show that g(x) is much more frequent: it occurs in a strong majority (for
every x).

Claim 5.2 (strong majority): For every x ∈ Fm, it holds that

Prh∈Fm

[

g(x) =

d+1
∑

i=1

αi · f(x + ih)

]

≥ 1− 2(d + 1)ρ.

Proof: For each x ∈ Fm, we consider the random variable Zx(h) defined to equal
∑d+1

i=1 αi · f(x +
ih), where the probability space is uniform over the choice of h ∈ Fm. By Eq. (4), we have
Prx∈Fm [f(x) = Zx] = 1 − ρ, which means that for typical x the value Zx is almost always a

10



fixed value (i.e., f(x)), which implies that Zx = g(x) with high probability. However, we want to
establish such a statement for any x, not only for typical ones.

Fixing any x ∈ Fm, the idea is to lower-bound the collision probability of Zx, which equals
Prh1,h2∈Fm[Zx(h1) = Zx(h2)]. (If this lower bound is greater than half, then the same lower bound

would holds for Pr[Zx = g(x)].) Recalling that Zx(h) =
∑d+1

i=1 αi · f(x + ih), we consider

Prh1,h2∈Fm

[

d+1
∑

i=1

αi · f(x + ih1) =

d+1
∑

i=1

αi · f(x + ih2)

]

. (6)

The key observation is that each point on each of these two lines (i.e., Lx,h1
and Lx,h2

)12 is uniformly
distributed in Fm, and hence we can apply Eq. (4) to such a point using a random direction.
Furthermore, we can use the direction h2 (resp., h1) for the points on Lx,h1

(resp., Lx,h2
), which

allows to express each of the two sums in Eq. (6) by the same double summation (see Figure 1,
which illustrates that the jth point on the line Lx+ih1,h2

coincides with the ith point on the line

Lx+jh2,h1
).13 As shown below, it follows that the collision probability of Zx is lower bounded by

1−2(d+1)·ρ, and consequently the most frequent value of Zx, which is g(x), occurs with probability
at least 1− 2(d + 1)ρ.

h

j

1

h2

i

x

Figure 1: The lattice spanned by h1 and h2, and the point x + ih1 + jh2.

We now turn to the actual proof, where an arbitrary x ∈ Fm is fixed (for the entire proof). For
every i, j ∈ [d + 1], if h1 and h2 are uniformly and independently distributed in Fm, then so are
x + ih1 and jh2 (resp., x + jh2 and ih1). By Eq. (4), for every i ∈ [d + 1], it follows that,

Prh1,h2∈Fm



f(x + ih1) =

d+1
∑

j=1

αj · f((x + ih1) + jh2)



 = 1− ρ, (7)

and likewise for every j ∈ [d + 1],

Prh1,h2∈Fm

[

f(x + jh2) =

d+1
∑

i=1

αi · f((x + jh2) + ih1)

]

= 1− ρ. (8)

12Recall that Lx,h = (x + ih)i∈F .
13Indeed, this merely uses (x + ih1) + jh2 = (x + jh2) + ih1.
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Hence, using a union bound (over i ∈ [d + 1] (resp., j ∈ [d + 1])), we have

Prh1,h2∈Fm





d+1
∑

i=1

αif(x + ih1) =

d+1
∑

i=1

d+1
∑

j=1

αiαj · f(x + ih1 + jh2)



 ≥ 1− (d + 1) · ρ (9)

Prh1,h2∈Fm





d+1
∑

j=1

αjf(x + jh2) =

d+1
∑

j=1

d+1
∑

i=1

αiαj · f(x + ih1 + jh2)



 ≥ 1− (d + 1) · ρ, (10)

which implies (by a union bound on Eq. (9)&(10)) that

Prh1,h2∈Fm





d+1
∑

i=1

αif(x + ih1) =

d+1
∑

j=1

αjf(x + jh2)



 ≥ 1− 2(d + 1)ρ. (11)

Note that the two summations in Eq. (11) represent two independent (and identically distributed)
random variables, which are functions of h1 and h2 respectively. Furthermore, each of these sum-

mations is distributed identically to the random variable Z = Zx(h)
def
=

∑d+1
i=1 αif(x + ih), which

is a function of a uniformly distributed h ∈ Fm. This means that the collision probability of Z
(which equals

∑

u Pr[Z =u]2) is at least 1− 2(d + 1)ρ, which implies that the most frequent value
occurs in Z with probability at least 1− 2(d + 1)ρ (since if v is the most frequent value assigned to
Z then

∑

u Pr[Z =u]2 ≤
∑

u Pr[Z =v] ·Pr[Z =u] = Pr[Z =v]).

Using Claim 5.2, we now show that g ∈ Pm,d. This follows by combining Claim 5.3 with the
characterization of Pm,d.

Claim 5.3 (g ∈ Pm,d): For every x, h ∈ Fm, it holds that
∑d+1

i=0 αi · g(x + ih) = 0.

Proof: As in the proof of the analogous claim in the analysis of the linearity test, we prove the
claim by considering a fictitious probabilistic expression regarding the event

∑d+1
i=0 αi ·g(x+ih) = 0,

when x and h are fixed. That is, fixing any x, h ∈ Fm, we prove that
∑d+1

i=0 αi · g(x + ih) = 0 by

showing that Prh1,h2
[
∑d+1

i=0 αi · g(x + ih) = 0] > 0. (The random directions h1 and h2 will be used
to set-up a lattice of random points and argue about them in a way that is similar to the proof of
Claim 5.2, although the specific lattice and the arguments will be different.)14

Fixing any x, h ∈ Fm and using Claim 5.2, we infer that, for each i ∈ {0, 1, ..., d + 1}, it holds
that

Pr
h
′
∈Fm



g(x + ih) =
d+1
∑

j=1

αj · f((x + ih) + jh
′
)



 ≥ 1− 2(d + 1)ρ. (12)

Rather than using the same direction h
′
for each i, we use pairwise independent directions such

that the direction h1 + ih2 is used for approximating g(x + ih), which means that we extrapolate
(at the point x + ih) according to the line Li = Lx+ih,h1+ih2

. Hence, the jth point on the line Li is

(x + ih) + j · (h1 + ih2), which can be written as (x + jh1) + i · (h + jh2) (see Figure 2). Now, by

14In particular, in the proof of Claim 5.2 we used the lattice points x + ih1 + jh2 for i, j ∈ [d + 1], whereas here we
shall use the lattice points x + ih + jh1 + ijh2 for (i, j) ∈ {0, 1, ..., d + 1} × [d + 1].

12



 

Li

h

)h(

hx
i

x+jh1

2+ih1

21+ihx+ih + j

Figure 2: The jth point on the (solid) line Li = Lx+ih,h1+ih2
is reached as the ith point on the

(dashed) line Lx+jh1,h+jh2
.

the Eq. (4), for every j ∈ [d + 1] it holds that

Prh1,h2∈Fm

[

d+1
∑

i=0

αi · f((x + jh1) + i · (h + jh2)) = 0

]

= 1− ρ. (13)

since x + jh1 and h + jh2 are uniformly and independently distributed in Fm. (This fact as well
as the rest of the argument will be farther detailed below.) Now, when all equalities captured in
Eq. (12)&(13) hold, which happens with probability at least 1− (d + 2) · 2(d + 1)ρ− (d + 1) · ρ, we
get

d+1
∑

i=0

αi · g(x + ih) =

d+1
∑

i=0

αi ·

d+1
∑

j=1

αj · f((x + ih) + j · (h1 + ih2))

=
d+1
∑

j=1

αj ·
d+1
∑

i=0

αi · f((x + jh1) + i · (h + jh2))

=
d+1
∑

j=1

αj · 0

(where the first equality uses Eq. (12) with h
′
= h1 + ih2, and the last one uses Eq. (13)). The

claim follows by noting that the event in question (i.e.,
∑d+1

i=0 αi · g(x + ih) = 0) is fixed, and so
if it occurs with positive probability (according to an analysis carried through in some auxiliary
probability space), then it simply holds.

We now turn to the actual proof, which just repeats the foregoing argument while using more
precise formulations. Fixing arbitrary x, h ∈ Fm, let h1 and h2 be uniformly and independently
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distributed in Fm. For every i ∈ {0, 1, ..., d + 1}, using Claim 5.2, while noting that h1 + ih2 is
uniformly distributed in Fm, we get

Prh1,h2∈Fm



g(x + ih) =

d+1
∑

j=1

αj · f((x + ih) + j(h1 + ih2))



 ≥ 1− 2(d + 1)ρ. (14)

On the other hand, for every j ∈ [d + 1], noting that x + jh1 and h + jh2 are uniformly and
independently distributed in Fm, and using Eq. (4), we get

Prh1,h2∈Fm

[

d+1
∑

i=0

αi · f((x + jh1) + i(h + jh2)) = 0

]

= 1− ρ. (15)

Note that the argument to f (i.e., (x + jh1) + i(h + jh2)) can be written as (x + ih) + j(h1 + ih2).
Hence, we get

Prh1,h2∈Fm





d+1
∑

j=1

αj

d+1
∑

i=0

αi · f((x + ih) + j(h1 + ih2)) = 0



 ≥ 1− (d + 1) · ρ. (16)

Combining Eq. (14)&(16), we get

Prh1,h2∈Fm





d+1
∑

i=0

αig(x + ih) =

d+1
∑

i=0

αi

d+1
∑

j=1

αj · f((x + ih) + j(h1 + ih2)) = 0





≥ 1− (d + 2) · 2(d + 1)ρ− (d + 1) · ρ.

Using (2d + 5) · (d + 1)ρ < 1 (which follows from ρ ≤ 1/2(d + 2)2), we get

Prh1,h2∈Fm

[

d+1
∑

i=0

αig(x + ih) = 0

]

> 0 (17)

and the claim follows (since
∑d+1

i=0 αig(x + ih) = 0 is independent of the choice of h1, h2 ∈ F
m).15

Combining Claims 5.1 and 5.3 with the characterization of Pm,d (i.e., Corollary 3),16 it follows that
f is 2ρ-close to Pm,d.

4.2 Digest (or an abstraction)

We wish to spell out what is actually being used in the proof of Theorem 5. The proof refers to
a test for functions of the form f : D → R, where in our application D = Fm and R = F (and
t = d + 1), that checks a condition of the form f(x) = F (f(y1), ..., f(yt)), where x is uniformly
distributed in D and F is a fixed function. Indeed, at this point we assume nothing about the

15Recall that x, h ∈ Fm are fixed. Hence, the probability in Eq. (17) is either 0 and 1, whereas the lower bound
rules out 0.

16Indeed, here we use the harder direction of Corollary 3.
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distribution of (y1, ..., yt) conditioned on x, hereafter denoted Yx. First, a self-corrected version
of f , denoted g, is defined by letting g(x) be the most frequent value of F (f(y1), ..., f(yt)), when
(y1, ..., yt)← Yx. Claim 5.1 holds in this generic setting; that is, if the test rejects with probability
ρ, then g is 2ρ-close to f . In the proofs of Claims 5.2 and 5.3, we used additional features of Yx,
detailed next.

One such feature, which is used in both proofs, is that for every x ∈ D and i ∈ [t], the ith element
in Yx is uniformly distributed in D. To state the other feature used in the proof of Claim 5.2, we
let Yx(ω) denote the value of Yx when ω is a point in the probability space Ω that underlies Yx

(i.e., Yx : Ω→ Dt). The proof of Claim 5.2 boils down to lower-bounding the collision probability
of F (Yx), for any x, and it uses the hypothesis (or fact) that for every i, j ∈ [t] and ω1, ω2 ∈ Ω it
holds that the ith element of Yv(ω1) equals the jth element of Yu(ω2), where u is the ith element of

Yx(ω1) and v is the jth element of Yx(ω2). This feature holds when D = Ω is an additive group
and the ith element of Yx(ω) equals x + iω, which is indeed the case in our application.17

In the proof of Claim 5.3 we use a more complex feature, which presumes that D = Ω and views
it is an additive group. The actual feature is that for every i, j ∈ [t] and ω, ω1, ω2 ∈ Ω it holds that
the jth element of Yx+iω(ω1 + iω2) equals the ith element of Yx+jω1

(ω + jω2), which holds when the
ith element of Yx(ω) equals x + iω (since (x + iω) + j(ω1 + iω2) equals (x + jω1) + i(ω + jω2)).

5 Chapter notes

We mention that low-degree tests play a key role in the construction of PCP systems, starting with
the “first generation” of such constructions [5, 6, 9, 3, 2].

The analysis of Algorithm 4 provided in Theorem 5 is probably not tight. An improved analysis
of a related low-degree tester appeared in [10]. This tester selects uniformly x, h ∈ Fm and i ∈ F ,
queries f at x, x+h, ..., x+dh and x+ih, and accepts if and only if there exists a degree d univariate
polynomial that agrees with these d + 2 values (i.e., a polynomial p such that p(j) = f(x + jh) for
every j ∈ {0, 1, ..., d, i}).18 Friedl and Sudan [10] showed that the foregoing tester is a (one-sided
error) proximity oblivious tester with detection probability min(0.124, δ/2), where δ denotes the
distance of the given function from Pm,d (and 0.124 can be replaced by any constant c0 smaller
than 1/8).19

The low error regime. Our presentation has focused on the “high error regime”; that is, we
have only guaranteed small detection probability (e.g., in [10] the detection probability is smaller
than 1/8). Equivalently, we asserted that if f is accepted with high probability (i.e., α = 1 − ρ >
7/8), then it is close (i.e., 2ρ-close) to Pm,d. Subsequent research regarding low degree testing refers
to the “low error regime” where one asks what can be said about a function that is accepted with

17In that case, v + iω1 = x + jω2 + iω1 = u + jω2.
18

Advanced comment: Alternatively, this tester may be viewed as checking whether the degree d univariate
polynomial that fits the values of the first d + 1 points on the (random) line agrees with the value assigned to a
random point on this line. In the context of PCP, this tester is often described as having access to two oracles:
the function f : Fm → F , which is called a “point oracle”, and a “line oracle” that assigns a degree d univariate
polynomial to each line in Fm (i.e., the line-oracle is a function from (Fm)2 to Fd+1). In such a case, it is called a
line-vs-point tester. We mention that a plane-vs-point tester was also considered (cf. [17]): The plane-oracle assigns
to each plane in Fm (which described by three points in Fm) a degree d bivariate polynomial, which is supposed to
describe the value of f when restricted to this plane.

19In addition, it is required that |F| > c · d (rather than |F| > 2d), where c is a constant that depends on c0.
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probability at least 0.01 (or so).20 It turns out that in this case the function is 0.9934-close to Pm,d;
that is, if f is accepted with probability at least 0.01, then it agree with some degree d polynomial
on at least 0.0066 fraction of the domain. In general, as shown in [4, 17] (using different tests of
query complexity poly(d)), if f is accepted with probability at least α, then f is (1 − Ω(α))-close
to Pm,d (i.e., f agree with some degree d polynomial on at least Ω(α) fraction of the domain).21

Small fields. So far, we have focused on the case of large fields; that is, we assumed that the
field is larger than the degree bound (i.e., |F| > d).22 But, for multivariate polynomials, the case
of small fields makes sense too. Alon et al. [1] studied the case of the two-element field, denoted
GF(2), and presented a low-degree tester of query complexity that is exponential in the degree
bound.23 They also observed that exponential (in the degree bound) query complexity is required
in this case. The case of fields of intermediate size (i.e., |F| ∈ (2, d]) was studied by Kaufman and
Ron [15] and Jutla et al. [14], who showed that the query complexity in this case is |F|Θ(ℓ), where
ℓ = ⌈(d + 1)/(|F| − 1)⌉ if |F| is a prime (and ℓ = ⌈(d + 1)/(ps − ps−1)⌉ if |F| = ps for a prime p).24

Robust characterization. We have alluded to the notion of a robust characterization in some
of our intuitive discussions (most conspicuously at the beginning of Section 4), but refrained from
using it in the actual proofs. The notions of local charcaterization and its robustness were put
forward by Rubinfeld and Sudan [18], and are briefly reviewed in the historical notes section of
the first lecture. The interested reader is referred to these two texts.25 We mention that some
subsequent studies of low-degree tests are conducted in terms of the “robustness” of various local
characterizations (see, e.g., [10, 4, 17]). For example, the robustness of the “line tester” was defined
as the minimum, over all f 6∈ Pm,d, of the ratio of the expected distance of the restriction of f to
a random line from P1,d (i.e., univariate degree d polynomials) versus the distance of f from Pm,d.

Invariances. The class Pm,d is invariant under full rank affine transformation on the functions’
domain. That is, for every f : Fm → F and any full rank affine transformation T : Fm → Fm

it holds that f ∈ Pm,d if and only if f ◦ T ∈ Pm,d. A general study of the complexity of testing
properties that are invariant under affine transformation was initiated by Kaufman and Sudan [16],
and is surveyed in [19].26

20The terms “high” and “low” (“error regimes”), refer to the case that f 6∈ Pm,d and (rightfully) consider the ac-
ceptance probability in these cases as an error probability. Hence, accepting a function (not in Pm,d) with probability
0.9 is considered to be in the high error regime, whereas accepting this function with probability 0.01 is in the low
error regime.

21
Advanced comment: These results assume that |F| ≥ poly(d), whereas [10] only assumes |F| ≥ Θ(d). We

mention that [13] only requires |F| ≥ (1 + Ω(1)) · d.
22Actually, we focused on the case that |F| > 2d, which does not cover the special case of |F| = 2 and d = 1. We

mention that this special case of |F| = 2 and d = 1 can be viewed as a special case of group homomorphism testing,
which is considered in the previous lecture (i.e., the homomorphism is from the group Fm to the group F).

23
Advanced comment: They actually presented a proximity-oblivious tester that, for a degree bound d, makes

2d+1 queries and has detection probability δ/2q , where δ denotes the distance of the tested function from being a
degree d polynomial. It turns our that their tester has detection probability Ω(δ); see [7] (as well as [11] which
presents an analogous result for fields of intermediate size).

24The latter case is only analyzed in [15].
25

Advanced comment: In the aforementioned historical notes the notion of locality was presented as referring to
constant size neighborhoods, but the notion extends to neighborhoods of size poly(d). Actually, the notion extends
to neighborhoods of any size that is significantly smaller than the tested object.

26Be warned that there have been many subsequent (to [19]) developments in this direction.
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Exercises

The following exercises elaborate on comments made in the main text.

Exercise 1 (low degree extensions): Show that for a finite field F and any m ∈ N, any function

f : Fm → F can be written as a polynomial of individual degree |F| − 1. More generally, show

that for any H ⊆ F and any function f : Hm → F there exists a polynomial p of individual degree

|H| − 1 such that p(x) = f(x) for every x ∈ Hm.

Guideline: For every a ∈ H, let δa : F → F be such that δa(z) =
∏

b∈H\{a}(x− b)/(a− b). Consider
p(x1, ..., xm) =

∑

a1,...,am∈H f(a1, ..., am) ·
∏

i∈[m] δai
(xi).

Exercise 2 (a failed attempt regarding the univariate case): Note that in the case of m = 1,
Algorithm 4 amounts to selecting r, s ∈ F uniformly at random, and checking that the values of

f : F → F at r, r + s, ..., r + (d + 1) · s match some degree d polynomial. Consider the algorithm

that selects r uniformly in F , and checks that the values of f at r, r + 1, ..., r + d + 1 match some

degree d polynomial. Show that this algorithm does not yield a good tester in the sense that, for

|F| ≫ d, there exists a function f : F → F that is 0.499-far from being of degree d, whereas the

algorithm rejects it with probability O(d/|F|).

Guideline: Let p1, p2 : F → F be two distinct polynomials of degree d, and let f(x) = p1(x) if
x ∈ {1, ..., ⌊|F|/2⌋} and f(x) = p2(x) otherwise. Then, f is (0.5 − (d + 1)/|F|)-far from being a
polynomial of degree d, whereas the algorithm rejects f with probability at most 2(d + 1)/|F|.27

Exercise 3 (The Schwartz–Zippel Lemma):28 Let p : Fm → F be a non-zero m-variate polynomial

of total degree d over a finite field F . Prove that Prx∈Fm[p(x)=0] ≤ d/|F|.

Guideline: Use induction on the number of variables, m. The base case of m = 1 follows by the fact
that p 6≡ 0 has at most d roots. In the induction step, assuming that p depends on its last variable,
write p(x) =

∑d
i=0 pi(x1, ..., xm−1) ·x

i
m, where pi is an (m−1)-variate polynomial of degree at most

d − i, and let i be the largest integer such that pi is non-zero. Then, using x′ = (x1, ..., xm−1),
observe that

Prx∈Fm [p(x) = 0] ≤ Prx′∈Fm−1 [pi(x
′) = 0] + Prx′∈Fm−1 [pi(x

′) 6= 0] ·Prx∈Fm[p(x) = 0|pi(x
′) 6= 0],

and that, for any fixed x′ such that pi(x
′) 6= 0, the value of p(x) is a non-zero polynomial of degree

i in xm.

Exercise 4 (local characterization of low degree univariate polynomials in the case of general finite
fields): Let F be an arbitrary finite field and d < |F| − 1. Suppose that e1, ..., ed+1 are distinct field

elements. Prove that there exist a sequence of tuples (α
(e)
1 , ..., α

(e)
d+1)e∈F , where α

(e)
i ∈ F , such that

g : F → F is a univariate polynomial of degree d if and only if for every e ∈ F it holds that

g(e) =

d+1
∑

i=1

α
(e)
i · g(ei). (18)

27The first claim holds because for every polynomial p of degree d there exists i ∈ {1, 2} such that p agrees with pi

on at most d points, which implies that δ(p, f) ≥ δ(p, pi) ≥ (⌊|F |/2⌋ − d)/|F|. The second claim holds because the
algorithm may reject only if {r, r + 1, ..., r + d + 1} has a non-trivial; intersection with {1, ..., |F|/2}.

28A more general version is presented in the lecture notes on testing Juntas.
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Guideline: First, show that there exists a unique degree d polynomial p that agrees with g on
e1, ..., ed+1, by writing p(x) =

∑d
i=0 cix

i and observing that











g(e1)
g(e2)

...
g(ed+1)











=











1 e1 · · · ed
1

1 e2 · · · ed
2

...
... · · ·

...
1 ed · · · ed

d+1





















c0

c1
...
cd











(19)

holds.29 Furthermore, the ci’s can be expressed as a linear combination of the g(ei)’s. Next, observe
that g is a degree d polynomial if and only if g(e) =

∑d
i=0 ci · e

i for every e ∈ F . Finally, set the

α
(e)
i ’s accordingly.

Exercise 5 (iterative derivatives and Theorem 2)30: Recall that the proof of Theorem 2 referred to

the derivatives of functions g : F → F . Here we explicitly define iterative derivatives, denoted ∂(i),

such that the value of ∂(1)g = ∂g at x equals g(x+1)−g(x) and ∂(i+1)g = ∂∂(i)g (where ∂(0)g = g).
Recall that in the first part of the proof of Theorem 2 we showed that, for every d > 0, it holds that

g has degree d if and only if ∂g has degree d− 1. Prove the following two facts:

1. For every d ≥ 0 and g : F → F , it holds that g has degree d if and only if the function ∂(d+1)g
is identically zero.

2. For every k ≥ 0 and g : F → F , it holds that the value of ∂(k)g at x equals

k
∑

i=0

(−1)k−i ·

(

k

i

)

· g(x + i).

Observe that the combination of these facts establishes Theorem 2.

Guideline: Both facts can be proved by induction (on d and k, resp.).
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