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Preface

Property testing is concerned with the design of super-fast algorithms for “structural analysis”
of huge amounts of data, where by structural analysis we mean an analysis aimed at unveiling
global features of the data. Examples include determining whether the data as a whole has some
property or estimating some global parameter of it. The focus is on properties and parameters
that go beyond simple statistics of the type that refers to the frequency of occurrence of various
local patterns. The algorithms are given direct access to items of a huge data set, and determine
whether this data set has some predetermined (global) property or is far from having this property.
Remarkably, this decision is made by accessing a small portion of the data set.

In other words, property testing is concerned with the design of super-fast algorithms for ap-
proximate decision making, where the decision refers to properties or parameters of huge objects. In
particular, we seek algorithms that only inspect relatively small portions of the huge object. Such
algorithms must be randomized and can only provide approximate answers. Indeed, two salient
aspects of property testing are that (1) it studies algorithms that can only read parts of the input,
and (2) it focuses on algorithms that solve “approximate decision” problems. Both aspects are
quite puzzling: What can one do without even reading the input? What does approximate decision
mean?

The answer is that these two aspects are indeed linked: Approximate decision means distin-
guishing objects that have some predetermined property (i.e., reside in some predetermined set)
from objects that are “far” from having the property (i.e., are far from any object having the
property), where the notion of distance employed here is the relative number of different symbols
in the descriptions of the objects. Such approximate decisions may be valuable in settings in which
an exact decision is infeasible or very expensive or just considerably more expensive than obtaining
an approximate decision.

The point is that, in many cases, approximate decision can be achieved by super-fast randomized
algorithms. One well-known example is the common practice of estimating various statistics by
sampling, which can be cast as a small collection of approximate decision problems (with respect
to some threshold values). Research in property testing aims to extend this useful practice to
properties that cannot be cast as statistics of values (which are associated with individual members
of a large population). Examples in which this goal was achieved include testing properties of
functions such as being a low degree polynomial, being monotone, depending on a specified number
of attributes, testing properties of graphs such as being bipartite and being triangle-free, and testing
properties of geometric objects and visual images such as being well-clustered and being a convex
body.

Objects as functions and their exploration. Viewing the input object as a function is natural
in the context of algorithms that do not read their entire input. Such algorithms must probe the
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input at locations of their choice, and such probing can be thought of as querying a function that
represents the input. The key point here is that the number of probes (or queries) is smaller than
the size of the input, and so decisions are taken after seeing only a small part of the input. However,
the inspected positions are not fixed but are rather chosen at random by the algorithm, possibly
based on answers obtained to prior queries. Thus, in general, these algorithms may “explore”
the input, rather than merely obtain its value at a uniformly selected sample of locations. Such
exploration is most appealing when the tested input is a graph, which may be represented by a
function (e.g., by its adjacency predicate), but the notion of exploration applies also in other cases.

Wider perspective and connections. Research in property testing may be both algorithmic
and complexity theoretic. This is reflected both in its goals, which may be either the design
of better algorithms or the presentation of lower bound on their complexity, and in its tools and
techniques. Such research is related to several areas of computer science and mathematics including
Combinatorics, Statistics, Computational Learning Theory, Computational Geometry, and Coding
theory. Historically, property testing was closely associated with the study of Probabilistically
Checkable Proofs (PCPs), and some connections do exist between the two, but property testing is
not confined to PCPs (and/or to the study of “locally testable codes”).

This book. The current book aims at providing an introduction to Property Testing, by present-
ing some of the main themes, results, and techniques that characterize the area and are used in it.
As usual in such cases, the choice reflects a judgement of what is most adequate for presentation in
the context of such an introductory text, and this selection does not reflect lack of appreciation of
the omitted material but rather an opinion that it is less suitable for the intended purpose of the
text.

In addition to the choice of material for this book, several choices were made regarding the
organization of the material and the amount of inter-dependencies among its parts.

Organizational choices. We chose to organize the material by the type of the objects and
the properties being tested. By the “type of object” we refer to the natural perception of the
object; for example, whether it is most naturally perceived as a function or as a graph. Within
the world of functions, the types correspond to the structure of the domain on which the function
is defined (e.g., a group, a vector space, a Boolean hypercube, or a hyper-grid). The structure of
the domain is often reflected in the invariances that are satisfied by the properties that we consider
(e.g., affine invariance, closure under graph isomorphism, etc). Hence, our organization may be
viewed as structurally oriented. (Possible alternatives to our organization include an organization
by techniques (as in Ron [242]) or by complexity levels (e.g., whether the complexity of testing is
independent of the size of the object, is mildly dependent on it, is barely sub-linear, or somewhere
in between).)1

We chose to present the material while making as few links between chapters as possible.
Of course, all chapters depend on the core notions that are introduced in the first chapter, but
additional inter-dependencies are rare and never heavily relied upon. Hence, the ordering of the

1Denoting the size of the object by n, one may distinguish bounds that are independent of n, from bounds that
are poly-logarithmic in n, bounds that are expressed by a constant power of n (i.e., nc for c ∈ (0, 1)), or are barely
sub-linear such as n/poly(log n).
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other chapters is not very important, although we preferred a specific one (for reasons outlined in
the “chapter summaries” section).

More specific choices. We chose to use (one-sided error) proximity-oblivious testers (POTs)
whenever possible. This reflects our belief that when a tester (implicitly or explicitly) consists of
repeating a POTs for a number of times that depends on the proximity parameter, one should
focus on the POT itself and rely on the generic transformation from POTs to standard testers.

For sake of uniformity, n always denotes the size of the object in its natural representation
(which is not grossly redundant). Hence, objects are typically viewed as functions f : [n] → Rn.
Consequently, Boolean functions are presented as f : {0, 1}ℓ → {0, 1}, where n = 2ℓ (rather than
as having domain {0, 1}n).

We made the choice of defining ǫ-far as the negation of ǫ-close. That is, a string x is ǫ-far from
S if its relative distance from S is strictly greater than ǫ, and it is ǫ-close otherwise. We warn that
in various sources different conventions are used regarding this minor issue.

The use of footnotes. We use footnotes quite heavily, and definitely much more often than is
the norm in textbooks. While this style is often criticized, it does offer the advantage of focusing
on a main thread while deferring relevant elaborations of some related issues to an easy to locate
place. We trust the reader to make the choice of whether to continue with the main thread or go
for some elaborations of a point. Typical uses of such footnotes fall into two distinct categories.
The first use is for the elaboration of technical details, which many readers may be willing to take
on fate (and some may even figure out by themselves) but other readers may want to see fully
justified before proceeding. The second use of footnotes is for advanced comments, which provide
a somewhat wider perspective or refer to sources where such perspectives can be found.

Technical style. At times, justifications for a sequence of (in)equalities appear after the sequence.
This is typically done when we believe that these justifications are implicit in the text that preceded
the sequence.

Teaching note: The book contains several teaching notes, which are typeset as this one.

Required preliminaries. There are no required preliminaries for this text, but basic familiarity
with some notions and results of the theory of computation and probability theory will be useful.
These include

1. the notions of decision, search, and promise problems (see, e.g., [131, Sec. 1.2]);

2. probabilistic algorithms (see, e.g., [131, Sec. 6.1] or [212]); and

3. basic notions and facts regarding discrete probability distributions, including probabilistic
inequalities such as the Union Bound and Chernoff Bound (see Appendix A, although this
material is covered in many textbook, including in [131, Apdx. D.1] and [212]).

Web-site for notices regarding this book. We intend to maintain a web-site for this book,
listing corrections and updates of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/∼oded/pt-intro.html
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Organization and Chapter Summaries

All chapters rely on few core notions that are introduced in Sections 1.3.1 and 1.3.3. Although
these parts of Section 1.3 provide a sufficient basis for reading any of the subsequent chapters, we
strongly recommend reading the entire first chapter before proceeding to any other chapter.

In contrast to the central role of Chapter 1, no other chapter is essential for the other chapters.
In particular, inter-dependencies between the other chapters are rare and never heavily relied upon.
The main dependencies are depicted in Figure 1, where thematic dependencies are marked by solid
lines and technical dependencies are marked by dashed lines.

Section 1.3: Basic notions and definitions

5.2 Dictator

6. By implicit
sampling

7. Lower Bounds

9. Bounded−Deg graphs

5.3 Junta

10. General graphs

2. LINEARITY

4. MONOTON.

3. LOW DEG.

9.3 lower bounds

8. Dense graphs
8.1.2 three models

Figure 1: Dependencies among Chapters 1–10. Wider lines represent greater dependency.

Although the ordering of the chapters that follow Chapter 1 is not very important, a choice
had to be made. Our choice was to start with simple properties of functions such as group ho-
momorphism, low degree polynomials, monotonicity (with respect to various partial orders), and
depending on few variables (i.e., juntas). In all these cases, the correspondence between the object
and its representation is transparent: the function is the object. In contrast, when moving to graph
properties, the question of representation arises in an acute manner, and three different chapters are
devoted to three different representations that correspond to three different testing models. Hence,
from the perspective of property testing per se, it seems to make sense to start with functions and
then move to graphs.

In accordance with the foregoing, the first cluster of chapters (Chapters 2–6) deals with testing
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properties of functions, whereas a second cluster (Chapters 8–10) deals with testing properties of
graphs. A chapter on lower bound techniques (i.e., Chapter 7) is located in between these two
clusters, since lower bounds are hardly mentioned in the first cluster, whereas they appear quite
prominently in Chapters 9–10. The reason for this phenomena is that these lower bounds are
used in order to justify the significantly higher complexity of some testers that are presented in
Chapters 9–10. Indeed, in the context of this book, we view lower bounds mainly as justification
for algorithms that may be considered to have a higher than expected complexity; the lower bounds
assert that this impression is actually false, and that one cannot do significantly better.

Chapters 11–13 form a third cluster, which is actually a cluster of outliers with respect to the
rest of this book. These chapters are indeed related to the previous chapters and yet they have a
different flavor: Chapter 11 deals with testing properties of distributions, Chapter 12 explores a
few variants of the basic setting (some of which were mentioned in Section 1.3.2), and Chapter 13
reviews locally testable codes and proofs. We stress that in Chapter 11 the tested objects are
fundamentally different from those considered in all the other chapters, whereas in Chapter 13 we
consider objects that are artificially designed so to offer super-fast testing.

Chapter 1: The Main Themes (Approximate Decision and Sub-linear Complexity).
This chapter introduces and illustrates the basic notions of property testing, emphasizing the
themes of approximate decision and sub-linear complexity. The chapter starts with a discussion
of the potential benefits of property testing, and culminates with a presentation of the definitions
of (standard) testers and of proximity-oblivious testers (POTs). These definitions (and the rela-
tionship between them) will be used extensively throughout the book. In addition, the current
chapter discusses the key role of representation, points out the focus on properties that are not
fully symmetric, and presents several general observations regarding POTs, testing, and learning.

Teaching note: The conceptual framework put forward in Chapter 1 is pivotal for the rest of the book.

It is essential that the main definitions (presented in Sections 1.3.1 and 1.3.3) and the rationale underlying

them be internalized.

The following five chapters deal with properties of objects that are most naturally viewed as
functions: Chapters 2–3 deal with algebraic properties, whereas Chapters 4–6 deal mostly with
properties of Boolean functions. This distinction is quite fuzzy, and is reflected in the difference
between the invariants that these properties satisfy: Algebraic properties are invariant under gen-
eral affine transformations of the corresponding vector spaces, whereas the properties of Boolean
functions that we consider are only invariant under transformations that permute the basis vectors.

Chapter 2: Testing Linearity (Group Homomorphism). This chapter present an analysis
of a linearity tester that, on input a description of two groups G,H and oracle access to a function
f : G→ H, queries the function at three points and satisfies the following conditions:

1. If f is a homomorphism from G to H, then the tester accepts with probability 1.

2. If f is δ-far from the set of all homomorphisms from G to H, then the tester rejects with
probability at least min(0.5δ, 0.1666).

The three queries are x, y, x + y, where x and y are selected uniformly at random in G. The
archetypical case is that H is a finite field and G is a vector space over this field.
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Chapter 3: Low Degree Tests. For a finite field of prime cardinality F , a degree bound
d < |F|/2 and number m ∈ N, we consider the problem of testing whether a function f : Fm → F
is a polynomial of total degree at most d. We present and analyze a low-degree tester that, given
oracle access to f : Fm → F , queries it at d + 2 points and satisfies the following conditions:

1. If f is an m-variate polynomial of (total) degree d, then the tester accepts with probability 1.

2. If f is δ-far from the set of m-variate polynomials of (total) degree d, then the tester rejects
with probability at least min(0.5δ,Ω(d−2)).

The sequence of queries is generated by selecting at random x and h uniformly in Fm, and using
x + ih as the ith query.

Teaching note: The analysis of the low degree test is quite similar to the analysis of the linearity test, alas

it is more complex (let alone that it depends on elementary preliminaries that are presented in Section 3.3).

Hence, if short on time, then do consider skipping Chapter 3.

Chapter 4: Testing Monotonicity. For each n, we consider functions from a partially ordered
set Dn to a totally ordered set Rn. Such a function f : Dn → Rn is called monotone if for every
x < y in Dn it holds that f(x) ≤ f(y), where < denotes the partial order of Dn and ≤ refers to
the total order in Rn. Two special cases of interest are:

1. Boolean functions on the Boolean Hypercube: In this case, Dn is the ℓ-dimensional Boolean
hypercube (with the natural partial order), where ℓ = log2 n, and Rn = {0, 1}. According to
this partial order, x1 · · · xℓ ≤ y1 · · · yℓ if and only if xi ≤ yi for every i ∈ [ℓ].

2. Real functions on the discrete line: In this case, Dn = [n] and Rn = R, both with the natural
total order.

Combining these two extremes, we also consider the case of the hyper-grid domain Dn = [m]ℓ, for
any m, ℓ ∈ N such that mℓ = n, and general ranges Rn. In all these cases, we present property
testers of complexity poly(ǫ−1 log n). In addition, we briefly survey relatively recent developments
regarding the first case as well as known results regarding testing convexity, submodularity, and
the Lipschitz property of functions from [m]ℓ to R.

Teaching note: Only parts of Chapter 4 (i.e., Sections 4.2.1 and 4.3.1) are recommended for teaching,

and the rest is better left for optional independent reading.

Chapter 5: Testing Dictatorships, Juntas, and Monomials. We consider testing three
basic properties of Boolean functions of the form f : {0, 1}ℓ → {0, 1}:

1. Dictatorship: The case where the value of f depends on a single Boolean variable (i.e.,
f(x) = xi ⊕ σ for some i ∈ [ℓ] and σ ∈ {0, 1}).

2. Junta (of size k): The case where the value of f depends on at most k Boolean variables (i.e.,
f(x) = f ′(xI) for some k-subset I ⊂ [ℓ] and f ′ : {0, 1}k → {0, 1}).

3. Monomial (of size k): The case where the value of f is the conjunction of exactly k Boolean
literals (i.e., f(x) = ∧i∈I(xi ⊕ σi) for some k-subset I ⊆ [ℓ] and σ1, ..., σℓ ∈ {0, 1}).
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We present two different testers for dictatorship, where one generalizes to testing k-Juntas and
the other generalizes to testing k-Monomials. (The presentation starts with the latter tester for
dictatorship, sketches its generalization to testing k-Monomials, and ends with the tester for k-
Juntas.)

Teaching note: We suggest leaving the overview section that discusses testing monomials (i.e., Sec-

tion 5.2.2) for advanced independent reading.

Chapter 6: Testing by Implicit Sampling. Building on the junta tester, we present a general
methodology for constructing testers for properties of Boolean functions (of the form f : {0, 1}ℓ →
{0, 1}) that can be approximated by small juntas. This methodology yields testers of low query
complexity for many natural properties, which contain functions that depend on relatively few
relevant variables; specifically, the query complexity is related to the size of the junta and is
independent of the length of the input to the function (i.e., ℓ).

Chapter 7: Lower Bounds Techniques. We present and illustrate three techniques for proving
lower bounds on the query complexity of property testers.

1. Showing a distribution on instances that have the property and a distribution on instances
that are far from the property such that an oracle machine of low query complexity cannot
distinguish these two distributions.

2. Showing a reduction from communication complexity. That is, showing that a communication
complexity problem of high complexity can be solved within communication complexity that
is related to the query complexity of the property testing task that we are interested in.

3. Showing a reduction from another testing problem. That is, showing a “local” reduction of a
hard testing problem to the testing problem that we are interested in.

We also present simplifications of these techniques for the cases of one-sided error probability testers
and non-adaptive testers.

Teaching note: The first method (i.e., the mehod of “indistinguishability of distributions”) is used much

more often than the other two methods, and studying it should be at the highest priority.

The following three chapters deal with properties of objects that are most naturally viewed as
graphs: These chapters consider three models that differ in the way that graphs are represented
(and by the definition of relative distance between graphs).

Teaching note: Chapters 8–10 contain material that may occupy half the duration of a course that is

based on the current book. Hence, painful choices will have to be made, unless a decision is made to

spend this amount of time on studying the topic of testing graph properties, which is not an unreasonable

decision in light of the ubiquitous presence of graphs in computer science. Our own (painful) choices

regarding the material to be taught appear in the introduction sections of these chapters.

x



Chapter 8: Testing Graph Properties in the Dense Graph Model. Following a general
introduction to testing graph properties, this chapter focuses on the dense graph model, where
graphs are represented by their adjacency matrix (predicate). The highlights of this chapter include:

1. A presentation of a natural class of graph properties that can each be tested within query
complexity that is polynomial in the reciprocal of the proximity parameter. This class, called
general graph partition problems, contains properties such as k-Colorability (for any k ≥ 2)
and properties that refer to the density of the max-clique and to the density of the max-cut
in a graph.

2. An exposition of the connection of testing (in this model) to Szemeŕedi’s Regularity Lemma.
The starting point and pivot of this exposition is the existence of constant-query (one-sided
error) proximity-oblivious testers for all subgraph freeness properties.

We conclude this chapter with a taxonomy of known testers, organized according to their query
complexity.

Chapter 9: Testing Graph Properties in the Bounded-Degree Graph Model. This
chapter is devoted to testing graph properties in the bounded-degree graph model, where graphs
are represented by their incidence lists (lumped together in an incidence function). The highlights
of this chapter include:

1. Upper and lower bounds on the complexity of testing Bipartitness; specifically, we present
a poly(1/ǫ) · Õ(

√
k)-time tester, and an Ω

√
k) lower bound on the query complexity of any

tester for Bipartitness.

2. A quasi-poly(1/ǫ)-time tester for Planarity. The result extends to testing any minor-closed
property (i.e., a graph property that is preserved under the omission of edges and vertices
and under edge contraction).

We concluded this chapter with a taxonomy of known testers, organized according to their query
complexity.

Chapter 10: Testing Graph Properties in the General Graph Model. This chapter is
devoted to testing graph properties in the general graph model, where graphs are inspected via
incidence and adjacency queries, and distances between graphs are normalized by their actual size
(i.e., actual number of edges). The highlights of this chapter include:

1. Demonstrating the derivation of testers for this model from testers for the bounded-degree
graph model.

2. Studying the tasks of estimating the number of edges in a graph and sampling edges uniformly
at random.

We concluded this chapter with some reflections regarding the three models of testing graph prop-
erties.

Teaching note: Although it is possible to study the contents of Chapter 10 without first studying the

contents of Chapter 9, we strongly recommend not doing so. A basic familiarity with the bounded-degree

graph model and some of the results regarding it will greatly facilitate the study of the general graph

model. See further comments at the beginning of Chapter 10.
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The last three chapters explore topics that are related to but significantly different from the
topics studied in the previous chapters. Chapter 11 is most different in flavour, since it refers to a
totally different type of objects and to a very different model of testing such objects. Chapter 13
seems more in line with the previous chapters, but it differs from them in considering objects that
are artificially designed so to offer super-fast testing. The topics explored in Chapter 12 are closest
in spirit to those explores in previous chapter (and, indeed, some of these topics were mentioned in
Section 1.3.2).

Teaching note: Chapter 11 can be read without reading any prior chapter (i.e., not even Sections 1.3.1

and 1.3.3), but some perspectives will be lost when doing so. Given the different flavor of this chapter, we

recommend to place it at the end of a course based on the current book.

Chapter 11: Testing Properties of Distributions. This chapter provides an introduction to
the study of testing properties of distributions, where the tester obtains samples of an unknown dis-
tribution (resp., samples from several unknown distributions) and is required to determine whether
the distribution (resp., the tuple of distributions) has some predetermined property. We focus on
the problems of testing whether an unknown distribution equals a fixed distribution and of testing
equality between two unknown distributions. Our presentation is based on reductions from the
general cases to some seemingly easier special cases. In addition, we also provide a brief survey of
general results.

Teaching note: Chapters 12–13 are intended for optional independent reading. They both have more

of the flavor of a survey than of a textbook. Chapter 12 follows-up on topics that were mentioned briefly

in prior chapters (including in Section 1.3.2). Chapter 13 focuses on topics that are somewhat related

to property testing, while building on results presented in Chapters 2–3 (but doing so in a self-contained

manner). Indeed, Chapter 13 can be read independently of the other chapters.

Chapter 12: Ramifications and related topics. We briefly review a few ramifications of the
notion of property testers as well as related topics. The list includes tolerant testing and distance
approximation; testing in the presence of additional promises on the input; sample-based testers;
testing with respect to other distance measures; local computation algorithms; and non-interactive
proofs of proximity (MAPs). The different sections of this chapter can be read independently of
one another.

Chapter 13: Locally Testable Codes and Proofs. We survey known results regarding locally
testable codes and locally testable proofs (known as PCPs). Local testability refers to approximately
testing large objects based on a very small number of probes, each retrieving a single bit in the
representation of the object. This yields super-fast approximate-testing of the corresponding prop-
erty (i.e., be a codeword or a valid proof). In terms of property testing, locally testable codes are
error correcting codes such that the property of being a codeword can be tested within low query
complexity. As for locally testable proofs (PCPs), these can be viewed as massively parameterized
properties that are testable within low query complexity such that the parameterized property is
non-empty if and only if the corresponding parameter is in a predetermined set (of “valid state-
ments”). Our first priority is minimizing the number of probes, and we focus on the case that this
number is a constant. In this case (of a constant number of probes), we aim at minimizing the
length of the constructs. That is, we seek locally testable codes and proofs of short length.
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Appendix A: Probabilistic Preliminaries. This appendix presents background from proba-
bility theory, which is used extensively throughout the book. This background and preliminaries
include conventions regarding random variables, basic notions and facts, and three useful proba-
bilistic inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality, and Chernoff Bound).

Appendix B: A Mini-Compendium of General Results. This appendix restates several
general results that were presented in prior chapters, including deriving standard testers from POTs;
positive results on the algebra of property testing; reducing testing to learning; the randomness
complexity of testers; archetypical application of self-correction; and the effect of local reductions.

Appendix C: An Index of Specific Results. This appendix provides an index to all results
regarding specific properties that were presented in this book. For each property, we only provide
references to the sections (or statements) in which relevant results can be found.
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Notation

Standard Notation

Sets and sequences. We often consider the set [n] = {1, ..., n}, where n is a natural number.
Likewise, we often consider the set

Σℓ = {σ1 · · · σℓ : σ1, ..., σℓ ∈ Σ}

of all ℓ-long sequences over Σ, where often Σ = {0, 1}. For x ∈ Σℓ and i ∈ [ℓ], we let xi denote the
ith symbol of x, and for I = {i1, ..., it} ⊆ [ℓ] such that i1 < · · · < it, we let xI = xi1 · · · xit ∈ Σt.

For a set S and a natural number t ≤ |S|, we denote by
(S

t

)
the set of all t-subsets of S; that

is,
(
S
t

)
= {S′ ⊆ S : |S′| = t}. Needless to say, the size of

(
S
t

)
equals

(|S|
t

)
. Likewise, the set of all

subsets of S is denoted 2S ; that is, 2S =
⋃

t≥0

(
S
t

)
, where

(
S
0

)
= ∅.

Graphs. Unless explicitly said differently, a graph G = (V,E), consists of a pair of finite sets V
and E ⊆

(V
2

)
. The elements of V are called vertices, and the elements of E are called edges. (That

is, we consider simple (undirected) graphs with no self-loops and no parallel edges.)2 Each edge
consists of a pair of vertices, called its endpoints.

Integrality issues. We often ignore integrality issues, treating values like log n and
√

n as if they
were integers. In such cases, rounding in an adequate manner will do.

Probabilitstic notation. We denote the probability that χ(e) holds when e is distributed ac-
cording to D by Pre∼D[χ(e)]. When D is the uniform distribution over a set S, we shall write
Pre∈S[χ(e)] instead of Pre∼D[χ(e)]. Often, when S or D is understood from the context, we just
omit it from the notation and write Pre[χ(e)]. For more probabilistic preliminaries, see Appendix A.

Asymptotic notation. We use standard notation such as O,Ω,Θ and their tilde versions. By
writing f(n) = O(g(n)) (resp. f(n) = Ω(g(n))) we mean that there exists a positive constant c
such that f(n) ≤ c ·g(n) (resp., f(n) ≥ c ·g(n)) holds for all n ∈ N. Likewise, f(n) = Õ(g(n)) (resp.
f(n) = Ω̃(g(n))) means that there exists a positive constant c such that f(n) ≤ c · (log n)c · g(n)
(resp., f(n) ≥ c·g(n)/(log n)c) holds for all n ∈ N. We write f(n) = Θ(g(n)) (resp., f(n) = Θ̃(g(n)))
if both f(n) = O(g(n)) and f(n) = Ω(g(n)) (resp., f(n) = Õ(g(n)) and f(n) = Ω̃(g(n))) hold.

2In contrast, one may consider (non-simple) graphs in which E is a multi-set of edges, and each edge is a multi-set
of size two. An edge that consists of two copies of the same vertex is called a self-loop, and identical edges are called
parallel.
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Common abbreviations. We often use the following abbreviations.

e.g. = for example.

i.e. = that is.

iff = if and only if.

s.t. = such that.

w.h.p. = with high probability.

w.l.o.g. = without loss of generality.

w.r.t = with respect to.

w.v.h.p. = with very high probability.

Typically, w.h.p. means with probability at least 1 − c for an arbitrary small constant c > 0,
and w.v.h.p. means with probability at least 1 − η for a fastly decreasing function η in a relevant
parameter.

Specific notation used extensively

The following notions are redefined several times in this book (see, e.g., Sections 1.2.2 and 1.6).

The notion of distance. For x, y ∈ Σn, we consider their relative Hamming distance, denoted

δ(x, y)
def
= |{i∈ [n] : xi 6=yi}|/n. For x ∈ Σn and S ⊆ Σn, we denote by δS(x) the relative Hamming

distance of x from S; that is, δS(x) is the minimum, taken over all z ∈ S ∩ {0, 1}|x|, of δ(x, z). (If
S = ∅, then δS(x) = ∞.) We say that x is ǫ-far from S (resp., ǫ-close to S) if δS(x) > ǫ (resp.,
δS(x) ≤ ǫ). The same notations are used for functions from [n] to Σ; that is, for f, g : [n]→ Σ, we

let δ(f, g)
def
= |{i∈ [n] : f(i) 6=g(i)}|/n.
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Chapter 1

The Main Themes: Approximate
Decision and Sub-linear Complexity

Summary: In this chapter, we introduce, discuss, and illustrate the conceptual frame-
work of property testing, emphasizing the themes of approximate decision and sub-linear
complexity. In particular, we discuss the key role of representation, point out the focus
on properties that are not fully symmetric, present the definitions of (standard) testers
and of proximity-oblivious testers (POTs), and make some general observations regard-
ing POTs, testing, and learning. All is preceded by a discussion of the potential benefits
of testing (i.e., approximate decisions of sub-linear complexity).

Section 1.1 provides a very brief introduction to property testing, sketching its basic definition and
providing a overview of its flavor and potential benefits. The pace here is fast and sketchy, unlike in
the rest of this chapter. The actual material is presented in Sections 1.2 and 1.3, which constitutes
the main part of this chapter. A more detailed account of the organization of this part is provided
in Section 1.1.4.

1.1 Introduction

Big data is a broad term for data sets so large or complex that traditional data

processing applications are inadequate.

Wikipedia entry on Big Data, 17-Feb-2016.

Everybody talks of Big Data. Of course, the issue is making good use of large amounts of data,
which requires analyzing it. But such an analysis may mean various things. At one extreme, it may
mean locating tiny and possible rare (but valuable) pieces of information. On the other extreme,
it may means detecting global structures or estimating global parameters of the data as a whole.

The field of property testing is related to the latter meaning. It is concerned with the analysis of
global features of the data, like determining whether the data as a whole has some global property
or estimating some global parameter of its structure. The focus is on properties and parameters
that go beyond simple statistics that refer to the frequency of the occurrence of various local
patterns. This is not intended to say that such simple statistics are not of value, but rather that
not everything of interest can be reduced to them.
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In general, the data is a set of records (or items) that may be inter-related in various ways. The
contents and meaning of the data may be reflected not only in the individual items (or records),
but also in the relations between them. In such a case, important aspects of the data are reflected
in the structural relations between its items. In particular, the indication of which pairs of items
are related may be such an aspect, and it can be modeled as a graph. Needless to say, this captures
only one aspect of the data, but this aspect may be very significant. When such a model is used,
checking whether the graph that arises has certain structural properties is of natural interest.
Indeed, testing natural properties of huge graphs or estimating various parameters of such graphs
is part of the agenda of property testing. More generally, property testing is concerned with testing
structural properties of huge objects or estimating such structural parameters.

Important as it is, big data is not the only source of huge objects that are considered by property
testing. Another type of huge objects are the functions that are computed by various programs or
other computing devices. We stress that these objects do not appear in explicit form in reality;
they are merely defined implicitly (and concisely) by these devices.

Our repeated reference to the huge size of the objects is meant to emphasize a salient feature of
property testing. We refer to the fact that property testing seeks super-fast algorithms that refrain
from obtaining the full explicit description of the object. These algorithms inspect relatively small
portions of the object and pass judgement based on such an inspection.

The reader may wonder how it is possible to say anything meaningful about an object without
looking at all of it. But on second thought, one may note that we are aware of such cases: All
frequency statistics are of this form. It is worthwhile to highlight two features of these statistics:
They are approximate rather than exact, and they are generated based on random choices. Indeed,
a notion of approximation and the use of randomness are pivotal to property testing. (Yet, we stress
again that property testing goes beyond frequency statistics.)

1.1.1 Property testing at a glance

As will be detailed in this chapter, property testing is primarily concerned with super-fact approx-
imate decisions, where the task is distinguishing between objects having a predetermined property
and objects that are “far” from having this property. Related tasks such as estimating structural
parameters of such objects or finding certain huge substructures inside them are also addressed. In
all cases, the algorithms sought are of sub-linear complexity (i.e., complexity that is sub-linear in
the size of the object), and in particular they only inspect realtively small portions of the object.

Typically, objects are modeled by functions, and distance between functions is measured as the
fraction of the domain on which the functions differ. An object is considered far from having the
property if its distance from any object that has the property exceeds a given proximity parameter.
We consider (randomized) algorithms that may query the function at arguments of their choice,
where this modeling allows for discussing algorithms that only inspect part of their input. In fact,
our focus is on algorithms that only inspect a small part of their input and make approximate
decisions regarding their input (i.e., whether it has some property or is far from having it).

Cases in which such super-fact approximate decision is possible include testing properties of
functions such as being a low degree polynomial, being monotone, and depending on a specified
number of attributes; testing properties of graphs such as being bipartite and being triangle-free;
and testing properties of visual images or geometric objects such as being well-clustered and being
a convex body.

In the next section, we review the potential benefits of property testers. But before doing so,
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we wish to stress that, like with any theoretical research, the value of research in property testing
is not confined to the actual use of the suggested algorithms (i.e., the resulting testers). The
development and study of conceptual frameworks, let alone the development of algorithmic design
and analysis techniques, is more important for the theory of computation at large as well as for
computer practice. While the impact on practice is typically hard to trace, the relations between
property testing and the rest of the theory of computing are evident (and will be pointed out in
adequate parts of this book).

1.1.2 On the potential benefits of property testers

Property testing is associated with approximate decision algorithms that run in sub-linear time or
at least make a sub-linear number of queries to their input. The benefit of sub-linear complexity
is significant when the input is huge, but this benefit comes at the cost of having an approximate
decision rather than an exact one. The question addressed at this section is whether (or rather when
can) this trading of accuracy for efficiency be worthwhile. The answer is application-dependent
rather than universal: We discuss several different general settings in which such a trading is
worthwhile.

It is infeasible to fully recover the object. This may be the case either because linear time is
infeasible for the huge objects being considered in the application or because probes to the object
are too expensive to allows for inspecting all of it. In such settings, there is no choice but to use
algorithms of sub-linear query complexity and settle for whatever they can provide (of course, the
more – the better).

Objects either have the property or are far from having it. Here we refer to applications
in which we know a priori that the objects that we will encounter either have the property or are
far from any object having the property. Intuitively, in such a case, objects are either perfect (i.e.,
have the property) or are very bad (i.e., far from it). In this case, we should not care about inputs
that are neither in the set nor far from it, because such inputs correspond to objects that we are
unlikely to encounter.

Objects that are close to having the property are good enough. Here we refer to appli-
cations in which the utility of objects that are close to having the property is almost as valuable as
the utility of objects that have the property. Alternatively, it may be possible to modify the object
at a cost related to its distance from having the property. In such cases, we may not care too much
about ruling that the object has the property whereas in reality the object is only close to having
this property.1

Testing as a preliminary step before deciding. Here we refer to the possibility of using the
approximate decision procedure as a preliminary step, and using the more costly exact decision
procedure only if the preliminary step was completed successfully (i.e., the approximate decider
accepted the input). This is advantageous provided that objects that are far from having the

1
Advanced comment: One may argue that in such cases, “tolerant testing” (see Section 1.3.2) is even more

adequate. Yet, tolerant testing may be harder than standard testing (cf. [109]).
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property are not very rare, since we definitely save resources when rejecting such objects based on
the preliminary step.

Testing as a preliminary step before reconstructing. This refers to settings in which we
wish to fully recover the object, either by reading all of it or by running a learning algorithm, but
we wish to do so only if the object has the property. Hence, before invoking the reconstruction
procedure, we want to (approximately) decide whether the object has the property. (In the case of
reconstruction by a learning algorithm, this makes sense only if the approximate decision procedure
is more efficient than the learning algorithm.) Again, using the approximate decision procedure is
advantageous provided that objects that are far from having the property are not very rare.

1.1.3 On the flavor of property testing research

Property testing seems to stand between algorithmic research and complexity theory. While the
field’s primary goal is the design of a certain type of algorithms (i.e., ones of sub-linear complexity)
for a certain type of problems (i.e., approximate decision), it often needs to determine the limits of
such algorithms, which is a question of lower bounds (having a complexity theoretic flavor). Fur-
thermore, historically, property testing was associated with the study of Probabilistically Checkable
Proofs (PCPs), and some connections do exist between the two areas, but property testing is not
confined to PCPs (and/or to the study of “locally testable codes” (see Chapter 13)).

In addition to standing in between algorithmic research and complexity theory, the results of
property testing have a flavor that makes them different from the mainstream results in both areas.
Its positive results are not perceived as mainstream algorithmic research and its negative results
are not perceived as mainstream complexity theory. In both cases, the specific flavor of property
testing (i.e., approximate decision) makes its results stand out. But property testing is not the
only research area that has this fate: The same can be said of Machine Learning and Distributed
Computing, to mention just two examples.

One additional characteristic of property testing is that its positive results tend to be established
by simple algorithms that are backed by a complex analysis. The simplicity of these algorithms
has met the lack of respect of a few researchers, but this is a fundamental mistake on their side.
The simplicity of algorithms is a virtue if one really considers using them, whereas the complexity
of their analysis has no cost in terms of their applicability. Hence, simple algorithms that require
a complex analysis are actually the greatest achievement that algorithmic research could hope for.

Like algorithmic research, property testing tends to split according to the “area” of the property
or the “type” of objects being considered (i.e., the natural perception of the object). Indeed, the
organization of the current book reflects this split, where Chapters 2-6 focus on (objects that are
viewed as) functions and Chapters 8-10 focus on (objects that are viewed as) graphs. Furthermore,
within the world of functions, one may distinguish types corresponding to the structure of the
domain on which the function is defined (e.g., a group, a vector space, or a Boolean hypercube).
The structure of the domain is often reflected by the invariances that are satisfied by the properties
that one considers (e.g., affine invariance, closure under graph isomorphism, etc). Still, concep-
tual frameworks, techniques, ideas, and inspiration do cross the borders between the parts of the
foregoing splits.

Property testing has a clear potential for practical applications, but it seems that this potential
has not materialized so far. The most begging applications are to the practice in areas such
as machine learning, compressed sensing, computer vision, statistics and privacy preserving data
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analysis. To provide some illustration to this potential, we mention the experimental search-and-
cluster engine [77], which is based on [177], which in turn uses [123, 98], which are informed by [121,
140]. (Indeed, a non-direct line of influence should be expected in the trasportation of theoretical
research to practice.) Applications that are more directly inspired by [140] are reported in [209, 163].
We also mention the connection between the study of testing visual images [230, 243] and finding
matching between images [193, 194]. Lastly, we mention that research in the somewhat related area
of “streaming algorithms” [15] has witnessed more interaction with practice (including computer
networks and databases [213], compressed sensing (e.g., [80]), and numerical linear algebra [270]).

1.1.4 Organization and some notations

As stated above, we view property testing as primarily concerned with approximate decisions, a
notion that is discussed in Section 1.2.2. (For perspective, we precede it with Section 1.2.1, which
recall the notion of approximate search problems.) Next, in Section 1.2.3, we discuss the second key
feature of property testing – its focus on sub-linear complexity. Then, in Section 1.2.4, we highlight
yet another feature of property testing – its focus on properties that are not fully symmetric (i.e.,
are not invariant under arbitrary re-ordering of the sequence of values that represent the object). In
general, the relation between objects and their representation is crucial in the context of property
testing, and this issue is discussed in Section 1.2.5.

The core of this chapter is presented in Section 1.3. The basic notions, definitions, and goals of
property testing will be presented in Section 1.3.1, and will be used extensively throughout the entire
book (with very few exceptions). In contrast, the ramifications discussed in Section 1.3.2 will be
lightly used (if at all), and ditto for the general observations made in Sections 1.3.4 and 1.3.5 (which
refer to the “algebra of property testing” and to the testing-by-learning connection, respectively).
In Section 1.3.3, we shall present another notion that will be used quite a lot – that of a proximity-
oblivious tester (POT).

Historical perspectives and suggestions for further reading are provided in Sections 1.4 and 1.5,
respectively. Finally, in Section 1.6 we re-iterate some of issues discussed in the current chapter, in
light of their importance to the rest of the book.

Some notation. We shall be using the following standard notations:

• For n ∈ N, we let [n]
def
= {1, ..., n}.

• For x ∈ {0, 1}∗, we let |x| denote the length of x and let xi denote the ith bit of x; that is, if
n = |x|, then x = x1 · · · xn such that xi ∈ {0, 1} for every i ∈ [n].

• The Hamming weight of a string x, denoted wt(x), is the number of locations that hold the
value one; that is,

wt(x) = |{i∈ [|x|] : xi =1}| =
|x|∑

i=1

xi.
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Teaching note: Section 1.2 provides a paced presentation of the mindframe that underlies property

testing, illustrating key issues such as approximate decision and sub-linear complexity. If in a rush, one

can skip this section, and go directly to Sections 1.3.1 and 1.3.3. Still, we recommend taking the slower

pace and covering also Sections 1.3.4 and 1.3.5, although this may mean spending more than a single

lecture on the current chapter. The ramifications discussed in Section 1.3.2 are discussed at greater detail

in Chapter 12, but we believe that an early detour into these variants provides a good perspective on

the main definition presented in Section 1.3.1 (while acknowledging that this may be too much for some

readers).

1.2 Approximate decisions

The notion of approximation is well known in the context of optimization problems, which are a
special type of search problems. We start by recalling these notions, for the sake of providing a
wide perspective.

1.2.1 A detour: approximate search problems

Recall that search problems are defined in terms of binary relations, and consist of finding a “valid
solution” y to a given instance x, where y is a valid solution to x if (x, y) satisfies the binary
relation associated with the problem. Letting R ⊆ {0, 1}∗ × {0, 1}∗ denote such a relation, we
say that y is a solution to x if (x, y) ∈ R, and the set of solutions for the instance x is denoted

R(x)
def
= {y : (x, y)∈R}. Hence, given x, the task is to find y ∈ R(x), provided that R(x) 6= ∅. (The

computation of a function corresponds to the special case in which all these sets are singletons.)

In optimization problems, the valid solutions are assigned a value (or a cost), captured by a
function ν : {0, 1}∗ → R, and one is asked to find a solution of maximum value (resp., minimum
cost); that is, given x, the task is to find y ∈ R(x) such that ν(y) = maxz∈R(x){ν(z)} (resp.,
ν(y) = minz∈R(x){ν(z)}).2

A corresponding approximation problem is defined as finding a solution having value (resp., cost)
close to the optimum; that is, given x the task is to find y ∈ R(x) such that ν(y) is “close” to
maxz∈R(x){ν(z)} (resp., to minz∈R(x){ν(z)}). One may also talk about the estimation problem, in
which the task is to approximate the value of the optimal solution (rather than actually finding a
solution that obtains that value).

The point we wish to make here is that, once a function ν and a proximity parameter are fixed,
it is clear what one means by seeking an approximation solution for a search problem. But, what
do we mean when we talk about approximate decision problems?

1.2.2 Property testing: approximate decision problems

Indeed, what can an approximate decision problem possibly mean?

Unfortunately, there is no decisive answer to such questions; one can only propose an answer
and articulate its natural appeal. Indeed, we believe that a natural notion of approximate decision
(or a natural relaxation of the decision problem) is obtained by ignoring “borderline” cases, which

2
Advanced comment: Greater flexibility is achieved by allowing the value (resp., cost) to depend also on the

instance; that is, use ν(x, y) rather than ν(y). Actually, this does not buy any additional generality, because we can
always augment the solution y by the instance x and use ν′(〈y, x〉) = ν(x, y). On the other hand, using the more
flexible formulation, one can get rid of the relation R by letting ν(x, y) = −∞ (resp., ν(x, y) = ∞) if (x, y) 6∈ R.
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are captured by inputs that are close to the set but do not reside in it. That is, instead of asking
whether an input x is in the set S, we consider the problem of distinguishing between the case that
x ∈ S and the case that x is “far” from S. Hence, we consider a promise problem (cf. [105, 129]
or [131, Sec. 2.4.1]), in which the yes-instances are the elements of S and the no-instances are
“far” from S.

Of course, we need to clarify what “far” means. To this end, we fixed a metric, which will be the
(relative) Hamming distance, and introduce a proximity parameter, denoted ǫ. Specifically, letting
δ(x, z) = |{i ∈ [|x|] : xi 6= zi}|/|x| if |x| = |z| and δ(x, z) = ∞ otherwise, we define the distance

of x ∈ {0, 1}∗ from S as δS(x)
def
= minz∈S{δ(x, z)}. Now, for a fixed value of ǫ > 0, the foregoing

promise problem consists of distinguishing S from {x : δS(x) > ǫ}, which means that inputs in
{x : 0 < δS(x) ≤ ǫ} are ignored.

Notation. Throughout the text, unless explicitly said differently, ǫ will denote a proximity pa-
rameter, which determines what is considered far. We shall say that x is ǫ-far from S if δS(x) > ǫ,
and otherwise (i.e., when δS(x) ≤ ǫ) we shall say that x is ǫ-close to S. Recall that δS(x) de-
notes the relative Hamming distance of x from S; that is, δS(x) is the minimum, taken over all
z ∈ S ∩ {0, 1}|x|, of |{i∈ [|x|] : xi 6=zi}|/|x|.

Lastly, we note that the set S will be associated with the property of being in it, which for
simplicity will also be referred to as the property S. Approximate decision will be later called
property testing; that is, approximate decision for a set S corresponds to testing the property S.

1.2.3 Property testing: sub-linear complexity

But why did we relax standard decision problems into approximate decision problems? The answer
is that, as in the case of approximate search problems, this is done in order to allow for more
efficient algorithms.

This answer is clear enough when the best known (or best possible) decision procedure requires
more than linear time, let alone when the original decision problem is NP-Hard. But property
testing deals also with properties that have linear-time algorithms. In these cases as well as in
the former cases, the relaxation to approximate decision suggests the possibility of sublinear-time
algorithms; that is, algorithms that do not even read their entire input. Such algorithms are
particularly beneficial when the input is huge (see Section 1.1.2).

The latter suggestion requires a clarification. Talking about algorithms that do not read their
entire input calls for a model of computation in which the algorithms have direct access to bits of
the input. Unlike in complexity theory, such a model is quite common in algorithmic research: It
is the standard RAM model. (For sake of abstraction, we will actually prefer to use the model of
oracle machines, while viewing the oracle as the input device.)

Except in degenerate cases (in which the decision problem is essentially insensitive to almost
all the bits in the input), the relaxation to approximate decision seems necessary for avoiding the
reading of the entire input. For example, if S is the set of strings having even parity, then an exact
decision procedure must read all the bits of the input (since flipping a single bit will change the
decision), but the approximate decision problem is trivial (since each n-bit string is 1/n-close to
S). A more interesting case is presented next.
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The case of majority. Let MAJ = {x :
∑|x|

i=1 xi > |x|/2}. We shall show that the correspond-
ing approximate decision problem can be solved by a (randomized) poly(1/ǫ)-time algorithm (see
Proposition 1.1), whereas no sublinear-time (randomized) algorithm can solve the corresponding
(exact) decision problem (see Proposition 1.2). We shall also show that randomness is essential for
the positive result (see Proposition 1.3).

Proposition 1.1 (a fast approximate decision procedure for MAJ): There exists a randomized
O(1/ǫ2)-time algorithm that decides whether x is in MAJ or is ǫ-far from MAJ.

As usual in the context of randomized algorithms, deciding means outputting the correct answer
with probability at least 2/3.

Proof: The algorithm queries the input x at m = O(1/ǫ2) uniformly and independently dis-
tributed locations, denoted i1, ..., im, and accepts if and only if the average value of these bits (i.e.,∑

j∈[m] xij/m) exceeds (1 − ǫ)/2. In the analysis, we use the Chernoff Bound (or alternatively

Chebyshev’s Inequality)3, which implies that, with probability at least 2/3, the average of the
sample is within ǫ/2 of the actual average; that is,

Pri1,...,im∈[|x|]

[∣∣∣∣∣

∑
j∈[m] xij

m
−
∑|x|

i=1 xi

|x|

∣∣∣∣∣ ≤ ǫ/2

]
≥ 2/3. (1.1)

We stress that Eq. (1.1) holds since m = Ω(1/ǫ2). It follows that the algorithm accepts each x ∈ MAJ

with probability at least 2/3, since in this case
∑|x|

i=1 xi > |x|/2. Likewise, it rejects each x that is

ǫ-far from MAJ with probability at least 2/3, since in this case
∑|x|

i=1 xi ≤ (0.5− ǫ) · |x|.

Teaching note: We assume that the reader is comfortable with the assertion captured by Eq. (1.1); that

is, the reader should find Exercise 1.1 easy to solve. If this is not the case, then we advise the reader to

get comfortable with such assertions and arguments before continuing reading. Appendix A should suffice

for readers who have basic familiarity with probability theory. Likewise, we assume that the reader is

comfortable with the notion of a randomized algorithm; basic familiarity based on [131, Sec. 6.1] or any

part of [212] should suffice.

Proposition 1.2 (lower bound on decision procedures for MAJ): Any randomized algorithm that
exactly decides membership in MAJ must make Ω(n) queries, where n is the length of the input.

Teaching note: The following proof may be harder to follow than all other proofs in this chapter, with

the exception of the proof of Proposition 1.11, which is also a lower bound. Some readers may prefer to

skip these proofs at the current time, and return to them at a latter time (e.g., after reading Chapter 7).

We prefer to keep the proofs in place, but warn the readers not to stall at them.

Proof: For every n ∈ N, we consider two probability distributions: A distribution Xn that is
uniform over n-bit strings having Hamming weight ⌊n/2⌋+1, and a distribution Zn that is uniform
over n-bit strings having Hamming weight ⌊n/2⌋. Hence, Pr[Xn ∈ MAJ] = 1 and Pr[Zn ∈ MAJ] = 0.
However, as shown in Claim 1.2.1, a randomized algorithm that queries either Xn or Zn at o(n)

3
Advanced comment: Indeed, both inequalities are essentially equivalent when one seeks constant error prob-

ability. See discussion in Appendix A.4.
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locations cannot distinguish these two cases with probabilistic gap that exceeds o(1), and hence
must be wrong on one of the two cases.

(Note that the randomized decision procedure must be correct on each input. The proof tech-
nique employed here proceeds by showing that any “low complexity” procedure fails even in the
potentially simpler task of distinguishing between some distribution of yes-instances and some dis-
tribution of no-instances. Failing to distinguish these two distributions implies that the procedure
errs with too large probability on at least one of these two distributions, which in turn implies that
there exists at least one input on which the procedure errs with too large probability.)

Claim 1.2.1 (indistinguishability claim): Let A be an algorithm that queries its n-bit long input
at q locations. Then, |Pr[A(Xn)=1] −Pr[A(Zn)=1]| ≤ q/n.

We stress that the claim holds even if the algorithm is randomized and selects its queries adaptively
(based on answers to prior queries).

Proof: It is instructive to view Xn as generated by the following random process: First i ∈ [n] is
selected uniformly, then y ∈ {0, 1}n is selected uniformly among the strings of Hamming weight
⌊n/2⌋ that have zero in position i, and finally Xn is set to y⊕ 0i−110n−i. Likewise, Zn is generated
by letting Zn ← y. (This is indeed a complicated way to present these random variables, but it
greatly facilitates the following analysis.)4 Now, observe that, as long as A does not query location
i, it behaves in exactly the same way on Xn and Zn, since in both cases it effectively queries the
same random y. (Furthermore, conditioned on not having queried i so far, the distribution of i is
uniform over all unqueried locations.) The claim follows.

By the indistinguishability claim (Claim 1.2.1), if algorithm A queries its n-bit long input on less
than n/3 locations, then |Pr[A(Xn)=1]−Pr[A(Zn)=1]| < 1/3. Hence, either Pr[A(Xn)=1] < 2/3,
which implies that A errs (w.p. greater than 1/3) on some x ∈ MAJ, or Pr[A(Zn)=1] > 1/3, which
implies that A errs (w.p. greater than 1/3) on some z 6∈ MAJ. The proposition follows.

Proposition 1.3 (randomization is essential for Proposition 1.1): Any deterministic algorithm
that distinguishes between inputs in MAJ and inputs that are 0.5-far from MAJ must make at least
n/2 queries, where n is the length of the input.

Proof: Fixing an arbitrary deterministic algorithm A that makes q < n/2 queries, we shall show
that if A accepts each input in MAJ, then it also accepts the all-zero string, which is 0.5-far from
MAJ. It will follow that A fails to distinguish between some inputs in MAJ and some inputs that are
0.5-far from MAJ.

Relying on the hypothesis that A is deterministic, we consider the unique execution of A in
which all queries of A are answered with zero, and denote the set of queried locations by Q. We now
consider two different n-bit long strings that are consistent with these answers. The first string,
denoted x, is defined such that xj = 1 if and only if j 6∈ Q, and the second string is z = 0n. Note
that x ∈ MAJ (since wt(x) = n − q > n/2), whereas z is 0.5-far from MAJ. However, A behaves
identically on x and z, since in both cases it obtains the answer 0 to each of its queries, which
means that A(x) = 1 if and only if A(z) = 1. Hence, A either errs on x (which is in MAJ) or errs
on z (which is 0.5-far from MAJ). The proposition follows.

4See Exercise 1.2 for details regarding the equivalence of the alternative and original definitions of Xn (resp., of
Zn).
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Digest. We have seen that sub-linear time (in fact constant-time) algorithms for approximate
decision problems exist in cases in which exact decision requires linear time. The benefit of the
former is significant when the input is huge, although this benefit comes at the cost of having
an approximate decision rather than an exact one (and using randomized algorithms rather than
deterministic ones).

1.2.4 Symmetries and invariants

The proof of Proposition 1.1 reflects the well known practice of using sampling in order to estimate
the average value of a function defined over a huge population. The same practice applies to any
problem that refers to the statistics of binary values, while totally ignoring the identity of the
entities to which these values are assigned. In other words, this refers to symmetric properties (of
binary sequences), which are defined as sets S such that for every x ∈ {0, 1}∗ and every permutation
π over [|x|] it holds that x ∈ S if and only if xπ(1) · · · xπ(|x|) ∈ S.

Theorem 1.4 (testing symmetric properties of binary sequences): For every symmetric property
(of binary sequences), S, there exists a randomized algorithm that makes O(1/ǫ2) queries and
decides whether x is in S or is ǫ-far from S.

(The result can be generalized to symmetric properties of sequences over any fixed alphabet.5 The
result does not generalize to sequences over unbounded alphabet. In fact, there exist symmetric
properties over unbounded alphabet for which the approximate decision problem requires a linear
number of queries (see Exercise 1.3).)

Proof: The key observation is for every n there exists a set (of weights) Wn ⊆ {0, 1, ..., n} such that
for every x ∈ {0, 1}n it holds that x ∈ S if and only if wt(x) ∈Wn, where wt(x) = |{i∈ [n] : xi 6=0}|.
(In the case of MAJ, the set Wn is {⌊n/2⌋ + 1, ..., n}.) Hence, deciding whether x is in S or is ǫ-far
from S reduces to estimating wt(x) and comparing it to W|x|. Specifically, on input x, the algorithm
proceeds as follows:

1. Queries the input x at m = O(1/ǫ2) uniformly and independently distributed locations,
denoted i1, ..., im, and computes the value v =

∑
j∈[m] xij/m.

2. Accepts if and only if there exists w ∈W|x| such that |v − (w/|x|)| ≤ ǫ/2.

Note that this step requires knowledge of |x| (as well as of the set W|x|) but no queries to
x; its computational complexity depends on the “structure” of W|x| (or, equivalently, on the
unary set S ∩ {1}∗).

As in the proof of Proposition 1.1, the analysis of this algorithm reduces to (1) noting that Pr[|v−
wt(x)/|x|| ≤ ǫ/2] ≥ 2/3, and (2) observing that the distance of x from S (i.e., δS(x) · |x|) equals to
minw∈W|x|{|w − wt(x)|}.6

5
Advanced comment: When generalizing the result to the alphabet Σ = {0, 1, .., t}, consider the set (of

“frequency patterns”) Fn ⊆ ({0, 1, ..., n})t such that for every x ∈ Σn it holds that x ∈ S if and only if
(#1(x), ...,#t(x)) ∈ Fn, where #j(x) = |{i ∈ [n] : xi = j}. The generalized tester will approximate each #j(x)
up to a deviation of ǫ/2t.

6To see (2), suppose that z ∈ S satisfies δS(x) = δ(x, z). Then, letting n = |x| = |z|, it holds that wt(z) ∈ Wn,
whereas |wt(x)−wt(z)| ≤ δ(x, z) · n, which implies minw∈Wn{|wt(x)−w|} ≤ δS(x) · n. On the other hand, for every
x ∈ {0, 1}n and w ∈ {0, 1, ..., n}, there exists z ∈ {0, 1}n such that wt(z) = w and δ(z, x) · n = |wt(z) − wt(x)|.
Picking w ∈Wn that minimizes |w−wt(x)| and a suitable z (i.e., of weight w such that δ(z, x) ·n = |wt(z)−wt(x)|),
it follows that δS(x) · n ≤ minw∈Wn{|w − wt(x)|}.
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Beyond symmetric properties. Theorem 1.4 refers to properties that are defined in terms of
the statistics of local patterns in an object (e.g., the frequecy of the two bit-values in a string),
while totally ignoring the identity of the locations in which these patterns occur (e.g., the location
of the bit-values). These properties are symmetric in the sense that they are invariant under
all permutation of these locations. In contrast, the focus of property testing is on properties
that depend on the relationship between the values and the locations in which these values reside
(although there are exceptions, see for example [7]). That is, the focus is on asymmetric properties,
which are properties that are not invariant under all permutation of the bit locations, although
they may be invariant under some (non-trivial) permutations. In the extreme case the property
is not invariant under any non-trivial permutation of the bit-locations; that is, x ∈ S if and only
if xπ(1) · · · xπ(|x|) ∈ S holds only when π is the identity permutation. This is the case for the
“sorted-ness” property discussed next.

We say that a string x ∈ {0, 1}∗ is sorted if xi ≤ xi+1 for every i ∈ [|x| − 1]. Denote the set of
sorted n-bit long strings by SORTEDn, and let SORTED = ∪n∈NSORTEDn. Although SORTEDn is not
invariant under any non-trivial permutation of [n], we present an O(1/ǫ)-time approximate decision
procedure for it.

Proposition 1.5 (a fast approximate decision procedure for SORTED): There exists a randomized
O(ǫ−1)-time algorithm, that decides whether a given string is in SORTED or is ǫ-far from SORTED.

(The set SORTED can be defined with respect to sequences over any set that is equipped with a total
order. This generalization will be considered in Section 4.3. We note that the algorithm presented
next does not extend to this general case; see [101, 108].)

Proof: On input x ∈ {0, 1}n, the algorithm proceeds as follows (assuming both ǫn/2 and 2/ǫ are
integers).

1. For F = {iǫn/2 : i ∈ [2/ǫ]} ⊆ [n], query x at each j ∈ F .

Let us denoted the retrieved |F |-bit long substring by y; that is, y = xǫn/2x2ǫn/2x3ǫn/2 · · · xn.

2. Queries x at m = O(1/ǫ) uniformly and independently distributed locations, denoted i1, ..., im.

3. Accept if and only if the induced substring is sorted; that is, letting m′ = |F | + m and
j1 ≤ j2 ≤ · · · ≤ jm′ such that {j1, ..., jm′} = F ∪ {ik : k ∈ [m]} (as multi-sets), accept if and
only if xjk

≤ xjk+1
for every k ∈ [m′ − 1].

This algorithm always accepts any x ∈ SORTED, since any substring of such a sorted x is also sorted.
Now, suppose that x is ǫ-far from SORTEDn. We consider two cases:

Case 1: the |F |-bit long substring y retrieved in Step 1 is not sorted. In this case, the al-
gorithm rejects in Step 3, regardless of the values retrieved in Step 2.

Case 2: the |F |-bit long substring y retrieved in Step 1 is sorted. In this case, the |F |-bit
long substring y = xǫn/2xǫnx3ǫn/2 · · · xn, retrieved in Step 1, equals 0t1|F |−t for some t. Now, if
a sorted string z is “consistent” with y (i.e., ziǫn/2 = yi for every i ∈ [2/ǫ]), then z is determined
up to the assignment of the bits residing in the ǫn/2-bit long interval [tǫn/2, (t + 1)ǫn/2],
because zj = 0 must hold if j ≤ tǫ/2 whereas zj = 1 must hold if j ≥ (t + 1)ǫ/2. But since x
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is ǫ-far from SORTED, with high probability, Step 2 chooses a location on which x differs from
the determined value (i.e., the value as determined for any sorted string). Details follow.

As stated above, in the current case (i.e., sorted y), there exists a t ∈ {0, 1, ..., |F |} such that
y = 0t1|F |−t; that is, for i ∈ [t] it holds that xiǫ/2 = 0, and for i ∈ [t+1, |F |] it holds that xiǫ/2 =
1. Note that this determines the “non-violating” values in locations [tǫn/2]∪ [(t + 1)ǫn/2, n];
that is, if x is sorted, then xj = 0 for every j ∈ [tǫn/2] since xj ≤ xtǫn/2 = 0, and likewise
xj = 1 for every j ∈ [(t + 1)ǫn/2, n] since xj ≥ x(t+1)ǫn/2 = 1. Hence, we say that location
j ∈ [n] is violating if either j ∈ [tǫn/2] and xj = 1 or j ∈ [(t + 1)ǫn/2, n] and xj = 0. Note
that any violating location j (which is not in [tǫn/2, (t+1)ǫn/2]) causes rejection at Step 3 (if
chosen in Step 2).7 On the other hand, there must be at least ǫn/2 violating locations, since
otherwise x is ǫ-close to SORTEDn (because we can make x sorted by modifying it at locations
V ∪ [tǫn/2, (t + 1)ǫn/2], where V denotes the set of violating locations). It follows that, in
this case, the algorithm rejects with probability at least 1− (1− ǫ/2)m > 2/3.

The proposition follows.

Invariances (or symmetries) versus asymmetries. The properties MAJ and SORTED reside on
opposite extremes of the invariance-vs-asymmetry axis: MAJ is invariant under each permutation
of the domain [n], which is totally symmetric w.r.t MAJ, whereas SORTED refers to the domain [n]
as a totally ordered set (and admit no invariance except the trivial one). In subsequent chapters,
we shall see properties that are invariant under some non-trivial permutations but not under all
permutations; that is, these properties are invariant under a non-trivial subgroup of the group of all
permutations of [n]. Examples include low-degree multi-variate polynomials (which are invariant
under affine transformations of the domain) and graph properties (which are invariant under any
relabelling of vertex names).8

Indeed, while the role of symmetries in property testing is often highlighted (see, e.g., [257, 143]),
here we call attention to the fact that the focus of property testing is on properties that are not fully
symmetric (i.e., are somewhat asymmetric). In these typical cases, the testers and their analyses
do not reduce to estimating average values via a uniformly distributed sample.

1.2.5 Objects and representation

So far we have referred to the instances of the (approximate) decision problems as abstract in-
puts, but it is time to recall that these instances are actually objects and that the inputs represent
the description of these objects. The distinction between objects and their representation is typ-
ically blurred in computer science; nevertheless, this distinction is important. Indeed, reasonable
and/or natural representations are always assumed either explicitly or implicitly (see, e.g., [131,
Sec. 1.2.1]).9

7In the first case (i.e., j ∈ [tǫn/2] and xj = 1) rejection is caused since xtǫn/2 = 0, whereas in the second case (i.e.,
j ∈ [(t+ 1)ǫn/2, n] and xj = 0) rejection is caused since x(t+1)ǫn/2 = 1.

8
Advanced comment: The role of invariances in property testing has been studied extensively, especially in the

domain of algebraic properties (see [257]), but also beyond these (see [143]).
9For example, the computational problem that underlies the RSA cryptosystem is phrased as follows: Given

integers N, e and y, find x such that y ≡ xe (mod N). This computational problem is believed to be hard when
each of these integers is presented by its binary expansion, but it is easy when N is presented by its prime factorization.
Likewise, factoring integers is believed to be hard when the integer is presented by its binary expansion, but it is
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The specific choice of a reasonable and/or natural representation becomes crucial when one
considers the exact complexity of algorithms (as is common in algorithmic research), rather than
their general “ball park” (e.g., being in the complexity class P or not). The representation is even
more crucial in our context (i.e., in the study of property testing). This is the case for two reasons
that transcend the standard algorithmic concerns:10

1. We shall be interested in sub-linear time algorithms, which means that these algorithms
query bits in the representation of the object. Needless to say, different representations mean
different types of queries, and this difference is crucial when one does not fully recover the
object by queries.

2. We shall be interested in the distance between objects (or, actually, in the distance between
objects and sets of objects), whereas this distance will be measured in terms of the distance
between their representations. In such a case, different representations of objects may yield
vastly different distances between the same objects.

To illustrate these concerns, suppose that the objects are represented by applying a good error
correcting code to their standard representation, where a good error correcting code is one of
constant relative distance and constant rate.11 (This is indeed a contrived representation, and it is
merely used to illustrate the foregoing concerns.) Assuming that the code is efficiently decodable
(even just in the case when no error occurs), the difference between this representation and the
standard representation will have almost no impact on standard algorithmic research. But the
difference between these representation is crucial in our context. On the one hand, under the
non-standard representation (by codewords), every two objects will be far apart, which means that
approximate decision (w.r.t this representation) will collapse to exact decision (w.r.t the objects).
On the other hand, it may be impossible to recover single bits in the standard representation by
probing the codeword at a sub-linear number of locations.

In light of the foregoing, when considering property testing, we always detail the exact rep-
resentation of the objects. This representation will be presented either as a sequence, where the
queries correspond to locations in the sequence, or as a function with queries corresponding to the
elements in its domain. These two presentations are clearly equivalent via the obvious correspon-
dence between sequences and functions (i.e., x = (x1, ..., xn) ∈ Σn correspond to f : [n] → Σ such
that xi = f(i) for every i ∈ [n]).

The choice of which presentation to use is determined either by the natural way we think of the
corresponding objects or by mere technical convenience. For example, when discussing m-variate
polynomials over a finite field F , it is natural to present them as functions from Fm to F . On the
other hand, when discussing the set of strings that are accepted by a fixed finite-state automaton,
it is natural to present each string as a sequence over {0, 1}.

easy when the integer is presented in unary (since this allows the solver to run in time that is exponential in the
binary representation of the integer). Indeed, the alternative representations of integers used in these two examples
are unnatural representations of the inputs.

10One standard concern, which is common to standard algorithmic research, is that complexity should be stated
in terms of relevant parameters of the input. Hence, one either states complexities in terms of natural parameters of
the object (e.g., the number of vertices and/or edges in a graph) or disallows overly redundant representations when
complexities are stated in terms of the representation length.

11An error correcting code of relative distance γ ∈ (0, 1] and rate ρ ∈ (0, 1] is a mapping C : {0, 1}ρn → {0, 1}n

such that every two images of C are at relative Hamming distance at least γ.
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The presentation of the object as a function is particularly appealing when the object has a
concise implicit representation as a computing device (say a Boolean or Arithmetic circuit) that
can be invoked on inputs of one’s choice. Actually, in such a case, the function computed by this
device is the explicit representation of the object. On the other hand, when the object is a huge
database that one can query at will, both presentation seem equally appealing.

1.3 Notions, definitions, goals, and basic observations

Following the property testing literature, we shall refer to approximate decision algorithms by the
name “(property) testers”. Likewise, we shall talk about “properties” rather than about sets. That
is, a tester for property Π is an approximate decision algorithm for the set Π, where in both cases
we refer to the same notion of distance and to the same proximity parameter ǫ.

The basic notions, definitions, and goals of property testing will be presented in Section 1.3.1,
and will be used extensively throughout the entire book (with very few exceptions). In contrast,
the ramifications discussed in Section 1.3.2 will be lightly used (if at all), and ditto for the general
observations made in Sections 1.3.4 and 1.3.5. In Section 1.3.3, we shall present another notion
that will be used quite a lot – that of a proximity-oblivious tester (POT).

Teaching note: Sections 1.3.1 and 1.3.3 are by far more important than anything else in this chapter, let

alone than the other parts of Section 1.3. In fact, one may consider skipping Sections 1.3.2 and 1.3.4–1.3.5

in first reading (or when teaching), and return to them at a later point.

1.3.1 Basics

The properties that we shall focus on are properties of functions, which represent objects that we
can probe by querying the function at the corresponding points. The size of the domain of these
functions is a key parameter, denoted n. Without loss of generality, we consider the domain [n].
The range may also depend on n, and is denoted Rn. Hence, a property is a set Πn of functions
from [n] to Rn.

The inputs. For sake of algorithmic uniformity and asymptotic analysis12, we let n vary, and
consider testers for Π = ∪n∈NΠn, while providing these testers with the parameter n as explicit
input (i.e., the tester can read this input at no cost). Hence, the same algorithm (tester) is used for
all values of n. The main input of the tester is a function f : [n]→Rn, which is viewed as an oracle
to which the tester has query-access; that is, the tester is an oracle machine and f is its oracle (i.e.,
query i ∈ [n] to the oracle f : [n]→Rn is answered with the value f(i)). Another explicit input
that is given to the tester is the proximity parameter, denoted ǫ. Indeed, this means that the tester
is uniform across all possible values of ǫ > 0.

These conventions make positive results more useful; in contrast, when presenting (query com-
plexity) lower bounds, we will typically consider also non-uniform algorithms that may depend
arbitrarily on n and ǫ. Indeed, in exceptional cases, typically in lower bounds, we may consider

12By algorithmic uniformity we mean presenting a single algorithm for all instances of the problem, rather than
presenting a different algorithm per each value of the size parameter n (and/or the proximity parameter ǫ). By
asymptotic analysis we mean a functional presentation of complexity measures in terms of the size and proximity
parameters, while ignoring constant multiplicative factors (i.e., using the O(·) and Ω(·) notation).
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testers that operate only for some fixed value of the proximity parameter ǫ. We shall refer to such
testers as ǫ-testers.

(In some other cases, for the sake of usefulness, we may wish to have testers that are uniform
also across other parameters of the property at stake. For example, when considering properties
of graphs of bounded degree, we may wish the same tester to apply to all values of the degree
bound, and in this case we provide the tester with the degree bound. Likewise, when we consider
properties of functions defined over a finite field, we may provide the tester with a representation
of this finite field. (A more acute need for providing such an auxiliary input arises in the context of
massively parameterized properties.)13 For sake of simplicity, in this chapter we consider the basic
case in which no auxiliary inputs of the aforementioned type are given.)

Distance. In accordance with the discussion in Section 1.2, we consider the relative distance
between functions, denoted δ. Specifically, for f, g : [n]→ Rn, we let δ(f, g) = |{i ∈ [n] : f(i) 6=
g(i)}|/n; that is,

δ(f, g)
def
= Pri∈[n][f(i) 6=g(i)], (1.2)

where i is uniformly distributed in [n]. For f : [n]→Rn and Π = ∪n∈NΠn such that Πn contains
functions defined over [n], we let δΠ(f) denote the distance of f from Πn; that is,

δΠ(f)
def
= min

g∈Πn

{δ(f, g)} (1.3)

where δΠ(f)
def
= ∞ if Πn = ∅.

Oracle machines. We model the testers as probabilistic oracle machines that access their main
input via queries. Hence, the output of such a machine, denoted T , when given explicit inputs n
and ǫ, and oracle access to f : [n]→Rn, is a random variable, denoted T f (n, ǫ). We shall associate
the output 1 (resp., 0) with the decision to accept (resp., reject) the main input. We are now ready
to present the main definition of property testing.

Definition 1.6 (a tester for property Π): Let Π = ∪n∈NΠn such that Πn contains functions of
the form f : [n]→Rn. A tester for Π is a probabilistic oracle machine, denoted T , that, on input
parameters n and ǫ and oracle access to a function f : [n]→ Rn, outputs a binary verdict that
satisfies the following two conditions.

1. T accepts inputs in Π: For every n ∈ N and ǫ > 0, and for every f ∈ Πn, it holds that
Pr[T f (n, ǫ)=1] ≥ 2/3.

2. T rejects inputs that are ǫ-far from Π: For every n ∈ N and ǫ > 0, and for every f : [n]→Rn

such that δΠ(f) > ǫ, it holds that Pr[T f (n, ǫ)=0] ≥ 2/3.

If the first condition holds with probability 1 (i.e., Pr[T f (n, ǫ) = 1] = 1), then we say that T has
one-sided error; otherwise, we say that T has two-sided error.

13
Advanced comment: For example, one may consider the property of being isomorphic to an explicitly given

graph, which is viewed as a parameter. In this case, one graph is a parameter, while another graph (of the same
size) is considered the main input: the tester is given free access to the parameter, and oracle access (for which it is
charged) to the main input. See survey on massively parameterized problems [216].
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Indeed, the error probability of the tester is bounded by 1/3. As with the definition of BPP (and
coRP), the choice of the error bound is rather arbitrary as long as it is a constant smaller than
1/2; the error can be decreased by repeated application of the tester (while ruling by majority; see
Exercise 1.4). Specifically, by using t repetitions, the error can be reduced to exp(−Ω(t)).

Focus: query complexity. Our main focus will be on the query complexity of the tester, when
considered as a function of n and ǫ: We say that the tester has query complexity q : N× (0, 1]→ N

if, on input n, ǫ and oracle access to any f : [n]→ Rn, the tester makes at most q(n, ǫ) queries.
Clearly, any property can be tested in query complexity q(n, ǫ) = n. The first priority is to have
the query complexity be sub-linear in n, and the slower it grows with n, the better. The ultimate
goal, which is not always achievablele, is to have the query complexity be independent of n. We
shall also care about the dependence of the query complexity on ǫ, and in particular whether it is
O(1/ǫ), or poly(1/ǫ) or worse.

The time complexity of the tester will be our secondary focus, although it is obviously important.
We shall say that a tester is efficient if its time complexity is almost linear in its query complexity.
As in algorithmic research, we allow standard manipulation of the symbols (i.e., elements of Rn) and
addresses (i.e., elements of [n]) at unit costs; for example, uniformly selecting i ∈ [n] or comparing
f(i) to v ∈ Rn are considered as performed in a single computational step.

Illustrating the foregoing terminology. Let us rephrase some of the results presented in
Section 1.2 using the forgoing terminology.

• Proposition 1.1: There exists a O(1/ǫ2)-time tester for MAJ.

• Proposition 1.3: Every deterministic tester for MAJ has query complexity Ω(n). This holds
even for deterministic 0.5-testers.

• Theorem 1.4: Every symmetric property of Boolean functions can be tested in query com-
plexity O(1/ǫ2).

• Proposition 1.5: There exists a O(1/ǫ)-time one-sided error tester for SORTED.

Non-adaptivity. We also distinguish between adaptive and non-adaptive testers, where a tester
is called non-adaptive if it determines all its queries based on its explicit inputs and internal coin
tosses, independently of the specific function to which it is given oracle access. In contrast, an
adaptive tester may determine it i + 1st query based on the answers it has received to the prior
i queries. Note the all the aforementioned testers (i.e., the testers presented in Section 1.2) are
non-adaptive.

A non-adaptive tester T can be de-composed into two modules, denoted Q and D, such that Q
uses the randomness r of T in order to generate queries i1, ..., iq , whereas D decides according to r
and the answers obtained; that is, T f (n, ǫ; r) = D(r, f(i1), ..., f(iq)), where (i1, ..., iq)← Q(n, ǫ; r).

Global versus local. Property testers of “low” query complexity give rise to a global-versus-
local phenomenon. In this case, a global property of the function f : [n]→Rn (i.e., its belonging to
Πn) is reflected by its “local behavior” (i.e., the pattern seen in the portion of f that is inspected
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by the tester (as determined by the random outcome of its coin tosses)).14 This perspective is more
appealing when the tester is non-adaptive. In this case, and using the foregoing de-coupling, the
“local behavior” refers to the values of f on the points in the sequence (i1, ..., iq)← Q(n, ǫ; r), where
each choice of r corresponds to a different portion of [n]. This perspective is even more appealing
when the tester has one-sided error and its final decision (i.e., D(r, f(i1), ..., f(iq))) only depends
on the answers obtained (i.e., is independent of r).

Common abuses. When describing specific testers, we often neglect to mention their explicit
inputs (i.e., n and ǫ), which are always clear from the context. Likewise, even when we discuss
auxiliary parameters (like degree bounds for graphs or descriptions of finite fields), we neglect to
write them as explicit inputs of the tester. Finally, for simplicity, we often use Π rather than Πn,
even when we refer to inputs of length n. Likewise, we may define Π as a finite set consisting of
functions over a fixed domain [n] and a fixed range. In any case, unless explicitly stated differently,
the value of the size parameter n has to be thought of as generic (and ditto for the value of the
proximity parameter ǫ).

1.3.2 Ramifications

Recall that distance between functions (having the same domain [n]) was defined in Eq. (1.2) as
the probability that they disagree on a uniformly distributed point in their domain. A more general
definition may refer to the disagreement with respect to an arbitrary distribution Dn over [n]; that
is, we may define

δDn(f, g)
def
= Pri∼Dn [f(i) 6=g(i)], (1.4)

where i ∼ Dn means that i is distributed according to Dn. In such a case, for a “distribution

ensemble” D = {Dn}, we let δΠ,D(f)
def
= ming∈Πn{δDn(f, g)}. This leads to a definition of testing

with respect to an arbitrary distribution ensemble D, where Definition 1.6 is viewed as a special
case in which Dn is the uniform distribution over [n].

One step farther is to consider distribution-free testers. Such a tester should satisfy the foregoing
requirement for all possible distributions D, and it is typically equipped with a special device that
provides it with samples drawn according to the distribution in question (i.e., the distribution Dn

used in the definition of distance). That is, a distribution-free tester for Π is an oracle machine
that can query the function f : [n]→Rn as well as obtain samples drawn from any distribution Dn,
and its performance should refer to δΠ,D(f) (i.e., the distance of f from Πn as measured according
to the distribution Dn).15 In such a case, one may consider both the tester’s query complexity and
its sample complexity.16

14Indeed, the portions of [n] observed when considering all possible outcomes of the tester’s randomness are likely
to cover [n], but the tester’s decision on a specific outcome depends only on the function’s values on the corresponding
portion of [n].

15Specifically, a distribution-free tester for Π is a probabilistic oracle machine, denoted T , such that for every n ∈ N

and every distribution Dn over [n], the following two conditions hold:

1. For every f ∈ Πn, it holds that Pr[T f,Dn(n, ǫ)=1] ≥ 2/3.

2. For every f : [n]→Rn such that δΠ,D(f) > ǫ, it holds that Pr[T f,Dn(n, ǫ)=0] ≥ 2/3.

In both items, T f,Dn(n, ǫ) denotes the output of T when given oracle access to f : [n] → Rn as well as access to
samples from Dn (and explicit inputs n and ǫ).

16In particular, one may also consider the case that the tester does not query the function on each sample obtained
from Dn; see [30].
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The aforementioned use of samples raises the question of what can be done, even with respect
to the uniform distribution, when the tester only obtains (“labeled”) samples; that is, when the
tester obtains the function’s values at some sampled points but cannot query the function on
points of its choice. We call such a tester sample-based, and clarify that, when testing a function
f : [n]→Rn, this tester is given a sequence of f -labeled samples, ((i1, f(i1)), ..., (is, f(is))), where
i1, ..., is are drawn independently and uniformly in [n]. As we shall see in subsequent chapters, the
ability to make queries is very powerful: even when the queries are selected non-adaptively, they
may be selected to depend on one another. In contrast, a sample-based tester is quite restricted
(i.e., it cannot obtain related samples), nevertheless sample-based testers are desirable in many
applications where obtaining samples is far more feasible than obtaining answers to queries of one’s
choice. (An extensive study of sample-based testers was initiated by Goldreich and Ron [153]; see
further details in Section 12.3.)

Testing distributions. A seemingly related, but actually different, notion is that of testing
properties of distributions. Here we do not test properties of functions (with respect to a distance
defined according to some distribution), but rather test properties of distributions, when given
samples drawn independently from a target distribution. Note that the formalism presented so
far does not apply to this notion, and a different formalism will be used. (The study of testing
properties of distributions was initiated by Batu et al. [35], and will be discussed in Chapter 11.)

Tolerant testing. Getting back to the basic framework of Definition 1.6 and recalling some of
the settings discussed in Section 1.1.2, we note that a natural generalization of testing refers to
distinguishing between objects that are ǫ′-close to the property and objects that are ǫ-far from the
property, for parameters ǫ′ < ǫ. Indeed, standard property testing refers to the case of ǫ′ = 0,
and tolerant testing may be viewed as “tolerating” small deviation of the object from having the
property.17 (The study of tolerant testing properties of functions was initiated by Parnas, Ron,
and Rubinfeld [225]; see further details in Section 12.1.)

Other distance measures. Almost all research in property testing refers to the distance measure
defined in Eq. (1.2), which corresponds to the relative Hamming distance between sequences. We
already saw a deviation from this archetypical case in Eq. (1.4). Different distance measures, which
are natural in some settings, include the edit distance and the L1-distance. (The study of property
testing with respect to the edit distance was initiated by Batu et al. [33], and a study of testing
with respect to the Lp-distance was initiated by Berman, Raskhodnikova, and Yaroslavtsev [50].)

1.3.3 Proximity-oblivious testers (POTs)

How does the tester use the proximity parameter?
In the examples presented in Section 1.2, the proximity parameter was used to determine the

number of queries. These testers were quite simple, and it was not clear how to decompose them
to repetitions of even simpler testers. Nevertheless, as we shall see in subsequent chapters, in many

17Tolerant testing is related to distance approximation, where no proximity parameter is given and the tester
is required to output an approximation (up to a given parameter) of the distance of the object to the property.
Typically, the term “tolerant testing” is used when the parameter ǫ′ is a fixed function of ǫ (e.g., ǫ′ = ǫ/2), and
“distance approximation” is used when one seeks an approximation scheme that is governed by an approximation
parameter (which corresponds to ǫ−ǫ′ when the sought approximation is additive and to ǫ/ǫ′ when it is multiplicative).
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cases such a decomposing is conceptually helpful. Furthermore, in many cases the basic testers do
not use the proximity parameter at all (see Proposition 1.8), but are rather repeated for a number
of times that depend on this parameter. This leads to the notion of a proximity-oblivious tester
(POT), which is defined next.

Below, we present a general notion of a POT, which allows two-sided error probability. The
notion of a one-sided error POT, obtained as a special case by setting the threshold τ = 1, emerges
much more naturally in applications in the sense that one may actually first think of a POT and
then get to a standard tester (as per Definition 1.6) from this POT. In contrast, two-sided error
POTs seem quite contrived, and may be viewed as an afterthought or as an exercise. Indeed, the
reader may want to focus on the one-sided error version (and just substitute τ by 1), at least in
first reading.

We stress that the POT does not obtain a proximity parameter as input, but its rejection
probability is a function of the distance of the tested object from the property. In the case of
one-sided error, the rejection probability is zero when the object has the property, and it increases
with the distance of the object from the property. In the case of two-sided error, the rejection
probability is at most 1 − τ when the object has the property, and it increases above 1 − τ with
the distance of the object from the property. In the following definition, we refer to the acceptance
probability of the POT, and state that it decreases below τ as a function of the distance of the
object from the property. The latter function is denoted ̺.

Definition 1.7 (Proximity Oblivious Testers): Let Π = ∪n∈NΠn such that Πn contains functions
defined over [n] (as in Definition 1.6). Let τ ∈ (0, 1] be a constant and ̺ : (0, 1] → (0, 1] be
monotonically non-decreasing. A proximity-oblivious tester (POT) with threshold probability τ and
detection probability ̺ for Π is a probabilistic oracle machine, denoted T , that satisfies the following
two conditions.

1. T accepts inputs in Π with probability at least τ : For every n ∈ N and every f ∈ Πn, it holds
that Pr[T f (n)=1] ≥ τ .

2. T accepts inputs that not in Π with probability that decreases below τ as a function of their
distance from Π: For every n ∈ N and every f : [n]→ Rn that is not in Π, it holds that
Pr[T f (n)=1] ≤ τ − ̺(δΠ(f)), where δΠ is as in Eq. (1.3).

When τ = 1, we say that T has one-sided error.

Hence, f 6∈ Π is rejected with probability at least (1 − τ) + ̺(δΠ(f)). The postulate that ̺
is monotonically non-decreasing means that any function that is ǫ-far from Π is rejected with
probability at least (1− τ)+̺(ǫ); that is, if δΠ(f) ≥ ǫ (and not only if δΠ(f) = ǫ), then f is rejected
with probability at least (1− τ)+ ̺(ǫ). This postulate is natural (and it can be enforced in general
by redefining ̺(ǫ)← infδ≥ǫ{̺(δ)}).

Note that if τ < 1, then it is not necessarily the case that all f ∈ Π are accepted with the same
probability (e.g., τ); it may be that some functions are accepted with probability τ and others are
accepted with probability greater than τ (see [156]). We also mentioned that Definition 1.7 can
be generalized such that both the detection probability function ̺ and the threshold τ depend on
n, but we shall not use this generalization. Before making any additional comments, let us see an
example of a proximity-oblivious tester.
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Proposition 1.8 (a two-query POT for SORTED): There exists a (one-sided error) proximity obliv-
ious tester for SORTED using two queries and having quadratic detection probability, where SORTED

is as in Proposition 1.5.

Proof: (Here it will be more convenient to view the input as a bit string.) On input n and oracle
access to x ∈ {0, 1}n, the tester selects uniformly i, j ∈ [n] such that i < j and accepts if and
only if xi ≤ xj . Clearly, each sorted string is accepted with probability 1. To lower-bound the
detection probability of this tester, we consider an arbitrary x ∈ {0, 1}n at distance δS(x) > 0 from

S
def
= SORTED.

Observing that x′ = 0n−wt(x)1wt(x) is the sorted version of x, consider the disagreements between
x and x′. Specifically, let D1 denote the set of locations in the (n − wt(x))-bit long prefix of x
that hold 1’s (i.e., D1 = {i ∈ [n − wt(x)] : xi = 1}). Likewise, denote the set of locations in the
wt(x)-bit long suffix of x that hold 0’s by D0 (i.e., D0 = {i ∈ [n − wt(x) + 1, n] : xi = 0}), and
note that |D0| = |D1|. Now, on the one hand, δS(x) ≤ δ(x, x′) = (|D1| + |D0|)/n, which implies

that d
def
= |D1| ≥ δS(x) · n/2.18 On the other hand, for each pair (i, j) ∈ D1 × D0, it holds that

1 ≤ i < j ≤ n and xi = 1 > 0 = xj . Hence,

Pri,j∈[n]:i<j[xi > xj] ≥
|D1| · |D0|(n

2

)

=
d2

n(n− 1)/2

>
(δS(x) · n/2)2

n2/2

= 0.5 · δ(x)2.

The proposition follows.

General observations about POTs. The query complexity of POTs is stated as a function of
n, and at times – as in Proposition 1.8 – their query complexity will be a constant (independent
of n). All POTs we shall see in this book have one-sided error.19 Nevertheless, we mention that
the threshold in two-sided error POTs is immaterial, as long as it is a constant in (0, 1): See
Exercise 1.7. More importantly, we show how to derive standard testers out of POTs, while noting
that for one-sided testers (resp., two-sided error) the resulting tester has query complexity that is
linear (resp., quadratic) in 1/̺:

Theorem 1.9 (deriving standard testers from POTs):

1. If Π has a one-sided error POT of query complexity q with detection probability ̺, then Π has
a one-sided error tester of query complexity q′ such that q′(ǫ) = O(q/̺(ǫ)).

2. If Π has a POT of query complexity q with threshold probability τ ∈ (0, 1) and detection
probability ̺, then Π has a tester of query complexity q′ such that q′(ǫ) = O(q/̺(ǫ)2).

18
Advanced comment: The fact that δS(x) ≥ d/n is not used here, but proving it is a good exercise (see

Exercise 1.6).
19Rather contrived exceptions are presented in Exercises 1.8 and 1.9.

20



The time complexity of the derived tester relates to that of the POT in a similar manner. If the
POT is non-adaptive, then so is the derived tester.

Proof: On input proximity parameter ǫ > 0, the standard tester invokes the POT for a number
of times that depends on ̺(ǫ). Specifically, if the POT has one-sided error, then the tester invokes
it for O(1/̺(ǫ)) times and accepts if and only if all invocations accepted. If the POT has threshold
probability τ ∈ (0, 1), then the tester invokes it for O(1/̺(ǫ)2) times and accepts if and only if at
least a τ − 0.5 · ̺(ǫ) fraction of the invocations accepted. The analysis of this tester reduces to
observing that a function that is ǫ-far from Π is accepted by the POT with probability at most
τ − ̺(ǫ) (whereas any function in Π is accepted with probability at least τ).20

Discussion. Note that the standard tester for SORTED obtained from the POT of Proposition 1.8
(by applying Theorem 1.9) is inferior to the tester of Proposition 1.5. This is not a singular case
(see [152]). Furthermore, some properties have good testers, but do not have good POTs at all;
that is, there exist natural properties that have poly(1/ǫ)-time testers but have no constant-query
POTs (see Exercise 1.10).

1.3.4 The algebra of property testing

In this section we show that (asymptotic complexity classes of) testable properties are closed under
union but not under intersection (and complementation). That is, if Π′ and Π′′ are testable within
some complexity bounds, then so is Π′ ∪ Π′′ (up to a constant factor), but Π′ ∩ Π′′ may be much
harder to test.21 Details follow.

Unions. The basic idea is that if Π′ and Π′′ are testable by algorithms T ′ and T ′′, respectively,
then one may test Π′∪Π′′ by invoking both testers and accepting if and only if at least one of these
invocations accepted. This procedure doubles the error probability of ordinary testers and squares
the detection probability of one-sided error POTs, so in the former case we should first apply error
reduction.

Theorem 1.10 (testing the union of properties):

1. If Π′ and Π′′ are each testable within query complexity q, then Π′∪Π′′ is testable within query
complexity O(q). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∪Π′′ has a 2q-query one-sided error POT with detection probability
̺2.

Furthermore, the time complexity is preserved up to a constant factor.

20The first assertion relies on the postulation that ̺ is monotonically non-decreasing. This postulate implies that
any function that is ǫ-far from Π (rather than only functions that are at distance exactly ǫ from Π) is rejected with
probability at least (1 − τ ) + ̺(ǫ).

21This is a general result in the sense that the positive part holds for all Π′ and Π′′ whereas the negative part
indicates a failure for some Π′ and Π′′. In contrast, in some cases, both Π′ ∪ Π′′ and Π′ ∩ Π′′ may be much easier to
test than Π′ and Π′′.
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(Indeed, it is unclear how to handle the case of two-sided error POTs. The issue is that, in this
case, inputs in Π′ \Π′′ may be rejected by the foregoing procedure with probability 1− τ , where τ
is the threshold probability.22 On the other hand, inputs that are at distance δ from Π′ ∪Π′′ may
be rejected with probability (1− τ +̺(δ))2. But for τ < 1 and sufficiently small δ > 0, it holds that
1−τ > (1−τ +̺(δ))2. In contrast, for τ = 1 and any δ > 0, it holds that 1−τ = 0 < (1−τ +̺(δ))2.)

Proof: The key point is that being far from Π′ ∪Π′′ implies being far from both Π′ and Π′′. The
theorem follows by noting that the combined tester rejects an input if and only if the two testers
that it invokes reject. Details follow.

By the hypothesis of Part 1, each of the two properties is testable within query complexity q, but
these testers may have error probability as large as 1/3. Hence, we first obtain corresponding testers
of error probability at most 1/6, by invoking each of the original testers for a constant number of
times. Combining the two resulting testers, as described above, we establish Part 1. Specifically,
inputs in Π′ ∪ Π′′ are accepted with probability at least 5/6 (due to residing in one of the sets),
whereas inputs that are far from Π′ ∪Π′′ are rejected with probability at least (5/6)2 > 2/3.

Turning to Part 2, we note that no error reduction is needed here; the claimed result follows by
merely lower-bounding the probability that both testers reject when the input is at distance δ from
Π′∪Π′′; that is, this input is rejected with probability at least ̺(δ′) ·̺(δ′′), where δ′ ≥ δ denotes its
distance from Π′, and δ′′ ≥ δ denotes its distance from Π′′. (On the other hand, inputs in Π′ ∪Π′′

are accepted with probability 1 (due to residing in one of the sets).)

Hardness for testing. The negative results regarding intersection and complementation rely on
properties that are hard to test. For concreteness we start by presenting one such hardness result.

Proposition 1.11 (hardness of testing membership in a linear code): Let G be a 0.5n-by-n Boolean
matrix in which every 0.05n columns are linearly independent and every non-empty linear combi-
nation of the rows has Hamming weight at least 0.1n > 1. Let Π = {xG : x ∈ {0, 1}0.5n} be the
linear code generated by G. Then, 0.1-testing Π requires more than 0.05n queries.

The existence of a matrix G that satisfies the hypothesis can be proved using the probabilistic
method (see Exercise 1.12). The proof of Proposition 1.11 only uses the fact that every 0.05n
columns are linearly independent (and that there are 0.5n rows). The fact that the code has
distance greater than one will be used later (when using Π to show the negative result regarding
complementation).

Teaching note: See the teaching note that follows Proposition 1.2. In short, some readers may prefer to

skip the following proof, and return to it at a latter time (e.g., after reading Chapter 7).

Proof: We shall use the following two observations.

Observation 1: An algorithm that makes 0.05n queries cannot distinguish the case that its input is
uniformly distributed in Π from the case that its input is uniformly distributed in {0, 1}n.

This is the case since, for a uniformly distributed x ∈ {0, 1}0.5n, each 0.05n-bit long sub-
sequence of xG is uniformly distributed in {0, 1}0.05 (see Exercise 1.13). Observe that this

22This is because an input in Π′ \ Π′′ may be rejected by the tester of Π′ with probability exactly 1 − τ , and may
be rejected by the tester of Π′′ with probability 1.
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implies that an adaptive algorithm that makes at most 0.05n queries to xG sees uniformly
and independently distributed bits.

Observation 2: All but at most 20.99n of the strings in {0, 1}n are 0.1-far from Π.

This follows by straightforward counting (see Exercise 1.14).

Observation 2 implies that a 0.1-tester must reject a uniformly distributed n-bit string with prob-
ability at least (1− 2−0.01n) · 2/3 > 0.6. On the other hand, such a tester must accept any string in
Π with probability at least 2/3 (and so reject it with probability at most 1/3). But Observation 1
asserts that no gap in the rejection probability is possible when making at most 0.05n queries.

Intersection (and complementation). Proposition 1.11 yields an example in which the com-
plexity of testing a property is vastly different from the complexity of testing its complement.
Specifically, consider the property Π′ = {0, 1}n \ Π, where Π is as in Proposition 1.11. Note that
every n-bit string is 1/n-close to Π′ (since each string is either in Π′ or is surrounded by strings in
Π′)23; hence, testing Π′ is trivial (i.e., if ǫ ≥ 1/n, then we may accept the input without examining
it at all, and otherwise reading the entire input means making at most 1/ǫ queries). But, testing
the complement of Π′ (i.e., testing Π) is utmost hard (i.e., requires a linear number of queries)!

A small twist on the foregoing argument allows proving the following result.

Theorem 1.12 (on testing the intersection of properties): There exist Π′ and Π′′ such that the
following holds:

1. Each of these two properties is testable within query complexity 1/ǫ; actually, they are each
testable with query complexity q such that q(n, ǫ) = 0 if ǫ ≥ 1/n and q(n, ǫ) = n otherwise.

2. Testing Π′∩Π′′ requires a linear number of queries; actually, 0.1-testing Π′∩Π′′ requires more
than 0.05n queries.

Proof: Starting with Π as in Proposition 1.11, we consider Π′ = Π ∪ {0x′ : x′ ∈ {0, 1}n−1} and
Π′′ = Π∪ {1x′ : x′ ∈ {0, 1}n−1}. Part 1 follows from the fact that every n-bit string is 1/n-close to
Π′ (resp., Π′′). Part 2 follows from the fact that Π′ ∩Π′′ = Π.

Digest. The proof of Theorem 1.12 introduces sets Π′ and Π′′ such that every string is (very)
close to each of these sets, but some strings are far from the intersection of the two sets.24 Indeed,
the fact that x is close to both Π′ and Π′′ does not imply that x is close to Π′ ∩Π′′; see illustration
in Figure 1.1. As shown next, this cannot happen in case the sets are “monotone”.

The case of monotone properties. We say that Π ⊆ {0, 1}∗ is monotone if for every x ∈ Π
and w ∈ {0, 1}|x| it holds that x ∨ w = (x1 ∨ w1, ..., xn ∨ wn) is in Π; that is, Π is preserved under
resetting any of the bits to 1. We first note that the discrepancy between the complexity of testing
a property and the complexity of testing its complement is maintained also for monotone properties
(see Exercise 1.16). More importantly, in contrast to Theorem 1.12, we have

23Here we use the hypothesis that strings in Π are at (Hamming) distance at least two apart.
24

Advanced comment: An interesting question (raised by Inbal Livni) is whether Theorem 1.12 holds for sets
Π′ and Π′′ that do not have this feature (i.e., there exist strings that are far from Π′, and ditto for Π′′).
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Figure 1.1: Being closed to two sets versus being closed to their intersection

Theorem 1.13 (testing the intersection of monotone properties): Let Π′ and Π′′ be monotone
properties.

1. If Π′ and Π′′ are testable within query complexity q′ and q′′, respectively, then, for every
ǫ′ ∈ (0, ǫ), the property Π′ ∩ Π′′ is ǫ-testable within query complexity q(n, ǫ) = O(q′(n, ǫ′) +
q′′(n, ǫ− ǫ′)). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∩Π′′ has a 2q-query one-sided error POT with detection probability
̺′(δ) = ̺(δ/2).

Furthermore, the time complexity is preserved up to a constant factor.

Theorem 1.13 is generalized and abstracted in Exercise 1.17. A totally different case in which
testability is preserved under intersection is presented in Theorem 5.11.

Proof: The basic idea is that if Π′ and Π′′ are testable by algorithms T ′ and T ′′, respectively, then
one may test Π′ ∩Π′′ by invoking both testers and accepting if and only if both these invocations
accepted.25 While this procedure fails for general properties, we show that it works for monotone
ones. The key observation is that, for monotone properties Π′ and Π′′, if x is ǫ′-close to Π′ and
ǫ′′-close to Π′′, then x is (ǫ′ + ǫ′′)-close to Π′ ∩Π′′. This is shown next.

We first show that if Π ⊆ {0, 1}n is monotone (and non-empty), then, for every x ∈ {0, 1}n
there exists w ∈ {0, 1}n such that x ∨ w ∈ Π and wt(w) = δΠ(x) · n. This is the case because, by
monotonicity, when modifying x into a string in Π it never helps to reset bits to 0, since keeping
them intact will do. Specifically, if x∧w ∈ Π then x ∈ Π (since x = (x∧w)∨ (x∧w), whereas the
latter is in Π by monotonicity). Hence, letting w1, w0 ∈ {0, 1}n be such that (x∨w1)∧(1n⊕w0) ∈ Π
and wt(w1)+wt(w0) = δΠ(x) ·n, we infer that x∨w1 ∈ Π and the claim follow (since wt(w0) ≥ 0).26

Now, we show that, for every x ∈ {0, 1}n it holds δΠ′∩Π′′(x) ≤ δΠ′(x) + δΠ′′(x). Let w′ (resp.,
w′′) be such that x∨w′ ∈ Π′ and wt(w′) = δΠ′(x) · n (resp., x∨w′′ ∈ Π′′ and wt(w′′) = δΠ′′(x) · n).

25In the case of two-sided error tester, this is done after reducing the error probability to 1/6. In any case, for
Part 1 and any ǫ′ ∈ (0, ǫ), the ǫ-tester invokes the ǫ′-tester for Π′ and the (ǫ− ǫ′)-tester for Π′′.

26In fact, wt(w0) = 0, since otherwise wt(w1) < δΠ(x) · n, in contradiction to the definition of δΠ(x).
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Then, by using monotonicity again, we have x ∨ w′ ∨ w′′ ∈ Π′ and x ∨ w′ ∨ w′′ ∈ Π′′, whereas
wt(w′ ∨ w′′) ≤ wt(w′) + wt(w′′). The theorem follows.

Two final comments about the algebra of testing properties. We first mention that a
notion of strong complementation underlies the definition of testing dual properties [259]. Specif-
ically, a dual property is defined based on a property Π and a constant δ > 0, and it consists of
all objects that are δ-far from Π. Lastly, we warn that the complexity of property testing does not
necessarily increase or decrease when considering a subset (or a superset) of some property:27 The
non-monotonicity of the complexity of testing is evident from the fact that Π may be hard to test
(e.g., if Π is as in Proposition 1.11) but testing ∅ and {0, 1}n is trivial (whereas ∅ ⊂ Π ⊂ {0, 1}n).

1.3.5 Testing via learning

A general observation, which is seldom used, is that property testing reduces to learning. The reason
that this observation is seldom used is that one typically seeks testers that are more efficient than
the corresponding learners. Still, for sake of perspective, we detail the aforementioned reduction.

To streamline the presentation, we use the terminology of Definition 1.6 in our definition of
learning. (In the learning literature, the set Π is called a concept class, the functions f : [n]→ Rn

are called concepts, and one usually focuses on Rn = {0, 1} and n = 2ℓ, while viewing ℓ as the
main parameter. More importantly, as in Definition 1.6 we provide the learner with oracle access
to the function (rather than with labeled examples as is standard in the learning literature), focus
on the uniform distribution (rather than on the distribution-free case), and fix the error probability
to equal 1/3 (rather than using an additional parameter).)28

Definition 1.14 (learning and proper learning for Π, following [262] and [227]): Let Π = ∪n∈NΠn

such that Πn contains functions defined over [n]. A learner for Π is a probabilistic oracle machine,
denoted L, such that for every n ∈ N and every f ∈ Πn, with probability at least 2/3, it holds that
Lf (n, ǫ) is a description of a function that is ǫ-close to f . If the output function always belongs to
Π, then we say that L performs proper learning.

Note that, in contrast to testing, nothing is required in case f is ǫ-far from Π (let alone when it
only holds that f 6∈ Π). On the other hand, and again in contrast to testing, when f ∈ Π, the
learner is required to output a function (called a hypothesis) that is ǫ-close to the target function
f (and not only say “yes”).

When considering the computational complexity of the learner, one typically requires that
the learner outputs a concise representation of the function, and in case of proper learning this
representation should fit the prescribed representation of functions in Π.

27
Advanced comment: For perspective, recall that the computational complexity of decision problems does not

always decrease or increase when considering decision problems that correspond to subsets of the original set. In
contrast, a promise problem, (Syes, Sno), never becomes harder (resp., easier) when taking subsets (resp., supersets) of
both Syes and Sno. The point is for S′ ⊂ S, moving from the promise problem (S, {0, 1}∗ \S) to the promise problem
(S′, {0, 1}∗ \ S′) means moving the border between yes-instances and no-instances, rather than omitting instances
from the promise set (which equals {0, 1}∗ in both cases).

28
Advanced comment: The last deviation from the standard presentation of learning algorithms weakens the

definition, since error-reduction is not available in this context (akin the situation with randomized algorithms for
search problems; cf. [131, Sec. 6.1.2]). Specifically, if we invoke the learner t times and obtain hypotheses h1, ..., ht,
then it is not clear how to combine the hi’s in order to obtain (with probability 1 − exp(−Ω(t))) a function that is
ǫ-close to the target function f , although we expect a majority of the hi’s to be ǫ-close to f .
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We note that every Π can be properly learned within query complexity q(n, ǫ) = min(n,O(ǫ−1 log |Πn|)),
where the second bound follows by an algorithm that scans all possible h ∈ Πn and uses the same
sample of O(ǫ−1 log |Πn|) random points in order to estimate the distance between each h ∈ Π and
the target function f (see Exercise 1.18). Such an estimation procedure is pivotal for establishing
the following result.

Theorem 1.15 (learning implies testing): Let Π = ∪n∈NΠn be as in Definition 1.14, and suppose
that Π can be learned within query complexity q(n, ǫ). Then, Π can be tested within query complexity
q′(n, ǫ) = q(n, 0.3ǫ) + O(1/ǫ). Furthermore, if the learning algorithm is proper, runs in time
t(n, ǫ) and outputs descriptions of functions such that evaluating these functions and checking their
membership in Π can be done in time T (n), then Π can be tested within query complexity q′(n, ǫ) =
q(n, 0.7ǫ) + O(1/ǫ) and time complexity t′(n, ǫ) = t(n, 0.7ǫ) + O(T (n)/ǫ).

We mention that similar results hold with respect to a variety of models including sample-based
learning and testing and distribution-free learning and testing. Note that in the case of non-proper
learning we invoke the learner with a proximity parameter that is strictly smaller than ǫ/2, whereas
in the case of proper learning we may use a proximity parameter that is larger than ǫ/2 (as long
as it is strictly smaller than ǫ). More importantly, the stated bound on the time complexity (i.e.,
t′(n, ǫ) = t(n, 0.7ǫ)+O(T (n)/ǫ)) does not hold in the case of non-proper learning (see [140, Sec. 3.2]).
We also note that the resulting tester has two-sided error probability.

Proof: On input f and proximity parameter ǫ, the tester proceeds as follows:

1. The tester invokes the non-proper (resp., proper) learner on f with proximity parameter 0.3ǫ
(resp., 0.7ǫ), obtaining a description of a hypothesis h : [n]→ Rn.

(If f ∈ Πn, then, with probability at least 2/3, the non-proper (resp., proper) learner outputs
a function h that is 0.3ǫ-close (resp., 0.7ǫ-close) to f . Furthermore, in the proper case it holds
that h ∈ Π. In both cases, if f 6∈ Π, then nothing is guaranteed, which means that h may be
arbitrary.)

2. The tester checks whether h is 0.3ǫ-close to Πn (resp., is in Πn):

Case of non-proper learning: The tester checks whether h is 0.3ǫ-close to Πn, and if the answer
is negative it rejects.

This step requires no access to f , but it may require going over all functions in Πn and
comparing each of them to h.

Case of proper learning: The tester checks whether h ∈ Πn, and if the answer is negative it
rejects.

This step can be implemented in time T (n), and requires no access to f .

(If the tester did not reject, then it proceeds to the next step.)

3. The tester uses an auxiliary sample of O(1/ǫ) elements of [n] in order to estimate the distance
between h and f up to an additive term of 0.1ǫ (or just indicate that this distance is greater
than ǫ), with error probability 0.1.

Case of non-proper learning: The tester accepts if and only if according to this estimate, the
distance between h and f is at most 0.5ǫ.
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Case of proper learning: The tester accepts if and only if according to this estimate, the dis-
tance between h and f is at most 0.85ǫ.

(In the case of proper learning, the estimate is performed in time O(1/ǫ) · T (n).)

This algorithm satisfies the complexity bounds stated in the theorem, and so we turn to analyze
its behavior.

We start with the case of non-proper learning. If f ∈ Πn, then, with probability at least 2/3,
the hypothesis h is 0.3ǫ-close to f , and in this case, with probability at least 0.9, the tester will
accept (since h is 0.3ǫ-close to Πn and with high probability the estimated distance between h and
f is at most 0.4ǫ). On the other hand, if f is ǫ-far from Πn, then either h is 0.3ǫ-far from Πn or h
is 0.7ǫ-far from f , since otherwise f is (0.7ǫ + 0.3ǫ)-close to Π. In the first case (i.e., h is 0.3ǫ-far
from Πn) Step 2 rejects, whereas in the second case (i.e., h is 0.7ǫ-far from f), with probability at
least 0.9, Step 3 will reject (since in this case h is estimated to be 0.6ǫ-far from f).

We now turn to the case of proper learning. If f ∈ Πn, then, with probability at least 2/3, the
hypothesis h ∈ Πn is 0.7ǫ-close to f , and in this case, with probability at least 0.9, the tester will
accept (since h is estimated to be 0.8ǫ-close to f). On the other hand, if f is ǫ-far from Πn, then
either h 6∈ Πn or h ∈ Πn is ǫ-far from f , and in the latter case, with probability at least 0.9, the
tester will reject (since in the later case h is estimated to be 0.9ǫ-far from f).

Hence, in both cases, the tester accepts any f ∈ Πn with probability at least (2/3) · 0.9 = 0.6,
and rejects any f that is ǫ-far from π with probability at least 0.9. By modifying the tester such that
with probability 0.2 it accepts obliviously of the input, we obtain a tester than accepts functions in
Π with probability at least 0.2 + 0.8 · 0.6 > 2/3 and rejects ǫ-far functions with probability greater
than 0.8 · 0.9 > 2/3.

1.4 Historical notes

Property testing emerged, implicitly, in the work of Blum, Luby and Rubinfeld [59], which presents,
among other things, a tester for linearity (or rather group homomorphism). This line of research was
pursued in [124, 245], culminating in the work of Rubinfeld and Sudan [246], where the approach
was abstracted and captured by the notion of a robust characterization.

The starting point of Rubinfeld and Sudan [246] is the observation that the (algebraic) properties
considered in [59, 124, 245] have a local characterization; that is, a function f has the property Π
if and only if the values assigned by f to every “admissible local neighborhood” satisfy some local
property. Hence, the definition of a local characterization specifies a set of local neighborhoods (i.e.,
O(1)-long sequences of elements in the function’s domain) as well as a local property (i.e., a set of
corresponding O(1)-long sequences of values that are admissible for each local neighborhood), and
f ∈ Π if and only if the values assigned by f to each local neighborhood satisfy the local property.

A robust characterization is then defined as a local characterization in which the distance of a
function from the property is reflected by the number of local conditions that it violates. That is,
an (ǫ, ρ)-robust characterization of Π is a local characterization of Π such that every function that
is ǫ-far from Π violates at least a ρ fraction of the local conditions (i.e., the values assigned by f
to at least a ρ fraction of the local neighborhoods violate the corresponding local property).

As noted by Rubinfeld and Sudan [246], the existence of a (ǫ, ρ)-robust characterization of Π
implies an ǫ-tester for Π, which samples 2/ρ random neighborhoods, queries the function values
at the corresponding points, and accepts if and only if the corresponding local conditions are all
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satisfied. Note that the resulting tester is non-adaptive and has one-sided error probability. Hence,
the notion of robust characterization captures only a special case of property testing.

A general and systematic study of property testers was initiated by Goldreich, Goldwasser, and
Ron [140]. Their notion of a tester allows for adaptive queries and two-sided error probability,
while viewing non-adaptivity and one-sided error probability as special cases. The bulk of their
paper [140] focuses on testing graph properties (see [140, Sec. 5-10]), but the paper also contains
general results (see [140, Sec. 3-4]). It is worthy mentioning that their main point of reference was
the model of PAC learning [262]; that is, they viewed property testing as complimentary to PAC
learning and taking place within the same setting (in which the target entities are huge functions
that may only be probed at relatively few locations).

The work of Goldreich, Goldwasser, and Ron [140] advocated viewing property testing as a new
type of computational problems, rather than as a tool towards program checking [58] (as viewed
in [59]) or towards the construction of PCP systems (see below). The instances of these problems
were viewed as descriptions of actual objects; that is, objects that arise from some application.
Consequently, the representation of these objects as functions became a non-obvious step, which
required justification. For example, in the case of testing graph properties, the starting point is the
graph itself, and its representation as a function is an auxiliary conceptual step.29

The distinction between objects and their representations became more clear when alternative
representations of graphs were studied in [147, 148, 180]. At this point, query complexity that
is polynomially related to the size of the object (e.g., its square root) was no longer considered
inhibiting. This is related to the “shift in scale” that is discussed next.

Initially, property testing was viewed as referring to functions that are implicitly defined by
some succinct programs (as in the context of program checking) or by “transcendental” entities
(as in the context of PAC learning). From this perspective the yardstick for efficiency is being
polynomial in the length of the query, which means being polylogarithmic in the size of the object.
In contrast, when viewing property testing as being applied to (huge) objects that may exist in
explicit form in reality, the size of these objects becomes the point of reference, and any algorithm
of sub-linear complexity may be beneficial.

Proximity Oblivious Testers. The notion of (one-sided error) proximity oblivious testing is
implicit in many works, starting with [59]. Its systematic study was initiated by Goldreich and
Ron [152]. The notion of two-sided error proximity oblivious testing was defined and studied
in [156].

Ramifications. Property testing with respect to general distributions as well as distribution-free
testing, sample-based testing, and tolerant testing were all mentioned in [140, Sec. 2]. However, the
focus of Goldreich, Goldwasser, and Ron [140] as well as of almost all subsequent works was on the
basic framework of Definition 1.6 (i.e., using queries in testing w.r.t the uniform distribution). An
explicit study of the various ramifications started (later) in [167, 153, 225], respectively. Further
discussion of these and other ramifications appears in Chapter 12.

29In [140] graphs are represented by their adjacency relation (or matrix), which is not overly redundant when dense
graphs are concerned. In contrast, in [147] bounded-degree graphs are considered and they are represented by their
sequence of incidence lists.
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The PCP connection. All known PCP constructions rely on testing codewords of some code. In
the “first generation” of PCP constructions (i.e., [29, 28, 107, 25, 24]), the relevant codes were the
Hadamard code and (generalized) Reed-Muller codes, which led to the use of linearity testers and
low-degree tests, respectively. In the “second generation” of PCP constructions (e.g., [37, 170, 171]),
the use and testing of the long-code (suggested for these applications by [37]) became pivotal.30

Some works that belong to the “third generation” of PCP constructions return to (generalized)
Reed-Muller codes (e.g., [157, 44, 210, 93]), whereas for some (e.g., [92]) any “basic PCPP” will
do.31 In all cases, the focus is on testing membership in codes, which are designed to support
extremely local testing; that is, the tested objects do not arise from some application, but are
rather designed to be used in some application. Such codes are called locally testable, and their
systematic study was initiated in [157]. Locally testable codes are reviewed in Chapter 13, which
also reviews PCPs, while viewing them as closely related to the notion of locally testable proofs.

1.5 Suggested reading and exercises

Needless to say, this book will only cover a tiny fraction of the research in the area of property
testing, let alone research in areas that are closely related to it. We mention that a forthcoming
book of Bhattacharyya and Yoshida [56] seems to have a small intersection with the current book.
In addition, several surveys of property testing and sub-areas of it have appeared in the past. A
collection of such surveys appears in [134], which contains also some examples of contemporary
research (dated 2010). Two more extensive surveys were written by Ron [241, 242]: The first
offers a computational learning theoretic perspective [241], and the second is organized according
to techniques [242].

Most current research in property testing is listed and annotated in the Property Testing Review
(http://ptreview.sublinear.info/). (This is a good opportunity to thank its initiators, Eric
Blais, Sourav Chakraborty, and C. Seshadhri, for their service to the property testing community.)32

Some property testing works that have a complexity theoretic flavor are also posted on ECCC
(http://eccc.weizmann.ac.il/).

The benefit of adaptivity. One natural question regarding property testing refers to the benefit
of adaptive queries over non-adaptive ones. Indeed, the same question arises in any query-based
model. Adaptive queries can always be emulated at exponential cost; that is, q adaptive queries to

30Our periodicity scheme defines the first generation of constructions as those culminating in the (original proof
of the) PCP Theorem [25, 24], and the second generation of constructions as the subsequent PCPs that are aimed
at optimizing parameters of the (binary) query complexity (e.g., [37, 170, 171, 249]). The works of the “third
generation” tend to focus on other considerations such as proof length (e.g., [157, 44]), combinatorial constructions
(e.g., [94, 92]), and lower error via few multi-valued queries (e.g., [210, 93]). Alternatively, the second generation
may be characterized as focusing on the optimization of the “inner verifier” (while relying on an “outer verifier”
derived by applying the Parallel Repetition Theorem [234] to a two-prover system derived from the PCP Theorem),
whereas works of the third generation also pay attention to the construction of the “outer verifier” (placing works
such as [95, 186, 189, 187] in the third generation).

31In her alphabet reduction, Dinur [92] can use any “PCP of Proximity” (as defined in [44, 94]) for membership in
a code of constant relative distance.

32Currently, the team of moderators includes the initiators as well as Clement Canonne and Gautam Kamath, and
our thanks extend to the latter too.
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a function f : [n]→R can be emulated by less than |R|q non-adaptive queries (see Exercise 1.19).33

The question is whether a cheaper emulation is possible. Within the context of property testing,
the answer seems to vary according to the type of properties. Types of properties for which the
emulation has no overhead are shown in [47, 108]. In the context of graph properties, the answer
varies according to the specific model: See [158, 151] versus [233].

One-sided versus two-sided error. Another natural question regarding property testing refers
to the difference between one-sided and two-sided error probability. Needless to say, the same
question arises in any model of probabilistic computation (see, for example, BPP-versus-RP).
Interestingly, in the context of property testing, a huge gap may exist between these two versions.
For example, Proposition 1.1 asserts an O(1/ǫ2)-time tester of two-sided error probability for MAJ,
whereas any one-sided error tester for MAJ must make a linear number of queries (see Exercise 1.11).
Gaps exist also in models of testing graphs properties (see the results regarding ρ-Clique in [140]
and the results regarding cycle-freeness in [147, 81]).

We mention that the “reverse type of one-sided error” testing, where the tester is required to
always reject (i.e., reject with probability 1) objects that are far from the property, has not been
studied for a good reason (see [259, Prop. 5.6] or [260]).

Hierarchy. Complexity hierarchies are known in many computational models (see, for example,
the classical computational complexity hierarchies [131, Chap. 4]). It turns out that such hierarchies
(i.e., query hierarchies) exist also in property testing [144].

Basic Exercises

Most of the following exercises detail some claims that were made in the main text.

Exercise 1.1 (details for the proof of Proposition 1.1): Use the Chernoff Bound (or alternatively
Chebyshev’s Inequality) to prove that the average value of the sample points approximates the aver-
age value of all xi’s. The details involve defining m random variables, and using the aforementioned
inequality.

Exercise 1.2 (details for the proof of Claim 1.2.1): Prove that Xn (resp., Zn) as redefined in the
proof of Claim 1.2.1 is uniformly distributed over n-bit strings of Hamming weight ⌊n/2⌋+1 (resp.,
⌊n/2⌋).

Guideline: A crude solution amounts to computing the probability mass given to each string ac-
cording to each of the definitions. A nicer solution is to show that the redefined processes yield
output distributions that are symmetric with respect to the indices.

Exercise 1.3 (on testing symmetric properties of sequences over unbounded alphabet):34 The
goal of this advanced exercise is to show that there are symmetric properties of sequences over
unbounded alphabet for which testing requires a linear number of queries. Specifically, we shall
consider properties of n-long sequences over [p], where p > n2 is a prime. For k = Ω(n), we start

33
Advanced comment: Alternatively, the number of queries can be preserved at the cost of decreasing the

distinguishing gap of the tester by a factor of |R|q (see Exercise 1.20).
34Inspired by [140, Sec. 10.2.3].
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with a sample space Sn ⊂ [p]n of size pk+1 over [p] that is k-wise independent (see, e.g., [78]); that
is, for every set K ⊂ [n] of size k, taking a uniformly distributed element of Sn and projecting
it on the coordinates K results in the uniform distribution over [p]k. Let Πn denote all sequences
obtained by permuting sequences of Sn arbitrarily; that is, (σ1, ..., σn) ∈ Πn if and only if there exists
a permutation π : [n] → [n] such that (σπ(1), ..., σπ(n)) ∈ Sn. Show that for ǫ = 0.1 and k = n/3,
almost all sequences in [p]n are ǫ-far from Πn, and conclude that testing Πn requires more than k
queries. Observe that the argument extents to any ǫ > 0 and k < n such that ǫ < (n− k)/n−Ω(1),
provided that p is large enough.

Guideline: Show that |Πn| ≤ n! · |Sn| < nn · pk+1 and upper-bound the number of sequences that
are ǫ-close to Πn by

( n
ǫn

)
· pǫn · |Πn|. On the other hand, observe that an algorithm that makes k

queries cannot distinguish the uniform distribution over Sn from the uniform distribution over [p]n.
(Indeed, the strategy used here combines elements of the proof of Proposition 1.11 with an idea
presented in the guideline of Exercise 1.16.)

Exercise 1.4 (error reduction for testers): Show that the error probability of a property tester can
be reduced to 2−t at the cost of increasing its query (and time) complexity by a factor of O(t), and
while preserving one-sided error.

Guideline: Invoke the original tester t times, while using independent randomness in each invoca-
tions, and accept if and only if the majority of these invocations accepted. The analysis reduces to
showing that if we repeat an experiment that succeeds with probability 2/3 for t times, then, with
probability 1− exp(−Ω(t)), the majority of the trials succeed.

Exercise 1.5 (on size-oblivious query complexity): Let Π = ∪n∈NΠn such that Πn contains func-
tions defined over [n], and let q : (0, 1] → N. Suppose that for every ǫ > 0 and all sufficiently large
n ∈ N, the property Πn can be ǫ-tested by making q(ǫ) queries. Show that Π has a property tester
of query complexity that is upper-bounded by a function of ǫ only.

Guideline: For each ǫ > 0, let nǫ be such that for every n ≥ nǫ the property Πn can be ǫ-tested
by making q(ǫ) queries. Consider a tester that on input parameters (n, ǫ), determines nǫ, activates
the original tester if n ≥ nǫ, and reads the entire n-long input otherwise. Note that this yields a
query complexity bound of max(q(ǫ), nǫ), which is effective if the mapping ǫ 7→ nǫ is effective (e.g.,
as in case nǫ = poly(1/ǫ) or nǫ = 21/ǫ).

Exercise 1.6 (on the distance to SORTED versus the distance to the sorted version): Let S denote
the set of sorted n-bit long strings, and let x ∈ {0, 1}n and x′ = 0n−wt(x)1wt(x). Noting that
δS(x) ≤ δ(x, x′), prove that δS(x) ≥ δ(x, x′)/2, and show that this lower bound is tight.

Guideline: Letting D1 and D0 be as in the proof of Proposition 1.8, consider a matching between D1

and D0, and observe that any string in S must differ from x on at least one endpoint of each pair
in the matching. To show that this lower bound is tight, consider the case of x = 0n−w−d1d0d1w−d.

Exercise 1.7 (on the threshold probability of POTs): Show that, for every τ ∈ (0, 1] and τ ′ ∈
(0, 1), and for every ρ : (0, 1] → (0, 1] and q : N → N, if Π has a q-query POT with threshold
probability τ and detection probability ̺, then Π has a q-query POT with threshold probability τ ′

and detection probability ̺′ = Ω(̺).
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Guideline: Consider a POT that invokes the given POT with probability p (to be determined as a
function of τ and τ ′), and accepts (or rejects) otherwise.

Exercise 1.8 (a two-sided error POT for MAJ): Show that the following algorithm constitutes a
two-sided error POT with linear detection probability for MAJ. For odd n, on input x ∈ {0, 1}n, the
algorithm selects uniformly i ∈ [n], and outputs xi. For even n, a small modification is required so
that we can still use the threshold probability τ = 1/2.

Guideline: The probability that x is accepted is wt(x)/|x|. For an even n, reducing the acceptance
probability by a factor of 1−n−1 will do, since (1−n−1) ·(0.5+n−1) ≥ 0.5 (whereas (1−n−1) ·0.5 <
0.5).

Exercise 1.9 (a less trivial two-sided error POT): Since the example provided by Exercise 1.8 is
quite disappointing, we consider the following set BAL = {x : wt(x) = |x|/2} (of “balanced” strings).
Show that the following algorithm constitutes a two-sided error POT with threshold probability 0.5
and quadratic detection probability for BAL. On input x ∈ {0, 1}n, the algorithm selects uniformly
i, j ∈ [n], and accepts if and only if xi 6= xj. Note that the same algorithm constitutes a POT
also for Sc = {x : c · |x| ≤ wt(x) ≤ (1 − c) · |x|}, for every constant c ∈ (0, 0.5), but the threshold
probability and the detection probability are different in this case.

Guideline: The probability that x is accepted equals 2 · wt(x) · (|x| − wt(x))/|x|2, which is smaller
than 1/2 if and only if wt(x) 6= |x|/2. In the case of Sc, the threshold probability is 2c(1− c), and
the detection probability function is linear.

Exercise 1.10 (easily testable properties that have no POT): For a generic n, let Π denote the set
of functions f : [n]→ [n] that have no odd-length cycles, where a cycle of length ℓ in f is a sequence
of distinct elements i0, ..., iℓ−1 ∈ [n] such that f(ij) = ij+1 mod ℓ for every j ∈ {0, 1..., ℓ − 1}. In
other words, f is not in Π (i.e., has an odd-length cycle) if for some i ∈ [n] and odd j it holds that
f j(i) = i, where f0(i) = i and f j(i) = f(f j−1(i)). (It may be helpful to depict f : [n] → [n] as a
directed graph with edges going from i to f(i), and observe that this graph consists of vertex-disjoint
directed cycles and directed trees that “feed” into them.)

1. Show that Π can be tested in query complexity O(1/ǫ2).

2. Show that Π has no constant-query proximity oblivious tester.

Part 2 holds even if the tested function is guaranteed to be a permutation.

Guideline: For Part 1, consider an algorithm that selects uniformly a set I of m = O(1/ǫ) elements
in [n], and obtains the values of f(i), ..., fm(i), for each i ∈ I. This algorithm rejects f if and only if
it sees an odd-length cycle (i.e., if f s(i) = f t(i) for any i ∈ I and s, t ∈ {0, 1, ...,m} such that |s− t|
is odd). Calling i bad if the values f(i), ..., fm(i) contain an odd-length cycle, prove that if at most
2n/m of the i’s are bad, then f is ǫ-close to Π (and observe that otherwise the algorithm accepts
with probability at most (1 − (2/m))m < 1/3).35 In Part 2, consider first the case of one-sided

35In order to prove the (italicized) claim, consider the directed graph obtained by omitting the edges that go out
from bad vertices as well as omitting a single edge from each directed cycle that has odd length that exceeds m.
Observe that at most 2n/m+n/m edges were omitted, whereas the resulting directed graph has no odd-length cycles
and has at most 3n/m vertices that have no outgoing edge. Lastly, show that it is possible to add a single outgoing
edge to each of the latter vertices without forming odd-length cycles (e.g., these edges can be directed to arbitrary
vertices that reside on cycles in the residual graph if such vertices exist, and otherwise we can connect all directed
paths in a way that forms a single n-cycle (and make a last modification if n is odd)).
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error POTs. Assuming that such an algorithm makes q queries, let ℓ = 2 · ⌈q/2⌉ + 1, and consider
its execution when given access to a permutation that consists of ℓ-cycles. Note that a POT is
required to reject this permutation with positive probability, although it does not see a cycle in
it (and so it also rejects a permutation in Π with non-zero probability). Handling the two-sided
error case amounts to showing that a q-query algorithm cannot distinguish a random permutation
that consists of ℓ-cycles from a random permutation that consists of 2ℓ-cycles (assuming n/2ℓ is an
integer).36

Exercise 1.11 (on one-sided error testers for MAJ): Prove that MAJ has no one-sided error tester
of sub-linear query complexity.

Guideline: Consider an arbitrary sub-linear algorithm T and an execution (i.e., selection of ran-
domness for T ) in which T rejects the string 0n, which is 0.5-far from MAJ. (Such an execution
exists since Pr[T 0n

(n, 0.5) = 0] ≥ 2/3 > 0.) Denoting by Q the set of locations queried in this
execution, consider the string x ∈ {0, 1}n such that xi = 0 if and only if i ∈ Q, and note that
Pr[T x(n, ǫ)=1] < 1. On the other hand, if |Q| < n/2, then x ∈ MAJ.

Exercise 1.12 (the existence of good linear codes): Show that there exists a 0.5n-by-n Boolean
matrix in which every 0.05n columns are linearly independent and every non-empty linear combi-
nation of the rows has Hamming weight at least 0.1n.

Guideline: Using the probabilistic method (see [22]), upper-bound the probability that a random
matrix does not satisfy the foregoing conditions.

Exercise 1.13 (detail for the proof of Proposition 1.11): Let G be an m-by-n Boolean matrix in
which every t columns are linearly independent. Prove that for a uniformly distributed x ∈ {0, 1}m,
each t-bit long subsequence of xG is uniformly distributed in {0, 1}t.

Guideline: Consider the corresponding m-by-t matrix G′, and note that each image of the map
x 7→ xG′ has 2m−t preimages.

Exercise 1.14 (another detail for the proof of Proposition 1.11): Let G be an 0.5n-by-n Boolean
matrix. Prove that, for sufficiently large n, the number of n-bit strings that are 0.1-close to {xG :
x ∈ {0, 1}0.5n} is at most 20.99n.

Exercise 1.15 (testability is preserved under intersection with a trivially testable property): We
say that Ψ = ∪n∈NΨn is trivially testable if, for every n ∈ N, either Ψn = ∅ or Ψn contains all
functions defined over [n]. Prove that, if Ψ is trivially testable, then, for every Π = ∪n∈NΠn such
that Πn contains functions defined over [n], testing Π ∩Ψ is not harder than testing Π.

Exercise 1.16 (the testability of monotone properties is not closed under complementation): Show
that there is a monotone property Π such that testing Π is trivial (any n-bit string is 1/n-close to
Π), but 0.001-testing {0, 1}∗ \ Π requires a linear number of queries.

36This is shown by observing that in each of the two cases, the value of the random function f at a newly queried
point x is uniformly distributed among all values that neither occurred as previous images of f nor are values that
form an f -path to x. (Depicting the query-answer pairs as directed edges, the query x is answered with a vertex that
neither has an ingoing edge nor is the endpoint of a directed path that leads to x.) Since the indistinguishability
is perfect, it suffices to note that the first permutation is not in Π (i.e., there is no need to use the fact that this
permutation is actually Ω(1/q)-far from Π).
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Guideline: Let G′ be a 0.05n-by-(n− 1) Boolean matrix in which every 0.001n columns are linearly
independent and every non-empty linear combination of the rows has Hamming weight at least
0.1n. (Indeed, the existence of such a matrix can be proved analogously to Exercise 1.12.) Let
Π′ = {xG′ : x ∈ {0, 1}0.05n \ {00.05n}} and Π′′ = {w′ ∨w′′ : w′ ∈ Π′ ∧w′′ ∈ {0, 1}n−1}; that is, Π′ is
the linear code generated by G′ with the exception of the all-zero string, and Π′′ is its “monotone
closure”. Letting Π = {0, 1}n \ {1w : w ∈ Π′′}, note that each string is 1/n-close to Π, whereas
{0, 1}n \Π = {1w : w ∈ Π′′} is hard to test.37 The latter claim is proved (analogously to the proof
of Proposition 1.11) by establishing the following two facts:

1. The uniform distribution on Π′ is perfectly indistinguishable (by 0.001n queries) from the
uniform distribution on {0, 1}n−1;

2. The set Π′′ has low density: |Π′′| ≤ 20.9n · |Π′| < 20.95n, where the first inequality is due to
the fact that each string in Π′ has Hamming weight at least 0.1n.

(Note that the uniform distribution over Π′ serves here as an arbitrary distribution over Π′′.)

Exercise 1.17 (generalization of Theorem 1.13): Let Π′ and Π′′ be properties of functions defined
over the same domain, D.

1. Prove that if, for every f : D → {0, 1}∗, it holds that δΠ′∩Π′′(f) ≤ δΠ′(f) + δΠ′′(f), then,
for every ǫ′ ∈ (0, ǫ), the property Π′ ∩ Π′′ is ǫ-testable within query complexity q(n, ǫ) =
O(q′(n, ǫ′)+q′′(n, ǫ−ǫ′)), where q′ and q′′ denote the query complexities of testing the properties
Π′ and Π′′, respectively.

2. Show that if Π′ and Π′′ are monotone properties, then δΠ′∩Π′′(f) ≤ δΠ′(f) + δΠ′′(f) holds for
any function f .

3. Generalizing Part 1, suppose that for F : (0, 1] × (0, 1] → (0, 1] it holds that δΠ′∩Π′′(f) ≤
F (δΠ′(f), δΠ′′(f)), for every f . Show that, for every ǫ > 0, if F (ǫ′, ǫ′′) ≤ ǫ, then the property
Π′ ∩Π′′ is ǫ-testable within query complexity O(q′(n, ǫ′) + q′′(n, ǫ′′)).

4. Show that a function as in Part 3 does not exist for the properties used in the proof of
Theorem 1.12.

Guideline: Parts 1–3 are implicit in the proof of Theorem 1.13. Part 4 can be proved either by direct
inspection of these properties or by arguing that the contrary hypothesis contradicts Theorem 1.12.

Exercise 1.18 (a generic learning algorithm): Show that every Π = ∪n∈NΠn can be properly
learned within query complexity q(n, ǫ) = min(n,O(ǫ−1 log |Πn|)).
Guideline: The key observation that a sample of O(t/ǫ) random points allows for approximating the
distance between two functions up to an additive term of ǫ/2 (or just indicate that this distance
is greater than ǫ)38 with error probability 2−t. The bound of O(ǫ−1 log |Πn|) follows by observing
that the same sample can be used to estimate the distance of each h ∈ Πn to the target function
f , and applying a union bound.

37Indeed, Π is anti-monotone (i.e., it is preserved under resetting bits to zero), so one may consider {1n⊕w : w ∈ Π}
instead.

38Note that if the distance is Ω(ǫ), then a constant factor approximation suffices, and such an approximation can
be obtained (with probability 1− 2−t) based on m = O(t/ǫ) random points. Hence, outputting the fraction of points
of disagreement seen in the sample, we obtain an ǫ/2-additive approximation if the actual value is below 2ǫ, and a
factor of 2 approximation otherwise (which provides the correct indication that the actual value is above ǫ).
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Additional Exercises

The following exercises present a few useful observations regarding oracle machines in general.

Exercise 1.19 (straightforward emulation of adaptive queries): Show that the execution of any
oracle machine that makes q (possibly adaptive) queries to an unknown function f : [n]→ R, can
be emulated by a non-adaptive machine that makes at most

∑q−1
i=0 |R|i queries.

Guideline: Fixing the internal coin tosses of the machine, consider a tree that describes all its possible
q-long sequences of queries, where the vertices correspond to queries and the edges correspond to
possible answers.

Exercise 1.20 (an alternative emulation of adaptive queries): Let Π be a property of functions
from [n] to R, and suppose that T is a q-query POT for property Π with threshold probability τ and
detection probability ̺. Show that Π has a q-query non-adaptive POT with threshold probability τ
and detection probability ̺/|R|q.

Guideline: Select uniformly at random a sequence of internal coin tosses ω for T and a sequence
of values (v1, ..., vq) ∈ Rq. Consider the execution of T on coins ω, when its jth query is answered
with the value vj , and let i1, ..., iq denote the corresponding queries. We stress that the ij ’s are
determined without making any query to the oracle (i.e., ij is the jth query made on coins ω,
assuming that the previous queries were answered with v1, ..., vj−1). Next, query the orcale f at
i1, ..., iq . If for every j ∈ [q] it holds that f(ij) = vj , then rule according to the verdict of T .
Otherwise, accept with probability τ (and reject otherwise).

Exercise 1.21 (upper bound on the randomness complexity of oracle machines):39 Let Π be a
promise problem regarding functions from [n] to R, where ǫ-testing a property of such functions is a
special case (in which the yes-instances are function having the property and the no-instances are
function that are ǫ-far from the property). Suppose that M is a randomized oracle machines that
solves the problem Π with error probability at most 1/4, while making q queries. Assuming that n is
sufficiently large, show that Π can be solved by a randomized oracle machines that makes at most q
queries, tosses at most log2 n+log2 log2 |R|+O(1) coins, and has error probability at most 1/3. Note
that the randomness-efficient machine derived here is not necessarily computationally-efficient.

Guideline: Suppose that M tosses r coins, and observe that the number of possible functions that
M is required to decide about is at most |R|n. Using the probabilistic method, show that there
exists a O(log |R|n)-set S ⊆ {0, 1}r , such that for every function f : [n]→ R it holds that

|Prω∈S [Mf (ω) = 1]−Prω∈{0,1}r [M
f (ω) = 1]| < 1/12.

Then, a randomness-efficient machine may select ω uniformly in S, and emulate M while providing
it with ω (as the outcome of the internal coin tosses used by M).

Exercise 1.22 (on the tightness of the bound provided in Exercise 1.21):40 Let Π be a promise
problem regarding functions from [n] to R. We say that Π is ρ-evasive if there exists a function
f : [n] → R such that for every Q ⊂ [n] of density ρ, there exists a yes-instance (of Π) denoted

39Based on [155].
40Based on [155].
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f1 and a no-instance denoted f0 such that for every x ∈ Q it holds that f1(x) = f0(x) = f(x).
Show that if a ρ-evasive Π can be decided (say, with error probability 1/3) by an oracle machine
M that makes q queries, then this machine must toss at least log2(ρn/q) coins. Note that for many
natural properties and for sufficiently small constant ǫ > 0, the problem of ǫ-testing the property is
Ω(1)-evasive.41

Guideline: Suppose that M solve Π while tossing r coins, and let f be a function as in the ρ-evasive
condition. Consider all 2r possible executions of Mf , and let Q denote the set of queries made
in these executions. Then, |Q| ≤ 2r · q. On the other hand, |Q| > ρ · n, since otherwise these
executions cannot distinguish the corresponding functions f1 and f0 that are guaranteed by the
ρ-evasive condition.

1.6 Digest: The most important points

Given that this is quite a long chapter, it seems good to list some of the points that will be
instrumental for the subsequent chapters. Needless to say, the definition of a property tester
(i.e., Definition 1.6) is pivotal for all that follows. The notion of a proximity oblivious tester (see
Definition 1.7) will also be used a lot (sometimes only implicitly). Two important points that
underly the study of such testers are:

• Representation. The tested objects will be (typically) represented in a natural and concise
manner, and n will denote their size. They will be presented either as sequences over an
alphabet Σ (e.g., x ∈ Σn) or as functions from [n] to Σ (i.e., in such a case we consider the
function x : [n]→ Σ).

Indeed, here we seized the opportunity to present these notions while referring to an arbitrary
alphabet rather than only to the binary alphabet (i.e., Σ = {0, 1}), as done in previous
sections.

• The (standard) notion of distance. For x, y ∈ Σn, we consider their relative Hamming distance,

denoted δ(x, y)
def
= |{i ∈ [n] : xi 6= yi}|/n. For x ∈ Σn and S ⊆ Σn, we denote by δS(x)

the relative Hamming distance of x from S; that is, δS(x) is the minimum, taken over all
z ∈ S ∩ {0, 1}|x|, of δ(x, z).

We shall say that x is ǫ-far from S if δS(x) > ǫ, and otherwise (i.e., when δS(x) ≤ ǫ) we
shall say that x is ǫ-close to S. Indeed, typically, ǫ will denote a proximity parameter, which
determines what is considered far.

Our main focus will be on the query complexity of standard testers (i.e., as in Definition 1.6),
measured in terms of the size of the tested object, denoted n, and the proximity parameter, denoted
ǫ. The first priority is to have query complexity that is sub-linear in n, and the slower this complexity
grows with n, the better. At times, especially when discussing lower bounds, we may fix the value
of the proximity parameter (i.e., set ǫ to be a small positive constant), and consider the complexity
of the residual tester, called an ǫ-tester, as a function of n only. The ultimate goal, which is not

41A partial list includes sets of low degree polynomials, any code of linear distance, monotonicity, juntas, and
various graph properties (e.g., f ≡ 0 and f1 = f will do in many cases). Indeed, this list is confined to examples that
will appear in subsequent chapters.
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always achievable, is to have the query complexity be independent of n. We shall also care about
the dependence of the query complexity on ǫ, and in particular whether it is O(1/ǫ), or poly(1/ǫ),
or worse.

The time complexity of the tester will be our secondary focus, although it is obviously important.
We shall say that a tester is efficient if its time complexity is almost linear in its query complexity.

The foregoing refers to standard testers (i.e., as in Definition 1.6). In contrast, the complexity of
proximity-oblivious testers (as in Definition 1.7) only depends on n, and their rejection probability
is related to the distance of the tested object from the property. The latter relation is captured by a
monotonically non-decreasing function, typically denoted ̺. As shown in Theorem 1.9, a proximity-
oblivious tester yields an ordinary tester by repeating the former for O(1/̺c(ǫ)) times, where c = 1
in case of one-sided error testing (and c = 2 otherwise), and ǫ is the proximity parameter (given to
the ordinary tester). This brings us to the last point in this section.

• One-sided error probability refers to the case that the tester always accepts any object that has
the property, but may accept with bounded probability objects that are far from the property
(which means that it errs with some bounded probability).42 General testers (a.k.a two-sided
error testers) may err, with bounded probability, both in the case the object has the property
and in the case it is far from the property.

42Recall that a property is associated with the set of objects having the property.
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Chapter 2

Testing Linearity (Group
Homomorphism)

Summary: We present and analyze a proximity-oblivious tester for linearity (or rather
homomorphism between groups). On input a description of two groups G,H and oracle
access to a function f : G → H, the tester queries the function at three points and
satisfies the following conditions:

1. If f is a homomorphism from G to H, then the tester accepts with probability 1.

2. If f is δ-far from the set of all homomorphisms from G to H, then the tester rejects
with probability at least min(0.5δ, 0.1666).

The three queries are x, y, x + y, where x and y are selected uniformly at random in G.

This chapter is based on the work of Blum, Luby, and Rubinfeld [59], a work which pioneered the
study of property testing.

2.1 Preliminaries

Let G and H be two groups. For simplicity, we denote by + the group operation in each of these
groups. A function f : G→ H is called a (group) homomorphism if for every x, y ∈ G it holds that
f(x + y) = f(x) + f(y).

One important special case of interest is when H is a finite field and G is a vector space over
this field; that is, G = Hm for some natural number m. In this case and assuming that H has
prime order, a homomorphism f from G to H can be presented as f(x1, ..., xm) =

∑m
i=1 cixi, where

x1, ..., xm, c1, ..., cm ∈ H; that is, f is a linear function over Hm. This explains why testing group
homomorphism is often referred to as linearity testing.

Group homomorphisms are among the simplest and most basic sets of finite functions. They
may indeed claim the title of the most natural algebraic functions. This chapter addresses the
problem of testing whether a given function is a group homomorphism or is far from any group
homomorphism.
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2.2 The tester

The definition of being a homomorphism is presented as a conjunction of |G|2 local conditions,
where each local condition refers to the value of the function on three points. Interestingly, this
definition is robust in the sense that the fraction of satisfied local conditions can be related to the
distance of the function from being a homomorphism. In other words, a tester for this property is
obtained by checking a single local condition that is selected at random.

Algorithm 2.1 (testing whether f is a homomorphism): Select uniformly x, y ∈ G, query f at
the points x, y, x + y, and accept if and only if f(x + y) = f(x) + f(y).

It is clear that this tester accepts each homomorphism with probability 1, and that each non-
homomorphism is rejected with positive probability. The non-obvious fact is that, in the latter
case, the rejection probability is linearly related to the distance of the function from the set of all
homomorphisms. We first prove a weaker lower bound on the rejection/detection probability.

Proposition 2.2 (a partial analysis of Algorithm 2.1): Suppose that f : G → H is at distance δ
from the set of homomorphisms from G to H. Then, Algorithm 2.1 rejects f with probability at
least 3δ − 6δ2.

The lower-bound 3δ − 6δ2 = 3(1 − 2δ) · δ increases with δ only when δ ∈ [0, 1/4]. Furthermore,
this lower-bound is useless when δ ≥ 1/2 (and for this reason the corresponding analysis was called
“partial”). Thus, an alternative lower-bound is needed when δ approaches 1/2 (or is larger than
it). Such a bound is provided in Theorem 2.3; but, let us prove Proposition 2.2 first.

Proof: Suppose that h is a homomorphism closest to f (i.e., δ = Prx∈G[f(x) 6= h(x)]). We first
observe that the rejection probability (i.e., Prx,y∈G[f(x) + f(y) 6=f(x + y)]) is lower-bounded by

Prx,y∈G[f(x) 6=h(x) ∧ f(y)=h(y) ∧ f(x + y)=h(x + y)] (2.1)

+Prx,y∈G[f(x)=h(x) ∧ f(y) 6=h(y) ∧ f(x + y)=h(x + y)] (2.2)

+Prx,y∈G[f(x)=h(x) ∧ f(y)=h(y) ∧ f(x + y) 6=h(x + y)], (2.3)

because these three events are disjoint, whereas f(x) + f(y) 6= f(x + y) mandates that f and h
disagree on some point in {x, y, x + y} (since h(x) + h(y)=h(x + y)).1 We lower-bound Eq. (2.1),
while noting that Eq. (2.2)&(2.3)) can be lower-bounded analogously.

Prx,y[f(x) 6=h(x) ∧ f(y)=h(y) ∧ f(x + y)=h(x + y)]

= Prx,y[f(x) 6= h(x)] −Prx,y[f(x) 6=h(x) ∧ (f(y) 6=h(y) ∨ f(x + y) 6=h(x + y))]

≥ Prx,y[f(x) 6= h(x)]

− (Prx,y[f(x) 6=h(x) ∧ f(y) 6=h(y)] + Prx,y[f(x) 6=h(x) ∧ f(x + y) 6=h(x + y)])

= δ − δ2 − δ2,

where the last equality follows since x and y are independently and uniformly distributed in G (and
ditto w.r.t x and x + y).

1
Advanced comment: Indeed, this lower bound is typically not tight, since we ignored the event in which f

and h disagree on more than one point, which may also lead to rejection. For example, if H is the two-element set
with addition modulo 2, then disagreement on three points (i.e., f(x) 6=h(x)∧ f(y) 6=h(y)∧ f(x+ y) 6=h(x+ y)) also
leads to rejection (since in this case f(x) + f(y) − f(x+ y) = h(x) + 1 + h(y) + 1 − (h(x+ y) + 1) = 1).

40



Theorem 2.3 (full analysis of Algorithm 2.1): Algorithm 2.1 is a (one-sided error) proximity
oblivious tester with detection probability min(0.5δ, 1/6), where δ denotes the distance of the given
function from being a homomorphism from G to H.

Proof: Let ρ denote the probability that f is rejected by the test, and suppose that ρ < 1/6 (since
otherwise we are done). We shall show that in this case f is 2ρ-close to some homomorphism (and
ρ ≥ δ/2 follows).2

The intuition underlying the proof is that the hypothesis regarding f (i.e., that it is rejected
with probability ρ < 1/6) implies that f can be modified (or “corrected”) into a homomorphism by
modifying f on relatively few values (i.e., on at most 2ρ|G| values). Specifically, the hypothesis that
Prx,y∈G[f(x)=f(x+ y)− f(y)] = 1− ρ > 5/6 suggests that a “corrected” version of f , denoted f ′,
that is determined such that f ′(x) is the most frequent value of f(x + y)− f(y), when considering
all possible choices of y ∈ G, is a homomorphism that is relatively close to f .

Suppose, for illustration, that f is obtained by selecting an arbitrary homomorphism h and
corrupting it on relatively few points (say on less than one fourth of G). Then, f ′ (i.e., the
corrected version of f) equals h (since for every x ∈ G it holds that Pry∈G[f(x + y) − f(y) =
h(x + y)− h(y)] > 1/2), and both claims hold (i.e., f ′ = h is a homomorphism and it is relatively
close to f). Needless to say, we cannot start with the foregoing assumption (that f is 0.249-close
to some homomorphism)3, but should rather start from an arbitrary f that satisfies

Prx,y∈G[f(x)=f(x + y)− f(y)] = 1− ρ > 5/6. (2.4)

We now turn to the actual proof.

Define the vote of y regarding the value of f at x as φy(x)
def
= f(x + y)− f(y), and define φ(x)

as the corresponding plurality vote (with ties broken arbitrarily); that is,

φ(x)
def
= argmaxv∈H{|{y∈G : φy(x)=v}|}. (2.5)

We shall show that φ is 2ρ-close to f , and that φ is a homomorphism.

Claim 2.3.1 (closeness): The function φ is 2ρ-close to f .

Proof: This is merely an averaging argument, which counts as bad any point x such that f(x)
disagrees with at least half of the votes (regarding the value of f at x), while noting that otherwise
f agrees with φ on x. Specifically, denoting B = {x∈G : Pry∈G[f(x) 6= φy(x)] ≥ 1/2}, we get

ρ = Prx,y[f(x) 6= f(x + y)− f(y)]

= Prx,y[f(x) 6= φy(x)]

≥ Prx[x ∈ B] ·min
x∈B
{Pry[f(x) 6= φy(x)]}

≥ |B|
|G| ·

1

2

which implies that |B| ≤ 2ρ · |G|. On the other hand, if x ∈ G \ B, then f(x) = φ(x) (since
Pry[f(x) = φy(x)] > 1/2, whereas φ(x) equals the most frequent vote (among the votes φy(x)
regarding the value of f at x)).

2Hence, either ρ ≥ 1/6 or ρ ≥ δ/2, which implies ρ ≥ min(0.5δ, 1/6) as claimed.
3The gap between the foregoing illustration and the actual proof is reflected in the fact that the illustration refers

to δ < 1/4, whereas the actual proof uses ρ < 1/6.
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Recall that φ(x) was defined to equal the most frequent vote (i.e., the most frequent φy(x) over
all possible y ∈ G). Hence, φ(x) occurs as a vote with frequency at least 1/|H|. Actually, we just
saw (in the proof of Claim 2.3.1) that on at least 1−2ρ of the x’s it holds that φ(x) is the majority
value. We next show that φ(x) is much more frequent: it occurs in a strong majority (for all x’s).

Teaching note: The rest of the analysis is easier to verify in the case of Abelian groups, since in this

case one does not need to be careful about the order of summations.

Claim 2.3.2 (strong majority): For every x ∈ G, it holds that Pry[φy(x) = φ(x)] ≥ 1− 2ρ.

Proof: Fixing x, we consider the random variable Zx = Zx(y)
def
= f(x+y)−f(y), while noting that

φ(x) was defined as the most frequent value that this random variable assumes. We shall show
that the collision probability of Zx (i.e.,

∑
v Pr[Zx = v]2) is high, and it will follow that Zx must

assume its most frequent value (which is indeed φ(x)) with high probability.

Recalling that the collision probability of a random variable equals the probability that two
independent copies of it assume the same value, we observe that the collision probability of Zx

equals

Pry1,y2[Zx(y1) = Zx(y2)] = Pry1,y2 [f(x + y1)− f(y1) = f(x + y2)− f(y2)]. (2.6)

Towards lower-bounding Eq. (2.6), we call a pair (y1, y2) good if both f(y1)+f(−y1+y2) = f(y2) and
f(x+y1)+f(−y1+y2) = f(x+y2) hold. (Note that y1+(−y1+y2) = y2 and (x+y1)+(−y1 +y2) =
(x + y2).) Now, on the one hand, a random pair is good with probability at least 1− 2ρ, since

Pry1,y2 [f(y1) + f(−y1 + y2) = f(y1 + (−y1 + y2))] = 1− ρ

and

Pry1,y2 [f(x + y1) + f(−y1 + y2) = f((x + y1) + (−y1 + y2))] = 1− ρ,

where the equalities rely on the fact that the pair (y1,−y1 + y2) (resp., the pair (x + y1,−y1 + y2))
is uniformly distributed in G2 when (y1, y2) is uniformly distributed in G2. On the other hand, for
a good (y1, y2), it holds that Zx(y1) = Zx(y2), since

Zx(y2) = f(x + y2)− f(y2)

= (f(x + y1) + f(−y1 + y2))− (f(y1) + f(−y1 + y2))

= f(x + y1)− f(y1) = Zx(y1).

It follows that the collision probability of Zx is lower-bounded by 1−2ρ. Observing that
∑

v Pr[Zx =
v]2 ≤ maxv{Pr[Zx = v]}, it follows that Pr[Zx = φ(x)] ≥ 1 − 2ρ, since φ(x) is the most frequent
value assigned to Zx.

Claim 2.3.3 (φ is a homomorphism): For every x, y ∈ G, it holds that φ(x) + φ(y) = φ(x + y).

Proof: Fixing any x, y ∈ G, we prove that φ(x)+φ(y) = φ(x+y) holds by considering the somewhat

fictitious expression px,y
def
= Prr∈G[φ(x)+φ(y) 6= φ(x+y)], and showing that px,y < 1 (which implies
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that φ(x) + φ(y) 6= φ(x + y) is false).4 We prove that px,y < 1, by showing that

px,y ≤ Prr




φ(x) 6=f(x + r)− f(r)
∨ φ(y) 6=f(r)− f(−y + r)
∨ φ(x + y) 6=f(x + r)− f(−y + r)


 (2.7)

and upper-bounding the probability of each of the three events in the r.h.s of Eq. (2.7) holds by
2ρ < 1/3. Details follow.

We first observe that if none of the three events in the r.h.s of Eq. (2.7) holds (i.e., if φ(x) =
f(x + r) − f(r), φ(y) = f(r) − f(−y + r), and φ(x + y) = f(x + r) − f(−y + r) hold), then
φ(x) + φ(y) = φ(x + y) holds. Hence, φ(x) + φ(y) 6= φ(x + y) mandates that at least one of the
three events in the r.h.s of Eq. (2.7) holds.

We upper-bound the probability of each of the three events in Eq. (2.7) holds by using Claim 2.3.2
(and some variable substitutions). Specifically, recall that Claim 2.3.2 asserts that for every z ∈ G
it holds that Prs[φ(z) = f(z + s)− f(s)] ≥ 1− 2ρ. It follows that

Prr[φ(x) 6=f(x + r)− f(r)] ≤ 2ρ

Prr[φ(y) 6=f(r)− f(−y + r)] = Prs[φ(y) 6=f(y + s)− f(s)] ≤ 2ρ

Prr[φ(x + y) 6=f(x + r)− f(−y + r)] = Prs[φ(x + y) 6= f(x + y + s)− f(s)] ≤ 2ρ,

where in both equalities we use s = −y + r (equiv., r = y + s). Hence, px,y ≤ 3 · 2ρ < 1, and the
claim follows.

Combining Claim 2.3.1 and 2.3.3, the theorem follows.

Digest. The proof of Theorem 2.3, which provides an analysis of Algorithm 2.1, is based on the
self-correction paradigm (cf. [59]). In general, this paradigm refers to functions f for which the
value of f at any fixed point x can be reconstructed based on the values of f at few random points.
We stress that each of these points is uniformly distributed in the function’s domain, but they are
not independent of one another. For example, in the proof of Theorem 2.3 (specifically, in the
proof of Claim 2.3.2), we use the fact that, when f is close to a linear function f ′, the value of
f ′(x) can be reconstructed from φy(x) = f(x + y) − f(y), where y is uniformly distributed in G.
(Note that, in this case, x + y is uniformly distributed in G, but x + y depends on y, since x is
fixed.) Specifically, if f is ǫ-close to the linear function f ′, then Pry∈G[f ′(x)=φy(x)] ≥ 1 − 2ǫ for
every x ∈ G. We note that here self-correction is only used in the analysis of an algorithm (see
the proof of Claim 2.3.2), whereas in other cases (see, e.g., Section 5.2) it is used in the algorithm
itself. Furthermore, self-correction is used for reducing worst-case to average-case (see, e.g., [131,
Sec. 7.1.3] and [131, Sec. 7.2.1.1]), and some of these applications predate the emergence of property
testing.

2.3 Chapter notes

As stated upfront, Algorithm 2.1 was suggested and first analyzed by Blum, Luby, and Rubin-
feld [59], in a work that pioneered the study of property testing. The proof of Proposition 2.2 is

4Indeed, the definition of px,y is fictitious, since the event φ(x) + φ(y) 6= φ(x + y) does not depend on r. In
particular, px,y ∈ {0, 1}. An alternative presentation starts with the event Ex,y,r captured by Eq. (2.7) and deduces
from the existence of r ∈ G that satisfies ¬Ex,y,r that φ(x) + φ(y) = (f(x + r) − f(r)) + (f(r) − f(−y + r)) =
f(x+ r) − f(−y + r) = φ(x+ y).
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due to [38], whereas the proof of Theorem 2.3 follows the ideas of [59]. Recall that these results
establish lower bounds on the detection probability of Algorithm 2.1.

The true behavior of Algorithm 2.1. Fixing groups G and H, for every f : G→ H, we denote
by δG,H(f) the distance of f from the set of homomorophisms, and by ρG,H(f) the probability that
Algorithm 2.1 rejects f . Recall that Proposition 2.2 asserts that ρG,H(f) ≥ 3δG,H(f) − 6δG,H(f)2,
whereas Theorem 2.3 asserts that ρG,H(f) ≥ min(0.5δG,H(f), 1/6). These are not the best bounds
known. In particular, it is known that ρG,H(f) ≥ 2/9 for every f such that δG,H(f) ≥ 1/4 (see [36,
59]). Hence, for every f it holds that ρG,H(f) ≥ β(δG,H(f)), where

β(x)
def
=

{
3x− 6x2 if x ≤ τ
2/9 if x ≥ τ

(2.8)

and τ = 0.25+
√

33/36 ≈ 0.41 is the positive root of 3x−6x2 = 2/9 (cf. [36]). This bound is depicted
in Figure 2.1. Surprisingly enough, for some groups G and H, the bound ρG,H(f) ≥ β(δG,H(f)) is
tight in the sense that for every v ∈ [0, 5/16] there exists f such that δG,H(f) ≈ v and ρG,H(f) =
β(v) = 3δG,H(f) − 6δG,H(f)2 (cf. [36]). Hence, in these groups, the decrease of β in the interval
[1/4, 5/16] represent the actual behavior of the tester: The detection probability of Algorithm 2.1
does not necessarily increase with the distance of the function from being homomorphic.

distance

rejection prob.

3/8

1/4 1/2

1/4

2/9

Figure 2.1: The lower bounds on the rejection probability of f as a function of the distance of f
from a homomorphism, for general groups. The two solid lines show the bounds underlying β(·),
whereas the broken dashed line shows the bound min(0.5x, 1/6).

In the special case where H is the two-element field GF(2) and G = GF(2)m, Bellare et al. [36]
showed that ρG,H(f) ≥ δG,H(f) and that ρG,H(f) ≥ 45/128 for every f such that δG,H(f) ≥ 1/4.
Thus, for every f it holds that ρG,H(f) ≥ β′(δG,H(f)), where

β′(x)
def
=





3x− 6x2 if x ≤ 5/16
45/128 if x ∈ [5/16, 45/128]
x if x ≥ 45/128

(2.9)
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(This three-segment bound is depicted in Figure 2.2.) Furthermore, Bellare et al. [36] showed that
the bound ρG,H(f) ≥ β′(δG,H(f)) is also tight for every value of ρG,H(f) ∈ [0, 5/16]; that is, the first
segment of the bound β′, which decreases in the interval [1/4, 5/16], represent the actual behavior
of the tester. In contrast, it is known that the bound ρG,H(f) ≥ β′(δG,H(f)) is not tight in the
interval (44.997/128, 0.5); in fact, ρG,H(f) ≥ (1 + poly(1− 2δG,H(f)) · δG,H(f), where the extra term
is really tiny (see [181]).5 Still, this indicates that the known bounds used in the second and third
segments of β′ do not represent the actual behavior of the tester. Determining the exact behavior
of ρG,H(f) as a function of δG,H(f) is an open problem (even in this special case where H = GF(2)
and G = GF(2)m).

distance

rejection prob.

3/8

1/4

1/4 1/2

Figure 2.2: The three lower bounds on the rejection probability of f as a function of of distance of
f from a homomorphism, for H = GF(2) and G = GF(2)m.

Open Problem 2.4 (determining the exact behavior of Algorithm 2.1): For any two groups G and
H, and for every x ∈ (0, 1], what is the minimum value of ρG,H(f) when taken over all f : G→ H
such that δG,H(f) = x?

Note that for some groups G and H, the bound ρG,H(f) ≥ β(δG,H(f)) may not be tight even for
δG,H(f) < 5/16.

The PCP connection. We mention that the foregoing linearity test (i.e., Algorithm 2.1) has
played a key role in the construction of PCP systems, starting with [24]. Furthermore, a good
analysis of this test was important in some of these constructions (see, e.g., [37, 170, 171]6). For
further details, the interested reader is referred to Chapter 13 (see, especially, Section 13.3.1).

5The additive poly(1 − 2δG,H(f)) term is always smaller than 0.0001.
6Actually, Hastad [170, 171] relies on a good analysis of the Long Code (suggested by [37]), but such an analysis

would have been inconceivable without a good analysis of linearity tests (i.e., tests of the Hadamard code).
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Variations. A natural variant of linearity testing consists of testing affine homomorphisms (also
known as translations of homomorphisms). A function f : G→ H is called an affine homomorphism
if there exists a group homomorphism h : G → H such that f(x) = h(x) + f(0). (An equivalent
definition requires that for every x, y ∈ G, it holds that f(x + y) = f(x)− f(0) + f(y).)7 Testing

whether f is an affine homomorphism reduces to testing whether h(x)
def
= f(x) − f(0) is a homo-

morphism: If f is an affine homomorphism then h is a homomorphism, whereas if f is ǫ-far from
being an affine homomorphism then h is ǫ-far from being a homomorphism.8

A different variant of linearity testing was considered by David et al. [85]. Referring to the special
case where H = GF(2) and G = GF(2)m, for any k ∈ [m], they consider functions f : Wk → H,
where Wk is the set of m-dimensional Boolean vectors of weight k, and seek to test whether f
agrees with a group homomorphism. That is, given oracle access to a function f : Wk → H, the
task is to test whether there exists a homomorphism h : G → H such that f(x) = h(x) for every
x ∈Wk.

Linearity testing has served as a benchmark for several questions concerning PCPs. The fact
that the randomness complexity is a key parameter in PCP, led to studies of the randomness
complexity of linearity testing, which culminated in [254]. We mention that, while the randomness
complexity of Algorithm 2.1 is 2 log2 |G|, a saving of randomness is possible; that is, log2 |G| +
log log |H|+O(1) bits suffice (see Exerciser 1.21). This claim ignores the computational complexity
of the tester. On the other hand, we note that log2(|G|/q) − O(1) random bits are necessary for
any tester that makes q queries (see Exerciser 1.22). The problem of providing a computationally-
efficient analogue of the positive result is extensively studied in [254].

7On the one hand, if f(x) = h(x)+f(0) holds for some homomorphism h and all x ∈ G, then f(x+y) = h(x+y)+
f(0) = h(x) + h(y) + f(0) = f(x)− f(0) + f(y) for all x, y ∈ G. On the other hand, if f(x+ y) = f(x)− f(0) + f(y)

holds for all x, y ∈ G, then defining h(x)
def
= f(x)−f(0) we get h(x+y) = f(x+y)−f(0) = f(x)−f(0)+f(y)−f(0) =

h(x) + h(y) for all x, y ∈ G.
8Suppose that h is ǫ-close to a homomorphism h′. Then, f is ǫ-close to f ′ such that f ′(x) = h′(x) + f(0), which

means that f ′ is an affine homomorphism (since f(0) = h′(0) + f(0) = f ′(0)).
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Chapter 3

Low Degree Tests

Summary: We present and analyze a proximity-oblivious tester for the set of polyno-
mials of bounded degree. Specifically, for a finite field of prime cardinality F , a degree
bound d < |F|/2 and a number m ∈ N, we consider a tester that, given oracle access to
a function f : Fm → F , queries the function at d + 2 points and satisfies the following
conditions:

1. If f is an m-variate polynomial of (total) degree d, then the tester accepts with
probability 1.

2. If f is δ-far from the set of m-variate polynomials of (total) degree d, then the
tester rejects with probability at least min(0.5δ,Ω(d−2)).

The sequence of queries is generated by selecting at random x and h uniformly in Fm,
and using x + ih as the ith query.

This chapter is based on the work of Rubinfeld and Sudan [246]; specificlally, Section 3.4 is based
on [246, Sec. 4], whereas Section 3.3 is based on [246, Apdx.].

3.1 A brief introduction

Polynomials of bounded individual degree and of bounded total degree are the most natural sets of
functions over the vector space Fm, where F is a finite field and m ∈ N. Indeed, such polynomials
are ubiquitous in this context, and linear functions over F are an important special case.

For a finite field F and any m ∈ N, any function f : Fm → F can be written as a polynomial of
individual degree |F| − 1; that is, as a polynomial that has degree at most |F| − 1 in each variable,
and hence has total degree m · (|F|−1) (see Exercise 3.1). Thus, one may say that f is a low degree
polynomial if it has degree that is significantly lower than that. Specifically, in this chapter, we
call f a low degree polynomial if it has (total) degree at most d, where d < |F|/2 is a parameter.
Testing whether a function is a low degree is a natural computational problem, which has direct
applications to several areas of the theory of computation, most notably to the design of PCPs and
error correcting codes.
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Notation: Fixing a finite field F and an integer m, we often distinguish m-dimentional vectors
over F from elements of F by overlining the former. In particular, ev denotes the scalar multipli-
cation of the vector v ∈ Fm by the scalar e ∈ F ; that is, if v = (v1, ..., vm), then ev = (ev1, ..., evm).

Organization: The tester itself is presented and analysed in Section 3.4, which only relies on
Corollary 3.3 (which is stated at the end of Section 3.3). Still, readers may benefit from the intuition
provided in Section 3.2. The proof of Corollary 3.3 is presented in Section 3.3.

Teaching note: We strongly recommend leaving the contents of Section 3.3 (i.e., the proof of Corol-

lary 3.3) for optional independent reading. We are undecided regarding the question of whether or not to

present the intuition provided in Section 3.2 before focusing on the core material presented in Section 3.4.

3.2 A kind of intuition (which may be skipped)

In this section, we attempt to provide some intuition for the construction of low degree tests. We
start with the univariate case, and then move to the multivariate case.

3.2.1 The univariate case

For d ≪ |F|, a natural way of testing whether f : F → F is a (univariate) polynomial of degree
(at most) d is to check that the values of f at d + 2 distinct random points match some degree d
polynomial. Before analyzing this tester, note that it uses d + 2 queries to the function f , whereas
the size of the field F may be much larger. Note that this tester can be viewed as first finding (by
extrapolation) the (unique) degree d polynomial that fits the values of f on the first d + 1 points,
and then checking that this polynomial agrees with f on the d + 2nd point.

The analysis of this tester relies on the fact that the distance of f from the set of polynomials of
degree d is upper-bounded by the distance of f to the (unique) degree d polynomial f ′ that fits the
values of f on the first d + 1 points. Now, since the d + 2nd point is uniformly distributed among
the other |F| − (d + 1) points of F , it follows that this point hits a point of disagreement (between

f and f ′) with probability at least δ(f,f ′)·|F|
|F|−(d+1) > δ(f, f ′), which is at least the distance of f from

being a polynomial of degree d. (Indeed, the foregoing analysis is oblivious of the distribution of
the first d + 1 points, which may even be fixed; it only requires that the d + 2nd point is uniformly
distributed (conditioned on being different from the prior points).)

An alternative low degree test. Confining ourselves to the case of finite fields of prime car-
dinality (where the field F consists of the set Z|F| = {0, 1, ..., |F| − 1} with addition and multipli-
cation modulo |F|), we consider an alternative low degree test (for the univariate case). This test,
which will be implicitly used later, selects uniformly r, s ∈ F , and checks that the values of f at
r, r + s, ..., r + (d + 1) · s match some degree d polynomial. For starters, one can show that, for any
s 6= 0, it holds that f is a degree d polynomial if and only if for every r ∈ F the values of f at
r, r + s, ..., r + (d + 1) · s match some degree d polynomial.1 But how does the rejection probability
of this tester relate to the distance of f from the set of degree d polynomials of degree d?

1Obviously, if f has degree d, then its values at any subset of F match a degree d polynomial. As would be the case
throughout this chapter, the opposite direction is considerably less obvious, and its proof is outlined next. Recall that
we wish to show that, for any s ∈ F \{0}, if for every r ∈ F the values of f at the d+2 points r, r+s, ..., r+(d+1) ·s
match some degree d polynomial, then f is a polynomial of degree d. We start by letting fr denote the (unique)
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The answer to the foregoing question follows as a special case of the analysis of the tester
outlined below for the set of low degree m-variate polynomials. Indeed, we would welcome a
simpler analysis of the univariate case (or an indication that this special case is not simpler, say,
by a simple reduction of the multivariate case to the univariate case). But, at this point, we wish
to proceed with the intuition.

3.2.2 The multivariate case

We now turn to the case of m-variate functions f : Fm → F . The first observation here is that f is
a degree d polynomial if and only if its values on each line in Fm can be described by a univariate
polynomial of degree d, where a line in Fm is a (|F|-long) sequence of the form (x + ih)i∈F such
that x, h ∈ Fm. One can readily verify that if f : Fm → F is a degree d polynomial, then its
values on each line can be described by a univariate polynomial of degree d; that is, the function
fx,h : F → F defined as fx,h(z) = f(x+zh) is a polynomial of degree d in z. The opposite direction
is less obvious, but it is indeed true (see Theorem 3.1).

At this point, a natural suggestion is to test that f : Fm → F is of degree d by considering the
values of f on a random line in Fm. Recall that if f is not of degree d, then there exists a line such
that the values of f on this line do not fit a degree d polynomial. But if f is ǫ-far from being a
degree d polynomial, then how far are its values on a random line from fitting a degree d univariate
polynomial?

The answer to the latter question is not obvious. Nevertheless, it is known that the expected
distance (of these values from a univariate polynomial) is Ω(ǫ), where the expectation is over all
possible lines with uniform probability distribution (cf. [120, 26, 165]). In Section 3.4, we will show
a lower bound of min(Ω(ǫ),Ω(d−2)), but we have no real intuition to offer (beyond attempting to
present the technical proof in words, an attempt we shall not venture). The actual analysis of the
foregoing (low degree) tester mimics the analysis of the linearity tester, but is more complex (in
some of its details). Specifically, we define a “self corrected” version of the tested function and
show that if the test rejects with small probability, then this corrected version is a polynomial of
degree d that is close to the tested function.2

degree d polynomial that agrees with f on the d+1 points r, r+ s, ..., r+d ·s, and observe that (by the hypothesis) it
holds that fr(r+(d+1) · s) = f(r+(d+1) · s). This implies that fr = fr+s, since fr+s(r+ s+ d · s) = f(r+ s+ d · s)
(by the definition of fr+s), whereas fr and fr+s are degree d polynomials (which were shown to agree on the d + 1
points r + s, ..., r + (d + 1) · s). Using the fact that (r − r′)/s ∈ F for every r, r′ ∈ F , we infer that all the fr’s are
identical, and the claim follows since f(r) = fr(r) for each r ∈ F (by the definition of fr). We mention that this
local characterization of low degree polynomials (which refers to a fixed s ∈ F \ {0}) does not yield a good tester:
see Exercise 3.2.

2The following outline of the actual analysis is not supposed to be verifiable at this point. It is provided here
mainly in order to evoke the analogy to the analysis of the linearity tester (which was presented in Chapter 2).

Assuming that f is rejected with probability ρ < 1/O(d2), we shall show that f is 2ρ-close to a low degree
polynomial, by taking the following steps (as in the analysis of the linearity tester):

• First we define a “self-corrected” version, denoted f ′, of the function f such that f ′(x) is the most frequent
vote cast by the lines passing through x.

• Next, we show that f ′ is 2ρ-close to f , by using the fact that the vote of a specific line regarding x ∈ Fm was
defined such that it equals f(x) if and only if the test does not reject when examining (the values on) this line.

• Then, we show that there is a strong majority among the votes (for each point), by lower bounding the collision
probability of the random variable that represents a vote of a random line.

• Finally, we show that f ′ is a low degree polynomial.

The last two steps are performed by showing that each of the corresponding claims can be written as the conjunction
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As in the case of linearity testing, the only intuition we shall offer is an illustration as to why
the “self-corrected” version of the function is a low degree polynomial that is relatively close to
the function. The illustration will refer to a function that is obtained by slightly corrupting a low
degree polynomial, and so it will only illustrate that the voting scheme emplyed when constructing
the self-corrected version makes sense.

3.2.3 Linking the above intuition to the actual proof

The actual tester, presented in Section 3.4, tests that a function f : Fm → F is a polynomial of
degree (at most) d by checking whether the values of the function restricted to a random line fit
a degree d univariate polynomial, where the latter check is performed by considering the values of
this restriction on the first d + 2 points. However, the fact that this line is random means that its
starting point as well as the gap between its points are random. Specifically, considering the first
d + 2 values of f on the line (x + ih)i∈F is analogous to considering the values of f at the points

(x′+(r + i ·s) ·h′)i=0,...,d+1 such that x′ = x− r ·h′ and h
′
= s−1 ·h (i.e., the points (r+ is)i=0,...,d−1

on the line (x′+jh
′
)j∈F , assuming s 6= 0).3 Hence, the tester for the m-variate case actually invokes

the (“alternative”) tester of the univariate case. Furthermore, we use an explicit expression (i.e.,
Eq. (3.2)) that captures the decision of the latter tester; that is, we spell out the relation among
the aforementioned d + 2 values of a univariate function such that this relation holds if and only if
the univariate function has degree (at most) d.

The analysis of the tester for the m-variate case combines elements of a reduction to the uni-
variate case with an analysis of a specific tester for the univariate case. Moreover, we refer to the
specific expression (i.e., Eq. (3.2)) used by the univariate tester in making its decision. We stress
that this analysis does not present an explicit reduction of the m-variate case to the univariate
case, although such reductions can be found elsewhere (see, e.g. [120, 26, 165]). These choices are
made in order to make the analysis more concrete and hopefully more clear.

Note: For sake of simplicity, we focus on the case of finite fields of prime cardinality. In this case,
the field F consists of the set Z|F| = {0, 1, ..., |F|−1} with addition and multiplication modulo |F|.
In the general case (of arbitrary finite fields), the sequence (x + ih)d+1

i=0 is replaced by the sequence
(x+eh, x+e1h, ..., x+ed+1h), where e is uniformly distributed in F , the ei’s are fixed (distinct) field
elements, and the αi’s used in the extrapolation formula (i.e., Eq. (3.2)) are determined accordingly.

Teaching note: Section 3.3 provides proofs of two basic facts about polynomials (specifically, Theo-

rems 3.1 and 3.2); it is highly technical and offers no intuition (since the author has none to offer).

Unfortunately, these two facts (or rather their combination stated in Corollary 3.3) are necessary prelim-

inaries for Section 3.4, which presents the analysis of the tester (which was outlined above). Fortunately,

reading Section 3.4 only requires reading the statement of Corollary 3.3, and the reader may skip its proof,

which is the bulk of Section 3.3.

of relatively few events that are each related to the check performed by the tester, and using the hypothesis that the
rejection probability of the tester (i.e., ρ) is sufficiently small.

3Indeed, if x, h are uniformly distributed in Fm, then so are x′, h
′
. The point made here is that although the test

is described as inspecting the points 0, 1, ..., d + 1 on a random line, it is actually equivalent to a test that inspects
the points r, r+ s, ..., r+ (d+ 1) · s on a random line, where s 6= 0 and r are uniformly and independently distributed
in F .

50



3.3 Background

Throughout this chapter, F is a finite field of prime cardinality, and d,m are integers such that
d < |F|/2. We consider functions f : Fm → F , and the set Pm,d of m-variate polynomials of total
degree (at most) d. Such functions are called low degree polynomials, because their (total) degree
is significantly smaller than |F|.

As shown next, f is in Pm,d if and only if its restriction to each line in Fm can be represented as

a univariate polynomial of degree d, where a line in Fm is a sequence of the form Lx,h
def
= (x+ih)i∈F

for x, h ∈ Fm, and saying that the restriction of f to the line Lx,h is represented by the univariate

polynomial p means that p(i) = f(x + ih) for every i ∈ F . Hence, the global condition of being a
degree d polynomial is characterized as the conjunction of |Fm|2 local conditions, where each local
condition refers to the value of the function on |F| points (on a line in Fm).

Theorem 3.1 (local characterization of multivariate polynomials): Let |F| > 2d. The function
f : Fm → F is in Pm,d if and only if for every x, h ∈ Fm there exists a degree-d univariate
polynomial px,h such that px,h(i) = f(x + ih) for every i ∈ F .

Proof: Clearly, the restriction of f ∈ Pm,d to any line in Fm can be represented as a univariate
polynomial of degree d, since for every fixed x = (x1, ..., xm) ∈ Fm and h = (h1, ..., hm) ∈ Fm it
holds that f(x + zh) = f(x1 + zh1, ..., xm + zhm) is a univariate polynomial of degree d in z.

The opposite direction is not straightforward: it asserts that if the restriction of f to each
line in Fm can be represented as a univariate polynomial of degree d, hereafter referred to as
the lines-condition, then f ∈ Pm,d. This claim is proved by induction on m, where the base
case (of m = 1) is trivial. In the induction step (i.e., going from m − 1 to m), given an m-
variate polynomial f : Fm → F that satisfies the lines-condition, we need to show that f ∈ Pm,d.
Towards this end, for every fixed e ∈ F , we consider the (m − 1)-variate polynomial fe defined
by fe(x1, ...., xm−1) = f(x1, ...., xm−1, e). By the induction hypothesis, fe is an (m − 1)-variate
polynomial of degree d (since the restriction of fe to any line in Fm−1 is a degree d univariate
polynomial).4 The following claim implies that f is a polynomial of total degree at most 2d.

Claim 3.1.1 (the degree of f is at most 2d): For every e ∈ {0, 1, ..., d}, let δe be the unique degree
d univariate polynomial that satisfies δe(e) = 1 and δe(e

′) = 0 for every e′ ∈ {0, 1, ..., d} \ {e}.
Then, f(x) =

∑d
e=0 δe(xm)fe(x1, ..., xm−1). Hence, f has degree at most d in xm, whereas its total

degree in x1, ..., xm−1 is at most d.

(The fact that δe has degree d is shown in Exercise 3.1.)

Proof: Fixing any e1, ..., em−1 ∈ F , we first observe that ge1,...,em−1(x)
def
= f(e1, ..., em−1, x) is

a degree d univariate polynomial in x, since ge1,...,em−1 describes the restriction of f to the line
L(e1,...,em−1,0),(0,...,0,1) (and f satisfies the lines-condition). Next, we show that f(e1, ..., em−1, x) =∑d

e=0 δe(x)fe(e1, ..., em−1). This holds since each side of the equation is a degree d univariate
polynomial in x, whereas these two polynomials agree on d + 1 points (specifically, for every e′ ∈
{0, 1, ..., d}, it holds that

∑d
e=0 δe(e

′)fe(e1, ..., em−1) equals fe′(e1, ..., em−1) = f(e1, ..., em−1, e
′)).

4This is the case since the restriction of fe to any line in Fm−1 constitutes a restriction of f to a corresponding
line in Fm, whereas f satisfies the lines-condition. In other words, if f satisfies the lines-condition, then so does fe.
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Having shown that f(e1, ..., em−1, x) =
∑d

e=0 δe(x)fe(e1, ..., em−1), for every e1, ..., em−1 ∈ F , the
claim follows.

To show that f is actually of degree d, we consider for each h ∈ Fm the univariate polynomial
gh(z) = f(zh). On the one hand, deg(gh) ≤ d for every h ∈ Fm, since gh describes the values of f
on the line L0,h. On the other hand, we shall show next that deg(gh) = deg(f) for some h ∈ Fm,
and deg(f) ≤ d will follow.

Claim 3.1.2 (the degree of some gh equals the degree of f): There exists h ∈ Fm such that
deg(gh) = deg(f).

Proof: We actually prove that, with probability at least 1− deg(f)
|F| > 0 over the choice of h ∈ Fm,

it holds that deg(gh) = deg(f), where the inequality uses deg(f) ≤ 2d < |F| (established by
Claim 3.1.1). We may assume that f is a non-zero polynomial, or else the claim is trivial. Now, to
prove this claim, consider the coefficient of zdeg(f) in f(zh). This coefficient is a non-zero polynomial
in h of total degree at most deg(f), whereas any non-zero polynomial of degree d′ evaluates to zero
on at most a d′/|F| fraction of the points (see Exercise 3.3). Hence, with probability at least

1− deg(f)
|F| > 0 over the choice of h ∈ Fm, the coefficient of zdeg(f) in gh(z) is non-zero.

Having proved Claim 3.1.2, the theorem follows (since for this h it holds that deg(f) = deg(gh) ≤ d).

Theorem 3.1 characterizes low-degree multi-variate polynomials in terms of low degree univariate
polynomials. Specifically, the global condition regarding the multi-variate function f : Fm → F
was shown equivalent to the conjunction of |F|2m local conditions, where each of these conditions
asserts that some univariate function (defined based on f) is of low degree. But these conditions
are not “ultimately” local, since each of them refers to |F| values of f . We now show that the
condition of being a univariate polynomial of degree at most d≪ |F| over F can be expressed as a
conjunction of |F| conditions such that each condition refers only to d+2 values.5 These conditions
have a very explicit form in the case that F has prime cardinality.

Notation. For i = 0, 1, .., d + 1, let αi = (−1)i+1 ·
(d+1

i

)
. The αi’s (or rather their values reduced

modulo |F|) are viewed as elements of F .

Theorem 3.2 (local characterization of univariate polynomials): A univariate polynomial g : F →
F has degree d < |F| if and only if for every e ∈ F it holds that

d+1∑

i=0

αi · g(e + i) = 0. (3.1)

We view Eq. (3.1) as an extrapolation formula: it determines the value of g at a point based on
its value at d + 1 other points (i.e., we rewrite Eq. (3.1) as g(e) =

∑d+1
i=1 αi · g(e + i), while using

α0 = −1). This formula refers to d + 2 specific points (and to specific extrapolation coefficients

5
Advanced comment: In contrast, note that such a characterization cannot be based on the values of the

function at d + 1 points, since the values of a random univariate polynomial of degree d at any d + 1 points are
indistinguishable from the values of a random function (from F to F) at these points.
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given by the αi’s). This specific formula relies on the hypothesis that 0, 1, ..., d+1 are distinct field
elements, which holds since |F| is postulated to be a prime (and |F| ≥ d + 2).6 In the general case
(i.e., for an arbitrary finite field F of size at least d + 2), the sequence (e + i)d+1

i=0 is replaced by
the sequence (e, e1, ..., ed+1), where the ei’s are fixed (distinct) field elements, e varies, and the αi’s
used in Eq. (3.1) are determined accordingly (depending on the ei’s and e).7 In both cases, the
global condition of being a degree d univariate polynomial is characterized as the conjunction of
|F| local conditions, where each local condition refers to the value of the function at d + 2 points
(whereas d may be much smaller than |F|).
Proof: We shall first show that g has degree exactly d > 0 if and only if (its “derivative” function)

g′(x)
def
= g(x + 1) − g(x) has degree exactly d − 1, and then use this fact in order to establish the

main claim (i.e., the claim of the theorem) by induction on d.

Claim 3.2.1 (the degree of g is determined by the degree of g′): For g : F → F , let g′ : F → F
be defined by g′(x)

def
= g(x + 1)− g(x). Then, g has degree exactly d > 0 if and only if g′ has degree

exactly d− 1.

Proof: Writing g(x) =
∑d

j=0 cj · xj, where cd 6= 0, we get

g′(x) =

d∑

j=0

cj · (x + 1)j −
d∑

j=0

cj · xj

=

d∑

j=0

cj · ((x + 1)j − xj)

=

d∑

j=1

cj ·
j−1∑

k=0

(
j

k

)
· xk.

It follows that the degree of g′ is at most d− 1, whereas the coefficient of xd−1 equals cd ·
( d
d−1

)
=

cd · d 6= 0, where the inequality uses cd 6= 0 and d ∈ {1, ..., |F| − 1}. The claim follows.

Teaching note: The rest of the proof can be made more transparent by explicitly introducing iterative

derivatives, proving that g is of degree d if and only if its d+1st derivative is identically zero, and showing

that this derivative equals
∑

d+1

i=0
(−1)d+1−i ·

(
d+1

i

)
· g(x + i). This strategy is detailed in Exercise 3.5. The

author prefers not to introduce an additional notion for the sake of a proof of a highly technical nature,

and notes that the actual arguments are analogous.

We now prove the main claim (i.e., the characterization of univariate polynomials via Eq. (3.1))
by induction on d. For the base case (i.e., d = 0) we observe that g is a constant function if and
only if −g(e) + g(e + 1) = 0 holds for every e ∈ F . For the induction step (i.e., going from d− 1 to
d), we use the fact that g has degree d > 0 if and only if g′ has degree d− 1. Using the induction

6The case of |F| = d+ 1 holds trivially, since every function over F is a polynomial of degree at most |F| − 1.
7See Exercise 3.4. Indeed, in the case that |F| is a prime, we used ei = e + i for every i = 1, ..., d + 1, and the

αi’s were independent of e. Hence, in that case we used ei’s that vary with e rather than fixed ei’s. This difference
mirrors the difference between the two different testers for the univariate case presented in Section 3.2.
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hypothesis, the latter condition coincides with
∑d

i=0(−1)i+1 ·
(d

i

)
· g′(e + i) = 0 for every e ∈ F .

Hence, g has degree d if and only if (for every e ∈ F)

d∑

i=0

(−1)i+1 ·
(

d

i

)
· (g(e + i + 1)− g(e + i)) = 0.

Finally, note that

d∑

i=0

(−1)i+1 ·
(

d

i

)
· (g(e + i + 1)− g(e + i))

=

d∑

i=0

(−1)i+1 ·
(

d

i

)
· g(e + i + 1) −

d∑

i=0

(−1)i+1 ·
(

d

i

)
· g(e + i)

=

d+1∑

j=1

(−1)j ·
(

d

j − 1

)
· g(e + j) +

d∑

i=0

(−1)i ·
(

d

i

)
· g(e + i)

= g(e) + (−1)d+1 · g(e + d + 1) +

d∑

i=1

(−1)i ·
((

d

i− 1

)
+

(
d

i

))
· g(e + i)

= −
d+1∑

i=0

(−1)i+1

(
d + 1

i

)
· g(e + i)

and the inductive claim follows.

Combining Theorems 3.1 and 3.2, we get:

Corollary 3.3 Let |F| > 2d and αi = (−1)i+1 ·
(d+1

i

)
. The function f : Fm → F is in Pm,d if and

only if for every x, h ∈ Fm it holds that

d+1∑

i=0

αi · f(x + ih) = 0. (3.2)

Proof: Clearly (by Theorem 3.2)8, any f ∈ Pm,d satisfies Eq. (3.2), for every x, h ∈ Fm. When
proving the opposite direction, for every line L = Lx,h, we use Eq. (3.2) on the sequence ((x +

eh) + ih)d+1
i=0 , for each e ∈ F , and infer (by Theorem 3.2) that the restriction of f to L is a

univariate polynomial of degree d. Specifically, for every line L = Lx,h, we consider the function

gL(z) = f(x+ zh) and infer
∑d+1

i=0 αigL(e+ i) = 0 (for each e ∈ F ) by using Eq. (3.2) on the points

(x + eh + ih)d+1
i=0 (i.e., using

∑d+1
i=0 αif((x + eh) + ih) = 0). We complete the proof by using the

non-obvious direction of Theorem 3.1.

3.4 The tester

Recall that we consider functions f : Fm → F , where F be a finite field of prime cardinality, and
the set Pm,d of m-variate polynomials of total degree d, which is considered “low” since d < |F|/2.

8Indeed, we also use the obvious direction of Theorem 3.1.
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The characterization provided in Corollary 3.3 asserts that the global condition f ∈ Pm,d can
be decomposed into |Fm|2 local conditions, where each local condition refers to the value of f
at d + 2 points in Fm. Such a decomposition, yielding a characterization via a conjunction of
many local conditions, is a highly non-obvious phenomenon. It is even more non-obvious that the
corresponding characterization is robust in the sense that the fraction of unsatisfied local conditions
is related to the distance of the object from the global condition.9

A parenthetical discussion. Note that while a characterization states a qualitative dichotomy
(i.e., X holds if and only if Y holds), a robust characterization is a quantitative version that relates
the “level of violation” of each of its “sides” (i.e., X is “δ-close to being satisfied” if and only if
Y is “ρ-close to being satisfied”). The notion of closeness used here need not coincide with the
notion of closeness used throughout this book. Still, in the specific case discussed here there is a
correspondence: What we shall show is that f is δ-close to Pm,d if and only if a 1−Θd(δ) fraction
of the local conditions concerning f are satisfied, where the notation Θd hides factors that depend
(polynomially) on d. Actually, we shall only show that if f ∈ Pm,d then all local conditions are
satisfied, whereas if f is δ-far from Pm,d then at least a min(Ω(δ),Ωd(1)) fraction of the local
conditions are unsatisfied.10

The foregoing discussion leads to the following tester, which selects a local condition at random
among the |Fm|2 conditions referred to in Corollary 3.3.

Algorithm 3.4 (testing whether f is in Pm,d): Select uniformly, x, h ∈ Fm, query f at the points
x, x + h, ..., x + (d + 1)h and accept if and only if these values satisfy Eq. (3.2). That is, the tester
accepts if and only if

d+1∑

i=0

αi · f(x + ih) = 0, (3.3)

where αi = (−1)i+1 ·
(
d+1

i

)
.

Essentially, the test checks whether the degree d univariate polynomial that interpolates the values
of f on the first d + 1 points on a random line agrees with the value assigned by f to the d + 2nd

point (on that line). In other words, the test checks whether the value extrapolated for the d + 2nd

point based on the first d + 1 points matches the actual value of that point (according to f itself).
The fact that we use “evenly spaced” points as the d + 2 points on the (random) line is inessential
to the validity of this tester, but it allows to present an explicit extrapolation formula (in the case
that |F| is prime).

3.4.1 Analysis of the tester

Recall that (by Corollary 3.3) f ∈ Pm,d if and only if Eq. (3.3) holds for every x, h ∈ Fm. At times,

it will be useful to write Eq. (3.3) as f(x) =
∑d+1

i=1 αi · f(x + ih), which asserts that the value of

9Artificial examples where a local characterization is not robust are easy to generate; for example, we can augment
any local characterization by many copies of the same local conditions (or insignificant variants of the same condition).
Natural examples also exist: one such example is provided by Exercise 3.2.

10The reader can easily verify that if f is δ-close to Pm,d, then at most a Od(δ) fraction of the local conditions
are unsatisfied. This follows from the fact that each of the d + 2 queries made by the following tester is uniformly
distributed in Fm.
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f ∈ Pm,d at x is determined (via extrapolation) by the value of f on d + 1 other points on the line
Lx,h = (x + ih)i∈F .

Theorem 3.5 (analysis of Algorithm 3.4): Let δ0 = 1/(d + 2)2. Then, Algorithm 3.4 is a (one-
sided error) proximity oblivious tester with detection probability min(δ, δ0)/2, where δ denotes the
distance of the given function from Pm,d.

Teaching note: The following proof uses the strategy used in the (“full”) analysis of the linearity tester

of Blum, Luby, and Rubinfeld [59], as presented in the proof of Theorem 2.3. Indeed, the implementation

of this strategy is more complex in the current setting (of low degree testing).

Proof: By (the easier direction of) Corollary 3.3, each f ∈ Pm,d is accepted by the tester with
probability 1. Hence, the theorem follows by proving that if f is at distance δ from Pm,d, then it is
accepted by the tester with probability at most 1−min(δ, δ0)/2. Towards this goal, we denote by
ρ the probability that f is rejected, and show that if ρ < δ0/2, then f is 2ρ-close to Pm,d.

11 This
is shown by presenting a function g, and proving that g is 2ρ-close to f and that g is in Pm,d.

The intuition underlying the proof is that the hypothesis regarding f (i.e., that it is rejected
with probability ρ < δ0/2) implies that f can be modified (or “corrected”) into a low degree
polynomial by modifying f on relatively few values (i.e., on at most 2ρ · |Fm| values). Specifically,
the hypothesis that Prx,h∈Fm [f(x) 6=∑i∈[d+1] αi · f(x + ih)] = ρ < 1/2(d + 2)2 suggests that a
“corrected” version of f that is determined (at each x ∈ Fm) according to the most frequent value
of
∑

i∈[d+1] αi ·f(x+ ih), when considering all possible choices of h ∈ Fm, is a polynomial of degree
d that is relatively close to f . Suppose, for illustration, that f is obtained by selecting an arbitrary
degree d polynomial p and corrupting it on relatively few points (say on less than |Fm|/2(d + 1)
points). Then, the corrected version of f will equal p (since for a random h ∈ Fm, with probability
at least 1 − (d + 1) · ρ > 1/2 it holds that

∑
i∈[d+1] αi · f(x + ih) =

∑
i∈[d+1] αi · p(x + ih) which

equals p(x) (by Corollary 3.3)), and both claims hold (i.e., p is a polynomial of degree d that is
relatively close to f). Needless to say, we cannot start with the foregoing assumption12, but should
rather start from an arbitrary f that satisfies

Prx,h∈Fm

[
d+1∑

i=0

αi · f(x + ih) = 0

]
= 1− ρ, (3.4)

where ρ < δ0/2 = 1/2(d+2)2. We now turn to the actual proof, while recalling that the expression
in Eq. (3.4) is equivalent to f(x) =

∑d+1
i=1 αi · f(x + ih).

Recall that assuming that ρ < δ0/2, we intend to present a function g : Fm → F , and prove
that g is 2ρ-close to f and that g is in Pm,d. In accordance with the foregoing discussion, we define

g(x) as the most likely value of
∑d+1

i=1 αi ·f(x+ih), when h is uniformly distributed. In other words,
letting MFOe∈S{ve} denote the most frequently occurring value of ve when e ∈ S (with ties broken
arbitrarily), we define

g(x)
def
= MFOh∈Fm

{
d+1∑

i=1

αi · f(x + ih)

}
(3.5)

11Hence, either ρ ≥ δ0/2 or ρ ≥ δ/2, which implies ρ ≥ min(δ, δ0)/2 as claimed.
12The gap between this illustration and the actual proof is reflected in the fact that the illustration refers to

δ < 1/2(d + 1), whereas the actual proof uses ρ < 1/2(d + 2)2.
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Indeed, by Eq. (3.4), the function g is likely to agree with f on a random x ∈ Fm, and so g is likely
to satisfy Eq. (3.3) on random x, h ∈ Fm. However, we need much stronger assertions than the
one just made, and stronger assertions will indeed be provided by the following claims.

Claim 3.5.1 (closeness): The function g is 2ρ-close to f .

Proof: This is merely an averaging argument, which counts as bad any point x such that Eq. (3.3)
is satisfied by at most half of the possible h’s, while noting that otherwise g agrees with f on x.
Details follow.

Let B denote the set of x’s such that Eq. (3.3) is satisfied by at most half of the possible h’s;
that is, x ∈ B if and only if

Prh∈Fm

[
d+1∑

i=0

αi · f(x + ih) = 0

]
≤ 0.5.

By Eq. (3.4), Prx∈Fm [x ∈ B] ≤ 2ρ, because otherwise Prx,h∈Fm

[∑d+1
i=0 αi · f(x + ih) 6= 0

]
is

greater than 2ρ · 0.5. On the other hand, for every x ∈ Fm \B, it holds that

Prh∈Fm

[
f(x) =

d+1∑

i=1

αi · f(x + ih)

]
> 0.5,

which implies that f(x) is the majority value (obtained by the r.h.s of the foregoing random variable)
and hence f(x) = g(x).

Recall that g(x) was defined to equal the most frequent value of
∑d+1

i=1 αi · f(x + ih), where
frequencies were taken over all possible h ∈ Fm. Hence, g(x) occurs with frequency at least 1/|F|
(yet, we saw, in the proof of Claim 3.5.1, that on at least 1 − 2ρ of the x’s it holds that g(x) is
the majority value). We next show that g(x) is much more frequent: it occurs in a strong majority
(for every x).

Claim 3.5.2 (strong majority): For every x ∈ Fm, it holds that

Prh∈Fm

[
g(x) =

d+1∑

i=1

αi · f(x + ih)

]
≥ 1− 2(d + 1)ρ.

Proof: For each x ∈ Fm, we consider the random variable Zx(h) defined to equal
∑d+1

i=1 αi · f(x +
ih), where the probability space is uniform over the choice of h ∈ Fm. By Eq. (3.4), we have
Prx∈Fm [f(x) = Zx] = 1 − ρ, which means that for typical x the value Zx is almost always a
fixed value (i.e., f(x)), which implies that Zx = g(x) with high probability. However, we want to
establish such a statement for any x, not only for typical ones.

Fixing any x ∈ Fm, the idea is to lower-bound the collision probability of Zx, which equals
Prh1,h2∈Fm[Zx(h1) = Zx(h2)]. (If this lower bound is greater than half, then the same lower bound

would holds for Pr[Zx = g(x)].) Recalling that Zx(h) =
∑d+1

i=1 αi · f(x + ih), we consider

Prh1,h2∈Fm

[
d+1∑

i=1

αi · f(x + ih1) =
d+1∑

i=1

αi · f(x + ih2)

]
. (3.6)

The key observation is that each point (except x) on each of these two lines (i.e., on the lines Lx,h1

and Lx,h2
)13 is uniformly distributed in Fm, and hence we can apply Eq. (3.4) to each such point

13Recall that Lx,h = (x+ ih)i∈F .
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(i.e., to x+ ihj for any i 6= 0 and j ∈ {1, 2}) using a random direction. Furthermore, we can use the
direction h2 (resp., h1) for the points on Lx,h1

(resp., Lx,h2
), which means that, for every i ∈ [d+1],

we apply Eq. (3.4) to the points ((x + ih1) + jh2)
d+1
j=0 (resp., ((x + ih2) + jh1)

d+1
j=0). Doing so allows

to express each of the two sums in Eq. (3.6) by the same double summation, since (as illustrated
by Figure 3.1) the jth point on the line Lx+ih1,h2

coincides with the ith point on the line Lx+jh2,h1

(i.e., (x + ih1) + jh2 = (x + jh2) + ih1). As shown below, it follows that the collision probability
of Zx is lower bounded by 1− 2(d + 1) · ρ, and consequently the most frequent value of Zx, which
is g(x), occurs with probability at least 1− 2(d + 1)ρ.

h

j

 

1

h2

i

x

Figure 3.1: The lattice spanned by h1 and h2, and the point x + ih1 + jh2.

We now turn to the actual proof, where an arbitrary x ∈ Fm is fixed (for the entire proof). For
every i, j ∈ [d + 1], if h1 and h2 are uniformly and independently distributed in Fm, then so are
x + ih1 and jh2 (resp., x + jh2 and ih1). Hence, by Eq. (3.4), for every i ∈ [d + 1], it follows that,

Prh1,h2∈Fm


f(x + ih1) =

d+1∑

j=1

αj · f((x + ih1) + jh2)


 = 1− ρ, (3.7)

and likewise for every j ∈ [d + 1],

Prh1,h2∈Fm

[
f(x + jh2) =

d+1∑

i=1

αi · f((x + jh2) + ih1)

]
= 1− ρ. (3.8)

Hence, using a union bound (over i ∈ [d + 1] (resp., j ∈ [d + 1])), we have

Prh1,h2∈Fm




d+1∑

i=1

αif(x + ih1) =
d+1∑

i=1

d+1∑

j=1

αiαj · f(x + ih1 + jh2)


 ≥ 1− (d + 1) · ρ (3.9)

Prh1,h2∈Fm




d+1∑

j=1

αjf(x + jh2) =

d+1∑

j=1

d+1∑

i=1

αiαj · f(x + ih1 + jh2)


 ≥ 1− (d + 1) · ρ, (3.10)
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which implies (by a union bound on Eq. (3.9)&(3.10)) that

Prh1,h2∈Fm




d+1∑

i=1

αif(x + ih1) =
d+1∑

j=1

αjf(x + jh2)


 ≥ 1− 2(d + 1)ρ. (3.11)

Note that the two summations in Eq. (3.11) represent two independent (and identically distributed)
random variables, which are functions of h1 and h2 respectively. Furthermore, each of these sum-

mations is distributed identically to the random variable Zx(h)
def
=
∑d+1

i=1 αif(x + ih), which is a
function of a uniformly distributed h ∈ Fm. This means that the collision probability of Z = Zx

(which equals
∑

u Pr[Z =u]2) is at least 1− 2(d + 1)ρ, which implies that the most frequent value
occurs in Z with probability at least 1− 2(d + 1)ρ (since if v is the most frequent value assigned to
Z then

∑
u Pr[Z =u]2 ≤∑u Pr[Z =v] ·Pr[Z =u] = Pr[Z =v]). Recalling that g(x) was defined as

the most frequent value of Zx, the claim follows.

Using Claim 3.5.2, we now show that g ∈ Pm,d. This follows by combining Claim 3.5.3 with the
characterization of Pm,d.

Claim 3.5.3 (g ∈ Pm,d): For every x, h ∈ Fm, it holds that
∑d+1

i=0 αi · g(x + ih) = 0.

Proof: As in the proof of the analogous claim in the analysis of the linearity test, we prove the
claim by considering a fictitious probabilistic expression regarding the event

∑d+1
i=0 αi ·g(x+ih) = 0,

when x and h are fixed. That is, fixing any x, h ∈ Fm, we prove that
∑d+1

i=0 αi · g(x + ih) = 0 by

showing that Prh1,h2
[
∑d+1

i=0 αi · g(x + ih) = 0] > 0. (The random directions h1 and h2 will be used
to set-up a lattice of random points and argue about them in a way that is similar to the proof of
Claim 3.5.2, although the specific lattice and the arguments will be different.)14

Fixing any x, h ∈ Fm and using Claim 3.5.2, we infer that, for each i ∈ {0, 1, ..., d + 1}, it holds
that

Pr
h
′∈Fm


g(x + ih) =

d+1∑

j=1

αj · f((x + ih) + jh
′
)


 ≥ 1− 2(d + 1)ρ. (3.12)

Rather than using the same direction h
′
for each i, we use pairwise independent directions such

that the direction h1 + ih2 is used for approximating g(x + ih), which means that we extrapolate
(at the point x + ih) according to the line Li = Lx+ih,h1+ih2

. Hence, the jth point on the line Li is

(x + ih) + j · (h1 + ih2), which can be written as (x + jh1) + i · (h + jh2); see Figure 3.2. Now, by
Eq. (3.4), for every j ∈ [d + 1] it holds that

Prh1,h2∈Fm

[
d+1∑

i=0

αi · f((x + jh1) + i · (h + jh2)) = 0

]
= 1− ρ. (3.13)

since x + jh1 and h + jh2 are uniformly and independently distributed in Fm. (This fact as well
as the rest of the argument will be further detailed below.) Now, when all equalities captured in

14In particular, in the proof of Claim 3.5.2 we used the lattice points x+ ih1 + jh2 for i, j ∈ [d+ 1], whereas here
we shall use the lattice points x+ ih+ jh1 + ijh2 for (i, j) ∈ {0, 1, ..., d+ 1} × [d+ 1].
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x h

h1 + ih2

i

x + ih1 + j(h1 + ih2)

x + jh1
Li

Figure 3.2: The jth point on the (solid) line Li = Lx+ih,h1+ih2
is reached as the ith point on the

(dashed) line Lx+jh1,h+jh2
, which is totally random. Recall that the line Lx,h is fixed.

Eq. (3.12)&(3.13) hold, which happens with probability at least 1− (d + 2) · 2(d + 1)ρ− (d + 1) · ρ,
we get

d+1∑

i=0

αi · g(x + ih) =
d+1∑

i=0

αi ·
d+1∑

j=1

αj · f((x + ih) + j · (h1 + ih2))

=
d+1∑

j=1

αj ·
d+1∑

i=0

αi · f((x + jh1) + i · (h + jh2))

=
d+1∑

j=1

αj · 0,

where the first equality uses Eq. (3.12) with h
′
= h1 + ih2, and the last one uses Eq. (3.13). The

claim follows by noting that the event in question (i.e.,
∑d+1

i=0 αi · g(x + ih) = 0) is fixed, and so
if it occurs with positive probability (according to an analysis carried through in some auxiliary
probability space), then it simply holds.

We now turn to the actual proof, which just repeats the foregoing argument while using more
explicit formulations. Fixing arbitrary x, h ∈ Fm, let h1 and h2 be uniformly and independently
distributed in Fm. For every i ∈ {0, 1, ..., d + 1}, using Claim 3.5.2, while noting that h1 + ih2 is
uniformly distributed in Fm, we get

Prh1,h2∈Fm


g(x + ih) =

d+1∑

j=1

αj · f((x + ih) + j(h1 + ih2))


 ≥ 1− 2(d + 1)ρ. (3.14)
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On the other hand, for every j ∈ [d + 1], noting that x + jh1 and h + jh2 are uniformly and
independently distributed in Fm, and using Eq. (3.4), we get

Prh1,h2∈Fm

[
d+1∑

i=0

αi · f((x + jh1) + i(h + jh2)) = 0

]
= 1− ρ. (3.15)

Note that, in Eq. (3.15), the argument to f (i.e., (x + jh1) + i(h + jh2)) can be written as (x +
ih) + j(h1 + ih2). Taking an adequate linear combination of the equalities captured by Eq. (3.15),
we get

Prh1,h2∈Fm




d+1∑

j=1

αj

d+1∑

i=0

αi · f((x + ih) + j(h1 + ih2)) = 0


 ≥ 1− (d + 1) · ρ. (3.16)

Combining Eq. (3.14)&(3.16), we get

Prh1,h2∈Fm




d+1∑

i=0

αig(x + ih) =
d+1∑

i=0

αi

d+1∑

j=1

αj · f((x + ih) + j(h1 + ih2)) = 0




≥ 1− (d + 2) · 2(d + 1)ρ− (d + 1) · ρ.

Using (2d + 5) · (d + 1)ρ < 1 (which follows from ρ ≤ 1/2(d + 2)2), we get

Prh1,h2∈Fm

[
d+1∑

i=0

αig(x + ih) = 0

]
> 0 (3.17)

and the claim follows (since
∑d+1

i=0 αig(x + ih) = 0 is independent of the choice of h1, h2 ∈ Fm).15

Combining Claims 3.5.1 and 3.5.3 with the characterization of Pm,d (i.e., Corollary 3.3)16, it follows
that f is 2ρ-close to Pm,d.

3.4.2 Digest (or an abstraction)

We wish to spell out what is actually being used in the proof of Theorem 3.5. The proof refers to
a test for functions of the form f : D → R, where in our application D = Fm and R = F (and
t = d + 1), that checks a condition of the form f(x) = F (f(y1), ..., f(yt)), where x is uniformly
distributed in D and F is a fixed function. Indeed, at this point we assume nothing about the
distribution of (y1, ..., yt) conditioned on x, hereafter denoted Yx. First, a self-corrected version
of f , denoted g, is defined by letting g(x) be the most frequent value of F (f(y1), ..., f(yt)), when
(y1, ..., yt)← Yx. Claim 3.5.1 holds in this generic setting; that is, if the test rejects with probability
ρ, then g is 2ρ-close to f . In the proofs of Claims 3.5.2 and 3.5.3, we used additional features of
Yx, detailed next.

15Recall that x, h ∈ Fm are fixed. Hence, the probability in Eq. (3.17) is either 0 and 1, whereas the lower bound
rules out 0.

16Indeed, here we use the harder direction of Corollary 3.3.
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One such feature, which is used in both proofs, is that for every x ∈ D and i ∈ [t], the ith element
in Yx is uniformly distributed in D. To state the other feature used in the proof of Claim 3.5.2,
we let Yx(ω) denote the value of Yx when ω is a point in the probability space Ω that underlies Yx

(i.e., Yx : Ω→ Dt). The proof of Claim 3.5.2 boils down to lower-bounding the collision probability
of F (Yx), for any x, and it uses the hypothesis (which is a fact in our application) that for every
i, j ∈ [t] and ω1, ω2 ∈ Ω it holds that the ith element of Yv(ω1) equals the jth element of Yu(ω2),
where u is the ith element of Yx(ω1) and v is the jth element of Yx(ω2). This feature holds when
D = Ω is an additive (Abelian) group and the ith element of Yx(ω) equals x + iω, which is indeed
the case in our application.17

In the proof of Claim 3.5.3 we use a more complex feature, which presumes that D = Ω and views
it is an additive (Abelian) group. The actual feature is that for every i, j ∈ [t] and ω, ω1, ω2 ∈ Ω it
holds that the jth element of Yx+iω(ω1 + iω2) equals the ith element of Yx+jω1(ω+ jω2), which holds
when the ith element of Yx(ω) equals x+iω (since (x+iω)+j(ω1+iω2) equals (x+jω1)+i(ω+jω2)).

3.5 Chapter notes

We mention that low-degree tests play a key role in the construction of PCP systems, starting with
the “first generation” of such constructions [29, 28, 107, 25, 24]. For further details, the interested
reader is referred to Chapter 13 (see, especially, Section 13.3.2).

The analysis of Algorithm 3.4 provided in Theorem 3.5 is probably not tight. An improved
analysis of a related low-degree tester appeared in [120]. This tester selects uniformly x, h ∈ Fm

and i ∈ F , queries f at x, x + h, ..., x + dh and x + ih, and accepts if and only if there exists a
degree d univariate polynomial that agrees with these d + 2 values (i.e., a polynomial p such that
p(j) = f(x + jh) for every j ∈ {0, 1, ..., d, i}).18 Friedl and Sudan [120] showed that the foregoing
tester is a (one-sided error) proximity oblivious tester with detection probability min(0.124, δ/2),
where δ denotes the distance of the given function from Pm,d (and 0.124 can be replaced by any
constant c0 smaller than 1/8).19

The low error regime. Our presentation has focused on the “high error regime”; that is, we
have only guaranteed small detection probability (e.g., in [120] the detection probability is smaller
than 1/8). Equivalently, we asserted that if f is accepted with high probability (i.e., α = 1 − ρ >
7/8), then it is close (i.e., 2ρ-close) to Pm,d. Subsequent research regarding low degree testing refers
to the “low error regime” where one asks what can be said about a function that is accepted with
probability at least 0.01 (or so).20 It turns out that in this case the function is 0.9934-close to Pm,d;

17In that case, v + iω1 = (x+ jω2) + iω1 = (x+ iω1) + jω2 = u+ jω2.
18

Advanced comment: Alternatively, this tester may be viewed as checking whether the degree d univariate
polynomial that fits the values of the first d + 1 points on the (random) line agrees with the value assigned to a
random point on this line. In the context of PCP, this tester is often described as having access to two oracles:
the function f : Fm → F , which is called a “point oracle”, and a “line oracle” that assigns a degree d univariate
polynomial to each line in Fm (i.e., the line-oracle is a function from (Fm)2 to Fd+1). In such a case, it is called a
line-vs-point tester. We mention that a plane-vs-point tester was also considered (cf. [235]): The plane-oracle assigns
to each plane in Fm (which is described by three points in Fm) a degree d bivariate polynomial, which is supposed
to describe the value of f when restricted to this plane.

19In addition, it is required that |F| > c · d (rather than |F| > 2d), where c is a constant that depends on c0.
20The terms “high” and “low” (“error regimes”), refer to the case that f 6∈ Pm,d and (rightfully) consider the ac-

ceptance probability in these cases as an error probability. Hence, accepting a function (not in Pm,d) with probability
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that is, if f is accepted with probability at least 0.01, then it agree with some degree d polynomial
on at least 0.0066 fraction of the domain. In general, as shown in [26, 235] (using different tests of
query complexity poly(d)), if f is accepted with probability at least α, then f is (1 − Ω(α))-close
to Pm,d (i.e., f agree with some degree d polynomial on at least Ω(α) fraction of the domain).21

Small fields. So far, we have focused on the case of large fields; that is, we assumed that the
field is larger than the degree bound (i.e., |F| > d).22 But, for multivariate polynomials, the case
of small fields makes sense too. Alon et al. [11] studied the case of the two-element field, denoted
GF(2), and presented a low-degree tester of query complexity that is exponential in the degree
bound.23 They also observed that exponential (in the degree bound) query complexity is required
in this case. The case of fields of intermediate size (i.e., |F| ∈ (2, d]) was studied by Kaufman and
Ron [182] and Jutla et al. [174], who showed that the query complexity in this case is |F|Θ(ℓ), where
ℓ = ⌈(d + 1)/(|F| − 1)⌉ if |F| is a prime (and ℓ = ⌈(d + 1)/(ps − ps−1)⌉ if |F| = ps for a prime p).24

Robust characterization. We have alluded to the notion of a robust characterization in some
of our intuitive discussions (most conspicuously at the beginning of Section 3.4), but refrained
from using it in the actual proofs. The notions of local charcaterization and its robustness were put
forward by Rubinfeld and Sudan [246], and are briefly reviewed in Section 1.4. The interested reader
is referred to these two texts.25 We mention that some subsequent studies of low-degree tests are
conducted in terms of the “robustness” of various local characterizations (see, e.g., [120, 26, 235]).
For example, the robustness of the “line tester” was defined as the minimum, over all f 6∈ Pm,d, of
the ratio of the expected distance of the restriction of f to a random line from P1,d (i.e., univariate
degree d polynomials) versus the distance of f from Pm,d.

Invariances. The set Pm,d is invariant under full rank affine transformations on the functions’
domain. That is, for every f : Fm → F and any full rank affine transformation T : Fm →
Fm it holds that f ∈ Pm,d if and only if f ◦ T ∈ Pm,d. A general study of the complexity of
testing properties that are invariant under affine transformations was initiated by Kaufman and
Sudan [183], and is surveyed in [257].26

0.9 is considered to be in the high error regime, whereas accepting this function with probability 0.01 is in the low
error regime.

21
Advanced comment: These results assume that |F| ≥ poly(d), whereas [120] only assumes |F| ≥ Θ(d). We

mention that [165] only requires |F| ≥ (1 + Ω(1)) · d, but this comes at the cost of a larger hidden constant in the
agreement rate (i.e., in Ω(α)).

22Actually, we focused on the case that |F| > 2d, which does not cover the special case of |F| = 2 and d = 1. We
mention that this special case (of |F| = 2 and d = 1) can be viewed as a special case of group homomorphism testing,
which is considered in the previous chapter (i.e., the homomorphism is from the group Fm to the group F).

23
Advanced comment: They actually presented a proximity-oblivious tester that, for a degree bound d, makes

2d+1 queries and has detection probability δ/2q , where δ denotes the distance of the tested function from being a
degree d polynomial. It turns our that their tester has detection probability Ω(δ); see [51] (as well as [168] which
presents an analogous result for fields of intermediate size).

24The latter case is only analyzed in [182].
25

Advanced comment: In Section 1.4 the notion of locality was presented as referring to constant size neighbor-
hoods, but the notion extends to neighborhoods of size poly(d). Actually, the notion extends to neighborhoods of
any size that is significantly smaller than the tested object.

26Be warned that there have been many subsequent (to [257]) developments in this direction.
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Exercises

The following exercises elaborate on comments made in the main text.

Exercise 3.1 (low degree extensions): Show that for a finite field F and any m ∈ N, any function
f : Fm → F can be written as a polynomial of individual degree |F| − 1. More generally, show that
for any H ⊆ F and any function f : Hm → F there exists a polynomial p : Fm → F of individual
degree |H| − 1 such that p(x) = f(x) for every x ∈ Hm.

Guideline: For every a ∈ H, let δa : F → F be such that δa(z) =
∏

b∈H\{a}(x− b)/(a− b). Consider
p(x1, ..., xm) =

∑
a1,...,am∈H f(a1, ..., am) ·∏i∈[m] δai(xi).

Exercise 3.2 (a failed attempt for testing low degree univariate polynomials): Note that in the
case of m = 1, Algorithm 3.4 amounts to selecting r, s ∈ F uniformly at random, and checking that
the values of f : F → F at r, r + s, ..., r + (d + 1) · s match some degree d polynomial. Consider the
algorithm that selects r uniformly in F , and checks that the values of f at r, r+1, ..., r+d+1 match
some degree d polynomial. Show that this algorithm does not yield a good tester in the sense that,
for |F| ≫ d, there exists a function f : F → F that is 0.499-far from being of degree d, whereas
the algorithm rejects it with probability O(d/|F|). Generalize the counterexample to the case of an
algorithm that checks that the values of f at r, r + s, ..., r + (d + 1) · s, for any fixed s ∈ F (and
uniformly distrubuted r ∈ F).

Guideline: Let p1, p2 : F → F be two distinct polynomials of degree d, and let f(x) = p1(x) if
x ∈ {1, ..., ⌊|F|/2⌋} and f(x) = p2(x) otherwise. Then, f is (0.5 − (d + 1)/|F|)-far from being a
polynomial of degree d, whereas the algorithm rejects f with probability at most 2(d + 1)/|F|.27

Exercise 3.3 (The Schwartz–Zippel Lemma [250, 276, 86]):28 Let p : Fm → F be a non-zero
m-variate polynomial of total degree d over a finite field F . Prove that Prx∈Fm [p(x)=0] ≤ d/|F|.

Guideline: Use induction on the number of variables, m. The base case of m = 1 follows by the fact
that p 6≡ 0 has at most d roots. In the induction step, assuming that p depends on its last variable,
write p(x) =

∑d
i=0 pi(x1, ..., xm−1) ·xi

m, where pi is an (m−1)-variate polynomial of degree at most
d − i, and let t be the largest integer such that pt is non-zero. Then, using x′ = (x1, ..., xm−1),
observe that

Prx∈Fm [p(x) = 0] ≤ Prx′∈Fm−1 [pt(x
′) = 0] + Prx′∈Fm−1 [pt(x

′) 6= 0] ·Prx∈Fm[p(x) = 0|pt(x
′) 6= 0],

and that, for any fixed x′ such that pt(x
′) 6= 0, the function fx′(xm)

def
= p(x′, xm) = p(x) is a

non-zero (univariate) polynomial of degree t in xm.

Exercise 3.4 (local characterization of low degree univariate polynomials in the case of general
finite fields): Let F be an arbitrary finite field and d < |F|−1. Suppose that e1, ..., ed+1 are distinct

27The first claim holds because for every polynomial p of degree d there exists i ∈ {1, 2} such that p agrees with pi

on at most d points, which implies that δ(p, f) ≥ δ(p, pi)− ⌈|F|/2⌉/|F| ≥ (⌊|F |/2⌋ − d)/|F|. The second claim holds
because the algorithm may reject only if {r, r + 1, ..., r + d+ 1} has a non-trivial intersection with {1, ..., |F|/2}.

28A more general version is presented in Exercise 5.1.
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field elements. Prove that there exist a sequence of tuples (α
(e)
1 , ..., α

(e)
d+1)e∈F , where α

(e)
i ∈ F , such

that g : F → F is a univariate polynomial of degree d if and only if for every e ∈ F it holds that

g(e) =

d+1∑

i=1

α
(e)
i · g(ei). (3.18)

Guideline: First, show that there exists a unique degree d polynomial p that agrees with g on
e1, ..., ed+1, by writing p(x) =

∑d
i=0 cix

i and observing that




g(e1)
g(e2)

...
g(ed+1)


 =




1 e1 · · · ed
1

1 e2 · · · ed
2

...
... · · · ...

1 ed · · · ed
d+1







c0

c1
...
cd


 (3.19)

holds.29 Furthermore, the ci’s can be expressed as a linear combination of the g(ei)’s. Next, observe
that g is a degree d polynomial if and only if g(e) =

∑d
i=0 ci · ei for every e ∈ F . Finally, set the

α
(e)
i ’s accordingly.

Exercise 3.5 (iterative derivatives and Theorem 3.2)30: Recall that the proof of Theorem 3.2
referred to the derivatives of functions g : F → F . Here we explicitly define iterative derivatives,
denoted ∂(i), such that the value of ∂(1)g = ∂g at x equals g(x + 1) − g(x) and ∂(i+1)g = ∂∂(i)g
(where ∂(0)g = g). Recall that in the first part of the proof of Theorem 3.2 we showed that, for
every d > 0, it holds that g has degree d if and only if ∂g has degree d− 1. Prove the following two
facts:

1. For every d ≥ 0 and g : F → F , it holds that g has degree d if and only if the function ∂(d+1)g
is identically zero.

2. For every k ≥ 0 and g : F → F , it holds that the value of ∂(k)g at x equals

k∑

i=0

(−1)k−i ·
(

k

i

)
· g(x + i).

Observe that the combination of these facts establishes Theorem 3.2.

Guideline: Both facts can be proved by induction (on d and k, resp.).

29Recall that the matrix in Eq. (3.19), which is the Vandermonde matrix, is full rank.
30The following alternative presentation of the second part of the proof of Theorem 3.2 was suggested to us by

Roei Tell.
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Chapter 4

Testing Monotonicity

Summary: For each n, we consider functions from a partially ordered set Dn to a
totally ordered set Rn. Such a function f : Dn → Rn is called monotone if for every
x < y in Dn it holds that f(x) ≤ f(y), where < denotes the partial order of Dn and ≤
refers to the total order in Rn. We shall focus on two special cases:

1. Boolean functions on the Boolean Hypercube: In this case, Dn is the ℓ-dimensional
Boolean hypercube (with the natural partial order), where ℓ = log2 n, and Rn =
{0, 1}. According to this partial order, x1 · · · xℓ ≤ y1 · · · yℓ if and only if xi ≤ yi for
every i ∈ [ℓ].

2. Real functions on the discrete line: In this case, Dn = [n] and Rn = R, both with
the natural total order.

We shall later consider also the case of the hypergrid domain Dn = [m]ℓ, for any m, ℓ ∈ N

such that mℓ = n, and general ranges Rn. In all these cases, we present property testers
of complexity poly(ǫ−1 log n).

In addition, we briefly survey relatively recent developments regarding the Boolean case
as well as known results regarding testing convexity, submodularity, and the Lipschitz
property of functions from [m]ℓ to R.

This chapter is based on the works of Goldreich et al. [139] (for case 1), Ergun et al. [101] (for
case 2), and Dodis et al. [96] (for their “interpolation”).

Notation: The Hamming weight of a binary string x ∈ {0, 1}ℓ, denoted wt(x), is the number of
locations that hold a non-zero value; that is, wt(x) = |{i∈ [ℓ] : xi 6=0}|.

4.1 Introduction

Leaving the land of algebraic functions behind us, we find the notion of a monotone function most
appealing. The definition of this notion presumes a partial order on the domain of the function
and a total order on its range. We say that f : D → R is monotone if, for every x, y ∈ D if x < y
(according to the partial order on D), then f(x) ≤ f(y) (according to the order on R).

The most natural partially ordered domains are the total order on the “line” [n] = {1, 2, ..., n}
and the partial order on the hypercube {0, 1}ℓ. Interpolating these two case, we consider the
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partial order on the hypergrid [m]ℓ, where (x1, ...., xℓ) < (y1, ..., yℓ) if xi ≤ yi for all i ∈ [ℓ] and
(x1, ...., xℓ) 6= (y1, ..., yℓ).

We shall consider testing monotonicity in all these cases, both when the range is Boolean and
when it is arbitrary. In all cases, we shall consider pair tests, which are (non-adaptive) two-query
proximity-oblivious testers (POTs) that, when given orcale access to f : D → R, select a pair
(x, y) ∈ D2 such that x < y and accept if and only if f(x) ≤ f(y). The focus will be on choosing a
distribution on these pairs, and analyzing the detection probability of the resulting POT.

Organization. In Section 4.2 we consider the case of Boolean functions defined on the Boolean
Hypercube {0, 1}ℓ. Its core is Section 4.2.1, which provides a detailed analysis of a simple tester.
An alternative tester is reviewed in Section 4.2.2, but this part is merely an overview of advanced
material that is only meant for optional reading. In Section 4.3 we study the case of multi-valued
functions on the discrete line [n]; the core of this section is Section 4.3.1, whereas Section 4.3.2
presents additional results that are not used elsewhere in this chapter. Lastly, in Section 4.4, we
consider multi-valued functions on the hybpergrid [m]ℓ, which generalizes the previous two cases.

Teaching note: We recommend teaching only the core material, presented in Sections 4.2.1 and 4.3.1,

while leaving the rest of the material for advanced reading.

4.2 Boolean functions on the Boolean Hypercube

We consider Boolean functions of the form f : {0, 1}ℓ → {0, 1}. Such a function f is called monotone
if for every x < y in {0, 1}ℓ it holds that f(x) ≤ f(y), where x1 · · · xℓ ≤ y1 · · · yℓ if and only if xi ≤ yi

for every i ∈ [ℓ] (and, indeed, x1 · · · xℓ = y1 · · · yℓ if and only if xi = yi for every i ∈ [ℓ]).

It is instructive to think of {0, 1}ℓ (with the above partial order) as a directed version of the
Boolean hypercube. The Boolean hypercube of dimension ℓ is a graph with vertex set {0, 1}ℓ and
edge set {{u, v} : wt(v⊕u) = 1}; that is, u is adjacent to v if and only if they differ on a single bit.
In the directed version, which we consider, the edge {u, v} is directed from the vertex of smaller
Hamming weight to the vertex with higher (by 1) weight.

4.2.1 The edge test

We show that the natural algorithm that selects uniformly an edge of the Boolean hypercube and
compares the values of the function at its end-points constitutes a good proximity-oblivious tester.
Such an edge corresponds to a pair (x, y) such that x < y and x differs from y in a single bit (i.e,
wt(x ⊕ y) = 1), and the algorithm accepts if and only if f(x) ≤ f(y). Specifically, we refer to the
following algorithm.

Algorithm 4.1 (testing whether f : {0, 1}ℓ → {0, 1} is monotone): Select uniformly v ∈ {0, 1}ℓ
and i ∈ [ℓ], query f at v and v ⊕ 0i−110ℓ−i, and accept if and only if f is monotone on this pair;
that is, letting {x, y} = {v, v ⊕ 0i−110ℓ−i} such that x < y, the algorithm accepts if and only if
f(x) ≤ f(y).

Let Πn denote the set of monotone of Boolean functions over {0, 1}ℓ, where n = 2ℓ.
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Theorem 4.2 (Algorithm 4.1 is a POT for monotonicity): Algorithm 4.1 is a (one-sided error)
proximity oblivious tester for Πn with detection probability δ/ℓ, where δ denotes the distance of the
given function from being monotone.

We comment that this analysis of Algorithm 4.1 is asymptotically tight in a strong sense: for every
α ∈ (exp(−Ω(ℓ)), 0.5), there exists a function f : {0, 1}ℓ → {0, 1} that is at distance δ ∈ [α, 2α]
from being monotone such that Algorithm 4.1 rejects f with probability at most 2δ/ℓ (see [139,

Prop. 4, Part 1]). For example, f(x)
def
= x1 ⊕ 1 is at distance 0.5 from being monotone but is

rejected with probability 1/ℓ.

Proof: Algorithm 4.1 accepts each monotone function with probability 1, since the set of all
possible executions check conditions that are a subsets of the local conditions used in the definition
of monotonicity (i.e., the edges (u, v) are a subset of the set of all pairs (x, y) such that x < y).1 The
point, however, is showing that if f : {0, 1}ℓ → {0, 1} is at distance δ from being monotone, then
it is rejected with probability at least δ/ℓ. We shall prove the counter-positive. That is, assuming
that f is accepted with probability 1− ρ, we shall show that f is (ℓ · ρ)-close to being monotone.

We shall show that f can be made monotone by modifying its values on at most ρℓ·2ℓ points. We
shall proceed in iterations such that in the ith iteration we make f “monotone in the ith direction”,
while preserving its monotonicity in the prior directions.

Definition 4.2.1 (monotonicity in direction i): Let f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ]. We say that
f is monotone in direction i if for every v′ ∈ {0, 1}i−1 and v′′ ∈ {0, 1}ℓ−i it holds that f(v′0v′′) ≤
f(v′1v′′).

We make f monotone in direction i by applying a corresponding “switching operator”, denoted
Si, which maps Boolean functions to Boolean functions by switching the values of the endpoints of
some of the edges in direction i.

Definition 4.2.2 (switch in direction i): For every i ∈ [ℓ], the switch operator Si is defined such
that for every function f : {0, 1}ℓ → {0, 1} the function Si(f) : {0, 1}ℓ → {0, 1} is monotone in
direction i and satisfies {Si(f)(v′0v′′), Si(f)(v′1v′′)} = {f(v′0v′′), f(v′1v′′)} for every v′ ∈ {0, 1}i−1

and v′′ ∈ {0, 1}ℓ−i. (Indeed, Si(f)(x) denotes the value of the function Si(f) at the point x.)

That is, for every v′ ∈ {0, 1}i−1 and v′′ ∈ {0, 1}ℓ−i, if f(v′0v′′) ≤ f(v′1v′′), then Si leaves the
values at these two points intact (i.e., Si(f)(v′0v′′) = f(v′0v′′) and Si(f)(v′1v′′) = f(v′1v′′));
otherwise (i.e., f(v′0v′′) > f(v′1v′′)) the two values are switched (i.e., Si(f)(v′0v′′) = f(v′1v′′) and
Si(f)(v′1v′′) = f(v′0v′′)). Either way, it holds that Si(f)(v′0v′′) ≤ Si(f)(v′1v′′).

Now, assuming that f is accepted with probability 1 − ρ, we shall consider the sequence of
functions f0, ..., fℓ such that f0 = f and fi = Si(fi−1) for i = 1, ..., ℓ. We shall show that fℓ is
monotone and that

∑
i∈[ℓ] δ(fi, fi−1) ≤ ℓ · ρ, where δ(g, h) = Prx[g(x) 6= h(x)] is the standard

distance between functions. The fact that fi = Si(fi−1) is monotone in direction i follows by the
definition of the switch operator, whereas the fact that fi preserves the monotonicity of fi−1 in each

1
Advanced comment: Actually, the only functions that are accepted by Algorithm 4.1 with probability 1 are

monotone, since the subset of local conditions checked by the algorithm impose all the local conditions in the definition.
To see this, consider, for every x < y, a (shortest) directed path (in the hypercube), denoted x(0) = x, x(1), ..., x(t) = y,
leading from x to y, and use f(x(0)) ≤ f(x(1)) ≤ · · · ≤ f(x(t)). Indeed, w.l.o.g., x(i) = x1 · · ·xjyj+1 · · · yℓ, where j is
the location of the ith non-zero bit in x⊕ y. (See the related Exercise 4.1.)
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direction j < i needs to be proved. This will follow as a special case of a general claim that will
also allow us to establish

∑
i∈[ℓ] δ(fi, fi−1) ≤ ℓ · ρ. Towards this claim, we shall need the following

definition.

Definition 4.2.3 (violation in direction i): Let g : {0, 1}ℓ → {0, 1} and i ∈ [ℓ]. For v′ ∈ {0, 1}i−1

and v′′ ∈ {0, 1}ℓ−i, the directed edge (v′0v′′, v′1v′′) is a violating edge of g in direction i if g(v′0v′′) >
g(v′1v′′). We denote by Vi(g) the set of violating edges of g in direction i.

Clearly, g is monotone in direction i if and only if it has no violating edges in direction i (i.e.,
Vi(g) = ∅). We are now ready to state our main claim, which asserts that applying the switch
operator in direction i does not increase the number of violations in direcrtion j.

Claim 4.2.4 (the effect of the switch operator on the set of violations): Let g : {0, 1}ℓ → {0, 1}
and i, j ∈ [ℓ]. Then, |Vj(Si(g))| ≤ |Vj(g)|.

It follows that if g is monotone in direction j, then so is Si(g). The fact that
∑

i∈[ℓ] δ(fi, fi−1) ≤ ℓρ

will follow by using two additional observations (see Facts 1 and 2 below).2

Proof: The case of i = j is trivial (since Vi(Si(g)) = ∅), and so, we consider i 6= j. For sake
of notational simplicity and without loss of generality, we may consider the case of i = 1 and
j = 2. The key observation is that the analysis of the effect of Si on the violations of g in
direction j can be reduced to the effects on the violations of the functions obtained (from g)
by all possible restrictions of the other ℓ − 2 coordinates. That is, for every u ∈ {0, 1}ℓ−2, we
consider the residual function gu(στ) = g(στu), and observe that |V2(g)| =∑u∈{0,1}ℓ−2 |V2(gu)| (and

|V2(S1(g))| =
∑

u∈{0,1}ℓ−2 |V2(S1(gu))|).3 Hence, it suffices to prove that |V2(S1(gu))| ≤ |V2(gu)|
holds for every u. This can be verified by a case analysis, but it is instructive to make a picture.4

Pictorially, consider a 2-by-2 Boolean matrix M such that the (σ, τ)-entry corresponds to gu(στ).
The foregoing claim (i.e., |V2(S1(gu))| ≤ |V2(gu)|) asserts that if we sort the columns of M , then
the number of unsorted rows may only decrease. The only cases worthy of consideration are those
in which at least one of the columns of M is unsorted, since otherwise sorting the columns has no
effect. Now, if both columns are unsorted, then they are both equal to the vector (10)⊤, and sorting

2Specifically, we shall show that
P

i∈[ℓ] |Vi(f)| = ρ · ℓ · 2ℓ−1 (Fact 1) and δ(fi, fi−1) = 2−(ℓ−1) · |Vi(fi−1)| (Fact 2).
Combining these facts with Claim 4.2.4, it will follows that

X

i∈[ℓ]

δ(fi, fi−1) = 2−(ℓ−1) ·
X

i∈[ℓ]

|Vi(fi−1)|

≤ 2−(ℓ−1) ·
X

i∈[ℓ]

|Vi(f)|

= ρ · ℓ

as claimed.
3This is because the question of whether the edge (σ0u, σ1u) is violating depends only on the values at its

endpoints, whereas S1 satisfies {S1(g)(0τu), S1(g)(1τu)} = {g(0τu), g(1τu)}. Hence, the contribution of the edges
(00u, 01u) and (10u, 11u) to V2(g) and V2(S1(g)) depend only on the values of g and S1(g) on 00u, 01u, 10u and 11u.

4
Advanced comment: Yet another alternative, which is generalized in Secrion 4.4.1, also refers to the same

picture but proceeds as follows. Specifically, considering a 2-by-2 Boolean matrix M such that the (σ, τ )-entry
corresponds to gu(στ ), we show that if we sort the columns of M , then the number of unsorted rows may only

decrease. This is shown by letting tc denote the number of 1’s in column c, and observing that the number of
unsorted rows is at least max(t1 − t2, 0) and that this value is obtained when the columns are sorted.
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Figure 4.1: The remaining four cases in the proof of Claim 4.2.4. In the first two (leftmost) cases
the sorted column equals (xx)⊤, whereas in the other two cases the sorted column is (01)⊤.

the columns only means permuting the rows, which means that the number of violations (which is
zero) is preserved. We are left with four cases, depicted in Figure 4.1, in which exactly one column
is sorted. In the first two cases (where the sorted column is monochromatic), sorting the columns
means permuting the rows (which again preserves the number of violations). In the other two cases
(where the sorted column is (01)⊤), sorting the columns means eliminating all violations (since the
resulting columns will both equal (01)⊤).

By repeated applications of Claim 4.2.4, we obtain

Corollary 4.2.5 (on the sets of violations in the sequence of fi’s):

1. For every i ∈ [ℓ], the function fi is monotone in each direction j ≤ i. In particular, fℓ is
monotone.

2. For every i, j ∈ [ℓ], it holds that |Vj(fi)| ≤ |Vj(f)|.

Proof: Recalling that fi = Si(fi−1) and applying Claim 4.2.4 (with g = fi−1), we get that, for
every i, j ∈ [ℓ], it holds that |Vj(fi)| ≤ |Vj(fi−1)|. Hence, for every j ∈ [ℓ] and 0 ≤ i1 < i2 ≤ ℓ,
it holds that |Vj(fi2)| ≤ |Vj(fi1)|. Now, Item 1 follows because |Vj(fi)| ≤ |Vj(fj)| = 0 (for every
j < i), whereas Item 2 follows because |Vj(fi)| ≤ |Vj(f0)| (for every i > 0).5

We now establish the two facts mentioned above (i.e., right after Claim 4.2.4):6

Fact 1: 2 ·∑i∈[ℓ] |Vi(f)| = ρ · ℓ2ℓ.

This follows since the random choice (v, i) ∈ {0, 1}ℓ× [ℓ] makes Algorithm 4.1 rejects f if and
only if the (directed version of the) edge {v, v⊕ 0i−110ℓ−i} is violating (for f in direction i).7

5Recall that f0 = f .
6See also Footnote 2, which also provides a preview of their use.
7Formally,

ρ = Pr(v,i)∈{0,1}ℓ×[ℓ]

ˆ

f(v[i−1]0v[i+1,ℓ]) > f(v[i−1]1v[i+1,ℓ])
˜
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(Indeed, each such violating edge (v′0v′′, v′1v′′) contributes to two choices of Algorithm 4.1
(i.e., to the choices (v′0v′′, |v′|+ 1) and (v′1v′′, |v′|+ 1)).)

Fact 2: 2ℓ · δ(fi, fi−1) = 2 · |Vi(fi−1)|.
This is a special case of 2ℓ ·δ(Si(g), g) = 2 · |Vi(g)|, which holds because Si(g)(x) 6= g(x) if and
only if the (directed version of the) edge {x, x⊕ 0i−110ℓ−i} is violating (for g in direction i).8

(Indeed, each such violating edge contributes two units to 2ℓ · δ(fi, fi−1).)

By combining these two facts with Item 2 of Corollary 4.2.5 we get

δ(f, fℓ) ≤
∑

i∈[ℓ]
δ(fi−1, fi)

=
∑

i∈[ℓ]
2−(ℓ−1) · |Vi(fi−1)|

≤ 2−(ℓ−1) ·
∑

i∈[ℓ]
|Vi(f)|

= ℓ · ρ

where the first equality follows by Fact 2, the second inequality follows by Item 2 of Corollary 4.2.5,
and the second equality follows by Fact 1. Recalling that (by Item 1 of Corollary 4.2.5) the function
fℓ is monotone, we conclude that f is ℓρ-close to monotone. The theorem follows.

Digest. The proof of Theorem 4.2 shows that the absolute distance of f from being monotone,
denoted ∆M(f), is upper-bounded by twice the number of violating edges (of f). Denoting the latter
set by V (f), it is tempting to think that ∆M(f) ≤ |V (f)|, since each violation can be corrected by
modifying one endpoint of the violating edge, but this ignores the possibility that the correction
of one violation may cause other violations. Indeed, in the proof of Theorem 4.2, we performed
modifications with more care: We proceed in iterations such that in the ith iteration, we eliminate
a subset of violations in fi, denoted Vi(fi), while making sure that the number of violations in the
resulting function, denoted fi+1, does not exceed |V (fi) \ Vi(fi)|. We stress that V (fi+1) is not
necessarily a subset of V (fi)\Vi(fi), yet |V (fi+1)| ≤ |V (fi)\Vi(fi)|. Recall that the set of violations
Vi(fi), which constitutes a matching, was not eliminated by modifying fi at one endpoint of each
edge, but rather by switching the pair of values at the endpoints of each violating edge. (Thus,
|{x : fi(x) 6= fi+1(x)}| = 2 · |Vi(fi)|, rather than half this amount.) This “wasteful” method of
modifying fi enables proving that |V (fi+1)| ≤ |V (fi)\Vi(fi)|, and it follows that ∆M(f) ≤ 2 · |V (f)|.

=
1

ℓ
·
X

i∈[ℓ]

Pr(v′,v′′)∈{0,1}i−1×{0,1}ℓ−i

ˆ

f(v′0v′′) > f(v′1v′′)
˜

=
1

ℓ
·
X

i∈[ℓ]

|Vi(f)|
2ℓ−1

where the second equality uses the fact that the value of the bit vi is irrelevant to the event being analyzed.
8Formally, δ(Si(g), g) = Prx∈{0,1}ℓ [Si(g)(x) 6= g(x)], which equals the probability that x is an endpoint of an edge

in Vi(g), which in turn equals (2 · |Vi(g)|)/2ℓ.
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On the tightness of the analysis. Recall that the relative distance of f from being monotone,
denoted δM(f), equals ∆M(f)/2ℓ, whereas the probability that Algorithm 4.1 rejects f , denoted ρ(f),

equals |V (f)|
ℓ·2ℓ/2

. Hence, ∆M(f) ≤ 2 · |V (f)| translates to δM(f) ≤ 2−ℓ+1 · |V (f)| = ℓ · ρ(f). As stated

upfront, the upper bound δM(f) = O(ℓ · ρ(f)) is tight: For every α ∈ (exp(−Ω(ℓ)), 0.5), there exists
a function f : {0, 1}ℓ → {0, 1} such that δM(f) ∈ [α, 2α] and δM(f) = Ω(ℓ · ρ(f)) (see [139, Prop. 4,
Part 1]). For example, for f(x) = 1− x1 it holds that δM(f) = 0.5 and ρ(f) = 1/ℓ.

On the other hand, δM(f) = Ω(ℓ ·ρ(f)) does not hold for all f ’s: For every α ∈ (exp(−Ω(ℓ)), 0.5),
there exists a function f : {0, 1}ℓ → {0, 1} such that δM(f) ∈ [α, 2α] and δM(f) = Θ(ρ(f)) (see [139,
Prop. 4, Part 2]). For example, for f(x) = wt(x) mod 2 it holds that δM(f) ≈ 0.5 and ρ(f) ≈ 0.5
(see Exercise 4.2).

4.2.2 Path tests

The fact that the analysis of the rejection probability of Algorithm 4.1 is tight (i.e., there are
non-monotone functions f that this algorithm rejects with probability O(δM(f)/ℓ)), does not mean
that one cannot do better, even when using two-query tests. Algorithm 4.1 checks the values at
the endpoints of a uniformly selected edge of the hypercube, which seems a natural thing to do.
Indeed, this is the best choice for tests that examines the values at the endpoints of an edge selected
according to any distribution.9

Of course, there is no reason to restrict two-query testers to examine the values at the endpoints
of an edge of the hypercube. Indeed, without loss of generality, the two queries made by the test
must be comparable (or else it makes no sense to compare the answers), but these two queries may
reside on the endpoints of a path of (almost) arbitrary length. Also, for the purpose of ǫ-testing,
little is lost when restricting the random path to have both endpoints be strings of Hamming weight
in [(ℓ/2) ± O(

√
ℓ log(1/ǫ))], since vertices with Hamming weight that deviates from this interval

occupy at most a 0.1ǫ fraction of the hyper-cube. (Also, little is lost by restricting the tester to be
non-adaptive: see Exercise 1.20.)

To see the benefit of this generalization, for a generic i ∈ [ℓ], consider the function f(x) = 1−xi,
which is at distance 0.5 from being monotone. While the edge test rejects this function with
probability 1/ℓ, a tester that examines the endpoints of a random path of length

√
ℓ (which starts

at a uniformly distributed vertex) rejects this function with probability 1/
√

ℓ. It turns out that
rejection probability Θ̃δ(1/

√
ℓ) is achievable and is optimal for two-query testers, where the Θ̃δ

notation hides arbitrary dependencies on the distance (denoted δ) of the function from being
monotone. We mention that this dependence cannot be linear (i.e., the rejection probability of such
two-query testers cannot have the form Ω(δ/ℓ0.5+o(1))); actually, if, for some function F : N→ N, a
two-query proximity-oblivious tester (with one-sided error) rejects f with probability δM(f)/F (ℓ),
then F (ℓ) = Ω(ℓ/ log ℓ) (cf. [65]).

Following is a description of a generic “path tester”: In light of the foregoing, this tester
selects a “random path” (i.e., a pair of comparable vertices) such that each of its endpoints is
almost uniformly distributed. This is done by selecting the first vertex, denoted u, uniformly, and
selecting the second vertex, denoted v, uniformly among all vertices that are at distance d from u,
where the distance is selected according to some distribution, denoted Dℓ. One specific suggestion
that works well (see Theorem 4.4) is to have Dℓ be uniform over the set {2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}.

9Consider such an algorithm and let i ∈ [ℓ] denote the direction that is selected with the lowest probability, where
the direction of an edge {u, v} is the coordinate on which u and v differ. Then, the function f(x) = 1− xi is rejected
with probability at most 1/ℓ, while it is 0.5-far from being monotone.
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Algorithm 4.3 (the generic path test, parameterized by a distribution Dℓ over [ℓ]):

1. Select comparable u, v ∈ {0, 1}ℓ by the following process. First, select u uniformly in {0, 1}ℓ,
and then select d ← Dℓ and σ ∈ {−1,+1} uniformly. Now, select v uniformly among all
ℓ-bit long strings of weight wt(u) + σ · d that are comparable to u (i.e., either u < v or
u > v, depending on σ).10 Specifically, if σ = 1, then v is selected uniformly in {z > u :
wt(z) = wt(u) + d}, else v is selected uniformly in {z < u : wt(z) = wt(u) − d}. Indeed, if
wt(u) + σ · d 6∈ {0, 1, ..., ℓ}, then no vertex v is selected and the algorithm halts accepting.

2. Query f at u and v and accept if and only if f is monotone on this pair; that is, letting
{x, y} = {v, u} such that x < y, the algorithm accepts if and only if f(x) ≤ f(y).

Indeed, having Dℓ ≡ 1 corresponds to the edge test of Algorithm 4.1. We now consider two
alternative choices for the distribution Dℓ:

The pure path tester: One natural choice is to have Dℓ represent the devaition from ℓ/2 of the
Hamming weight of a uniformly distributed ℓ-bit long string;11 that is, Dℓ is distributed
identically to |wt(Uℓ) − (ℓ/2)|, where Uℓ denotes the uniform distribution on {0, 1}ℓ. In this
case, Dℓ resides in [Θ(

√
ℓ)] with constant probability, and equals 1 with probability Θ(1/

√
ℓ).

Hence, the corresponding tester (which typically uses long paths) is called the pure path tester.

The combined path and edge tester: In contrast, lettingDℓ be uniform over the set {2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}
yields a distribution in which both the values 1 and 20.5⌊log ℓ⌋ ≈

√
ℓ occur with probability

1/ log ℓ. Hence, the corresponding tester (i.e., that uses this “skewed” Dℓ) is called the com-
bined path and edge tester.

While a tight analysis of the pure path tester is currently unknown, an almost tight analysis of the
combined (path and edge) tester is known.

Theorem 4.4 (analysis of the combined edge and path tester [188]): Algorithm 4.3, with Dℓ that
is uniform over {2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}, constitutes a (one-sided error) proximity oblivious tester
for monotonicity with detection probability Ω̃(δ2/

√
ℓ), where δ denotes the distance of the given

function from being monotone.

Note that the detection probability bound provided by Theorem 4.4 is quadratic in δ and linear
in 1/

√
ℓ, whereas the bound in Theorem 4.2 is linear in both δ and 1/ℓ. Indeed, the point of

Theorem 4.4 is obtaining an improved performance in terms of ℓ; in fact, this improved performance
is optimal (up to polylogarithmic factors).12 It is conjectured that the pure path test also achieves
the bound stated in Theorem 4.4. More generally, we pose the following question.

Open Problem 4.5 (which path testers are best for constant δ?): For which choices of the dis-
tribution Dℓ does Algorithm 4.3 constitute a (one-sided error) proximity oblivious tester for mono-
tonicity with detection probability Ω̃(poly(δ)/

√
ℓ), where δ denotes the distance of the given function

from being monotone.

10Indeed, in this case the vertex v is not uniformly distributed among the vertices that are comparable to u and at
distance d from it, except when wt(u) = ℓ/2. This is because σ is selected uniformly in {−1,+1}, rather than being
selected in proportion to the numbers of such vertices. Still, the deviation from the former distribution is relatively
small when wt(u) ≈ ℓ/2, which is typically the case.

11
Advanced comment: A related alternative is to have Dℓ be uniform over [O(

p

ℓ log(1/ǫ))].
12

Advanced comment: More generally, if a pair tester has detection probability Ω(δb/ℓa), then 2a + b ≥ 3
(see [188]). Hence, both Theorems 4.2 and 4.4 meet this lower bound, at (a, b) = (1, 1) and (a, b) = (0.5, 2),
respectively.
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4.3 Multi-valued functions on the discrete line

Here we consider multi-valued functions of the form f : [n]→ Rn, where Rn is an arbitrary totally
ordered set (e.g., any subset of the real numbers). Such a function f is called monotone if for every
x < y in [n] it holds that f(x) ≤ f(y). Recall that a special case of this problem, where Rn = {0, 1},
was studied in the first chapter (see Propositions 1.5 and 1.8).

4.3.1 A tester based on binary search

It will be instructive to view the values of f : [n] → Rn as residing in an array of n cells and to
assume that all values of f are distinct (i.e., |{f(i) : i∈ [n]}| = n). Consider the following tester for
monotonicity that selects i ∈ [n] uniformly at random, and then tries to find the value f(i) in the
said array by conducting a binary search. If f is indeed (strictly) monotone, then this search will
succeed in finding f(i) in location i. Hence, this (binary-search) tester performs 1+⌈log2 n⌉ queries,
and accepts if and only if f(i) is found in this binary search. (In order to waive the requirement
that f has distinct values, when comparing values of f , we augment f(i) to ((f(i), i), while using
the lexicographic order on pairs.)13

As noted above, this tester always accepts monotone functions, and the point is lower-bounding
the rejection probability of the tester as a function of the distance of f from being monotone. We
shall show that if f : [n] → Rn is δ-far from monotone, then the foregoing tester rejects it with
probability greater than δ. We shall actually prove the counter-positive.

Claim 4.6 (on the rejection probability of the binary search tester): If the binary search tester
accepts f : [n]→ Rn with probability 1− δ, then f is δ-close to monotone.

Teaching note: The foregoing tester as well as the following proof are presented in a somewhat loose style,

since we shall later provide a more rigorous presentation and analysis of a related tester (see Algorithm 4.7

and its analysis). In fact, the reader may skip the following proof and proceed directly to Algorithm 4.7

(and later derive a proof of Claim 4.6 by minor modifications to the proof of Lemma 4.8).

Proof: Note that the only random choice performed by the tester is the choice of i ∈ [n] made at
its very first step. We call i ∈ [n] good if an execution that starts with choosing i is completed with
acceptance. For simplicity, we assume that all values in f are distinct or alternatively consider an
execution in which f is replaced by f ′ such that f ′(i) = (f(i), i). The binary search for the value
v starts with the eligible interval [1, n]. In each step, the eligible interval [s, e] is divided into two
halfs at a pivot location p = ⌈(s + e)/2⌉, and the search takes the first half (i.e., resets the current
interval to [s, p]) if and only if v ≤ f(p); otherwise, the search takes [p1 + 1, b].

We first claim that if i < j are both good, then f(i) < f(j). To prove this claim, we consider
the pair of binary searches conducted for f(i) and for f(j). Since both i and j are good, the first
binary search ended at location i and the second binary search ended at j. Let t ∈ [⌈log2 n⌉] be
the first step in which these two binary searchers took different halves after comparing the “sought
for” value against a pivot value associated with location pt (which is at the end of the first half of
the currently eligible interval). Since the two searches took different halves (of the current interval)
and ended at i and j, respectively, and since i < j, the search for f(i) took the first half whereas

13That is, instead of comparing f(i) to f(j), we compare (f(i), i) to (f(j), j) and say that (f(i), i) is (strictly)
smaller than (f(j), j) if either f(i) < f(j) or both f(i) = f(j) and i < j hold.
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the search for f(j) took the second half. But due to the comparisons made at this step, it follows
that f(i) ≤ f(pt) and f(j) > f(pt). Hence, f(i) < f(j), as claimed.

Finally, we observe that the restriction of f to the set of good points yields a monotone function.
Hence, by modifying f on the non-good points, we obtain a monotone function over [n]. Recalling
that there are (1− δ) · n good points, the claim follows.

A related tester. The foregoing tester was presented as if the tester is adaptive. Specifically,
after selecting a random i ∈ [n], the tester takes choices that supposedly depend on the values of
f that it obtains. However, a closer look reveals that the correct choices (of which half interval
to take) can be determined a priori (by the value of i), and if the examined values of f do not
match these choices, then it is safe to reject immediately. This observation leads to the following
non-adaptive tester, where the sequence of intervals and pivot points is determined a priori in
Step 2.

Algorithm 4.7 (testing whether f : [n]→ Rn is monotone): Let ℓ = ⌈log2 n⌉ and [a0, b0] = [1, n].

1. Uniformly select i ∈ [n].

2. For t = 1, ..., ℓ, let pt = ⌈(at−1 + bt−1)/2⌉ and

[at, bt] =

{
[at−1, pt] if i ≤ pt

[pt + 1, bt−1] otherwise
(4.1)

Note that aℓ = bℓ = i.

3. Query f at i as well as at p1, ...., pℓ.

4. For t = 1, ..., ℓ, if i ≤ pt and f(i) > f(pt), then reject. Likewise, for t = 1, ..., ℓ, if i > pt and
f(i) < f(pt), then reject.

(Indeed, in case i > pt, we only reject if f(i) < f(pt), since we do not assume here that all
values of f are distinct.)14

If the algorithm did not reject in Step 4, then it accepts.

Algorithm 4.7 performs 1 + ⌈log2 n⌉ queries and always accepts a monotone function. To complete
its analysis, we show that if f : [n]→ Rn is δ-far from being monotone, then Algorithm 4.7 rejects
it with probability greater than δ.

Lemma 4.8 (on the rejection probability of Algorithm 4.7): If Algorithm 4.7 accepts f : [n]→ Rn

with probability 1− δ, then f is δ-close to monotone.

The proof is analogous to the proof of Claim 4.6, but it is more rigorous due to the more detailed
description of the algorithm, which facilitates clear references to its steps. (The main clarification
is in the second paragraph of the proof.)

14That is, the acceptance condition asserts that, for every t ∈ [ℓ], if i ≤ pt then f(i) ≤ f(pt) must hold, and
otherwise (i.e., if i > pt then) f(i) ≥ f(pt) must hold. Hence, here the value of i determines the condition on f ,
whereas in the description of the binary search the value of f determined the condition on i. This is the reason that
identical values of f pose no difficulty here.
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Proof: Note that the only random choice performed by Algorithm 4.7 is the choice of i ∈ [n]
made in Step 1, and call i ∈ [n] good if an execution that starts with choosing i is completed with
acceptance.

We first claim that if i < j are both good, then f(i) ≤ f(j). Let t ∈ [ℓ] be the smallest integer
for which the tth interval (i.e., [at, bt]) determined (in Step 2) for i is different from the tth interval
determined for j. (Such t exists since the final intervals are different singletons.) It follows that pt

is assigned the same value in both executions, but exactly one element in {i, j} took the first half
in the tth iteration. Therefore, exactly one of these two elements is smaller or equal to pt, and it
follows that i ≤ pt and j > pt, since i < j. Now, by the corresponding part of Step 4, it follows
that f(i) ≤ f(pt) and f(j) ≥ f(pt), or else the corresponding execution would have rejected (in
contradiction to the hypothesis that both i and j are good). Hence, f(i) ≤ f(j), as claimed.

Denoting the set of good choices by G, we observe that the restriction of f to G yields a monotone
function. Hence, by modifying f only on points in [n] \G, we obtain a monotone function over [n].
(For example, we can modify f at i ∈ [n] \G such that f(i) = f(j), where j is the smallest element
in G that is greater than i, and if no such element exists we set f(i) to equal the largest element
in Rn.) Using |G| = (1− δ) · n, the lemma follows.

Corollaries. Let Πn denote the set of monotone functions with domain [n] and range Rn. Then,
by Lemma 4.8, we have –

Theorem 4.9 (Algorithm 4.7 is a POT for monotonicity): Algorithm 4.7 is a (one-sided error)
(1 + ⌈log2 n⌉)-query proximity-oblivious tester for Πn with detection probability δ, where δ denotes
the distance of the given function from being monotone.

Observing that Algorithm 4.7 rejects if and only if at least one of the checks of Step 4 rejects,
we obtain a two-query POT with detection probability δ/ℓ. Specifically, we refer to a version of
Algorithm 4.7 in which Steps 3 and 4 are replaced by selecting t ∈ [ℓ] uniformly at random, and
comparing f(i) to f(pt); that is, the test rejects if and only if either i ≤ pt and f(i) > f(pt) or
i > pt and f(i) < f(pt).

Theorem 4.10 (a two-query non-adaptive POT for monotonicity): The foregoing algorithm is a
(one-sided error) two-query proximity-oblivious tester for Πn with detection probability δ/ℓ, where
δ denotes the distance of the given function from being monotone and ℓ = ⌈log2 n⌉.

We mention that O(δ/ log n) in an upper bound on the detection probability of any two-query test
(for Πn).15 Recall that in the special case of Boolean functions (i.e., Rn = {0, 1}), we have seen (in
Proposition 1.8) a two-query POT with detection probability Ω(δ2).

Proof: Using the terminology of Lemma 4.8, we observe that if i is not good (w.r.t Algorithm 4.7),
then the two-query algorithm rejects with probability at least 1/ℓ (since at least one of the ℓ relevant
checks fails). On the other hand, by Lemma 4.8, a function that is at distance δ from Πn must
have at least δ · n points i ∈ [n] that are not good.

15Actually, for some ǫ > 0, any ǫ-tester for Πn has query complexity Ω(log n); see [101, 108].
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4.3.2 Other testers

Theorem 4.10 presents a two-query POT with detection probability δ/⌈log2 n⌉ for monotone func-
tions over [n] (i.e., for the property Πn). An alternative proof of a similar lower bound follows as
a special case of the following result.

Theorem 4.11 (general analysis of two-query non-adaptive POTs for monotonicity): Let G =
([n], E) be a connected multi-graph such that for every 1 ≤ i < j ≤ n either {i, j} ∈ E or there
exists k ∈ (i, j) such that {i, k}, {k, j} ∈ E. Consider an algorithm that, on input f : [n] → Rn,
selects an edge {i, j} ∈ E uniformly at random, and accepts if and only if f(i) ≤ f(j), where i < j.
Then, this algorithm constitutes a (one-sided error) two-query proximity-oblivious tester for Πn with
detection probability at least n

2|E| · δ, where δ denotes the distance of the given function from being
monotone.

Theorem 4.10 follows as a special case by noting that the n · ℓ pairs of possible queries (of the
corresponding two-query version of Algorithm 4.7) define a graph that satisfies the hypothesis of
Theorem 4.11, since every i < j are connected via pt (for an adequate t). (It also follows that the
algorithm that compares the values at random pair of points (i, j) ∈ [n]2 is a POT with detection
probability δ/n.)16

Proof: Fix f 6∈ Πn and let δ denotes the distance of f from Πn. We say that a pair (i, j) ∈ [n]2

such that i < j is a violation if f(i) > f(j). Viewing the set of violating edges as a graph, denoted
Gf , we observe that Gf has no vertex cover of size smaller than δn, since the restriction of f to any
independent set is a monotone function (and so f can be made monotone by modifying its value
at the vertices of the vertex cover).17 It follows that Gf has a matching of size at least δn/2; in
fact, each maximal matching in Gf must have such a size (or else we obtain a vertex cover of size
smaller than δn).

Note, however, that this matching, denoted Mf , need not be a subset of E, since Mf is a
matching in the (“violation”) graph Gf and E is the edge-set of the (“query”) graph G. Nev-
ertheless, by the hypothesis regarding G, for each {i, j} ∈ Mf \ E such that i < j there exists
k ∈ {i + 1, ..., j − 1} such that {i, k}, {k, j} ∈ E. It follows that either f(i) > f(k) or f(k) > f(j),
since otherwise f(i) ≤ f(k) ≤ f(j) in contradiction to the hypothesis that the pair (i, j) is a vio-
lation. In other words, each violating pair in Mf yields a violating pair in E, and the latter pairs

are distinct since Mf is a matching. Hence, the tester rejects with probability at least |M
f |
|E| ≥ δn

2|E| .

Comments. It turns out that a graph satisfying the hypothesis of Theorem 4.11 must have
Ω(n log n) edges. (See [231] for a proof as well as a wider perspective.) On the other hand, some
two-query POTs for Πn are not covered by Theorem 4.11: For example, an algorithm that selects
i ∈ [n− 1] uniformly and accepts if and only if f(i) ≤ f(i+ 1) rejects each f 6∈ Πn with probability
at least 1/(n − 1).

16
Advanced comment: The analysis of this naive tester is asymptotically optimal: Consider, for example, the

function f : [n] → [n] such that f(i) = 2 · ⌈i/2⌉ + (i mod 2) − 1 ∈ {2⌈i/2⌉ − 1, 2⌈i/2⌉}, which is at distance 0.5 from

being monotone, but has only n/2 violating pairs (and hence is rejected with n/2

(n
2)

≈ 1/n). It is even easier to see that

the analysis of the two-query POT referred to by Theorem 4.10 is asymptotically optimal: Consider, for example,
the function f : [n] → {0, 1} such that f(i) = 1 if and only if i < n/2.

17Indeed, the same observation is implicit in the proof of Lemma 4.8. The argument is generalized to any partially
ordered set in Exercise 4.3.
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4.4 Multi-valued functions on the Hypergrid

Generalizing the two previous cases, we now consider the case of Dn = [m]ℓ, for any m, ℓ ∈ N

such that mℓ = n, and general Rn. (Indeed, in Section 4.2 we had m = 2 and Rn = {0, 1},
whereas in Section 4.3 we had m = n.) That is, we consider functions of the form f : [m]ℓ → Rn.
Such a function f is called monotone if for every x < y in [m]ℓ it holds that f(x) ≤ f(y), where
x = x1 · · · xℓ ≤ y = y1 · · · yℓ if and only if xi ≤ yi for every i ∈ [ℓ] (and, indeed, x1 · · · xℓ = y1 · · · yℓ

if and only if xi = yi for every i ∈ [ℓ]).
It turns out that testing monotonicity in this case reduces to testing monotonicity in the one

dimensional case. The proof of this fact (for the case of Rn = {0, 1}) generalizes the proof of
Theorem 4.2 and may be viewed as a “robust” extension18 of the observation that f : [m]ℓ → Rn is
monotone if and only if f is monotone in each direction (i.e., if and only if for every α ∈ [m]i−1 and
β ∈ [m]ℓ−i the function f ′(z) = f(αzβ) is monotone in z).19 The extension from the special case
of Rn = {0, 1} to general Rn is based on a different argument. Hence, we consider the following
algorithmic schema.

Algorithm 4.12 (testing whether f : [m]ℓ → Rn is monotone):

1. Select uniformly i ∈ [ℓ], as well as α ∈ [m]i−1 and β ∈ [m]ℓ−i.

2. Invoke a monotonicity tester for functions from [m] to Rn, while providing it with oracle
access to the function f ′ such that f ′(z) = f(αzβ).

Algorithm 4.12 preserves the query complexity of the tester used in Step 2. Also, by the foregoing
characterization, it follows that if a one-sided error tester is used in Step 2, then Algorithm 4.12
has one-sided error. The analysis of the rejection probability of this testing schema combines two
reductions (which refer only to two-query POTs). The first reduction refers only to Boolean func-
tions, and lower-bounds the rejection probability of the schema in terms of the rejection probability
of the (two-query) tester used in Step 2.

Lemma 4.13 (dimension reduction for the Boolean case): Let T be a two-query one-sided error
POT for monotonicity, and let ̺m denotes its detection probability function; that is, if h is at
distance δ from a monotone Boolean function, then Pr[T h(m) = 0] ≥ ̺m(δ). Suppose that ̺m is
convex, and that when T makes the queries x < y to h : [m] → {0, 1} it accepts if and only if
h(x) ≤ h(y). Then, using T in Step 2 of Algorithm 4.12 yields a two-query POT for monotonicity
of Boolean functions over [m]ℓ with detection probability function ̺(δ) = ̺m(δ/2ℓ); that is, if
g : [m]ℓ → {0, 1} is at distance δ from a monotone Boolean function, then the algorithm rejects it
with probability at least ̺m(δ/2ℓ).

(The proof of Lemma 4.13 is presented in Section 4.4.1.) In particular, using the POT of Theo-
rem 4.10 in Step 2, we obtain a POT for monotone Boolean functions over [m]ℓ such that functions

that are at distance δ from monotone are rejected with probability at least
δ/⌈log2 m⌉

2ℓ = Ω(δ/ log n),
where n = mℓ.

The second reduction refers to functions over any partial order, and it relates the performance of
any two-query POT in the case of a general range to the performance of the same POT on a binary

18Here robustness is used in the sense of robust characterization, as discussed in Sections 1.4 and 3.4.
19See Exercise 4.1.
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range. Specifically, the probability that this POT rejects a general function that is δ-far from the set
of monotone functions (with general range) is lower-bounded in terms of the probability that this
very POT rejects any Boolean function that is δ-far from the set of monotone (Boolean) functions.
(This is reminiscent of the “0-1 principle for sorting network” that states that a comparison-based
sorting network that works on binary inputs also works on general inputs, except that here the
“extension of the range” does not come for free.)

Lemma 4.14 (range reduction): Let P be an arbitrary partial order set over n elements, and R be
an arbitrary totally ordered set. Let D be an arbitrary distribution over pairs (x, y) ∈ P×P such that
x < y (according to the partial order P ). Suppose that for some linear function ̺ : (0, 1] → (0, 1]
and for every Boolean function g : P → {0, 1} it holds that

Pr(x,y)∼D[g(x)>g(y)] ≥ ̺(δ2(g)),

where δ2(g) denotes the distance of g from the set of Boolean monotone functions. Then, for every
function f : P → R it holds that

Pr(x,y)∼D[f(x)>f(y)] ≥ ̺(δ(f))

⌈log2 |R|⌉ ,

where δ(f) denotes the distance of f from the set of monotone functions (with range R).

(An overview of the proof of Lemma 4.14 is presented in Section 4.4.2.) Note that we lose a factor
of log2 |R| in the detection probability, where without loss of generality we may use R as the range
of the tested function (and so |R| ≤ n, see Exercise 4.4). The linearity condition (regarding ̺) can
be replaced by sub-additivity, but the lemma does not hold otherwise (see Exercise 4.5). Letting
Πn denote the set of all monotone functions from [m]ℓ to Rn, where n = mℓ, and combining all the
foregoing, we get –

Corollary 4.15 (a two-query POT for multi-value monotonicity over [m]ℓ): There exists an effi-
cient (one-sided error) two-query proximity-oblivious tester for Πn with detection probability Ω(δ/ log2 n),
where δ denotes the distance of the given function from being monotone.

Indeed, the foregoing lower bound is a simplification of δ
2ℓ·⌈log2 m⌉·⌈log2 |Rn|⌉ .

Proof: Starting with the POT for Boolean functions over [m] that is provided by Theorem 4.10,
we first apply Lemma 4.13 and obtain a POT for Boolean functions over [m]ℓ. Then, we apply
Lemma 4.14 and obtain a POT for multi-valued functions over [m]ℓ, as asserted by the corollary.

4.4.1 Dimension reduction (proof of Lemma 4.13)

This proof generalizes the proof of Theorem 4.2. Specifically, monotonicity in direction i ∈ [ℓ] is
defined in the natural manner (extending Definition 4.2.1), whereas the switch operator is replaced
by a sorting operator; that is, for every i ∈ [ℓ], the sorting operator Si is defined such that for every
function f : [m]ℓ → {0, 1} the function Si(f) : [m]ℓ → {0, 1} is monotone in direction i and preserves
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the Hamming weight of each line in direction i (i.e., satisfies
∑

τ∈[m] Si(f)(ατβ) =
∑

k∈[m] f(ατβ)

for every α ∈ [m]i−1 and β ∈ [m]ℓ−i).20

When counting violations in direction i we shall use a more refined extension of Definition 4.2.3.
Specifically, for every i ∈ [ℓ], α ∈ [m]i−1 and β ∈ [m]ℓ−i, we have

(
m
2

)
directed pairs (of the form

(ατ1β, ατ2β) where τ1 < τ2) rather than one: For 1 ≤ τ1 < τ2 ≤ m, the directed pair (ατ1β, ατ2β)
is called a violating (τ1, τ2)-pair of g in direction i if g(ατ1β) > g(ατ2β). We denote by V τ1,τ2

i (g) the
set of violating (τ1, τ2)-pairs of g in direction i.
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Figure 4.2: A two dimensional slice of g and a generic corresponding function gτ1,τ2
γ .

Our generalization of Claim 4.2.4 asserts that for every g : [m]ℓ → {0, 1} and i, j ∈ [ℓ] and
1 ≤ τ1 < τ2 ≤ m, it holds that |V τ1,τ2

j (Si(g))| ≤ |V τ1,τ2
j (g)|. This is proved by fixing i = 1,

j = 2, τ1 < τ2 and γ ∈ [m]ℓ−2, and considering the function gτ1,τ2
γ : [m] × [2] → {0, 1} such that

gτ1,τ2
γ (σ, b) = g(στbγ), as depicted in Figure 4.2. The key observation is that the effect of S1 on

V τ1,τ2
2 can be decomposed among the various gτ1,τ2

γ ’s (since S1 sorts the values that reside on each
line in direction 1 (i.e., each line of the form (στγ)σ∈[m]), operating separately on each such line).
Furthermore, considering an m-by-2 Boolean submatrix, note that the number of unsorted rows
may only decrease when the columns are sorted. This is the case, because the minimal number
of unsorted rows in a submatrix with tc ones in column c is max(t1 − t2, 0), and this minimum is
obtained when the columns are sorted.

Now, starting with an arbitrary Boolean function f0 : [m]ℓ → {0, 1}, we consider the (analogous)
sequence of fi’s defined by fi = Si(fi−1). Generalizing Corollary 4.2.5, we infer that fℓ is monotone
and that |V τ1,τ2

j (fi)| ≤ |V τ1,τ2
j (f0)|, for every i, j ∈ [ℓ] and 1 ≤ τ1 < τ2 ≤ m. Letting δi,α,β denote

the (relative) distance of the sequence (fi−1(α1β), ..., fi−1(αmβ)) from a monotone sequence, we
get

δ(f0, fℓ) ≤
∑

i∈[ℓ]
δ(fi−1, fi)

=
∑

i∈[ℓ]
E(α,β)∈[m]i−1×[m]ℓ−i [|{τ ∈ [m] : fi−1(ατβ) 6= fi(ατβ)}|/m]

=
∑

i∈[ℓ]
E(α,β)∈[m]i−1×[m]ℓ−i [|{τ ∈ [m] : fi−1(ατβ) 6= Si(fi−1)(ατβ)}|/m]

20Indeed, this generalizes Definition 4.2.2, since for b1, b2 ∈ {0, 1} there is a bijection between the three possible
values of the integer b1 + b2 and the three possible values of the set {b1, b2}.
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≤
∑

i∈[ℓ]
E(α,β)∈[m]i−1×[m]ℓ−i [2 · δi,α,β ]

where the last inequality follows by observing that the distance of a Boolean sequence s = (e1, ..., em)
from its sorted version (i.e., 0m−wt(s)1wt(s)) is at most twice the distance of s to being monotone.21

Hence:

δ(f0, fℓ) ≤ 2ℓ · Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [δi,α,β] . (4.2)

On the other hand, the probability, denoted ρ, that Algorithm 4.12 rejects f0, when using T in
Step 2, where T selects pairs of queries according to the distribution D, is

ρ = Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i

[
Pr(τ1,τ2)∼D[f0(ατ1β) > f0(ατ2β)]

]

= Ei∈[ℓ]
[
m−(ℓ−1) · E(τ1,τ2)∼D[|V τ1,τ2

i (f0)|]
]

≥ Ei∈[ℓ]
[
m−(ℓ−1) · E(τ1,τ2)∼D[|V τ1,τ2

i (fi−1)|]
]

where the first equality is due to the definition of Algorithm 4.12 (when using T which uses the
distribution D), the second equality is due to the definition of V τ1,τ2

i , and the inequality is due to
the (second item of the) generalization of Corollary 4.2.5. Using the definitions of T (when given
access to f ′(τ) = fi−1(ατβ)) and ̺m, we get

ρ ≥ Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [̺m(δi,α,β)] . (4.3)

Combining Eq. (4.2)&(4.3) and using the convexity of ̺m, we get

ρ ≥ Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [̺m(δi,α,β)]

≥ ̺m

(
Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [δi,α,β]

)

≥ ̺m(δ(f0, fℓ)/2ℓ).

Recalling that fℓ in monotone (by the first item of the generalization of Corollary 4.2.5), the lemma
follows (since f0 is at distance at most δ(f0, fℓ) from being monotone).

4.4.2 Range reduction (overview of the proof of Lemma 4.14)

Without loss of generality, we assume that R = [r] and that r is a power of two. The key idea is that
the values assigned to the two endpoints of a violating edge are either both at the same half of the
interval [1, r] or are in different halves (i.e., one value is in [1, 0.5r] and the other is in [0.5r + 1, r]).
The first type of edges can be represented by edges that have both their endpoints in the same
interval of length r/2, whereas the edges of the second type can be represented by edges that have
both their endpoints in the same interval of length 2 (where these two values represent the two
halves). This suggests a reduction of the testing problem for range [r] to two disjoint problems for
range [r/2] and another disjoint problem that refers to the range {1, 2}, where each violating edge
(for range [r]) appears in exactly one of the instances. Needless to say, these separate instances
should be handled in a way that allows for their later integration.

21This assertion relies on the hypothesis that the sequence is binary and does not hold otherwise; see Exercise 4.6.
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Figure 4.3: The generic filter Fa,b (on the left), and the cases of F1,0.5r and F0.5r,0.5r+1.

Towards this end, for every 1 ≤ a < b ≤ r, we define a squashing filter Fa,b such that for every
function f : P → [r] the function Fa,b(f) : P → [a, b] satisfies

Fa,b(f)(x) =





a if f(x) ≤ a
b if f(x) ≥ b
f(x) otherwise (i.e., if f(x) ∈ [a, b])

(4.4)

(see Figure 4.3). Hence, the first type of violations with respect to f appear either in F1,0.5r(f) or
in F0.5r+1,r(f), whereas violations of the second type appear in F0.5r,0.5r+1(f). In order to facilitate
the aforementioned integration, we introduce a corresponding discarding operator Da,b, which allows
ignoring the modifications that are required for making Fa,b(f) monotone and focusing on what is
required beyond this in order to make f itself monotone. In other words, Da,b changes the value at
x only if making Fa,b(f) monotone (while using as few modifications as possible) requires changing
the value of Fa,b(f) at x. Specifically, for every function f : P → [r], we fix a monotone function
g : P → [a, b] that is closest to Fa,b(f), and define

Da,b(f)(x) =

{
g(x) if Fa,b(f)(x) 6= g(x)
f(x) otherwise (i.e., if Fa,b(f)(x) = g(x))

(4.5)

In other words, Da,b(f) agrees with the monotone function g that is closest to Fa,b(f) on all points
on which these two functions (i.e., g and Fa,b(f)) differ, but Da,b(f) maintains the value of f
on points on which g and Fa,b(f) agree. We stress that if Fa,b(f)(x) = g(x), then the value of
Da,b(f)(x) equals f(x) rather than Fa,b(f)(x), which makes a difference when f(x) 6∈ [a, b] (since
then f(x) 6= Fa,b(f)(x)). Now, given an arbitrary function f : P → [r], we consider the following
sequence of auxiliary functions:

1. f ′ = F0.5r,0.5r+1(f), which ranges over {0.5r, 0.5r + 1}

2. f ′′ = F1,0.5r(D0.5r,0.5r+1(f)), which ranges over [1, 0.5r].

3. f ′′′ = F0.5r+1,r(D1,0.5r(D0.5r,0.5r+1(f))), which ranges over [0.5r + 1, r].
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Denoting by δ[a,b](g) the relative distance of g : P → [a, b] from the set of monotone functions over
P with range [a, b], one can prove the following claims.

Claim 1: δ[1,r](f) ≤ δ[0.5r,0.5r+1](f
′) + δ[1,0.5r](f

′′) + δ[0.5r+1,r](f
′′′).

Claim 2: Pr(x,y)∼D[f(x)>f(y)] ≥ Pr(x,y)∼D[f ′(x)>f ′(y)].

Claim 3: Pr(x,y)∼D[f(x)>f(y)] ≥ Pr(x,y)∼D[f ′′(x)>f ′′(y)] + Pr(x,y)∼D[f ′′′(x)>f ′′′(y)].

Claim 2 is quite easy to establish (see Exercise 4.7). Claims 1 and 3 seem quite intuitive, but they
do require proofs, which are a bit tedious (and are omitted here). Once all claims are proved, the
lemma can be proved by induction. The induction step proceeds as follows, when s = log2 r:

Pr(x,y)∼D[f(x)>f(y)] ≥ 1

s
·Pr(x,y)∼D[f ′(x)>f ′(y)]

+
s− 1

s
·
(
Pr(x,y)∼D[f ′′(x)>f ′′(y)] + Pr(x,y)∼D[f ′′′(x)>f ′′′(y)]

)

≥ 1

s
· ̺(δ[0.5r,0.5r+1](f

′)) +
s− 1

s
·
(

̺(δ[1,0.5r](f
′′))

s− 1
+

̺(δ[0.5r+1,r](f
′′′))

s− 1

)

=
̺(δ[0.5r,0.5r+1](f

′) + δ[1,0.5r](f
′′)) + δ[0.5r+1,r](f

′′′))

s

≥
̺(δ[1,r](f))

s

where the first inequality uses Claims 2 and 3, the second inequality uses the induction hypothesis,
the equality uses the linearity of ̺, and the last inequality uses Claim 1.

4.5 Chapter notes

4.5.1 History and credits

Monotonicity testing was first considered by Goldreich et al. [139] and Ergün et al. [101]: While
Goldreich et al. [139] considered Boolean functions over the partial order associated with the hy-
percube, Ergun et al. [101] considered multi-valued functions over the total order associated with
the line (see Sections 4.2.1 and 4.3.1, respectively).22 The interpolation of both cases, presented
in Section 4.4, refers to multi-valued functions over the partial order associated with the hypergrid
[m]ℓ. This case is reduced to the case of Boolean functions over [m]ℓ, which is then reduced to the
case of Boolean functions over [m]. The range reduction is due to Dodis et al. [96], whereas the
dimension reduction appears in [139, 96]. Recall that the resulting two-query POT has detection
probability at least δ/O(log n · log |Rn|), where n = mℓ and Rn denotes the range of these functions
(see Corollary 4.15, and recall that δ denotes the distance of the tested function from monotonic-
ity). An improved bound of δ/O(log n) was recently obtained in [72], and this is optimal.23 We

22The focus of Goldreich et al. [139] was on monotonicity testing, whereas the investigation of Ergun et al. [101]
was far broader than that.

23This claim of optimality refers to two-query POTs. We mention that standard O(1)-testers for monotonicity must
have query complexity Ω(log n) both in the special case of ℓ = log2 n and |Rn| = Ω(

√
ℓ) (see [54] or Exercise 7.9) and

in the special case of ℓ = 1 and |Rn| = Ω(n) (see [101, 108]).
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mention that a study of monotonicity testing in general partially ordered sets was initiated by
Fischer et al. [113].

The exact complexity of testing monotonicity of Boolean functions over the Boolean hypercube
has attracted much attention for over a decade. In particular, the focus was on whether the
detection probability of a two-query POT must decrease linearly with the dimension ℓ. In fact,
it was conjectured that the detection probability may decrease linearly with the square root of
the dimension (i.e., that it has the form Ω(poly(δ)/

√
ℓ)). This conjecture was established, up to

polylogarithmic factors (see Theorem 4.4), by Khot, Minzer, and Safra [188]. Their result improved
over a prior result of Chakrabarty and Seshadhri [71], which established a sub-linear dependence
on the dimension. Interestingly, the Ω̃(poly(δ)/

√
ℓ) lower bound is almost tight [75] (improving

over [76]).24 For other related results regarding the complexity of testing monotonicity (and related
problems), the reader is referred to [108, 72].

4.5.2 Related problems

Two properties of functions that are related to monotonicy via their reference to a (partially)
ordered domain as well as the specific domains considered are the property of satisfying the Lipschitz
condition and submodularity. In both cases, we consider the domain [m]ℓ as well as special cases
in which either m = 2 or ℓ = 1.

Lipschitz functions. A function f : [m]ℓ → R is called c-Lipschitz if for every x, y ∈ [m]ℓ it
holds that |f(x) − f(y)| ≤ c · ‖x − y‖1, where ‖x − y‖1 =

∑
i∈[ℓ] |xi − yi|. The study of testing

(and reconstructing) Lipschitz functions was initiated by Jha and Raskhodnikova [173], who were
motivated by applications to data privacy. Although it seem that testing Lipschitz functions can
not be reduced to testing monotonicity, Chakrabarty and Seshadhri presented a uniform framework
that covers both problems [72], and obatined a two-query POT of detection probability δ/O(ℓ log m)
for both problems.25

Submodular functions. A function f : [m]ℓ → R is called submodular if for every x = (x1, ..., xℓ)
and y = (y1, ..., yℓ) in [m]ℓ it holds that

f(max(x, y))− f(min(x, y)) ≤ (f(x)− f(min(x, y))) + (f(y)− f(min(x, y))) (4.6)

where max((x1, ..., xℓ), (y1, ..., yℓ)) = (max(x1, y1), ...,max(xℓ, yℓ)) and ditto for min(x, y). Indeed,
Eq. (4.6) is equivalent to f(max(x, y))+f(min(x, y)) ≤ f(x)+f(y), and it is meaningless for ℓ = 1.
The study of testing submodularity was initiated by Parnas, Ron, and Rubinfeld [224], who focused
on the case of ℓ = 2 (which corresponds to “Monge matrices”), and presented a O(1)-query POT
that has detection probability Ω(δ/ log2 m).26 Seshadhri and Vondrak [252] considered the case of
m = 2 (which corresponds to “modular set functions”), and showed a natural four-query POT of

detection probability δ
eO(
√

ℓ).

24
Advanced comment: The lower bound is actually stronger, since it refers to the query complexity of standard

testers with two-sided error (alas non-adaptive ones). Specifically, any non-adaptive Ω(1)-tester for monotonicity of
Boolean functions must have query complexity Ω(ℓα), for every constant α < 1/2. A recent result of [39] establishes

an eΩ(ℓ1/4) lower bound for general (i.e., possibly adaptive) testers.
25Throughout this section, δ denotes the distance of the tested function from the property.
26The property tester presented in [224, Alg. 3] employs a O(log2m)-query POT of detection probability Ω(δ), but

this POT conducts O(log2m) unrelated checks, which are determined non-adaptively, such that each check uses only
O(1) queries (see [224, Def. 9] and [224, Clm. 4]). (See the analogous move from Theorem 4.9 to Theorem 4.10.)
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Convex functions. Another property considered in [224] is convexity. A function f : [m]ℓ → R

is called convex if for every x, y ∈ [m]ℓ and every α ∈ [0, 1] such that z = αx + (1 − α)y ∈ [m]ℓ it
holds that f(z) ≤ α ·f(x)+ (1−α) ·f(y). While submodularity refers to the “rectangle spanned by
x and y” (along with max(x, y) and min(x, y)), convexity refers to the line that connects x and y.
Focusing on the case of ℓ = 1, a O(1)-query POT was shown in [224] to have detection probability
Ω(δ/ log m).27

Invariances. We note that all properties studied in this chapter are invariant under a permutation
of the variables; that is, for each of these properties Π, the function f : [m]ℓ → R is in Π if and
only if for every permutation π : [ℓ]→ [ℓ] the function fπ(x1, ..., xℓ) = f(xπ(1), ..., xπ(ℓ)) is in Π.

4.5.3 Exercises

The following exercises detail some claims that were made in the main text. In addition, Exercise 4.7
calls for proving Claims 1-3 of Section 4.4.2.

Exercise 4.1 (characterization of monotonicity over the hypergrid): Prove that the function f :
[m]ℓ → Rn is monotone if and only if it is monotone in each direction (i.e., if and only if for every
i ∈ [ℓ] and for every α ∈ [m]i−1 and β ∈ [m]ℓ−i, the function f ′(z) = f(αzβ) is monotone in z).

Guideline: For the less obvious direction, given x = x1 · · · xℓ < y = y1 · · · yℓ in [m]ℓ, consider the
sequence of points x1 · · · xiyi+1 · · · yℓ ∈ [m]ℓ for i = ℓ, ..., 1, 0.

Exercise 4.2 (a typical case in which Algorithm 4.1 is asymptotically optimal): Recall that δM(f)
denotes the relative distance of f : {0, 1}ℓ → {0, 1} from being monotone, whereas ρ(f) denotes
the probability that Algorithm 4.1 rejects f . Note that ρ(f) ≤ 2δM(f) for every f . Show that for
f(x) = wt(x) mod 2 it holds that δM(f) ≈ 0.5 and ρ(f) ≈ 0.5

Guideline: Consider the set of edges between strings of odd Hamming weight and strings that are
one unit heavier (i.e., the edge (x, y) is in this set if and only if wt(x) is odd and wt(y) = wt(x)+1).
Note that Algorithm 4.1 rejects f if and only if it selected such an edge, and that this set of edges
contains approximately half of all the edges (and contains a matching of size ≈ 2ℓ−1).

Exercise 4.3 (vertex covers in the graph of violating pairs): Let P be an arbitrary partial order set
over n elements, and suppose that f : P → R is at distance δ from the set of monotone functions
over P (with range R). Consider the graph Gf such that {x, y} is an edge if x < y but f(x) > f(y).
Then, Gf has no vertex cover of size smaller than δn.

Guideline: Since the restriction of f to any independent set of Gf is a monotone function, f can be
made monotone by modifying its values at the vertex cover.

Exercise 4.4 (distance to monotone functions with the same range): Let P be an arbitrary partial
order set over n elements, and suppose that f : P → R is at distance δ from the set of monotone
functions over P (with range R). Show that f : P → R is at distance δ from the set of monotone
functions over P with range {f(x) : x ∈ P}.

27The property tester presented in [224, Alg. 1] employs a O(logm)-query POT of detection probability Ω(δ),
but this POT (see [224, Proc. 1]) proceeds in log2m iterations that are actually non-adaptive and check unrelated
conditions, where each condition refers to O(1) values of the function. (See an analogous move in Footnote 26.)
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Guideline: Let f ′ : P → R be a monotone function that is at distance δ from f . Letting Rf
def
=

{f(x) : x ∈ P}, observe that {x : f ′(x) 6∈ Rf} is a subset of {x : f ′(x) 6= f(x)}. Denoting the
distinct values in Rf by v1 < · · · < vt, define f ′′(x) = vi if f ′(x) ∈ [vi, vi+1) and f ′′(x) = v1 if
f ′(x) < v1 (resp., f ′′(x) = vt if f ′(x) ≥ vt). Note that f ′′ is monotone, and that it agrees with f ′

on Rf .

Exercise 4.5 (on the linearity of ̺ in Lemma 4.14): Show that Lemma 4.14 holds for any sub-
additive function ̺ : (0, 1] → (0, 1] (rather than only for linear ones) and that it does not hold
otherwise.

Guideline: For the positive part, note that the linearity of ̺ is only used in the final calculation,
and that it can be replaced there by sub-additivity. For the negative part, consider the two-query
POT for monotonicity of Boolean functions presented in the the proof of Proposition 1.8. Recall
that in the Boolean case this POT has detection probability ̺(δ) = Ω(δ2), and observe that this
POT rejects the function f : [n] → [n] such that f(i) = 2⌈i/2⌉ − (i + 1 mod 2) with probability
O(1/n) (although f is Ω(1)-far from monotone).

Exercise 4.6 (distance to monotone vs distance to the sorted version): Prove that the distance of
a sequence s = (e1, ..., em) ∈ Rm to its sorted version is at most |R| times the distance of s to a
monotone m-sequence over R. Show that this upper bound is tight.

Guideline: As a warm-up consider the case of R = {0, 1}. Suppose that s has z zeros and let t
denote the number of ones in the z-bit long prefix of s. Then, s is at distance 2t from its sorted
version, and at distance at least t from any monotone sequence, where the last assertion is proved
by considering a matching between the t ones in the z-bit long prefix of s and the t zeros in its
(m− z)-bit long suffix.

For a general R, suppose that s has mi occurrences of the value i ∈ R and let m′i =
∑

j≤i mj. Let

D+
i ⊆ [m′i−1 + 1,m′i] (resp., D−i ⊆ [m′i−1 + 1,m′i]) be the set of positions that hold the value i in

the sorted version of s but hold a value larger (resp., smaller) than i in s itself. (In the warm-up,
D+

0 ⊆ [1, z] had size t, and ditto D−1 ⊆ [z + 1,m].) Note that s differs from its sorted version on∑
i |D+

i ∪D−i | positions, whereas the distance of s to the set of monotone m-sequences over R is
lower-bounded by the size of any matching in ∪i<jD

+
i ×D−j . The claimed upper bound follows by

showing that ∪i<jD
+
i × D−j contains a matching of size

∑
i |D+

i ∪ D−i |/|R|. (This can be shown
by considering the cycle structure of a permutation that sorts s by moving a minimal number
of elements, and observing that each such cycle has at least one edge in ∪i<jD

+
i × D−j , whereas

(w.l.o.g) it has at most one position in each interval [m′i−1 + 1,m′i].)
28

To see that the upper bound is tight consider the sequence (m, 1, 2, ...,m − 1).

Exercise 4.7 (Claims 1-3 of Section 4.4.2): Prove Claims 1-3 of Section 4.4.2. Claim 2 is proved
by showing that the squashing filter never increases the set of violating pairs. As a warm-up towards
proving Claims 1 and 3, prove the following weaker analogues:

Claim 1w: δ[1,r](f) ≤ δ[0.5r,0.5r+1](f) + δ[1,0.5r](f) + δ[0.5r+1,r](f).

28That is, we claim that at least one vertex on each such cycle must be modified to make s monotone, whereas
each cycle has size at most |R|. A simpler proof of the upper bound is indeed welcomed.
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Claim 3w: Pr(x,y)∼D[f(x)>f(y)] is lower-bounded by

Pr(x,y)∼D[F1,0.5r(f)(x)>F1,0.5r(f)(y)] + Pr(x,y)∼D[F0.5r+1,r(f)(x)>F0.5r+1,r(f)(y)].

Claims 1-3 appear as items of [96, Lem. 14], using somewhat different notations, and their proofs
appear in [96, Sec. 4.1-4.2].

Guideline: Moving from the warm-up claims to the actual claims requires establishing some features
of the operator Da,b. Denoting the set of violating pairs for g by V (g), the most useful features
include

1. V (Da,b(h)) ⊆ V (h);

2. if (x, y) ∈ V (h) and |{h(x), h(y)} ∩ [a, b]| = 2, then (x, y) 6∈ V (Da.b(h));

3. if (x, y) ∈ V (Da,b(h)), then [Da,b(h)(y),Da,b(h)(x)] ⊆ [h(y), h(x)].

These facts appear as items of [96, Lem. 13].

88



Chapter 5

Testing Dictatorships, Juntas, and
Monomials

Summary: We consider testing three basic properties of Boolean functions of the form
f : {0, 1}ℓ → {0, 1}:

1. Dictatorship: The case where the value of f depends on a single Boolean variable
(i.e., f(x) = xi ⊕ σ for some i ∈ [ℓ] and σ ∈ {0, 1}).

2. Junta (of size k): The case where the value of f depends on at most k Boolean
variables (i.e., f(x) = f ′(xI) for some k-subset I ⊂ [ℓ] and f ′ : {0, 1}k → {0, 1}).

3. Monomial (of size k): The case where the value of f is the conjunction of exactly k
Boolean literals (i.e., f(x) = ∧i∈I(xi⊕σi) for some k-subset I ⊆ [ℓ] and σ1, ..., σℓ ∈
{0, 1}).

We present two different testers for dictatorship, where one generalizes to testing k-
Juntas and the other generalizes to testing k-Monomials.

This chapter is based on the works of Parnas, Ron, and Samorodnitsky [226]1 and Fischer, Kindler,
Ron, Safra, and Samorodnitsky [111].

5.1 Introduction

We view Boolean functions f : {0, 1}ℓ → {0, 1} as functions of ℓ Boolean variables; that is, we view
the ℓ-bit long argument to f as an assignment of Boolean values to ℓ Boolean variables. Boolean
functions f that depend on very few of their Boolean variables are of interest in many applications.
Such variables are called relevant variables, and they arise in the study of natural phenomena,
where there are numerous variables (or attributes) that describe the phenomena but only few of
them are actually relevant.

Typically, one does not know a priori which of the ℓ variables are relevant, and a natural task
is to try to find this out. But before setting out to find the relevant variables, one may want to find
out how many variables are actually relevant. Furthermore, in some cases (as shown in Chapter 6)
just knowing a good upper bound on the number of influential variables is valuable.

1See discussions regarding the relation to testing the Long Code and the work of Bellare, Goldreich, and Sudan [37].
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Assuming that there are k ≤ ℓ influential variables, finding the set of influential variables requires
making Ω(2k + k log ℓ) queries to the function, because the number of functions f : {0, 1}ℓ → {0, 1}
that have k influential variables is of the order of

(ℓ
k

)
· 22k

. Our goal is to test whether f has k
influential variables (or is ǫ-far from having this property) using only poly(k/ǫ) queries; in particular,
the complexity we seek is independent of ℓ, which is especially valuable when ℓ is very large
compared to k.

Functions having at most k influential variables will be called k-juntas, and in case of k = 1 they
will be called dictatorships (unless they are constant functions). We shall start with the latter case:
in Section 5.2 we present a tester of dictatorships, while viewing dictatorships as linear functions
that depend on one variable. Hence, this tester will first check whether the function is linear, and
then check (via self-correction) whether this linear function is a dictatorship. This approach is
abstracted in Section 5.2.3, which is highly recommended.

Section 5.3 deals with the more general problem of testing whether a function is a k-junta,
where k ≥ 1 is a parameter that is given to the tester. This tester uses different ideas, and thus it
yields an alternative tester for dictatorship. (The analysis of this tester is more complex than the
analysis of the tester for dictatorship presented in Section 5.2.)

Teaching note: We suggest leaving the (overview) section that discusses testing monomials (i.e., Sec-

tion 5.2.2) for advanced independent reading.

5.2 Testing dictatorship via self-correction

We consider testing two related properties of Boolean functions f : {0, 1}ℓ → {0, 1}, called dicta-
torship and monotone dictatorship. First, we note that the object being tested is of size n = 2ℓ,
and so query complexity that is logarithmic in ℓ (which can be obtained via proper learning (see
Section 1.3.5))2 is definitely sub-linear. Still, we shall seek testers of lower complexity; specifically,
we seek complexity that is independent of the size of the object.

Definition 5.1 (dictatorship and monotone dictatorship): A function f : {0, 1}ℓ → {0, 1} is called
a monotone dictatorship if for some i ∈ [ℓ] it holds that f(x) = xi. It is called a dictatorship if for
some i ∈ [ℓ] and σ ∈ {0, 1} it holds that f(x) = xi ⊕ σ.

Note that f is a dictatorship if and only if either f or f ⊕ 1 is a monotone dictatorship. Hence,
the set of dictatorships is the union of Π and {f : f ⊕ 1 ∈ Π}, where Π is the set of monotone
dictatorships. Using the closure of property testing under unions (see Section 1.3.4), we may reduce
testing dictatorship to testing monotone dictatorship.3 Thus, we shall focus on the latter task.

A detour: dictatorship and the Long Code. The Long Code, which was introduced in [37]
and plays a pivotal role in many PCP constructions (see, e.g., [37, 170, 171, 249, 95, 186, 187, 211])4,

2This uses the fact that there are only 2ℓ different dictatorship functions.
3In fact, we also use the fact that testing {f : f ⊕ 1 ∈ Π} reduces to testing Π. Indeed, this holds for any property

Π of Boolean functions.
4
Advanced comment: The Long Code is pivotal especially in PCP constructions aimed at optimizing parameters

of the query complexity, which are often motivated by the desire to obtain tight inapproximability results. We refer
to this line of research as the “second generation” of PCP constructions, which followed the “first generation” that
culminated in the establishing of the PCP Theorem [25, 24]. In contrast, the Long Code is not used (or need not
be used) in works of the “third generation” that focus on other considerations such as proof length (e.g., [157, 44]),
combinatorial constructions (e.g., [94, 92]), and lower error via few multi-valued queries (e.g., [210, 93]).
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encodes k-bit long strings by 22k
-bit long strings such that x ∈ {0, 1}k is encoded by the sequence

of the evaluations of all n = 22k
Boolean functions g : {0, 1}k → {0, 1} at x. That is, the gth

location of the codeword C(x) ∈ {0, 1}n equals g(x). Now, look at fx = C(x) as a function

from {0, 1}2k
to {0, 1} such that fx(〈g〉) = g(x), where 〈g〉 ∈ {0, 1}2k

denotes the truth-table of
g : {0, 1}k → {0, 1}. Note that the 2k (bit) locations in 〈g〉 correspond to k-bit strings, where
the bit corresponding to location x ∈ {0, 1}ℓ in 〈g〉, denoted 〈g〉x, holds the value g(x). Thus, the

function fx : {0, 1}2k → {0, 1} is a monotone dictatorship, since its value at any input 〈g〉 equals
〈g〉x (i.e., fx(〈g〉) = g(x) = 〈g〉x for every 〈g〉). Hence, the Long Code (encoding k-bit strings) is

the set of monotone dictatorship functions from {0, 1}2k
to {0, 1}, which means that the Long Code

corresponds to the case that ℓ is a power of two.

5.2.1 The tester

One key observation towards testing monotone dictatorships is that these functions are linear;
that is, they are parity functions (where each parity function is the exclusive-or of a subset of
its Boolean variables). Hence, we may first test whether the input function f : {0, 1}ℓ → {0, 1}
is linear (or rather close to linear), and rejects otherwise. (Indeed, a suitable test was presented
in Chapter 2.) Assuming that f is close to the linear function f ′, we shall test whether f ′ is a
(monotone) dictatorship, by relying on the following dichotomy, where x∧ y denotes the bit-by-bit
and of the ℓ-bit strings x and y:

• On the one hand, if f ′ is a monotone dictatorship, then

Prx,y∈{0,1}ℓ [f
′(x)∧f ′(y)=f ′(x∧y)] = 1. (5.1)

This holds since if f ′(x) = xi, then f ′(y) = yi and f ′(x∧y) = xi∧yi.

• On the other hand, if f ′(x) = ⊕i∈Ixi for |I| > 1, then

Prx,y∈{0,1}ℓ [f
′(x)∧f ′(y) = f ′(x∧y)]

= Prx,y∈{0,1}ℓ [(⊕i∈Ixi)∧(⊕i∈Iyi) = ⊕i∈I(xi∧yi)]

= Prx,y∈{0,1}ℓ [⊕i,j∈I(xi∧yj) = ⊕i∈I(xi∧yi)] (5.2)

Our aim is to show that Eq. (5.2) is strictly smaller than one. It will be instructive to analyze
this expression by moving to the arithmetics of the two-element field. Hence, Eq. (5.2) can
be written as

Prx,y∈{0,1}ℓ



∑

i,j∈I:i6=j

xi · yj = 0


 (5.3)

Observing that the expression in Eq. (5.3) is a non-zero polynomial of degree two, we conclude
that it equals zero with probability at most 3/4 (see Exercise 5.1). It follows that in this case

Prx,y∈{0,1}ℓ [f
′(x)∧f ′(y)=f ′(x∧y)] ≤ 3/4. (5.4)

The gap between Eq. (5.1) and Eq. (5.4) should allow us to distinguish these two cases. However,
there is also a third case; that is, the case that f ′ is the all-zero function. This pathological case
can be discarded by checking that f ′(1ℓ) = 1, and rejecting otherwise.
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The foregoing description presumes that we can query f ′ at arguments of our choice, but this
is not the case, since we have no access to f ′ (but rather to f). Nevertheless, assuming that f ′ is
close to f , we can obtain the value of f ′ at any desired point by using “self-correction” (on f) as
follows. When seeking the value of f ′(z), we select uniformly at random r ∈ {0, 1}ℓ, query f at r
and at r ⊕ z, and use the value f(r)⊕ f(r ⊕ z). Indeed, the value f(r)⊕ f(r ⊕ z) can be thought
of as a random vote regarding the value of f ′(z). If f ′ is ǫ-close to f , then this vote equals the
value f ′(z) with probability at least Prr[(f

′(r) = f(r)) & (f ′(r ⊕ z) = f(r ⊕ z))] ≥ 1 − 2ǫ, since
f ′(r)⊕ f ′(r ⊕ z) = f ′(z) by linearity of f ′.

This discussion leads to a natural tester for monotone dictatorship, which first checks whether f
is linear and if so checks that the linear function f ′ that is close to f is a monotone dictatorship. We
check that f ′ is a dictatorship by checking that f ′(x ∧ y) = f ′(x) ∧ f ′(y) for uniformly distributed
x, y ∈ {0, 1}ℓ and that f ′(1ℓ) = 1, where in both cases we use self-correction (for the values at x∧ y
and 1ℓ).5 Indeed, in Step 2 (below), the random strings r and s are used for self-correction of the
values at x ∧ y and 1ℓ, respectively.

Below, we assume for simplicity that ǫ ≤ 0.01. This assumption can be made, without loss of
generality, by redefining ǫ← min(ǫ, 0.01). (It follows that any function f is ǫ-close to at most one
linear function, since the linear functions are at distance 1/2 from one another whereas ǫ < 0.25.)6

Algorithm 5.2 (testing monotone dictatorship): On input n = 2ℓ and ǫ ∈ (0, 0.01], when given
oracle access to a function f : {0, 1}ℓ → {0, 1}, proceed as follows.

1. Invoke the linearity tester on input f , while setting the proximity parameter to ǫ. If the
linearity test rejected, then halt rejecting.

Recall that the known linearity tester, presented in Chapter 2, makes O(1/ǫ) queries to f .

2. Repeat the following check for O(1/ǫ) times.7

(a) Select x, y, r, s ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points x, y, r, s as well as at r ⊕ (x∧y) and s⊕ 1ℓ.

(c) If f(x)∧f(y) 6= f(r)⊕ f(r ⊕ (x∧y)), then halt rejecting.

(d) If f(s)⊕ f(s⊕ 1ℓ) = 0, then halt rejecting.

If none of the iterations rejected, then halt accepting.

(Actually, in Step 2d, we can use r instead of s, which means that we can re-use the same random-
ization in both invocations of the self-correction.)8 Recalling that linearity testing is performed
by invoking a three-query proximity-oblivious tester for O(1/ǫ) times, it is begging to consider the
following proximity-oblivious tester (POT) instead of Algorithm 5.2.

5Values at these points require self-correction, since these points are not uniformly distributed in {0, 1}ℓ. In
contrast, no self-correction is required for the values at the uniformly distributed points x and y. See Section 5.2.3
for a general discussion of the self-correction technique.

6
Advanced comment: The uniqueness of the linear function that is ǫ-close to f is not used explicitly in the

analysis, but the analysis does require that ǫ < 1/16 (see proof of Theorem 5.4).
7Step 2c is a self-corrected form of the test f(x)∧f(y)

?
= f(x∧y), whereas Step 2d is a self-corrected form of the

test f(1ℓ)
?
= 1.

8This takes advantage of the fact that, in the analysis, for each possible f we rely only on one of the three rejection
options.
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Algorithm 5.3 (POT for monotone dictatorship): On input n = 2ℓ and oracle access to a function
f : {0, 1}ℓ → {0, 1}, proceed as follows.

1. Invoke the three-query proximity-oblivious tester (of linear detection probability) for linear-
ity.9 If the linearity test rejected, then halt rejecting.

2. Check closure to bit-by-bit conjunction.

(a) Select x, y, r ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points x, y, r and r ⊕ (x∧y).

(c) If f(x)∧f(y) 6= f(r)⊕ f(r ⊕ (x∧y)), then reject.

3. Check that f is not the all-zero function.

(a) Select s ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points s and s⊕ 1ℓ.

(c) If f(s)⊕ f(s⊕ 1ℓ) = 0, then reject.

If none of the foregoing steps rejected, then halt accepting.

As shown next, Algorithm 5.3 is a nine-query POT with linear detection probability. The same
holds for a four-query algorithm that performs one of the three steps at random (i.e., each step is
performed with probability 1/3).10

Theorem 5.4 (analysis of Algorithm 5.3): Algorithm 5.3 is a one-sided error proximity oblivious
tester for monotone dictatorship with rejection probability ̺(δ) = Ω(δ).

Proof: The proof merely details the foregoing discussion. First, suppose that f : {0, 1}ℓ → {0, 1}
is a monotone dictatorship, and let i ∈ [ℓ] such that f(x) = xi. Then, f is linear, and so Step 1
never rejects. Furthermore, f(x)∧f(y) = xi∧yi = f(x∧y), which implies that Step 2 never rejects
(since f(r)⊕ f(r⊕ z) = f(z) for all r, z). Lastly, in this case, f(1ℓ) = 1, which implies that Step 3
never rejects. It follows that Algorithm 5.3 always accepts f .

Now, suppose that f is at distance δ > 0 from being a monotone dictatorship. Letting δ′ =
min(0.9δ, 0.01), we consider two cases.11

1. If f is δ′-far from being linear, then Step 1 rejects with probability Ω(δ′) = Ω(δ).

2. If f is δ′-close to being linear, then it is δ′-close to some linear function, denoted f ′. Note that
f ′ cannot be a dictatorship function, since this would mean that f is δ′-close to a monotone
function whereas δ′ < δ.

We first note that if f ′ is the all-zero function (i.e., f ′(z) = 0 for every z ∈ {0, 1}ℓ), then
Step 3 rejects with probability greater than 1− 2 · 0.01 = Ω(δ), since

Prs[f(s)⊕ f(s⊕ 1ℓ) = 0] ≥ Prs[(f(s)=f ′(s)) & (f(s⊕ 1ℓ)=f ′(s ⊕ 1ℓ))]

≥ 1−Prs[f(s) 6=f ′(s)]−Prs[f(s⊕ 1ℓ) 6=f ′(s⊕ 1ℓ)]

≥ 1− 2 · δ′,
9Such a POT, taken from [59], is presented in Chapter 2.

10See Exercise 5.2.
11

Advanced comment: Any choice of δ′ ≤ 0.01 such that is δ′ ∈ [Ω(δ), δ) will do. In fact, 0.01 can be replaced
by any constant in (0, 1/16).
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where the first inequality uses the fact that f(s)=0 & f(s⊕ 1ℓ)=0 implies f(1ℓ)=0, and the
last inequality is due to the hypothesis that f is δ′-close to f ′.

Hence, we are left with the case that f ′(x) = ⊕i∈Ixi, where |I| ≥ 2. Relying on the hypothesis
that f is 0.01-close to f ′ and using f ′(r) ⊕ f ′(r ⊕ (x∧y)) = f ′(x∧y), we observe that the
probability that Step 2 rejects equals

Prx,y,r[f(x)∧f(y) 6= f(r)⊕ f(r ⊕ (x∧y))]

≥ Prx,y,r[f
′(x)∧f ′(y) 6= f ′(r)⊕ f ′(r ⊕ (x∧y))]

− Prx,y,r[(f(x) 6=f ′(x)) ∨ (f(y) 6=f ′(y)) ∨ (f(r) 6=f ′(r)) ∨ (f(r ⊕ (x∧y)) 6=f ′(r ⊕ (x∧y)))]

≥ Prx,y[f
′(x)∧f ′(y) 6= f ′(x∧y)]− 4 ·Prz[f(z) 6=f ′(z)]

≥ 0.25 − 4 · 0.01

where the second inequality uses a union bound as well as f ′(r) ⊕ f ′(r ⊕ (x∧y)) = f ′(x∧y),
and the last inequality is due to Eq. (5.4). Hence, in this case, Step 2 rejects with probability
greater than 0.2 = Ω(δ).

To summarize, in each of the two cases, the algorithm rejects with probability Ω(δ), and the theorem
follows.

Digest. Note that self-correction was applied for obtaining the values of f ′(x∧ y) and f ′(1ℓ), but
not for obtaining f ′(x) and f ′(y), where x and y were uniformly distributed in {0, 1}ℓ. Indeed,
there is no need to apply self-correction when seeking the value of f ′ at a uniformly distributed
point. In contrast, the points 1ℓ and x ∧ y are not uniformly distributed: the point 1ℓ is fixed,
whereas x ∧ y is selected from a distribution of ℓ-bit long strings in which each bit is set to 1 with
probability 1/4 (rather than 1/2), independently of all other bits. For further discussion of the
self-correction paradigm, see Section 5.2.3.

5.2.2 Testing monomials

The ideas that underly the foregoing testers of (monotone) dictatorship can be extended towards
testing the set of functions that are (monotone) k-monomials, for any k ≥ 1.

Definition 5.5 (monomial and monotone monomial): A function f : {0, 1}ℓ → {0, 1} is called a
k-monomial if for some k-subset I ⊆ [ℓ] and σ = σ1 · · · σℓ ∈ {0, 1}ℓ it holds f(x) = ∧i∈I(xi⊕ σi). It
is called a monotone k-monomial if σ = 0ℓ.

Indeed, the definitions of (regular and monotone) dictatorship coincide with the notions of (regular
and monotone) 1-monomials. (In particular, f is a dictatorship if and only if either f or f ′(x) =
f(x⊕ 1ℓ) is a monotone dictatorship).

Teaching note: Alternative procedures for testing (regular and monotone) monomials are presented in

Chapter 6. These alternative procedures are obtained by a simple application of a general paradigm, as

opposed to the direct approach that is outlined here. In light of these facts, the reader may skip the

current section and proceed directly to Section 5.2.3.
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5.2.2.1 A reduction to the monotone case

Note that f is a k-monomial if and only if for some σ ∈ {0, 1}ℓ the function fσ(x) = f(x ⊕ σ) is
a monotone k-monomial. Actually, it suffices to consider only σ’s such that f(σ ⊕ 1ℓ) = 1, since if
fσ is a monotone monomial, then fσ(1ℓ) = 1 must hold. This suggests the following reduction of
testing k-monomials to testing monotone k-monomials.

Algorithm 5.6 (reducing testing monomials to the monotone case): Given parameters k and ǫ
and oracle access to a function f : {0, 1}ℓ → {0, 1}, proceed as follows if ǫ < 4 · 2−k.

1. Select uniformly a random O(2k)-subset of {0, 1}ℓ, denoted S, and for each σ ∈ S query f at
σ ⊕ 1ℓ. If for every σ ∈ S it holds that f(σ⊕ 1ℓ) = 0, then reject. Otherwise, pick any σ ∈ S
such that f(σ ⊕ 1ℓ) = 1, and proceed to Step 2.

2. Invoke the ǫ-tester for monotone k-monomials, while proving it with oracle access to f ′ such
that f ′(x) = f(x⊕ σ).

If ǫ ≥ 4 · 2−k, then use O(1/ǫ) samples in order to distinguish the case of |f−1(1)| ≤ 0.25ǫ · 2ℓ from
the case of |f−1(1)| ≥ 0.75ǫ · 2ℓ. Accept in the first case and reject in the second case. (That is,
accept if less than a 0.5ǫ fraction of the sample evaluates to 1, and reject otherwise.)

Note that the restriction of the actual reduction to the case that ǫ < 2−k+2 guarantees that the
(additive) overhead of the reduction, which is O(2k), is upper-bounded by O(1/ǫ). On the other
hand, when ǫ ≥ 2−k+2, testing is reduced to estimating the density of f−1(1), while relying on the
facts that any k-monomial is at distance exactly 2−k from the all-zero function. In both cases,
the reduction yields a tester with two-sided error (even when using a tester of one-sided error for
monotone monomials).

Theorem 5.7 (analysis of Algorithm 5.6): If the ǫ-tester for monotone k-monomials invoked in
Step 2 has error probability at most 1/4, then Algorithm 5.6 constitutes a tester for k-monomials.

Proof: We start with the (main) case of ǫ < 2−k+2. Note that if |f−1(1)| < 2ℓ−k, then f cannot
be a k-monomial, and it is OK to reject it. Otherwise (i.e., |f−1(1)| ≥ 2ℓ−k), with probability at
least 0.9, Step 1 finds σ such that f(σ ⊕ 1ℓ) = 1. Now, if f is a k-monomial, then f ′ as defined in
Step 2 (i.e., f ′(x) = f(x⊕ σ)) is a monotone k-monomial, since all strings in f−1(1) agree on the
values of the bits in location I, where I denotes the indices of the variables on which f depends.12

Thus, any k-monomial is accepted by the algorithm with probability at least 0.9 · 0.75 > 2/3 (since
the tester used in Step 2 has error probability at most 1/4).

On the other hand, if f is ǫ-far from being a k-monomial, then either Step 1 rejects or (as
shown next) f ′ is (also) ǫ-far from being a (monotone) k-monomial, and Step 2 will reject it with
probability at least 3/4 > 2/3. To see that f ′ is ǫ-far from being a k-monomial (let alone ǫ-far
from being a monotone k-monomial), we consider a k-monomial g′ that is supposedly ǫ-close to f ′

and derive a contradiction by considering the function g such that g(x) = g′(x⊕ σ), where σ is as
in Step 2 (i.e., satisfies f ′(x) = f(x ⊕ σ)). Specifically, g maintains the k-monomial property of
g′, whereas δ(f, g) = δ(f ′, g′) ≤ ǫ (in contradiction to the hypothesis that f is ǫ-far from being a
k-monomial).

12To see this claim, let f(x) = ∧i∈I(xi ⊕ τi), for some k-set I ⊆ [ℓ] and τ ∈ {0, 1}ℓ. Then, f(σ ⊕ 1ℓ) = 1 if and
only if ∧i∈I(σi ⊕ 1⊕ τi) = 1, which holds if and only if σi = τi for every i ∈ I . Hence, f ′(x) = f(x⊕ σ) = f(x⊕ τ ) is
a monotone monomial.
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Figure 5.1: Detail for the proof of Theorem 5.7. The algorithmic decision is depicted by a dashed
arrow that refers to the estimated value (in multiples of ǫ2ℓ), and the analysis is depicted by solid
arrows that refers to the real value of |f−1(1)|.

We complete the proof by considering the case of ǫ ≥ 2−k+2. In this case, if |f−1(1)| > 0.25ǫ ·2ℓ,
which implies |f−1(1)| > 2ℓ−k, then f is not a k-monomial, and it is OK to reject it. On the other
hand, if |f−1(1)| ≤ 0.75ǫ ·2ℓ, then f is 0.75ǫ-close to the all-zero function, which is 2−k-close to a k-
monomial, and so it is OK to accept f , because f is ǫ-close to a k-monomial (since 0.75ǫ+2−k ≤ ǫ).
Indeed, when |f−1(1)| ∈ (0.25ǫ2ℓ, 0.75ǫ2ℓ], any decision is fine (see Figure 5.1). Hence, it suffices to
guarantee rejection (w.p. 2/3) when |f−1(1)| ≥ 0.75ǫ2ℓ and acceptance (w.p. 2/3) when |f−1(1)| ≤
0.25ǫ2ℓ, as the algorithm does.

5.2.2.2 Testing monotone k-monomials – an overview

We start by interpreting the dictatorship tester in a way that facilitates its generalization. If f is a
monotone dictatorship, then f−1(1) is an (ℓ− 1)-dimensional affine subspace (of the ℓ-dimensional
space {0, 1}ℓ). Specifically, if f(x) = xi, then this subspace is {x ∈ {0, 1}ℓ : xi = 1}. In this case,
the linearity tester could be thought of as testing that f−1(1) is an arbitrary (ℓ − 1)-dimensional
subspace, whereas the “conjunction test” verifies that this subspace is an affine translation by 1ℓ

of a linear space that is spanned by ℓ− 1 unit vectors (i.e., vectors of Hamming weight 1).13

Turning to the general case (of k ≥ 1), we observe that if f is a monotone k-monomial, then
f−1(1) is an (ℓ−k)-dimensional affine subspace of a specific form (i.e., it has the form {x ∈ {0, 1}ℓ :
(∀i ∈ I) xi =1}, for some k-subset I). So the idea is to first test that f−1(1) is an (ℓ−k)-dimensional
affine subspace, and then test that it is an affine subspace of the right form. Following is an outline
of the treatment of these two tasks.

Testing affine subspaces. Supposed that the alleged affine subspace H ⊆ {0, 1}ℓ is presented
by a Boolean function h : {0, 1}ℓ → {0, 1} such that h(x) = 1 if and only if x ∈ H. (Indeed, in our
application, h = f .) We wish to test that H is indeed an affine subspace.

(Actually, we are interested in testing that H has a given dimension, but this extra condition can
be checked easily by estimating the density of H in {0, 1}ℓ, since we are willing to have complexity

13That is, we requires that this subspace has the form
n

1ℓ +
P

j∈([ℓ]\{i}) cjej : c1, ..., cℓ ∈ {0, 1}
o

, where e1, ..., eℓ ∈
{0, 1}ℓ are the ℓ unit vectors (i.e., vectors of Hamming weight 1).
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that is inversely proportional to the designated density (i.e., 2−k).)14

This task is related to linearity testing and it was indeed solved in [226] using a tester and an
analysis that resemble the standard linearity tester of [59]. Specifically, the tester selects uniformly
x, y ∈ H and z ∈ {0, 1}ℓ and checks that h(x + y + z) = h(z) (i.e., that x + y + z ∈ H if and only if
z ∈ H). Indeed, we uniformly sample H by repeatedly sampling {0, 1}ℓ and checking whether the
sampled element is in H.

Note that, for co-dimension k > 1 (of H), the function h : {0, 1}ℓ → {0, 1} is not affine; in
particular, |h−1(1)| = 2ℓ−k < 2ℓ−1. Still, testing affine subspaces can be reduced to testing linearity
(see [138, Sec. 4] or Exercises 5.9–5.11), providing an alternative to the presentation of [226].

Testing that an affine subspace is a translation by 1ℓ of a linear subspace spanned by
unit vectors. Suppose that an affine subspace H ′ is presented by a Boolean function, denoted

h′, and that we wish to test that H ′ has the form
{
1ℓ +

∑
i∈[ℓ]\I ciei : c1, ..., cℓ ∈ {0, 1}

}
, where

e1, ..., eℓ ∈ {0, 1}ℓ are unit vectors, and I ⊆ [ℓ] is arbitrary. That is, we wish to test that h′(x) =
∧i∈Ixi.

This can be done by picking uniformly x ∈ H ′ and y ∈ {0, 1}ℓ, and checking that h′(x∧y) = h′(y)
(i.e., x ∧ y ∈ H ′ if and only if y ∈ H ′). Note that if H ′ has the form 1ℓ + L, where L is a linear
subspace spanned by the unit vectors (i.e., L = {ei : i ∈ [ℓ] \ I} for some I), then h′(z) = ∧i∈Izi

holds for all z ∈ {0, 1}ℓ and h′(x∧ y) = h′(x)∧h′(y) holds for all x, y ∈ {0, 1}ℓ. On the other hand,
as shown in [226], if H ′ is an affine subspace that does not have the foregoing form, then the test
fails with probability at least 2−k−1.

However, as in the case of k = 1, we do not have access to h′ but rather to a Boolean function
h that is (very) close to h′. So we need to obtain the value of h′ at specific points by querying h
at uniformly distributed points. Specifically, the value of h′ at z is obtained by uniformly selecting
r, s ∈ h−1(1) and using the value h(r+s+z). In other words, we self-correct h at any desired point
z by using the value of h at a point obtained by shifting z by the sum of two random elements of
h−1(1), while hoping that the latter points actually reside in the affine subspace H ′. This hope is
likely to materialize when h is 0.01 · 2−k-close to h′.

The foregoing is indeed related to the conjunction check performed in Step 2 of Algorithm 5.3,
and the test and the analysis in [226] resemble the corresponding parts in Section 5.2.1. An
alternative approach, which essentially reduces the general case (of any k ≥ 1) to the special case
(of k = 1), appears in [138, Sec. 5].

Conclusion. To recap, the overall structure of the resulting tester resembles that of Algo-
rithm 5.3, with the exception that we perform a density test in order to determine the dimension
of the affine subspace. We warn, however, that the analysis is significantly more involved (and the
interested reader is referred to [226]).15 Lastly, we stress that the tester of monotone k-monomials
has two-sided error probability, which is due to its estimation of the density of the affine subspace.
We wonder whether this is inherent.

Open Problem 5.8 (one-sided error testers for monomials): For any constant k ≥ 2, is there a
one-sided error tester for monotone k-monomials with query complexity that only depends on the

14Recall that if ǫ < 2−k+2, then O(2k) = O(1/ǫ), and otherwise (i.e., for ǫ ≥ 2−k+2) we can proceed as in
Algorithm 5.6.

15Recall that an alternative presentation appears in [138].
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proximity parameter? Ditto for testing k-monomials.

It seems that when the arity of the monomial (i.e., k) is not specified (i.e., when testing monomials
of arbitrary arity), one-sided testing is possible by modifying the tester of [226] such that the density
check is avoided. Indeed, in such a case, one may fail to sample f−1(1) using O(1/ǫ) random queries,
but we can avoid rejection in this case because it occurs with noticeable probability only when the
function f is 0.5ǫ-close to the all-zero function, which implies that f is ǫ-close to the monotone
ℓ-monomial (provided that 2−ℓ ≤ 0.5ǫ).16

5.2.3 The self-correction paradigm: an abstraction

Recall that self-correction was used in the analysis of the linearity and low-degree tests, whereas
in Section 5.2.1 we used this paradigm as part of the tester. We now abstract the self-correction
paradigm, viewing it as an algorithmic paradigm (rather than as a tool of analysis).

In general, the self-correction of a function f that is close to a function g is based on a “random
self-reduction” feature of g, which is the ability to easily recover the value of g at any fixed z in g’s
domain based on the values of g at few uniformly distributed points in g’s domain. We stress that
each of these points is uniformly distributed in g’s domain, but they are not necessarily independent
of one another.

The foregoing description of (the notion of) a random self-reduction is lacking, because, for
a single function g, nothing prevents the recovery algorithm from just computing g(z). In the
context of complexity theory this is avoided by requiring the recovery algorithm to have lower
computational complexity than any algorithm that computes g. In the current context, where
the focus is information theoretic (i.e., on the query complexity), we can not use this possibility.
Instead, here we avoid this trivial (and useless) solution by defining random self-reducibility for
sets of functions. In such a case, typically, the value of g(z) cannot be found without querying g.

Definition 5.9 (random self-reduction): Let Π be a set of functions defined over D. We say that
functions in Π are randomly self-reducible by q queries if there exist a randomized (query generating)
algorithm Q and a (recovery) algorithm R such that for every g ∈ Π and every z ∈ D the following
two conditions hold:

1. Recovery: For every sequence of queries (r1, ..., rq) generated by Q(z), it holds that

R(z, r1, ..., rq, g(r1), ..., g(rq)) = g(z).

2. Query distribution: For each i ∈ [q], the ith element in Q(z) is uniformly distributed in D;
that is, for every e ∈ D, it holds that

Pr(r1,...,rq)←Q(z)[ri =e] =
1

|D| .
Indeed, various generalizations are possible.17 For example, we may allow the recovery algo-
rithm to be randomized and (only) require that it is correct with probability 2/3. Likewise,

16Otherwise (i.e., if ǫ < 2−ℓ+1), we can just recover f by making 2ℓ = O(1/ǫ) queries.
17

Advanced comment: One generalization, which only matters when one considers the computational efficiency
of the recovery algorithm R, is providing R with the coins used by Q (rather than with the generated q-long sequence
of queries). Needless to say, the recovery algorithm still gets z as well as the oracle answers g(r1), ..., g(rq). That
is, denoting by Q(z;ω) the output of Q on input z, when using coins ω, we replace the recovery condition by
R(z, ω, g(r1), ..., g(rq)) = g(z) for every ω, where (r1, ...., rq) = Q(z;ω).
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one may only require the query distribution to be “sufficiently random” (e.g., only require that
Pr(r1,...,rq)←Q(z)[ri =e] ≤ 2/|D| for every i ∈ [q] and e ∈ D).

The self-correction paradigm amounts to using such a random self-reduction, while observing
that if f is ǫ-close to some g ∈ Π (rather than f = g ∈ Π), then, with probability at least 1− q · ǫ,
the value obtained by applying R on the answers obtained by querying f on Q(z) matches g(z).
This observation is captured by the following theorem.

Theorem 5.10 (self-correction): Let Π be a set of functions defined over D. Suppose that functions
in Π are randomly self-reducible by q queries, and denote the corresponding query-generating and
recovery algorithms by Q and R, respectively. Then, for every f that is ǫ-close to some f ′ ∈ Π and
for every z ∈ D, it holds that

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq , f(r1), ..., f(rq)) = f ′(z)] ≥ 1− q · ǫ.

It follows that f cannot be at distance smaller than 1/2q from two different functions in Π. Hence,
functions in Π must be at mutual distance of at least 1/q; in fact, if Π is random self-reducible by
q queries, then for every distinct f, g ∈ Π it holds that δ(f, g) ≥ 1/q (see Exercise 5.4).

(Indeed, Theorem 5.10 and its proof are implicit in Section 5.2.1 as well as in the analysis of
the linearity and low-degree tests.)

Proof: By the (recovery condition of the) hypothesis, we know that for every sequence of queries
(r1, ..., rq) generated by Q, it holds that R(z, r1, ..., rq , f

′(r1), ..., f
′(rq)) = f ′(z). Hence,

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq, f(r1), ..., f(rq)) = f ′(z)]

≥ Pr(r1,...,rq)←Q(z)[(∀i ∈ [q]) f(ri) = f ′(ri)]

≥ 1−
∑

i∈[q]
Pr(r1,...,rq)←Q(z)[f(ri) 6= f ′(ri)]

= 1− q ·Prr∈D[f(r) 6= f ′(r)],

where the equality uses the (the query distribution condition of the) hypothesis by which each of
the queries generated by Q is uniformly distributed in D. Recalling that f is ǫ-close to f ′, the
claim follows.

An archetypical application. In the following result, we refer to the general notion of solving
a promise problem. Recall that a promise problem is specified by two sets, P and Q, where P
is the promise and Q is the question. The problem, denoted (P,Q), is define as given an input
in P , decide whether or not the input is in Q (where standard decision problems use the trivial
promise in which P consists of the set of all possible inputs). Equivalently, the problem consists of
distinguishing between inputs in P ∩Q and inputs in P \Q, and indeed promise problems are often
presented as pairs of non-intersecting sets (i.e., the set of yes-instances and the set of no-instances).
Lastly, note that here we consider solving such promise problems by probabilistic oracle machines,
which means that the answer needs to be correct (only) with probability at least 2/3.

Specifically, we shall refer to the promise problem (Π′,Π′′), where Π′ is randomly self-reducible
and testable within some given complexity bounds. We shall show that if (Π′,Π′′) is solvable within
some complexity, then Π′ ∩ Π′′ is testable within complexity that is related to the three given
bounds.
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Theorem 5.11 (testing intersection with a self-correctable property): Let Π′ and Π′′ be sets of
functions defined over D. Suppose that functions in Π′ are randomly self-reducible by q queries,
that Π′ is ǫ-testable using q′(ǫ) queries, and that the promise problem (Π′,Π′′) can be solved in
query complexity q′′ (i.e., a probabilistic q′′-query oracle machine can distinguish between inputs in
Π′ ∩ Π′′ and inputs in Π′ \ Π′′). Then, Π′ ∩ Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′)
queries.

(Indeed, Theorem 5.11 and its proof are implicit in Section 5.2.1.) We stress that Theorem 5.11
does not employ a tester for Π′′, but rather employs a decision procedure for the promise problem
(Π′,Π′′). However, as shown in Exercise 5.5, such a decision procedure is implied by any ǫ′′-tester
for Π′′ for any ǫ′′ < 1/q, since Π′ has distance at least 1/q (see Exercise 5.4).18

Proof: We propose the following tester for Π′ ∩Π′′. On input f , the tester proceeds in two steps:

1. It invokes the min(ǫ, 1/3q)-tester for Π′ on input f and rejects if this tester rejects.

2. Otherwise, it invokes the decision procedure for the promise problem (Π′,Π′′), while provid-
ing this procedure with answers obtained from f via the self-correction procedure (for Π′)
guaranteed by Theorem 5.10. Specifically, let Q and R be the query-generating and recov-
ery algorithms guaranteed by Theorem 5.10. Then, the query z is answered with the value
R(z, r1, ..., rq , f(r1), ..., f(rq)), where (r1, ..., rq) ← Q(z). Needless to say, the tester decides
according to the verdict of the decision procedure.

By using error reduction, we may assume that both the tester of Π′ and the solver of (Π′,Π′′) have
error probability at most 0.1. Likewise, we assume that the self-correction procedure has error
probability at most 0.1/q′′ (when invoked on any input that is 1/3q-close to Π′).19 Hence, Step 1
can be implemented using O(q′(min(ǫ, 1/3q))) queries, whereas Step 2 can be implemented using
q′′ ·O(q · log q′′) queries.

We now turn to the analysis of the proposed tester. If f ∈ Π′ ∩ Π′′, then Step 1 rejects
with probability at most 0.1, and otherwise we proceed to Step 2, which accepts with probability
at least 0.9 (since in this cases all answers provided by the self-correction procedure are always
correct). On the other hand, if f is ǫ-far from Π′ ∩Π′′, then we consider two cases.

Case 1: f is min(ǫ, 1/3q)-far from Π′. In this case, Step 1 rejects with probability at least 0.9.

Case 2: f is min(ǫ, 1/3q)-close to Π′. Let f ′ ∈ Π′ be min(ǫ, 1/3q)-close to f , and note that f ′ 6∈ Π′′

(since otherwise f would have been ǫ-close to Π′∩Π′′). Hence, the decision procedure employed
in Step 2 would have rejected f ′ with probability at least 0.9, since f ′ ∈ Π′ \ Π′′. However,
this procedure is not invoked with f ′, but is rather provided with answers according to the
self-correction procedure for Π′. Still, since f is 1/3q-close to f ′, each of these answers agrees
with f ′ with probability at least 1 − 0.1/q′′, which implies that with probability at least 0.9
all q′′ answers agree with f ′ ∈ Π′ \ Π′′. We conclude that Step 2 rejects with probability at
least 0.9 · 0.9.

18
Advanced comment: In light of the latter fact, we would have gained nothing by considering a promise problem

version of testing Π′′ when the promise is that the input is in Π′ (rather than a tester for Π′′ or a solver for (Π′,Π′′)).
By such a version we mean the task of distinguishing between inputs in Π′ ∩Π′′ and inputs in Π′ that are ǫ-far from
Π′′, where ǫ is a given proximity parameter as in standard testing problems. As stated above, if ǫ < 1/q, then all
inputs in Π′ \ Π′′ are ǫ-far from Π′′ ∩ Π′.

19Specifically, we invoke the self-correction procedure for O(log q′′) times and take the value that appears most
frequently. Note that each invocation returns the correct value with probability at least 1 − q · 1/3q = 2/3.
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Combining the two cases, we infer that any function that is ǫ-far from Π′ ∩ Π′′ is rejected with
probability greater than 0.8, and the theorem follows.

Detour: on the complexity of testing self-correctable properties. An interesting feature
of self-correctable properties is that the complexity of testing them is inversely proportional to the
proximity parameter. This is due to the fact that testing a property that is randomly self-reducible
by t queries reduces to checking whether the target function equals its self-corrected version (after
1/2t-testing the property).20

Theorem 5.12 (proximity parameter reduction for self-correctable properties): Suppose that the
functions in Π are randomly self-reducible by t queries, and that Π has a tester of query complexity
q : N × (0, 1] → N. Then, Π has a tester of query complexity q′ : N × (0, 1] → N such that
q′(n, ǫ) = q(n, 1/2t) + O(t/ǫ). Furthermore, one-sided error probability is preserved.

Proof Sketch: On input f , the new tester proceeds as follows.21

1. Invoke the tester (hereafter denoted T ) guaranteed by the hypothesis with proximity param-
eter 1/2t. If T rejects, then the new tester rejects.

2. Uniformly select a sample S of O(1/ǫ) elements in the domain of f , and compare the value of
f on each of these points to the value obtained via the self-correction procedure (which relies
on the random self-reducibility of Π).

Specifically, let Q and R denote the query-generating and recovery algorithms guaranteed by
the hypothesis. Then, for each x ∈ S, we compare the value of f(x) to R(x, r1, ..., rt, f(r1), ..., f(rt)),
where (r1, ..., rt)← Q(x), and accept if and only if no mismatch is found.

Note that when Step 2 is employed to any f ∈ Π, no mismatch is ever found. On the other hand,
any function that is 1/2t-far from Π is rejected in Step 1 with probability at least 2/3. Lastly,
suppose that the distance of f from Π, denoted δ, resides in the interval (ǫ, 1/2t]. Let f ′ ∈ Π be at
distance δ from f , and let D denote the domain of f . In this case, we have

Prx∈D, (r1,...,rt)←Q(x)[f(x) 6= R(x, r1, ..., rt, f(r1), ..., f(rt))]

≥ Prx∈D, (r1,...,rt)←Q(x)[f(x) 6= f ′(x) = R(x, r1, ..., rt, f(r1), ..., f(rt))]

≥ Prx∈D[f(x) 6= f ′(x)] ·min
x∈D

{
Pr(r1,...,rt)←Q(x)[f

′(x) = R(x, r1, ..., rt, f(r1), ..., f(rt))]
}

≥ ǫ · (1− t · δ),

which is at least ǫ/2. Hence, in this case (where δ ∈ (ǫ, 1/2t]), f is rejected by each iteration of
Step 2 with probability at least ǫ/2, and the theorem follows.

20
Advanced comment: Actually, we can use a c/t-tester, for any constant c ∈ (0, 1). The point is that, when the

function is c/t-close to the property, we only need the self-corrector to yield the correct value with positive probability
(rather than with probability greater than 1/2).

21An alternative presentation views Step 2 as repeating a (t + 1)-query proximity-oblivious tester of detection
probability ̺(δ) = 1 − t · δ (see Exercise 5.6) for O(1/ǫ) times. Indeed, we can obtain a (q(n, 1/2t) + t + 1)-query
proximity-oblivious tester of detection probability ̺(δ) = Ω(δ) for Π.
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5.3 Testing juntas

Here we consider testing a property of Boolean functions f : {0, 1}ℓ → {0, 1} called k-junta, which
consists of functions that depend on at most k of their variables. Indeed, the notion of a k-junta
generalizes the notion of a dictatorship, which corresponds to the special case of k = 1 (provided
we ignore the constant functions). For k ≥ 2, the set of k-juntas is a proper superset of the set
of k-monomials, which (of course) says nothing about the relative complexity of testing these two
sets.

Definition 5.13 (k-juntas): A function f : {0, 1}ℓ → {0, 1} is called a junta of size k (or a k-
junta) if there exist k indices i1, ..., ik ∈ [ℓ] and a Boolean function f ′ : {0, 1}k → {0, 1} such that
f(x) = f ′(xi1 · · · xik) for every x = x1 · · · xℓ ∈ {0, 1}ℓ.

In order to facilitate the exposition, let us recall some notation: For I = {i1, ..., it} ⊆ [ℓ] such that
i1 < · · · < it and x ∈ {0, 1}ℓ, we denote by xI the t-bit long string xi1 · · · xit . Then, the condition
in Definition 5.13 can be restated as asserting that there exists a k-set I ⊆ [ℓ] and a function
f ′ : {0, 1}k → {0, 1} such for every x ∈ {0, 1}ℓ it holds that f(x) = f ′(xI). In other words, for
every x, y ∈ {0, 1}ℓ that satisfy xI = yI , it holds that f(x) = f(y). An alternative formulation of
this condition asserts that there exists a (ℓ − k)-set U ⊆ [ℓ] that has zero influence on f , where
the influence of a subset S on f equals the probability that f(x) 6= f(y) when x and y are selected
uniformly subject to x[ℓ]\S = y[ℓ]\S (see Definition 5.15.1). Indeed, the two alternatives are related
via the correspondence between U and [ℓ] \ I.

Note that the number of k-juntas is at most
(ℓ
k

)
· 22k

, and so this property can be ǫ-tested by
O(2k + k log ℓ)/ǫ queries via proper learning (see Section 1.3.5). Our aim is to present an ǫ-tester
of query complexity poly(k)/ǫ.

The key observation is that if f is a k-junta, then any partition of [ℓ] will have at most k subsets
that have positive influence. On the other hand, as will be shown in the proof of Theorem 5.15, if
f is δ-far from being a k-junta, then a random partition of [ℓ] into O(k2) subsets is likely to result
in more than k subsets that each have Ω(δ/k2) influence on the value of the function. To gain
some intuition regarding the latter fact, suppose that f is the exclusive-or of k +1 variables. Then,
with high constant probability, the locations of these k + 1 variables will reside in k + 1 different
subsets of a random O(k2)-way partition, and each of these subsets will have high influence. The
same holds if f has k + 1 variables that are each quite influential (but this is not necessarily the
case, in general, and the proof will have to deal with that issue). In any case, the aforementioned
dichotomy leads to the following algorithm.

Algorithm 5.14 (testing k-juntas): On input parameters ℓ, k and ǫ, and oracle access to a function
f : {0, 1}ℓ → {0, 1}, proceed as follows, while setting t = O(k2).

1. Select a random t-way partition of [ℓ] by assigning to each i ∈ [ℓ] a uniformly selected j ∈ [t],
which means that i is placed in the jth part.

Let (R1, ..., Rt) denote the resulting partition.

2. For each j ∈ [t], estimate the influence of Rj on f , or rather check whether Rj has positive

influence on f . Specifically, for each j ∈ [t], select uniformly m
def
= Õ(t)/ǫ random pairs (x, y)

such that x and y agree on the bit positions in Rj = [ℓ] \Rj (i.e., xRj
= yRj

), and mark j as

influential if f(x) 6= f(y) for any of these pairs (x, y).
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3. Accept if and only if at most k indices were marked influential.

The query complexity of Algorithm 5.14 is t ·m · 2 = Õ(t2)/ǫ = Õ(k4)/ǫ.

Theorem 5.15 (analysis of Algorithm 5.14): Algorithm 5.14 is a one-sided tester for k-juntas.

Proof: For sake of good order, we start by formally presenting the definition of the influence of a
set on a Boolean function.22

Definition 5.15.1 (influence of a set):23 The influence of a subset S ⊆ [ℓ] on the function f :
{0, 1}ℓ → {0, 1}, denoted IS(f), equals the probability that f(x) 6= f(y) when x and y are selected
uniformly subject to xS = yS; that is,

IS(f)
def
= Prx,y∈{0,1}ℓ:xS=yS

[f(x) 6= f(y)]. (5.5)

Note that the substrings xS and yS are uniformly and independently distributed in {0, 1}|S|, whereas

the substring xS = yS is uniformly distributed in {0, 1}|S| (independently of xS and yS). Hence,
IS(f) equals the probability that the value of f changes when the argument is “re-randomized” in
the locations that correspond to S, while fixing the random value assigned to the locations in S.

In other words, IS(f) equals the expected value of Prx,y∈ΩS,r
[f(x) 6= f(y)], where ΩS,r

def
= {z ∈

{0, 1}ℓ : zS = r} and the expectation is taken uniformly over all possible choices of r ∈ {0, 1}|S|;
that is,

IS(f) = E
r∈{0,1}|S|

[
Prx,y∈{0,1}ℓ:xS=yS=r[f(x) 6= f(y)]

]
. (5.6)

The following two facts are quite intuitive, but their known proofs are quite tedious:24

Fact 1 (monotonicity): IS(f) ≤ IS∪T (f).

Fact 2 (sub-additivity): IS∪T (f) ≤ IS(f) + IT (f).

Now, if f is a k-junta, then there exists a k-subset J ⊆ [ℓ] such that [ℓ] \ J has zero influence on f
(since f(x) depends only on xJ), and so Algorithm 5.14 always accepts f (since, for every partition
of [ℓ], at most k parts intersect J , whereas the other parts have zero influence).25 On the other
hand, we first show (see Claim 5.15.2) that if f is δ-far from a k-junta, then for every k-subset
J ⊆ [ℓ] it holds that [ℓ] \ J has influence greater than δ on f . This, by itself, does not suffice
for concluding that Algorithm 5.14 rejects f (w.h.p.), but it will be used towards establishing the
latter claim.

22Recall that, for S ⊆ [ℓ] and x ∈ {0, 1}ℓ, we let xS denote the |S|-bit long string xi1 · · ·xis , where S = {i1, ..., is}
and i1 < · · · < is. Also, S = [ℓ] \ S.

23In many sources, the influence of a set is defined as twice the qualtity in Eq. (5.5). This is done in order to
have this definition extend the definition of the “influence of a variable” as the probability that f(x) 6= f(x′), where
x is uniformlty distributed in {0, 1}ℓ and x′ is obtained from x by flipping the value of the variable (rather than
re-randomizing it). We believe that Definition 5.15.1 is more natural in the current context.

24See [111, Prop. 2.4] or Exercise 5.12. An alternative proof appears in [52, Cor. 2.10], which relies on [52, Prop. 2.9].
Indeed, a simpler proof will be appreciated.

25This uses Fact 1. Specifically, for R such that R ∩ J = ∅ (i.e., R ⊆ [ℓ] \ J), it holds that IR(f) ≤ I[ℓ]\J(f) = 0.

103



Claim 5.15.2 (influences of large sets versus distance from small juntas): If there exists a k-subset
J ⊆ [ℓ] such that [ℓ] \ J has influence at most δ on f , then f is δ-close to being a k-junta.

Proof: Fixing J as in the hypothesis, let g(x)
def
= maju:uJ=xJ

{f(u)}. Then, on the one hand, g is
a k-junta, since the value of g(x) depends only on xJ . On the other hand, we shall show that f is
δ-close to g. Let g′ : {0, 1}k → {0, 1} be such that g(x) = g′(xJ) for every x. Then

Prx∈{0,1}ℓ [f(x) = g(x)] = Prx∈{0,1}ℓ [f(x) = g′(xJ)]

= Eα∈{0,1}k
[
Prx:xJ=α[f(x) = g′(α)]

]

= Eα∈{0,1}k [pα] ,

where pα
def
= Prx:xJ=α[f(x) = g′(α)]. Fixing any α ∈ {0, 1}k , let Z denote the uniform distribution

over {z ∈ {0, 1}ℓ : zJ = α}. Then, pα = Pr[f(Z)=g′(α)] = maxv{Pr[f(Z)=v]}, by the definition
of g′ (and g). It follows that the collision probability of f(Z), which equals

∑
v Pr[f(Z) = v]2 =

p2
α + (1− pα)2, is at most pα. Hence,

Prx∈{0,1}ℓ [f(x) = g(x)] = Eα∈{0,1}k [pα]

≥ Eα∈{0,1}k

[
∑

v

Prz:zJ=α[f(z) = v]2

]

= Eα∈{0,1}k [Prx,y:xJ=yJ=α[f(x) = f(y)] ]

= Prx,y:xJ=yJ
[f(x) = f(y)]

= 1− IJ(f).

Recalling that IJ(f) ≤ δ, it follows that f is δ-close to g, and recalling that g is a k-junta the claim
follows.

Recall that our goal is to prove that any function that is ǫ-far from being a k-junta is rejected
by Algorithm 5.14 with probability at least 2/3. Let us fix such a function f for the rest of the
proof, and shorthand IS(f) by IS . By Claim 5.15.2, every (ℓ−k)-subset has influence greater than
ǫ on f . This noticeable influence may be due to one of two cases:

1. There are at least k+1 elements in [ℓ] that have each a noticeable influence (i.e., each singleton
that consists of one of these elements has noticeable influence).

Fixing such a collection of k + 1 influential elements, a random t-partition is likely to have
these elements reside in different parts (since, say, t > 10 · (k+1)2), and in such a case each of
these parts will have noticeable influence, which will be detected by the algorithm and cause
rejection.

2. Otherwise (i.e., at most k elements have noticeable influence), the set of elements that are
individually non-influential is of size at least ℓ − k, and thus contains an (ℓ − k)-subset,
which (by Claim 5.15.2) must have noticeable influence. It is tempting to think that the t
parts in a random t-partition will each have noticeable influence, but proving this fact is not
straightforward at all (see the proof of Lemma 5.15.3). Furthermore, this fact is true only
because, in this case, we have a set that has noticeable influence but consists of elements that
are each of small individual influence.
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Towards making the foregoing discussion precise, we fix a threshold τ = c · ǫ/t, where c > 0 is a
universal constant (e.g., c = 0.01 will do), and consider the set of elements H that are “heavy”
(w.r.t individual influence); that is,

H
def
= {i ∈ [ℓ] : I{i} > τ}. (5.7)

The easy case is when |H| > k. In this case (and assuming t ≥ 3 ·(k+1)2), with probability at least
5/6, the partition selected in Step 1 has more than k parts that intersect H (i.e., Pr(R1,..,Rt)[|{i ∈
[t] : Ri ∩H 6= ∅}| > k] ≥ 5/6).26 On the other hand, for each j ∈ [t] such that Rj ∩H 6= ∅, it holds
that IRj ≥ mini∈H{I{i}} > cǫ/t, where the first inequality uses Fact 1. Hence, with probability at

least 1 − (1 − cǫ/t)m ≥ 1 − (1/6t), Step 2 (which estimates IRj by m = Õ(t)/ǫ experiments) will
mark j as influential, and consequently Step 3 will reject with probability at least (5/6)2 > 2/3.

We now turn to the other case, in which |H| ≤ k. By Claim 5.15.2 (and possibly Fact 1)27, we
know that IH > ǫ. Our aim is to prove that, with probability at least 5/6 over the choice of the
random t-partition (R1, ..., Rt), there are at least k + 1 indices j such that IRj > cǫ/t. In fact, we
prove something stronger.28

Lemma 5.15.3 (on the influence of a random part): Let H be as in Eq. (5.7) and IH > ǫ. Then,
for every j ∈ [t], it holds that Pr[IRj∩H > ǫ/2t] > 0.9.

(We comment that essentially the same proof establishes that Pr[IRj∩H = Ω(ǫ/t log t)] > 1−(1/6t),

which implies that with probability at least 5/6 each Rj has influence Ω(ǫ/t log t).)29 Calling j
good if IRj > cǫ/t, Lemma 5.15.3 implies that the expected number of good j’s is at least 0.9t.
Using an averaging argument30 it follows that, with probability at least 5/6, there exist at least
0.9t−(5/6)t

1/6 = 0.4t > k good j’s, and the bound on the rejection probability of the algorithm holds

(just as in the easy case).

Proof: Denote R = Rj, and recall that each i ∈ [ℓ] is placed in R with probability 1/t, independently
of all other choices. Things would have been simple if influence was additive; that is, if it were the
case that IS =

∑
i∈S I{i}. In this case, applying a multiplicative Chernoff Bound (see Eq. (A.15)

in Appendix A) would have yielded the desired bound. Specifically, defining random variables,

ζ1, ...., ζℓ, such that ζi
def
= ζi(R) equals I{i} if i ∈ (R \H) and zero otherwise, and observing that∑

i∈[ℓ] E[ζi] > ǫ/t and ζi ∈ [0, τ ], we would have obtained

PrR



∑

i∈[ℓ]
ζi(R) < ǫ/2t


 < exp(−Ω(τ−1ǫ/t))

26Let H ′ be an arbitrary (k + 1)-subset of H . Then, the probability that some Rj has more than a single element
of H ′ is upper bounded by

`

k+1
2

´

· 1/t < (k + 1)2/2t.
27Fact 1 is used in case |H | < k. In this case we consider an arbitrary k-superset H ′ ⊃ H and use IH ≥ IH′ > ǫ.

Alternatively, one could have stated Claim 5.15.2 with respect to set of size at most k, while observing that its current
proof would have held intact.

28The significant strengthening is in arguing on each individual Rj rather than on some (i.e., k + 1) of them. The
fact that the lemma refers to IRj∩H rather than to IRj

is less significant. While the weaker form suffices for our

application, we believe that the stronger form is more intuitive (both as a statement and as a reflection of the actual
proof).

29Using this bound would have required to use (in Step 2) a value of m that is a factor of log t larger.
30Specifically, suppose that with probability at least 1/6 there are at most t′ good j’s. Then, 5

6
· t + 1

6
· t′ ≥ 0.9t,

which solves to t′ ≥ 0.9t−(5/6)t
1/6

= 5.4t − 5t.
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which is smaller than 0.1 when c = tτ/ǫ > 0 is small enough. Unfortunately, IS =
∑

i∈S I{i} does
not hold in general, and for this reason the proof of the current lemma is not so straightforward.
In particular, instead of the unsupported assumption that the influence of sets is additive (i.e.,
IS =

∑
i∈S I{i}), we shall use the following fact about the influence of sets.

Fact 3 (diminishing marginal gain): For every S, T,M ⊆ [ℓ] and every f , it holds that

IS∪T∪M (f)− IS∪T (f) ≤ IS∪M(f)− IS(f).

(This fact may not be as intuitive as Facts 1 and 2, but it is quite appealing; see Exercise 5.13
or [111, Prop. 2.5].)

Now, we consider the following (less straightforward) sequence of random variables, ζ1, ...., ζℓ,

such that ζi
def
= ζi(R) equals I[i]\H − I[i−1]\H if i ∈ R and zero otherwise.31 Observe that

1. The ζi’s are independent random variables, since the value of ζi only depends on whether or
not i ∈ R.

2. Each ζi is assigned values in the interval [0, τ ], since 0 ≤ I[i]\H − I[i−1]\H ≤ τ , where the
first inequality is due to Fact 1 and the second inequality follows by combining Fact 2 with
I{i}\H ≤ τ . (Indeed, if i ∈ H, then I{i}\H = I∅ = 0, and otherwise I{i}\H = I{i} ≤ τ (by

definition of H).)

3. The expected value of
∑

i∈[ℓ] ζi equals IH/t, since E[ζi] = (I[i]\H − I[i−1]\H)/t whereas∑
i∈[ℓ](I[i]\H − I[i−1]\H) equals I[ℓ]\H − I∅ = IH .

4. As shown next, for every fixed set F , it holds that

∑

i∈[ℓ]
ζi(F ) ≤ IF∩H . (5.8)

(Therefore, PrR

[
IR∩H ≤ ǫ/2t

]
≤ PrR

[∑
i∈[ℓ] ζi(R) ≤ ǫ/2t

]
, and so upper-bounding the

latter probability suffices for establishing the lemma.)

The proof of Eq. (5.8) uses Fact 3, and proceeds as follows (see further justifications below):

∑

i∈[ℓ]
ζi(F ) =

∑

i∈F

(I[i]\H − I[i−1]\H)

=
∑

i∈F\H
(I([i−1]\H)∪{i} − I[i−1]\H)

≤
∑

i∈F\H
(I(([i−1]\H)∩F )∪{i} − I([i−1]\H)∩F ))

=
∑

i∈[ℓ]
(I([i]\H)∩F − I([i−1]\H)∩F )

= I([ℓ]\H)∩F

= IF∩H

31Indeed, we define [0] = ∅, which implies I[0]\H = I∅ = 0.
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where the inequality uses Fact 3 (with S = ([i−1]\H)∩F , T = ([i−1]\H)∩F and M = {i},
which implies S ∪ T = [i− 1] \H).32

Hence, ζ =
∑

i∈[ℓ] ζi is the sum of ℓ independent random variables, each ranging in [0, cǫ/t], such
that E[ζ] > ǫ/t. Applying a multiplicative Chernoff Bound (see Eq. (A.15) in Appendix A) implies
that under these conditions it holds that Pr[ζ ≤ ǫ/2t] < exp(−Ω(1/c)) < 0.1, and the lemma
follows (by Eq. (5.8), when using F = R and recalling that ζi = ζi(R)).

Let us recap. Assuming that f is ǫ-far from being a k-junta, we defined the set H (in Eq. (5.7)).
We first disposed of the easy case in which |H| > k, showing that in this case the algorithm rejects
with probability at least 5/6. Turning to the complimentary case, we showed that if |H| ≤ k, then
(by Claim 5.15.2) the hypothesis of Lemma 5.15.3 holds, and it follows that Pr[IRj > ǫ/2t] > 0.9
for each j ∈ [t]. As shown right after the statement of Lemma 5.15.3, this implies that the algorithm
rejects with probability at least 5/6 also in this case. The theorem follows.

Digest. The main difficulty is establishing Theorem 5.15 is captured by the proof of Lemma 5.15.3,
which can be abstracted as follows. For a function ν : 2[ℓ] → [0, 1] assigning values to subsets of
[ℓ] such that ν([ℓ]) ≥ ǫ and maxi∈[ℓ]{ν({i})} ≤ τ ≪ ǫ/t, we wish to show that PrR[ν(R) < ǫ/2t] is
small, when R is selected at random by picking each element with probability 1/t independently
of all other elements.33 Of course, this is not true in general, and some conditions must be made
on ν such that PrR[ν(R) < ǫ/2t] is small. The conditions we have used are (1) monotonicity,
(2) sub-additivity, and (3) diminishing marginal gain. These conditions correspond to Facts 1-3,

respectively, which were established for ν(S)
def
= IS(f). We comment that Condition (3) is often

called sub-modularity. Hence, we actually established the following (which is meaningful only for
τ ≪ ǫ/t).

Lemma 5.16 (Lemma 5.15.3, generalized): Let ν : 2[ℓ] → [0, 1] be monotone, sub-additive, and
sub-modular (i.e., has diminishing marginal gain) such that ν([ℓ]) ≥ ǫ and maxi∈[ℓ]{ν({i})} ≤ τ .
Suppose that R is selected at random by picking each element with probability 1/t independently of
all other elements. Then, PrR[ν(R) < ǫ/2t] < exp(−Ω(τ−1ǫ/t)).

Recall that ν : 2[ℓ] → R is monotone if ν(S ∪ T ) ≥ ν(S) for all S, T ⊆ [ℓ], it is sub-additive if
ν(S∪T ) ≤ ν(S)+ν(T ) for all S, T ⊆ [ℓ], and it is sub-modular (i.e., has diminishing marginal gain) if
ν(S ∪T ∪M)− ν(S ∪ T ) ≤ ν(S ∪M)− ν(S) for all S, T,M ⊆ [ℓ]. We comment that sub-additivity
implies ν(∅) ≥ 0, whereas sub-modularity and ν(∅) ≥ 0 imply sub-additivity (see Exercise 5.8).

5.4 Chapter notes

The presentation of testing dictatorship via self-correction (Section 5.2.1) is based on the work of
Parnas, Ron, and Samorodnitsky [226]. As noted in Section 5.2.1, the Long Code (presented by
Bellare, Goldreich, and Sudan [37]) yields a family of Boolean functions that coincide with the set
of dictatorship functions when ℓ is a power of two. Interestingly, the monotone dictatorship tester

32In addition, the second equality (i.e., moving from summation over F to summation over F \ H) uses the fact
that for every i ∈ H it holds that [i] \H = [i− 1] \H . Likewise, the third equality (i.e., moving from summation over
F \H to summation over [ℓ]) uses the fact that for every i ∈ H ∪ F it holds that ([i] \H) ∩ F = ([i− 1] \H) ∩ F .

33Indeed, this formulation refers to the case of H = ∅, and captures the essence of Lemma 5.15.3.
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of [226] is almost identical to the tester of the Long Code presented in [37]. This tester has played a
pivotal role in the PCP constructions of [37] as well as in numerous subsequent PCP constructions
including those in [170, 171, 249, 95, 186, 187, 211].

The problem of testing monomials was also studied by Parnas, Ron, and Samorodnitsky [226],
and the overview provided in Section 5.2.2 is based on their work. An alternative procedure for
testing monomials is presented in Chapter 6.

The problem of testing juntas was first studied by Fischer, Kindler, Ron, Safra, and Samorod-
nitsky [111], and the presentation provided in Section 5.3 is based on their work. Recall that the
query complexity of the k-junta tester presented as Algorithm 5.14 is Õ(k4)/ǫ. Several alternative
testers are known, culminating in a tester of Blais [52] that has query complexity O(k/ǫ) + Õ(k),
which is almost optimal. For further discussion, see the survey [53].

Self-correction. The self-correction paradigm, as an algorithmic tool towards the construction of
property testers, was introduced by Blum, Luby, and Rubinfeld [59]. The self-correction paradigm
has been used extensively in constructions of PCP schemes, starting with [29]. As explained in
Section 5.2.3, this paradigm is based on random self-reducibility, which seems to have first appeared
in the “index calculus” algorithms [4, 206, 229] for the Discrete Logarithm Problem. Random
self-reducibility was extensively used in (the complexity theoretic foundations of) cryptography,
starting with the work of Goldwasser and Micali [160]. (These applications, which have a hardness
amplification flavor, may be viewed as applying self-correction to a hypothetical adversary, yielding
an algorithm that is postulated not to exist, and thus establishing specific limitations on the success
probability of efficient adversaries. For example, a hypothetical adversary that approximates a
(“hard-core”) predicate yields an algorithm that inverts the underlying one-way function [145].
Subsequently, the use of random self-reducibility for hardness amplification became quite prevalent
in complexity theory at large.)

Invariances. We note that all properties considered in this chapter are invariant under a permu-
tation of the variables; that is, for each of these properties Π, the function f : {0, 1}ℓ → {0, 1} is
in Π if and only if for every permutation π : [ℓ]→ [ℓ] the function fπ(x1, ..., xℓ) = f(xπ(1), ..., xπ(ℓ))
is in Π. (Note that such permutations of the ℓ variables induce a permutation of the domain
{0, 1}ℓ; that is, the permutation π : [ℓ]→ [ℓ] induces a permutation Tπ : {0, 1}ℓ → {0, 1}ℓ such that
Tπ(x) = (xπ(1), ..., xπ(ℓ)).)

Basic exercises

Exercise 5.1 states a well-known and widely used classic.

Exercise 5.1 (The Schwartz–Zippel Lemma [250, 276, 86]): Prove the following two claims.

Large field version: Let p : Fm → F be a non-zero m-variate polynomial of total degree d over a
finite field F . Then, Prx∈Fm [p(x)=0] ≤ d/|F|.

Small field version: Let p : Fm → F be a non-zero m-variate polynomial of total degree d over a
finite field F . Then, Prx∈Fm [p(x)=0] ≤ 1− |F|−d/(|F|−1).
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Note that the individual degree of p is at most |F| − 1, and so d ≤ m · (|F| − 1). The large field
version, which is meaningful only for |F| > d, is called the Schwartz–Zippel Lemma.34 When
establishing Eq. (5.4), we used the small field version with |F| = 2.

Guideline: Both versions are proved by induction on the number of variables, m. The base case of
m = 1 follows by the fact that p 6≡ 0 has at most d roots, whereas in the small field version we use
the fact that d

|F| ≤ 1− |F|−d/(|F|−1) for every d ∈ [0, |F| − 1] (which is trivial for |F| = 2).35 In the

induction step, assuming that p depends on all its variables, write p(x) =
∑d

i=0 pi(x1, ..., xm−1) ·xi
m,

where pi is an (m− 1)-variate polynomial of degree at most d− i, and let t be the largest integer
such that pt is non-zero. Then, using x′ = (x1, ..., xm−1), observe that

Prx∈Fm [p(x) = 0] ≤ Prx′∈Fm−1 [pt(x
′) = 0] + Prx′∈Fm−1 [pt(x

′) 6= 0] ·Prx∈Fm[p(x) = 0|pt(x
′) 6= 0].

Using the induction hypothesis, prove the induction claim (in both versions).36

Exercise 5.2 (a variant of Algorithm 5.3): Consider a variant of Algorithm 5.3 in which one
selects uniformly i ∈ [3] and performs only Step i of Algorithm 5.3, while accepting if and only if
this step did not reject. Show that this four-query algorithm is a one-sided error proximity oblivious
tester for monotone dictatorship with rejection probability ̺(δ) = Ω(δ).

Guideline: Reduce the analysis to the statement of Theorem 5.4.

Exercise 5.3 (generalizing Theorem 5.10): Consider a relaxation of Definition 5.9 in which R
is allowed to be randomized as long as it recovers the correct value with probability at least 2/3.
Suppose that functions in Π are randomly self-reducible by q queries, in this relaxed sense. Prove
that for every f that is ǫ-close to some f ′ ∈ Π and for every z ∈ D, self-correction succeeds with
probability at least 2

3 · (1− q · ǫ); that is,

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq , f(r1), ..., f(rq)) = f ′(z)] ≥ 2

3
· (1− q · ǫ).

Exercise 5.4 (random self-reducibility mandates distance): Prove that if Π is random self-reducible
by q queries, then for every distinct g, h ∈ Π it holds that δ(g, h) ≥ 1/q.

Guideline: This can be proved by invoking Theorem 5.10 twice (with z on which g and h disagree): In
the first invocation we use f = f ′ = g and ǫ = 0, and in the second invocation (f, f ′) = (g, h) and ǫ =
δ(g, h). By the first invocation we derive Pr[Rg(z) = g(z)] = 1, whereas by the second invocation
we derive Pr[Rg(z) = h(z)] ≥ 1−q ·δ(g, h), where Rg(z) denotes R(z, r1, ..., rq, g(r1), ..., g(rq)) with
(r1, ..., rq)← Q(z). Hence, 1− q · δ(g, h) ≤ 0 must hold (since g(z) 6= h(z)).

34There is also a version for infinite fields. It asserts that for every finite set S such that S ⊆ F , where F is an
arbitrary field (which is possibly infinite), and for any non-zero m-variate polynomial p : Fm → F of total degree d,
it holds that Prx∈Sm [p(x)=0] ≤ d/|S|.

35In general, for a = 1/|F| and b = (ln |F|)/(|F|−1), we need to show that f(x)
def
= 1−ax−e−bx is non-negative for

every integer x ∈ [0, |F|−1]. This can be shown by observing that f decreases at x if and only if x > τ
def
= (1/b) ln(b/a).

Since τ > 0, this means that minx∈[0,|F|−1]{f(x)} equals min(f(0), f(|F| − 1)) = 0.
36A rather careless approach suffices for the large field case (i.e., we can use Prx[p(x) = 0] ≤ Prx′ [pt(x

′) = 0] +
Prx[p(x) = 0|pt(x

′) 6= 0]), but not for the small field case (where one better keep track of the effect of Prx′ [pt(x
′) 6= 0]).

109



Exercise 5.5 (testing intersection with a self-correctable property): Let Π′ and Π′′ be sets of
functions. Suppose that functions in Π′ are randomly self-reducible by q queries, and that Π′ and
Π′′ are ǫ-testable using q′(ǫ) and q′′(ǫ) queries, respectively. Show that, for every ǫ0 < 1/q and
ǫ > 0, the property Π′ ∩Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′(ǫ0)) queries.

Guideline: Using the fact that Π′ has distance at least 1/q (see Exercise 5.4), observe that any
element of Π′ \Π′′ is ǫ0-far from Π′ ∩Π′′, and infer that the tester for Π′′ implies that the promise
problem (Π′,Π′′) can be solved in query complexity q′′(ǫ0). Finally, invoke Theorem 5.11.

Exercise 5.6 (POTs for self-correctable properties – take 1):37 Show that if the functions in Π
are randomly self-reducible by t queries, then Π has a (t + 1)-query proximity-oblivious tester of
detection probability ̺(δ) = (1 − t · δ) · δ. (Indeed, this is meaningful only to functions that are
1/t-close to Π, and Π may be hard to test in general (i.e., for δ ≥ 1/t).)38

Guideline: The POT selects uniformly a random element z in the function’s domain and compares
the value of the function at z to the value obtained (for z) via the self-correction procedure. (For f
at distance δ from Π, letting f ′ ∈ Π be a function at distance δ from f , note that the tester rejects
if f(z) 6= f ′(z) but all t points used by the self-corrector lie in {x : f(x) = f ′(x)}.)

Exercise 5.7 (POTs for self-correctable properties – take 2): In continuation to Exercise 5.6,
suppose again that the functions in Π are randomly self-reducible by t queries. Furthermore, suppose
that the recovery algorithm is extremely sensitive to the function values in the sense that for every
sequence (z, r1, ..., r1, v1, ...., v1) and for every i ∈ [t], the mapping

v 7→ R(z, r1, ..., rt, v1, ..., vi−1, v, vi+1, ..., vt)

is a bijection. Show that Π has a (t + 1)-query proximity-oblivious tester of detection probability
̺(δ) = (t + 1) · (1− t · δ) · δ. (Indeed, Proposition 2.2 follows as a special case.)

Guideline: The tester is the same as in Exercise 5.6, but detection is due not only to the case that the
value of the function at the selected point is wrong (and the t values retreived by the self-corrector
are all correct) but also to the case that the value of the function at the selected point is correct and
exactly one of the t queries made by the self-corrector returned a wrong answer. (In other words,
here we lower bound Prz,(r1,...,rt)←Q(z)[f(z) 6= R(z, r1, ..., rt, f(r1), ..., f(rt))] by the probability that
exactly one of the t+1 points (i.e., z, r1, ..., rt) resides in {x : f(x) 6= f ′(x)}, where f ′ ∈ Π is closest
to f .)

Exercise 5.8 (on properties of set functions): Let ν : 2[ℓ] → R be an arbitrary set function. Show
that

1. if ν is sub-additive, then ν(∅) ≥ 0;

2. if ν is sub-modular and ν(∅) ≥ 0, then ν is sub-additive.

3. if ν is monotone and ν(∅) ≥ 0, then ν is non-negative.

Guideline: In each case, let one of the sets be the empty set.

37See proof of Theorem 5.12.
38See Theorem 7.10 regarding k-linearity, which is randomly self-reducible by two queries.
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Additional exercises

The following exercises actually present proof sketches of various results and facts. Exercises 5.9–
5.11 outline reductions of the task of testing affine subspaces to the task of testing linearity. They
are highly recommended. Exercises 5.12 and 5.13 call for proving Facts 1-3 that were used in the
proof of Theorem 5.15. These facts are of independent interest, and proofs that are simpler and/or
more intuitive than those presented in our guidelines will be greatly appreciated.

Exercise 5.9 (testing affine subspaces – a reduction to the linear case):39 Show that testing whether
a Boolean function h : {0, 1}ℓ → {0, 1} describes a (ℓ−k)-dimensional affine subspace (i.e., whether
the set h−1(1) is such an affine space) can be reduced to testing whether a Boolean function h′ :
{0, 1}ℓ → {0, 1} describes a (ℓ−k)-dimensional linear subspace (i.e., whether {x : h′(x)=1} is such
a linear space), where the reduction introduces an additive overhead of O(2k) queries.

Guideline: Note that if h describes a (ℓ− k)-dimensional affine subspace, then (w.h.p.) a sample of
O(2k) random points in {0, 1}ℓ contains a point on which h evaluates to 1. On the other hand, for

any u such that h(u) = 1, consider the function h′(x)
def
= h(x + u).

Exercise 5.10 (reducing testing linear subspaces to testing linearity):40 Let h : {0, 1}ℓ → {0, 1}
be a Boolean function. Show that testing whether h−1(1) is an (ℓ− k)-dimensional linear subspace
is reducible to testing linearity, while increasing the complexities by a factor of 2k. Specifically,

define a function g : {0, 1}ℓ → {0, 1}k ∪ {⊥} such that if H
def
= h−1(1) is linear then g (ranges

over {0, 1}k and) is linear and g−1(0k) = H. The definition of g is based on any fixed sequence
of linearly independent vectors v(1), ..., v(k) ∈ {0, 1}ℓ such that for every non-empty I ⊆ [k] it
holds that

∑
i∈I v(i) 6∈ H. (If H is an (ℓ − k)-dimensional linear space, then these v(i)’s form

a basis for a k-dimensional linear space that complements H.) Fixing such a sequence, define
g : {0, 1}ℓ → {0, 1}k ∪{⊥} such that g(x) = (c1, ..., ck) if (c1, ..., ck) ∈ {0, 1}k is the unique sequence
that satisfies x +

∑
i∈[k] civ

(i) ∈ H and let g(x) = ⊥ otherwise. (Whenever we say that g is linear,

we mean, in particular, that it never assumes the value ⊥.)41

• Show that H is an (ℓ − k)-dimensional linear space if and only if g (as defined above) is a
surjective linear function.

• Show that if H is an (ℓ − k)-dimensional linear space, then a sequence as underlying the
definition of g can be found (w.h.p.) by making O(2k) queries to h.

• Assuming that g is linear, show that testing whether it is surjective can be done by making
O(2k) queries to h. (It is indeed easier to perform such a check by using O(2k) queries to g.)

Combining the foregoing ideas, present the claimed reduction. Note that this reduction has two-sided
error, and that the resulting tester has query complexity O(2k/ǫ) (rather than O(1/ǫ), all in case
that ǫ < 2−k+2).42

39Based on [138, Sec. 4.1].
40Based on [138, Sec. 4.2]. The argument can be generalized to the case of affine subspaces, while also using a

reduction of testing affinity to testing linearity (of functions); but, in light of Exercise 5.9, such a generalization is
not needed.

41Indeed, when emulating g for the linearity tester, we shall reject if we ever encounter the value ⊥.
42Needless to say, we would welcome a one-sided error reduction. Note that the case ǫ ≥ 2−k+2 can be handled as

in Algorithm 5.6. A complexity improvement for the main case (of ǫ < 2−k+2) appears in Exercise 5.11.
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Guideline: Let V be a k-by-ℓ full rank matrix such that cV ∈ H implies c = 0k (i.e., the rows of
V are the v(i)’s of the hypothesis). Recall that g : {0, 1}ℓ → {0, 1}k ∪ {⊥} is defined such that
g(x) = c if c ∈ {0, 1}k is the unique vector that satisfies x+cV ∈ H (and g(x) = ⊥ if the number of
such vectors is not one). Note that g−1(0k) ⊆ H always holds (since g(x) = c implies x+ cV ∈ H),
and that equality holds if g never assumes the value ⊥ (since in this case x + cV ∈ H implies that
g(x) = c).

Now, on the one hand, if H is an (ℓ − k)-dimensional linear space, then, for some full-rank
(ℓ− k)-by-ℓ matrix G, it holds that H = {yG : y ∈ {0, 1}ℓ−k}. In this case, g is a surjective linear
function (since for every x there exists a unique representation of x as yG + cV , which implies
x + cV = yG ∈ H, and so g(x) = c). On the other hand, if g is a surjective linear function (i.e.,
g(x) = xT for some full-rank ℓ-by-k matrix T ), then H = {x : g(x) = 0k}, which implies that H
is an (ℓ− k)-dimensional linear subspace. It follows that if g is ǫ-close to being a surjective linear
function, then g−1(0k) is ǫ-close to being an ((ℓ − k)-dimensional) linear space (i.e., the indicator
functions of these sets are ǫ-close). In light of the foregoing facts, consider the following algorithm.

1. Using O(2k) queries to h, try to find a k-by-ℓ matrix V such that for any non-zero c ∈ {0, 1}k it
holds that cV 6∈ H. (The matrix V can be found in k iterations such that in the ith iteration we
try to find a vector v(i) such that

∑
j∈[i] cjv

(j) 6∈ H holds for every (c1, ..., ci) ∈ {0, 1}i \ {0i}.)
If such a matrix V is found, then proceed to the next step. Otherwise, reject.

2. Test whether the function g : {0, 1}ℓ → {0, 1}k ∪ {⊥} (defined based on this V ) is linear, and
reject if the linearity tester rejects. When the tester queries g at x, query h on x + cV for all
c ∈ {0, 1}k , and answer accordingly; that is, the answer is c if c is the unique vector satisfying
h(x+cV ) = 1, otherwise (i.e., g(x) = ⊥) the execution is suspended and the algorithm rejects.

3. Test whether g is surjective. Assuming that g is linear, the task can be performed as follows.

(a) Select uniformly at random a target image c ∈ {0, 1}k .

(b) Select uniformly at random a sample S of O(2k) elements in {0, 1}ℓ, and accept if and
only if there exists x ∈ S such that x + cV ∈ H (i.e., g(x) = c).

We stress that we do not compute g at x, which would have required 2k queries to h,
but rather check whether g(x) = c by making a single query to h (i.e., we query h at
x + cV ).

Exercise 5.11 (improving the efficiency of the reduction of Exercise 5.10):43 Let h : {0, 1}ℓ →
{0, 1} be a Boolean function. In Exercise 5.10, we reduced ǫ-testing whether h−1(1) is an (ℓ − k)-
dimensional linear subspace to ǫ-testing the linearity of a function g, where the value of g at any
point can be computed by making 2k queries to h. (Indeed, that reduction made O(2k) additional
queries to h.) This yields an ǫ-tester of time complexity O(2k/ǫ) for testing linear subspaces. Recall
that, for every ǫ0 < 1/4, if g is ǫ0-close to being a linear function, then it is ǫ0-close to a unique
linear function g′, which can be computed by self-correction of g (where each invocation of the
self-corrector makes two queries to g and is correct with probability at least 1− 2ǫ0). This suggests
the following algorithm.

43Based on [138, Sec. 4.3], which in turn is inspired by [145] (as presented in [131, Sec. 7.1.3]). Again, the argument
can be generalized to the case of affine subspaces.
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1. Invoke the algorithm of Exercise 5.10 with proximity parameter set to a sufficiently small
constant ǫ0 > 0. If the said invocation rejects, then reject. Otherwise, let V be the matrix
found in Step 1 of that invocation, and let g be the corresponding function. Let g′ denote the
linear function closest to g.

2. Test that h is ǫ-close to h′ : {0, 1}ℓ → {0, 1}, where h′(x) = 1 if and only if g′(x) = 0k.

We implement this step in complexity Õ(1/ǫ) by taking a sample of m = O(1/ǫ) pairwise
independent points in {0, 1}ℓ such that evaluating g′ on these m points can be done in time
O(m + 2k · Õ(log m)). Specifically, for t = ⌈log2(m + 1)⌉, we select uniformly s(1), ...., s(t) ∈
{0, 1}ℓ, compute each g′(s(j)) via self-correcting g, with error probability 0.01/t, and use the
sample points r(J) =

∑
j∈J s(j) for all non-empty subsets J ⊆ [t]. That is, for each such J , we

check whether h(r(J)) = h′(r(J)) by querying h at r(J) and computing h′(r(J)) (based on the
obtained values of the g′(s(j))’s), and reject if and only if we find a point r(J) of disagreement.

Assuming that g′ is surjective, show that the foregoing algorithm constitutes an ǫ-tester of time
complexity O(ǫ−1 + 2k · Õ(log(1/ǫ))) for (ℓ− k)-dimensional linear subspaces. The assumption can
be removed by slightly augmenting the algorithm.

Guideline: Note that g′(
∑

j∈J s(j)) =
∑

j∈J g′(s(j)), and show that the r(J)’s are pairwise indepen-
dent.

Exercise 5.12 (the influence of sets is monotone and sub-additive): Prove that for every S, T ⊆ [ℓ]
and every f : {0, 1}ℓ → {0, 1} it holds that

1. IS(f) ≤ IS∪T (f).

2. IS∪T (f) ≤ IS(f) + IT (f).

Guideline: The key observation is that IS(f) equals twice the expectation over r of Vz∈{0,1}ℓ:zS=rS
[f(z)],

where r is distributed uniformly in {0, 1}ℓ; that is,

0.5 · IS(f) = Er∈{0,1}ℓ
[
Vz∈{0,1}ℓ:zS=rS

[f(z)]
]
. (5.9)

This is the case since

IS(f) = Er∈{0,1}ℓ
[
Prx,y∈{0,1}ℓ:xS=yS=rS

[f(x) 6= f(y)]
]

= Er∈{0,1}ℓ [2 · pr · (1− pr)]

where pr
def
= Prz∈{0,1}ℓ:zS=rS

[f(z) = 1], while observing that Vz∈{0,1}ℓ:zS=rS
[f(z)] = pr · (1 − pr).

The two parts of the exercise are proven by manipulation of the relevant quantities when expressed
as expectation of variances (i.e., as in Eq. (5.9)).

Part 1 is proved by considering, without loss of generality, the case that S and T are disjoint
(since otherwise we can use S and T \ S). When proving it, use the “law of total variance”, which
considers a random variable Z that is generated by first picking x← X and outputting Zx, where
X and the Zx’s are independent random variables. The said law asserts that the variance of Z
(i.e., V[Z]) equals Ex←X [V[Zx]]+Vx←X [E[Zx]] (and its proof is via striaghtforward manipulations,
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which only use the definition of variance).44 Now, assume, for simplicity of notation, that S = [1, a]
and T = [a + 1, b], and consider selecting uniformly w ∈ {0, 1}ℓ−b and (u, v) ∈ {0, 1}a × {0, 1}b−a.
Then, we have

0.5 · IS∪T (f) = Ew∈{0,1}ℓ−b [Vuv∈{0,1}b [f(uvw)]]

= Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Vv∈{0,1}b−a [Eu∈{0,1}a [f(uvw)]]

]

≥ Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]]

]

= Evw∈{0,1}ℓ−a

[
Vu∈{0,1}a [f(uvw)]

]

= 0.5 · IS(f)

In Part 2 we again assume that S and T are disjoint, but now the justification is by Part 1 (which
implies IT\S(f) ≤ IT (f)). In the proof itself, using the same notations as in the proof of Part 1,
we have

0.5 · IS∪T (f) = Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Vv∈{0,1}b−a [Eu∈{0,1}a [f(uvw)]]

]

≤ Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Eu∈{0,1}a [Vv∈{0,1}b−a [f(uvw)]]

]

= Evw∈{0,1}ℓ−a

[
Vu∈{0,1}a [f(uvw)]

]
+ Euw∈{0,1}a+ℓ−b

[
Vv∈{0,1}b−a [f(uvw)]

]

= 0.5 · IS(f) + 0.5 · IT (f)

where the inequality is proved by using the definition of variance.45 Indeed, we could have assumed,
w.l.o.g., that b = ℓ (and avoided taking the expectation over w), since for every A ⊆ S ∪ T it holds
that IA(f) = Ew[IA(fw)], where fw(uv) = f(uvw).

44The proof is as follows

V[Z] = E[Z2] − E[Z]2

= Ex←X [E[Z2
x]] − Ex←X [E[Zx]]2

= Ex←X [V[Zx] + E[Zx]2] − Ex←X [E[Zx]]2

= Ex←X [V[Zx]] + Ex←X [E[Zx]2] − Ex←X [E[Zx]]2

= Ex←X [V[Zx]] + Vx←X [E[Zx]]

where the last equality refers to a random variables that is assigned the value E[Zx] with probability Pr[X=x].
45For any w ∈ {0, 1}ℓ−b, letting fw(uv) = f(uvw), prove that

Vv∈{0,1}b−a [Eu∈{0,1}a [fw(uv)]] ≤ Eu∈{0,1}a [Vv∈{0,1}b−a [fw(uv)]],

using V[Z] = E[(Z − E[Z])2] = E[Z2] − E[Z]2 and E[Z]2 ≤ E[Z2] (which is implied by it). Specifically, we have

Vv∈{0,1}b−a [Eu∈{0,1}a [fw(uv)]] = Ev[(Eu[fw(uv)] − Ev′ [Eu[fw(uv′)])2]

= Ev[(Eu[fw(uv)] − Eu[Ev′ [fw(uv′)])2]

= Ev[Eu[fw(uv) − Ev′ [fw(uv′)]]2]

≤ Ev[Eu[(fw(uv) − Ev′ [fw(uv′)])2]]

= Eu[Ev[(fw(uv) − Ev′ [fw(uv′)])2]]

= Eu[Vv[fw(uv)]]
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Exercise 5.13 (the influence of sets has diminishing marginal gain): Prove that for every S, T,M ⊆
[ℓ] and every f , it holds that

IS∪T∪M(f)− IS∪T (f) ≤ IS∪M(f)− IS(f).

Guideline: As shown next, we may focus on the case that S, T and M are disjoint. Considering
only T and M that are disjoint of S is without loss of generality, since we may consider T \ S
and M \ S, respectively. Focusing on disjoint M and T is justified by monotonicity (i.e., Part 1 of
Exercise 5.12). Furthermore, we can assume, w.l.o.g., that S ∪ T ∪M = [ℓ] (see comment at the
end of the guideline for Exercise 5.12).

Now, assume, for simplicity of notation, that S = [1, a], T = [a + 1, b], and M = [b + 1, ℓ], and
consider selecting uniformly (u, v,w) ∈ {0, 1}a × {0, 1}b−a × {0, 1}ℓ−b. Then, using Eq. (5.9), we
have

0.5 · IS∪M (f)− 0.5 · IS(f)

= Ev∈{0,1}b−a [Vuw∈{0,1}a+ℓ−b [f(uvw)]] − Evw∈{0,1}ℓ−a [Vu∈{0,1}a [f(uvw)]]

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [Eu∈{0,1}a [f(uvw)]] + Ew∈{0,1}ℓ−b [Vu∈{0,1}a [f(uvw)]]]

−Evw∈{0,1}ℓ−a [Vu∈{0,1}a [f(uvw)]]

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [Eu∈{0,1}a [f(uvw)]]]

where the second equality uses the “law of total variance” (see guideline to Exercise 5.12). Similarly,

0.5 · IS∪T∪M(f)− 0.5 · IS∪T (f) = Vw∈{0,1}ℓ−b [Euv∈{0,1}b [f(uvw)]].

Letting g(vw) = Eu∈{0,1}a [f(uvw)], we have

0.5 · IS∪M(f)− 0.5 · IS(f)

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [g(vw)]]

≥ Vw∈{0,1}ℓ−b [Ev∈{0,1}b−a [g(vw)]]

= 0.5 · IS∪T∪M (f)− 0.5 · IS∪T (f)

where the inequality is proved by using the definition of variance (as in Footnote 45).
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Chapter 6

Testing by Implicit Sampling

Summary: Building on the junta tester, we present a general methodology for con-
structing testers for properties of Boolean functions (of the form f : {0, 1}ℓ → {0, 1})
that can be approximated by small juntas. This methodology yields testers of low query
complexity for many natural properties, which contain functions that depend on rela-
tively few relevant variables; specifically, the query complexity is related to the size of
the junta and is independent of the length of the input to the function (i.e., ℓ).

This chapter is based on the work of Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and
Wan [91]. The paradigm introduced in their work is often called testing by implicit learning (see,
e.g., [251]), but we prefer the term “implicit sampling” for reasons that will be clarified later. This
chapter builds on the junta tester presented in Section 5.3; thus, the latter section is a prerequisite
to the current chapter.

6.1 Introduction

As in Chapter 5, we view Boolean functions f : {0, 1}ℓ → {0, 1} as functions of ℓ Boolean variables.
The natural interest in Boolean functions that have few relevant variables leads to an interest
in functions of this type that have additional properties; that is, for a parameter k, we consider
properties that are subsets of the set of all k-juntas. Such properties may refer both to the set of
relevant variables and on the residual function (applied to the relevant variables).

We focus on the case that these additional properties are only properties of the residual function
(and are independent of the identity of the relevant variables).1 That is, we are interested in
properties of the form Π ⊆ {f : {0, 1}ℓ → {0, 1}} such that there exists Π′ ⊆ {f ′ : {0, 1}k → {0, 1}}
so that f ∈ Π if and only if for some k-subset I and f ′ ∈ Π′ it holds that f(x) = f ′(xI). For
example, k-linearity is the set of linear Boolean functions that depend on exactly k variables (i.e.,
f : {0, 1}ℓ → {0, 1} is k-linear iff f(x) = ⊕i∈Ixi for some k-subset I).

1Hence, these properties are invariant under any permutation of the variables; that is, for each of these properties
Π, the function f : {0, 1}ℓ → {0, 1} is in Π if and only if for every permutation π : [ℓ] → [ℓ] the function fπ(x1, ..., xℓ) =
f(xπ(1), ..., xπ(ℓ)) is in Π. (Note that such permutations of the ℓ variables induce a permutation of the domain {0, 1}ℓ;
that is, the permutation π : [ℓ] → [ℓ] induces a permutation Tπ : {0, 1}ℓ → {0, 1}ℓ such that Tπ(x) = (xπ(1), ..., xπ(ℓ)).)
In contrast, properties that refer to the set of relevant variables (e.g., the set of functions that depend only on k out
of the first 3k variables) are not invariant under all permutations of the variables.
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The study of testers for such properties leads to a technique that illustrates the usefulness of
partial information of the type that is provided by property testers. We refer to information of
the form “the set S contains no relevant variables” (of the function f). Specifically, given oracle
access to f such that f(x) = f ′(xI) for some small but unknown I ⊂ [ℓ], we show how to use
partial information of the foregoing type in order to efficiently generate random pairs of the form
(z, f ′(z)), which can be used for testing whether f ′ has the desired property. We stress that the
generation of such random pairs is performed without knowing I and without trying to find it.

Organization. Section 6.2 constitutes the core of this chapter; it presents the technique of “test-
ing by implicit sampling” and focuses on testing properties of the foreging type (i.e., subclases of
juntas that are defined in terms of properties of the residual function). Section 6.3 extends the
results to properties that are approximated by the foregoing properties.

Teaching note: We suggest focusing on Section 6.2, and leaving Section 6.3 for advanced independent

reading.

6.2 Testing subsets of k-juntas

Recall that a function f : {0, 1}ℓ → {0, 1} is called a k-junta if there exists k indices i1, ..., ik ∈
[ℓ] and a Boolean function f ′ : {0, 1}k → {0, 1} such that f(x) = f ′(xi1 · · · xik) for every x =
x1 · · · xℓ ∈ {0, 1}ℓ. Here, we assume, without loss of generality, that i1 < · · · < ik. In other words,
f(x) = f ′(xI), where I = {i1, ..., ik} ⊆ [ℓ] such that i1 < · · · < ik and xI denotes the k-bit long
string xi1 · · · xik . Natural subsets of k-juntas arise when restricting f ′ to reside in a predetermined
set of functions. Specifically, we refer to the following definition.

Definition 6.1 ((k,Φ)-juntas): Let Φ be a set of Boolean functions over {0, 1}k. A function
f : {0, 1}ℓ → {0, 1} is called a (k,Φ)-junta if there exist a k-subset I and a Boolean function
f ′ : {0, 1}k → {0, 1} in Φ such that f(x) = f ′(xI) for every x ∈ {0, 1}ℓ.

Properties of this form (i.e., (k,Φ)-juntas) may be viewed as properties of functions that have only
k relevant inputs (called “relevant attributes” in the machine learning literature). Hence, it is
reasonable to hope that computational tasks related to these properties will have query complexity
that does not depend on ℓ, and may only depend on k ≪ ℓ.

A natural way to test whether a function is a (k,Φ)-junta is to first check that it is a k-junta,
then find the corresponding set I, and finally test whether the corresponding f ′ is in Φ. The point
(of “testing by implicit sampling”) is that we want to avoid finding the set I, since in general
finding the set I requires more than log

(ℓ
k

)
queries (see Exercise 6.1), whereas we may wish the

query complexity to be independent of ℓ. The paradigm of implicit sampling offers a way of skipping
the second step (of finding I), and generating a random sample of labeled k-tuples that can be
used for testing f ′. Note, however, that the testing of f ′ is performed by samples only; that is, we
invoke a tester for Φ that only uses f ′-labeled samples (and makes no queries to f ′).2 The relevant
definition of such testers was briefly mentioned in Section 1.3.2; they are called sample-based, and
are defined as follows.

2The reason that we cannot support queries will be clarified in the proof of Theorem 6.3.
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Definition 6.2 (sample-based tester for property Φ): Let Φ = ∪n∈NΦn such that Φn contains
functions defined over [n], and s : N × (0, 1] → N. A sample-based tester of (sample) complexity s
for Φ is a probabilistic machine, denoted T , that satisfies the following two conditions.

1. T accepts inputs in Φ: For every n ∈ N and ǫ > 0, and for every f ∈ Φn, it holds that
Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is)))=1] ≥ 2/3, where s = s(n, ǫ) and i1, ..., is are drawn inde-
pendently and uniformly in [n].

2. T rejects inputs that are ǫ-far from Φ: For every n ∈ N and ǫ > 0, and for every f with
domain [n] such that δΦ(f) > ǫ, it holds that Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is))) = 0] ≥ 2/3,
where δΦ(f) denotes the distance of f from Φ, and i1, ..., is are as in Item 1.

If the first condition holds with probability 1, then we say that T has one-sided error.

The sequence ((i1, f(i1))..., (is, f(is))) is called an f -labeled sample of s points (in the domain of
f). Recall that any set Φ = ∪n∈NΦn can be tested by using a sample of size O(ǫ−1 log |Φn|), via
reducing (sample-based) testing to (sample-based) proper learning (see Section 1.3.5). Now, we are
ready to state a general result that is obtained by the “implicit sampling” paradigm.

Theorem 6.3 (testing by implicit sampling):3 Let Φ be a property of k-variate Boolean functions
(i.e., functions from {0, 1}k to {0, 1}) such that Φ is invariant under permuting the bits of the
argument to the function (i.e., f ′ ∈ Φ if and only if for every permutation π : [k] → [k] it holds
that f ′π(y) = f ′(yπ(1), ..., yπ(k)) is in Φ). Suppose that there exists a sample-based tester of sample
complexity sk : (0, 1] → N for Φ such that sk(ǫ) ≥ 1/ǫ. Then, (k,Φ)-juntas can be tested within
query complexity q(n, ǫ) = poly(k) · Õ(sk(0.9ǫ)

2). Furthermore, each of the queries made by this
tester is uniformly distributed in {0, 1}ℓ.

Needless to say, this result is beneficial only when k ≪ ℓ (since we can always find the junta
within complexity Õ(k log ℓ/ǫ); see Exercise 6.2). Note that all properties of ℓ-variate Boolean
functions discussed in prior chapters are invariant in the foregoing sense (i.e., they are invariant
under renaming of the variables; see Exercise 6.3). In contrast, properties that do not satisfy this
condition refer to the identity of the variables (e.g., all Boolean functions that are influenced by
their first variable), and seem less natural (especially in the current context).

Proof: Recall that we plan to test whether f : {0, 1}ℓ → {0, 1} is a (k,Φ)-junta by first testing
whether f is a k-junta, which means that f(x) = f ′(xI) for some k-subset I and f ′ : {0, 1}k → {0, 1},
and then testing whether f ′ is in Φ. We have seen a junta tester in Section 5.3, so the real challenge
here is to test f ′ for membership in Φ while only having access to f . Recall that passing the k-
junta test only assures us that f is close to being a k-junta (rather than actually being a k-junta).
Nevertheless, let us assume for a moment that f is a k-junta. Furthermore, suppose that we are
given a k-partition of [ℓ], denoted (S1, ..., Sk), such that each part has exactly one member of the
junta (i.e., |Sj ∩ I| = 1 for every j ∈ [k]).

In such a case, things would have been easy. We could have emulated a standard tester for Φ
as follows. When the tester issues a query y = y1 · · · yk, we would query f on the string z such that
for every j ∈ [k] and i ∈ Sj it holds that zi = yj. This relies on the hypothesis that f(x) = f ′(xI),
which implies that zI equals yπ(1) · · · yπ(k) for some permutation π : [k]→ [k], and on the hypothesis
that membership in Φ is invariant under permuting the bits of the argument to f ′.

3The constant 0.9 can be replaced by any constant in (0, 1).
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Unfortunately, the k-junta test only assures us that f is close to being a k-junta, and so we
cannot rely on the answers that f provides on the 2k possible z’s used in the foregoing construction.
In other words, after verifying that f : {0, 1}ℓ → {0, 1} is close to being a k-junta, denoted g (such
that g(x) = g′(xI) for some I and g′ : {0, 1}k → {0, 1}), we can safely obtain the value of g only at
uniformly distributed points. We shall show that this suffices for generating g′-labeled samples (in
the domain of g′), which is far from being obvious. (For this reason, we can emulate a sample-based
tester, but not a tester that makes queries.)

The key question, indeed, is how can we generate these g′-labelled samples, without knowing I.
Suppose that f is ǫ′-close to a k-junta g (such that g(x) = g′(xI) for some k-subset I), and suppose
again that we are given a k-partition of [ℓ], denoted (S1, ..., Sk), such that each part has exactly
one member of the junta (i.e., |Sj ∩ I| = 1 for every j ∈ [k]). Note that the difference from the
first paragraph (of the proof) is that this junta (i.e., I) refers to g, not to f (which is only close
to g). Now suppose that we pick x ∈ {0, 1}ℓ uniformly at random, and obtain f(x), which equals
g(x) = g′(xI) with probability at least 1− ǫ′. So we got the g′-label of xI , but we do not know xI

(although we do know x), since we don’t know I. Actually, having xS1∩I · · · xSk∩I is good enough,
since we can consider testing g′π(z) = g′(zπ(1) · · · zπ(k)) (for a suitable π)4 whose distance from Φ
equals the distance of g′ from Φ. Hence, for each j ∈ [k], we wish to obtain xSj∩I .

In other words, given x ∈ {0, 1}ℓ and S = Sj ⊂ [ℓ] such that exactly one bit-location in S
influences the value of g (i.e., |S∩I| = 1), we wish to find out the value assigned to this bit-location
in x. We can determine this value by finding out whether S0 = S ∩ {i : xi = 0} influences g, since
if the answer is positive then S0 ∩ I = S ∩ I and xS∩I = 0, and otherwise xS∩I = 1 holds (since we
have assumed that S does influence g). Furthermore, the influence of S on g is closely related to
the influence of S on f (i.e., these influences differ by at most 2ǫ′), since g is close (i.e., ǫ′-close) to
f . Finally, recall that we know how to test whether a set of locations influences a function; this is
part of the junta tester (presented in Section 5.3). We review this part next.

Algorithm 6.3.1 (testing influence of a set of locations on a function f): On input a set S ⊆ [ℓ]
and a parameter m, and oracle access to f : {0, 1}ℓ → {0, 1}, select uniformly m random pairs
(r, s) such that r and s agree on bit positions [ℓ]\S (i.e., rS = sS), and indicate that S is influential
if and only if f(r) 6= f(s) for any of these pairs (r, s). Actually, output the fraction of pairs (r, s)
such that f(r) 6= f(s) as an estimate of the influence of S.

Recalling that the influence of S on f , denoted IS(f), equal the probability that a single pair
yields different values (i.e., Prr,s:rS=sS

[f(r) 6= f(s)]), it follows that S is deemed influential with
probability 1−(1−IS(f))m, which equals 1−exp(−Θ(m ·IS(f))) if IS(f) > 0 (and zero otherwise).
Furthermore, the estimate output by Algorithm 6.3.1 distinguishes, with success probability 1 −
exp(−Ω(m · ν)), between the case that IS(f) ≥ 2ν and the case that IS(f) ≤ ν. This is done
by ruling according to whether or not the said estimate (i.e., the fraction of pairs (r, s) such that
f(r) 6= f(s)) exceeds 1.5ν.

Returning to the foregoing k-partition (S1, ..., Sk), we observe that a procedure for finding such
a k-partition is also implicit in the k-junta tester we saw (in Section 5.3): It amounts to selecting a
O(k2)-partition at random, and testing whether more than k of the parts influence f . If the answer
is positive, then we shall reject, and otherwise we can use this O(k2)-partition for our purposes
(either by merging the O(k2) parts into k sets such that each set contains at most one influential
part or by just using the influential parts and ignoring the rest).

4If I = {i1, .., ik} such that i1 < · · · < ik, then π is defined such that {ij} = Sπ(j)∩I . Hence, zπ(j) = xSπ(j)∩I = xij
.
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There is one problem with the forgoing suggestion. Taking a close look at the paragraph
preceding Algorithm 6.3.1, note that we have assumed that each Sj contains a single influential
variable; that is, we assumed that the singleton I ∩ Sj has positive influence on f . This is not
necessarily the case. For starters, it may be that g is actually a (k − 1)-junta. Moreover, even
if g depends on all variables in I, it may be the case that some of these variables have negligible
influence on g. Lastly, recall that we are estimating the influence of sets on f rather than on g,
and the difference is not necessarily zero, although it is small. The reason that these cases pose
a problem is that if we determine the jth bit in the k-bit sample (i.e., xSj∩I) according to the
influence of S0

j on f , then we may almost always set this value to 1 when Sj ∩ I has negligible
influence on f . In such a case we shall end-up invoking the sample-based tester on a sample that
is not uniformly distributed.

The foregoing problem is resolved by estimating the influence of Sj on f . If this influence is
noticeable, then we set the jth bit of the sample as suggested (i.e., we set it to 0 if and only if S0

j has
positive influence of f). Otherwise (i.e., when Sj has negligible influence on f), we just set this bit
at random (i.e., to be 0 with probability 1/2). The foregoing ideas yield the following algorithmic
schema, which utilizes a sample-based tester of complexity sk for Φ. Specifically, Steps 1 and 2 of
this scheme correspond to a k-junta tester (and are indeed identical to Algorithm 5.14), but the
partition generated in Step 1 is also used in the subsequent steps. In particular, Step 3 provides a
finer estimate of the influence of the k relevant parts of the partition, Step 4 uses such estimates
towards generating labeled samples for the Φ-tester, and Step 5 invokes this tester. We note that
the proximity parameters for the “tests of influence” (denoted ǫ2 and ǫ3) are set to values that are
smaller than ǫ (but related to it).

Algorithm 6.3.2 (testing (k,Φ)-juntas): Let c > 0 be a sufficiently small constant (e.g., c = 0.01).
On input parameters ℓ and ǫ, and oracle access to a function f : {0, 1}ℓ → {0, 1}, the tester sets
t = Θ(k2), and proceeds as follows.

1. Select a random t-way partition of [ℓ], denoted (R1, ..., Rt), by assigning each i ∈ [ℓ] a uni-
formly selected j ∈ [t], which means that i is assigned to Rj.

2. For each j ∈ [t], check whether Rj influences f (i.e., Rj has positive influence on f). The aim
is distinguishing, with success probability at least 1 − c/t, between the case that IRj(f) = 0

and the case that IRj(f) ≥ ǫ2
def
= c/(2t · k · sk(0.9ǫ)).

This is done by using Algorithm 6.3.1, while setting the parameter m to m2
def
= O(ǫ−1

2 log t),
and asserting that Rj influences f if and only if the estimate output by the algorithm is
positive.

Let J denote the set of j’s for which Rj was found to influence f . If |J | > k, then the
algorithm rejects. Otherwise, assume, without loss of generality, that |J | = k, by possibly
considering a k-superset of J . For notational simplicity, we assume that J = [k].5

3. For each j ∈ J , estimate the influence of Rj on f with the aim of distinguishing, with success
probability at least 1−c/k, between the case that IRj (f) ≥ 4ǫ3 and the case that IRj(f) < 3ǫ3,

where ǫ3
def
= 4tǫ2 = 2c/(k · sk(0.9ǫ)) ≤ 2c · ǫ.

5In general, one should use a one-to-one mapping φ : J → [k]. In this case, in Step 4b, for every j ∈ J , we set
yφ(j) according to Rx

j .
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This is done by using Algorithm 6.3.1, while setting the parameter m to m3
def
= O(ǫ−1

3 log k),
and deciding based on the estimate that it outputs.

Let J ′ ⊆ J denote the set of j’s for which the foregoing estimate exceeds 3.5ǫ3.

4. Generate sk(0.9ǫ) labelled samples for the (sample-based) tester of Φ, where each labelled
sample is generated as follows.

(a) Select uniformly x ∈ {0, 1}ℓ and query f at x.

(b) For every j ∈ J ′, estimate the influence of Rx
j on f , where Rx

j = {i ∈ Rj : xi =0}. Here
the aim is to distinguish, with success probability at least 1− c/(k · sk(0.9ǫ)), between the
case that IRx

j
(f) ≤ ǫ3 and the case that IRx

j
(f) ≥ 2ǫ3.

This is done by using Algorithm 6.3.1, while setting the parameter m to m4
def
= O(ǫ−1

3 log(k·
sk(0.9ǫ))), and asserting that Rx

j has high influence on f if and only if the output esti-
mate exceeds 1.5ǫ3. In the first case (i.e., Rx

j was asserted to have high influence), set
yj = 0 and otherwise set yj = 1.

(c) For every j ∈ J \ J ′, select yj uniformly at random in {0, 1}.

The labelled sample is (y1 · · · yk, f(x)).

5. Invoke the sample-based tester for Φ, while using proximity parameter 0.9ǫ, and assuming it
has error probability at most c. Provide this tester with the sk(0.9ǫ) labeled sample generated
in Step 4, and output its verdict (i.e., accept if and only if the latter tester has accepted).

We first note that each query made by Algorithm 6.3.2 is uniformly distributed in {0, 1}ℓ. The
query complexity of the algorithm is t ·2m2 +k ·2m3 +sk(0.9ǫ) · (1+k ·2m4 ), where the first term is
due to Step 2, the second term is due to Step 3, and the third term is due to Step 4. (We may ignore
the second term since it is dominated by the first.) Using m2 = O(ǫ−1

2 log t) = Õ(tk) · sk(0.9ǫ) and

m4 = O(ǫ−1
3 log(k · sk(0.9ǫ))) = Õ(sk(0.9ǫ) · k), we obtain a complexity bound of

O(t ·m2 + sk(0.9ǫ) · k ·m3) = Õ(k5 · sk(0.9ǫ) + k2 · sk(0.9ǫ)
2).

We now turn to the analysis of Algorithm 6.3.2.
First, suppose that f is a (k,Φ)-junta. Let f ′ ∈ Φ be such that f(x) = f ′(xI) for some k-subset

I and all x ∈ {0, 1}ℓ. Then, with probability at least 1 − c over the choice of the t-partition
(selected in Step 1), it holds that |Rj ∩ I| ≤ 1 for each j ∈ [t]. In this case, with probability at least
1− c, the set J determined in Step 2 contains all j’s such that IRj (f) ≥ ǫ2 (which implies that it
contains contains all j’s such that IRj(f) ≥ 4ǫ3). Likewise, with probability at least 1− c, the set
J ′ determined in Step 3 satisfies

{j ∈ [t] : IRj (f) ≥ 4ǫ3} ⊆ J ′ ⊆ {j ∈ [t] : IRj(f) > 3ǫ3}. (6.1)

Now, for each x selected in Step 4 and for each j ∈ J ′, with probability at least 1− c/(k · sk(0.9ǫ)),
the algorithm determines yj such that yj = xRj∩I .

6 As for j ∈ J\J ′, with probability at least 1−4ǫ3

6This description assumes, for notational simplicity, that J = [k] and that Rj ∩ I = {ij} where I = {i1, ..., ik}
and i1 < · · · < ik. Eliminating the first assumption requires using yφ(j) instead of yj , where φ is as in Footnote 5.
Eliminating the second assumption requires referring to f ′π (rather than to f ′) for an adequate permutation π over
[k] (i.e., π sorts the k-sequence (Rj ∩ I)j∈J), as in the motivating discussion. The same comment applies to the next
couple of paragraphs (which deals with f that is ǫ-far from being a (k,Φ)-junta).
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(over the choice of x), it holds that replacing xRj∩I by yj does not affect the value of f . Hence (using

ǫ3 = 2c/(ksk(0.9ǫ))), with probability at least (1−c)3 ·(1−c/(k ·sk(0.9ǫ)))k·sk(0.9ǫ)−k ·sk(0.9ǫ)·4ǫ3 >
(1 − c)4 − 8c > 1 − 12c, the sample-based tester for Φ is invoked with a uniformly distributed f ′-
labeled sample. It follows that f is accepted with probability at least (1− 12c) · (1− c) > 2/3.

Next, we consider the case that f is ǫ-far from being a (k,Φ)-junta. As shown in Section 5.3, if
f is 2tǫ2-far from being a k-junta, then it will be rejected in Step 2 (with high probability over the
choice of the t-partition and the execution of Step 2). Hence, we focus on the case that f is 2tǫ2-
close to a k-junta g, which in turn is (ǫ− 2tǫ2)-far from being a (k,Φ)-junta; that is, g(x) = g′(xI)
for some g′ 6∈ Φ and some k-subset I (and all x ∈ {0, 1}ℓ). It follows that g′ is (ǫ− 2tǫ2)-far from
Φ. Now, as before, with probability at least 1 − c over the partition selected in Step 1, it holds
that |Rj ∩ I| ≤ 1 for each j ∈ [t]. Furthermore, with probability at least 1− c, either Step 2 rejects
or the set J ′ determined in Step 3 satisfies Eq. (6.1). Using the fact that the influence of a set on
the function g is within an additive distance of 2 · 2tǫ2 from the influence of the same set on the
function f (see Exercise 6.4)) and 4tǫ2 ≤ ǫ3, we have

{j ∈ [t] : IRj(g) ≥ 5ǫ3} ⊆ J ′ ⊆ {j ∈ [t] : IRj (g) > 2ǫ3}. (6.2)

Hence, for every j ∈ J ′ it holds that IRj(g) > 2ǫ3, whereas for every i ∈ I \ ∪j∈J ′Rj it holds that
I{i}(g) ≤ 5ǫ3.

Now, note that, with probability at least 1− sk(0.9ǫ) · 2tǫ2 > 1 − c, it holds that f(x) = g(x)
(which equals g′(xI)) for all x’s generated in Step 4, since each x is uniformly distributed in {0, 1}ℓ
(and f is 2tǫ2-close to g). Again, for each x generated in Step 4 and each j ∈ J ′, with probability at
least 1−c/(k ·sk(0.9ǫ)), the algorithm determines correctly the jth bit of xI . As before, the random
setting of the bits in positions J \ J ′ has limited affect. Hence (using ǫ3 = 2c/(ksk(0.9ǫ))), with
probability at least (1−c)3 ·(1−c) ·(1−0.1/(k ·sk(0.9ǫ)))k·sk(0.9ǫ)−k ·s3(0.9ǫ) ·5ǫ3 > (1−c)5−10c >
1−15c, either Step 2 rejects or the sample-based tester for Φ is invoked with a uniformly distributed
g′-labeled sample. Since g′ is (ǫ − 2tǫ2)-far from Φ and ǫ− 2tǫ2 ≥ ǫ− c/sk(0.9ǫ) > 0.9ǫ, it follows
that, in this case, f is rejected with probability at least (1 − 15c) · (1 − c) > 2/3. The theorem
follows.

Applications. To illustrate the applicability of Theorem 6.3, we consider the problems of testing
whether a function f : {0, 1}k → {0, 1} is a (monotone and general) k-monomial, which were
studied in Section 5.2.2. Clearly, the set of k-monomials is a subset of k-juntas, and testing that a
Boolean function f ′ : {0, 1}k → {0, 1} is a k-monomial is quite straightforward (since there are only
2k such functions that are k-monomials (and a single monotone k-monomial)). Hence, invoking
Theorem 6.3, we get –

Corollary 6.4 (testing monotone and general k-monomials): The following two properties of
Boolean functions over {0, 1}ℓ can be tested within query complexity poly(k/ǫ):

1. The set of monotone k-monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some
k-subset I ⊆ [ℓ] it holds that f(x) = ∧i∈Ixi.

2. The set of k-monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some k-subset
I ⊆ [ℓ] and σ = σ1 · · · σℓ ∈ {0, 1}ℓ it holds f(x) = ∧i∈I(xi ⊕ σi).

Furthermore, each query is uniformly distributed in {0, 1}ℓ.
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Proof: Starting with the set of monotone k-monomials, let Φ denote the set of k-variate functions
that are monotone k-monomials. Indeed, Φ is a singleton; that is, there is only one such function.
Hence, testing whether f ′ : {0, 1}k → {0, 1} is in Φ amounts to estimating the distance of f ′ from
the unique monotone k-monomial, which can be done by using O(1/ǫ) random samples. Applying
Theorem 6.3, Part 1 follows.

Turning to the set of k-monomials, let Φ denote the set of k-variate functions that are k-
monomials. Indeed, Φ is of size 2k, and we can estimate the distance of f ′ from each of them by
using O(k/ǫ) random samples. Again, applying Theorem 6.3, Part 2 follows.7

Preservation of computational complexity. Theorem 6.3 is proved by a transformation (cap-
tured by Algorithm 6.3.2) that preserves the computational complexity of the sample-based tester
that is provided in its hypothesis. Hence, obtaining computationally efficient testers for (k,Φ)-
juntas calls for using computationally efficient sample-based testers for Φ, which means that one
should avoid the reduction of testing Φ to the “generic learning” of Φ (via ruling out all functions
in Φ that are far from the input function). Hence, the tester in Exercise 6.5 should be preferred
over the one outlined in the proof of Corollary 6.4.

6.3 Extension to properties approximated by subsets of k-juntas

In this section we extend the result of the previous section to properties that can be approximated
by sets of (k,Φ)-juntas, for adequate choices of k and Φ. The notion of approximation is defined
next.

Definition 6.5 (approximation of a property): The property Π is δ-approximated by the property
Π′ if each function in Π is δ-close to some function in Π′, and vice versa.

For example, the set of (monotone) monomials of unbounded arity is 2−k-approximated by the set
of (monotone) monomials of arity at most k, which in turn is a subset of k-juntas. Specifically, any
monomial can be replaced by a monomial that contains at most k of the original literals. Note that
in this case the approximation error decreases exponentially with k, whereas the query complexity of
testing the relevant subset of k-juntas (i.e., the set of i-monomials for i ≤ k) increases polynomially
with k. Hence, for sufficiently large k, the approximation error is smaller than the reciprocal of the
query complexity. In other words, the complexity of testing the set Π′ that δ-approximates Π is
sub-linear in 1/δ. This is the setting envisioned in the following general result.

Theorem 6.6 (testing via an approximating property):8 Let Π = ∪n∈NΠn such that Πn contains
functions defined over [n]. Suppose that for every δ > 0 there exists a property Πδ = ∪n∈NΠδ

n and
a function qδ : N× (0, 1]→ N such that

1. Πn is δ-approximated by Πδ
n; and

2. Πδ
n can be ǫ′-tested by using qδ(n, ǫ′) queries that are each uniformly distributed in [n].

7Note, however, that the running time of this straightforward tester is exponential in k, since it is based on
estimating 2k quantities. An alternative tester is presented in Exercise 6.5.

8Again, the constant 0.9 can be replaced by any constant c ∈ (0, 1), but in such a case the condition ∆(ǫ) < 0.1ǫ
should be replaced by the condition ∆(ǫ) < (1 − c) · ǫ.
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If there exists a function ∆ : (0, 1]→ (0, 1) such that for every ǫ ∈ (0, 1] it holds that ∆(ǫ) < 0.1ǫ and
q∆(ǫ)(n, 0.9ǫ) < 0.1/∆(ǫ), then Π can be tested within query complexity q(n, ǫ) = O(q∆(ǫ)(n, 0.9ǫ)).

We mention that the transformation presented in the following proof does not preserve one-sided
error probability. Using Theorem 6.6 calls for presenting a sequence of parameterized properties
(i.e., (Πδ)δ>0) such that the approximation distance (to Π) equals this parameter (i.e., the parameter
δ of the property Πδ). It is likely that the query complexity of testing (i.e., testing Πδ) increases
with that parameter (i.e., with δ), and using Theorem 6.6 requires that the rate in which the query
complexity increases is slower than the rate in which the approximation distance decreases (as
reflected in the condition q∆(ǫ)(n, 0.9ǫ) < 0.1/∆(ǫ)). See further discussion following the proof.

Proof: On input parameters n, ǫ and oracle access to f , we set δ = ∆(ǫ) and invoke the guaranteed
tester for Πδ, denoted T , providing it with the parameters n and 0.9ǫ as well as with access to f ,
and output whatever T does. The analysis of T f (n, 0.9ǫ) is based on the observation that if f is
δ-close to some function f ′, then

|Pr[T f (n, 0.9ǫ) = 1]−Pr[T f ′(n, 0.9ǫ) = 1]| ≤ qδ(n, 0.9ǫ) · δ, (6.3)

since (by the hypothesis) each query is uniformly distributed in [n].

Suppose that f ∈ Πn. Then, there exists f ′ ∈ Πδ
n that is δ-close to f , and T accepts f ′

with probability at least 2/3. By Eq. (6.3), it follows that T accepts f with probability at least
2/3 − 0.1 > 0.55, since qδ(n, 0.9ǫ) · δ < 0.1 by the hypothesis (when recalling that δ = ∆(ǫ)).

On the other hand, for f that is ǫ-far from Πn, we observe that f must be (ǫ − δ)-far from
Πδ

n, because otherwise f is (ǫ − δ)-close to a function g′ ∈ Πδ
n, which is δ-close to some g ∈ Πn,

which implies that f is ((ǫ− δ) + δ)-close to Πn. Using ǫ− δ > 0.9ǫ, where the inequality is due to
the hypothesis δ = ∆(ǫ) < 0.1ǫ, it follows that f is 0.9ǫ-far from Πδ, and so T must reject f with
probability at least 2/3. Using error reduction, the theorem follows.

Applications. In the current context, we approximate a given property Π by a sequence of (k, ·)-
junta properties such that the approximation distance to Π decreases with the junta-size parameter
k. It is likely that the query complexity increases with k, and using Theorem 6.6 requires that the
rate in which the query complexity increases is slower than the rate in which the approximation
distance decreases. In many cases (see examples in Diakonikolas et al. [91]), the approximation
distance decreases exponentially with k, whereas the query complexity only grows polynomially
with k. In such cases, we can apply Theorem 6.6.

As with Theorem 6.3, we shall illustrate this application by considering the set of functions that
are (monotone or general) monomials, but this time we refer to monomials of unbounded arity.
Clearly, the set of (monotone or general) monomials is 2−k-approximated by the corresponding set
of monomials of size at most k. The latter set is merely the union of k sets that are each easily
testable (i.e., the sets of i-monomials, for i ∈ [k]). Hence, we get –

Corollary 6.7 (testing monotone and general monomials): The following two properties of Boolean
functions over {0, 1}ℓ can be tested withing query complexity poly(1/ǫ):

1. The set of monotone monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some set
I ⊆ [ℓ] it holds that f(x) = ∧i∈Ixi.
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2. The set of monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some set I ⊆ [ℓ]
and σ = σ1 · · · σℓ ∈ {0, 1}ℓ it holds f(x) = ∧i∈I(xi ⊕ σi).

Proof: As stated above, the relevant set of monomials, denoted Π, is 2−k-approximated by the
corresponding set of monomials of size at most k, denoted Π′. The latter set is the union over
i ∈ [k] of the sets of corresponding i-monomials. Hence, by Corollary 6.4 (and the closure of
testability under unions)9, the set Π′ can be ǫ′-tested using poly(k/ǫ) queries, which are each
uniformly distributed in {0, 1}ℓ. Setting k = O(log(1/ǫ)) and applying Theorem 6.6 , while noting
that 2−k < 0.1ǫ and poly(k/ǫ) < 0.1/2−k, the corollary follows.

More generally, combining Theorems 6.3 and 6.6, we get –

Corollary 6.8 (testing via an approximating (·, ·)-juntas property): Let Π = ∪n∈NΠn such that
Πn contains functions defined over [n]. Suppose that there exist a function κ : (0, 1] → N and a
sequence of properties (Φk)k∈N such that Φk ⊆ {f ′ : {0, 1}k → {0, 1}} and it holds that

1. For every k ∈ N, the property Φk is invariant under permuting the bits of the argument to the
function10 and Φk has a sample-based tester of sample complexity sk : (0, 1] → N such that
sk(ǫ) ≤ sk+1(ǫ) for all ǫ > 0.

2. There exists a function δ : N → (0, 1] such that for every ǫ ∈ (0, 1], the property Πn is
δ(κ(ǫ))-approximated by the union over i ∈ [κ(ǫ)] of the sets of (i,Φi)-juntas and

δ(κ(ǫ)) < min

(
0.1 · ǫ ,

0.1

poly(κ(ǫ)) · Õ(sκ(ǫ)(0.81ǫ))2

)

.

Then, Π can be tested within query complexity poly(κ(ǫ)) · Õ(sκ(ǫ)(0.81ǫ))
2.

Note that the two conditions correspond to the hypotheses in Theorems 6.3 and 6.6, respectively. In
many cases, sk(ǫ) = poly(k/ǫ) and δ(k) = exp(−kΩ(1)), which allows setting κ(ǫ) = poly(log(1/ǫ)).

Proof: By Theorem 6.3 and the first hypothesis, for each i we can test (i,Φi)-juntas by a tester
that makes poly(i) · Õ(si(0.9ǫ)

2) uniformly distributed queries. The same holds with respect to the
union of the first k such properties; that is, it can be ǫ′-tested using poly(k)·Õ(sk(0.9ǫ

′)2) uniformly
distributed queries).11 Fixing any ǫ > 0, let Π′n be the union of the first κ = κ(ǫ) foregoing
properties. Then, by the foregoing, Π′n can be ǫ′-tested using q′(ǫ′) = poly(κ) · Õ(sκ(0.9ǫ′))2

uniformly distributed queries. By the second hypothesis, Πn is δ(κ)-approximated by Π′n, whereas

δ(κ) <
0.1

poly(κ) · Õ(sκ(0.81ǫ))2

=
0.1

q′(0.9ǫ) ,

9See Section 1.3.4.
10As in Theorem 6.3, this means that f ′ ∈ Φk if and only if for every permutation π : [k] → [k] it holds that

f ′π(y) = f ′(yπ(1), ..., yπ(k)) is in Φk.
11See Section 1.3.4 (for the closure of testability under unions).
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where the equality uses q′(0.9ǫ) = poly(κ) · Õ(sκ(0.9 · 0.9ǫ))2. Recalling that κ = κ(ǫ) and δ(κ) <
0.1ǫ, we apply Theorem 6.6, and infer that Πn can be tested within query complexity q(n, ǫ) =
O(q′(0.9ǫ)) = poly(κ) · Õ(sκ(0.92ǫ))2. The corollary follows.

6.4 Chapter notes

The “testing by implicit sampling” methodology originates in the work of Diakonikolas, Lee, Mat-
ulef, Onak, Rubinfeld, Servedio, and Wan [91], which presents numerous applications of it. In
particular, their paper uses this methodology to derive testers for several natural properties includ-
ing sets of functions computable by bounded size devices such as decision trees, branching programs,
Boolean formulas, and Boolean circuits.

This methodology is often called testing by implicit learning (see, e.g., [251]), but we prefer the
term “implicit sampling” for reasons that are closely related to the fact that our presentation of the
said methodology differs from the one in [91] in several aspects. Firstly, we decouple the reduction
of testing a property Π to testing (·, ·)-junta properties that approximate Π from the actual testing
of (·, ·)-junta properties: The former reduction is captured by Theorem 6.6, which is actually more
general, whereas the testing of (·, ·)-junta properties is captured by Theorem 6.3.

Secondly, we reduce the testing of (k,Φ)-junta properties to testing Φ, which is a property
of k-variate functions, where the testing task is performed by sample-based testers. In contrast,
Diakonikolas et al. [91] reduce the testing of (k,Φ)-junta properties to the proper learning of Φ
(also via sample-based algorithms). Indeed, such a learning algorithm implies a sample-based
tester of about the same sample complexity (see Section 1.3.5), but there is no reason to restrict
the methodology to this special case (since sample-based testing may be easier than learning,
see, e.g., [153]). For this reason we prefer to avoid a term that associates this methodology with
learning. Furthermore, the core of the methodology is the technique of generating a labeled sample
that refers to the (unknown) relevant variables, and it is nice to reflect this fact in the name of the
methodology.

On testing problems associated with sets of Boolean functions

We seize the opportunity to distinguish between two different types of testing problems that are
commonly associated with sets of Boolean functions.

Testing a property of the input function. In this case, we refer to a property Π of Boolean
functions, where the input is a Boolean function f : {0, 1}ℓ → {0, 1}, and the tester is required
to determine whether f ∈ Π or f is far from Π. Indeed, in the case, the tested object has size
n = 2ℓ.

The testing problems studied in this chapter (as well as in Chapters 2–5) are all of this type.

Testing that the input evaluates to 1 under a fixed function. In this case, we fix a Boolean
function f : {0, 1}n → {0, 1}, and consider a property of n-bit strings that consists of the
set of all strings that evaluate to 1 under f . Hence, f is a fixed parameter determining the
property f−1(1), the input is a n-bit string, denoted x, and the tester is required to determine
whether x ∈ f−1(1) (i.e., f(x) = 1) or x is far from f−1(1).

Studies of this type are typically not confined to a single function f , but rather consider any
function f in a set of functions Π. In these cases, one does not test whether f is in Π; the
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function f is given to the tester explicitly, and it is guranteed to be in Π. What is being
tested is whether a string, to which the tester is given oracle access, has a property defined
by f (i.e., is in f−1(1)).

Since we did not discuss such problems so far, let us mention that testing whether a given
string belongs to a fixed regular expression (see [14]) belong to this category. In this case,
the same regular expression (or the finite automaton computing the corresponding indicator
function) is used for all input lengths. One may also consider fixing a sequence of finite func-
tions fn : {0, 1}n → {0, 1}, and testing whether the input x is in f−1

|x| (1). For example, for any

fixed w and any family of oblivious read-once branching programs {pn : {0, 1}n → {0, 1}}n∈N

of width w, testing membership in the corresponding set (i.e., ∪n∈Np−1
n (1)) was considered

in [215]. Such a testing problem falls within the framework of massively parameterized prop-
erties (see [216]).

We stress that both types of problems may arise with respect to Boolean functions that are asso-
ciated with computing devices. Specifically, testing whether a given function can be computed by
a branching program of a given size (see [91]) is a notable example of the first type, whereas the
aforementioned problem of testing membership in the set of strings accepted by a fixed branching
program is a notable example of the second type.

Exercises

Exercise 6.1 (on the complexity of finding the junta – a lower bound): For each k-subset I ⊆ [ℓ],
consider the function fI : {0, 1}ℓ → {0, 1} defined by fI(x) = ⊕i∈Ixi. Prove that finding I requires
at least log2

(ℓ
k

)
− 1 queries, when given access to an arbitrary fI , even if one is allowed to fail with

probability at most 1/3.

Guideline: Consider first the case of deterministic algorithms. The computation of such an algorithm
is captured by a decision tree in which the vertices correspond to queries, and the edges represent
the corresponding answers. Hence, a deterministic algorithm that finds the set I corresponds to a
decision tree that has at least

(ℓ
k

)
different leaves (which implies that its depth is at least log2

(ℓ
k

)
).

Turning to randomized algorithms, note that each such algorithm can be viewed as a distribution
on such decision trees, and that, in expectation, a random tree in this distribution corresponds to
a deterministic algorithm that succeeds on at least a 2/3 fraction of the possible functions. Hence,
this distribution must contain a tree (that corresponds to an algorithm) that succeeds on at least a
2/3 fraction of the functions, which means that this tree must have at least 2

3 ·
(

ℓ
k

)
different leaves.

Exercise 6.2 (on the complexity of finding the junta – an upper bound): Present a randomized
algorithm that when given access to a k-junta f : {0, 1}ℓ → {0, 1} in which each relevant variable
has influence at least ǫ (i.e., f(x) = f ′(xI) for some k-subset I and I{i}(f) ≥ ǫ for every i ∈ I),

finds the junta with probability at least 2/3 while making Õ(k) · (log ℓ)/ǫ queries.

Guideline: On input f , for t = O(k2), we first select a random t-partition, (R1, ..., Rt), as in Step 1
of Algorithm 6.3.2, and find J = {j ∈ [ℓ] : IRj(f) ≥ ǫ}. Next, for each j ∈ J , we find i ∈ Rj such
that I{i}(f) ≥ ǫ by a binary search, while using Algorithm 6.3.1 to estimate the influence of the
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various relevant subsets. This algorithm makes (Õ(t) + Õ(k) log ℓ)/ǫ queries, but the first step can
be made more efficient (yielding the claimed bound).12

Exercise 6.3 (properties of Boolean functions that are invariant under renaming of variables):
Prove that all properties of ℓ-variate Boolean functions studied in prior chapters are invariant under
renaming of the variables; that is, f : {0, 1}ℓ → {0, 1} has the property if for every permutation
π : [ℓ] → [ℓ] it holds that fπ(x) = f(xπ(1), ..., xπ(ℓ)) has the property. Specifically, consider the
following properties: linearity (and being a low degree polynomial), monotonicity, being a monotone
dictatorship, being a (monotone or general) monomial, and being a k-junta.

Exercise 6.4 (the influences of a set on functions that are close to each other): Prove that if
f : {0, 1}ℓ → {0, 1} is ǫ-close to g : {0, 1}ℓ → {0, 1}, then |IS(f)− IS(g)| ≤ 2 · ǫ for every S ⊆ [ℓ].

Guideline: Fixing S, let Df (resp., Dg) denote the set of pairs (r, s) ∈ {0, 1}ℓ × {0, 1}ℓ such that
rS = sS and f(r) 6= f(s) (resp., g(r) 6= g(s)). Observe that the absolute value of |Df | − |Dg| is
upper-bounded by the size of the symmetric difference between Df and Dg, denoted Df ▽Dg. It
follows that

|IS(f)− IS(g)| ≤ Prr,s:rS=sS
[(r, s) ∈ Df ▽Dg]

= Prr,s:rS=sS
[f(r)− f(s) 6= g(r) − g(s)]

≤ Prr,s:rS=sS
[f(r) 6=g(r) ∨ g(s) 6=g(s)].

Exercise 6.5 (testing general k-monomials): In continuation to Corollary 6.4, present a tester for
k-monomials of time complexity poly(k/ǫ).

Guideline: For ǫ ≤ 3 · 2−k, the tester presented in the proof of Corollary 6.4 would do (since
2k = O(1/ǫ) in this case). Hence, we focus on the case of ǫ > 3 · 2−k, and observe that a k-
monomial evaluates to 1 on a 2−k < ǫ/3 fraction of its domain. On the other hand, every function
that evaluates to 1 on at most an 2ǫ/3 fraction of its domain is ǫ-close to a k-monomial. Thus, using
O(1/ǫ) random samples, we estimate the fraction of points on which the input function evaluates
to 1, and accept if and only if this estimate is at most ǫ/2.

Exercise 6.6 (an easy case of approximation): Show that the set of functions that are ǫ-close to
Π is ǫ-approximated by Π.

Exercise 6.7 (another easy case of approximation): Suppose that any two functions in Π are at
distance at least ǫ of one another, and let Π′ be the set of functions that are at distance approximately
ǫ/2 from Π (i.e., Π′ = {f : δΠ(f) ∈ [0.4ǫ, 0.6ǫ}). Show that Π′ is 0.6ǫ-approximated by Π.

12Place R1, ..., Rt at the t leaves of a balanced binary tree and let each internal vertex hold the union of the sets
placed at its children. Now conduct a DFS from the root while continuing only on vertices that were found to hold
an influential set.
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Chapter 7

Lower Bounds Techniques

Summary: We present and illustrate three techniques for proving lower bounds on the
query complexity of property testers.

1. Showing a pair of distributions, one on instances that have the property and the
other on instances that are far from the property, such that an oracle machine of
low query complexity cannot distinguish these two distributions.

2. Showing a reduction from communication complexity. That is, showing that a
communication complexity problem of high complexity can be solved within com-
munication complexity that is related to the query complexity of the property
testing task that we are interested in.

3. Showing a reduction from another testing problem. That is, showing a “local”
reduction of a hard testing problem to the testing problem that we are interested
in.

We also present simplifications of these techniques for the cases of one-sided error prob-
ability testers and non-adaptive testers.

The methodology of reducing from communication complexity was introduced by Blais, Brody, and
Matulef [54], and our description of it is based on [136].

Teaching note: The order of the sections in this chapter happens to reflect our priority regarding teaching.

In particular, the method of indistinguishability of distributions (presented in Section 7.2) is used much

more often than the other two methods, and studying it should be at the highest priority. The method

of reducing from communication complexity (see Section 7.3) is most interesting, and studying it is highly

recommended. Sections 7.4 and 7.5 may be left for optional independent reading.

7.1 Introduction

Our perspective in this book is mainly algorithmic. Hence, we view complexity lower bounds mainly
as justifications for the failure to provide better algorithms (i.e., algorithms of lower complexity).
The lower bounds that we shall be discussing are lower bounds on the query complexity of testers.
These lower bounds are of an information theoretic nature, and so they cannot (and do not) rely
on computational assumptions.
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We start with two brief preliminary discussions. The first discussion is very abstract and vague:
it concerns the difficulty of establishing lower bounds. The second discussion is very concrete: it
highlights the fact that computational complexity considerations play no role in this chapter, a fact
that is most evident in the avoidance of the uniformity condition.

What makes lower bounds hard to prove? Proving lower bounds is often more challenging
than proving upper bounds, since one has to defeat all possible methods (or algorithms) rather
than show that one of them works. Indeed, it seems harder to cope with a universal quantifier than
with an existential one, but one should bear in mind that a second quantifier of opposite nature
follows the first one. That is, a complexity lower bound has the form “every method fails on some
instance” (i.e., ∀∃), whereas an algorithmic upper bound has form “(there) exists a method that
succeeds on all instances” (i.e., ∃∀). Still, the ∀∃ template seems harder to argue about than the
∃∀ template. Furthermore, the universal quantifier in a typical complexity lower bound refers to a
class of objects that is defined in terms of externalities (i.e., resource bounds) rather than in terms
of internal structure (as when studying a standard mathematical object (e.g., a finite field)).

On the uniformity codition. Recall that when presenting testers, we have presented them in
terms of uniform algorithms that get the size parameter n and a proximity parameter ǫ as inputs.
That is, the same algorithm is used for all values of n and ǫ, making it potentially more useful,
especially when it is relatively efficient in terms of computational complexity (i.e., when its running
time is closely related to its query complexity). In contrast, when seeking query complexity lower
bounds, we drop the computational complexity requirement, and even allow the potential tester to
be non-uniform (i.e., depend arbitrary on n and ǫ).1 This makes the lower bound results stronger,
clarifying that they are due only to “information theoretic” considerations; but the truth is that
the techniques presented in this chapter can not capitalize on uniformity conditions.

7.2 Indistinguishability of distributions

A popular methodology for proving lower bounds on the complexity of solving computational
problems consists of presenting a distribution of instances on which every algorithm that has lower
complexity (i.e., lower than claimed) fails to solve the problem at hand. In the context of randomized
algorithms (of error probability at most 1/3), this means presenting a distribution X such that, for
every algorithm A having lower complexity, it holds that A(X) is wrong about X with probability
greater than 1/3, where the probability is taken over both X and the internal coin tosses of A.
(Typically, X cannot be concentrated on a single instance, since for every instance there exists a
“special purpose” algorithm that solves it.)2

The foregoing methodology seems to make the job of proving lower bounds harder. Rather than
having total freedom in choosing for each “low complexity” algorithm a designated instance (or a
distribution of instances) on which this algorithm fails, the prover is required to find a single dis-
tribution of instances on which all (low complexity) algorithms fail. Proving lower bounds this way

1In other words, we allow to present a different algorithm for each possible value of n and ǫ, making no requirements
regarding the dependence of this algorithm on these values (or about the “uniformity” of this sequence of algorithms).

2This assertion refers to non-uniform models of computation. In contract, in the context of uniform models of
computation, one may encounter (lower bound or impossibility) arguments that identify a single instance per each
length, although in these cases one refers to an infinite sequence of such instances (whereas the same uniform machine
must handle all lengths).
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is certainly valid (since if each algorithm fails on the selected distribution then for each algorithm
there exists an instance on which it fails), but one may wonder about the rationale of restricting
the freedom of the lower bound prover. Note, however, that such a restriction is manifested in any
proof technique; that is, any proof technique represents a restriction of the possible proof strategies
to a single one. The point is that a restriction has the benefit of focusing attention, which is often
beneficial. In other words, the restriction may turn out to be a simplification, especially when
we recall the thesis that the ∃∀ template (underlying the existence of a distribution that foils any
algorithm) seems simpler (or more intuitive to handle) than the ∀∃ template (which underlies the
task of finding a bad instance for each algorithm).3

In the context of non-uniform complexity, as is the case when we only care about the query
complexity of oracle machines, we can take a “without loss of generality” simplification step. Specif-
ically, when lower-bounding the error probability of algorithms (of bounded complexity) on a single
input distribution X, it suffices to consider deterministic algorithms (of the same bounded complex-
ity). This is because a randomized algorithm A is a convex combination of deterministic machines of
the same complexity; in other words, the error probability of A equals the expected error probabil-
ity of the corresponding deterministic algorithms. Specifically, for every x, let ηx : {0, 1}∗ → {0, 1}
indicates the incorrectness of a solution for instance x; that is, ηx(y) holds if and only if y is
not a correct solution for instance x. Then, the probability that A(x) errs (i.e., Pr[ηx(A(x))])
equals Er[ηx(A′(x, r))], where A′(x, r) denotes the output of A on input x when the outcome of
A’s internal coin tosses equals r. Considering the (non-uniform) deterministic algorithm Ar defined
by Ar(x) = A′(x, r), and using E[ηX(A(X))] = Ex←X [Er[ηx(A

′(x, r))]] = Er[Ex←X [[ηx(Ar(x))]],
it follows that there exists an r such that E[ηX(Ar(X))] ≤ E[ηX(A(X))]. This means that the
error probability of A on X is lower-bounded by the error probability of the best Ar on X (i.e.,
E[ηX(A(X))] ≥ minr{E[ηX(Ar(X))]}).

We wish to stress that the foregoing discussion refers to two steps. Starting with the goal of
proving a lower bound on the complexity of algorithms that have bounded error probability (say
1/3), we formulated this goal as showing that every algorithm of “low complexity” must err with
higher (than 1/3) probability on some input x. The first step was confining ourselves to the selection
of one input distribution X, with the aim of showing that every algorithm of low complexity errs
with higher (than 1/3) probability on the distribution X. That is, we consider the expected error
probability of the algorithm, where the expectation is taken over X (as well as over the internal
coins tosses of the algorithm). The second step was observing that, without loss of generality, it
suffices to prove the latter for deterministic algorithms (i.e., lower-bound the error probability of
such algorithms).

7.2.1 The actual method

Let us detail the foregoing argument in the concrete setting of property testing. Recall that in this
setting we deal with randomized algorithms, which are allowed error probability at most 1/3, for
solving a promise problem (i.e., distinguishing instances that have the property from instances that
are far from the property). Hence, the algorithm (i.e., a potential tester) fails only if it outputs a
wrong answer, with probability exceeding 1/3, on an instance that satisfies the promise. As stated
above, rather than seeking, for each algorithm of low complexity, an instance (that satisfies the

3Furthermore, in the context of non-uniform complexity, this methodology is actually “complete” in the sense that
any valid lower bound can be proved by presenting a single distribution that foils all “low complexity” algorithms.
See further discussion following the statement of Theorem 7.1.
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promise) on which this algorithm fails, we shall seek a single distribution (on inputs that satisfy
the promise) such that the each algorithm of low complexity fails on this distribution. That is,
the algorithm errs with probability exceeding 1/3, where the probability is taken both over the
distribution and the internal coin tosses of the algorithm. Furthermore, fixing such a distribution
of instances, it will suffice to consider deterministic algorithms. (Lastly, for greater flexibility, we
allow arbitrary distributions but only consider errors that occur on inputs that satisfy the promise.)

Theorem 7.1 (the query complexity of randomized algorithms is lower bounded by the “distri-
butional” query complexity of deterministic algorithms): Let Π = ∪n∈NΠn such that Πn contains
functions from [n] to Rn, and let q : N× (0, 1] → N. Suppose that for some ǫ > 0 and n ∈ N, there
exists a distribution F of functions from [n] to Rn such that for every deterministic oracle machine
M that makes at most q(n, ǫ) queries it holds that

Pr[F ∈Πn ∧MF (n, ǫ) 6=1] + Pr[F ∈Γǫ(Πn) ∧MF (n, ǫ) 6=0] >
1

3 ,
(7.1)

where Γǫ(Πn) denotes the set of functions (from [n] to Rn) that are ǫ-far from Πn. Then, the query
complexity of ǫ-testing Π is greater than q(·, ǫ).

The term “distributional complexity” that appears in the title of Theorem 7.1 refers to the query
complexity of deterministic algorithms that are only required to solve the problem “on the average”
(or rather on random instances drawn from some fixed distribution). The method underlying
Theorem 7.1 was first employed by Yao [273], and it turns out that it is “complete” in the sense
that any valid lower bound can be proved by using it; that is, if Π has query complexity greater
than q, then there exists a distribution as in the hypothesis of Theorem 7.1. (The latter claim is
far more difficult to establish; it requires employing von Neumann’s Minimax Theorem [269].)4

Proof: Suppose towards the contradiction that T is an ǫ-tester of query complexity q(·, ǫ) for
Π. Then, for any n ∈ N and every f ∈ Πn it holds that Pr[T f (n, ǫ) 6= 1] ≤ 1/3, whereas for
every f : [n] → Rn that is ǫ-far from Πn it holds that Pr[T f (n, ǫ) 6= 0] ≤ 1/3, since T has error
probability at most 1/3. On the other hand, for every distribution F of functions from [n] to Rn,
it holds that

Pr[F ∈ Πn ∧ TF (n, ǫ) 6= 1] ≤ Pr[F ∈ Πn] · max
f∈Πn

{Pr[T f (n, ǫ) 6= 1]} (7.2)

Pr[F ∈ Γǫ(Πn) ∧ TF (n, ǫ) 6= 0] ≤ Pr[F ∈ Γǫ(Πn)] · max
f∈Γe(Πn)

{Pr[T f (n, ǫ) 6= 0]}. (7.3)

(Each of these inequlities represents an averaging argument over the distribution F ; specifically,
it reflect the fact that for every predicate χ and set S, and for independent random variables X
and R, it holds that Pr[χ(X,R)|X ∈ S] ≤ maxx∈S{Pr[χ(x,R)]}.)5 Recalling that each of the
“max-factors” in Eq. (7.2)&(7.3) is upper-bounded by 1/3, we get

Pr[F ∈ Πn ∧ TF (n, ǫ) 6= 1] + Pr[F ∈ Γǫ(Πn) ∧ TF (n, ǫ) 6= 0] ≤ 1

3
(7.4)

since Pr[F ∈ Πn] + Pr[F ∈ Γǫ(Πn)] ≤ 1.

4See discussion in [135, Apdx. A.1].
5Here X represents F and R represents the internal coin tosses of T . In Eq. (7.2) we used S = Π and χ(x,R) = 1

iff TF 6= 1 (under coins R), whereas in Eq. (7.3) we used S = Γǫ(Π) and χ(x,R) = 1 iff TF 6= 0 (under coins R).
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Teaching note: Recall that Eq. (7.2)&(7.3) were derived by an averaging argument over the distribution

F . In contrast, in the following paragraph we shall employ an averaging argument over the internal coin

tosses of T .

Denoting by Tr the residual deterministic machine that is obtained by fixing the internal coin
tosses of T to r, it follows (by an averaging argument on r)6 that there exists an r such that

Pr[F ∈ Πn ∧ TF
r (n, ǫ) 6= 1] + Pr[F ∈ Γǫ(Πn) ∧ TF

r (n, ǫ) 6= 0] ≤ 1

3
(7.5)

which contradicts Eq. (7.1), since Tr is a deterministic oracle machine that makes at most q(n, ǫ)
queries.

A more convenient form – indistinguishability. Another simplification step is obtained
by considering a distribution F (of functions from [n] to Rn) such that Pr[F ∈ Πn] = Pr[F ∈
Γǫ(Πn)] = 1/2. In this case, it suffices to show that no deterministic oracle machine M that makes
at most q(n, ǫ) queries can distinguish the case of F ∈ Πn from the case of F ∈ Γǫ(Πn) with a gap
of at least 1/3.

Theorem 7.2 (the method of indistinguishability of distributions): Let Π = ∪n∈NΠn and Γǫ(Πn)
be as in Theorem 7.1, and let q : N × (0, 1] → N. Suppose that for some ǫ > 0 and n ∈ N, there
exists a distribution F1 of functions in Πn and a distribution F0 of functions in Γǫ(Πn) such that
for every deterministic oracle machine M that makes at most q(n, ǫ) queries it holds that

∣∣Pr[MF1(n, ǫ) = 1]−Pr[MF0(n, ǫ) = 1]
∣∣ <

1

3 .
(7.6)

Then, the query complexity of ǫ-testing Π is greater than q(·, ǫ).

The quantity on the l.h.s. of Eq. (7.6) is called the distinguishing gap of M . (The method captured
by Theorem 7.2 is also complete in the sense that any valid lower bound can be proved by using
it; see Exercise 7.3.)

Proof: Fixing any deterministic oracle machine M of query complexity q, for every i ∈ {0, 1}, let
pi denote the probability that MFi(n, ǫ) equals 1. Then, by Eq. (7.6), we have |p1−p0| < 1/3. Now,
let F equal F1 with probability 1/2, and equal F0 otherwise. Then, the probability that MF (n, ǫ)
errs (i.e., either outputs 0 when F = F1 or outputs 1 when F = F0) is 0.5 · (1 − p1) + 0.5 · p0 ≥
0.5− 0.5 · |p1 − p0| > 1/3. Hence, F satisfies the hypothesis of Theorem 7.1, and the current claim
follows.

6We stress that Eq. (7.5) is proved by viewing the l.h.s of Eq. (7.4) as an expected value of the l.h.s of Eq. (7.5),
where the expectation is taken over all possible choices of r. That is, we argue as follows

Pr[F ∈ Πn ∧ TF (n, ǫ) 6= 1] + Pr[F ∈ Γǫ(Πn) ∧ TF (n, ǫ) 6= 0]

= Er

h

Pr[F ∈ Πn ∧ TF
r (n, ǫ) 6= 1] + Pr[F ∈ Γǫ(Πn) ∧ TF

r (n, ǫ) 6= 0]
i

≥ min
r

n

Pr[F ∈ Πn ∧ TF
r (n, ǫ) 6= 1] + Pr[F ∈ Γǫ(Πn) ∧ TF

r (n, ǫ) 6= 0]
o

where the key point that we wish to stess here is that r is selected such that it minimizes the sum of the two terms
in the l.h.s of Eq. (7.4). (In contrast, we cannot just pick an r1 that minimized the first term in the l.h.s of Eq. (7.4)
and an r2 that minimizes the second term.)
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A more flexible form. The reasoning underlying Theorem 7.2 remains valid also if we allow
F1 and F0 to reside outside their designated sets with small probability. In such a case, we should
reduce the gap accordingly. This yields the following more flexible version, when in typical appli-
cations (which are asymptotic) one can make all ηi’s arbitrarily small positive constants.

Corollary 7.3 (a more flexible form of Theorem 7.2): Let Π = ∪n∈NΠn, Γǫ(Πn), and q : N ×
(0, 1]→ N be as in Theorem 7.2. Suppose that for some ǫ > 0, η0, η1, η2 > 0 and n ∈ N, there exist
distributions F1 and F0 such that Pr[F1 ∈ Πn] ≥ 1 − η1 and Pr[F0 ∈ Γǫ(Πn)] ≥ 1 − η0, and for
every deterministic oracle machine M that makes at most q(n, ǫ) queries it holds that

∣∣Pr[MF1(n, ǫ) = 1]−Pr[MF0(n, ǫ) = 1]
∣∣ ≤ η2. (7.7)

If η0 + η1 + η2 < 1/3, then the query complexity of ǫ-testing Π is greater than q(·, ǫ).

Proof: Let F ′1 (resp., F ′0) denote the distribution of F1 (resp., F0) conditioned on F1 ∈ Πn (resp.,
F0 ∈ Γǫ(Πn)). Then, for each i ∈ {0, 1}, the statistical distance between F ′i and Fi is at most
ηi (since the statistical distance between X and “X conditioned on X ∈ S” equals Pr[X 6∈ S]).7

Hence, if (F1, F0) satisfies Eq. (7.7) and η0 + η1 + η2 < 1/3, then (F ′1, F
′
0) satisfies Eq. (7.6),8 and

the proof is completed by applying Theorem 7.2.

7.2.2 Illustrating the application of the method

We have already used the method of indistinguishability of distributions (twice) in the first chapter
(i.e., in the proofs of Propositions 1.2 and 1.11). Here we reproduce the proof of the existence of
properties that are hard to test, while explicitly using Corollary 7.3.

Proposition 7.4 (hardness of testing membership in a linear code, restating Proposition 1.11):
Let G be a 0.5n-by-n Boolean matrix in which every 0.05n columns are linearly independent. Let
Π = {xG : x ∈ {0, 1}0.5n} be the linear code generated by G. Then, for all sufficiently large n’s,
0.1-testing Π requires more than 0.05n queries.

Proof: Let X denote the uniform distribution on Π, and Y denote the uniform distribution on
{0, 1}n. We shall use the following two observations, which were already justified in the proof of
Proposition 1.11.

1. An algorithm that makes at most 0.05n queries cannot distinguish X from Y ; that is, for any
oracle machine M that makes at most 0.05n queries, it holds that Pr[MX = 1] = Pr[MY = 1].

7Denoting the latter distribution byX ′, recall that the statistical distance betweenX and X ′ equals maxT {Pr[X ∈
T ] − Pr[X ′ ∈ T ]}, and observe that in the current case this maximum is obtained at T = S.

8This holds since
˛

˛

˛

Pr[MF ′

1(n, ǫ) = 1] − Pr[MF ′

0(n, ǫ) = 1]
˛

˛

˛

≤
˛

˛

˛

Pr[MF ′

1(n, ǫ) = 1] − Pr[MF1(n, ǫ) = 1]
˛

˛

˛

+
˛

˛

˛

Pr[MF1(n, ǫ) = 1] − Pr[MF0(n, ǫ) = 1]
˛

˛

˛

+
˛

˛

˛

Pr[MF0(n, ǫ) = 1] − Pr[MF ′

0(n, ǫ) = 1]
˛

˛

˛

which is at most η1 + η2 + η0 < 1/3.
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(Recall that this follows from the fact that the restriction of each of the two distributions to
any 0.05n coordinates is uniformly distributed in {0, 1}0.05n.)9

2. For all sufficiently large n, with probability at least 1−2−0.01n, it holds that Y is 0.1-far from
Π.

(Recall that this follows from a counting argument that relies on the exponentially vanishing
density of Π (and on the volume of a Hamming ball of radius 0.1n).)

Invoking Corollary 7.3, with q(n) = 0.05n, ǫ = 0.1, η1 = η2 = 0, and η0 = 0.3 (and sufficiently large
n), the claim follows. (Indeed, η0 = 2−0.01n < 0.3 follows by Observation 2 (and n ≥ 200), η2 = 0
follows by Observation 1, and η1 = 0 follows by the definition of X.)

Digest: On the simplicity of the foregoing proof. The simplicity of the proof of Proposi-
tion 7.4 is due to the fact that the projections of the two distributions on any set of q coordinates
are identically distributed, where q + 1 is the lower bound established by the proof. In more com-
plicated cases, this strong assertion does not hold, and only weaker assertions can be proved. For
example, if for some small η > 0, one can prove that the projections of the two distributions on
any fixed set of i ≤ q coordinates are within statistical distance of at most i · η, then we can only
infer that a non-adaptive algorithm that makes q queries has a distinguishing gap of at most q · η
(and it follows that non-adaptive testers must make Ω(1/η) queries). A lower bound on the query
complexity of general (i.e., adaptive) testers follows by a straightforward emulation of adaptive
oracle machines by non-adaptive ones (see Exercise 1.19), but better bounds may be obtained by
a direct analysis of the distinguishing gap of adaptive oracle machines.

Another simple aspect in the proof of Proposition 7.4 is that F1 was taken to be uniform over
Πn, whereas F0 was close to being uniform over Γǫ(Πn). Typical cases in which other distributions
are used were presented in Exercises 1.3 and 1.16. In the latter cases, the property Πn is the closure
(under some operation) of some basic property Φn, and the distribution F1 is uniform over Φn.

7.2.3 Further reflections

The fact that Theorems 7.1 and 7.2 (and Corollary 7.3) allow to restrict the attention to determin-
istic algorithms (rather than consider all randomized algorithms) is less useful than one may think.
In fact, many arguments that use these results can be generalized to relate to the distinguishing gap
of randomized algorithms (see, for example, the proof of Proposition 7.4). The important aspect of
the method is the focus on the distinguishing gap (between a distribution concentrated on instances
that have the property and a distribution concentrated on inputs that are far from the property).
Still, in some cases the argument (or its presentation) is simplified by restricting attention to de-
terministic algorithm. (Note, however, that the proof of Theorem 7.1 would not have been much
simpler if we were to relax it and refer to the behavior of randomized algorithms.)10

As just stated, the important aspect of the method is not the apparent gain obtained by
restricting attention to deterministic algorithms (rather than randomized ones), but rather the

9As shown in Exercise 7.4, the distinguishing gap of an algorithm that makes q adaptive queries (to a Boolean
function) is at most 2q times larger than the distinguishing gap of a corresponding non-adaptive algorithm (which
makes q non-adaptive queries). Note that in the current case the two distributions are perfectly indistinguishable by
non-adaptive algorithms of low query complexity (i.e., the corresponding distinguishing gap is zero).

10Also note that the proofs of Theorem 7.2 and Corollary 7.3 would remain intact, since Theorem 7.2 is proved by
a reduction to Theorem 7.1, whereas Corollary 7.3 is proved by reduction to Theorem 7.2.
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apparent loss that arises when confining ourselves to a single distribution of instances (and showing
that all “low-complexity” algorithms fail on this distribution). We stress that potentially we gave
up on the possibility of tailoring a hard instance (or distribution of instances) to each potential
algorithm, although in retrospect it turns out that nothing was lost (since the method is “complete”
in the sense that any valid lower bound can be proved by using it). Nevertheless, as is often the case
in mathematics and science, proving a stronger statement and/or using more restricted methods is
sometimes easier.

Final digest. The path we have taken (towards presenting Corollary 7.3) consisted of four steps,
where the first two steps are packed into Theorem 7.1, and the last two steps are captured by
Theorem 7.2 and Corollary 7.3, respectively. These four steps are abstracted as follows.

1. Requiring the lower bound prover to present a single distribution that foils all algorithms of
low complexity.

Recall that potentially this makes the task of the prover harder, since the claim being es-
tablished is seemingly stronger, but as argued above such a step may turn out beneficial.
Furthermore, in the context of non-uniform complexity, this seemingly harder task is actually
equivalent to the original task (i.e., the seemingly stronger claim is actually equivalent to the
original one).

2. Showing that it suffices to establish the foregoing (foiling) claim for deterministic algorithms
rather than for randomized ones.

This step simplifies the presentation of lower bound proofs, but in many cases it is less helpful
than one may imagine.

3. Requiring the lower bound prover to prove the foiling claim by showing that low complexity
algorithms cannot distinguish (a distribution over) instances that should be accepted from (a
distribution over) instances that should be rejected.

As with Step 1, potentially this makes the task of the prover harder, since the claim being
established is seemingly stronger, but again such a step may turn out beneficial, and again
the claim it seeks to establish is actually not stronger.

4. Showing that it suffices to establish a relaxed version of the indistinguishability claim.

Like Step 2, the current step simplifies the presentation of lower bound proofs, freeing the
prover from the need to deal with some issues either implicitly or explicitly. In the current
case, we free the prover from presenting distributions that perfectly fit two corresponding
sets, and allow it to present distributions that approximately fit these sets.

Hence, Steps 1 and 3 make the proving task potentially harder, although they actually help to focus
attention on a task that is more intuitive and easier to think about. In contrast, Steps 2 and 4
simplify the proving task either by restricting its scope (see Step 2) or by relaxing the requirements
(see Step 4).

7.3 Reduction from Communication Complexity

A somewhat unexpected methodology for proving lower bounds on the query complexity of prop-
erty testing problems consists of reducing communication complexity problems to property testing
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problems. This is quite surprising because we reduce between two very different models. Specifi-
cally, property testing problems have no “topology” that can be naturally 2-partitioned to fit the
two-party setting of communication complexity.

Teaching note: Readers who are not familiar with communication complexity may want to skip the

following paragraph. On the other hand, readers who are familiar with the communication complexity

background may skim through Section 7.3.1 with the sole purpose of picking the specific notations that

we shall use.

The reduction at a glance. In order to derive a lower bound on testing the property Π, one
presents a mapping F of pairs of inputs (x, y) ∈ {0, 1}ℓ+ℓ for a two-party communication problem
Ψ to n(ℓ)-bit long inputs for Π such that (x, y) ∈ Ψ implies F (x, y) ∈ Π and (x, y) 6∈ Ψ implies that
F (x, y) is ǫ-far from Π. Let fi(x, y) be the ith bit of F (x, y), and suppose that B is an upper bound
on the (deterministic) communication complexity of each fi, and that C is a lower bound on the
randomized communication complexity of Ψ. Then, ǫ-testing Π requires at least C/B queries.

Tedious comments. For sake of simplicity, we focus on problems that refer to the binary repre-
sentation of objects (i.e., the objects are represented as sequences over a binary alphabet).11 Also,
our main presentation refers to finite problems that correspond to bit strings of fixed lengths, de-
noted ℓ and n = n(ℓ), respectively. The reader should think of these lengths as generic (or varying),
and interpret the O-notation (as well as similar notions) as hiding universal constants (which do
not depend on any parameter of the problems discussed).

7.3.1 Communication Complexity

We refer to the standard setting of communication complexity, and specifically to randomized two-
party protocols in the model of shared randomness (cf. [195, Sec. 3]). The basic setting consists
of two parties, each obtaining a private input, who wish to decide whether their input-pair resides
in some set. We stress that it is required that both parties reach the same decision. Towards this
end, they communicate with one another, based on some shared randomness (which is available
to both parties, free of charge), and the issue is minimizing the amount of communication. We
denote by 〈A(x), B(y)〉(r) the (joint) output of the two parties, when the first party uses strategy
A and gets input x, the second party uses strategy B and gets input y, and both parties have free
access to the shared randomness r. Since many of the known reductions that use the methodology
surveyed here actually reduce from promise problems, we present communication problems in this
more general setting. The standard case of decision problems is obtained by using a trivial promise
(i.e., P = {0, 1}2ℓ).12

Definition 7.5 (two-party communication complexity): Let Ψ = (P, S) such that P, S ⊆ {0, 1}2ℓ,
and η ≥ 0. A two-party protocol that solves Ψ with error at most η is a pair of strategies (A,B)
such that the following holds (w.r.t. some ρ = ρ(ℓ)):

1. If (x, y) ∈ P ∩ S, then Prr∈{0,1}ρ [〈A(x), B(y)〉(r)=1] ≥ 1− η.

11
Advanced comment: For two different treatments of the general case of non-binary alphabets, see [136, Sec. 6]

and Exercise 7.5. Either way, the bottom-line is that little is lost by considering only the binary representation.
12In general, P denotes the promise and S denotes the set of yes-instances. The task is to distinguish between

instances in P ∩ S and instances in P \ S.
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2. If (x, y) ∈ P \ S, then Prr∈{0,1}ρ [〈A(x), B(y)〉(r)=0] ≥ 1− η.

The communication complexity of this protocol is the maximum number of bits exchanged between
the parties when the maximization is over all (x, y) ∈ P and r ∈ {0, 1}ρ. The η-error communication
complexity of Ψ, denoted CCη(Ψ), is the minimum communication complexity of all protocols that
solve Ψ with error at most η.

For a Boolean function f : {0, 1}2ℓ → {0, 1}, the two-party communication problem of computing f

is the promise problem Ψf
def
= ({0, 1}2ℓ, f−1(1)). Abusing notation, we let CCη(f) denote CCη(Ψf ).

Note that randomized complexity with zero error (i.e., η = 0) collapses to deterministic com-
plexity.13 This is one reason that we kept η as a free parameter rather than setting it to a small
constant (e.g., η = 1/3), as is the standard. Another reason for our choice is to allow greater
flexibility in our presentation (cf., e.g., Theorem 7.7, where we use several different values of η).
For the same reason, as seen next, we take the rather unusual choice of making the error probability
explicit also in the context of property testing (where we also denote it by η).

7.3.2 The methodology

For sake of clarity, we spell out the version of the definition of property testing that we shall refer
to. In this definition, as in most work on lower bounds in property testing, we fix the proximity
parameter (denoted ǫ). As stated in the previous paragraph, in contrast to this fixing (of ǫ), we
treat the error probability as a free parameter (rather than having it fixed to 1/3).

Definition 7.6 (property testing, redefined): Let Π ⊆ {0, 1}n, and ǫ, η > 0. An ǫ-tester with error
η for Π is a randomized oracle machine T that satisfies the following two conditions.

1. If z ∈ Π, then Pr[T z(n)=1] ≥ 1− η.

2. If z ∈ {0, 1}n is ǫ-far from Π, then Pr[T z(n)=0] ≥ 1− η.

The query complexity of T is the maximum number of queries that T makes, when the maximization
is over all z ∈ {0, 1}n and all possible outcomes of the coin tosses of T . The η-error query complexity
of ǫ-testing Π, denoted Qη(ǫ,Π), is the minimum query complexity of all ǫ-testers with error η for
Π.

For any property Π and any constant η > 0, it holds that Qη(ǫ,Π) = O(Q1/3(ǫ,Π)), where the O-
notation hides a log(1/η) factor. Thus, establishing a lower bound on the ǫ-testing query complexity
of Π for any constant error probability, yields the same asymptotic lower bound for the (standard)
error level of 1/3. In light of this fact, we may omit the constant error from our discussion; that is,
when we say the query complexity of ǫ-testing Π we mean the 1/3-error query complexity of ǫ-testing
Π. Hence, we denote Q(ǫ,Π) = Q1/3(ǫ,Π).

With the foregoing preliminaries in place, we are ready to state the main result, which captures
the methodology of obtaining lower bounds on the query complexity of property testing based on

13
Advanced comment: Note that CC0(·) is different from the standard notion of zero-error randomized commu-

nication complexity, since in the latter one considers the expected number of bits exchanged on the worst-case pair
of inputs (where the expectation is over the shared randomness), whereas we consider the worst-case over both the
shared randomness and the pair of inputs. While the difference between the expected complexity and the worst-case
complexity is not very significant in the case of Θ(1)-error communication complexity, it is crucial in the case of
zero-error.
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lower bounds on communication complexity. Using this methodology towards establishing a lower
bound on the query complexity of testing the property Π requires finding a suitable communication
complexity problem Ψ (for which adequate lower bounds are known) and presenting a reduction
that satisfies the hypothesis of Theorem 7.7.

Theorem 7.7 (property testing lower bounds via communication complexity): Let Ψ = (P, S) be
a promise problem such that P, S ⊆ {0, 1}2ℓ, and let Π ⊆ {0, 1}n be a property. For ǫ, η > 0, suppose
that there exists a mapping F : {0, 1}2ℓ → {0, 1}n that satisfies the following two conditions:

1. For every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ Π.

2. For every (x, y) ∈ P \ S, it holds that F (x, y) is ǫ-far from Π.

Then, Qη(ǫ,Π) ≥ CC2η(Ψ)/B, where B = maxi∈[n]{CCη/ℓ(fi)} and fi(x, y) is the ith bit of F (x, y).
Furthermore, if B = maxi∈[n]{CC0(fi)}, then Qη(ǫ,Π) ≥ CCη(Ψ)/B.

Hence, the reduction F “creates a gap” (between inputs (x, y) ∈ P ∩ S and inputs (x, y) ∈ P \ S)
while merging the two parts of the input (i.e., x and y) into one string (i.e., F (x, y)). The fact that
the parties in the communication complexity setting may have no direct access to bits of F (x, y) is
accounted for by the protocols for computing the bits of F (x, y).

Proof: Given an ǫ-tester with error η for Π and communication protocols for the fi’s, we present
a two-party protocol for solving Ψ. The key idea is that, using their shared randomness, the two
parties (holding x and y, respectively) can emulate the execution of the ǫ-tester, while providing
it with virtual access to F (x, y). Specifically, when the tester queries the ith bit of the oracle, the
parties provide it with the value of fi(x, y) by first executing the corresponding communication
protocol. Details follow.

The protocol for solving Ψ proceeds as follows: On local input x (resp., y) and shared ran-
domness r = (r0, r1, ..., rn) ∈ ({0, 1}∗)n+1, the first (resp., second) party invokes the ǫ-tester on
randomness r0, and answers the tester’s queries by interacting with the other party. That is, each
of the two parties invokes a local copy of the tester’s program, but both copies are invoked on the
same randomness (i.e., r0), and are fed with identical answers to their (identical) queries. Specif-
ically, when the tester issues a query i ∈ [n], the parties compute the value of fi(x, y) by using
the corresponding communication protocol, and feed fi(x, y) to (their local copy of) the tester.
Specifically, denoting the latter protocol (i.e., pair of strategies) by (Ai, Bi), the parties answer
with 〈Ai(x), Bi(y)〉(ri). When the tester halts, each party outputs the very output it has obtained
from (its local copy of) the tester.

Turning to the analysis of this protocol, we note that the two local executions of the tester
are identical, since they are fed with the same randomness and the same answers (to the same
queries).14 The total number of bits exchanged by the two parties is at most B times the query
complexity of ǫ-tester; that is, the communication complexity of this protocol is at most B ·q, where
q denotes the query complexity of the ǫ-tester.

Let us consider first the furthermore clause; that is, suppose that B = maxi∈[n]{CC0(fi)}. In
this case, the parties always provide the ǫ-tester, denoted T , with the correct answers to all its
queries. Now, if (x, y) ∈ P ∩ S, then F (x, y) ∈ Π, which implies that Pr[TF (x,y)(n) = 1] ≥ 1 − η

14Each of these answers is correct with a certain probability that depends on the corresponding sub-protocols
(Ai, Bi), but by convention both parties always obtain the same answer (from these sub-protocols).

141



(since T has error at most η), which in turn implies that the parties output 1 with probability
at least 1 − η. On the other hand, if (x, y) ∈ P \ S, then F (x, y) is ǫ-far from Π, which implies
that Pr[TF (x,y)(n) = 0] ≥ 1 − η, which in turn implies that the parties output 0 with probability
at least 1 − η. Hence, in this case (assuming that T has query complexity Qη(ǫ,Π)), we get
CCη(Ψ) ≤ B · Qη(ǫ,Π).

Turning to the main claim, we may assume that q
def
= Qη(ǫ,Π) ≤ ℓ, since otherwise we can just

use the trivial communication protocol for Ψ (which has complexity ℓ). Recall that if (x, y) ∈ P ∩S,
then Pr[TF (x,y)(n)=1] ≥ 1− η. However, in the emulation, T is given access to bits that are each
correct only with probability 1− (η/ℓ), and hence the probability that the protocol outputs 1 is at
least 1−η− q · (η/ℓ) ≥ 1−2η. On the other hand, if (x, y) ∈ P \S, then Pr[TF (x,y)(n)=0] ≥ 1−η.
Again, taking account of the errors in computing the fi’s, we conclude that the probability that
the protocol outputs 0 in this case is at least 1− 2η. The claim follows (i.e., CC2η(Ψ) ≤ B ·Qη(ǫ,Π),
where B = maxi∈[n]{CCη/ℓ(fi)}).

7.3.3 Illustrating the application of the methodology

Recall that the set of ℓ-variate linear functions over GF(2) is ǫ-testable within query complexity
O(1/ǫ). In contrast, we shall show that, for every even k ≤ ℓ/2, the set of linear (ℓ-variate)
functions that depend on exactly k of their ℓ variables, called k-linear functions, cannot be 0.499-
tested using o(k) queries.15 This will be shown by a reduction from the communication complexity
of the k/2-disjointness function (in which the two parties are each given a k/2-subset of [ℓ] and
need to determine whether these subsets are disjoint). We start by defining the k-linear property
and the communication complexity known as k/2-disjointness.

Definition 7.8 (k-linearity): A function f : GF(2)ℓ → GF(2) is called k-linear if it is linear and
depends on exactly k of its variables; that is, f(z) =

∑
i∈I zi for some I ⊆ [ℓ] of cardinality k.

In the following definition, one should think of ℓ-bit long strings as representing subsets of [ℓ]. Hence,
k-subsets are represented by strings of Hamming weight k, and set disjointness is represented
by strings that share no bit position that holds the value 1. (Recall that the Hamming weight of z
is denoted wt(z); that is, wt(z) = |{i∈ [|z|] : zi =1}|.)

Definition 7.9 (k/2-disjointness): For k : N→ N, the communication problem called k/2-disjointness

consists of solving {DISJ
(k)
ℓ = (Pℓ, Sℓ)}ℓ∈N, where Pℓ, Sℓ ⊆ {0, 1}2ℓ such that (x, y) ∈ Pℓ if

wt(x) = wt(y) = k(ℓ)/2, and (x, y) ∈ Sℓ if I(x, y)
def
= {i ∈ [ℓ] : xi =yi =1} is empty.

Indeed, recalling that x and y are indicators of sets, the set I(x, y) is the intersection of these sets.

For k(ℓ) ≤ ℓ/2, using the celebrated result CC1/3(DISJ
(k)
ℓ ) = Ω(k(ℓ)), which is implicit in [176]

(see also [54, Lem. 2.6]), we shall prove that 0.499-testing k-linearity requires Ω(k) queries, for
every even k ≤ ℓ/2. This will be done by invoking Theorem 7.7.

Theorem 7.10 (on the complexity of k-linearity): For every even k(ℓ) ≤ ℓ/2, the query complexity
of 0.499-testing k(ℓ)-linearity is Ω(k(ℓ)).

15The cases of odd k and k > ℓ/2 will be treated in Section 7.4.
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Proof: We present a reduction from the communication complexity problem {DISJ
(k)
ℓ = (Pℓ, Sℓ)}ℓ∈N

to testing k(ℓ)-linearity of ℓ-variate functions, where in this case the size of the tested object is
n = 2ℓ. The reduction F : {0, 1}2ℓ → {0, 1}n maps pairs (x, y) of the communication problem to a
function gx,y : {0, 1}ℓ → {0, 1}, which may be described by its truth-table Tx,y ∈ {0, 1}n, such that
gx,y(ζ) =

∑
i∈[ℓ](xi + yi) · ζi, where the arithmetics is mod 2. Indeed, gx,y(ζ) =

∑
i:xi+yi=1 ζi, which

means that gx,y is |{i ∈ [ℓ] : xi + yi = 1}|-linear.
Let k = k(ℓ). Then, if (x, y) ∈ Pℓ ∩ Sℓ (i.e., x and y are “disjoint”), then F (x, y) = gx,y is

k-linear, since |{i ∈ [ℓ] : xi + yi = 1}| = wt(x) + wt(y) = k. On the other hand, if (x, y) ∈ Pℓ \ Sℓ,
then F (x, y) = gx,y is (k − 2 · |I(x, y)|)-linear, since

|{i ∈ [ℓ] : xi + yi = 1}| = |{i ∈ [ℓ] : xi = 1 ∧ yi = 0}|+ |{i ∈ [ℓ] : xi = 0 ∧ yi = 1}|
= wt(x) + wt(y)− 2 · |{i ∈ [ℓ] : xi = yi = 1}|,

which equals k − 2 · |I(x, y)|. Hence, in this case gx,y is a linear function that is not k-linear.
Using the fact that different linear functions are at distance 1/2 of one another, it follows that
F (x, y) = gx,y is 0.499-far from being k-linear.16 Hence, F satisfies the conditions of Theorem 7.7.

We now consider the communication complexity of the functions that correspond to the bits
of F (x, y). Associating [n] with {0, 1}ℓ means that the bit associated with α ∈ {0, 1}ℓ in F (x, y),
denoted F (x, y)α or fα(x, y), is gx,y(α) =

∑
i∈[ℓ](xi + yi) · αi. The key observation is that

∑

i∈[ℓ]
(xi + yi) · αi =



∑

i∈[ℓ]
xi · αi


+



∑

i∈[ℓ]
yi · αi




.

This means that fα(x, y) = F (x, y)α =
∑

i xiαi +
∑

i yiαi. Hence, fα(x, y) can be computed by the
two-party protocol in which the first party (who holds x) sends

∑
i∈[ℓ] αi · xi to the second party,

who (holds y and) responds with
∑

i∈[ℓ] αi · yi. That is, the bit sent by each party is the inner
product (mod 2) of the desired location α and its own input, and each party outputs the XOR of
the two communicated bits.

Invoking the furthermore part of Theorem 7.7, with B = 2, it follows that the query complexity

of 0.499-testing k(ℓ)-linearity is at least CC1/3(DISJ
(k)
ℓ )/2 = Ω(k(ℓ)).

A generalization which may further clarify the argument. Theorem 7.10 is a special case
of the following result that refers to properties that are subsets of linear codes (i.e., non-linear sub-
codes of linear codes). Specifically, for any linear code of constant relative distance, we consider
the set of codewords that correspond to the encoding of (ℓ-bit long) strings of a specific Hamming
weight (i.e., k(ℓ)). Theorem 7.10 refers to the special case in which the code is the Hadamard code
(i.e., n = 2ℓ).

Theorem 7.11 (on the complexity of testing some sets of codewords in linear codes): Let {Cℓ :
{0, 1}ℓ → {0, 1}n}ℓ∈N be a family of linear codes (i.e., Cℓ(x⊕y) = Cℓ(x)⊕Cℓ(y)) of constant relative
distance. Then, for some constant ǫ > 0 and any function k : N → N such that k(ℓ) is even and
k(ℓ) ≤ ℓ/2, the query complexity of ǫ-testing the property

Πn
def
= {Cℓ(z) : z∈{0, 1}ℓ ∧ wt(z)=k(ℓ)} (7.8)

16Recall that ǫ-far (from Π) was defined as being at distance (from Π) that is strictly larger than ǫ. Indeed, the
constant 0.499 can be replaced by any constant in (0, 0.5).
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is Ω(k(ℓ)). That is, Q(ǫ,Πn) = Ω(k(ℓ)). Furthermore, ǫ > 0 may be any constant that is smaller
than the relative distance of the code Cℓ.

Note that Πn is a code; actually, it is a sub-code of the (linear) code C, but Πn is not necessarily a
linear code (i.e., w,w′ ∈ Πn does not necessarily imply w⊕w′ ∈ Πn). In the special case that C is
the Hadamard code, the property Πn is k(ℓ)-linearity; that is, the codewords of the Hadamard code
corresponds to linear functions (from GF(2)ℓ to GF(2)) and the codewords of Πn are k(ℓ)-linear
functions.17 We stress that testing Πn is hard although testing the original linear code (i.e., Cℓ)
may be easy. The following proof is very similar to the proof of Theorem 7.10, but it may be more
clear because Πn is now viewed as a property of n-bit strings (rather than as a property of Boolean
functions on the domain [n] ≡ {0, 1}ℓ).
Proof: Again, we reduce from the communication problem {DISJ

(k)
ℓ = (Pℓ, Sℓ)}ℓ∈N, and invoke

Theorem 7.7. The reduction maps (x, y) to F (x, y) = Cℓ(x ⊕ y), and the ith bit of Cℓ(x ⊕ y) =
Cℓ(x)⊕ Cℓ(y) can be computed by exchanging the ith bits of Cℓ(x) and Cℓ(y).

We again observe that for every (x, y) ∈ Pℓ it holds that wt(x⊕ y) = k(ℓ)− 2 · |I(x, y)|, where
I(x, y) = {i ∈ [ℓ] : xi = yi = 1}. Hence, if (x, y) ∈ Pℓ ∩ Sℓ (i.e., x and y are “disjoint”), then
wt(x ⊕ y) = k(ℓ) and F (x, y) = Cℓ(x ⊕ y) is in Πn. On the other hand, if (x, y) ∈ Pℓ \ Sℓ, then
wt(x ⊕ y) 6= k(ℓ) and F (x, y) = Cℓ(x ⊕ y) is ǫ-far from Πn, where ǫ > 0 is any constant that is
smaller than the relative distance of the code Cℓ.

Finally, we invoke again the furthermore part of Theorem 7.7 with B = 2, and it follows that

the query complexity of ǫ-testing Πn is at least CC1/3(DISJ
(k)
ℓ )/2 = Ω(k(ℓ)).

Another implication of Theorem 7.11. As stated upfront, Theorem 7.10 follows as a special
case of Theorem 7.11. Another result that follows easily from Theorem 7.11 is a generalization of
Theorem 7.10 to the case of k-sparse homogeneous polynomials of degree d (i.e., polynomials that
have exactly k monomials such that each monomial is the product of d variables). We state the
latter result for polynomials over GF(2), but it can be proved also for larger finite fields (while
losing a factor that is logarithmic in the field size).18

Corollary 7.12 (on the complexity of k-sparse polynomials): Let d,m, k ∈ N and Πn denote the
set m-variate homogeneous polynomials of degree d over GF(2) having exactly k monomials, where
n = 2m. Then, if k ≤

(m
d

)
/2 is even, then the query complexity of 0.99 · 2−d-testing Πn is Ω(k).

Proof: For ℓ =
(
m
d

)
, consider the Reed-Muller code of order d, which maps the ℓ-bit long description

of an m-variate polynomial of degree d over GF(2) to its evaluation at all points of GF(2)m. This
code has relative distance 2−d, and so the claim follows by Theorem 7.11.

7.4 Reduction among testing problems

A natural method for obtaining lower bounds is via reductions. Indeed, this method is common
practice in computability as well as in the theory of NP-completeness and in the study of other
computational complexity classes (see, e.g., [131]). In each case, the definition of a reduction should

17
Advanced comment: Indeed, in this case Πn is not a linear code; that is, if f and g are k-linear functions,

then the linear function f + g is not necessarily k-linear.
18See Exercise 7.6.
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preserve the relevant notion of feasible computation. Hence, when using reductions in the context
of property testing, we should use reductions that preserve easy testability. Specifically, when we
reduce the testing property of Π to the testing property of Π′, it should be possible to answer each
query to the reduced instance by making few queries to the original instance. In addition, the
reduction should preserve the distance to the property, at least to some extent.

Teaching note: For the sake of simplicity, we confine ourselves to many-to-one reductions; that is,

reductions that map an instance of the original problem to a single instance of the reduced problem such

that yes-instances are mapped to yes-instances and no-instances are mapped to no-instances. (In the

context of property testing, instances in Π are mapped to instances in Π′ and instances that are far from

Π are mapped to instances that are far from Π′.) That is, we consider the analogue of Karp-reductions

rather than the analogue of Cook-reduction in which the reduction is a machine that given an instance of

the original problem may issue queries to various instances of the reduced problem (see [131, Sec. 2.2.1]).

Definition 7.13 (local reductions): Let Π = ∪n∈NΠn and Π′ = ∪n∈NΠ′n be such that Πn and Π′n
contains functions from [n] to Rn and R′n, respectively. A mapping Fn from the set of functions
{f : [n] → Rn} to the set of functions {f ′ : [n′] → R′n′} is called a q-local (ǫ, ǫ′)-reduction of Πn to
Π′n′ if for every f : [n]→ Rn the following conditions hold.

1. Locality (local reconstruction): The value of Fn(f) at any point i ∈ [n′] is determined by the
value of f at q points in [n]; that is, there exist functions Qn : [n′]→ [n]q and Vn : [n′]×Rq

n→R′n′
such that Vn(i, f(i1), ..., f(iq)) = (Fn(f))(i), where (i1, ..., iq) = Qn(i).

2. Preservation of the properties: If f ∈ Πn, then Fn(f) ∈ Π′n′ .

3. Partial preservation of distance to the properties: If f is ǫ-far from Πn, then Fn(f) is ǫ′-far
from Π′n′ .

For q :N→N, the ensemble {Fn}n∈N is called a q-local (ǫ, ǫ′)-reduction of Π to Π′ if there exists a
function L :N→N such that for every n ∈ N it holds that Fn is a q(n)-local (ǫ, ǫ′)-reduction of Πn

to Π′L(n). In such a case we say that Π is q-locally (ǫ, ǫ′)-reducible to Π′ (with length function L).

Indeed, Definition 7.13 corresponds to a deterministic reduction, and this suffices in many cases.
Nevertheless, we shall present a randomized version of Definition 7.13 at a later stage. But before
doing so, let us examine the effect of such reductions.

Theorem 7.14 (local reductions preserve testability): Let Π = ∪n∈NΠn and Π′ = ∪n′∈NΠ′n′ be as
in Definition 7.13. Suppose that Π is q-locally (ǫ, ǫ′)-reducible to Π′ with length function L. Then,
if Π′ can be ǫ′-tested with q′(n′, ǫ′) queries, then Π can be ǫ-tested with q(n) · q′(L(n), ǫ′) queries.

Theorem 7.14 states the positive effect of a local reduction, but in the context of proving lower
bounds one uses its counter-positive which asserts that if the query complexity of ǫ-testing Π exceeds
B(n, ǫ), then the query complexity of ǫ′-testing Π′ = ∪n′Π

′
n′ exceeds B′(n′, ǫ′) = B(n, ǫ)/q(n) for

any n ∈ L−1(n′). We shall state this counter-positive below, after proving Theorem 7.14.

Proof: Let us fix any n ∈ N and let n′ = L(n). Given an ǫ′-tester T ′ for Π′n′ as in the hypothesis,
we construct an ǫ-tester for Πn as follows. On input f : [n] → Rn, the new tester invokes T ′ and
answers each of its queries by using the local reconstruction procedure (i.e., Qn and Vn) that is
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associated with the local reduction, denoted Fn. That is, the query i ∈ [n′] is answered by querying
f at i1, ..., iq , where (i1, ..., iq) = Qn(i), and providing the value Vn(i, f(i1), ..., f(iq)). Hence, this
tester, denoted T , makes q(n) queries per each of the q′(n′, ǫ′) queries issued by T ′. When T ′ halts,
T just outputs the verdict provided by T ′.

Turning to the analysis of T , we first observe that, on input f , algorithm T answers each query of
T ′ according to Fn(f). Hence, if f ∈ Πn, then Fn(f) is in Π′n′ , and T ′ will accept (with probability
at least 2/3) and so will T . On the other hand, if f is ǫ-far from Πn, then Fn(f) is ǫ′-far from Π′n′ ,
and T ′ will reject (with probability at least 2/3) and so will T . The theorem follows.

Corollary 7.15 (lower bounds via local reductions, a counter-positive of Theorem 7.14): Let Π =
∪n∈NΠn and Π′ = ∪n′∈NΠ′n′ be as in Definition 7.13. Suppose that Π is q-locally (ǫ, ǫ′)-reducible to
Π′ with length function L. Then, if the query complexity of ǫ-testing Π exceeds B(n, ǫ), then the
query complexity of ǫ′-testing Π′ = ∪n′Π

′
n′ exceeds B′(n′, ǫ′) = maxn:L(n)=n′{B(n, ǫ)/q(n)}.

Typically, L : N → N is non-decreasing and one-to-one, and so we get B′(n′, ǫ′) = B(L−1(n′),ǫ)
q(L−1(n′))

for

any n′ in the image of L.

Illustrating the application of the method. Recall that Theorem 7.10 provides a lower bound
on the query complexity of testing k-linearity (of ℓ-variate Boolean functions) only in the case that
k(ℓ) ≤ ℓ/2 is even. Using two simple reductions, we establish the following.

Proposition 7.16 (Theorem 7.10, extended): For every k : N → N, the query complexity of
0.499-testing k-linearity is Ω(min(k(ℓ), ℓ − k(ℓ))).

Proof Sketch: We first reduce ǫ-testing k-linearity of ℓ-variate Boolean functions to ǫ-testing
(k + 1)-linearity of (ℓ+ 2)-variate Boolean functions. (This reduction allows to switch the parity of
the linearity parameter.)19 The reduction just maps f : {0, 1}ℓ → {0, 1} to f ′ : {0, 1}ℓ+2 → {0, 1}
such that f ′(x1 · · · xℓxℓ+1xℓ+2) = f(x1 · · · xℓ) + xℓ+1. Hence, each query to f ′ can be answered by
making a single query to f (i.e., the query σ1 · · · σℓ+1σℓ+2 is answered by querying f at σ1 · · · σℓ and
returning f(σ1 · · · σℓ) + σℓ+1). Observe the distance of f from being k-linear equals the distance of
f ′ from being (k+1)-linear. In particular, this yields a 1-local (0.499, 0.499)-reduction (with length
function L(2ℓ) = 4·2ℓ) from the case of even k ≤ ℓ/2 to the case of odd (k+1) ≤ (ℓ/2)+1 = (ℓ+2)/2.
Hence, applying Corollary 7.15, the lower bound of Theorem 7.10 is extended to the case of an odd
linearity parameter.

The second reduction is from testing k-linearity of ℓ-variate Boolean functions (when k ≤ ℓ/2) to
testing (ℓ−k)-linearity of ℓ-variate Boolean functions (when ℓ−k ≥ ℓ/2). The reduction just maps
f : {0, 1}ℓ → {0, 1} to f ′ : {0, 1}ℓ → {0, 1} such that f ′(x) = f(x) +

∑
i∈[ℓ] xi, where x = x1 · · · xℓ.

Again, each query to f ′ can be answered by making a single query to f . In this case the distance of
f from being k-linear equals the distance of f ′ from being (ℓ− k)-linear. In particular, this yields
a 1-local (0.499, 0.499)-reduction of k-linearity to (ℓ− k)-linearity. Hence, applying Corollary 7.15,
the Ω(k) lower bound for testing k-linearity when k ≤ ℓ/2, yields a lower bound of Ω(k) for testing
(ℓ− k)-linearity when ℓ− k ≥ ℓ/2.

19We reduce to (ℓ+ 2)-variate functions, rather than to (ℓ+ 1)-variate functions, in order to have k+ 1 ≤ (ℓ+ 2)/2
whenever k ≤ ℓ/2. (But, actually, this is not really crucial.)
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Randomized reductions (advanced comment). Definition 7.13 captures only deterministic
reductions. This is reflected in the main deterministic mapping Fn as well as in the auxiliary
functions Qn and Vn (used in the locality condition). Allowing randomized auxiliary algorithms in
the locality condition is straightforward (and one should just require that they yield the correct
value with probability at least 2/3). More care should be taken when allowing a randomized
mapping Fn: In such a case, its randomness should be handed over to the algorithms used in the
locality condition, or else different invocations of (the local reconstruction procedure captured by)
these algorithms may not yield values that are consistent with a single function f ′ : [n′] → R′n′
(but may rather yield values that fit different functions f ′ : [n′] → R′n′).

20 For sake of simplicity,
in the following definition, we view the randomized mapping as a distribution of (deterministic)
mappings and allow the auxiliary algorithms to depend on the specific mapping chosen from that
distribution.

Definition 7.17 (randomized local reductions): Let Π = ∪n∈NΠn and Π′ = ∪n∈NΠ′n be be as
Definition 7.13. A distribution of mappings Fn from the set of functions {f : [n] → Rn} to the
set of functions {f ′ : [n′] → R′n′} is called a randomized q-local (ǫ, ǫ′)-reduction of Πn to Π′n′ if for
every f : [n]→ Rn the following conditions hold with probability at least 5/6 when the mapping Fn

is selected according to the distribution Fn.

1. Locality (local reconstruction): There exist randomized algorithms Qn : [n′] → [n]q and
Vn : [n′]×Rq

n → R′n′, which may depend on Fn, such that for every i ∈ [n′] it holds that

Pr(i1,...,iq)←Qn(i)[Vn(i, f(i1), ..., f(iq)) = (Fn(f))(i)] ≥ 2/3. (7.9)

2. Preservation of the properties: If f ∈ Πn, then Fn(f) ∈ Π′n′ .

3. Partial preservation of distance to the properties: If f is ǫ-far from Πn, then Fn(f) is ǫ′-far
from Π′n′ .

Randomized local reduction of Π to Π′ are defined analogously to Definition 7.13.

Hence, if f ∈ Πn (resp., if f is ǫ-far from Πn), then, with probability at least 5/6, over the
choice of Fn, Conditions 1 and 2 both hold (resp., Conditions 1 and 3 both hold). When applying
such a reduction, the error probability of the algorithms guaranteed by the locality condition (i.e.,
Condition 1) should be reduced according to the application (see Exercise 7.10).21 (The error
probability of the ǫ′-tester for Π′ should also be reduced, say, to 0.1.)

Another type of reductions. We reinterpret a result that appeared in Chapter 5 as a reduction
among (related) property testing problems. Specifically, we refer to Exercise 5.5, which for a
“random self-reducible” property Π′, reduces testing Π′ ∩ Π′′ to testing both Π′ and Π′′. When
Π′ is easy to test, this yields a reduction of testing Π′ ∩ Π′′ to testing Π′′. For sake of clarity, we
first restate the foregoing result, which refers to the notion of random self-reducibility as defined
in Section 5.2.3.

20A similar issue arises in the general definition of local computation algorithms, to be discussed in Section 12.5.
21Specifically, if the ǫ′-tester for Π′ makes q′ queries, then the error probability of these algorithms should be

reduced to 1/10q′.
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Theorem 7.18 (Exercise 5.5, restated):22 Let Π′ and Π′′ be sets of functions defined over D.
Suppose that functions in Π′ are randomly self-reducible by q queries, and that Π′ and Π′′ are ǫ-
testable using q′(ǫ) and q′′(ǫ) queries, respectively. Then, for every ǫ0 < 1/q and ǫ > 0, the property
Π′ ∩Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′(ǫ0)) queries.

The positive application of this result yields a tester for Π′ ∩Π′′ when given testers for Π′ and Π′′.
Here, we present a negative application: Given a lower bound on the query complexity of Π′ ∩Π′′

and assuming that q and q′(ǫ) are both relatively small, we derive a lower bound on the query
complexity of Π′′.

Corollary 7.19 (negative application of Theorem 7.18): Let Π′ be a set of functions defined over
D such that functions in Π′ are randomly self-reducible by q queries, and Π′ is ǫ-testable using q′(ǫ)
queries. Suppose that Q(ǫ) is a lower bound on the query complexity of ǫ-testing Π ∩ Π′′, where
Π′′ is also a set of functions defined over D. Then, for every ǫ0 < 1/q, the query complexity of
ǫ0-testing Π′′ is maxǫ∈(0,1/3q]{Ω̃((Q(ǫ)−O(q′(ǫ)))/q)}.23

As an illustration to the application of Corollary 7.19, we use it to derive a lower bound on testing
k-juntas. Towards this application, we consider the set of k≤-linear functions defined as the union
of the sets of i-linear function for i = 0, 1, ..., k, and note that the lower bound for k-linearity holds
also for k≤-linearity (see Exercise 7.7). The key observation is that the set of k≤-linear functions
is the intersection of the set of linear functions and the set of k-juntas.

Corollary 7.20 (a lower bound on the query complexity of testing k-juntas): For every k(ℓ) ≤
(ℓ/2) − 2, the complexity of 0.499-testing k-juntas is Ω̃(k).

We comment that a linear (in k) lower bound can be obtained by direct reduction from a commu-
nication complexity problem; see Exercise 7.8.

Proof: We let Π′ denote the set of linear functions, and Π′′ denote the set of k(ℓ)-juntas. Recall
that the set of linear functions is randomly self-reducible by two queries, and that it ǫ-testable by
O(1/ǫ) queries. Observing that Π′ ∩ Π′′ is the set of k(ℓ)≤-linear functions, we use the fact that
0.499-testing this set requires Ω(k(ℓ)) queries (see Exercise 7.7). Now, invoking Corollary 7.19, we
infer that 0.499-testing Π′′ requires is Ω̃((k(ℓ)−O(1))/2) queries.

7.5 Lower bounds for restricted testers

Restricted algorithms may have higher complexity than general ones, and proving lower bounds
regarding their complexity may be easier (even when these lower bounds are higher). Two natural

22Recall that Exercise 5.5 is proved based on Theorem 5.11, which postulates the existence of a decision procedure
for the promise problem (Π′,Π′′) rather than a tester for Π′′ as postulated here. But as suggested in the guideline for
Exercise 5.5, for any ǫ0 < 1/q, a tester of query complexity q′′(ǫ) for Π′′ yields a procedure of query complexity q′′(ǫ0)
for distinguishing inputs in Π′ ∩ Π′′ from inputs in Π′ \ Π′′. This is because every input in Π′ \ Π′′ is at distance at
least 1/q from Π′′ (since self-reducibility by q queries implies that distinct functions in Π′ are at distance at least 1/q
apart). Note that we need to invoke the tester for Π′′ with a proximity parameter smaller than 1/q so to guarantee
that inputs at distance exactly 1/q are rejected (w.h.p.).

23The poly-logarithmic factor in the eΩ-notation is merely a logarithmic factor. We stress that all constants
are universal (i.e., they are independent of Π′ and Π′′). Note that we lower-bounded maxǫ∈(0,1]{eΩ((Q(ǫ) −
O(q′(min(ǫ, 1/3q))))/q)} by maxǫ∈(0,1/3q]{eΩ((Q(ǫ) − O(q′(ǫ)))/q)}, losing nothing in the typical cases in which
Q(1/3q) ≥ maxǫ∈[1/3q,1]{Q(ǫ)}.
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restrictions in the context of property testing are the restriction to one-sided error probability
and the restriction to non-adaptive queries. We mention that separations between such restricted
testers and general testers are known in many (natural) cases (see, e.g., testing graph properties
in the bounded-degree model), but there are also (natural) cases in which the restriction does not
increase the complexity of testing (e.g., testing linear properties [47]).24

7.5.1 One-sided error testers

When analyzing one-sided error testers, the (“indistinguishability”) method captured by Corol-
lary 7.3 takes a simpler form. The point is that in this case, any function f having the property Π
must be accepted by the tester with probability 1 (since the tester is allowed no error when f ∈ Π).
Hence, it suffices to find a distribution F0 of functions that are (typically) far from Π such that no
low complexity machine that accepts each f ∈ Π with probability 1 can reject F0 with probability
greater than 1/2.25

Theorem 7.21 (the method of indistinguishability, a one-sided error version): Let Π = ∪n∈NΠn,
Γǫ(Πn), and q : N × (0, 1] → N be as in Theorem 7.2. Suppose that for some ǫ > 0, η0 > 0 and
n ∈ N, there exist a distribution F0 such that Pr[F0 ∈ Γǫ(Πn)] ≥ 1−η0, and for every deterministic
oracle machine M that makes at most q(n, ǫ) queries and accepts each f ∈ Π with probability 1
(i.e., |Pr[Mf (n, ǫ) = 1] = 1 for each f ∈ Πn) it holds that Pr[MF0(n, ǫ) = 1] > 1

3 + η0. Then, the
query complexity of ǫ-testing Π with one-sided error probability is greater than q(·, ǫ).

Considering a machine M as postulated in Theorem 7.21, note that such a machine cannot reject a
function when its partial view of it (i.e., the sequence of query and answer pairs)26 matches a partial
view of a function in Π. Hence, the probability that M accepts F0 (i.e., Pr[MF0(n, ǫ) = 1]) may
be replaced by the probability that M sees a partial view of F0 that matches some function in Π.27

Thus, the hypothesis of Theorem 7.21 may be re-formulated as follows: There exist a distribution
F0 such that Pr[F0 ∈ Γǫ(Πn)] ≥ 1− η0, and for every deterministic oracle machine M that makes
at most q(n, ǫ) queries it holds that the probability that M sees a partial view of F0 that matches
some function in Π is greater than 1

3 + η0.

Proof Sketch: Suppose that T is a one-sided error probability tester for Π, and let F ′0 denote the
distribution F0 conditioned on F0 ∈ Γǫ(Πn). Then, Pr[TF ′0(n, ǫ)=1] ≤ 1/3. Let Tr denote a residual

deterministic machine (obtained by fixing the coins of T to r) such that Pr[T
F ′0
r (n, ǫ) = 1] ≤ 1/3.

Then, Pr[TF0
r (n, ǫ)=1] < 1/3+η0, whereas T f

r (n, ǫ)=1 for every f ∈ Π (since Pr[T f (n, ǫ)=1] = 1).
It follows that T must have query complexity greater than q(·, ǫ).

24As shown in Theorem 9.2, non-adaptive testers are very restricted in the bounded-degree graph model (e.g.,
when compared to the adaptive testers presented in Section 9.2). The bounded-degree model also features a dramatic
gap between the complexity of one-sided error and two-sided error testers for cycle-freeness (see Section 9.2.5 versus
Theorem 9.17). In contast, when testing linear properties, non-adaptivity and one-sided error can be obtained at no
extra cost [47].

25Here we assume that “typically” means with probability greater than 5/6; that is, we assume that Pr[F0 ∈
Γǫ(Πn)] ≥ 5/6.

26The partial view that M has of f is the sequence of pairs ((i1, f(i1)), ..., (iq, f(iq))), where ij+1 is the j + 1st

query made by M after receiving the oracle answers f(i1), ..., f(ij).
27Note that the one-sided error condition only mandates that M must accept if its partial view of the input function

matches some function in Π, but it need not reject otherwise. Nevertheless, M may well reject if its partial view does
not match any function in Π.
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The actual methodology. As hinted in the discussion following the statement of Theorem 7.21,
the methodology that arises here is to find distribution F0 such that Pr[F0 ∈ Γǫ(Πn)] ≥ 1−η0, and
to show that any oracle machine that makes at most q(n, ǫ) queries sees, with probability greater
than 1

3 + η0 over the choice of F0, a partial view that matches some function in Π.

Reduction from communication complexity. The methodology described in Section 7.3 can
be adapted to provide a reduction among the one-sided error probability versions of the two types
of problems. For details see [54, 136].

7.5.2 Non-adaptive testers

When analyzing non-adaptive testers, we can also obtain a simplification of the (“indistinguisha-
bility”) method captured by Corollary 7.3. In this case, it suffices to consider non-adaptive deter-
ministic machines, which is the same as just considering the projection of the relevant distributions
on any size-bounded subset of the function domain.

Theorem 7.22 (the method of indistinguishability, a non-adaptive version): Let Π = ∪n∈NΠn,
Γǫ(Πn), and q : N × (0, 1] → N be as in Theorem 7.2. Suppose that for some ǫ > 0, η0, η1, η2 > 0
and n ∈ N, there exist distributions F1 and F0 such that Pr[F1 ∈ Πn] ≥ 1 − η1 and Pr[F0 ∈
Γǫ(Πn)] ≥ 1− η0, and for every set Q ⊂ [n] of size q(n, ǫ) it holds that the projection of F1 on Q is
η2-close to the projection of F0 on Q; that is, for q = q(n, ǫ) and every i1, ..., iq ∈ [n], it holds that

1

2
·

∑

v1,...,vq∈Rn

|Pr[F1(i1) · · ·F1(iq) = v1 · · · vq]−Pr[F0(i1) · · ·F0(iq) = v1 · · · vq]| ≤ η2. (7.10)

If η0 + η1 + η2 < 1/3, then the non-adaptive query complexity of ǫ-testing Π is greater than q(·, ǫ).

Proof Sketch: Following the argument that led to Corollary 7.3, observe that it implies that if
the distinguishing gap of deterministic non-adaptive machines that make at most q(n, ǫ) queries
is at most η2, then the current claim follows. To establish the former condition, note that,
on input parameters n and ǫ, any deterministic non-adaptive machine M (of query complex-
ity q = q(n, ǫ)) queries each function at the same q positions, denoted iM,n,ǫ

1 , ..., iM,n,ǫ
q . Hence,

M ’s distinguishing gap between F1 and F0 is upper-bounded by the statistical distance between
(F1(i

M,n,ǫ
1 ), ...., F1(i

M,n,ǫ
q )) and (F0(i

M,n,ǫ
1 ), ...., F0(i

M,n,ǫ
q )), which is captured in Eq. (7.10).

Reduction from communication complexity. Adapting the methodology described in Sec-
tion 7.3 to non-adaptive testers yields a method for lower-bounding their query complexity based
on lower bounds on the complexity of one-way communication protocols.28 Actually, it is even more
natural to reduce from an even weaker model of communication protocols, known as the simulta-
neous model. In this model, each of the two parties holding an input, sends a single message to
an auxiliary party, called the referee (who only has access to the common random string), and the
referee is the sole producer of output (see Figure 7.1). The proof of Theorem 7.7 is easily adapted to
yield the following result, where Qna and CCsim denote the corresponding complexity measures (i.e.,
the query complexity of non-adaptive testers and the communication complexity of simultaneous
protocols).

28In such protocols the first party sends a single message to the second party, who produces the output.
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Figure 7.1: The simultaneous communication model.

Theorem 7.23 (the communication complexity method, a non-adaptive version): Let Ψ = (P, S)
be a promise problem such that P, S ⊆ {0, 1}2ℓ, and let Π ⊆ {0, 1}n be a property. For ǫ, η > 0,
suppose that there exists a mapping F : {0, 1}2ℓ → {0, 1}n that satisfies the following two conditions:

1. For every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ Π.

2. For every (x, y) ∈ P \ S, it holds that F (x, y) is ǫ-far from Π.

Then, Qna
η (ǫ,Π) ≥ CCsim

2η (Ψ)/B, where B = maxi∈[n]{CCsim
η/ℓ(fi)} and fi(x, y) is the ith bit of F (x, y).

Furthermore, if B = maxi∈[n]{CCsim
0 (fi)}, then Qna

η (ǫ,Π) ≥ CCsim
η (Ψ)/B.

Proof Sketch: Given a non-adaptive ǫ-tester with error η for Π and simultaneous communication
protocols for the fi’s, we present a simultaneous protocol for solving Ψ. The key idea is that,
using their shared randomness, the two parties (holding x and y, respectively) and the referee can
emulate an execution of the non-adaptive tester, while providing it with virtual access to F (x, y).
Specifically, if the tester queries the ith bit of the oracle, then the two parties provide the referee
with messages that allow it to obtain the value of fi(x, y). The referee feeds all answers to the
tester, and outputs whatever it has output.

The main difference between this emulation and the one that is carried out in the proof of
Theorem 7.7 is that the tester is non-adaptive, and this fact allows its emulation in the simultaneous
communication model. Specifically, the tester generates all its queries as a function of its internal
coin tosses (and n) only, which means that both parties obtain these queries based on the shared
randomness only (i.e., without interacting). Each party then sends the referee a message that
corresponds to the execution of the suitable protocol; that is, if location i in F (x, y) is queried,
then each party sends the message that allows for the computation of fi(x, y) in the simultaneous
protocol. The referee gets all these messages, reconstructs the corresponding fi(x, y)’s, feeds them
to the tester, obtains its verdict, and outputs it. Hence, the two parties only invoke the query-
generation stage of the tester, whereas the referee invokes its decision stage. (All invocations use
the same randomness, which is read from the shared randomness of the three parties.)29

29Other parts of the shared randomness are used for the executions of the protocols for computing the fi’s.
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7.6 Chapter notes

The methodology captured in Theorems 7.1 and 7.2 suggests to prove lower bounds on the worst-
case complexity of randomized algorithms (e.g., property testers) by proving lower bounds on the
“distributional complexity” of corresponding deterministic algorithms (which are only required to
solve the problem “on the average”). This methodology is commonly attributed to Yao [273],
who employed it in the context of several non-uniform models of computation such as Boolean
circuits and communication complexity. It was first employed in the context of property testing by
Goldreich, Goldwasser, and Ron [140, Sec. 4.1].

Recall that this methodology is “complete” in the sense that any valid lower bound can be
proved by using it. The latter assertion, which can be traced to an earlier work of Yao [272]
and is proved by employing von Neumann’s Minimax Theorem [269], is often confused with the
methodology itself. That is, results derived via Theorems 7.1 and 7.2 use the methodology of
Yao [273], not the “Minimax principle” of von Neumann [269] as employed by Yao [272]. For
further discussion of this point, the interested reader is referred to [135, Apdx. A.1].

The methodology of deriving lower bounds on the query complexity of property testing problems
based on communication complexity lower bounds was introduced by Blais, Brody, and Matulef [54].
As noted in Section 7.3, we find this connection quite surprising, since property testing problems
have no “topology” that can be naturally 2-partitioned to fit the two-party setting of communication
complexity. Nevertheless, using this methodology, Blais et al. [54] were able to resolve a fair number
of open problems (cf., e.g., [54, Thms. 1.1-1.3]). Our presentation of their methodology is based
on [136], which generalizes the presentation of Blais et al. [54].30 (We believe that the more general
formulation of the methodology is easier to use as well as more intuitive than the original one.)

Our discussion of reduction among property testing problems (cf. Section 7.4) was confined
to many-to-one reductions. Formulating a general notion of reductions among such problem is
possible, albeit such a formulation will have to address the issues that arise when defining general
reductions among promise problems (cf. [129, Sec. 1.2]).

Exercises

Exercise 7.1 (generalization of Theorem 7.1): Let Π and q be as in Theorem 7.1. Suppose that
for some p ∈ (0, 0.5), ǫ > 0 and n ∈ N, the hypothesis of Theorem 7.1 holds except that 1/3 is
replaced (in Eq. (7.1)) by p; that is, there exists a distribution F of functions from [n] to Rn such
that for every deterministic oracle machine M that makes at most q(n, ǫ) queries it holds that

Pr[F ∈Πn ∧MF (n, ǫ) 6=1] + Pr[F ∈Γǫ(Πn) ∧MF (n, ǫ) 6=0] > p.

Prove that, in this case, any ǫ-tester of error probability p for Πn makes more than q(n, ǫ) queries.

Exercise 7.2 (generalization of Theorem 7.2): Let Π and q be as in Theorem 7.2. Suppose that for
some η ∈ (0, 1), ǫ > 0 and n ∈ N, the hypothesis of Theorem 7.2 holds except that 1/3 is replaced

30Loosely speaking, the formulation of Blais et al. [54] refers to the special case (of Theorem 7.7) in which each
fi(x, y) is a function of the ith bit of x and the ith bit of y (i.e., xi and yi). Indeed, in that case, n = ℓ and B = 2
(by the straightforward protocol in which the two parties exchange the relevant bits (i.e., xi and yi)). Typically,
using this restricted formulation requires reducing the original communication (complexity) problem into an auxiliary
one, and applying the reduction on the latter. Our formulation frees the user from this maneuver, and makes the
reduction from the original (communication) problem (to property testing) more transparent. See further discussion
in [136].
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(in Eq. (7.6)) by η; that is, the relevant distinguishing gap is smaller than η. Prove that, in this
case, any ǫ-tester of error probability (1− η)/2 for Πn makes more than q(n, ǫ) queries.

Exercise 7.3 (on the completeness of Theorem 7.2): Recall that Theorem 7.1 is complete in the
sense that any valid lower bound can be proved by using it. Show that essentially the same as-
sertion holds with respect to Theorem 7.2. Specifically, show that if Π satisfies the hypothesis of
Theorem 7.1, then it satisfies the hypothesis of Theorem 7.2 (possiblly with a threshold of 1/2
rather than 1/3).31

Guideline: Let F be as the hypothesis of Theorem 7.1, and let F1 (resp., F0) denote the distribution
of F conditioned on F ∈ Π (resp., F ∈ Γǫ(Π)). Suppose, for simplicity, that Pr[F ∈ Π] = Pr[F ∈
Γǫ(Π)] = 1/2. Then, by the hypothesis of Theorem 7.1, 1

2 ·(1−Pr[MF1 = 1])+ 1
2 ·Pr[MF0 = 1] > 1/3,

which is equivalent to Pr[MF1 = 1] − Pr[MF0 = 1] < 1/3. By considering the machine that
complements the output of M , we also have Pr[MF0 = 1]−Pr[MF1 = 1] < 1/3, and the hypothesis

of Theorem 7.2 follows. In general, for q1
def
= Pr[F ∈ Π] and q0

def
= Pr[F ∈ Γǫ(Π)], it holds that

q1 · (1−Pr[MF1 = 1])+ q0 ·Pr[MF0 = 1] > 1/3. Observing that q0, q1 ∈ (1/3, 2/3) (since otherwise
a trivial algorithm violates the hypothesis), we get 2

3 · (1−Pr[MF1 = 1]) + 2
3 ·Pr[MF0 = 1] > 1/3,

which is equivalent to Pr[MF1 = 1] −Pr[MF0 = 1] < 1/2. (Using the “complementing” machine,
we also have Pr[MF0 = 1]−Pr[MF1 = 1] < 1/2).32

Exercise 7.4 (on the distinguishing gap of adaptive testers): Let η ≥ 0 and suppose that X and
Y are random variables distributed over {0, 1}n such that, for every fixed I ⊆ [n] of size at most q,
the statistical difference between XI and YI is at most η.

1. Prove that for any (adaptive) oracle machine M that makes q queries, it holds that

∣∣Pr[MX =1]−Pr[MY =1]
∣∣ ≤ 2q · η.

Note that this holds also for η = 0, which means that if for any q-subset I ⊂ [n] the distribu-
tions XI and YI are identically distributed, then no q-query oracle machine can distinguish
X from Y with any positive gap.

2. Demonstrate that the upper bound provided in Part 1 is quite tight by considering the following
two distributions X and Y that are each uniform over {0, 1}n except that the first log2 n bits
indicate a bit-position that is set to 0 in X and to 1 in Y . That is, for n = q − 1 + 2q−1,
let X (resp., Y ) be the uniform distribution except the bit that corresponds to location q +∑

j∈[q−1] 2
j−1Xj is set to 0 (resp., location q +

∑
j∈[q−1] 2

j−1Yj is set to 1).

We stress that the proof of Part 1 is generic, and better bounds can be obtained in many cases (i.e.,
for specific pairs (X,Y )).

31Note that this good enough for claiming “completeness”, since an indistinguishability gap of 1/2 yields that each
algorithm is wrong with probability at least 1/4 (see Exercise 7.2). Still, we would welcome a converse that has no
slackness, although we do not know if it is possible. Note that the argument outlined in the guideline is tight (see
Footnote 32).

32
Advanced comment: Note that the current argument is tight in the sense that there exists a machine M

that errs (on F ∈ Π ∪ Γǫ(Π)) with probability greater than 1/3 whereas the gap |Pr[MF1 = 1] − Pr[MF0 = 1]| is
almost 1/2. Consider, for example, for any µ ∈ (0, 1/12), the case of Pr[MF1 = 1] = 0.5 and Pr[MF0 = 1] = 2µ,
when q1 = 2

3
− µ and q0 = 1 − q1.
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Guideline: Part 1 is proved by fixing the coins of M and considering all 2q possible answers to
the corresponding sequence of q queries. (Indeed, each possible sequence of answers uniquely
determines a sequence of queries (made by the residual deterministic machine).) By the hypothesis,
the difference in the probability that each such sequence of answers occurs in the two distributions
is at most η, and the claim follows.33 Part 2 follows by observing that an adaptive q-query machine
can perfectly distinguish between X and Y (i.e., has distinguishing gap 1), whereas for every fixed
I ⊆ [n] of size at most q the statistical difference between XI and YI is at most |I|/(n− (q − 1)) =
O(q/2q).

Exercise 7.5 (Theorem 7.7, generalized): Let Ψ = (P, S) be a promise problem such that P, S ⊆
{0, 1}2ℓ, and let Π ⊆ Σn be a property, where Σ is an arbitrary finite set. (Indeed, the generalization
is from Σ = {0, 1} to arbitrary Σ.) For ǫ, η > 0, suppose that there exists a mapping F : {0, 1}2ℓ →
Σn that satisfies the following two conditions:

1. For every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ Π.

2. For every (x, y) ∈ P \ S, it holds that F (x, y) is ǫ-far from Π, where z ∈ Σn is ǫ-far from Π
if minw∈Π{|{i ∈ [n] : zi 6=wi}|} > ǫ · n.

Then, Qη(ǫ,Π) ≥ CC2η(Ψ)/B, where B = maxi∈[n]{CCη/ℓ(fi)} and fi(x, y) is the ith symbol of
F (x, y). (Indeed, applying CC to fi requires a straightforward generalization of communication

33For α ∈ {0, 1}q and i ∈ [q], let M ′(α[i−1]) denote the ith query of the residual deteterministic machine when
getting the sequence of answers α[i−i] = (α1, ..., αi−1), and M ′(α) denote the corresponding final output. Then,
Mz = 1 if and only if M ′(α) = 1 where α ∈ {0, 1}q is such that αi = zM′(α[i−1])

for every i ∈ [q]. It follows that

˛

˛

˛

Pr[MX =1] − Pr[MY =1]
˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

α∈{0,1}q :M(α)=1

Pr[(∀i ∈ [q]) XM′(α[i−1])
= αi] −

X

α∈{0,1}q :M(α)=1

Pr[(∀i ∈ [q]) YM′(α[i−1])
= αi]

˛

˛

˛

˛

˛

˛

≤
X

α∈{0,1}q

˛

˛

˛

Pr[(∀i ∈ [q]) XM′(α[i−1])
= αi] − Pr[(∀i ∈ [q]) YM′(α[i−1])

= αi]
˛

˛

˛

=
X

α∈{0,1}q

˛

˛

˛

Pr[XM′(λ) · · ·XM′(α[q−1])
= α] − Pr[YM′(λ) · · ·YM′(α[q−1])

= α]
˛

˛

˛

≤
X

α∈{0,1}q

max
I⊆[n]:|I|=q

max
β∈{0,1}q

{|Pr[XI = β] − Pr[YI = β]|}

which is at most 2q · η. We wish to highlight two points regarding the foregoing proof.

1. The last inequality holds per each α ∈ {0, 1}q , and in particular for α that maximizes
˛

˛

˛

Pr[XM′(λ) · · ·XM′(α[q−1])
= α] − Pr[YM′(λ) · · ·YM′(α[q−1])

= α]
˛

˛

˛

. Letting V z denote the view of an arbitrary

deterministic q-query adaptive machine when querying the oracle z, the foregoing inequality can be interpreted
as saying that for every α it holds that |Pr[V X =α] − Pr[V Y =α]| is upper-bounded by maxI:|I|=q{|Pr[XI =
α] − Pr[YI = α]|}, which in turn is upper-bounded by maxI:|I|=q maxβ{|Pr[XI = β] − Pr[YI = β]|}. (Recall
that the upper bound is proved by setting I to equal the sequence of locations queried by the machine when
answered according to α.)

2. We have upper-bounded the max-norm distance between the random variables XI and YI by their total
variation distance.

Note that the fixing of M ’s coins does simplify the exposition of the argument, and it can be justified as in the proof
of Theorem 7.1. Alternatively, Theorem 7.2 asserts that, for the purpose of proving query complexity lower bounds,
it suffices to consider the distinguishing gap of deterministic testers.
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complexity to the context of computing functions that range over Σ rather than Boolean functions,
where the communication itself is still measured in bits.)34 Furthermore, if B = maxi∈[n]{CC0(fi)},
then Qη(ǫ,Π) ≥ CCη(Ψ)/B.

Exercise 7.6 (on the complexity of k-sparse polynomials, revisited): Let p be a prime power,
d,m, k ∈ N such that d < p and k ≤

(m
d

)
/2 is even. For n = pm, let Πn denote the set of m-variate

polynomials of degree d over GF(p) having exactly k monomials such that each monomial is the
product of d variables. Then, for every ǫ ∈ (0, 1 − (d/p)), the query complexity of ǫ-testing Πn is
Ω(k/ log p).

Guideline: The main step is extending Theorem 7.11 to linear codes Cℓ : Σℓ → Σn for any finite
Σ ⊇ {0, 1} that is associated with an additive group. To prove this extension, invoke Exercise 7.5,
while using the reduction F (x, y) = Cℓ(x − y) and noting that Cℓ(x − y) = Cℓ(x) − Cℓ(y). The
exercise now follows analogously to Corollary 7.12.

Exercise 7.7 (a lower bound for testing k≤-linearity): A function f : GF(2)ℓ → GF(2) is called
k≤-linear if it is linear and depends on at most k of its variables. Show that for every k(ℓ) ≤ (ℓ/2)−2,
the query complexity of 0.499-testing k(ℓ)≤-linearity is Ω(k(ℓ)).

Guideline: We reduce from the communication complexity problem that is the complement of

{DISJ
(k)
ℓ }ℓ∈N; that is, the yes-instances are pairs (x, y) such that I(x, y)

def
= {i ∈ [ℓ] : xi =yi=1} 6=

∅. Note that the communication complexity of problems remains unchanged by complementation.
Finally, note that the reduction used in the proof of Theorem 7.10 maps intersecting pairs to
(k− 2)≤-linear functions, and non-intersecting pairs to k-linear functions, which are 0.499-far from
being (k − 2)≤-linear.35

Exercise 7.8 (a lower bound for testing k-juntas): Show that for every even k(ℓ) ≤ (ℓ/2)− 2, the
complexity of 0.499-testing k-juntas is Ω(k).

Guideline: Just use the same reduction as in Exercise 7.7, while noting that (k−2)≤-linear functions
are (k − 2)-junta, whereas k-linear functions are 0.499-far from being k-juntas.

Exercise 7.9 (a lower bound for testing monotonicity):36 Recall that f : {0, 1}ℓ → Rℓ is called
monotone if f(x) ≤ f(y) for every x < y (per the lexicographic order). Prove that 0.1-testing
monotonicity, even when |Rℓ| = O(ℓ), requires Ω(ℓ) queries.

Guideline: Using Exercise 7.5, reduce from the communication complexity of solving {DISJ
(k)
ℓ =

(Pℓ, Sℓ)}ℓ∈N, where k(ℓ) = ℓ/2. Specifically, map the instance (x, y) ∈ Pℓ to the instance fx,y :
{0, 1}ℓ → [2ℓ + 3] such that

fx,y(z) = 2wt(z) + 1 + (−1)
P

i∈[ℓ] xizi + (−1)
P

i∈[ℓ] yizi .

34That is, CCη′(fi) denotes the number of bits that are communicated in the best two-party protocol that com-
putes fi with error probability at most η′ (i.e., a pair of strategies (A,B) such that for every (x, y) it holds that
Prr[〈A(x), B(y)〉(r)=fi(x, y)] ≥ 1− η′). Letting Σ be encoded by t-bit long strings, where t = log2 |Σ|, and defining
fi,j(x, y) as the jth bit in the encoding of fi(x, y), we have CCη′(fi) ≤

P

j∈[t] CCη′/t(fi,j).
35All the above refers to the case of even k; the case of odd k can be handled as in the proof of Proposition 7.16.
36Based on [54, Sec. 4], which proves a stronger result (i.e., allowing even |Rℓ| = O(

√
ℓ)).
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Observe that, for every j ∈ [ℓ], u ∈ {0, 1}j−1 and w ∈ {0, 1}ℓ−j , letting z′ = u0w, it holds that

fx,y(u1w) − fx,y(u0w) = 2 + ((−1)xj − 1) · (−1)
P

i∈[ℓ] xiz
′
i + ((−1)yj − 1) · (−1)

P

i∈[ℓ] yiz
′
i .

Finally, observe that if xjyj = 0 for every j ∈ [ℓ], then fx,y(u1w) − fx,y(u0w) ≥ 0 for every
u ∈ {0, 1}j−1 and w ∈ {0, 1}ℓ−j , whereas if for some j it holds that xj = yj = 1, then fx,y(u1w) −
fx,y(u0w) = −2 for one fourth of the pairs (u,w) ∈ {0, 1}j−1 × {0, 1}ℓ−j .

Exercise 7.10 (randomized local reductions preserve testability): Let Π = ∪n∈NΠn and Π′ =
∪n′∈NΠ′n′ be as in Definition 7.13. Suppose that Π is randomly q-local (ǫ, ǫ′)-reducible to Π′ with
length function L. Show that if Π′ can be ǫ′-tested with q′(n′, ǫ′) queries, then Π can be ǫ-tested with
q(n) · Õ(q′(L(n), ǫ′)) queries.

Guideline: Extend the proof of Theorem 7.14. Note that the error probability of the local com-
putation algorithms should be reduced to 1/10q′ (or so). Likewise, the error probability of the
ǫ′-tester for Π′ should also be reduced to 0.1 (or so). Under these choices, the error probability of
the derived tester is at most 1

6 + 5
6 · (q′ · 1

10q′ + 0.1) = 1
3 .
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Chapter 8

Testing Graph Properties in the
Dense Graph Model

Summary: Following a general introduction to testing graph properties, this chapter
focuses on the dense graph model, where graphs are represented by their adjacency
matrix (predicate). The highlights of this chapter include:

1. A presentation of a natural class of graph properties that can each be tested within
query complexity that is polynomial in the reciprocal of the proximity parameter.
This class, called general graph partition problems, contains properties such as
k-Colorability (for any k ≥ 2) and properties that refer to the density of the
max-clique and to the density of the max-cut in a graph.

2. An exposition of the connection of testing (in this model) to Szemeŕedi’s Regu-
larity Lemma. The starting point and pivot of this exposition is the existence of
constant-query (one-sided error) proximity-oblivious testers for all subgraph free-
ness properties.

We conclude this chapter with a taxonomy of known testers, organized according to
their query complexity.

The current chapter is based on many sources; see Section 8.6.1 for details.

Organization. The current chapter is the first out of a series of three chapters that cover three
models for testing graph properties. In each model, we spell out the definition of property testing
(when specialized to that model), present some of the known results, and demonstrate some of the
ideas involved in the construction of testers (by focusing on testing Bipartiteness, which seems
a good benchmark).

We start the current chapter with a general introduction to testing graph properties, which
includes an overview of the three models (see Section 8.1.2). We then present and illustrate the
“dense graph model” (Section 8.2), which is the focus of the current chapter. The main two sections
(i.e., Sections 8.3 and 8.4) cover the two topics that are mentioned in the foregoing summary:
Section 8.3 deals with testing arbitrary graph partition properties, as illustrated by the example
of testing Bipartitness. Section 8.4 deals with the connection between property testing in this
model and Szemeŕedi’s Regularity Lemma, as illustrated by testing subgraph-freeness. The last
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two sections (i.e., Sections 8.5 and 8.6) are descriptive in nature: Section 8.5 presents a taxonomy
of the known results, whereas Section 8.6 presents final comments.

Teaching note: Much of this chapter (e.g., Sections 8.5 and 8.6) is intended for optional independent

reading. We recommend to base the actual teaching on Sections 8.1.2–8.3, with the possibility of leaving

Section 8.3.2 for independent reading. (If under time pressure, one may be forced to skip Sections 8.2.3–

8.2.4.) We do share the temptation to cover also Section 8.4 in class, but think that teaching the material

presented in the previous sections should have a higher priority.

8.1 The general context: Introduction to testing graph properties

Graph theory has long become recognized as one of the more useful mathematical

subjects for the computer science student to master. The approach which is

natural in computer science is the algorithmic one; our interest is not so much in

existence proofs or enumeration techniques, as it is in finding efficient algorithms

for solving relevant problems, or alternatively showing evidence that no such

algorithms exist. Although algorithmic graph theory was started by Euler, if not

earlier, its development in the last ten years has been dramatic and revolutionary.

Shimon Even, Graph Algorithms, 1979.

Meditating on these facts, one may ask what is the source of this ubiquitous use of graphs in
computer science. The most common answer is that graphs arise naturally as a model (or an
abstraction) of numerous natural and artificial objects. Another answer is that graphs help visualize
binary relations over finite sets. These two different answers correspond to two types of models of
testing graph properties that will be discussed below. But before doing so, let us recall some basic
background.

Teaching note: We believe that most readers can afford skipping Section 8.1.1, which presents the basic

notions and terminology regarding graphs. The vocabulary includes terms such as vertex, edge, simple

graph, incident, adjacent, degree, path, cycle, subgraph, induced graph, and isomorphism between graphs.

8.1.1 Basic background

A simple graph G=(V,E) consists of a finite set of vertices V and a finite set of edges E, where each

edge is an unordered pair of vertices; that is, E ⊆
(
V
2

) def
= {{u, v} : u, v∈V ∧u 6=v}. This formalism

does not allow self-loops and parallel edges, which are allowed in general (i.e., non-simple) graphs,
where E is a multi-set that may contain (in addition to two-element subsets of V also) singletons
(i.e., self-loops). Unless explicitly stated differently, we shall only consider simple graphs; that is,
typically, a graph means a simple graph.

The relationship between edges and vertices yields a few basic notions: The vertex u is called
an end-point of the edge {u, v}, and the edge {u, v} is said to be incident at u (and at v). In such
a case we say that u and v are adjacent in the graph, and that u is a neighbor of v. The degree of
a vertex in G is defined as the number of edges that are incident at this vertex.

We will consider various sub-structures of graphs, the simplest one being paths. A path in a

graph G=(V,E) is a sequence of vertices (v0, ..., vℓ) such that for every i ∈ [ℓ]
def
= {1, ..., ℓ} it holds
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that vi−1 and vi are adjacent in G. Such a path is said to have length ℓ. A simple path is a path in
which each vertex appears at most once, which implies that the longest possible simple path in G
has length |V |−1. The graph is called connected if there exists a path between each pair of vertices
in it.

A cycle is a path in which the last vertex equals the first one (i.e., vℓ = v0). The cycle (v0, ..., vℓ)
is called simple if ℓ > 2 and |{v0, ..., vℓ}| = ℓ (i.e., vi = vj holds only for v0 = vℓ, whereas the cycle
(u, v, u) is not considered simple). A graph is called acyclic (or cycle-free or a forest) if it has no
simple cycles, and if it is also connected then it is called a tree. Note that G = (V,E) is a tree if
and only if it is connected and |E| = |V |− 1; also, G is a tree if and only if there is a unique simple
path between each pair of vertices in it.

A subgraph of the graph G= (V,E) is any graph G′= (V ′, E′) satisfying V ′ ⊆ V and E′ ⊆ E.
Note that a simple cycle in G is a connected subgraph of G in which each vertex has degree exactly
two. An induced subgraph of the graph G = (V,E) is any subgraph G′= (V ′, E′) that contains all
edges of G that have both endpoints in V ′. In such a case, we say that G′ is the subgraph induced
by V ′.

Two graphs, G1 =(V1, E1) and G2 =(V2, E2), are said to be isomorphic if there exists a bijection
φ : V1 → V2 such that E2 = {{φ(u), φ(v)} : {u, v}∈E1}; that is, φ(u) is adjacent to φ(v) in G2 if
and only if u is adjacent to v in G1.

8.1.2 Three Models of Testing Graph Properties

The fact that we call the objects of our study “graphs” is meaningless unless our study refers
to characteristics of these objects, which are not be shared by other objects. The feature that
distinguishes the edge set E of a graph G=(V,E) from any other set of similar cardinality is that
we can refer to E via V ; that is, E is a binary relation over V , and so the existence of two edges that
share a common end-point (i.e., {u, v1} and {u, v2}) is different from the existence of two edges that
do not share an end-point. Likewise, a cycle of length t is not an arbitrary sequence of t elements
of E, but rather one with a specific structure. Furthermore, we are interested in properties that
are invariant under renaming of the vertices. Such properties are called graph properties.

Definition 8.1 (graph properties): A graph property is a set of graphs that is closed under graph
isomorphism. That is, Π is a graph property if, for every graph G = (V,E) and every bijection
π : V → V ′, it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G) is the graph obtained from G
by relabelling the vertices according to π; that is,

π(G)
def
= (V ′, {{π(u), π(v)} : {u, v}∈E}). (8.1)

For sake of simplicity, we shall consider only graphs G = (V,E) with vertex set V = {1, ..., |V |}.
(Wishing to reserve n for the size of the representatioon of the tested object, we shall often denote
the number of vertices by k = |V |.)

In light of what we have seen so far, a tester for a graph property Π is a randomized algorithm
that is given oracle access to a graph, G=(V,E), and has to determine whether the graph is in Π
or is far from being in Π. But the foregoing falls short from constituting a sound definition. We
have to specify what does it mean to be given oracle access to a graph, and when are two graphs
considered to be far from one another. That is, we have to specify the meaning of “oracle access
to a graph” (i.e., the type of queries that are allowed to the graph) as well as the distance-measure
(between pairs of graphs). Recall that, as stated in the Section 1.2.5, these (pair of) choices are
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of key importance. There are at least three natural (pairs of) choices, and each of them yields a
different model. These three models are reviewed next.

The dense graphs (a.k.a adjacency predicate) model. In this model, the graph G=(V,E)
is represented by the adjacency predicate g :

(V
2

)
→ {0, 1} such that g({u, v}) = 1 if and only

if {u, v} ∈ E. Hence, oracle access to G means oracle access to g, and the distance between
graphs (with vertex set V ) is defined as the distance between their corresponding representations
(which have size

(|V |
2

)
); that is, if the graphs G and G′ are represented by the functions g and

g′, then their relative distance is the fraction of pairs {u, v} such that g({u, v}) 6= g′({u, v}) (i.e.,
|{{u, v} : g({u, v}) 6= g′({u, v})}|/

(|V |
2

)
).

It will be more convenient to represent the graph G = (V,E) by the symmetric function g :
V × V → {0, 1} such that is g(u, v) = 1 if and only if {u, v} ∈ E. This representation is slightly
redundant, since g(u, v) = g(v, u) and g(v, v) = 0 always holds, but it is less cumbersome. Note
that representing G and G′ by g : V × V → {0, 1} and g′ : V × V → {0, 1} means that the
relative distance between G and G′ is the fraction of ordered pairs on which g and g′ differ (i.e.,
|{(u, v) : g(u, v) 6= g′(u, v)}|/|V |2).1

Note that saying that G=(V,E) is ǫ-far from the graph property Π means that for every G′ ∈ Π
it holds that G is ǫ-far from G′. Since Π is closed under graph isomorphism, this means that G
is ǫ-far from any isomorphic copy of G′; that is, for every permutation π over V , it holds that
|{(u, v) : g(u, v) 6= g′(π(u), π(v))}| > ǫ · |V |2, where g : V 2 → {0, 1} and g′ : V 2 → {0, 1} are as in
the previous paragraph.

Finally, note that this notion of distance between graphs is most meaningful in the case that
the graphs are dense (since in this case dividing by the number of possible vertex pairs is closely
related to dividing by the actual number of edges). Thus, this model is often called the dense graph
model.

The bounded-degree graph (a.k.a incidence function) model. In this model, for some
fixed upper bound d on the degrees of vertices in G, the graph G = (V,E) is represented by the
incidence function g : V × [d]→ V ∪{⊥} such that g(u, i) = v if {v, u} is the ith edge incident at u,
and g(u, i) = ⊥ if the degree of u smaller than i. In other words, g(u, i) = v if v is the ith neighbor
u and g(u, i) = ⊥ if u has less than i neighbors. Indeed, this representation assumes and/or induces
an order on the neighbors of each vertex in G, and it is redundant since each edge is represented
twice.2

As before, oracle access to G means oracle access to g, but g is different here. Likewise, the
distance between graphs (with vertex set V ) is defined as the distance between their corresponding
representations (which have size |V | · d); that is, if the graphs G and G′ are represented by the
functions g and g′, then their relative distance is the fraction of pairs (u, i) such that g(u, i) 6=
g′(u, i).

Indeed, only graphs of degree at most d can be represented in this model, which is called the
bounded-degree graph model.

Again, saying that G=(V,E) is ǫ-far from the graph property Π means that for every G′ ∈ Π
it holds that G is ǫ-far from G′. Since Π is closed under graph isomorphism and the ordering of

1Indeed, there is a small difference between this fraction and the fraction defined in the previous paragraph.
2That is, we always assume that g(u, i) = v if and only if there exists a j ∈ [d] such that g(v, j) = u. We stress

that j does not necessarily equal i.
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the vertices incident at each vertex is arbitrary, this means that for every permutation π over V , it
holds that ∑

u∈V

|{v : ∃i g(u, i) = v}△{v : ∃i g′(π(u), i) = π(v)}| > ǫdN ,

where g and g′ are the incidence functions of G and G′, and △ denotes the symmetric difference
(i.e., A△B = (A ∪B) \ (A ∩B)).

We stress that both in the dense graph model and in the bounded-degree graph model, the
(relative) distance between graphs is measured according to the representation of these graphs as
functions, but the representation is different in the two models (and so the (relative) distances are
different in the two models). In contrast to the foregoing two models in which the oracle queries
and the (relative) distances between graphs are linked to the representation of graphs as functions,
in the following model the representation is blurred and the query types and distance measure are
decoupled.

The general graph model. In this model, the graphs are redundantly represented by both their
adjacency predicate and their incidence functions (while not assuming a degree bound (except for
the obvious bound of |V | − 1)). This representation is implicit in the type of queries allowed (i.e.,
the algorithm can make queries of both types) and does not effect the distance measure. Instead,

the relative distance between the graphs G=(V,E) and G′=(V,E′) is defined as |E△E′|
max(|E|,|E′|) ; that

is, the absolute distance is normalized by the actual number of edges rather than by an absolute
upper bound (on the number of edges) such as

(|V |
2

)
or d|V |/2.

Needless to say, the general graph model is the most general one, and it is indeed closest to
actual algorithmic applications. In other words, this model is relevant for most applications, since
these seem to refer to general graphs (which model various natural and artificial objects). In
contrast, the dense graph model is relevant to applications that refer to (dense) binary relations
over finite sets, whereas the bounded-degree graph model is relevant only to applications in which
the vertex degree is bounded.

The fact that the general graph model has received relatively little attention (so far) merely
reflects the fact that its study is overly complex. Given that current studies of the other models
still face formidable difficulties (and that these models offer a host of interesting open problems),
it is natural that researchers shy away from yet another level of complication.

Teaching note: While the following comment applies to property testing at large, it seems appropriate

to make it (and stress it) in the context of testing graph properties, since this context seems closest to

standard algorithmic research.

The current focus on query complexity. Although property testing is motivated by referring
to super-fast algorithms, research in the area tends to focus on the query complexity of testing
various properties. This focus should be viewed as providing an initial estimate to the actual
complexity of the testing problems involved; certainly, query-complexity lower bounds imply cor-
responding bounds on the time complexity, whereas the latter is typically at most exponential in
the query complexity. Furthermore, in many cases, the time complexity is polynomial (or even
linear) in the query complexity, and this fact is typically stated. Thus, we will follow the practice
of focusing on the query complexity of testing, but also mention time complexity upper bounds
whenever they are of interest.
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Digest: The issue of representation in light of the three models. As stated in the Sec-
tion 1.2.5, the distinction between objects and their representation is typically blurred in computer
science; nevertheless, this distinction is important. Indeed, reasonable and/or natural representa-
tions are always assumed either explicitly or implicitly (see, e.g., [131, Sec. 1.2.1]). The specific
choice of a reasonable and/or natural representation becomes crucial when one considers the exact
complexity of algorithms (as is common in algorithmic research), rather than their general “ball
park” (e.g., being in the complexity class P or not).

The representation is even more crucial in our context (i.e., in the study of property testing).
This is the case for two reasons, which transcend the standard algorithmic concerns:

1. We are interested in sub-linear time algorithms, which means that these algorithms query bits
in the representation of the object. Needless to say, different representations mean different
types of queries, and this difference is crucial when one does not fully recover the object by
queries.

2. We are interested in the distance between objects (or, actually, in the distance between objects
and sets of objects), whereas this distance may be measured in terms of the distance between
their representations. In such a case, different representations of objects may yield vastly
different distances between the same objects.

In light of the foregoing, when considering property testing, we always detail the exact represen-
tation of the objects. This is exactly what has been done here: The three foregoing models use
different representations of the same objects, which means that the algorithms in the different
models have different query capacities and their performance is evaluated with respect to different
distance measures. We believe that the types of queries allowed in each model constitute the nat-
ural choice for that model. In the first two models, the underlying representation also provides a
natural basis for the definition of a distance measure between objects, whereas in the third model
the definition of the distance measure is decoupled from the representation of the objects (and
refers to their “actual size”).

8.2 The Dense Graph Model: Some basics

In this section we spell out the actual definition of “testing graph properties in the dense graph
model” (Section 8.2.1) and discuss a couple of simple testers, which are based on artifacts of this
specific model (Section 8.2.2). In contrast, in Section 8.2.3, we illustrate how the fact that we deal
with graphs complicates the analysis of a seemingly simple tester.

8.2.1 The actual definition

In the adjacency matrix model (a.k.a the dense graph model), a k-vertex graph G = ([k], E) is
represented by the Boolean function g : [k] × [k] → {0, 1} such that g(u, v) = 1 if and only if
u and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is measured in terms of
their aforementioned representation (i.e., as the fraction of (the number of) different matrix entries
(over k2)), but occasionally one uses the more intuitive notion of the fraction of (the number of)
unordered vertex pairs over

(k
2

)
.3

3Indeed, there is a tiny discrepancy between these two measures, but it is immaterial in all discussions. Note that,
for sake of technical convenience, we chose to use a redundant representation (i.e., g(u, v) = g(v, u) and g(v, v) = 0),
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Recall that we are interested in graph properties, which are sets of graphs that are closed under
isomorphism; that is, Π is a graph property if for every graph G=([k], E) and every permutation π

of [k] it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G)
def
= ([k], {{π(u), π(v)} : {u, v} ∈ E}).

We now spell out the meaning of property testing in this model.4

Definition 8.2 (testing graph properties in the adjacency matrix model): A tester for a graph
property Π is a probabilistic oracle machine that, on input parameters k and ǫ and access to (the
adjacency predicate of) a k-vertex graph G = ([k], E), outputs a binary verdict that satisfies the
following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ǫ-far from Π, then the tester accepts with probability at most 1/3, where G is ǫ-far
from Π if for every k-vertex graph G′ = ([k], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ǫ · k2/2 (equiv., the representations of
G and G′ as adjacency predicates differ on more than ǫ · k2 vertex-pairs).5

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error. A tester is called non-adaptive if it determines all its
queries based solely on its internal coin tosses (and the parameters k and ǫ); otherwise, it is called
adaptive.

The query complexity of a tester is the number of queries it makes to any k-vertex graph, as a
function of the parameters k and ǫ.6 We say that a tester is efficient if it runs in time that is linear
in its query complexity, where basic operations on elements of [k] (and in particular, uniformly
selecting an element in [k]) are counted at unit cost.

We stress that testers are defined as (uniform) algorithms that are given the size parameter k
and the distance (or proximity) parameter ǫ as explicit inputs.7 This uniformity (over the values
of the distance parameter) makes the positive results stronger and more appealing (especially in
light of a separation result shown in [21]). In contrast, negative results typically refer to a fixed
value of the distance parameter.

Representing graphs by their adjacency predicate is very natural, but it is quite problematic if
the input graph is not dense (i.e., if |E| = o(k2)). In such a case (i.e., when G is not dense), queries
to the oracle are likely to be uninformative (e.g., a uniformly distributed query is answered with 0
with probability 1 − o(1)). On the other hand, each non-dense graph is o(1)-close to the empty
graph, so if the latter has the property (and we are guaranteed that the tested graph is non-dense),
then testing is trivial (for any constant ǫ > 0). All these reservations are not applicable when the
tested graph is dense, as is the case when the graph is used to represent a (symmetric) binary
relation that is satisfied quite frequently (say, with constant frequency).

and that we denote the number of vertices by k in order to maintain the convention that n denotes the size of the
representation (i.e., n = k2).

4Indeed, we slightly deviate from the conventions of Definition 1.6 by providing the tester with k (which denotes
the number of vertices in G) rather than with n = k2 (which denotes the size of the domain of the function g).

5Indeed, it is more natural to consider the symmetric difference between E and E′ as a fraction of
`

k
2

´

, but it is
more convenient to adopt the alternative normalization.

6As in Footnote 4, we deviated from the convention of presenting the query complexity as a function of n = k2

and ǫ.
7That is, we refer to the standard (uniform) model of computation (cf., e.g., [131, Sec. 1.2.3]), which does not allow

for hard-wiring of some parameters (e.g., input length) into the computing device (as done in the case of non-uniform
circuit families).
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8.2.2 Abuses of the model: Trivial and sparse properties

In continuation to the foregoing discussion, we note that graph properties can be trivial to test
also when the input graph is dense. One such case is when every k-vertex graph is ǫ-close to the
property (for some ǫ > k−Ω(1)). This is the case with many natural graph properties: for example,
every k-vertex graph is O(1/k)-close to being connected (or even Hamiltonian and Eulerian), and
ditto with respect to being unconnected.

Proposition 8.3 (trivially testable properties (in the dense graph model)): Let Π be a graph
property and c > 0. If every k-vertex graph is k−c-close to Π, then ǫ-testing Π with one-sided error
can be done with zero queries if ǫ ≥ k−c and with (1/ǫ)2/c queries otherwise.

Proof: If ǫ ≥ k−c, then the tester accepts the graph without making any query (since, in this
case, the graph is ǫ-close to Π). Otherwise (i.e., ǫ < k−c), the tester just retrieves the entire graph
and decides accordingly, but in this case k2 < (1/ǫ)2/c.

Another case when testing is easy, alas not that trivial, is when the property is satisfied only
by sparse graphs. For example, consider being planar or being cycle-free.8 In such a case, testing
the property (typically) reduces to checking that the graph is sparse enough.

Proposition 8.4 (testing “sparse graph” properties in the dense graph model): Let Π be a graph
property and c < 2. If every k-vertex graph in Π has at most kc edges, then ǫ-testing Π can be done
in poly(1/ǫ) many queries. In particular, if ǫ ≥ 3k−(2−c) then O(1/ǫ) queries suffice.

(Note that this tester has two-sided error.)

Proof Sketch: If ǫ ≥ 3k−(2−c), then the tester uses O(1/ǫ) random queries to estimate the edge
density of the graph such that it distinguishes between density at least 2ǫ/3 and density at most
ǫ/3.9 In the first case the tester rejects (since the graph is far enough from being sufficiently sparse),
and in the second case the tester accepts (since the graph is close enough to the empty graph, which
is close enough to Π). Otherwise (i.e., when ǫ < 3k−(2−c)), the tester just retrieves the entire graph
and decides accordingly, but in this case k2 < (3/ǫ)2/(2−c).

8.2.3 Testing degree regularity

A case in which the fact that we deal with graphs actually makes life harder is that of testing degree
regularity. A graph is called regular if all its vertices have the same degree; that is, G = ([k], E) is

regular if there exists an integer d such that dG(u)
def
= |{v : {u, v}| equals d for every u ∈ [k]. In

such a case we say that G is d-regular.

Theorem 8.5 (testing degree regularity in the dense graph model): Degree regularity can be tested
by using O(1/ǫ2) non-adaptive queries. Furthermore, the tester is efficient.

8Recall that any k-vertex planar graph has at most max(k − 1, 3k − 6) edges, whereas any (k-vertex) cycle-free
graph has at most k − 1 edges.

9The analysis uses a multiplicative Chernoff bound. We also assume, for sake of simplicity, that Π contains some
k-vertex graph, for eack k.
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We note that this upper bound is tight (see Exercise 8.1). As further discussed in the proof, the
tester is identical to one that could be used to test that a k-by-k Boolean matrix has rows of equal
Hamming weight, but its analysis is more complex in the current setting (in which the matrix must
be symmetric and lack 1-entries on its diagonal). The point is that it is not obvious that if the
average deviation of the degrees of vertices in the graph (from some value) is small, then the graph
is close to being regular (see Claim 8.5.1). (In contrast, it is obvious that if the average deviation
of the weights of rows in a matrix (from some value) is small, then the matrix is close to having
equal weight rows.)

Proof: We start by reviewing a simpler tester of query complexity Õ(1/ǫ3). This tester selects
O(1/ǫ) random vertices, and estimates the degree of each of them up to ±0.01ǫk using a sample
of s = Õ(1/ǫ2) random vertices (and making the corresponding s queries).10 The tester accepts if
and only if all these estimates are at most 0.02ǫk apart.

If G is regular (i.e., d-regular), then the tester will accept G with high probability (since, with
high probability, all degree estimates will fall in [d ± 0.01ǫk]). On the other hand, if the tester
accepts G with high probability, then we can infer that there exists an integer d such that all but
at most 0.02ǫk of the vertices have degree d± (0.02ǫk + 1). (This can be shown by considering the
0.01ǫk vertices of highest degree and 0.01ǫk vertices of lowest degree.)11 The analysis is completed
by proving that in this case the graph G is ǫ-close to regular.

Claim 8.5.1 (local-vs-global distance to degree regularity): If d < k and dk/2 are natural numbers
and

∑
v∈[k] |dG(v)− d| ≤ ǫ′ · k2, then G is 6ǫ′-close to the set of d-regular k-vertex graphs.

(Indeed,
∑

v∈[k] |dG(v)− d| represents the “local” distance of G from being regular, whereas we are
interested in the “global” distance as captured by Definition 8.2.)

Note that a version of Claim 8.5.1 that refers to general k-by-k Boolean matrices, where dG(v)
denotes the Hamming weight of row v in the matrix G, is trivial. In that case (of general Boolean
matrices), the matrix G is ǫ′-close to a matrix in which all rows have weight d. But the latter matrix
is not necessarily symmetric and may have 1-entries on the diagonal (i.e., it does not necessarily
correspond to an adjacency matrix of a graph). Turning back to our application, note if there exists
an integer d such that all but at most 0.02ǫk of the vertices in the graph G have degree d±(0.03ǫk),
then

∑
v∈[k] |dG(v)− d| < 0.02ǫk · (k − 1) + k · 0.03ǫk < 0.05ǫk2, and it follows that G is 0.3ǫ-close

to being d-regular. (This assumes that dk is even; otherwise we can use d− 1 instead of d.)12

Teaching note: The proof of Claim 8.5.1 is purely combinatorial and can be left for independent reading.

The complexity saving captured by Algorithm 8.5.2 is far more important to the contents of the course.

10Recall that we can the estimate of the average value of a function f : [k] → {0, ..., k − 1} by a sample of size
O(t/ǫ2) such that, with probability at least 1 − 2−t, the estimate is within an additive deviation of 0.01ǫk from the
actual value.

11Let L and H be the corresponding sets; that is, let L (resp., H) be a set of 0.01ǫk vertices having the lowest

(resp., highest) degree in G. For ℓ
def
= maxv∈L{dG(v)} and h

def
= minv∈H{dG(v)}, if h−ℓ ≤ 0.04ǫk, then each vertex in

[k]\(L∪H) has degree that resides in {ℓ, ..., h}, and the claim follows (since these degrees are all within ±(0.02ǫk+1)
from ⌊(ℓ+ h)/2⌋). On the other hand, if h− ℓ > 0.04ǫk, then the tester rejects with high probability (by having seen
at least one vertex in L and one vertex in H , and having estimated their degrees well enough).

12Being even more nitpicking, we note that using d−1 instead of d yields an additional loss of k edges, which is OK
provided k ≤ 0.01ǫk2. On the other hand, if ǫ < 100/k, then we can just retrieve the entire graph using

`

k
2

´

= O(1/ǫ2)
queries.
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Proof: We modify G in three stages, while keeping track of the number of edge modifications. In
the first stage we reduce all vertex degrees to at most d, by scanning all vertices and omitting at

most dG(v)−d edges incident at each vertex v ∈ H
def
= {u : dG(u) > d}. Specifically, when handling

a vertex v, we consider its degree d′(v) in the current graph and omit max(0, d′(v)− d) of its edges.

Since
∑

v∈H(dG(v) − d) ≤ ǫ′k2, we obtain a graph G′ that is ǫ′k2

k2/2
-close to G such that dG′(v) ≤ d

holds for each vertex v. Furthermore,
∑

v∈[k] |dG′(v)−d| ≤ ǫ′ ·k2, because each omitted edge {u, v}
reduces either |d′(u) − d| or |d′(v) − d| (while possibly increasing the other quantity by one unit,
where d′(·) denotes the degrees at the time this edge is omitted).

In the second stage, we insert an edge between each pair of vertices that are currently non-
adjacent and have both degree smaller than d. Thus, we obtain a graph G′′ such that {v :

dG′′(v) < d} is a clique in G′′ (and dG′′(v) ≤ d for all v). Furthermore, G′′ is ǫ′k2/2
k2/2

-close to

G′ and
∑

v∈[k] |dG′′(v)− d| ≤ ǫ′ · k2.
In the third stage, we iteratively increase the degrees of vertices that have degree less than d

while preserving the degrees of all other vertices. Denoting by Γ(v) the current set of neighbours
of vertex v, we distinguish two cases.

Case 1: There exists a single vertex of degree less than d. Denoting this vertex by v, we
note that |Γ(v)| ≤ d−2 must hold (since

∑
u∈[k] |Γ(u)| must be even, whereas in this case this

sum equal (k− 1) · d+ |Γ(v)| = kd− (d− |Γ(v)|), and by the hypothesis kd is even). We shall
show that there exist two vertices u and w such that {u,w} is an edge in the current graph
but u,w 6∈ Γ(v) ∪ {v}. Adding the edges {u, v} and {w, v} to the graph, while omitting the
edge {u,w}, we increase |Γ(v)| by two, while preserving the degrees of all other vertices.

We show the existence of two such vertices by recalling that |Γ(v) ∪ {v}| ≤ d − 1, whereas
all other k − 1 ≥ d vertices in the graph have degree d. Considering an arbitrary vertex
u 6∈ Γ(v) ∪ {v}, we note that u has d neighbors (since u 6= v), and these neighbors cannot all
be in Γ(v) ∪ {v} (which has size at most d − 1). Thus, there exists w ∈ Γ(u) \ (Γ(v) ∪ {v}),
and we are done.

Case 2: There exist at least two vertices of degree less than d. Let v1 and v2 be two ver-
tices such that |Γ(vi)| ≤ d− 1 holds for both i ∈ {1, 2}. Note that {v1, v2} is an edge in the
current graph, since the set of vertices of degree less than d constitute a clique. We shall show
that there exists two vertices u1 ∈ [k]\{v1} and u2 ∈ [k]\{v2} such that {u1, u2} is an edge in
the current graph but neither {v1, u1} nor {v2, u2} are edges (and so |Γ(u1)| = |Γ(u2)| = d).
Adding the edges {u1, v1} and {u2, v2} to the graph, while omitting the edge {u1, u2}, we
increase |Γ(vi)| by one (for each i ∈ {1, 2}), while preserving the degrees of all other vertices.

We show the existence of two such vertices by starting with an arbitrary vertex u1 6∈ (Γ(v1)∪
{v1, v2}). Such a vertex exists since v2 ∈ Γ(v1) and so |Γ(v1) ∪ {v1, v2}| = |Γ(v1) ∪ {v1}| ≤
d < k. We now make the following two observations.

• Vertex u1 has d neighbors (see above).13 Obviously, v1 6∈ Γ(u1) (since u1 6∈ Γ(v1)).

• The set (Γ(v2) ∪ {v2}) \ {v1} has size at most d− 1, since v1 ∈ Γ(v2) and |Γ(v2)| < d.

It follows that Γ(u1) cannot be contained in Γ(v2) ∪ {v2}, since |Γ(u1) \ {v1}| = d whereas
|(Γ(v2) ∪ {v2}) \ {v1}| ≤ d− 1. Hence, there exists u2 ∈ Γ(u1) \ (Γ(v2) ∪ {v2}).

13This is because u1 6∈ Γ(v1), whereas all vertices of degree lower than d are neighbors of v1 (since the vertices of
lower degree form a clique).
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Thus, in each step of the third stage, we decrease
∑

v∈[N ] |dG′′(v)−d| by two units, while preserving
both invariances established in the second stage (i.e., {v : dG′′(v) < d} is a clique and dG′′(v) ≤ d
for all v). Since in each step we modified three edges (and there are at most ǫ′k2/2 steps), we

conclude that G′′ is 3ǫ′k2/2
k2/2 -close to a d-regular graph, and the claim follows (by recalling that G is

3ǫ′-close to G′′).

Reducing the query complexity. The wasteful aspect in the aforementioned tester is that it samples
O(1/ǫ) vertices and estimates the degree of each of these vertices up to an additive term of 0.01ǫk.
This tester admits a straightforward analysis by which if

∑
v∈[k] |dG(v) − d| > 0.05ǫk2, then at

least 0.02ǫk of the vertices have degree outside the interval [d± 0.03ǫk]. In this analysis a vertex is
defined as “exceptional” if its degree deviates from the average value by more than 0.03ǫk, but when
lower-bounding the number of exceptional vertices we use k as an upper bound on the contribution
of each exceptional vertex (to the sum of deviations). That is, the threshold for being considered
“exceptional” is minimalistic (i.e., it considers an extremely mild deviation as exceptional), but
when analyzing the number of exceptional vertices we considered the maximal possible deviation.

Obviously, we must take into account both these extreme cases (i.e., both mild deviations and
large deviations of individuial degrees), but we may treat vertices with different levels of deviation
differently. Specifically, if all exceptional vertices “deviate by much” (i.e., their degrees deviates
from the average by at least δk ≫ ǫk), then less samples suffice for detecting their deviation (i.e.,
O(1/δ2) ≪ O(1/ǫ2) samples suffice). On the other hand, if the exceptional vertices only “deviate
by little” (i.e., their degrees deviates from the average by at most δk = O(ǫk) (or so)), then it
suffices to sample less vertices in order to encounter such a vertex (i.e., it suffices to sample O(δ/ǫ)
vertices). Of course, we do not know which case holds, and in fact we may have a mix of several
cases. Still, we can handle all cases concurrently.

Specifically, assuming that the total deviation is Ω(ǫk2) and letting ℓ = log2(O(1)/ǫ), we observe
that there exists i ∈ [ℓ] such that at least Ω(2−i · k) of the vertices have degrees that deviate from
the average by Θ(2iǫ · k/ log(1/ǫ)) units, since otherwise the total deviation would have been

∑

i∈[ℓ]
o(2−i · k) ·Θ(2iǫ · k/ log(1/ǫ)) =

∑

i∈[ℓ]
o(ǫk2/ log(1/ǫ)) = o(ǫk2)

in contradiction to the hypothesis. Hence, for every i ∈ [ℓ], we attempt to detect a Ω(2−i) fraction
of the vertices that have degrees that deviate from the average by Θ(2iǫ · k/ log(1/ǫ)) units, where
the total amount of work involved in performing the relevant estimates is

∑

i∈[ℓ]
O(2−i)−1 ·Θ(2iǫ/ log(1/ǫ))−2 =

∑

i∈[ℓ]
2−i ·O(log(1/ǫ)/ǫ)2 = Õ(1/ǫ2).

Actually, we shall obtain a slightly better result by setting the parameters differently; specifically,
by attempting to detect a Ω(2−i) fraction of the vertices that have degrees that deviate from
the average by Θ(24i/5ǫ · k) units. (The analysis of this choice will appear within (and after) the
presentation of Algorithm 8.5.2.)14 In addition, we simplify the analysis by introducing an auxiliary
step in which we estimate the average degree of the vertices in the graph.

Algorithm 8.5.2 (the actual tester): For a sufficiently large constant c, let ℓ
def
= log2(c/ǫ).

14
Advanced comment: We note that the same analysis will hold when setting the deviation level to Θ(2αiǫ · k),

for any α ∈ (0.5, 1), where here we used α = 4/5. In such a case, we set si = Θ(2−βiǫ−2), for any β ∈ (1, 2α), where
here we used β = 3/2.
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1. The tester estimates the average degree of the graph by making O(1/ǫ2) uniformly distributed
queries. This allows to estimate the avearge degree up to ±ǫ ·k/c, with probability at least 5/6.
Let d̃ denote the estimated average.

2. For every i ∈ [ℓ], the tester attempts to find a vertex with degree outside the interval [d̃ ±
21+(4i/5)ǫ · k/c], by taking a sample of c · 2i vertices, and estimating their degree up to up to
±24i/5ǫ · k/c. Specifically:

(a) The tester selects uniformly c · 2i vertices, and estimates the degree of each of these

vertices up to ±24i/5ǫ · k/c units by using a sample of si
def
= c3 · 2−3i/2ǫ−2 ≫ (24i/5ǫ/c)−2

random vertices. Note that with probability at least

1− c · 2i · exp(−2 · si · (24i/5ǫ/c)2) = 1− c · 2i · exp(−2 · c32−3i/2ǫ−2 · 28i/5ǫ2/c2)

= 1− c · 2i · exp(−2c · 2i/10)

> 1− 2−i−c

all these estimates are as desired.

(b) If any of these estimates is outside the interval [d̃±21+(4i/5)ǫ·k/c], then the tester rejects.

If the tester did not reject in any of these ℓ iterations, then it accepts.

The query complexity of Algorithm 8.5.2 is O(1/ǫ2) +
∑

i∈[ℓ] c2
i · c32−3i/2ǫ−2 = O(1/ǫ2). The

probability that any of the estimates performed in (any of the iterations of) Step 2 deviates by
more than desired is

∑
i∈[ℓ] 2

−i−c = 2−c < 1/10.

We first observe that Algorithm 8.5.2 accepts each regular graph with probability at least 2/3.
This is the case since, Pr[|d̃ − d| ≤ ǫk/c] ≥ 0.9, where d denotes the degree of each vertex in the
graph, and with probability at least 0.9 for each i ∈ [ℓ] each of the degree estimates performed
in (the ith iteration of) Step 2 fell inside the interval [d ± 24i/5ǫ · k/c], which is contained in
[d̃ ± 21+(4i/5)ǫ · k/c].

On the other hand, if a graph G is accepted with probability at least 1/3, then (as detailed
next), for every i ∈ [ℓ], it holds that all but at most a 2−i fraction of the vertices have degree that
is within 22+(4i/5)ǫ · k/c of the average degree of G, denoted d.

Claim: If, for some i ∈ [ℓ], more than a 2−i fraction of the vertices have degree that de-
viates from d by more than 22+(4i/5)ǫ ·k/c, then Algorithm 8.5.2 rejects with probability
greater than 2/3.

Proof: We first observe that, with probability at least 0.9, such a deviating vertex,
denoted v, is selected in the ith iteration of Step 2. Now, with probability at least 0.9,
the degree of v is estimated within ±24i/5ǫ · k/c of its correct value. Recalling that
Pr[|d̃− d| < ǫk/c] ≥ 0.9, we conclude that, with probability at least 0.7, the estimated

degree of v deviates from d̃ by more than 22+(4i/5)ǫk
c − 24i/5ǫk

c − ǫk
c ≥ 21+(4i/5)ǫk

c , which
causes the algorithm to reject, and the claim follows.

Now, for each i ∈ [ℓ], let us denote the set of the aforementioned deviating vertices by Bi; that is,

Bi
def
= {v ∈ [k] : |dG(v)− d| > 22+(4i/5)ǫ/c · k}.
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Recall that |Bi| ≤ 2−i · k. (Also, let B0 = [k], and note that [k] \Bℓ = ∪i∈[ℓ](Bi−1 \Bi).)
15 Hence,

∑

v∈[k]\Bℓ

|dG(v)− d| =
∑

i∈[ℓ]

∑

v∈Bi−1\Bi

|dG(v)− d|

≤
∑

i∈[ℓ]
|Bi−1| · max

v∈[k]\Bi

{|dG(v)− d|}

≤
∑

i∈[ℓ]
2−(i−1) · 22+(4i/5)ǫk2/c

=
∑

i∈[ℓ]
2−0.2i · 8ǫk2/c

which is smaller than 0.04ǫk2 by a suitable choice of c. Furthermore, under such a choice, |Bℓ| ≤
2−ℓ ·k = (ǫ/c) ·k is smaller than 0.01ǫk. Hence,

∑
v∈Bℓ

|dG(v)−d| < 0.01ǫk2, and so
∑

v∈[k] |dG(v)−
d| < 0.05ǫk2. Applying Claim 8.5.1, it follows that G is 0.3ǫ-close to being regular, and the theorem
follows.

8.2.4 Digest: Levin’s economical work investment strategy

The strategy underlying Algorithm 8.5.2 can be traced to Levin’s work on one-way functions and
pseudorandom generators [199]. An attempt to abstract this strategy follows.

The strategy refers to situations in which one can sample a huge space that contains elements
of different quality such that elements of lower quality require more work to utilize. The aim is
to utilize some element, but the work required for utilizing the various elements is not known a
priori, and it only becomes known after the entire amount of required work is invested. Only a
lower bound on the expected quality of elements is known, and it is also known how the amount of
required work relates to the quality of the element (see specific cases below). Note that it may be
that most of the elements are of very poor quality, and so it is not a good idea to select a single
(random) element and invest as much work as is needed to utilize it. Instead, one may want to
select many random elements and invest in each of them a limited amount of work (which may be
viewed as probing the required amount of work).

To be more concrete, let us denote the (unknown to us) quality of a sample point ω ∈ Ω by
q(ω) ∈ (0, 1], and suppose that the amount of work that needs to be invested in a sample point ω
is O(1/q(ω)c), where in the setting of Algorithm 8.5.2 it holds that c = 2. Indeed, c = 1 and c = 2
are the common cases, where O(1/q(ω)) corresponds to the number of trials that is required to
succeed in an experiment (which depends on ω) that succeeds with probability q(ω), and O(1/q(ω)2)
corresponds to the number of trials that is required for detecting that two experiments (which
depend on ω) have different success probabilities when these probabilities differ by q(ω).

Recall that we only know a lower bound, denoted ǫ, on the average quality of an element (i.e.,
Eω∈Ω[q(ω)] > ǫ), and we wish to minimize the total amount of work invested in utilizing some
element.

One natural strategy that comes to mind is to sample O(1/ǫ) points and invest O(1/ǫc) work in
each of these points. In this case we succeed with constant probability, while investing O(1/ǫc+1)

15Indeed, the definition of B0 is fictitious; it is made in order to have [k] \ Bℓ = ∪i∈[ℓ](Bi−1 \ Bi) hold. The
alternative would have been to treat the case of i = 1 separately; that is, write [k] \Bℓ = ([k] \B1)∪∪ℓ

i=2(Bi−1 \Bi).
Note that, either way, we treat Bℓ separately.
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work. The analysis is based on the fact that Eω[q(ω)] > ǫ implies that Prω[q(ω) > ǫ/2] > ǫ/2.
This corresponds to the strategy that underlies the simple tester (of query complexity Õ(1/ǫ3))
presented upfront. In contrast, the strategy underlying Algorithm 8.5.2 is based on the fact that
there exists i ∈ [log2(O(1)/ǫ)] such that Prω[q(ω) > 24i/5 · ǫ] = Ω(2−i). In this case (when c = 2),
for every i, we selected O(2i) points and invested O(1/24i/5ǫ)2 work in each of them. Hence, we
achieved the goal while investing (1/ǫ2) work.

Teaching note: In the following general analysis, we shall use a setting of parameters that is different

from the one used above. This is done in order to better serve the case of c = 1. In addition, we believe

that a different variation on the very same idea will serve the reader better.

In general, for any c ≥ 1 and ℓ = ⌈log2(2/ǫ)⌉, we may use the fact that there exists i ∈ [ℓ]
such that Prω[q(ω) > 2i · ǫ] > 2−i/(i + 3)2. (The analysis is analogous to the one performed at the
end of the proof of Theorem 8.5, although the quantity analyzed here is different (and so are some
parameters).)16 Hence, selecting O(i2 · 2i) points (for each i ∈ [ℓ]), and investing O(1/2iǫ)c work
in each of them, we achieved the goal while investing a total amount of work that equals

∑

i∈[ℓ]
O(i2 · 2i/(2iǫ)c) = O(1/ǫc) ·

∑

i∈[ℓ]
i2 · 2−(c−1)·i

which equals O(1/ǫc) if c > 1 and Õ(1/ǫ) if c = 1. (For c > 1 we use
∑

i∈[ℓ] poly(i) · 2−Ω(i) = O(1),

whereas for c = 1 we use
∑

i∈[ℓ] i
2 = O(ℓ3).) See Exercise 8.3 for a couple of generalizations and

Exercise 8.4 for a minor improvement (for the case of c = 1).

8.3 Graph Partition Problems

In this section we present a natural class of graph properties, called general graph partition prop-
erties, which contains properties such as k-Colorability (for any k ≥ 2) and properties that refer
to the density of the max-clique and to the density of the max-cut in a graph. The main result of
this section is that each of these properties has a tester of query complexity that is polynomial in
the reciprocal of the proximity parameter.

Loosely speaking, a graph partition problem calls for partitioning the graph into a specified
number of parts such that the sizes of the parts fit the specified bounds and ditto with respect
to the number of edges between parts. More specifically, each graph partition problem (resp.,

16Let Bi = {ω ∈ Ω : q(ω) > 2iǫ} and B0 = Ω, and note that Bℓ = ∅. Suppose, towards the contradiction, that
|Bi| ≤ 2−i|Ω|/(i + 3)2 for every i ∈ [ℓ]. Then,

X

ω∈Ω

q(ω) =
X

i∈[ℓ]

X

ω∈Bi−1\Bi

q(ω)

≤
X

i∈[ℓ]

|Bi−1| · 2iǫ

≤
X

i∈[ℓ]

2−(i−1) · |Ω|
((i− 1) + 3)2

· 2iǫ

< ǫ · |Ω|

where the last inequality uses
P

i≥1
1

(i+t)2
<
P

i≥1
1

(i+t)(i+t−1)
, which equals

P

i≥1

“

1
i+t−1

− 1
i+t

”

= 1/t.
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property) is specified by a number t ∈ N and a sequence of intervals (which serve as parameters of
the problem). A graph G = ([k], E) is a yes-instance of this problem (resp., has the corresponding
property) if there exists a t-partition, (V1, ..., Vt), of [k] such that

1. For each i ∈ [t], the density of Vi fits the corresponding interval (specified in the sequence of
parameters).

2. For each i, j ∈ [t] (including the case i = j), the density of edges between Vi and Vj fits the
corresponding interval.

A formal definition of this framework is deferred to Section 8.3.2; here we only clarify the framework
by considering a few appealing examples that refer to the case of t ≤ 2.

We start by considering the case of t = 1, which is a bit of an abuse of the term “partition”.
Two natural properties that can be casted in that case are the property of being a clique and the
property of having at least ρ · k2 edges, for any ρ ∈ (0, 0.5). The first property can be ǫ-tested
by uniformly selecting O(1/ǫ) vertex-pairs and checking if each of these pairs is connected by an
edge of the graph. The second property can be ǫ-tested by estimating the fraction of edges in the
graph, up to an additive deviation of ǫ/2, which can be done using a random sample of O(1/ǫ2)
vertex-pairs. Turning to the case of t = 2, we consider the following natural properties.

Biclique: A graph G = ([k], E) is a biclique (a.k.a a complete bipartite graph) if its vertices can
be 2-partitioned into two parts, denoted V1 and V2, such that each part is an independent set
and all pairs in V1 × V2 are connected in the graph (i.e., E = {{u, v} : (u, v) ∈ V1 × V2}).

Bipartiteness: A graph G = ([k], E) is bipartite (or 2-colorable) if its vertices can be 2-partitioned
into two parts, V1 and V2, such that each part is an independent set (i.e., E ⊆ {{u, v} :
(u, v) ∈ V1 × V2}).

Max-Cut: For ρ ∈ (0, 0.25], a graph G = ([k], E) has a ρ-cut if its vertices can be 2-partitioned
into two parts, V1 and V2, such that the number of edges between V1 and V2 is at least ρ · k2

(i.e., |E ∩ {{u, v} : (u, v) ∈ V1 × V2}| ≥ ρ · k2).

Min-Bisection: For ρ ∈ (0, 0.25], a graph G = ([k], E) has a ρ-bisection if its vertices can be
2-partitioned into two equal-sized parts, V1 and V2, such that the number of edges between
V1 and V2 is at most ρ · k2 (i.e., |V1| = |V2| and |E ∩ {{u, v} : (u, v) ∈ V1 × V2}| ≤ ρ · k2).

Max-Clique: For ρ ∈ (0, 1], a graph G = ([k], E) has a ρ-clique if its vertices can be 2-partitioned
into two parts, V1 and V2, such that |V1| = ⌈ρ · k⌉ and the subgraph induced by V1 is a clique
(i.e., for every distinct u, v ∈ V1 it holds that {u, v} ∈ E).

Indeed, with the exception of Max-Clique, all the foregoing properties generalized naturally to the
case of t > 2. As stated in the beginning of this section, each of these properties is ǫ-testable using
poly(1/ǫ) queries (for details see Section 8.3.1 and 8.3.2). For starters, we consider the case of
Biclique.

Proposition 8.6 (testing whether a graph is a biclique (in the dense graph model)): The property
Biclique has a (one-sided error) proximity oblivious tester that makes three queries and has linear
rejection probability. That is, a graph that is ǫ-far from being a biclique is rejected with probability
at least Ω(ǫ), whereas a biclique is accepted with probability 1.
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We stress that the empty graph G = ([k], ∅) is considered a biclique (by virtue of a trivial 2-
partition ([k], ∅)). Note that ǫ-testing that a graph is not empty can be done by O(1/ǫ) queries
(see Proposition 8.3).

Proof: The tester selects uniformly three random vertices and accepts if and only if the induced
subgraph is a biclique (i.e., contains either two edges or no edges).17 We stress that while the
selected vertices are uniformly and independently distributed in [k], the queried pairs are dependent
(although each query is uniformly distributed in [k]× [k]).

If G = ([k], E) is a biclique, then it is accepted with probability 1, since the subgraph induced
by the selected vertices is a 3-vertex biclique. Specifically, if all three vertices were selected in the
same independent set of the k-vertex biclique, then the induced subgraph is a 3-vertex independent
set (which is a biclique), and otherwise (i.e., when one selected vertex resides in one independent
set and the other two vertices reside in the other set) the induced subgraph is a 3-vertex biclique
with two edges.

w

v’

v

(u)

u

w’

Γ

Figure 8.1: The 2-partition imposed by u. The dashed line represents a violating pair connected
by an edge, whereas the dotted line represents a violating pair that lacks an edge.

Assuming that G is ǫ-far from being a biclique, fix the first vertex u that is selected by the
tester. Then, u defines a 2-partition of the vertices of G such that the neighbours of u are on one
side and the other vertices are on the other; that is, the 2-partition is (Γ(u), [k] \ Γ(u)), where
Γ(u) = {v∈ [k] : {u, v}∈E} 6∋ u. (Note that if G had been a biclique, then this 2-partition would
have been its unique partition to two independent sets with a complete bipartite graph between
them.) Since G is ǫ-far from being a biclique, there are at least ǫk2 vertex pairs18 that violate this

17This description ignores the possibility that the selected vertices are not distinct. In such a case, we just accept
without making any queries. Alternatively, we can select uniformly a 3-subset of [k].

18Note that here we count ordered pairs of vertices, rather than unordered pairs. Indeed, in some cases it is more
convenient to count in one way, and in other cases the other way is preferred. We did not try to be consistent
regarding this matter, because we believe that when low-level details are concerned, local convenience should have
precedence over global consistency.
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2-partition, where a pair (v,w) is said to violate the 2-partition (Γ(u), [k] \ Γ(u)) if the subgraph
induced by {u, v,w} is not a biclique. (That is, a violating pair represents either an edge that is
missing between the two parts (i.e., between Γ(u) and [k] \ Γ(u)) or an edge that is present inside
one of these parts (i.e., internal to either Γ(u) or [k]\Γ(u)); see Figure 8.1.) Hence, the probability

that the tester selects a violating pair is at least ǫk2

k2 , and the claim follows (since in this case the
tester rejects).

Digest. The analysis of the foregoing tester reveals that we can actually select the first vertex
arbitrarily, and only select the two other vertices at random. More importantly, the foregoing
proof illustrated a technique that is quite popular in the area (see, e.g., Section 8.3.1). Specifically,
in the current case, the first vertex “induces” (or forces) auxiliary conditions on the graph (i.e.,
the existence of edges between its neighbors and its non-neighbors and the non-existence of other
edges), and these conditions are checked by the random pair of vertices selected next. In general,
in the “force and check” technique, the tester designates one part of its sample to force conditions
on the object, and these conditions are checked by the second part of the sample. Note that the
forcing can be implicit (like the partition of [k] according to neighbors versus non-neighbors of
u), whereas the checking actually tests these conditions via queries (e.g., the three queries of the
foregoing tester are defined and performed only once the other two vertices are selected).

Teaching note: The following four paragraphs may be used as a motivation towards the tester for

Bipartiteness (of Section 8.3.1), but some readers may find this discussion a bit too abstract.

Focusing again on the specific tester presented in the proof of Proposition 8.6, recall that the
vertex u induced a 2-partition of [k] and that the placement of each vertex v with respect to that
partition can be determined by a single query to G. In other words, we have implemented an
oracle χ : [k] → {1, 2} such that χ(v) = 1 if and only if v ∈ Γ(u) (or equivalently, if and only if
{v, u} ∈ E), and observed that G is a biclique if and only if χ is a 2-partition that witnesses this
claim (i.e., E = {{v,w} : χ(v) 6= χ(w)}). We then checked if G is a biclique by selecting a random
vertex-pair (v,w) and accepted if and only if {v,w}∈E ⇐⇒ χ(v) 6=χ(w).

As a motivation towards the presentation of the tester for Bipartiteness, suppose that one
provides an implementation of T oracles χ1, ..., χT : [k]→ {1, 2} and shows that G is a bipartite if
and only if at least one of these χi’s is a 2-partition that witnesses this claim (i.e., E ⊆ {{v,w} :
χi(v) 6= χi(w)}). Then, we can test whether G is bipartite or ǫ-far from being bipartite by selecting
m = O(ǫ−1 log T ) random pairs (v1, w1), ..., (vm, wm) and accepting if and only if there exists an
i ∈ [T ] such that for every j ∈ [m] it holds that {vj , wj}∈E =⇒ χi(vj) 6=χi(wj).

19 Furthermore,
if we can answer all these T · 2m queries (to the χi’s) by making a total number of q(ǫ)−m queries
to the graph G, then we would get an ǫ-tester of query complexity q(ǫ). As shown next, this
would follow even if we can only answer these queries (to the χi’s) for vertices in a (“good”) set V ,
provided that all but at most 0.1ǫk2 of the edges have both their endpoints in V .

The tester operates as outlined above, except that whenever it gets no answer to χi(v) (i.e.,
v 6∈ V ), it just sets χi(v) so to avoid rejection (whenever possible). This provision guarantees that
the tester always accepts a bipartite graph, since for the suitable χi there exists a setting of χi(v)
(for every v ∈ [k] \ V ) that avoids rejection. On the other hand, if G is ǫ-far from being bipartite,
then for every χ : [k]→ {1, 2} there exist at least ǫk2 vertex-pairs (v,w) such that {v,w} ∈ E and

19See analysis at the end of the next paragraph.
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χ(v) = χ(w). In particular, this holds for each of the foregoing χi’s, whereas only 0.2ǫk2 of these
pairs may be “invisible” to the tester (i.e., the tester cannot determine χi for both elements of the
pair).20 Hence, each χi is detected as bad with probability at least 1 − (1 − 0.8ǫ)m = 1 − (1/3T ),
where the equality is due to the setting of m.

The crucial details that were avoided so far are the specification of the T partitions χi’s and their
implementation via queries to the graph. We leave these crucial details to the proof of Lemma 8.8,
since it makes little sense to give these details without proving that they actually work.21

8.3.1 Testing Bipartiteness

We first note that, in contrast to Biclique, the set of Bipartite graphs has no proximity-oblivious
tester that makes a constant number of queries (and has rejection probability that only depends
on the distance of the graph from being bipartite).22 This can be shown by considering graphs
that have an “odd-girth” that is larger than the potential query complexity (see Exercise 8.5).
Nevertheless, testing Bipartitenss is quite simple: It amounts to selecting a small random set
of vertices, and checking whether the induced subgraph is bipartite. Specifically, the size of the
sample is polynomial in the reciprocal of the proximity parameter.

Algorithm 8.7 (testing Bipartiteness in the dense graph model): On input k, ǫ and oracle
access to an adjacency predicate of a k-vertex graph, G = ([k], E), the tester proceeds as follows:

1. Uniformly select a subset of Õ(1/ǫ2) vertices of G.

2. Accept if and only if the subgraph induced by this subset is bipartite.

Step (2) amounts to querying the adjacency predicate on all pairs of vertices that belong to the
subset selected at Step (1), and testing whether the induced subgraph is bipartite (e.g., by running
BFS).23 As will become clear from the analysis, it actually suffices to query only Õ(1/ǫ3) of these
pairs. Since being bipartite is “closed under taking subgraphs” (i.e., if G is bipartite then every
subgraph of G is bipartite), Algorithm 8.7 always accepts bipartite graphs. On the other hand, in
case of rejection, the algorithm sees a small subgraph that is not bipartite, and it can output a
witness of (bit-)length poly(1/ǫ) · log k that certifies that the graph is not bipartite.24 The analysis
of Algorithm 8.7 is completed by the following lemma.

Lemma 8.8 (the detection probability of Algorithm 8.7): If G = ([k], E) is ǫ-far from being
bipartite, then Algorithm 8.7 rejects it with probability at least 2/3, when invoked with the proximity
parameter ǫ.

20Recall that the number of edges that have at least one endpoint that is not in V is at most 0.1ǫk2.
21

Advanced comment: Still, if one insists to know, then the answer is essentially as follows. For a random set U
of size t = eO(1/ǫ), we consider all 2-partitions of U , and, for each such 2-partition (U1, U2), we define the 2-partition
χ

U1,U2
: [k] → {1, 2} such that χ

U1,U2
(v) = i if any only if v is a neighbor of some vertex in U3−i. Note that this

definition may be contradictory (when v neighbors both U1 and U2) and partial (if v neighbors no vertex in U). Both
issues will be handled in the proof of Lemma 8.8.

22Recall that the definition of proximity oblivious tester used in this text requires that the rejection probability
only depends on the distance of the input from the property.

23This relies on the fact that, for any vertex v in a connected graph, it holds that the graph is bipartite if and only
if there is no edge between a pair of vertices that are at equal distance from v. (Indeed, the existence of such an edge
implies the existence of an odd cycle, and otherwise we can (legally) 2-color the vertices according to the partity of
their distance from v.)

24Indeed, in this case, the witness may consist of an odd-length cycle of eO(1/ǫ2) vertices.
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It follows that Algorithm 8.7 is a tester of one-sided error for Bipartiteness (in the dense graph
model).

Proof: Denoting by R the random Õ(1/ǫ2)-subset of [k] selected in Step (1), we shall show that,
with probability at least 2/3, the subgraph of G induced by R is not bipartite. That is, assuming
that G is ǫ-far from bipartite, we prove that with high probability GR is not bipartite, where GR

is the subgraph of G induced by R.

We view R as a union of two disjoint sets U and S such that S is O(1/ǫ) times larger than

U ; specifically, we use t
def
= |U | = O(ǫ−1 · log(1/ǫ)) and m

def
= |S| = O(t/ǫ). We will consider all

possible 2-partitions of U , and associate a partial 2-partition of [k] with each such 2-partition of
U . Specifically, the partial 2-partition of [k] that is associated with a specific 2-partition (of U),
denoted (U1, U2), places all neighbors of U1 (respectively, U2) opposite to U1 (respectively, U2).

25

The point is that such a placement of vertices is forced upon any 2-partition that is consistent with
the 2-partition (U1, U2) in the sense that if v neighbors Ui and the subgraph induced by U ∪ {v} is
bipartite with a 2-partition that places U1 on one side and U2 on the other, then v must be on the
side opposite to Ui.

The idea is that since G is ǫ-far from being bipartite, any 2-partition of its vertices (and, in
particular, one associated with the 2-partition of U) must have at least ǫk2/2 edges that have
both their endpoints in the same side of the said 2-partition of [k], and (with high probability) the
sample S will hit some of these edges. There are a couple of problems with this idea. Firstly, we
do not know the 2-partition of U , but as hinted in the previous paragraph we shall consider all
of them. (Indeed, there are only 2t possibilities, whereas the size of S is selected such that the
probability of not detecting a problem with any fixed 2-partition is smaller than 2−t/10.) Secondly,
the 2-partition of U only forces the placement of vertices that neighbour U , while we do not know
the placement of the other vertices (and so cannot detect problems with edges incident to them).

The second problem is solved by showing that, with high probability over the choice of U , almost
all high-degree vertices in [k] do neighbor U , and so are forced by each of its possible 2-partitions.
Since there are relatively few edges incident at vertices that do not neighbor U , it follows that,
with very high probability over the choice of S, each such 2-partition of U is detected as illegal by
GU∪S . Details will follow, but before we proceed let us stress the key observation: It suffices to
rule out relatively few (partial) 2-partitions of [k] (i.e., those induced by 2-partitions of U), rather
than all possible 2-partitions of [k].

We use the notations Γ(v)
def
= {u : {u, v} ∈ E} and Γ(X)

def
= ∪v∈XΓ(v). Given a 2-partition

(U1, U2) of U , we define a (possibly partial) 2-partition of [k], denoted (V1, V2), such that V1
def
= Γ(U2)

and V2
def
= Γ(U1), where we assume, for simplicity that V1 ∩ V2 is indeed empty (otherwise things

are easier).26 As suggested above, if one claims that G can be “legally bi-partitioned” with U1 and
U2 on different sides, then V1 = Γ(U2) must be on the opposite side to U2 (and Γ(U1) opposite to
U1).

27 Note that the 2-partition of U places no restriction on vertices that have no neighbor in

25Indeed, the placement of vertices that do not neighbor U remains undetermined (or is arbitrary). This is the
reason that we referred to the associated partition as partial. On the other hand, it is unclear how to handle vertices
that neighbor both U1 and U2, but such vertices are actually more beneficial to us. (Formally, we may just place
them opposite to U1.)

26In this case the 2-partition (U1, U2) is ruled out by GU∩{v} for every v ∈ V1 ∩ V2. In the rest of the analysis, we
shall not use this fact. The reader may redefine V2 = Γ(U1) \ V1.

27Formally, we observe that if χ : [k] → {1, 2} is a 2-coloring of G (i.e., a mapping χ such that χ(u) 6= χ(v) for
every {u, v} ∈ E) and χ(u) = i for every u ∈ Ui and i ∈ {1, 2}, then χ(v) 6= i for every v ∈ Γ(Ui).
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U . Thus, we first ensure that almost all “influential” (i.e., “high-degree”) vertices in [k] have a
neighbor in U .

Definition 8.8.1 (high-degree vertices and good sets): We say that a vertex v is of high-degree if
it has degree at least ǫk/6. We call U good if all but at most ǫk/6 of the high-degree vertices have
a neighbor in U .

As will be shown in the proof of Claim 8.8.4, if U is a good set, then all but at most ǫk2/3 of the
edges have both their endpoints in vertices that neighbor U . We comment that not insisting that
a good set U neighbors all high-degree vertices allows us to show that, with high probability, a
random U of size Õ(1/ǫ) is good, where the point is that this size is unrelated to the size of the
graph. (In contrast, if we were to insist that a good U neighbors all high-degree vertices, then we
would have had to use |U | = Ω(ǫ−1 log k).)

Claim 8.8.2 (random t-sets are good): With probability at least 5/6, a uniformly chosen set U of
size t is good.

Proof: For any high-degree vertex v, the probability that v does not have any neighbor in a
uniformly chosen U is at most (1 − (ǫ/6))t < ǫ/36, since t = Ω(ǫ−1 log(1/ǫ)). Hence, the expected
number of high-degree vertices that do not have a neighbor in a random set U is less than ǫk/36,
and the claim follows by Markov’s Inequality.

Definition 8.8.3 (disturbing a 2-partition of U): We say that an edge disturbs the 2-partition
(U1, U2) of U if both its end-points are in the same set Γ(Ui), for some i ∈ {1, 2}.

Claim 8.8.4 (lower bound on the number of disturbing edges): For any good set U and any
2-partition of U , at least ǫk2/6 edges disturb this 2-partition.

Proof: Since G is ǫ-far from being bipartite, each 2-partition of [k] has at least ǫk2/2 violating edges
(i.e., edges with both end-points on the same side). In particular, this holds for the 2-partition
(V1, V2) defined by letting V1 = Γ(U2) and V2 = [k] \ V1, where (U1, U2) is the given 2-partition of
U . We upper-bound the number of edges with both sides in the same Vi that are not disturbing.
Actually, we upper-bound the number of edges that have an end-point that is not in Γ(U).

• The number of edges incident at high-degree vertices that do not neighbor the good set U is
upper-bounded by (ǫk/6) · k, since there are at most ǫk/6 such vertices.

• The number of edges incident at vertices that are not of high-degree is upper-bounded by
k · ǫk/6, since each such vertex has at most ǫk/6 incident edges.

Hence, that are at most ǫk2/3 edges that do not have both end-points in Γ(U). This leaves us
with at least ǫk2/6 violating edges with both end-points in Γ(U), whereas these edges disturb the
2-partition (U1, U2) (since V1 ∩ Γ(U) = Γ(U2) and V2 ∩ Γ(U) ⊆ Γ(U1)).

The lemma follows by observing that GR is bipartite only if either (1) the set U is not good; or (2)
the set U is good but there exists a 2-partition of U such that none of the edges disturbing it
appears in GR. Using Claim 8.8.2 the probability of Event (1) is upper-bounded by 1/6, whereas
the probability of Event (2) is upper-bounded by the probability that there exists a 2-partition of
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U such that none of the corresponding disturbing edges has both end-points in the (second) sample
S. By Claim 8.8.4, each 2-partition of U has at least ǫk2/6 disturbing edges, and (as shown next)
the probability that none of them has both end-points in S is at most (1− (ǫ/3))m/2. Actually, we
pair the m vertices of S, and consider the probability that none of these m/2 pairs constitutes a
disturbing edge for some partition of U (i.e., there exists a 2-partition (U1, U2) such that none of
these m/2 pairs is disturbing for (U1, U2)). Using a union bound over all 2-partitions of U ≡ [t],
we upper-bound the probability of Event (2) by

2t ·
(

1− ǫk2/6

k2/2

)m/2

<
1

6

where the inequality holds since m = Ω(t/ǫ). The lemma follows.

Approximate 2-coloring procedures that arises from the proof of Lemma 8.8. By an
approximate 2-coloring of a graph G = ([k], E), we mean a 2-partition χ : [k]→ {1, 2} with relatively
few edges having endpoints that are assigned the same color (e.g., |{{u, v} ∈E : χ(v) = χ(w)}| =
o(|E|)). The partitioning rule employed in the proof of Lemma 8.8 (i.e., χ(v) = 1 if and only
if v ∈ Γ(U2) for an adequate 2-partition (U1, U2) of U) yields a randomized poly(1/ǫ) · k-time
algorithm for approximately 2-coloring a k-vertex bipartite graph such that (with high probability)
at most ǫk2 edges have endpoints that are assigned the same color. This randomized algorithm
invokes the foregoing tester, determining a 2-partition (U1, U2) of U that is consistent with some
2-coloring of the subgraph induced by R = U ∪ S, and 2-partitioning [k] as done in the proof
(with vertices that do not neighbor U , or neighbor both U1 and U2, placed arbitrarily). Thus, once
the 2-partition (U1, U2) is determined, the placement (or coloring) of each vertex is determined by
inspecting at most Õ(1/ǫ) entries of the adjacency matrix. Hence, the aforementioned 2-partition
of U constitutes a succinct representation of the 2-partition of the entire graph. (We mention that
these facts are a typical consequence of using the “force-and-check” paradigm in the analysis of the
tester.)

On the complexity of testing Bipartiteness (advanced comment). We comment that
a more complex analysis, due to Alon and Krivelevich [13], implies that Algorithm 8.7 is an ǫ-
tester for Bipartiteness even if one selects only Õ(1/ǫ) vertices (rather than Õ(1/ǫ2) vertices) in
Step (1). That is, if G is ǫ-far from being bipartite, then, with high probability, the subgraph induced
by a random set of Õ(1/ǫ) vertices of G is not bipartite. We mention that inspecting the subgraph
induced by o(1/ǫ) random vertices will not do (see Exercise 8.6). Furthermore, while the result of
Alon and Krivelevich [13] implies that Bipartiteness can be ǫ-tested using Õ(1/ǫ2) non-adaptive
queries, Bogdanov and Trevisan [62] showed that Ω(1/ǫ2) queries are required by any non-adaptive
ǫ-tester. For general (adaptive) testers, a lower bound of Ω(1/ǫ3/2) queries is known [62], even if
the input (k-vertex) graph has max-degree at most O(ǫk), and this lower bound is almost tight for
that case [162]. These facts beg the following question.

Open Problem 8.9 (what is the query complexity of testing Bipartiteness): Can Bipartiteness

be ǫ-tested using Õ(1/ǫc) queries for some c < 2? How about c = 1.5?

We mention that Bogdanov and Li [60] showed that the answer to the first question is positive,
provided that the following conjecture holds.
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Conjecture 8.10 (a random induced subgraph preserves the distance from being bipartite): If G
is ǫ-far from being bipartite, then, with probability at least 2/3, the subgraph induced by a random
set of Õ(1/ǫ) vertices of G is Ω(ǫ)-far from being bipartite.

Recall that Alon and Krivelevich [13] showed that, with high probability, such a subgraph is not
bipartite; but the conjecture postulates that this subgraph is far from being bipartite. Note that
the proof of Lemma 8.8 implies that (with high probability) the subgraph induced by a random set
of Õ(1/ǫ2) vertices of G is Ω(ǫ)-far from being bipartite (see Exercise 8.7).

8.3.2 The actual definition and the general result

It is time to provide the actual definition of the class of general graph partition problems. Recall
that a graph partition problem calls for partitioning the vertices of the graph into a predetermined
number of parts such that the sizes of the parts fit predetermined bounds and ditto with respect
to the number of edges between parts. Hence, each problem (or property) in this class is defined
in terms of a sequence of parameters. The main parameter, denoted t, represents the number of
sets (of vertices) in the partition. In addition, we have, (1) for each i ∈ [t], a pair of corresponding
upper and lower bounds on the density of the ith set, and (2) for each (i, j) ∈ [t]2, two pairs
of corresponding upper and lower bounds on the “absolute” and “relative” density of the edges
between the ith and jth sets, where by absolute (resp., relative) density we mean the number of
edges normalized by k2 (resp., by the maximum number possible, given the actual sizes of the ith

and jth sets).
In the following definition, for a graph G = (V,E) and two sets V ′, V ′′ ⊆ V , we denote by

E(V ′, V ′′) the set of edges having one endpoint in V ′ and another endpoint in V ′′. (Indeed, if
V ′ = V ′′, then E(V ′, V ′′) denotes the set of edges with both endpoints in V ′ = V ′′.) Note that, for

V ′ ∩ V ′′ = ∅, it holds that |E(V ′, V ′′)| ≤ |V ′| · |V ′′|, whereas |E(V ′, V ′)| ≤
(|V ′|

2

)
. For that reason

(and for it only), Conditions 3 and 4 are separated.28

Definition 8.11 (general partition problem (or property)): A graph partition problem (or property)
is parameterized by a sequence (t, (Li,Hi)i∈[t], (L

abs
i,j ,Habs

i,j )i,j∈[t], (L
rel
i,j ,Hrel

i,j )i,j∈[t]), where t ∈ N,
and consists of all graphs G = (V,E) such that there exists a t-partition of V , denoted (V1, ..., Vt),
that satisfies the following conditions:

1. For every i ∈ [t],

Li ≤
|Vi|
|V | ≤ Hi.

2. For every i, j ∈ [t],

Labs
i,j ≤

|E(Vi, Vj)|
|V |2 ≤ Habs

i,j .

3. For every i, j ∈ [t] such that i 6= j,

Lrel
i,j ≤

|E(Vi, Vj)|
|Vi| · |Vj |

≤ Hrel
i,j .

28Indeed, Condition 4 could have been integrated in Condition 3 if we had fictitiously defined E(V ′, V ′) to include
self-loops and two copies of each edge. Note that Conditions 2 and 3 are stated in a redundent manner since
E(Vi, Vj) = E(Vj , Vi); indeed, it suffices to consider the case i ≤ j.
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4. For every i ∈ [t],

Lrel
i,i ≤

|E(Vi, Vi)|(|Vi|
2

) ≤ Hrel
i,i .

Definition 8.11 extends the definition used in [140, Sec. 9], which only contained Conditions 1 and 2.
We believe that the added conditions (Nr. 3 and 4) increase flexibility and avoid some annoying
technicalities. Using Definition 8.11, we can easily formulate the natural partition problems that
were stated at the beginning of Section 8.3, where in all cases we use t = 2.

Biclique: Here we use Lrel
1,2 = 1 and Habs

1,1 = Habs
2,2 = 0.

That is, we mandate maximal edge density between the two parts (i.e., no edges may be
missing) and minimal edge density within each part (i.e., no edges may be present there).

All other parameters are trivial, which means that the lower bounds (e.g., Li’s) are all set
to 0, while the upper bounds (e.g., Hi’s) are all set to 1.

Bipartiteness: Here we use Habs
1,1 = Habs

2,2 = 0. Again, all other parameters are trivial.

Max-Cut (for ρ ∈ (0, 0.25]): Here we use Labs
1,2 = ρ (and again all other parameters are trivial).

Min-Bisection (for ρ ∈ (0, 0.25]): Here we use Habs
1,2 = ρ and L1 = L2 = H1 = H2 = 1/2.

Max-Clique (for ρ ∈ (0, 1]): Here we use L1 = ρ and Lrel
1,1 = 1.

The following result follows from the techniques used in the proof of [140, Thm. 9.1].29

Theorem 8.12 (testing general partition properties (in the dense graph model)): Every graph
partition property can be ǫ-tested within query complexity poly(t/ǫ)t

2
, where the polynomial does

not depend on the parameters of the property and t is the first parameter of the property (cf.,
Definition 8.11). The computational complexity of the tester is exponential in its query complexity.

The tester operates by selecting a sample of poly(t/ǫ)t vertices and checking whether the induced
subgraph satisfies the same graph partition property, possibly up to a small relaxation in the
density parameters.30 The latter checking is done by merely going over all possible t-partitions of

29We mention that [140, Thm. 9.1] states a query complexity bound of O(t2/ǫ)2k+8+o(1), but it only refers to the
case in which all the relative bounds (i.e., the Lrel

i,j ’s and Hrel
i,j ’s) are trivial, since such bounds were not included in

the definition used in [140, Sec. 9]. Nevertheless, the proof seems to extend in a straightforward manner, if one can
use such an expression when referring to such a complex proof. Alternatively, as noted by Yonatan Nakar and Dana
Ron (priv. comm.), the general case can be reduced to the special case treated in [140, Thm. 9.1] by approximating

each general property by a union of O(1/ǫ)t2 properties of the special case. To be on the safe side, we stated the
result that follows from their transformation.

30
Advanced comment: The analysis of the tester uses the force-and-check technique (which was outlined imme-

diately after the proof of Proposition 8.6). In particular, we consider all possible t-partitions of the first part of the
sample, denoted U , as well as all possible (approximate) values for a sequence of some auxiliary parameters. Each
such pair of choices induces a t-partition of [k], and exp(poly(1/ǫ)t) many choices are considered. It is shown that if
the input graph satisfies the property, then one of these t-partitions of [k] witnesses this fact, and that it is possible
to determine the location of every vertex that is adjacent to U with respect each of these partitions based on its
adjacency relation with U (and the auxiliary parameters), where all but at most 0.1ǫk2 of the edges are incident
at vertices in Γ(U). One crucial detail is the use of a sequence of auxiliary parameters that correspond to a finer
(and somewhat less natural) notion of a partition problem than the one captured by Definition 8.11 (e.g., having
conditions that refer to the statistics of vertex degrees in each part).
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the induced graph and checking if any of them satisfies the corresponding property. This explains
the exponential time bound, which seems unavoidable in general, because a time bound of T (1/ǫ)
for ǫ-testing properties such as Max-Cut or 3-coloring would have implied a T (k2)-time algorithm
for these problems (by setting ǫ = 1/k2).

Finding approximately good partitions. As in the case of Bipartiteness, the tester for each
graph partition problem can be modified into an algorithm that finds an (succinct representation
of an) approximately adequate partition whenever it exists. That is, if the k-vertex graph has the
desired (t-partition) property, then the testing algorithm may actually output auxiliary information
that allows to reconstruct, in poly(1/ǫ)·k-time, a t-partition that approximately obeys the property.
(For example, for ρ-Cut, we can construct a 2-partition with at least (ρ − ǫ) · k2 crossing edges.)
Furthermore, the location of each vertex with respect to that t-partition can be determined in
poly(t/ǫ)-time. Hence, the auxiliary information output by the modified tester, which has length
poly(t/e)t, is a succinct representation of such a t-partition. We comment that this notion of a
succinct representation of a structure that corresponds to an (approximate) NP-witness may be
relevant for other sets in NP (i.e., not only to graph partition problems).31

The case of t-Colorability. We mention that better bounds are known for some specific
properties that fall into the framework of Definition 8.11. Most notably, t-Colorability (i.e.,
Habs

i,i = 0 for all i ∈ [t]) can be ǫ-tested using poly(t/ǫ) queries. In this case, the tester selects a

random sample of Õ(t/ǫ2) vertices and accepts if and only if the induced subgraph is t-colorable.
Recall that for 2-Colorability (i.e., Bipartiteness), a random sample of Õ(1/ǫ) vertices suffices.
Let us state these results in combinatorial terms.

Theorem 8.13 (testing t-Colorability (in the dense graph model)):32 For every t ≥ 2, if a
graph G is ǫ-far from being t-colorable, then, with high probability, the subgraph of G induced by a
random set of Õ(t/ǫct) vertices is not t-colorable, where c2 = 1 and ct = 2 for t ≥ 3.

Indeed, this yields a one-sided error tester of query complexity Õ(t/ǫct)2.

Reflection: Why are general partition properties easily testable? Indeed, such a question
may arise with respect any other testing result seen in prior sections or chapters, but it seems to
be acute here in light of the fact that the testers operate by inspecting the subgraph induced by a
random set of poly(1/ǫ) vertices. As indicated by Theorem 8.25, the fact that testing is performed
in this manner is an artifact of the dense graph model; that is, any graph property that can be
tested within query complexity q, can be tested by inspecting the subgraph induced by a random
set of O(q) vertices. So the actual question is why does a sample of poly(1/ǫ) vertices suffice here.
A good indication for the non-triviality of this question is provided by the fact that a sample of
poly(1/ǫ) vertices does not suffice for testing triangle-freeness (see Corollary 8.19, Part 3). So why
are general partition properties easier to test than triangle-freeness?

These are all good questions, but we do not have a truly good answer. We could have answered
with an abstract overview of the proof of Theorem 8.12, which would have amounted to further

31
Advanced comment: Indeed, an interesting algorithmic application was presented in [115], where an implicit

partition of an imaginary hypergraph is used in order to efficiently construct a regular partition (with almost optimal
parameters) of a given graph.

32Note that the problem of 1-coloring is almost trivial, since it asks whether the graph is empty.
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detailing the vague outline presented in Footnote 30, but this would not have been very satisfying.
Instead, we believe that some intuition may be obtained by showing that whenever a graph has the
specified t-partition property, an approximately good t-partition can be succinctly described. The
reason that such succinct descriptions exist is that vertices that have approximately the same
number of neighbors in each of the t parts are interchangeable (with respect to partition problems),
and so we need only specify how many of these vertices should be placed in each part. Unfortunately,
this description is circular, since the partition should be fixed in order to determine the number
of neighbors that a vertex has in each part. This circularity is resolved by proceeding in O(1/ǫ)
iterations such that we assign Θ(ǫk) vertices in each iteration, where the assignment is based on
the number of neighbours that these vertices have among the vertices assigned in prior iterations.33

8.4 Connection to Szemeŕedi’s Regularity Lemma

The problem of testing graph properties (in the dense graph model) is related to a celebrated
combinatorial result, called Szemeŕedi’s Regularity Lemma [258]. This relation is most tight when
focusing on the question of which graph properties are testable within query complexity that only
depends on the proximity parameter.

We stress the fact that the foregoing question ignores the specific dependence (of the query
complexity on the proximity parameter). It rather stresses the independence of the query complex-
ity from the size of the graph, and it seems adequate to say that such properties have size-oblivious
testers, although this term is a bit misleading (since the tester must use the size parameter in order
to operate).34

8.4.1 The Regularity Lemma

Recall that for a graph G = (V,E) and two disjoint sets A,B ⊆ V , we denote by E(A,B) the set
of edges having one endpoint in A and another endpoint in B. Using this notation, a pair (A,B)

is call regular if |E(A′,B′)|
|A′|·|B′| ≈

|E(A,B)|
|A|·|B| for all sufficiently large A′ ⊆ A and B′ ⊆ B.

Definition 8.14 (edge density and regular pairs): Let G = (V,E) be a graph and A,B ⊆ V be
disjoint and non-empty sets of vertices.

• The edge density of the pair (A,B) is defined as d(A,B)
def
= |E(A,B)|

|A|·|B| .

• The pair (A,B) is said to be γ-regular if for every A′ ⊆ A and B′ ⊆ B such that |A′| ≥ γ · |A|
and |B′| ≥ γ · |B| it holds that |d(A′, B′)− d(A,B)| ≤ γ.

In many ways, a regular pair in a graph “looks like” a random bipartite graph of the same edge
density; that is, one may think of and analyze a regular pair as if it was such a random bipartite

33
Advanced comment: The auxiliary parameters mentioned in Footnote 30 correspond to these quantities.

34For starters, even selecting a uniformly distributed vertex requires knowing the number of vertices. In addition,
as pointed out by Alon and Shapira [21], the final decision of the tester may also depend on the number of vertices.
A trivial example refers to the graph property that requires having an odd number of vertices. In any case, the term
“size-oblivious testability” seems much better than the term “testability” that is often used when referring to the
independence of the query complexity from the size of the graph.
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graph, and the conclusion reached in such an analysis would typically hold for the regular pair.35

Indeed, for sufficiently large A and B, a random bipartite graph between A and B is regular with
very high probability (see Exercise 8.9).

The regularity lemma asserts that, for every ℓ ∈ N and γ > 0, every sufficiently large graph
can be partitioned into (at least ℓ) almost equal sets such that all but at most a γ fraction of the
set-pairs are γ-regular, where the number of sets is upper-bounded by a function of ℓ and γ. That
is:

Theorem 8.15 (Szemeŕedi’s Regularity Lemma [258]):36 For every ℓ ∈ N and γ > 0 there exists
a T = T (ℓ, γ) such that every sufficiently large graph G = (V,E) there exists a t ∈ [ℓ, T ] and a
t-partition of V , denoted (V1, ..., Vt) that satisfies the following two conditions:

1. Equipartition: For every i ∈ [t], it holds that ⌊|V |/t⌋ ≤ |Vi| ≤ ⌈|V |/t⌉.

2. Regularity: For all but at most a γ fraction of the pairs {i, j} ∈
([t]

2

)
, it holds that (Vi, Vj) is

γ-regular.

Intuitively, Theorem 8.15 means that every graph can be equipartitioned into a constant number of
parts such that almost all pairs of parts looks like a random bipartite graph of some edge density.
The aforementioned constant depends on the parameters ℓ and γ, alas the upper bound on this
quantity (i.e., T (ℓ, γ)) is a tower of poly(1/γ) exponents; that is, T (ℓ, γ) = T(poly(1/γ)), where
T is defined inductively by T(m) = exp(T(m − 1)) with T(1) = 2. It turns out that this huge
upper bound cannot be improved significantly, since T (ℓ, γ) = T((1/γ)Ω(1)) is a lower bound on the
number of required sets [164]. (A proof of Theorem 8.15 can be found in many sources; see, for
example, [22, Sec. 9.4].)37

8.4.2 Subgraph freeness

The relevance of the regularity lemma to property testing can be illustrated by considering the
problem of testing H-freeness, for a fixed graph H (say the triangle).

Definition 8.16 (subgraph freeness): Let H be a fixed graph. A graph G = (V,E) is H-free if G
contains no subgraph that is isomorphic to H.38

35Of course, the word “typically” is crucial here, and it refers to natural assertions that one may want to make on
graphs. For example, if the regular pair (A,B) has edge density ρ, then almost all vertices in A have degree that is
approximately ρ · |B|, and almost all pairs of vertices in A have approximately ρ2 · |B| common neighbors in B. See
Exercise 8.8.

36An alternative (popular) formulation requires all sets to be of equal size, but allows an exceptional set of size at
most γ · |V |.

37
Advanced comment: The basic idea is to start with an arbitrary ℓ-equipartition and “refine” it in iteration till

the current partition satisfies the regularity condition. If the current t-partition violates the regularity condition, then
the γ ·

`

t
2

´

non-regular pairs give rise to a 2t-partition of each of the current parts such that some potential function,
which ranges in [0, 1], increases by at least poly(γ). This yields a refinement of the current t-partition, which yields
a exp(O(t))-equipartition (by further refinement, which never decreases the potential). Hence, we have poly(1/γ)
many refinement steps, where in each step the number of parts grows exponentially. Finally, we mention that the

potential function used assigns the partition (V1, ..., Vt) of [k], the value
P

i<j

|Vi|·|Vj |

k2 · d(Vi, Vj)
2. The verification of

the aforementioned features of this potential function is left to Exercise 8.10.
38That is, if H = ([t], F ), then G is H-free if and only if for every one-to-one mapping φ : [t] → V there exists

an edge {i, j} ∈ F such that {φ(i), φ(j)} 6∈ E. Equivalently, G is not H-free if and only if there exists a one-to-one
mapping φ : [t] → V such that {{π(i), π(j)} : {i, j} ∈ F} ⊆ E.
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(For example, if H contains a single edge, then H-freeness means having no edges.)39 We stress
that Definition 8.16 requires that G contains no copy of H as a subgraph, and this is a more strict
requirement than requiring that G contains no induced subgraph that is isomorphic to H. (The
difference between these two notion arises when H is not a clique.)

Suppose that H is a t-vertex graph. Then, a natural (one-sided error) proximity oblivious tester
for H-freeness consists of selecting t random vertices in the tested graph, and checking whether
the induced subgraph contains a copy of H. The question is what is the rejection probability of
this (one-sided error) tester. In other words, we pose the following question (for which only partial
answers, reviewed next, are known).40

Open Problem 8.17 (on the number of copies of H in graphs that are ǫ-far from H-free): Let
H be a connected t-vertex graph and let #H(ǫ, k) denote the minimal number of copies of H in a
k-vertex graph that is ǫ-far from being H-free. Provide relatively tight lower and upper bounds on
#H(ǫ, k).

A lower bound of #H(ǫ, k) ≥ ǫ ·
(k
2

)
/
(t
2

)
follows by omitting all edges in all copies of H (see

Exercise 8.11), but this lower bound is proportional to the total number of t-tuples (i.e.,
(k

t

)
) only

when t = 2. Indeed, for t ≥ 3, it is not a priori clear whether #H(ǫ, k) can be lower-bounded
by ρH(ǫ) ·

(k
t

)
for any function ρH : (0, 1] → N. Such a lower bound was established using the

Regularity Lemma, and for a decade no other proof of it was known when H is not bipartite.41

Furthermore, for any non-bipartite t-vertex graph H, the known (lower and upper) bounds on the
function ρH are far apart. Interestingly, in this case it is known that ρH(ǫ)≪ poly(ǫ). For example,
if G is ǫ-far from triangle-free, then it does not follow that G has at least poly(ǫ) ·

(
k
3

)
triangles.

These striking facts are summarized in the following theorem.

Theorem 8.18 (upper and lower bounds on #H(ǫ, k)): Let H and #H(ǫ, k) be as in Problem 8.17.
Then, it holds that

1. #H(ǫ, k) ≥ ρH(ǫ)·
(k

t

)
for ρH(ǫ) = (0.1ǫ)t2

T ((0.1ǫ)t−2/t)t , where T (γ) is a tower of poly(1/γ) exponents.

2. If H is bipartite, then #H(ǫ, k) ≥ ρH(ǫ) ·
(k

t

)
for ρH(ǫ) = Ω(ǫt2/4).

3. If H is not bipartite, then for every positive polynomial p it holds that #H(ǫ, k) < p(ǫ) ·
(
k
t

)
.

In fact, #H(ǫ, k) < exp(−Ω(log(1/ǫ))2) ·
(k

t

)
.

(Recall that t denotes the number of vertices in H.)

Theorem 8.18 summarizes the state of knowledge with respect to Problem 8.17, and indeed it
leaves much to be understood (i.e., note the huge gap between Parts 1 and 3).42 Nevertheless,

39Hence, our focus is on graphs H that have at least two edges, which means that they have at least three vertices.
40We focus on the case of connected t-vertex graphs H , while noting that the general case is reducible to it.

Specifically, if G is ǫ-far from being H-free and H ′ is a connected component of H , then G is ǫ-far from being
H ′-free (since if G′ is H ′-free then it is H-free). Hence, if for every connected t′-vertex graph H ′ it holds that
#H′(ǫ, k) ≥ ρH′(ǫ) ·

`

k
t′

´

for some function ρH′ : (0, 1] → N, then approximately the same holds for unconnected
graphs H , because the number of intersections between copies of different connected components of H is at least one
order of magnitude smaller: Specifically, the number of copies of H ′ that intersect copies of a t′′-vertex H ′′ is at most
t′t′′ ·

`

k
t′+t′′−1

´

< kt′+t′′−1, whereas the number of (t′ + t′′)-vertex sets that contain copies of both H ′ and H ′′ is at

least ρH′(ǫ) ·
`

k
t′

´

· ρH′′(ǫ) ·
`

k
t′′

´

= Ωǫ,t(k
t), where the notation Ωǫ,t(·) hides arbitrary dependencies on ǫ and t.

41A somewhat better lower bound (for ρH(ǫ)) was subsequently proved by Fox [119]: It replaces the tower of
poly(1/ǫ) exponents by a tower of O(log(1/ǫ)) exponents.

42In contrast, the result of Part 2 is tight (see Exercise 8.13).
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Theorem 8.18 suffices for establishing the existence of (one-sided error) proximity oblivious tester
for all subgraph-freeness properties. Specifically, H-freeness has a proximity oblivious tester with
detection probability function ρH as asserted in Parts 1 and 2, but for non-bipartite H this detection
probability is not polynomial in the distance from the corresponding property. Furthermore, when
H is not bipartite, H-freeness has no ǫ-tester of poly(1/ǫ) query complexity, even when allowing
two-sided error [17].43 Here we shall only prove Part 1; the proofs of Parts 2 and 3 can be found
in [6].44

Proof of Part 1: Fixing any k-vertex graph G = ([k], E) that is ǫ-far from being H-free,
we set γ = (0.1ǫ)t−2 and ℓ = 10/ǫ, and apply the regularity lemma to G. Denoting the partition
provided by the regularity lemma, by (V1, ..., VT ), where T is upper-bounded by a tower of poly(1/γ)
exponents, we modify G as follows:

1. We omit all edges that are internal to any of the Vi’s.

In total, we omitted at most T ·
(⌈k/T ⌉

2

)
< k2/T ≤ k2/ℓ = 0.1ǫk2 edges.

2. We omit all edges between pairs of sets that are not γ-regular.

Here, we omitted at most γ ·
(
T
2

)
· ⌈k/T ⌉2 < γ · k2 ≤ 0.1ǫk2 edges.

3. We omit all edges between pairs of sets that have edge density below 0.2ǫ; that is, we omit
all edges between Vi and Vj if and only if d(Vi, Vj) ≤ 0.2ǫ.

Here, we omitted at most
(T

2

)
· 0.2ǫ · ⌈k/T ⌉2 < 0.1ǫ · k2 edges.

Hence, the resulting graph, denoted G′ = ([k], E′), is a subgraph of G that is not H-free.45 Fur-
thermore, by Steps 2 and 3, every pair (Vi, Vj) is γ-regular in G′ and has edge density that is either
at least 0.2ǫ or equals zero (i.e., there are no edges between Vi and Vj in G′). Lastly, by Step 1,
the graph G′ contains no edges that are internal to any Vi.

Given that G′ contains some copies of H, we shall lower-bound the number of copies of H in G′.
At this point we invoke the intuition, provided right after Definition 8.14, by which regular pairs
behave like random bipartite graphs of similar edge density. Considering the guaranteed copy of
H = ([t], F ) in G′ = ([k], E′), we observe that its edges reside in regular pairs that have edge density
at least 0.2ǫ. If these regular pairs would behave like random bipartite graphs of similar density,
then we should expect to have at least (0.2ǫ)|F | · (k/T )t copies of H in G′, due merely to the t sets
in which this copy of H reside, and Part 1 would follow (since (0.2ǫ)|F | · (k/T )t = Ω(ǫ)t

2 ·T−t ·
(k

t

)
).

The actual proof amounts to materializing this observation in the real setting in which the regular
pairs are fixed bipartite graphs rather than being random bipartite graphs of similar densities.

43
Advanced comment: For induced subgraph freeness, this lower bound holds for any graph H that has at least

five vertices, regardless if it is bipartite or not [20].
44

Advanced comment: A partial proof of Part 3 can be found in [242, Sec. 9.1]. The proof of Part 2 reduces to
the fact that if a k-vertex graph has at least ǫk2 edges, then it contains at least Ω((2ǫ)t1t2) · kt1+t2 copies of Kt1,t2

(i.e., the biclique with t1 vertices on one side and t2 vertices on the other side). (This fact is proved in [6, Lem. 2.1];
see also Exercise 8.12.) Hence, if the k-vertex graph G is ǫ-far from being H-free, then G must be ǫ-far from the

empty graph, and hence contain at least Ω(ǫt
′·(t−t′)) · kt copies of Kt′,t−t′ for every t′ ∈ [t − 1]. (Thus, if H is a

subgraph of Kt′,t−t′ , then G contain at least Ω(ǫt
′·(t−t′)) · kt copies of H .) We also mention that a two-sided error

ǫ-tester of query complexity O(1/ǫ) (for H-freeness) can just estimate the number of edges in the tested graph, and
reject if and only if it is safe to say that the graph has more than 0.4ǫk2 edges (cf., Proposition 8.4).

45Indeed, although we can show that G′ is (ǫ− 3 · 0.2ǫ)-far from being H-free, we only use the fact that G′ is not
H-free.
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Turning to the actual proof and considering the guaranteed copy of H in G′, we make the
following initial observations. We first observe that if H is a clique, then this copy (of H) contains
at most one vertex in each of the Vi’s, since each pair of vertices in the copy of H must be connected
in G′ (whereas vertices in the same Vi are not connected in G′). Turning to the general case (i.e.,
a general t-vertex graph H), we admit that a copy of H may contain several vertices in the same
Vi. But, in such a case, we can partition each Vi into t equal parts, while noting that the regularity
condition is preserved, except that the regularity parameter is now t times bigger.46 Hence, we
should actually invoke the regularity lemma with γ = (0.1ǫ)t−2/t (rather than with γ = (0.1ǫ)t−2).
We shall assume, without loss of generality, that the ith vertex of the foregoing copy of H resides
in Vi. Furthermore, we observe that if Vi and Vj contain vertices of this copy (of H) that are
connected in H, then (by Steps 2 and 3) the pair (Vi, Vj) is γ-regular and has edge density at least
0.2ǫ. Let us summarize:

Starting point: The graph G′ contains a copy of H such that the ith vertex of the foregoing copy
of H resides in Vi, and if i and j are connected in H then the pair (Vi, Vj) has edge density
at least 0.2ǫ (and is γ-regular).

We now consider an auxiliary graph A = ([T ], EA) such that {i, j} ∈ EA if and only if there is an
edge in G′ between some vertex of Vi and some vertex of Vj (i.e., there exists u ∈ Vi and v ∈ Vj such
that {u, v} ∈ E′). The key observation is that, according to Step 3, the existence of a single edge
(in G′) between Vi and Vj implies the existence of at least 0.2ǫ · ⌊k/T ⌋2 such edges. Furthermore,
by Steps 2 and 3, if {i, j1}, {i, j2} ∈ F (equivalently, if there are edges (in G′) between Vi and both
Vj1 and Vj2), then there are many vertices in Vi that have many edges to both Vj1 and Vj2 (in
G′). A more elaborate argument, which is presented next, shows that the existence of any t-vertex
subgraph in A, implies that this subgraph appears in “abundance” in G′. This fact combined with
the fact that A must contain a copy of H (since G′ is not H-free), implies that G′ (and so also G)
contains many copies of H. Let us first detail the argument for the case that H is the (three-vertex)
triangle.

The case in which H is a triangle. Since the graph G′ is not triangle-free, it follows that the graph
A contains a triangle (which, w.l.o.g, consists of the vertices 1, 2 and 3). Turning back to G′, for
each vertex v ∈ V1, we consider its neighbors in V2 and V3, and denote the corresponding sets by
Γ2(v) and Γ3(v), respectively; that is, Γi(v) = {u ∈ Vi : {u, v} ∈ E′}. We make the following two
observations (depicted in Figure 8.2):

Observation 1: If |Γi(v)| ≥ 0.1ǫ · |Vi| for both i ∈ {2, 3}, then the number of triangles that involve
v is at least (0.1ǫ)3 · ⌊k/T ⌋2.
This follows since for such a vertex v, each pair (w2, w3) ∈ Γ2(v)×Γ3(v) such that {w2, w3} ∈
E′ yields a triangle, whereas the density of such edges (i.e., edges between Γ2(v) and Γ3(v)) is
approximately the density of edges between V2 and V3. Specifically, letting dG′(A,B) denote
the density of edges between A and B in G′, we have

dG′(Γ2(v),Γ3(v)) · |Γ2(v)| · |Γ3(v)| ≥ (dG′(V2, V3)− γ) · |Γ2(v)| · |Γ3(v)|
≥ 0.1ǫ · (0.1ǫ · ⌊k/T ⌋)2

46Since every (Vi, Vj) is γ-regular, each of the t2 resulting pairs is tγ-regular (see Exerecise 8.14). Also, since there
are no edges between vertices of Vi there will be no edges between its t parts.
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v

V2

V3

having many neighbors in V2

having many neighbors in V3

 

 

neighbors of v

neighbors of v

Figure 8.2: The triangles that contain a typical vertex v ∈ V1, which has many neighbors in both
V2 and V3. Note that each edge between Γ2(v) and Γ3(v) forms a triangle that contains v.

where the first inequality uses the fact that (V2, V3) is a γ-regular pair (and |Γi(v)| ≥ 0.1ǫ ·
|Vi| ≥ γ · |Vi| for both i ∈ {2, 3}), whereas the second inequality uses the fact that (V2, V3)
has edge density at least 0.2ǫ (and γ ≤ 0.1ǫ).

Observation 2: Most of the vertices v ∈ V1 satisfy |Γi(v)| ≥ 0.1ǫ · |Vi| for both i ∈ {2, 3}. In fact,
for every i ∈ {2, 3}, at least a 1− γ fraction of the vertices v ∈ V1 satisfy |Γi(v)| ≥ 0.1ǫ · |Vi|.
To see this, let V ′1

def
= {v ∈ V1 : |Γi(v)| < 0.1ǫ · |Vi|}, and assume towards the contradiction

that |V ′1 | > γ · |V1|. Now, since the pair (V1, Vi) is γ-regular (and |V ′1 | ≥ γ · |V1|), we have

dG′(V
′
1 , Vi) · |V ′1 | · |Vi| ≥ (dG′(V1, Vi)− γ) · |V ′1 | · |Vi|

≥ 0.1ǫ · |V ′1 | · |Vi|

but this contradicts the definition of V ′1 , which asserts that each v ∈ V ′1 has less than 0.1ǫ · |Vi|
neighbors in Vi.

Combining the two observations, we conclude that there are at least 0.5|V1| · (0.1ǫ)3 · ⌊k/T ⌋2 >
0.4 · (0.1ǫ/T )3 · k3 triangles in G′. Recalling that T is upper-bounded by a tower of poly(1/(0.1ǫ))
exponents, Part 1 follows in this case (in which H is a triangle).

The general case: arbitrary H. We now turn to the general case in which H is an arbitrary t-vertex
graph. Recall that, by our hypothesis, G′ contains a copy of H with a single vertex in Vi for every
i ∈ [t]. It follows that the auxiliary graph A contains a copy of H, and that this copy resides
on the vertices 1, 2, ..., t. In this case we proceed in t − 2 iterations, starting with H(0) = H and
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V
()
j = Vj for every j ∈ [t], where () denotes an empty sequence. In general, we let H(i) denote the

subgraph of H(i−1) (equiv., of H) induced by {i + 1, ..., t}. We shall enter the ith iteration after
having determined a choice of i− 1 vertices, denoted v1, ..., vi−1, such that for every j ∈ [i− 1] the

vertex vj resides in V
(v1,....,vj−1)
j .

In the ith iteration, we identify a set, denoted U
(v1,...,vi−1)
i , of vertices in V

(v1,...,vi−1)
i that have at

least 0.1ǫ·|V (v1,...,vi−1)
j | neighbors in each V

(v1,...,vi−1)
j such that j > i is a neighbor of i in H(i−1). We

observe that |U (v1,...,vi−1)
i | > 0.5 · |V (v1,...,vi−1)

i |, by using an argument analogous to Observation 2,

while relying on |V (v1,...,vi−1)
i | ≥ γ · |Vi| (which will be established for the next i in the following

Item 2). The ith iteration is completed by selecting an arbitrary vi ∈ U
(v1,...,vi−1)
i , and defining, for

every j ∈ {i + 1, ..., t},

V
(v1,...,vi−1,vi)
j =

{ {
w ∈ V

(v1,...,vi−1)
j : {w, vi} ∈ E′

}
if j neighbors i in H(i−1)

V
(v1,...,vi−1)
j otherwise.

Extending the foregoing definition to any v ∈ Vi, we note the following two facts:

1. For every v ∈ Vi, the number of copies of H(i−1) in G′ that involve v as well as a single vertex

from each V
(v1,...,vi−1)
j for j ∈ {i + 1, ..., t} is lower-bounded by the number of copies of H(i)

in G′ that contain a single vertex from each V
(v1,...,vi−1,v)
j for j ∈ {i + 1, ..., t}.

(Recall that H(i) denotes the subgraph of H(i−1) induced by {i + 1, ..., t}.)

2. For every v ∈ U
(v1,...,vi−1)
i and j ∈ {i + 1, ..., t}, it holds that

|V (v1,...,vi−1,v)
j | ≥ 0.1ǫ · |V (v1,...,vi−1)

j | ≥ (0.1ǫ)i · |Vj |. (8.2)

Hence, for every i ∈ [t− 2] and j ∈ {i + 1, ..., t}, it holds that |V (v1,...,vi−1,v)
j | ≥ γ · |Vj | (since

γ = (0.1ǫ)t−2). (In particular, |V (v1,...,vi−1,v)
i+1 | ≥ γ · |Vi+1|.)

Lastly, we show that the number of copies of H(t−2) in G′ that involve a single vertex from each

V
(v1,...,vt−2)
j for j ∈ {t − 1, t} is at least 0.1ǫ · |V (v1,...,vt−2)

t−1 | · |V (v1,...,vt−2)
t |, which is at least 0.1ǫ ·

((0.1ǫ)t−2 · ⌊k/T ⌋)2. This claim (which is non-trivial only if H(t−2) consists of an edge) is analogous

to Observation 1, and is proved in the same manner (while relying on |V (v1,...,vt−2)
j | ≥ γ|Vj | for both

j ∈ {t− 1, t}).47 Hence, the number of copies of H in G′ is at least
∑

v1∈U
()
1

∑

v2∈U
(v1)
2

· · ·
∑

vt−2∈U
(v1,...,vt−3)

t−2

0.1ǫ ·
(
(0.1ǫ)t−2 · ⌊k/T ⌋

)2

≥
(

t−2∏

i=1

(0.5 · (0.1ǫ)i−1 · |Vi|)
)
· 0.1ǫ ·

(
(0.1ǫ)t−2 · ⌊k/T ⌋

)2

>
(
0.5 · (0.1ǫ)t−3 · ⌊k/T ⌋

)t−2 · (0.1ǫ)2t−3 · ⌊k/T ⌋2

>
(0.1ǫ)t

2

T t
· kt

47Alternatively, we can use yet another iteration, while setting γ = (0.1ǫ)t−1 (rather than γ = (0.1ǫ)t−2), and use
the corresponding claim regarding H(t−1), which is trivial.
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where the first inequality is due to |U (v1,...,vi−1)
i | > 0.5 · |V (v1,...,vi−1)

i | ≥ 0.5 · (0.1ǫ)i−1 · |Vj| (which
uses Eq. (8.2)). This completes the proof.

Digest: On an apparent waste in the proof. The reader may wonder why we did not use the
fact that G′ is actually 0.4ǫ-far from being H-free (rather than only using the fact that G′ is not
H-free). Using this stronger fact, we can indeed infer that the auxiliary graph A is 0.4ǫ-far from
being H-free. But we cannot capitalize on the latter fact, since we do not have a good lower bound
on the number of copies of H in A. Indeed, getting such a lower bound is the contents of Part 1 of
Theorem 8.18, but the result established there is meaningless for graphs of size T (such as A). We
can only use the obvious lower bound with respect to A, which asserts that (the T -vertex graph) A
has at least Ω(ǫT 2/t) different t-vertex subsets that contain a copy of H (see Exercise 8.11). But,
at best, this would only allow us to assert that #H(ǫ, k) ≥ Ω(ǫT 2) · (k/T )t = Ω(ǫ/T t−2) ·

(
k
t

)
, which

is not significantly better than the bound #H(ǫ, k) ≥ ((0.1ǫ)t/T )t ·
(k

t

)
that we just proved (i.e.,

both bounds have the form poly(ǫ/T ) ·
(
k
t

)
).

Summary. For sake of good order, we spell out the results regarding testing subgraph freeness
that are implied by Theorem 8.18 (and by the discussion that followed it (including Footnote 44)).

Corollary 8.19 (on the complexity of testing subgraph freeness (in the dense graph model)): Let
H be a t-vertex graph. Then:

1. There exists a one-sided error proximity oblivious tester that makes
(t
2

)
queries and has detec-

tion probability ̺H(δ) = 1/T(1/poly(δt/t))t, where T is the tower-of-exponents function (i.e.,
T(m) = exp(T(m− 1)) and T(1) = 2).

2. If H is bipartite, then there exists a one-sided error proximity oblivious tester that makes
(

t
2

)

queries and has detection probability ̺H(δ) = Ω(δt2/4). In this case, H-freeness also has a
two-sided error ǫ-tester of query complexity O(1/ǫ).48

3. If H is not bipartite, then H-freeness has no ǫ-tester of poly(1/ǫ) query complexity, even
when allowing two-sided error.49

Recall that a proximity oblivious tester is said to have detection probability ̺ if it rejects graphs that
are at distance δ from the property with probability at least ̺(δ).

We mention that the corresponding properties that refer to induced subgraphs freeness also have
constant-query (one-sided error) proximity oblivious testers, but their detection probability is even
worse (i.e., it is a tower of tower function [20]).50 Furthermore, this result extends to the case that
the property postulates freeness for a family of graphs; that is, for a fixed family of (forbidden)
graphs H, a graph G is induced H-free if G contains no induced subgraph that is isomorphic to a
graph in H. (Note that here we focus on induced subgraph freeness, since non-induced subgraph

48See Footnote 44.
49Indeed, this result (of Alon and Shapira [17]) is stronger than the corresponding part of Theorem 8.18: It refers

to general testers (rather than to one-sided error testers that arise from repeating a
`

t
2

´

-query proximity oblivious
tester for a predetermined number of times).

50Recall that a graph G is H-free if G contains no subgraph that is isomorphic to H . In contrast, G is induced

H-free if G contains no induced subgraph that is isomorphic to H .
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freeness with respect to a finite set of graphs H, can be captured by induced subgraph freeness
with respect to a finite set of graphs H′.)51

Actually, the foregoing result (i.e., that every induced subgraph freeness property has a constant-
query proximity oblivious tester) is, in some sense, the strongest possible. Loosely speaking, a graph
property has a constant-query (one-sided error) proximity-oblivious tester if and only if it expressible
as an induced subgraph freeness property. Recall that a proximity-oblivious tester (POT) is required
to have detection probability that only depends on the distance of the tested object from the
property. The actual result, stated next, allows the family of forbidden subgraphs to depend on
the number of vertices in the tested graph, as long as the number of vertices in each graph in the
family is uniformly bounded.

Theorem 8.20 (characterization of graph properties having a POT (in the dense graph model)):
Let Π =

⋃
k∈N

Πk be a graph property such that each Πk consists of all k-vertex graphs that satisfy
Π. Then, Π has a constant-query (one-sided error) proximity-oblivious tester if and only if there
exist a constant c and an infinite sequence H = (Hk)k∈N of sets of graphs such that

1. each Hk contains graphs of size at most c; and

2. Πk equals the set of k-vertex graphs that are induced Hk-free.

(Note that the number of possible Hk’s is upper bounded by a function of c; indeed, it is at
most double-exponential in c2.)52 The existence of POTs for properties that satisfy the (induced
subgraph) condition follows from [20], whereas the opposite direction is based on Theorem 8.25
(which is presented in Section 8.5).

8.4.3 The structure of properties that have size-oblivious testers

The relevance of the regularity lemma to property testing is not confined to proving the existence
of proximity-oblivious testers for any graph property that is expressible as an induced subgraph
freeness property. It turns out that every graph property that can be tested using a number of
queries that is independent of the size of the graph can be expressed in terms of properties having
a regular partition that fits a predetermined sequence of edge densities. The exact meaning of
the latter phrase is defined next, where t denotes the number of parts is the partition, γ denotes
the regularity parameter, C denotes the set of regular pairs, and the di,j’s denote the prescribed
densities.

Definition 8.21 (regularity properties):53 A regularity property is parameterized by a sequence

(γ, t, C, (di,j){i,j}∈C) (8.3)

51Specifically, suppose that H contains graphs with at most t vertices. Then, H′ is the set of all t-vertex graphs
that contain a subgraph that is in H. Note that G contains a (general) subgraph that is isomorphic to a graph in H
if and only if G contains an induced subgraph that is isomorphic to a graph in H′.

52This fact is important towards applying the result of [20], which relates to the case that Hk is independent of k.
Note that a property Π that satisfies the “H-freeness” condition is a union of a finite number of (trivially modified)
induced freeness properties (as in [20]). Actually, the latter properties are each parameterized by a set of forbidden
graphs H and a set K ⊆ N such that a k-vertex graph G has the property if k ∈ K and G is H-free.

53It seems that Theorem 8.23 holds also if the current definition is restricted by mandating that C =
`

[t]
2

´

, but the
current version is more evocative of the Regularity Lemma.
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such that γ ∈ (0, 1] and C ⊆
([t]

2

)
has size at least ⌈(1 − γ) ·

(t
2

)
⌉. This property consists of all

graphs G = (V,E) such that there exists a t-equipartition of V , denoted (V1, ..., Vt), and for every
{i, j} ∈ C the pair (Vi, Vj) is γ-regular and |E(Vi, Vj)| = ⌊di,j · |Vi| · |Vj |⌋. We call max(γ, 1/t) the
fineness of the property.

We shall consider properties that can be expressed as the union of a finite number of regularity
properties of a bounded fineness. In fact, we shall refer to properties that are approximated by the
latter, where the notion of approximation is as in Definition 6.5.

Definition 8.22 (approximation of a property, Definition 6.5 restated): The property Π is δ-
approximated by the property Π′ if each object in Π is δ-close to some object in Π′, and vice versa.

We are finally ready to state the result alluded to above. It asserts that every graph property
that can be tested using a number of queries that is independent of the size of the graph can
be approximated by the union of regularity properties (where the fineness of these properties is
lower-bounded in terms of the approximation parameter). Actually, the converse holds as well.

Theorem 8.23 (characterization of properties that have size-oblivious testers (in the dense graph
model)): Let Π =

⋃
k∈N

Πk be a graph property such that each Πk consists of all k-vertex graphs
that satisfy Π. Then, the following two conditions are equivalent.

1. There exists a function q : (0, 1]→ N such that the property Π has a tester of query complex-
ity q(ǫ).

2. There exists a function T : (0, 1] → N such that for every ǫ > 0 and k ∈ N, the property Πk

is ǫ-approximated by a union of at most T (ǫ) regularity properties of fineness 1/T (ǫ).

8.5 A Taxonomy of the known results

The current section is a kind of digest of the material presented in Sections 8.2–8.4, organized
according to the query complexity of the various property testing problems. In addition it presents
two results: A query complexity hierarchy (Theorem 8.24) and a result asserting that non-adaptive
testers can achieve query complexity that is at most quadratic in the query complexity of an arbi-
trary tester (Theorem 8.25). Actually, the tester derived in Theorem 8.25 is even more restricted:
it merely inspects the subgraph induced by a random sample of vertices.

Testers of query complexity that depends on the size of the graph. We first mention
that graph properties of arbitrary query complexity are known (cf. [144]): Specifically, graph prop-
erties may have query complexity ranging from O(1/ǫ) to Ω(k2), where k denotes the number of
vertices, and the same holds also for monotone graph properties.54 Furthermore, the computational
complexity of these properties is bounded (i.e., they are in P and NP , respectively). One of these
hierarchy theorems is stated next.

54A graph property Π is called monotone if, for every G ∈ Π, the graph obtained from G by adding any edge to
G is also in Π. The same result holds for anti-monotone properties (where omitting edges preserves the property).
We warn that the term “monotone graph properties” is sometimes defined as closure under the removal of edges and
vertices (see, e.g.,[18]).
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Theorem 8.24 (query hierarchy for testing graph properties in the dense graph model): For every
q : N → N that is at most quadratic such that k 7→ ⌊

√
q(k)⌋ is onto, there exists a graph property

Π and a constant ǫ > 0 such that ǫ-testing Π on k-vertex graphs has query complexity Θ(q(k)).
Furthermore, if k 7→ q(k) is computable in poly(k)-time, then Π is in P, and if k 7→ q(k) is
computable in poly(log k)-time, then the tester is relatively efficient in the sense that its running
time is polynomial in its query complexity.55

We mention that the testers used towards establishing the upper bound have query complexity
poly(1/ǫ) · q(k).

Theorem 8.24 is established in [144] by using unnatural graph properties, starting from the
Ω(k2) lower bound of [140], which also uses an unnatural graph property.56 In contrast, the Ω(k)
lower bound established in [114] (following [8]) refers to the natural property of testing whether a
k-vertex graph consists of two isomorphic copies of some k/2-vertex graph.

Testers of query complexity that is independent of the size of the graph. Our main
focus is on properties that can be tested within query complexity that only depends on the proximity
parameter (i.e., ǫ); that is, the query complexity does not depend on the size of the graph being tested.
As we have seen, there is much to say about this class of properties. For q : (0, 1] → N, let C(q)
denote the class of graph properties that can be tested within query complexity q. We shall focus
on three classes of properties.

1. The case of arbitrary q such that q(ǫ)≫ poly(1/ǫ). By Corollary 8.18, triangle-freeness is in
the class C(q), for some function q (i.e., q(ǫ) is a tower-of-exponents in O(log(1/ǫ))), but is
not in the class C(poly(1/ǫ)). The same holds for H-freeness for any non-bipartite H. See
further discussion in Section 8.5.1.

2. The case of q(ǫ) = poly(1/ǫ). By Theorem 8.12, every graph partition property is in the class
C(poly(1/ǫ)). In particular, t-Colorability is in C(qt) such that q2(ǫ) ∈ [Ω(ǫ−3/2), Õ(ǫ−2)]
and qt(ǫ) = Õ(ǫ−4) for any t ≥ 3 (see Theorem 8.13 and Problem 8.9). See further discussion
in Section 8.5.2.

3. The case of q(ǫ) = Õ(1/ǫ). By Proposition 8.6, Biclique is in C(O(1/ǫ)). As mentioned in
Footnote 44, the same bound holds for H-freeness for any bipartite H. Additional properties
in this class are reviewed in Section 8.5.3.

Before further discussing the foregoing classes, we mention that, when disregarding a possible
quadratic blow-up in the query complexity, we may assume that the tester is non-adaptive. Fur-
thermore, it is actually canonical in the following sense.

55
Advanced comment: The efficiency of the tester (combined with the fact that its query complexity is poly(1/ǫ)·

q(k)) implies that Π is in BPP (but not necessarily in P). We mention that a hierarchy theorem for one-sided error
testers is also presented in [144] and it holds for properties in P , but the testers used to establish the upper bound
are not relatively efficient in the foregoing sense.

56This is a common phenomenon in hierarchy theorems; cf. [131, Chap. 4].
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Theorem 8.25 (canonical testers [158, Thm 2]):57 Let Π be any graph property. If there exists a
tester of query complexity q for Π, then there exists a tester for Π that uniformly selects at random
a set of O(q) vertices and accepts if and only if the induced subgraph has property Π′, where Π′ is
a graph property that depends on Π and may also depend on the number of vertices in the tested
graph (i.e., k). Furthermore, if the original tester has one-sided error, then so does the new tester,
and a sample of 2q vertices suffices

Indeed, the resulting tester is called canonical. In particular, the tester decided based on an in-
spection of the subgraph induced by a random sample of vertices (and, thus, is, in particular, non-
adaptive). We warn that Π′ need not equal Π (let alone that Π′ may depend on k). Still, in many
natural cases, Π′ = Π (e.g., t-Colorability). We also warn that, in addition to the (possible)
quadratic blow-up in the query complexity of the tester, the time complexity of the canonical tester
may be significantly larger than the time complexity of the original tester.

8.5.1 Testability in q(ǫ) queries, for any function q

Recall that Theorem 8.18 (Part 1) implies that all subgraph freeness properties have constant-query
(one-sided error) proximity-oblivious testers. This yields a natural class of graph properties that
are testable within query complexity that only depends on the proximity parameter. (Also recall
that, for any fixed non-bipartite graph H, the query complexity of ǫ-testing H-freeness is super-
polynomial in 1/ǫ.) Furthermore, Theorem 8.23 provides a combinatorial characterization of the
class of properties that can be tested within query complexity that only depends on the proximity
parameter.

The downside of the algorithms that emerge from the aforementioned results is that their query
complexity is related to the proximity parameter via a function that grows tremendously fast.
Specifically, in the general case, the query complexity is only upper bounded by a tower of a tower
of exponents (in a monotonically growing function of 1/ǫ, which in turn depends on the property at
hand). Furthermore, it is known that a super-polynomial dependence on the proximity parameter
is inherent to the foregoing result. Actually, as shown by Alon [6], such a dependence is essential
even for testing triangle freeness.

The latter fact provides a nice demonstration of the non-triviality of testing graph properties.
One might have guessed that O(1/ǫ) or O(1/ǫ3) queries would have sufficed to detect a triangle in
any graph that is ǫ-far from being triangle-free, but Alon’s result asserts that this guess is wrong
and that poly(1/ǫ) queries do not suffice. We mention that the best upper bound known for the
query complexity of testing triangle freeness is T(O(log(1/ǫ))), where T is the tower function defined
inductively by T(m) = exp(T(m− 1)) with T(1) = 2 (cf. [119]).

Perspective: Is it all about combinatorics? Theorem 8.25 seems to suggest that the study
of testing graph properties (in this model) reduces to combinatorics, since it asserts that testing
reduces to inspecting a random induced subgraph (of the corresponding size). This lesson is made
more concrete by the characterization of “size-oblivious” testable graph properties provided by

57As pointed out in [21], the statement of [158, Thm 2] should be corrected such that the auxiliary property Π′

may depend on k and not only on Π. Thus, on input k and ǫ (and oracle access to a k-vertex graph G), the canonical
tester checks whether a random induced subgraph of size s = O(q(k, ǫ)) has the property Π′, where Π′ itself (or rather
its intersection with the set of s-vertex graphs) may depend on k. In other words, the tester’s decision depends only
on the induced subgraph that it sees and on the size parameter k.
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Theorem 8.23, which refers to the notion of a regularity property, where regularity is in the sense
of Szemeŕedi’s Regularity Lemma [258].58 Recall that this result essentially asserts that a graph
property can be tested in query complexity that only depends on ǫ if and only if it can be charac-
terized in terms of a constant number of regularity properties. Hence, when ignoring the specific
dependency on ǫ, testing graph properties in query complexity that only depends on ǫ reduces to
testing the edge densities of pairs in a regular partition. However, as noted already and further
discussed next, this lesson ignores both the running time of the tester and the exact value of the
query complexity.

Perspective: The exact query complexity does matter. It is indeed an amazing fact that
many properties can be tested within (query) complexity that only depends on the proximity
parameter (rather than also on the size of the object being tested). This amazing statement
seems to put in shadow the question of the form of the aforementioned dependence, and blurs
the difference between a reasonable dependence (e.g., a polynomial relation) and a prohibiting one
(e.g., a tower-function relation). We beg to disagree with this sentiment and claim that, as in the
context of standard approximation problems (cf. [172]), the dependence of the complexity on the
approximation (or proximity) parameter is a key issue.

We wish to stress that we do value the impressive results of [8, 17, 18, 19, 116] (let alone [9]),
which refer to graph property testers having query complexity that is independent of the graph
size but depends prohibitively on the proximity parameter. We view such results as an impressive
first step, which called for further investigation directed at determining the actual dependency of
the query complexity on the proximity parameter.

Between T(log(1/ǫ)) and poly(1/ǫ). While it is most likely that there exist (natural) graph
properties that can be tested in less than T(log(1/ǫ)) queries but not in poly(1/ǫ) queries, we
are not aware of such a property. In particular, it is conceivable that there exist (natural) graph
properties that can be tested in exp(1/ǫ) queries but not in poly(1/ǫ) queries. (Needless to say,
demonstrating the existence of such (natural) properties is an interesting open problem.) Hence,
currently, we (are forced to) move directly from complexities of the form T(log(1/ǫ)) (and larger)
to complexities of the form poly(1/ǫ).

8.5.2 Testability in poly(1/ǫ) queries

Testers of query complexity poly(1/ǫ) are known for several natural graph properties, which fall
under the general framework of graph partition problems (presented and studied in Section 8.3).
We briefly recall some of these properties, while reminding the reader that by Theorem 8.12, every
graph partition problem is testable in poly(1/ǫ) queries.

• t-Colorability, for any fixed t ≥ 2.

Recall that by Theorem 8.13, t-Colorability has a one-sided error tester of query complexity
Õ(t2/ǫ4) for any t > 2. For t = 2 this tester has query-complexity (and running-time) Õ(1/ǫ2).

• ρ-Clique, for any fixed ρ > 0, where ρ-Clique is the set of graphs that have a clique of
density ρ (i.e., k-vertex graphs having a clique of size ρk).

58Recall that the Regularity Lemma was also used in the proof of (Part 1 of) Theorem 8.18.
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• ρ-Cut, for any fixed ρ > 0, where ρ-Cut is the set of graphs that have a cut of density at
least ρ (i.e., k-vertex graphs having a cut with at least ρk2 edges).

• ρ-Bisection, for any fixed ρ > 0, where ρ-Bisection is the set of graphs that have a
bisection of density at most ρ (i.e., a k-vertex graph is in ρ-Bisection if its vertex set can
be partitioned into two equal parts with at most ρk2 edges going between them).

Except for k-Colorability, all the other testers have two-sided error, and this is unavoidable for
any tester of o(k) query complexity for any of these properties.

Beyond graph partition problems. Although many natural graph properties can be formu-
lated as partition problems, many other properties that can be tested with poly(1/ǫ) queries cannot
be formulated as such problems. The list include the set of regular graphs, connected graphs, planar
graphs, and more. We identify three classes of such natural properties:

1. Properties that only depends on the vertex degree distribution (e.g., degree regularity and
bounds on the average degree). For example, for any fixed ρ > 0, the set of k-vertex graphs
having ρk2 edges can be tested using O(1/ǫ2) queries, which is the best result possible.59 The
same holds with respect to testing degree regularity (see Theorem 8.5 and Exercise 8.1).

2. Properties that are satisfied only by sparse graphs (e.g., k-vertex graphs having O(k) edges)
such as Cycle-freeness and Planarity. See Proposition 8.4 for a more general statement.

3. Properties that are almost trivial in the sense that, for some constant c > 0 and every
ǫ > k−c, all k-vertex graphs are ǫ-close to the property (see Proposition 8.3). For example,
every k-vertex graph is k−1-close to being connected (or being Hamiltonian or Eulerian).

In view of the foregoing, we believe that characterizing the class of graph properties that can be
tested in poly(1/ǫ) queries may be far too challenging. Still, we cannot refrain from posing it as
an explicit open problem.

Open Problem 8.26 (characterization of graph properties that are testable in poly(1/ǫ) queries):
Characterize the class of graph properties that can be tested, in the dense graph model, within query
complexity that is polynomial in the reciprocal of the proximity parameter.

We mention that a dichotomy between properties having poly(1/ǫ)-query testers and properties
having F (1/ǫ)-query testers only for some super-polynomial function F is known within some nat-
ural classes of graph properties. Specifically, such a dichotomy is known for the class of subgraph
freeness properties (see Theorem 8.18), is almost known for induced subgraph freeness proper-
ties [20], and is partially known for the case of families of forbidden subgraphs [125].60 It will be
interesting to find other natural classes of graph properties that exhibit such a dichotomy.

59Both the upper and lower bounds can be proved by reduction to the problem of estimating the average value of
Boolean functions (cf. [66]).

60The “almost known” dichotomy of [20, 10] leaves out one unclassified property, whereas the “partially known”
dichotomy of [125] leaves a gap between the necessary and the sufficient conditions.
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8.5.3 Testability in Õ(1/ǫ) queries

While Theorem 8.25 may be interpreted as suggesting that testing in the dense graph model leaves
no room for algorithmic design, this conclusion is valid only if one ignores a possible quadratic blow-
up in the query complexity (and also disregards the time complexity). As advocated in [151], a finer
examination of the model, which takes into account the exact query complexity (i.e., cares about
a quadratic blow-up), reveals the role of algorithmic design. In particular, the results in [151]
distinguish adaptive testers from non-adaptive ones, and distinguish the latter from canonical
testers. These results refer to testability in Õ(1/ǫ) queries. In particular, it is known that:61

• Testing every “non-trivial for testing” graph property requires Ω(1/ǫ) queries, even when
adaptive testers are allowed. Furthermore, any canonical tester for such a property requires
Ω(1/ǫ2) queries, since it must inspect a subgraph that is induced by Ω(1/ǫ) vertices.

• There exist an infinite class of natural graph properties that can be tested by Õ(1/ǫ) non-
adaptive queries. Specifically, this class contains all properties obtained by an (uneven)
blow-up of some fixed graph.62

• There exists a natural graph property that can be tested by Õ(1/ǫ) adaptive queries, requires
Ω(ǫ−4/3) non-adaptive queries, and is actually testable by O(ǫ−4/3) non-adaptive queries. The
property for which this is shown is called Clique Collection, and contains all graphs that
consist of a collection of isolated cliques. That is, the problem of testing Clique Collection

has (general) query complexity Θ̃(ǫ−1) and non-adaptive query complexity Θ(ǫ−4/3).

• There exists a natural graph property that can be tested by Õ(1/ǫ) adaptive queries but re-
quires Ω(ǫ−3/2) non-adaptive queries. The property for which this is shown is called Biclique

Collection, and contains all graphs that consist of a collection of isolated bicliques.

All the foregoing testers have one-sided error probability and are efficient, whereas the lower bounds
hold also for two-sided error testers (regardless of efficiency).

The foregoing results seem to indicate that even at this low complexity level (i.e., testing in
Õ(1/ǫ) adaptive queries) there is a lot of structure and much to be understood. In particular,
it is conjectured in [151] that, for every t ≥ 4, there exist graph properties that can be tested

by Õ(1/ǫ) adaptive queries and have non-adaptive query complexity Θ(ǫ−2+ 2
t ). Partial progress

towards establishing this conjecture is presented in [151].

8.5.4 Additional issues

Let us highlight some issues that arise from the foregoing exposition.

61With the exception of the result regarding testability by eO(1/ǫ) non-adaptive queries, all other results are due
to [151]. The exceptional result was proved in a subsequent work of [27], which extended a corresponding result
of [151], which in turn referred to the special case in which the fixed graph H is a t-clique.

62That is, for any fixed graph H = ([t], F ), a k-vertex blow-up of H is a k-vertex graph obtained by replacing each
vertex of H by an independent set (of arbitrary size), called a cloud, and connecting the vertices of the ith and jth

clouds by a biclique if and only if {i, j} ∈ F .
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Adaptive testers versus non-adaptive ones. Recall that Theorem 8.25 asserts that canonical
testers (which are, in particular, non-adaptive) have query complexity that is at most quadratic in
the query complexity of general (possibly adaptive) testers. The results surveyed in Section 8.5.3
indicate that a polynomial gap does exist in some cases: In particular, there is a (natural) prop-
erty that can be ǫ-tested by Õ(ǫ−1) adaptive queries, but requires Ω(ǫ−3/2) non-adaptive queries.
We mention that it was conjectured (in [151]) that for every integer t ≥ 2, there exist graph
properties that can be tested by Õ(1/ǫ) adaptive queries and have non-adaptive query complexity
Θ((1/ǫ)2(t−1)/t).63 Here we propose a possibly easier goal:

Open Problem 8.27 (establishing a maximal gap between adaptive and non-adaptive queries):
Show that, for every constant c < 2, there exist graph properties that can be tested by q(ǫ) adaptive
queries but requires Ω(q(ǫ)c) non-adaptive queries, where q(ǫ) = Ω(1/ǫ). For starters, establish this
claim for some c > 3/2.

A different question, raised by Michael Krivelevich, is whether these (adaptive versus non-adaptive
complexity) gaps exist also for properties having query complexity that is significantly larger than
Õ(1/ǫ); that is, does there exists a graph property that, for some c > 1 and q(ǫ) ≥ (1/ǫ)c, has
adaptive query complexity q(ǫ) and non-adaptive query complexity Ω(q(ǫ)c)? A plausible candidate
is Bipartiteness (see Problem 8.9): Recall that ǫ-testing Bipartiteness has non-adaptive query
complexity Θ̃(ǫ−2) [13, 62]64 and requires Ω(ǫ−3/2) adaptive queries [62], but it may be testable in
ǫ−(2−Ω(1)) adaptive queries (cf. [60]).

One-sided versus two-sided error probability. As noted in Section 8.5.2, for many natural
properties there is a significant gap between the complexity of one-sided and two-sided error testers.
For example, ρ-Cut has a two-sided error tester of query complexity poly(1/ǫ), but no one-sided
error tester of query complexity o(k2) where k is the number of vertices in the tested graph. In
general, the interested reader may contrast the characterization of two-sided error testers in [9]
with the results in [19].

Proximity Oblivious Testers. Some of the positive results regarding property testing were
obtained by presenting (one-sided error) proximity oblivious testers (of constant-query complexity
and detection probability that depends only on the distance of the tested graph from the property).
Furthermore, Theorem 8.20 provided a simple characterization of properties having such testers. It
follows that constant-query proximity-oblivious testers do not exist for many easily testable proper-
ties (e.g., Bipartiteness (see Exercise 8.5)). Furthermore, even when proximity-oblivious testers
exist, repeating them does not necessarily yield the best standard testers for the corresponding
property (see, e.g., the case of Clique Collection [152]).

Tolerant testing. Recall that property testing calls for distinguishing objects having a predeter-
mined property from object that are far from any objects that has this property (i.e., are far from
the property). A more “tolerant” notion requires distinguishing objects that are close to having the

63Recall that this is known for t ∈ {2, 3}, and that there are promise problems that satisfy the conjecture. (For
t = 4, only the Ω(ǫ−3/2) lower bound was established.) On the other hand, it may be that the non-adaptive and
adpative complexities can be related only by a power of 2(t− 1)/t for t ∈ N. For starters, one may try to show that
the said power cannot be irrational.

64The eO(ǫ−2) upper bound is due to [13], improving over [140], whereas the Ω(ǫ−2) lower bound is due to [62].
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property from objects that are far from this property. Such a distinguisher is called a tolerant tester,
and is a special case of a distance approximator that given any object is required to approximate its
distance to the property. The general study of these related notions (which are applicable to all
three models discussed in Section 8.1) was initiated by Parnas, Ron, and Rubinfeld [225] (and is
further discussed in Section 12.1).

A simple observation is that any tester that makes uniformly distributed queries offers some
level of tolerance. Specifically, if a tester makes q(ǫ) queries and each query is uniformly distributed,
then this tester distinguishes between objects that are ǫ-far from the property and objects that are
(ǫ/10q(ǫ))-close to the property. Needless to say, the challenge is to provide stronger relations
between property testing and distance approximators. Such a result was provided by Fischer and
Newman [116]: They showed that any graph property that can be tested in a number of queries that
only depends on the proximity parameter, has a distance approximator of query complexity that only
depends on the proximity parameter.65

Directed graphs. Our discussion was confined to undirected graphs. Nevertheless, the three
models discussed in Section 8.1 extend naturally to the case of directed graphs. In particular, in
the dense graph model, a directed graph is represented by its adjacency matrix, which is possibly
asymmetric; that is, the (i, j)th entry in the matrix is 1 if and only if there is a directed edge from
the ith vertex to the jth vertex. The study of testing properties of directed graphs was initiated
by Bender and Ron [40]. In particular, in the dense graph model, they showed a poly(1/ǫ)-query
tester for Acyclicity (i.e., the set of directed graphs that contain no directed cycles). Testing
directed graphs in the dense graph model was further studied in [17], which focuses on testing
subgraph-freeness.

8.6 Chapter notes

It should not come as a surprise that this relatively long chapter has relatively long chapter notes.
Following the usual historical notes and before the usual exercises, we insert a discussion that
relates property testing to other forms of approximation (Section 8.6.2) as well as contrasts it with
the classical notion of recognizing graph properties (Section 8.6.3).

8.6.1 Historical perspective and credits

The study of property testing in the dense graph model was initiated by Goldreich, Goldwasser, and
Ron [140], as a concrete and yet general framework for the study of property testing at large. From
that perspective, it was most natural to represent graphs as Boolean functions, and the adjacency
matrix representation was the obvious choice. This perspective dictated the choice of the type of
queries as well as the distance measure, leading to the definition of the dense graph model.

Testing graph properties in the dense graph model has attracted a lot of attention. Among
the directions explored are the study of the complexity of specific natural properties [140, 13,
62, 162, 114], attempts to explore general classes of easily testable properties [140, 8, 6], and
characterizations of classes of properties that are testable under various restrictions (e.g., [6, 17,
158, 18, 19, 20, 116, 9, 64]). In addition, many studies of property testing at large have devoted

65This result is implied by Theorem 8.23, but it was proved in [116] before the latter theorem was proved in [9].
In fact, the ideas in [116] paved the road to [9].
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special attention to testing graph properties in the dense graph model [144, 152, 156, 153]. Some
of the aforementioned works as well as some that were not listed will be further discussed below.

Before proceeding, we comment on the relation between the dense graph model and the other
two models that were briefly presented in Section 8.1 and will be the topic of the two subsequent
chapters. In retrospect, the dense graph model seems most natural when graphs are viewed as
representing generic (symmetric) binary relations. But, in many other setting, the other two
models are more natural. Needless to say, the general graph model is the most general one, and it
is indeed closest to actual algorithmic applications. In other words, this model is relevant for most
applications, since these seem to refer to general graphs (which model various natural and artificial
objects). In contrast, the dense graph model is relevant to applications that refer to (dense) binary
relations over finite sets, whereas the bounded-degree graph model is relevant only to applications
in which the vertex degree is bounded. The study of testing graph properties in the bounded-degree
graph model was initiated by Goldreich and Ron [147], whereas the study of the general model was
initiated by Parnas and Ron [222] and generalized to its current form by Kaufman, Krivelevich,
and Ron [180].66

Simple properties: trivial, sparse, and degree-regularity. The results presented in Sec-
tions 8.2.2 and 8.2.3 are taken from [140], with the exception of the improved bound stated in
Theorem 8.5. The latter improvement (over [140, Prop. 10.2.1.3]) appeared in [133, Apdx A.1], but
the proof of Claim 8.5.1 is reproduced from [156, Apdx A.1].

The strategy underlying Algorithm 8.5.2 can be traced to the last paragraph of Levin’s work
on one-way functions and pseudorandom generators [199, Sec. 9], and is stated explicitly in [145,
Lem. 3] (see [128, Clm. 2.5.4.1] for an alternative presentation). Within the context of property
testing, this strategy was first used in [147] (see Lemma 3.3 in the proceeding version and Lemma 3.6
in the journal version).

Testing general partition problems. The framework of general graph partition problems was
introduced by Goldreich, Goldwasser, and Ron [140], and the testers for all properties in it (as
summarized by Theorem 8.12) constitute the main results in their paper. We chose to present only
the analysis of the Bipartiteness tester (i.e., Lemma 8.8, which is taken from [140]). The improved
testers for t-Colorability (captured by Theorem 8.13) are due to Alon and Krivelevich [13].

Using Szemeŕedi’s Regularity Lemma. In retrospect, it turns out that testers for k-Colorability
were implicit in the works of Bollobas et al. [63] and Rodl and Duke [240], referring to k = 2 and
k > 2, respectively. These works, which predate the definition of property testing, use the regular-
ity lemma, and obtain testers of correspondingly huge query complexity (i.e., a tower of poly(1/ǫ)
exponents). Testers for subgraph freeness, which are also based on the regularity lemma, were
presented by Alon et al. [8]; the corresponding result is stated in Part 1 of Theorem 8.18. Several
subsequent works also used the regularity lemma (or new extensions of it), culminating with the
work of Alon et al. [9], to be reviewed next. A notable exception is provided by Fox’s work [119],
which asserts that H-freeness has a POT of detection probability ̺H(δ) = Ω(1/T(O(log(1/δ)))
(rather than ̺H(δ) = Ω(1/T(poly(1/δ)), where T is the tower-of-exponents function).

66Parnas and Ron [222] only allowed incidence queries (like in the bounded-degree graph model), and Kaufman,
Krivelevich, and Ron [180] also allowed adjacency queries (as in the dense graph model).
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Characterizations. The celebrated result of Alon, Fischer, Newman, and Shapira [9] provides a
combinatorial characterization of the class of properties that can be tested within query complexity
that only depends on the proximity parameter (see Theorem 8.23). We view this result more
as a structural result regarding properties that can be tested within such a complexity (than
as a characterization). It asserts that these properties can be approximated by finite unions of
“regularity properties” (where each regular property is a set of graphs that has a regular partition
with certain edge densities).67 A result of a similar flavour was proved independently by Borgs
et al. [64], while referring to “graph limits”.

The characterization of graph properties that have constant-query (one-sided error) proximity
oblivious testers (i.e., Theorem 8.20) is due to Goldreich and Ron [152], which build on [20] for
constructing testers and on [158] for inferring that such testers exist only for induced subgraph
freeness properties.

Recall that the testers asserted in aforementioned characterizations (as well as all testers ob-
tained by using the regularity lemma) have a prohibiting large query complexity. Furthermore,
the class of graph properties that can be tested within query complexity that only depends on
the proximity parameter ǫ, contains natural properties that are not testable in query complexity
poly(1/ǫ); see [6]. (Providing better bounds on the query complexity of testing such properties is
reflected in Problem 8.17, whereas characterizing the class of graph properties that are testable in
poly(1/ǫ) queries is posed as Problem 8.26.)

Canonical testers and the power of adaptivity. The notion of canonical testers and The-
orem 8.25 are due to Goldreich and Trevisan [158]. Theorem 8.25 explains that the fact that
almost all prior testers, in the dense graph model, work by inspecting a random induced subgraph
is no coincidence, since the query complexity of such testers is at most quadratic in the query
complexity of the best possible testers. Complexity gaps between canonical testers and general
non-adaptive testers, and between the latter and general adaptive testers were shown by Goldre-
ich and Ron [151]. While the demonstrated gap for the first case it optimal (i.e., it matches the
quadratic upper bound), the gap shown in the second case is not optimal (see Problem 8.27).

8.6.2 Testing versus other forms of approximation

We shortly discuss the relation of the notion of approximation underlying the definition of testing
graph properties (in the dense graph model) to more traditional notions of approximation. (Anal-
ogous relations hold also in the other two models of testing graph properties, and also outside the
domain of graph properties.) Throughout this section, we refer to randomized algorithms that have
a small error probability, which we ignore for simplicity.

Application to the standard notion of approximation. The relation of testing graph prop-
erties to standard notions of approximation is best illustrated in the case of Max-CUT. Any tester
for ρ-Cut, working in time T (ǫ, k), yields an algorithm for approximating the size of the maximum
cut in a k-vertex graph, up to additive error ǫk2, in time Õ(log(1/ǫ)) · T (ǫ, k).68 Thus, for any

67These are regular partitions in the sense of Szemeredi’s Regularity Lemma [258], and the specified edge densities
may be different for each regular pair.

68Note that if a graph G is ǫ-close to having a ρ-cut, then it must have a cut of size at least (ρ− 0.5ǫ) · k2. (This
is since G is ǫ-close to a graph G′ that has a ρ-cut, and this very cut only misses ǫk2/2 edges in G.) Hence, if the

tester accepts G with probability at least 2/3, then G must have a (ρ− 0.5ǫ)-cut. The eO(log(1/ǫ) factor accounts for
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constant ǫ > 0, using the tester of Theorem 8.12, we can approximate the size of the max-cut to
within ǫk2 in constant time. This yields a constant-time approximation scheme (i.e., to within any
constant relative error) for dense graphs. Finding an approximate max-cut does not seem to follow
from the mere existence of a tester for ρ-cut; yet, the tester of Theorem 8.12 can be used to find
such a cut in time that is linear in k (see discussion following that theorem).

Relation to “dual approximation” (cf. [172, Chap. 3]). To illustrate this relation, we
consider the tester for ρ-Clique. The traditional notion of approximating Max-Clique corresponds
to distinguishing the case in which the given k-vertex graph has a clique of size ρk from, say, the
case in which the graph has no clique of size ρk/2. On the other hand, when we talk of testing
ρ-Clique, the task is to distinguish the case in which a k-vertex graph has a clique of size ρk from
the case in which it is ǫ-far from the class of k-vertex graphs having a clique of size ρk. This is
equivalent to the “dual approximation” task of distinguishing the case in which a k-vertex graph
has a clique of size ρk from the case in which any ρk-subset of the vertices misses at least ǫk2 edges.
To demonstrate that these two tasks are vastly different, we mention that whereas the former task
is NP-Hard for any constant ρ ∈ (0, 1/4) (see [37, 170]), the latter task can be solved in constant
time, for any constant ρ, ǫ > 0. We believe that there is no absolute sense in which one of these
approximation tasks is more important than the other: Each of these tasks may be relevant in some
applications and irrelevant in others.

8.6.3 A contrast with recognizing graph properties

The notion of testing a graph property Π is a relaxation of the classical notion of recognizing the
graph property Π, which has received much attention since the early 1970’s (cf. [200]). In the
classical (recognition) problem there are no margins of error; that is, one is required to accept
all graphs having property Π and reject all graphs that lack property Π. In 1975, Rivest and
Vuillemin resolved the Aanderaa–Rosenberg Conjecture, showing that any deterministic procedure
for deciding any non-trivial monotone k-vertex graph property must examine Ω(k2) entries in the
adjacency matrix representing the graph. The query complexity of randomized decision procedures
was conjectured by Yao to be Ω(k2), and the currently best lower bound is Ω(k4/3).

This stands in striking contrast to the aforementioned results regarding testing graph properties
that establish that many natural (non-trivial) monotone graph properties can be tested by exam-
ining a constant number of locations in the matrix (where this constant depends on the constant
value of the proximity parameter).

8.6.4 Exercises

The following exercises seem more interesting than most exercises in prior chapters. The topics
covered include testing degree regularity (Exercises 8.1 and 8.2), Levin’s economical work invest-
ment strategy (Exercises 8.3 and 8.4), testing Bipartiteness (Exercises 8.5–8.7), the Regularity
Lemma (Exercises 8.8–8.14), and super-canonical testers (Exercise 8.15).

Exercise 8.1 (query complexity lower bound for testing degree regularity): Prove that ǫ-testing
degree regularity requires Ω(1/ǫ2) queries.

a binary search (for the highest value of ρ ∈ {ǫ, 2ǫ, ..., ⌊1/ǫ⌋ · ǫ} for which G has a ρ-cut) as well as for error reduction
needed for invoking the tester log(1/ǫ) times.
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Guideline: Show that distinguishing the following two sets of graphs requires Ω(1/ǫ2) queries. The
first set consists of k-vertex graphs that consist of two equal-sized connected components such that
each component is 0.25k-regular. The second set is similar except that one connected components
is (0.25+ ǫ) ·k-regular and the other is (0.25− ǫ) ·k-regular. Reduce from the problem of estimating
the average of a Boolean function defined on a large set (see [66]). Specifically, first reduce the
problem of distinguishing functions f : [k] → {0, 1} that have average value 0.5 from functions
f : [k]→ {0, 1} that have average value 0.5 + ǫ to the problem of distinguishing pairs of functions
f1, f2 : [k] → {0, 1} that have equal average value (of 0.5) from pairs of functions that have an
average that differs by at least 2ǫ.69 Next, reduce the latter problem to the one about graphs.70

Exercise 8.2 (testing d-regularity): For any fixed ρ > 0, prove that ǫ-testing if a k-vertex graph
is ⌊ρk⌋-regular can be done by O(1/ǫ2) non-adaptive queries.

Guideline: Use an adaptation of the proof of Theorem 8.5.

Exercise 8.3 (On Levin’s economical work investment strategy): In continuation to Section 8.2.4,
establish the following claims for any c ≥ 1:

1. If the work invested in element ω is Õ(1/q(ω)c), then the goal (as defined in Section 8.2.4)
can be achieved by investing Õ(1/ǫc) work.

2. The treatement in Section 8.2.4 (as well as the foregoing claim) hold also when the said
investment of work in ω only yield the desired outcome with high constant probability.

Guideline: For Claim 1, suppose that the work invested in ω is ((log(1/q(ω))d/q(ω)c). Then, selecting
O(i2 · 2i) points (for each i ∈ [ℓ]), and investing O(ℓd)/(2iǫ)c work in each of them, will do. For
Claim 2, for each i ∈ [ℓ] and each selected point, we repeat our attempt for O(i) times so that to
guaranteed that (with probability at least 2−i−O(1)) the information provided in iteration i is not
misleading.

Exercise 8.4 (On Levin’s economical work investment strategy, a logarithmic improvement for
the case of c = 1):71 In continuation to Section 8.2.4, show that if the work invested in ω is
O(1/q(ω)), then the goal can be achieved by investing O(ǫ−1 log(1/ǫ)) work.

Guideline: Letting Si = {ω ∈ Ω : q(ω) ∈ (2−i, 2−(i−1)]} and ℓ = ⌈log2(2/ǫ)⌉, prove that
∑

i∈[ℓ]
|Si|
2i ≥

ǫ
4 · |Ω| (by using

∑
i>ℓ
|Si|
2i ≤ 2−(ℓ+1) · |Ω| and

∑
i>0 |Si| · 2−(i−1) ≥ ∑

ω∈Ω q(ω)). Observe that
selecting mi = 8ǫ−1/2i points, for each i ∈ [ℓ], and investing work 2i work in each of them, yields
success probability of at least

1−
∏

i∈[ℓ]
Prω∈Ω[ω 6∈ Si]

mi ≥ 1−
∏

i∈[ℓ]

(
1− |Si|
|Ω|

)mi

≥ 1− e
−P

i∈[ℓ]
|Si|·8ǫ−1/2i

|Ω|

69For example, map f to the pair (f, f ⊕ 1).
70For each σ ∈ {1, 2}, consider the 2k-vertex bipartite graph Gσ described by adjacency predicate gσ : [2k]2 → {0, 1}

such that for every i, j ∈ [k] it holds that gσ(i, k+ j) = gσ(k+ i, j) = fσ((i+ j mod k)+1) and gσ(i, j) = gσ(k+ i, k+
j) = 0. Note that each vertex in Gσ has degree

P

i∈[k] fσ(i). Finally, consider the graph consisting of G1 and G2

(i.e., the graph represented by the adjacency predicate g : [4k]2 → {0, 1} such that for every i, j ∈ [2k] and σ ∈ {1, 2}
it holds that g((σ − 1) · 2k + i, (σ − 1) · 2k + j) = gσ(i, j) and gσ(i, 2k + j) = g(2k + i, j) = 0).

71Based on [50, Sec. 2.2]. Note that the bound on the total work in Section 8.2.4 can be easily improved to
O(ǫ−1 log2(1/ǫ)) by selecting O(ℓ · 2i) (rather than O(i2 · 2i)) points (for each i ∈ [ℓ]).
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which is at least 1− exp(−8ǫ−1 · ǫ/4) > 5/6.

Exercise 8.5 (Bipartiteness has no proximity oblivious tester):72 Prove that Bipartiteness

has no proximity oblivious tester that makes a constant number of queries.

Guideline: See (Part 2 of) Exercise 1.10.

Exercise 8.6 (testers for Bipartiteness must inspect Ω(1/ǫ) vertices):73 Bipartiteness can
not be ǫ-tested by an algorithm whose queries touch o(1/ǫ) vertices. (Equivalently, if an ǫ-tester for
Bipartiteness inspects the subgraph induced by s(ǫ) vertices, then s(ǫ) = Ω(1/ǫ).)

Guideline: Consider the following two distributions on k-vertex graphs. In both distributions, one
selects uniformly a 3-partition (V0, V1, V2) such that |V0| = 3ǫk and |V1| = |V2| = (1−3ǫ)k/2. In the
first distribution, each pair of parts is connected by a biclique, whereas in the second distribution
only V1 and V2 are connected (by a biclique). Then, each graph in the first distribution is ǫ-far from
being bipartite (because there are 3ǫk · ((1 − 3ǫ)k/2)2 triangles, whereas each edge participates in
less than k/2 triangles). Yet, an algorithm that “inspects” o(1/ǫ) vertices is unlikely to distinguish
the two distributions (since it is unlikely to inspect any vertex of V0).

Exercise 8.7 (a random induced subgraph preserves the distance of a graph from being bipartite):
Prove that if G = ([k], E) is ǫ-far from being bipartite, then, with probability at least 2/3, the
subgraph induced by a random set of Õ(1/ǫ2) vertices of G is Ω(ǫ)-far from being bipartite.

Guideline: Following the proof of Lemma 8.8, show that, for every partition (U1, U2) of U , the set S
approximates the number of disturbing edges. That is, while the current proof only shows that S
hits some disturbing edges, one can actually show that the subgraph induced by S contains Ω(ǫ·|S|2)
disturbing edges. Specifically, consider a partition of

(
S
2

)
into |S| − 1 disjoint perfect matchings,

and show that (with high probability) each perfect matching contains Ω(ǫ · |S|) disturbing edges.

Exercise 8.8 (some pseudorandom features of regular pairs): Let (A,B) be a γ-regular pair of
edge density ρ, and let ΓB(v) = {u ∈ B : {u, v}} denote the neighbors of vertex v ∈ A in the set B.
Prove the following claims.

1. At least a 1− 2γ fraction of the vertices v ∈ A satisfy (ρ− γ) · |B| ≤ |ΓB(v)| ≤ (ρ + γ) · |B|.

2. If ρ ≥ 2γ, then at least a (1−2γ)2 fraction of the vertex pairs v1, v2 ∈ A satisfy (ρ2−2γ)·|B| ≤
|ΓB(v1) ∩ ΓB(v2)| ≤ (ρ2 + 2γ) · |B|.

Guideline: For Item 1, consider the set of vertices v that violate the degree bound, and focus on the
majority that violate the bound in the same direction (i.e., let A′ be the latter set and B′ = B,
and consider d(A′, B′)). For Item 2, fix any vertex v1 that satisfies Item 1 and consider the set
B′ = ΓB(v1) along with the set of vertices v2 such that (v1, v2) violate the bound.

Exercise 8.9 (regular pairs in a random graph): Let A and B be disjoint sets of size N . Prove
that a random bipartite graph between A and B is γ-regular with probability at least 1− exp(−γ4 ·
N2 + 2N).

72Based on a result in [152].
73Based on a result in [13].
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Guideline: Fixing any A′ ⊆ A and B′ ⊆ B, the probability that |d(A′, B′) − d(A,B)| > γ is
exponentially vanishing in γ2 · |A′| · |B′|.

Exercise 8.10 (on the proof of the Regularity Lemma): In continuation to Footnote 37, consider
the potential function that assigns the partition (V1, ..., Vt), of [k], the value k−2 ·∑i<j f(Vi, Vj),

where f(A,B) = |A| · |B| · d(A,B)2.

1. Prove that this function does not decrease under a refinement of the partition.

2. Prove that if (Vi, Vj) is not γ-regular, then Vi and Vj can be 2-partitioned, into (Vi,1, Vi,2) and
(Vj,1, Vj,2), respectively, such that

∑
σ,τ∈{1,2} f(Vi,σ, Vi,τ ) ≥ f(Vi, Vj) + γ4 · |Vi| · |Vj|.

(In each iteration of the proof, if the current partition violates the regularity condition, then Part 2 is
applied to each of the non-regular pairs, which means that the number of parts grows exponentially
in each iteration.)

Guideline: For Part 1, consider an arbitrary 2-partition of Vi, denoted (V ′i , V ′′i ), and show that
f(V ′i , Vj) + f(V ′′i , Vj) ≥ f(Vi, Vj). Specifically, consider a random variable Z that is assigned
d(V ′i , Vj) with probability |V ′i |/|Vi| and d(V ′′i , Vj) otherwise; observe that E[Z] = d(Vi, Vj) =√

f(Vi,Vj)
|Vi|·|Vj| whereas E[Z2] =

f(V ′i ,Vj)+f(V ′′i ,Vj)
|Vi|·|Vj | ; and conclude by using E[Z]2 ≤ E[Z2]. For Part 2,

use the subsets V ′i ⊂ Vi and V ′j ⊂ Vj that witness the violation of the regularity condition (i.e.,
satisfy |d(V ′i , V ′j )−d(Vi, Vj)| > γ), and consider an analogous random variable Z (which selects one

of the four relevant pairs).74

Exercise 8.11 (an obvious lower bound on #H(ǫ, k)): Let H and #H(ǫ, k) be as in Problem 8.17.
Show that #H(ǫ, k) ≥ ǫ ·

(k
2

)
/(t− 1).

Guideline: Let G be ǫ-far from H-free, and suppose towards the contradiction that G has less than
ǫ ·
(k
2

)
/(t− 1) copies of H. The, using the hypothesis that H is connected, contradiction is reached

by picking a single vertex in each copy of H and omitting all edges of this copy that are incident
at this vertex.

Exercise 8.12 (the number of copies of Kt1,t2 in a dense graph):75 Prove that if a k-vertex graph
has at least ǫk2 edges, then it contains at least Ω((2ǫ)t1t2) · kt1+t2 copies of Kt1,t2 (i.e., the biclique
with t1 vertices on one side and t2 vertices on the other side).

Guideline: Let G = ([k], E) have degree sequence d1, ..., dk . Then, Prv,u1,...,ut∈[k][(∀i∈ [t]) {v, ui}∈E]

equals 1
k ·
∑

v∈[k](dv/k)t ≥ ( 1
k ·
∑

v∈[k] dv/k)t = (2|E|/k2)t. Define an auxilary bipartite graph in
which the t-subset U is connected to v 6∈ U if for every u ∈ U it holds that {v, u} ∈ E. Then, the

average degree of t-subsets is at least p
def
= (2|E|/k2)t −

(
t+1
2

)
/k, where the second term accounts

for Prv,u1,...,ut∈[k][|{v, u1, ...., ut}| < t+1]. Show that the probability that a random U is connected

to t′ random vi’s is at least pt′ .

Exercise 8.13 (testing H-freeness when H is bipartite): Let H be a fixed subgraph of Kt1,t2 .

74See, for example, [22, Sec. 9.4].
75Based on a result in [6].
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1. Using Exercise 8.12, present a t1t2-query one-sided error POT of detection probability ̺(δ) =
Ω(δt1t2) for H-freeness.

2. Using Exercise 8.12, present a two-sided error ǫ-tester of query complexity O(1/ǫ) for H-
freeness.

3. Prove that any one-sided error ǫ-tester for H-freeness must have query complexity Ω((1/ǫ)d/2),
where d is the average degree of H.

4. Advanced: Present a one-sided error ǫ-tester of query complexity O((1/ǫ)2t1t2/(t1+t2)) for H-
freeness.

Guideline: For Part 3, consider a random graph of edge density 2ǫ, and lower-bound the number of
vertices, denoted s, that must be inspected by a one-sided error canonical tester (cf. Theorem 8.25).
Specifically, note that the probability that the subgraph induced by s vertices contains a copy of
H is upper-bounded by st1+t2 · (2ǫ)m, where m denotes the number of edges in H. Recall that a
one-sided error tester for H-freeness may reject a graph only when seeing a copy of H in it. (Note
that this also implies that any constant-query POT (of one-sided error) for H-freeness has detection
probability ̺(δ) = O(δm).)

Turning to Part 4, for any graph G that is ǫ-far from being H-free, using Exercise 8.12, lower-
bound the expected number of copies of H that appear in a subgraph of G that is induced by s
random vertices. Note that you should show that such an induced subgraph contains a copy of H
with high probablity. This can be proved using the fact that the various (t1 + t2)-subsets of [s]
correspond to random variables that are almost pairwise independent (cf. proof of Claim 9.21.3).

Exercise 8.14 (subsets of regular pairs): Let (A,B) be a γ-regular pair, and A′ ⊆ A and B′ ⊆ B.
Prove that (A′, B′) is a t · γ-regular pair for t = max(2, |A|/|A′|, |B|/|B′|).

Guideline: Note that the regularity parameter accounts both for the density of the subsets and for
the deviation in the edge density.

Exercise 8.15 (super-canonical testers): Let Π be any graph property. We say that a tester for
Π is super canonical if it selects at random a set of vertices and accepts if and only if the induced
subgraph has property Π′, where Π′ is a graph property that depends only on Π. (That is, unlike
in Theorem 8.25, the property Π′ does not depend on the number of vertices in the tested graph.)
Suppose that there exist a function F : (0, 1] → N, a graph property Ψ, and a constant c > 0 such
that for every ǫ > 0 and any graph G the following holds:

1. If G ∈ Π, then, with probability at least 0.9, the subgraph of G induced by a random set of
F (ǫ) vertices is in Ψ.

2. If G is ǫ-far from Π, then, with probability at least 0.9, the subgraph of G induced by a random
set of F (ǫ) vertices is (c · ǫ)-far from Ψ.

(Indeed, Ψ = Π is a natural special case.) Assuming that q : (0, 1] → N is monotonically non-
increasing, show that if Ψ has a tester of query complexity q(ǫ) = o(

√
F (ǫ/c)), then Π has a

super-canonical tester that inspects O(q(c · ǫ)) vertices. Furthermore, if Ψ = Π is closed under
taking induced subgraphs, and if the original tester has one-sided error, then so does the new tester,
and a sample of 2q vertices suffices.
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Guideline: The key observation is that selecting a random set of F (ǫ) vertices, denoted R, and
then selecting a random O(q(cǫ))-subset of R yields a distribution that is very close to the uniform
distribution over all O(q(cǫ))-vertex sets, since q(cǫ)2 = o(F (ǫ)). The super-canonical tester applies
the canonical tester guaranteed by Theorem 8.25, while using the auxiliary property Π′ that depends
on Ψ and F (ǫ). The crucial point is that Π′ depends on F (ǫ), but not on the number of vertices in
the tested graph, whereas k′ = O(q(cǫ)) effectively determines ǫ (as well as F (ǫ)).76

Exercise 8.16 (graph properties are not random self-reducible): Show that, except for a few trivial
cases, graph properties of k-vertex graphs in the adjacency predicate representation are not random
self-reducible by o(k) queries.77 The exceptional cases are the four subsets of {Kk, Ik}, where Kk

is the k-vertex clique and Ik is the empty k-vertex graph.

Guideline: Use Exercise 5.4, while showing that all other graph properties of k-vertex graphs have
relative distance O(1/k). Specifically, show that if G = ([k], E) is neither the v-vertex clique
nor the empty graph, then there exist u, v ∈ [k] such that ΓG(u) \ {v} 6= ΓG(v) \ {u}, where
ΓG(x) = {w : {x,w}}.78 Observe that in this case there exists an isomorphic copy of G, denoted
G′ = ([k], E′), such that E′ 6= E and the symmetric difference between E′ and E has size at most k.

76The point is that the canonical tester rules according to the membership of the induced k′-vertex subgraph in
Π′, whereas k′ determines the minimial ǫ such that O(q(cǫ)) = k′.

77See Definition 5.9.
78If there exists w such that |ΓG(w)| ∈ [k − 2], then pick u ∈ ΓG(w) and v ∈ [k] \ (ΓG(w) ∪ {w}).
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Chapter 9

Testing Graph Properties in the
Bounded-Degree Graph Model

Summary: This chapter is devoted to testing graph properties in the bounded-degree
graph model, where graphs are represented by their incidence lists (lumped together in
an incidence function). The highlights of this chapter include:

1. Presenting upper and lower bounds on the complexity of testing Bipartitness;
specifically, we present a poly(1/ǫ) · Õ(

√
k)-time tester, and an Ω

√
k) lower bound

on the query complexity of any tester for Bipartitness.

2. Presenting a quasi-poly(1/ǫ)-time tester for Planarity. The result extends to
testing any minor-closed property (i.e., a graph property that is preserved under
the omission of edges and vertices and under edge contraction).

We concluded this chapter with a taxonomy of known testers, organized according to
their query complexity.

The current chapter is based on many sources; see Section 9.7.1 for details.

Organization. Following a general introduction to the bounded-degree graph model (Section 9.1),
we study the problem of testing various graph properties in this model. The presentation of the
various testers is organized by the algorithmic techniques that they utilize. These include local
searches (see Section 9.2), random walks (see Section 9.4), and the implementation and utiliza-
tion of partition oracles (see Section 9.5). In addition, the current chapter includes a section on
(query complexity) lower bounds (Section 9.3), which justifies the fact that the testers presented
in Section 9.4 have significantly higher complexity than those presented in Section 9.2.

Preliminaries. We assume that the reader is familiar with basic graph algorithmic techniques
such as BFS and DFS (see, e.g., [104]). This will be important especially in Section 9.2.
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Teaching note: Much of this chapter (e.g., Sections 9.6 and 9.7) is intended for optional independent

reading. We recommend to base the actual teaching on Section 9.1 and a selection from Sections 9.2–9.4. A

very minimalistic choice includes Sections 9.2.3, 9.3.1 and 9.4.1. If time permits, we would also recommend

including Section 9.2.4 (with a focus on Algorithm 9.10 and its analysis). Another recommendation consists

of Sections 9.2.5 and 9.4.2 (along with Theorem 9.17 (which appears in Section 9.3.2)). We do share the

temptation to cover also Section 9.5 in class, but think that teaching the material presented in prior

sections should get higher priority.

9.1 The Bounded-Degree Model: Definitions and issues

The study of property testing in the bounded-degree graph model is aimed at allowing the con-
sideration of sparse graphs, which appear in numerous applications. The point is that the dense
graph model, studied in the previous chapter, seems irrelevant to sparse graphs, both because the
distance measure that underlies it deems all sparse graphs as close to one another, and because
adjacency queries seems unsuitable for sparse graphs. Sticking to the paradigm of representing
graphs as functions, where both the distance measure and the type of queries are determined by
the representation, the following representation seemed the most natural choice. (Indeed, a con-
scious decision is made here not to capture, at this point (and in this model), sparse graphs that
do not have constant (or low) maximum degree.)

The bounded-degree graph model refers to a fixed degree bound, denoted d ≥ 2. An k-vertex
graph G = ([k], E), of maximum degree d, is represented in this model by a function g : [k]× [d]→
{0, 1, ..., k} such that g(v, i) = u ∈ [k] if u is the ith neighbor of v and g(v, i) = 0 if v has less
than i neighbors. Hence, it is also adequate to refer to this model as the incidence function model.
For simplicity, we assume here that the neighbors of vertex v appear in an arbitrary order in the

sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) 6= 0}| is the degree of v. Also, we shall

always assume that if g(v, i) = u ∈ [k], then there exists j ∈ [d] such that g(u, j) = v.

Distance between graphs is measured in terms of their aforementioned representation (i.e., as
the fraction of (the number of) different array entries (over n = d · k)), but occasionally we shall
use the equivalent and more intuitive notion of the fraction of (the number of) edges over dk/2.

Recall that we are interested in graph properties, which are sets of graphs that are closed under
isomorphism; that is, Π is a graph property if for every graph G=([k], E) and every permutation π

of [k] it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G)
def
= ([k], {{π(u), π(v)} : {u, v} ∈ E}).

We now spell out the meaning of property testing in this model.

Definition 9.1 (testing graph properties in the bounded-degree graph model):1 For a fixed d, a
tester for a graph property Π is a probabilistic oracle machine that, on input parameters k and ǫ,
and access to (the incidence function of) an k-vertex graph G = ([k], E) of maximum degree d,
outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ǫ-far from Π, then the tester accepts with probability at most 1/3, where G is ǫ-
far from Π if for every k-vertex graph G′ = ([k], E′) ∈ Π of maximum degree d it holds

1As in the dense graph model, we provide the tester with the number of vertices, denoted k, rather than with the
size of the representation, denoted n = d · k. The definition of a tester can be made even more uniform by providing
the degree bound, denoted d, as an auxiliary parameter.
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that the symmetric difference between E and E′ has cardinality that is greater than ǫ · dk/2.
(Equivalently, we may say that G is ǫ-far from G′ if for every g : [k] × [d] → {0, 1, ..., k}
and g′ : [k] × [d] → {0, 1, ..., k} that represent G and G′, respectively, it holds that |{(v, i) :
g(v, i) 6= g′(v, i)}| > ǫ · dk.)

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error. A tester is called non-adaptive if it determines all its
queries based solely on its internal coin tosses (and the parameters k and ǫ); otherwise, it is called
adaptive.

The query complexity of a tester is the number of queries it makes to any k-vertex graph, as a
function of the parameters k and ǫ.2 We say that a tester is efficient if it runs in time that is linear
in its query complexity, where basic operations on elements of [k] (and in particular, uniformly
selecting an element in [k]) are counted at unit cost. Unless explicitly stated otherwise, the testers
presented in this chapter are efficient.

On the degree bound d. As stated in Footnote 1, the degree bound, denoted d, may be viewed
as an auxiliary parameter, and complexity bounds may be stated as a function of it too. Note that
this parameter has two opposite effects. On the one hand, if our algorithm explores all neighbors
of a given vertex, then its complexities increase linearly with d. On the other hand, (relative)
distances are normalized by dk, which means that they decrease linearly with d, which in turn
relaxes the requirements from a tester.

Degree queries. The model can be augmented by allowing also degree queries (i.e., query v ∈ [k]
is answered with the degree of v in the tested graph). Degree queries can be emulated by ⌈log(d + 1)⌉
incidence queries, by performing a binary search (see Exercise 9.1).

Variants (which may be skipped). Recall that we are using the convention by which the neighbors
of v appear in an arbitrary order in the sequence g(v, 1), ..., g(v,deg(v)), where deg(v) denotes the
degree of v. In contrast to this convention, one may consider the following three variants on the
model.

1. Sorted incidence functions: In this case for each v ∈ [k], the sequence g(v, 1), ..., g(v,deg(v)) is
sorted; that is, for every i ∈ [deg(v)− 1], it holds that g(v, i) < g(v, i + 1).

This variant decreases the complexity of the task of finding whether two vertices are adjacent
(by conducting a binary search on the incidence list of one vertex). Unfortunately, the two
definitions of distance given in Definition 9.1 are no longer equivalent (since the Hamming
distance between d-long sequences is not preserved when the sequences are sorted).3

2. Unaligned incidence functions: In this case it is no longer guaranteed that the deg(v) neighbors
of v appear in the deg(v)-long prefix of the sequence g(v, 1), ..., g(v, d).

This variant increases the complexity of tasks such as finding a neighbor of a given vertex or
determining the degree of a given vertex.

2As in Footnote 1, we deviated from the convention of presenting the query complexity as a function of n = dk
and ǫ.

3Consider the sequences (3, 5, 7, 11) and (13, 5, 7, 11).
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3. Incidence-set functions: Here we represent the (degree d) graph G = ([k], E), by g : [k] →
∪d

i=0

([k]
i

)
such that g(v) is the set of neighbors of vertex v.

This variant decreases the complexity of tasks such as finding all neighbors of a given ver-
tex (and less so w.r.t determining the degree of a given vertex). On the other hand, the
two definitions of distance given in Definition 9.1 are no longer equivalent (since under this
representation modifying the neighbor set costs one unit regardless of how much the set is
modified).

We mention that none of the above variants is popular, and the first two variants seem a bit
unnatural. Nevertheless, one may imagine applications in which these variants are adequate. In
any case, it is legitimate to use these variants to fasciate the exposition, while recalling the cost of
translation to the main model.4

The role of adaptivity. We mention that the ability to make adaptive queries is very important
in the bounded-degree graph model; in particular, adaptive queries are far more important in the
bounded-degree graph model than in the dense graph model: Recall that in the dense graph
model, adaptive queries could be replaced by non-adaptive queries at a moderate cost of squaring
the number of queries. In contrast, in the bounded-degree graph model, there is a huge gap
between the adaptive and non-adaptive query complexities of testing many natural graph properties.
Specifically, as shown in Section 9.2, properties such as subgraph freeness, connectivity, and cycle-
freeness can all be tested by using poly(d/ǫ) adaptive queries, but (as shown next) each of these
testing tasks requires Ω(

√
k) non-adaptive queries.

This lower bound follows as a special case of a result that asserts that testing any property
that “is not determined by the vertex degree distribution” requires such complexity. We say that
a property Π is not determined by the vertex degree distribution if there exists ǫ > 0 such that for
infinitely many k ∈ N there exists (d1, ..., dk) ∈ {0, 1, ..., d}k and two k-vertex graphs, one in Π
and the other ǫ-far from Π, such that the degree of the ith vertex in each of these k-vertex graphs
equals di. (If this is not the case, then we say that the property is determined by the vertex degree
distribution.)5

Theorem 9.2 (limitation of non-adaptive queries (in the bounded-degree graph model)): For any
function q′ : (0, 1] → N, if a graph property Π can be tested in q(k, ǫ) = o(

√
k · q′(ǫ)) non-adaptive

queries, then Π is determined by the vertex degree distribution.

This result is quite tight, since triangle-freeness can be tested by O(
√

d2k/ǫ) non-adaptive queries
(see Exercise 9.2).

Proof Sketch: Fix an ǫ > 0 such that there exist an infinite sequence of pairs of graphs (G1, G0)
that have the same number of vertices (denoted k) and the same degree sequence, although G1 ∈ Π
and G0 is ǫ-far from Π. We shall show that an algorithm of query complexity o(

√
k) cannot

distinguish random isomorphic copies of these two k-vertex graphs.

4The unaligned version arises naturally in the proof of Theorem 9.28. At some point we considered using the
incidence-set variant in the proof of Theorem 9.2, but eventually ended-up not doing so. We mention that the
incidence-set variant is used in [143].

5In that case, for every ǫ > 0 and all but finitely many k ∈ N, if two graphs have the same vertex degree distribution
and one is in Π, then the other is ǫ-close to Π.
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We call a pair of queries (u, i) and (v, j) bad (for a graph) if either v or the jth neighbor of
v is the answer to the query (u, i) (i.e., if the answer to the query (u, i) either equals v or equals
the answer to (v, j), assuming that the latter is not 0). The key observation is that if we take
a random isomorphic copy of any of the two graphs, then the probability that q non-adaptive
queries contain a bad pair of queries is at most 4 ·

(
q
2

)
/(k − 1) < 2q2/k, since the probability that

a specific pair of queries is bad is at most 4/(k − 1). (To verify the latter claim, observe that these
two queries (i.e., (u, i) and (v, j)) can be viewed as answered by a process that selects at random
(without repetitions) two degrees deg(u) and deg(v) in the multi-set {d1, ..., dk}, and answers the
query (u, i) (resp., (v, j)) with a random w ∈ [k] \ {u} (resp., w′ ∈ [k] \ {v}) if i ≤ deg(u) (resp.,
j ≤ deg(v)) and by 0 otherwise.) Note that, conditioned on having no bad pair of queries, the
distribution of answers in the (two random isomorphic copies of the) two graphs is identical. (The
answers obtained under this conditioning are distributed identically to those obtained by a process
that first assigns random degrees (without repetitions) to all vertices, and then answers each query
(v, i) such that i ≤ deg(v) with a different random vertex in [k] \ {v}.)6 Hence, the distinguishing
gap (w.r.t these random copies) of a non-adaptive algorithm that makes q queries is smaller than
2q2/k, and the theorem follows.

Non-adaptivity versus label-obliviousness. We note that a non-adaptive algorithm of o(
√

k)
complexity cannot perform a local search on a k-vertex graph, since it can not find a neighbor of
a neighbor of a given vertex. We wish to stress that a BFS from a given vertex to a given distance
cannot be performed by a non-adaptive algorithm, although such a search is oblivious of the vertex
labels. That is, obliviousness of the labels of vertices is fundamentally different from non-adaptivity;
for example, the jth neighbor of the ith neighbor of v is a label-oblivious formulation, although it
refers to the adaptive query (g(v, i), j). Indeed, all “normal” graph algorithms as well as testers
of graph properties are oblivious of vertex labels, and in a sense this feature makes them “graph
algorithms” (i.e., their operation is invariant under any relabeling of the graph’s vertices).

On the difference in complexities between the two graph testing models. Another issue
to notice is the difference between the query complexity of testing graph properties in the bounded-
degree graph model as compared to the complexity of testing the same properties in the dense graph
model. A few examples follows:

• Whereas Bipartiteness has a poly(1/ǫ)-time tester in the dense graph model, it has no
o(
√

k)-query tester in the bounded-degree graph model. Furthermore, for t ≥ 3, the dense
graph model has a poly(1/ǫ)-query tester for t-Colorability, but this property has no o(k)-
query tester in the bounded-degree graph model.

• Whereas triangle-freeness has no poly(1/ǫ)-query tester in the dense graph model, it has
a O(1/ǫ)-query tester in the bounded-degree graph model.

• Whereas Connectivity (and even “t-connectivity”) is trivial in the dense graph model, it is
far from being so in the bounded-degree graph model (although poly(1/ǫ)-query testers do
exist here too).

6In other words, the process selects uniformly a permutation π : [k] → [k] and a function φ : [k] × [d] → [k] such
that |{v, φ(v, 1), ...φ(v, d)}| = d + 1 for every v, and answers the query (v, i) with φ(v, i) if i ≤ dπ(v) and with 0
otherwise.
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These examples and more will be discuss in the subsequent sections.

9.2 Testing by a local search

In this section we present relatively simple testers for subgraph freeness, degree regularity, connec-
tivity, and cycle-freeness, where the latter tester has two-sided error. These poly(1/ǫ)-query testers
(as well as the testers for higher levels of connectivity) are based on conducting a small number
of very local searches, but the parameters of these searchers and their goals vary from one case to
another.

9.2.1 Testing subgraph freeness

Testing subgraph freeness (e.g., triangle-freeness), when the subgraph is not bipartite, is quite a
challenge in the dense graph model. Recall that even testing triangle-freeness (in that model)
involves the invocation of the Regularity Lemma. In contrast, we will present a relatively simple
tester for the same properties in the current model (i.e., the bounded-degree graph model). Let us
first recall the definition that we refer to.

Definition 9.3 (subgraph freeness): Let H be a fixed graph. A graph G = (V,E) is H-free if G
contains no subgraph that is isomorphic to H.

We shall focus on the case that H is connected, although the general case can be handled similarly
(yielding similar, but not identical results).7 Let rd(H) denote the radius of H; that is, rd(H) is the
smallest integer r such that there exists a vertex v in H such that all vertices in H are at distance
at most r from v. Such a vertex v is called a center of H, and indeed H may have several centers
(e.g., consider the case that H is a clique).

Theorem 9.4 (testing subgraph freeness (in the bounded-degree graph model)): Let H = ([t], F )
be a fixed (connected) graph of radius r = rd(H). Then, H-freeness has a (one-sided error)
proximity-oblivious tester of query complexity 2dr+1 and linear detection probability. Furthermore,
the time complexity of this tester is at most (2d)rt.

Proof: We consider the following natural algorithm.

Algorithm 9.4.1 (testing H-freeness): On input parameters d and k and oracle access to the
incidence function of a k-vertex graph G = ([k], E), which has maximum degree d, the algorithm
proceeds as follows.

1. Uniformly selects a vertex v ∈ [k].

2. Conducts a BFS of depth at most r starting from v.

3. Accept if and only if the explored subgraph is H-free.

7If H is composed of the connected components H1, ..., Hm, then Algorithm 9.4.1 can be modified so to select
uniformly v1, ..., vm ∈ [k] and start a BFS from each of them. See Exercise 9.3.
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Step 2 is implemented by querying the incidence function, and so the query complexity of this
algorithm is upper-bounded by

∑r
i=0 di · d < 2dr+1. Step 3 can be implemented by checking all

possible mappings of H to the explored graph, and so the time complexity of Algorithm 9.4.1 is
upper-bounded by

(
2dr

t

)
· (t!) < (2d)rt.

Algorithm 9.4.1 never rejects a graph that is H-free, since H-freeness is preserved by subgraphs
of the original graph. (Algorithm 9.4.1 can be modified to check induced subgraph freeness, while
noting that this property is preserved by induced subgraphs of the original graph.) It is left to
analyze the detection probability of Algorithm 9.4.1.

Claim 9.4.2 (the detection probability of Algorithm 9.4.1): If G = ([k], E) is at distance δ from
being H-free, then Algorithm 9.4.1 rejects it with probability at least δ/2.

Proof: A vertex v ∈ [k] is called detecting if it is a center of a copy of H that resides in G. Then,
G must have at least δk/2 detecting vertices, since omitting all edges that are incident at detecting
vertices makes the graph H-free. The claim follows.

This completes the proof of the theorem.

9.2.2 Testing degree regularity

Testing degree regularity is somewhat easier in the bounded-degree graph model (as compared to
the dense graph model), since determining the degree of a vertex is easier in this model. On the
other hand, there is a minor issue that arises here: In the bounded-degree graph model, unlike in
the dense graph model, a graph with an odd number of vertices in which almost all vertices are of
the same odd degree is not closed to being regular. Hence, if k is odd and we observe some vertex
of odd degree, then we better reject (as done in Step 4 of the following algorithm).

Algorithm 9.5 (testing degree regularity (in the bounded-degree graph model)): On input pa-
rameters d, k and ǫ and oracle access to the incidence function of a k-vertex graph G = ([k], E),
which has maximum degree d, the algorithm proceeds as follows.

1. Uniformly selects a set of O(1/ǫ) vertices.

2. Determines the degree of each of the selected vertices.

3. If these degrees are not all the same, then the algorithm rejects.

4. If this same degree is odd and k is odd, then the algorithm rejects.

Otherwise, the algorithm accepts.

Step 2 is implemented by a binary search on the incidence list of each selected vertex, and so the
query (and time) complexity of this algorithm is O(ǫ−1 log d).8 Evidently, Algorithm 9.4.1 never
rejects a regular graph (where non-rejection in Step 4 is justified by noting that if a k-vertex graph
is d′-regular, then d′k is even).9 The analysis of Algorithm 9.4.1 is based on the local-vs-global
claim that was proved in the analysis of the degree-regularity tester for the dense graph model.
This claim is restated next.

8Actually, we can reduce the complexity to O(ǫ−1 + log d) by only determining the degree of the first vertex and
checking whether each of the other vertices has the same degree. If the degree of the first vertex is i, then we need
only query the latter vertices for their ith and (i+ 1)st neighbors.

9Recall that, in every graph, the sum of vertex degrees is even.
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Claim 9.5.1 (local-vs-global distance to degree regularity, Claim 8.5.1 restated): Let d′ < k and
d′k/2 be natural numbers, and let dG(v) denote the degree of vertex v in the graph G = ([k], E). If∑

v∈[k] |dG(v)− d′| ≤ ǫ′ ·B, then there exists a d′-regular k-vertex graph G′ = ([k], E′) such that the

symmetric difference between E and E′ is at most 3ǫ′B.

In Chapter 8, Claim 8.5.1 was stated with B = k2 and the bound on the symmetric difference was
stated in terms of distance in the dense graph model (i.e., in units of k2/2). Nevertheless, since
Claim 8.5.1 was stated for any ǫ′ > 0, it immediately yields Claim 9.5.1. Using Claim 9.5.1, we
establish the following

Claim 9.5.2 (analysis of Algorithm 9.5): If G = ([k], E) is ǫ-far from being (degree) regular, then
Algorithm 9.4.1 rejects with probability at least 2/3.

Proof: Let d′ denote the degree of the first vertex selected in Step 1 of the algorithm. (Indeed, we
may modify the algorithm so that the first vertex is selected arbitrarily.) If d′k is odd, then the
algorithm always rejects (in Step 4, if it reaches Step 4 at all), and so we may assume that d′k is
even. Combining the claim’s hypothesis with Claim 9.5.1, we infer that

∑
v∈[k] |dG(v)−d′| > ǫ·dk/6.

(This is the case since the symmetric difference between E and the edge set of any d′-regular k-
vertex graph is greater than ǫdk/2.)10 It follows that |{v ∈ [k] : dG(v) 6= d′}| > ǫk/6, and the claim
follows (since at least one of the vertices having degree different than d′ is selected, w.h.p., and in
this case Step 3 rejects).

The proof of Claim 9.5.2, reveals that selecting two vertices (one arbitrarily and the other at
random) and determining their degrees, will do for obtaining a proximity oblivious tester. Hence,
we get.

Theorem 9.6 (testing degree regularity (in the bounded-degree graph model)): Degree regularity
has a (one-sided error) proximity-oblivious tester of (query and) time complexity 2⌈log(d + 1)⌉ and
linear detection probability.

Proof: The tester is a version of Algorithm 9.4.1 that selects only two vertices in Step 1. As
noted in the proof of Claim 9.5.2, if G is at distance δ from being regular and d′ is the degree of
the first vertex, then either d′k is odd (in which case Step 4 guarantees rejection) or at least δk/6
vertices have degree different from d′. Hence, this algorithm will reject G with probability at least
δ/6.

Testing whether a graph is Eulerian. Recall that a graph is called Eulerian if all its vertices
have even degree. (Note that we do not require here that the graph be connected.) We can easily
test if a graph is Eulerian by sampling a random vertex and determining its degree, but again the
analysis is not trivial because we need to preserve the degree bound (and the simplicity) of the
graph. That is, we need to show that if few vertices of a graph of maximum degree d have odd
degree, then this graph is close to a (simple) Eulerian graph of maximum degree d. This is not
trivial since the degree bound may prevent us from connecting pairs of vertices that have odd degree

10Hence, using B = dk/2 and ǫ′ = ǫ/3, we infer that
P

v∈[k] |dG(v) − d′| ≤ ǫ′ · B is impossible, because it would

yield a symmetric difference of at most 3ǫ′B = ǫdk/2 (in contradiction to the hypothesis that G is ǫ-far from being
regular).
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(whereas arbitrarily omitting edges incident at vertices of currently odd degree is a bad idea).11

Nevertheless, Exercise 9.4 shows that if a graph G = ([k], E) has maximum degree d, and k′ of its
vertices have odd degree, then there exists a k-vertex Eulerian graph G′ = ([k], E′) of maximum
degree d such that the symmetric difference between E and E′ is at most 3k′/2.

9.2.3 Testing connectivity

The tester for Connectivity is based on the following observation.

Proposition 9.7 (distance from connectivity versus number of connected components): Let G =
([k], E) be a graph of maximum degree d ≥ 2 that has m connected components. Then, there exists
a connected graph G′ = ([k], E′) of maximum degree d such that the symmetric difference between
E and E′ is at most 2m− 1.

(The non-trivial aspect of this proposition is the preservation of the degree bound. Omitting this
restriction allows to present a connected graph G′′ = ([k], E′′) such that the symmetric difference
between E and E′′ equals m− 1, which is optimal.)

Proof: We would like to add m − 1 edges between the m connected components so that the
resulting graph is connected, but this may not be possible due to the degree bound. Specifically,
we say that a k′-vertex connected component is saturated if the sum of its vertex degrees is at least
k′ ·d−1 (i.e., the sum is k′d if k′d is even and is k′d−1 otherwise), and call it unsaturated otherwise.
Note that each saturated connected component can be made unsaturated by omitting a single edge,
while preserving its connectivity. This can be seen by noting that such a connected component has
a spanning tree (which consists of k′−1 edges), implying that it has at least (k′d−1)− (k′−1) > 0
non-tree edges that can all be omitted without harming the connectivity.

Hence, by omitting at most m edges, we make all m connected components unsaturated, and
now we can connect them by adding m− 1 edges (while preserving the degree bound). Specifically,
we connect these components by ordering them arbitrarily, and connecting each pair of consecutive
components by a single edge (using vertices of degree lower than d). Hence, we increase the sum
of the vertex degrees in each component by at most two units, and we can afford doing so because
the components are (now) unsaturated.

Towards a tester. Proposition 9.7 implies that a graph that is ǫ-far from being connected has
more than ǫdk/4 connected components. The next observation, which is pivotal to the tester, is that
many of these connected components are small. Specifically, if there are k′ connected components of
size (i.e., number of vertices) at most s, then k′+(k/s) > ǫdk/4. For example, there must be at least
ǫdk/8 connected components of size at most 8/(dǫ). Hence, selecting at random O(1/ǫd) vertices
and conducting a “truncated BFS” from each of them so that the BFS is suspended once more than
8/(dǫ) vertices are encountered, yields a tester for Connectivity. The time (and query) complexity
this tester is O(1/ǫd) ·O(d/dǫ) = O(1/dǫ2). But using Levin’s economical work investment strategy
(see Section 8.2.4), we can do better.12

11Since the other endpoint of the edge may have even degree, and such a sequence of omissions may result in too
many modifications (see the case of a long path).

12We get an improvement only when ǫ = o(1/d), whereas when ǫ = ω(1/d) we are actually worse. But, the case of
ǫ > 4/d is trivial, since (in the current context of the bounded-degree graph model) every graph is 4/d-close to being
connected.
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Theorem 9.8 (testing connectivity (in the bounded-degree graph model)): Connectivitry has a
(one-sided error) tester of time (and query) complexity Õ(1/ǫ).

Proof: For sake of self-containment, we provide a full analysis of application of Levin’s economical
work investment strategy to this context. Fixing a graph G = ([k], E) that is ǫ-far from being

connected, for every i = 0, ..., ℓ
def
= log(9/dǫ), we denote by B′i the set of vertices that reside in

connected components of size at most ⌊8/(2idǫ)⌋ and at least ⌊8/(2i+1dǫ)⌋+ 1.13

Recall that G must have more that ǫdk/4 connected components, whereas there are at most
k/(8/dǫ) connected components of size larger than 8/dǫ. Furthermore, all other vertices of G
(i.e., those residing in connected components of size at most 8/dǫ) are in ∪ℓ

i=0B
′
i, since there

are no connected components of size at most 8/(2ℓdǫ) < 1. On the other hand, the number of

connected components that contain vertices of B′i is at most
|B′i|

8/(2i+1dǫ)
, since each of these connected

components has size that is larger than 8/(2i+1dǫ). Combining these facts, we get

ℓ∑

i=0

|B′i|
8/(2i+1dǫ)

>
ǫdk

4
− ǫdk

8
(9.1)

since the l.h.s of Eq. (9.1) represents an upper bound on the number of connected components
of size at most 8/dǫ, whereas the r.h.s represents a lower bound on that number. Noting that
Eq. (9.1) simplifies to

∑ℓ
i=0 2i+1|B′i| > k, it follows that there exists i ∈ {0, 1, ..., ℓ} such that

|B′i| = Ω(2−ik/ℓ), whereas every corresponding connected can be explored in time d · (8/(2idǫ)),
since each of these connected components has size that is at most 8/(2idǫ). This leads to the
following tester, where we assume that 8/(dǫ) < k (since otherwise we can retrieve the entire graph
in time dk = O(1/ǫ)).

The actual tester. For i = 0, 1, ..., ℓ, perform the following steps.

1. Select at random O(2iℓ) vertices.

2. For each of these vertices, denoted v, perform a (BFS or DFS) search starting at v, suspending
the execution if more than 8/(2idǫ) vertices were encountered in this search (or if the search
scanned the entire connected component).

Note that this search can be implemented in time 8/(2iǫ).

3. If any of these searches detected a connected component of size at most 8/(2idǫ), then the
tester rejects. (Here we rely on 8/(dǫ) < k.)

If none of these searches detected a connected component that is smaller than k, then the tester
accepts. Note that any linear-time search can be used in Step 2, and in such a case the overall time
complexity of the tester is

∑ℓ
i=0 O(2iℓ) · 8/(2iǫ) = O(ℓ2/ǫ).

By its construction, this tester always accepts a connected graph, whereas a graph that is ǫ-far
from being connected is rejected with high probability, because there exists an i ∈ {0, 1, ..., ℓ} such
that |B′i| = Ω(2−ik/ℓ), which implies that a vertex residing in a connected component of size at
most 8/(2idǫ) is selected, w.h.p., in Step 1 (of iteration i), fully explore in Step 2, and causing
rejection in Step 3.

13In terms of Section 8.2.4, we may view such vertices as having quality in [2i−3dǫ, 2i−2dǫ), and as requiring work
investment Θ(1/2iǫ).
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Testing whether a graph is connected and Eulerian. Testing whether a graph is connected
and Eulerian reduces to testing that it has both properties. This reduction relies on the fact that
if G is ǫ-close to both properties, then it is O(ǫ)-close to their intersection (see Exercise 9.5).

9.2.4 Testing t-connectivity (overview and one detail)

There are two different natural notions that generalize the notion of connectivity.

t-edge-connectivity: A graph is t-edge-connected if there are t edge-disjoint paths between every
pair of vertices.

t-vertex-connectivity: A graph is t-vertex-connected if there are t vertex-disjoint paths between
every pair of vertices.14

Clearly, t-vertex-connectivity implies t-edge-connectivity, and for t = 1 both notions coincides with
the notion of connectivity. The connectivity level of a graph cannot exceed the (minimum) degree
of its vertices, which means that we shall focus on t ≤ d. All these t-connectivity properties can be
tested in poly(1/ǫ)-time, where the polynomial may depend on t.

Theorem 9.9 (testing t-connectivity, in the bounded-degree graph model):

• For every t ≥ 2, testing t-edge-connectivity can be performed in time Õ(t3/ǫct), where
ct = min(3, t− 1).

• For every t ≥ 2, testing t-vertex-connectivity can be performed in time Õ((t/dǫ)t).

The testers of t-connectivity generalize two ideas that appear in the tester for Connectivity: One
main idea, which was conspicuous in the base case (of t = 1), is that distance from t-connectivity
implies the existence of many small t-connected components. Furthermore, one can establish the
existence of many small t-connected components that can be disconnected from the rest of the graph
by omitting less than t edges (resp., vertices). This strengthening is important, because such small
(and “isolatable”) components seem easier to detect (than generic small components). The second
idea, which was obvious and transparent in the base case (of t = 1), is that these small t-connected
components can be easily detected.

Detailing the first idea, in the current context (of t > 1), requires getting into the structure
of (the connections among the t-connected components of) graphs that are not t-connected, which
we wish to avoid. As for the second idea, we focus on the case of edge-connectivity, since the case
of vertex-connectivity is more involved. We use the known fact that a graph is t-edge-connected if
and only if it contains no cut of less than t edges (i.e., for every non-trivial 2-partition of its vertex
set, there are at least t edges having one endpoint in each part). Now, suppose that you are given
a vertex v that resides in a set S of size at most s such that the subgraph of G = ([k], E) induced
by S is t-connected and the cut (S, [k] \ S) contains less than t edges.15 Can you find S within
complexity that is related to s and unrelated to k?

The rest of this section is devoted to the study of the foregoing problem, which is of independent
interest. Recall that the task is easy for t = 1; that is, when given v, the connected component

14Needless to say, the notion of vertex-disjoint paths excludes the end-points of these paths.
15The edge {u, w} is said to reside in the cut (S, [k] \ S) if (u,w) ∈ (S, [k] \ S). We shall often associate edges of

the cut (i.e., the edges contained in the cut) with the corresponding ordered pairs {(u, w) ∈ (S, [k] \S) : {u, w} ∈ E}.

217



containing the vertex v can be found in time that is linearly related to its size (by invoking a BFS or
a DFS at vertex v). In the case of t > 1, things are less obvious. Still, we may proceed (recursively)
as follow.

1. Invoke a DFS at the vertex v and suspend its execution as soon as more than s vertices are
encountered.

2. If the DFS detected a connected component of size at most s, then return this connected
component. (In this case, the corresponding cut contains no edges.)

3. Otherwise, for each edge e in the DFS-tree constructed in Step 1, invoke the procedure on
the graph G′ = ([k], E \ {e}) with the same start vertex v but with connectivity parameter
t − 1. If any of these (recursive) invocations returns a set that has less than t − 1 edges to
the rest of the graph, then return this set. (In this case, the corresponding cut contains less
than t edges in G = ([k], E).)

The reader may verify that this recursive procedure finds the desired set in time O(st−1 · ds) =
O(dst), where the key observation is that in each iteration the guaranteed cut (S, [k] \ S) either
contains no edges in the current graph or contains an edge of the current DFS tree. Another good
exercise (see Exercise 9.6) is handling the case of t = 2 in time O(ds), which yields an upper bound
of O(dst−1) for t ≥ 3. Using randomization yields an improvement on the foregoing bound.

Algorithm 9.10 (finding small t-edge-connected components): On input parameters t, d, k and s,
a vertex v ∈ [k] and oracle access to G = ([k], E), the algorithm proceeds in iterations, starting with
S′ = {v}. In each iteration the algorirthm performs the following steps.

1. If the cut C ′ = (S′, [k] \ S′) contains at most t− 1 edges, then output S′.

2. Otherwise, assign uniformly distributed random weights in [0, 1] to every edge in the cut C ′

that was not assign a weight before.

3. Select an edge (u,w) ∈ C ′ of minimum weight, and add w to S′ (i.e., S′ ← S′ ∪ {w}).

4. If |S′| > s, then halt with no output. (Otherwise, proceed to the next iteration.)

Whenever Algorithm 9.10 outputs a set S′, it is the case that |S′| ≤ s and the cut (S′, [k] \ S′) has
less than t edges. It is also apparent that Algorithm 9.10 makes at most ds queries (and runs in
Õ(ds) time), but the question is what is the probability that it outputs a set at all. While a naive
guess may be that the answer is Θ(t/ds)t−1, the correct answer is much better.16

Theorem 9.11 (analysis of Algorithm 9.10): Suppose that v resides in a set S of size at most s
such that the subgraph of G = ([k], E) induced by S is t-connected and the cut (S, [k] \ S) contains
less than t edges. Then, Algorithm 9.10 outputs S with probability at least Ω(s−2(t−1)/t/t).

16The naive guess is based on considering the probability that the t − 1 edges of the cut are assigned the heav-
iest weights among all edges that are incident at S. It turns out that this sufficient condition (for the success of
Algorithm 9.10) is not a necessary one: see Claim 9.11.1.
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Hence, we obtain a randomized algorithm that succeeds with probability at least 2/3 by invoking
Algorithm 9.10 for O(s2(t−1)/t · t) = o(s2) times, which means that the total running time of the
resulting algorithm is o(ds3).

Proof Sketch: As a mental experiment, we assume that weights are assigned (at random) to
all edges of the graph, and we consider the weight of edges in the cut C = (S, [k] \ S) as well
as the weight of edges in the lightest spanning tree of the subgraph of G induced by S, denoted
GS . (One may assume that all weights are distinct, since we use infinite precision in this mental
experiment.)17 Using induction on the construction of the set S′, one can prove the folllowing (see
Exercise 9.7).

Claim 9.11.1 (a sufficient condition for success): If the weight of the each edge in the cut C
is larger than the weight of each edge in the lightest spanning tree of GS, then Algorithm 9.10
outputs S.

The complementary claim assert that this sufficient condition is satisfied with probability at least
Ω(s−2(t−1)/t/t).

Claim 9.11.2 (the main claim): For natural numbers t′ < t < |S|, suppose that the cut C has
t′ edges (and recall that GS is t-edge-connected). Then, with probability at least Ω(s−2t′/t/t), the
weight of each edge in the cut C is larger than the weight of each edge in the lightest spanning tree
of GS.

Towards proving Claim 9.11.2, it is instructive to consider an auxiliary graph G′ = (S ∪{x}, E′), in
which [k] \ S is contracted into a single vertex, denoted x. In this graph, x has degree t′, whereas
all other vertices have degree at least t (since otherwise GS can not be t-edge-connected). The
proof of Claim 9.11.2 can be reduced to the analysis of Karger’s edge-contraction algorithm [178],
when this algorithm is applied to G′. The edge-contraction algorithm proceeds in iterations, until
the multi-graph (which may contain parallel edges) contains exactly two vertices, and it refers to
random edge-weights as assigned in our mental experiment. In each iteration, the algorithm chooses
the edge e = {u,w} of minimum weight, and contracts it, which means that it merges its endpoints
into a single vertex that “takes over” the edges of both these endpoints (but not the edges between
them).18 That is, every edge that was incident at either u or w (but not incident at both) becomes
incident to the “contracted vertex” (which may cause the appearance of multiple edges, but not of
self-loops).

The proof of Claim 9.11.2 is reduced to the analysis of Karger’s edge-contraction algorithm by
observing that if Karger’s algorithm does not contract an edge incident at the vertex x, then GS

contains a spanning tree with edges that are each lighter than any edge in the cut C.19 Hence,
Claim 9.11.2 follows by lower-bounding the probability that none of the iterations of the Karger’s

17In the actual algorithm, weights may be chosen in multiples of 1/(ds)4, adding an error term of 1/(ds)2 (for the
case of a possible collision).

18Note that, in advanced iterations, there may be edges that are parallel to the edge e.
19Indeed, the set of edges contracted by Karger’s algorithm (together with the lightest remaining edge) form a

spanning tree of the graph G′. Furthermore, if the last edge is incident at x, then the contracted edges form a
spanning tree of GS such that each edge in that tree is lighter than any edge incident at x. Recall that this spanning
tree is actually the lightest one (e.g., it is found in a process that corresponds to Kruskal’s algorithm for finding a
minimum weight spanning tree).
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algorithm (applied to G′) contacts an edge incident at x. This event occurs if and only if, at each
iteration, the current graph contains an edge that is lighter than any edge in C.

The key observation is that the probability that an edge incident at x is contacted in the ith

iteration (conditioned on no such edge being contracted in prior iterations) is at most

t′

((|S| − i + 1) · t + t′)/2 .

This observation is proved as follows.

• At the beginning of the ith iteration (assuming that no edge incident at x was contracted
in prior iterations), the graph consists of |S| − (i − 1) vertices of degree at least t and a
single vertex (i.e., x) of degree t′. The former claim follows from the fact that each vertex
corresponds to a subset of S, and by the hypothesis the cut between this subset and the rest
of S has at least t edges.

Hence, the number of edges in the current graph is at least m
def
= ((|S| − i + 1) · t + t′)/2.

• The conditioning that no edge incident at x was contracted in prior iterations can be inter-
preted as saying that all edges in the current graph have weights that are larger than the
weight of the edges contracted in prior iterations. But if the weight of the edge contracted
in the last iteration is ω, then we can think of the weights of the current edges as being
uniformly distributed in [ω, 1]. Indeed, we may think that the weights of all current edges are
re-selected uniformly at random in the interval [ω, 1].

Hence, the probability that an edge incident at x has minimum weight is at most t′/m.

Hence, the probability that we never contracted an edge incident at x is at least

|S|∏

i=1

(
1− t′

(t′ + (|S| − i + 1) · t)/2

)
=

|S|∏

i=1

(|S| − (i− 1)) · t− t′

(|S| − (i− 1)) · t + t′

=

|S|∏

j=1

j − (t′/t)
j + (t′/t)

Hence, it suffices to lower-bound
∏s

j=1
j−α
j+α , where α ∈ [0, 1). For starters (or as a motivation), note

that
∏s

j=2
j−α
j+α is lower-bounded by

∏s
j=2

j−1
j+1 = 2

s·(s+1) . In general, using
∏s

j=2
j−α
j+α = Ω(s−2α), the

claim follows (since
∏s

j=1
j−α
j+α = Ω((1− α) · s−2α)), and so does the theorem. 20

20For our purpose, it suffices to erstablish the claim for rational α, since here α = t′/t. Indeed, we lower-bound
Qs

j=2
j−(t′/t)
j+(t′/t)

by using

 

s
Y

j=2

j − (t′/t)

j + (t′/t)

!t

=
s
Y

j=2

„

jt − t′

jt + t′

«t

>
s
Y

j=2

t
Y

i=1

(j − 1)t+ i− t′

(j − 1)t+ i+ t′
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9.2.5 Testing cycle-freeness (with two-sided error)

The tester for Cycle-freeness is based on the following well-known observation, which generalizes
the even more well known fact by which a connected k-vertex graph is cycle-free if and only it has
k − 1 edges.

Proposition 9.12 (the number of connected components in a cycle-free graph): Let G = ([k], E)
be a graph with m connected components. Then, G is cycle-free if and only if it has k −m edges.

This proposition follows immediately by considering the number of edges in each connected com-
ponent of G. Specifically, letting ki denotes the number of vertices in the ith connected component,
we observe that G is cycle-free if for every i ∈ [m] the ith connected component has exactly ki − 1
edges.

Proposition 9.12 suggests that cycle-freeness can be tested by comparing the number of edges
in the graph to the number of connected components in it. Estimating the number of edges is quite
straightforward, but how can we estimate the number of connected components? The key idea is
that it suffices to estimate the number of small connected components, whereas the number of large
connected components is small and therefore can be ignored.

The number of small connected components is estimated by repeating the following experiment
for an adequate number of times: Select uniformly a random vertex v ∈ [k], perform a truncated
search starting at v and suspending the search if too many vertices are encountered, and use k/s as
estimator if s is the size of the (small) connected component that was fully visited in this search.
(Indeed, zero is used as estimator in case the search was suspended before the component was fully
visited.) Hence, if a small connected component has size s, then its contribution to the expected
value of this experiment is s

k · k
s , where the first factor represents the probability that a vertex

residing in this component was selected and the second factor represents its contribution in such
a case. Repeating the experiment for a sufficient number of times (and normalizing the count
accordingly), we obtain the following algorithm.

Algorithm 9.13 (two-sided error tester for cycle-freeness (in the bounded-degree graph model)):
On input parameters d, k and ǫ and oracle access to the incidence function of a k-vertex graph
G = ([k], E), which has maximum degree d, the algorithm proceeds as follows.

1. Using O(1/ǫ2) random queries (in [k] × [d]), the algorithm estimates the number of edges up
to ±0.05ǫdk. Let ẽ denote this estimate.21

=

st−t
Y

i=1

t− t′ + i

t+ t′ + i

=

Q2t′

i=1(t− t′ + i)
Q2t′

i=1(st− t′ + i)

>
(2t′/3)2t′

(st+ t′)2t′ .

Hence,
Qs

j=2
j−(t′/t)
j+(t′/t)

= Ω(t′/st)2t′/t = Ω(1/s)2t′/t, and the claim follows.
21

Advanced comment: One can reduce the number of queries used in this step to O(max(1/dǫ2, 1/ǫ)) by assuming

that |E| ≤ m
def
= max(2k, ǫdk/2), since in this case we seek a multiplicative approximation factor of 1 ± 0.05ǫdk

m
for

an event that occurs with probability smaller than 2m/dk, and a random sample of O((2m/dk)−1 · (ǫdk/m)−2) =
O(m/(dkǫ2)) pairs will do. The foregoing assumption can be justified by augmenting the algorithm with a step that
checks this condition (and rejects if |E| ≤ max(2k, ǫdk/2) seems not to hold, since this indicates that |E| > k). Such
a check can be implemented using O(1/ǫ) queries (see Exercise 9.8).
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2. Estimates the number of connected components up to ±0.05ǫdk by selecting at random t =
O(1/dǫ)2 start vertices, v1, ..., vt, and incrementing the counter by k/si if the search started

at vi encountered si < ℓ
def
= 8/(dǫ) vertices (and by zero otherwise). That is, for each i ∈ [t],

the algorithm proceeds as follows:

(a) Performs a linear-time (e.g., BFS or DFS) search starting at vi, while suspending the
search if more than ℓ vertices are encountered in it.

Hence, this search involves O(ℓ · d) = O(1/ǫ) queries.

(b) If the entire connected component is scanned and its size is si, then the counter is
incremented by k/si.

Divide the accumulated sum by t, and denote the result by m̃.

3. If ẽ ≥ k − m̃ + ǫdk/4, then reject. Otherwise, accept.

The query complexity of Algorithm 9.13 is O(1/ǫ2) + t · O(1/ǫ) = O(1/ǫ2) + O(1/d2ǫ3). The
algorithm may err (with small probability) both in the case that the graph is cycle-free and in the
case it is far from being cycle-free, where the source of the error probability lies in the estimates
that are performed in Steps 1 and 2.

Note that only connected components of size at most ℓ = 8/dǫ contribute to the estimate m̃,
whereas m̃ is supposed to estimate the number of all connected components. However, since the
number of the larger (than 8/dǫ) connected components is at most (dǫ/8) · k, we can ignore their
contribution. Details follow.

Claim 9.14 (analysis of Algorithm 9.13): Algorithm 9.13 is a (two-sided error) tester for Cycle-freeness.

Proof Sketch: The following analysis presumes that the samples used in Steps 1 and 2 provides
the stated estimates, with high probability. This is fact is easy to establish using an additive
Chernoff bound, while noting that the desired estimates are, respectively, an Ω(ǫ) and an Ω(dǫ)
fraction of the range of the corresponding random variables.22 Specifically, when analyzing Step 2,
let m′ ≥ m − ǫdk/8 denote the number of small connected components, and prove that (w.h.p.)
|m̃−m′| ≤ 0.05ǫdk.

If G = ([k], E) is cycle-free and has m connected components, then |E| = k −m. In this case,
with high probability it holds that ẽ ≤ |E|+0.05ǫdk = k−m+0.05ǫdk, whereas m̃ ≤ m′+0.05ǫdk ≤
m + 0.05ǫdk (since m′ ≤ m by definition). Hence, ẽ + m̃ ≤ (k −m + 0.05ǫdk) + (m + 0.05ǫdk) <
k + ǫdk/4, and Algorithm 9.13 accepts.

On the other hand, if G = ([k], E) has m connected and is ǫ-far from being cycle-free, then
|E| ≥ k −m + ǫdk/2 (since otherwise G can be made cycle-free by omitting at most ǫdk/2 edges).
Now, with high probability, it holds that ẽ ≥ |E| − 0.05ǫdk ≥ k − m + 0.45ǫdk, whereas m̃ ≥
m′ − 0.05ǫdk > m − 0.18ǫdk (since m′ > m − 0.13ǫdk, because m − m′ ≤ ǫdk/8 represents the
number of large (i.e., larger than 8/dǫ) connected components). In this case, ẽ + m̃ > (k −m +
0.45ǫdk) + (m− 0.18ǫdk) > k + ǫdk/4, and Algorithm 9.13 rejects.

22In Step 1, each random query, which is effectively answered with a value in {0, 1}, is an unbiased estimator of
|{(v, i) ∈ [k] × [d] : g(v, i) 6= 0}|/dk, and we consider the probability that the average of O(1/ǫ2) such estimators
deviates from the correct value by more than 0.05ǫ. In Step 2, each search returns a value in [0, k] that is an unbiased
estimator of the number of small connected components, and we consider the probability that the average of O(1/dǫ)2

such estimators deviates from the correct value by more than 0.05ǫdk.
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Improving over Algorithm 9.13. Recall that Step 2(a) of Algorithm 9.13 performs a search
aimed at detecting small connected components towards estimating their number, where a con-
nected component is defined as small if it has size at most ℓ = 8/dǫ. But when upper-bounding
the cost of such a search, we used ℓ · d as a bound. This fails to capitalize on the fact that if we
encountered more edges than vertices in the current search, then we found a cycle in the current
connected component. Hence, it is begging to suspend the search in such a case, and reject. Note
that the modified algorithm has complexity O(1/ǫ2) + O(t · ℓ) = O(1/ǫ2) + O(1/dǫ)3, whereas its
verdicts are at least as reliable as those of the original algorithm: On the one hand, graphs that are
cycle-free are accepted by the modified algorithm with the same probability as they are accepted
by Algorithm 9.13, since the modification has no effect in this case. On the other hand, graphs that
are not cycle-free are rejected by the modified algorithm with probability that is lower bounded by
the probability that they are rejected by Algorithm 9.13, since the modification can only increase
the rejection probability. Hence, we get:

Theorem 9.15 (an alternative two-sided error tester for cycle-freeness): Testing Cycle-freeness

(in the bounded-degree graph model) can be performed in time O(ǫ−2 + d−3 · ǫ−3).

Recall that the tester establishing Theorem 9.15 has two-sided error probability. As we shall see in
the next section, two-sided error probability is unavoidable for a tester for Cycle-freeness that
has query complexity poly(1/ǫ). Actually, two-sided error probability is unavoidable even for query
complexity f(ǫ) · o(

√
k), for any function f : (0, 1]→ N (see Theorem 9.17).

9.3 Lower bounds

In this section we present lower bounds on the query complexity of testing a few natural proper-
ties, including Bipartiteness and 3-Colorability. These lower bounds justify our inablility to
present significantly better testers for these properties (cf. Section 9.4, where we present testers
that essentially match these bounds).

We focus on the case that d ≥ 3, since otherwise (i.e., d ≤ 2) any graph property of interest is
either trivial or easy to test. (Note that when d ≤ 2 the graph consists of a collection of isolated
paths and cycles; actually, if d = 1, then the graph consists of a collection of isolated edges and
isolated vertices.)

Teaching note: This section relies on a technique for proving lower bounds that is presented in Section 7.2,

and is called the method of indistinguishable distributions. This technique is simple enough to pick-up on

the fly, but it may be better to study Section 7.2 first.

9.3.1 Bipartitness

In contrast to the situation in the dense graph model, in the the bounded degree graph model
there exists no Bipartite tester of complexity that is independent of the graph’s size. This fact
reflects the fact that being far from Bipartiteness does not require having constant-size cycles
of odd length. Actually, graphs that are far from being bipartite may lack odd-length cycles of
sub-logarithmic length (see Exercise 9.9), and so testing Bipartiteness (at least with one-sided
error probability) cannot be performed in sub-logarithmic (in k) query complexity. The stronger
lower bound presented next goes beyond these existential considerations.
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Theorem 9.16 (lower bound on the complexity of testing Bipartiteness (in the bounded-degree
graph model)): For proximity parameter ǫ = 0.01 and any degree bound d ≥ 3, testing Bipartiteness
requires Ω(

√
k) queries.

Note that graphs that are 0.01-far from being bipartite do have odd-length cycles of logarithmic
length (see Exercise 9.10).23

Proof Sketch: We shall focus on the case of d = 3, and prove the lower bound using 3-regular
graphs. For any (even) k, we consider the following two families of k-vertex graphs:

1. The first family, denoted G1, consists of all 3-regular graphs that are composed of the union of
a Hamiltonian cycle and a perfect matching (which does not match vertices that are adjacent
on the cycle). That is, there are k edges forming a simple k-vertex cycle, and the other k/2
edges are a perfect matching.

2. The second family, denoted G2, is the same as the first except that the choice of perfect
matching is restricted such that the distance on the cycle between every two vertices that
are connected by a perfect matching edge must be odd. Equivalently, labeling the vertices
according to their location on the cycle (so that the ith vertex is adjacent to the i+1st vertex,
for every i ∈ [k]),24 we requite that if {i, j} is a perfect matching edge, then i 6≡ j (mod 2).

Clearly, all graphs in G2 are bipartite. It can be shown (see Claim 9.16.1) that almost all graphs
in G1 are far from being bipartite. On the other hand, one can prove (see Claim 9.16.2) that an
algorithm that performs o(

√
k) queries cannot distinguish between a graph chosen randomly from

G2 (which is always bipartite) and a graph chosen randomly from G1 (which with high probability
is far from bipartite). Loosely speaking, this is the case since in both cases the algorithm is unlikely
to encounter a cycle (among the vertices that it has inspected).

Claim 9.16.1 (almost all graphs in G1 are far from being bipartite): All but an exponentially
vanishing fraction of the graphs in G1 are 0.01-far from being bipartite.

Proof: We consider a uniformly distributed graph in G1, and upper-bound the probability that it
can be made bipartite by omitting 0.01 · dk/2 = 0.015k of its edges. We shall actually consider an
omission of 0.015k of its (Hamiltonian) cycle edges and 0.015k of the matching edges. For each of
the possible

( k
0.015k

)
< 20.12k choices of 0.015k cycle edges, we consider all 20.015k legal 2-colorings

of the resulting collection of 0.015k paths. For each such set of paths and 2-colorings, we upper-
bound the probability that the random perfect matching does not have more than 0.015k edges
that violate this fixed 2-coloring. This is done by selecting the k/2 matching edges in iterations,
while noting that in the i + 1st iteration a violating edge is selected with probability at least

min
j∈{0,...,k−2i}

{(
j
2

)
+
(
k−2i−j

2

)
(k−2i

2

)
}
≥ 2 ·

(
(k−2i)/2

2

)
(k−2i

2

) ≈ 1

2

where j represents the number of currently unmatched vertices that are colored with the first color
and the approximation holds for any i ≤ (k/2)−ω(1). Hence, the probability that we end-up with
at most 0.015k violating edges is less than e−(0.5−o(1)−0.015)2 ·((k/2)−ω(1)) = e−(0.485−o(1))2 ·k/2. Using
a union bound, the claim follows.

23A weaker bound (i.e., odd-length cycles of polylogarithmic length) follows directly from Theorem 9.21.
24Indeed, we identify the k + 1st vertex with the first one.
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Claim 9.16.2 (indistinguishability by o(
√

k)-query algorithms): An algorithm that performs q
queries can distinguish between a graph chosen randomly from G1 and a graph chosen randomly
from G2 with gap of at most q2/k.

Proof: We shall assume, to the benefit of the algorithm, that the incidence function g is “nice” in
the sense that for every vertex v it holds that g(v, 1) is successor of v on the (Hamiltonian) cycle,
whereas g(v, 2) is the predecessor of v on that cycle (which means that g(v, 3) is the vertex matched
to v by the perfect matching). We assume, without loss of generality, that the algorithm does not
make queries for which it knows the answers (e.g., after making the query g(v, 1), it does not make
the query g(g(v, 1), 2)). Recall that we use d = 3 and 3-regular graphs; hence, the queries of the
algorithm correspond to edges (i.e., the query (v, i) corresponds to the edge {v, g(v, i)}). These
conventions merely facilitate the verification of the key observation that appears next.

We consider an iterative process of generating a randomly distributed graph in G1 (resp., in
G2) by answering queries of the algorithm, while keeping track of the “knowledge graph” of the
algorithm (at each point), where the knowledge graph is defined as the subgraph consisting of the
edges that correspond to the algorithm’s queries so far. The key distinction is between vertices
that are in the knowledge graph (i.e., vertices that have appeared either in a previous query of
the algorithm or as a previous answer provided to it) and those that are not in this graph. The
key observation is that as long as the knowledge graph of the algorithm is cycle-free and contains
relatively few edges, both generation processes (i.e., the one constructing a random element of G1

and the one constructing a random element of G2) behave in a very similar manner. Actually, each
of these processes answers the i + 1st query with an old vertex (i.e., a vertex in the knowledge
graph) with probability at most 2i

k−1 , and otherwise the answer is uniformly distributed among the
labels that do not appear in the current knowledge graph. Hence, the distinguishing gap of the
algorithm is upper-bounded by the probability that at least one of the q queries is answered with
an old vertex, and the claim follows.

This completes the proof of the theorem.

9.3.2 Applications to other properties

The proof of Theorem 9.16 can be adapted to yield hardness results for two natural testing problems,
which seem unrelated to testing Bipartitness.

Application to testing cycle-freeness. Recall that, in Section 9.2.5, we presented two-sided
error testers of query complexity poly(1/ǫ) for Cycle-freeness. We now show that the two-sided
error was inherent to these testers, since Cycle-freeness does not have a one-sided error tester
of complexity that depends on the proximity parameter only.

Theorem 9.17 (lower bound on the query complexity of one-sided error testers for Cycle-freeness):
For any degree bound d ≥ 3, every one-sided error (1/d)-tester for Cycle-freeness has query com-
plexity Ω(

√
k).

Proof: We use any of the two families of graphs presented in the proof of Theorem 9.16, while
noting that each of these graphs is 1/3-far from being cycle-free (since it has 0.5k + 1 superfluous
edges). Hence, any 1/3-tester for Cycle-freeness is required to reject each of these graphs with
probability at least 2/3. On the other hand, the proof of Claim 9.16.2 actually establishes that a
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q-query machine sees a cycle in a random graph (drawn from any of these families), with probability
at most q2/k. Hence, a cycle-freeness tester of query complexity

√
k/2 must, with probability at

least 2
3 − 1

2 > 0, reject some graph without seeing a cycle in the subgraph that it has explored,
which means that this tester cannot have one-sided error.

Teaching note: The rest of Section 9.3 is intended for optional independent reading. In the rest of

Section 9.3.2 we present a lower bound on the query complexity of testing expansion. Section 9.3.3

reviews a linear lower bound on the query complexity of testing 3-Colorability.

Application to testing expansion. Fixing a constant c > 0, we say that the graph G = ([k], E)
is c-expanding if, for every set S ⊂ [k] of cardinality at most k/2, it holds that |Γ+(S)| ≥ c · |S|,
where

Γ+(S)
def
= {u∈([k] \ S) : ∃v∈S s.t. {u, v}∈E} (9.2)

denotes the set of vertices that are not in S but neighbor some vertices in S. One can show that,
for sufficiently small constant c > 0 and all sufficiently large k, with high probability, a random
3-regular k-vertex graph is c-expanding.

Theorem 9.18 (lower bound on the query complexity testing c-expansion): For sufficiently small
constant c > 0 and any degree bound d ≥ 3, every (c/d)-tester for c-expansion has query complexity
Ω(
√

k). Furthermore, an algorithm of query complexity o(
√

k) cannot distinguish between k-vertex
graphs that are c-expanding and graphs that consist of two (k/2-vertex) connected components.

Proof Sketch: We start with the family G1 presented in the proof of Theorem 9.16, and show (see
Claim 9.18.1) that, with high probability, a uniformly distributed (in G1) graph is c-expanding. We
then show that a o(

√
k)-query algorithm cannot distinguish a uniformly distributed k-vertex graph

(drawn from G1) from a k-vertex graph that consists of two isolated k/2-vertex graphs drawn from
(the k/2-vertex version of) G1. The theorem follows by noting that the latter graphs are far from
being expanding (in any reasonable sense of that term), since the vertices of the first k/2-vertex
graph neighbor no vertex in the second k/2-vertex graph.

Claim 9.18.1 (almost all graphs in G1 are expanding): For sufficiently small constant c > 0, with
high probability, a uniformly distributed (in G1) graph is c-expanding.

Proof Sketch: Using a (carefully executed) union bound, we upper-bound the probability that there
exists a set S of size at most k/2 such that |Γ+(S)| < c · |S|. Specifically, for every set S ⊆ [k],
we consider the random variable XS that represents the size of Γ+(S) in a graph drawn at random
(from G1). The union bound is based on a partition of the possible sets S to two classes.

1. Sets S such that the subgraph induced by S on the graph consisting only of the edges of the
Hamiltonian cycle has at least c · |S| connected components.

In this case, Pr[XS ≥ c · |S|] = 1, merely by virtue of the cycle edges.25 Hence, sets of this
type contribute nothing to the probability that there exists a set S of size at most k/2 such
that |Γ+(S)| < c · |S|.

25Note that, when “going around the cycle”, the last vertex in each of the aforementioned connected components
neighbors a distinct vertex not in S.
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2. Sets S that have less than c · |S| such connected components.

We first upper-bound the number of such sets. Specifically, observe that the number of such
sets of size s ≤ k/2 is at most 2 ·∑i∈[cs]

(
k
2i

)
, since each choice of 2i vertices determine

two possible i-long sequences of disjoint sectors of the cycle. Note that 2 ·∑i∈[cs]
(k
2i

)
=

exp(H2(2cs/k) · k), where H2 is the binary entropy function.26 Next, for each such set S, we
upper-bound the probability that XS < c · |S| by observing that this event implies that there
exists a set S′ of s− cs vertices in S such that each vertex in S′ is matched to a vertex in S
(by the perfect matching). Hence,

Pr[XS < c · |S|] ≤
(

s

s− cs

) ∏

i∈[(1−c)s/2]

s− 2(i− 1)

k − 2(i− 1)
= 2H2(c)·s · (s/k)Ω(s),

where the inequality is proved by considering, for each possible set S′ ⊂ S of size s − cs,
an iterative process of matching vertices in S′ at random.27 Taking a union bound over all
relevant sets S, we obtain the probability bound exp(H2(2cs/k) ·k +H2(c) ·s−Ω(s log(k/s)),
which equals exp(−Ω(s)) when c > 0 is sufficiently small.

The claim follows. (Indeed, in the first case expansion was proved based on the edges of the fixed
Hamiltonian cycle, whereas in the second case expansion was proved based on the edges of the
random perfect matching.)

Claim 9.18.2 (indistinguishability by o(
√

k)-query algorithms): Let G′1 denote the set of k-vertex
graphs that consist of two isolated k/2-vertex graphs taken from the k/2-vertex version of G1. Then,
a q-query can distinguish between a graph chosen uniformly at random in G1 and a graph chosen
uniformly in G′1 with gap of at most q2/k.

Claim 9.18.2 follows by noting that the argument used in the proof of Claim 9.16.2 extends to G′1;
that is, a q-query algorithm re-visited an old vertex (i.e., obtain an answer that is already in its
knowledge graph) when inspecting a random graph drawn uniformly from G′1, with probability at
most q2/k. Note that as long as no old vertex is re-visited, the two distributions of answers are
identical. Using Claim 9.18.1, the theorem follows.

9.3.3 Linear lower bounds

While the Ω
√

k) lower bounds capitalize on the difficulty of detecting a cycle in the graph (or,
equivalently, on the difficulty of reaching the same vertex in two non-trivially different ways), this
strategy is unlikely to work for obtaining higher lower bounds. Indeed, different methods are used
for obtaining results of the following type.

Theorem 9.19 (lower bound on the complexity of testing 3-Colorability (in the bounded-degree
graph model)): For some proximity parameter ǫ > 0 and a degree bound d, testing 3-Colorability

requires Ω(k) queries.

26That is, H2 : [0, 1] → [0, 1] such that H2(p) = p log(1/p) + (1 − p) log(1/(1 − p)).
27In the ith iteration of this process, we pick an unmatched vertex in S′ and match it at random to an unmatched

vertex, calling this choice successful if the latter vertex is in S. Observe that at the beginning of the ith iteration
exactly 2(i − 1) vertices are matched, and if all prior iterations were successful then these matched vertices are all
in S. We upper-bound the probability of success in the first (s − cs)/2 steps, although the process continues till all
vertices in S′ are matched.
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The proof of Theorem 9.19 can be found in [61]. Here we only sketch an alternative proof, also due
to [61], that only applies to the one-sided error case. We note that this proof exhibits a general trade-
off between ǫ ∈ (0, 1/3) and d ≥ 3 (and the constant that is hidden in the Ω-notation). We note
that 1/3-testing 3-Colorability is trivial, since every graph is 1/3-close to being 3-colorable.28

Proof outline for the one-sided error case: Let ǫ : N → (0, 1/3) and ρ : N → (0, 1). The
basic idea is that, for every d ≥ 3, the exist d-regular k-vertex graphs that, one the one hand, are
ǫ(d)-far from being 3-colorable but, on the other hand, all their ρ(d) · k-vertex induced subgraphs
are 3-colorable. Such a graph must be rejected with probability at least 2/3 by any ǫ(d)-tester, but
if this tester rejects without seeing a subgraph that is not 3-colorable, then it is not of the one-sided
error type (because it would reject with positive probability a graph that consists of that subgraph
and k− ρ(d) · k isolated vertices). Hence, all that is left is to show the existence of graphs with the
aforementioned property.

We shall show that such graphs exist, by showing that a random d-regular graph satisfies the
aforementioned property, with very high probability. Actually, it will be instructive to consider a
random d-regular multi-graph (which may contain parallel edges), and note that if it satisfies the
property, then so does the graph obtained from it by omitting parallel edges (which are extremely
few in number).

Claim 9.19.1 (a random d-regular graph is far from being 3-colorable): Suppose that G = ([k], E)
is generated by taking the union of d random perfect matching of the elements of [k]. If d =
Ω(((1/3)−ǫ)−2), then, with probability at least 1−exp(−Ω(k)), the graph G is ǫ-far from 3-colorable.

The proof of Claim 9.19.1 is rather technical and can be found in [61]. It uses a union bound over
all 3k possible 3-partitions of [k], denoted (V1, V2, V3), and upper-bounds (for each such 3-partition)
the probability that at most ǫdk/2 of the edges have endpoints in the same Vi. Analyzing the
latter event would have been easy if the dk/2 edges were selected independent of one another.
In such a case, we would have had dk/2 independent events, each succeeding with probability∑

i∈[3]
(|Vi|

2

)
/
(k
2

)
> (1/3)− o(1), and (by a Chernoff bound) the probability of having at most ǫdk/2

successes is exp(−Ω(((1/3) − o(1)− ǫ)2dk)).

Claim 9.19.2 (a random d-regular graph has large 3-colorable subgraphs): Let G be as in Claim 9.19.1.
For ρ = poly(1/d), with probability at least 1 − exp(−Ω(ρ · k)), the subgraph of G induced by any
set of ρk vertices is 3-colorable.

The proof of Claim 9.19.2 reduces to showing that for any set S of at most ρk vertices, the subgraph
induced by S, denoted GS , contains a vertex of degree less than three. Again, the actual proof is
technical (see [61]).29 The claim follows by considering a minimal set S of size at most ρk such that

28Note that a random assignment of three colors to the vertices of the graph G = ([k], E) is expected to have
exactly |E|/3 monochromatic edges.

29
Advanced comment: We upper-bound the probability that a subgraph induced by a set of s = ρk vertices has

no vertex of degree lower than three. We actually upper-bound the probability that such a set has at least m = 3s/2
edges, by using a union bound on all

`

k
s

´

= O(k/s)s possible choices of this set of vertices. For each such choice of s

vertices, we upper-bound the probability that the induced subgraph has m edges by
`(s

2)
m

´

·Qm−1
i=0 (d/(k − 2i)), which

is upper-bounded by O(s2/m)m · (2d/k)m = O(s2d/mk)m. Hence, the union bound gives

O(k/s)s · O(s2d/mk)m = O(k/s)s ·O(s2d/sk)1.5s
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GS is not 3-colorable, and reaching a contradiction by using the fact that this set contains a vertex
v of degree at most two in GS (since, by minimality, GS\{v} is 3-colorable, but then contradiction
is reached by extending this 3-coloring to GS).

9.4 Testing by random walks

The testers presented in this section are based on taking “random walks on the input graph” (defined
momentarily). The intuition is that such walks may provide information that extends beyond what
can be deduced based on local searches. It is not a priori clear whether this additional information
may be beneficial to our (testing) goals, but for sure taking a random walk is a natural thing to
try if one wants to get beyond local searches and still maintain sublinear complexity.

By a random walk of length ℓ on a graph G = ([k], E) we mean a path (v0, ..., vℓ) in G selected
at random such that v0 is uniformly distributed in [k] and vi is uniformly distributed among the
neighbors of vi−1.

As noted at the beginning of Section 9.3, we focus on the case of d ≥ 3, since when d ≤ 2 the
graph consists of a collection of isolated paths and cycles, and any graph property of interest are
either trivial or easy to test in that case.

9.4.1 Testing Bipartiteness

The executive summary is that the lower bound of Theorem 9.16 is essentially tight; that is, for
every constant ǫ > 0, Bipartiteness can be ǫ-tested in Õ(

√
k) queries. Furthermore, the following

algorithm constitutes a Bipartite tester of running time poly((log k)/ǫ) ·
√

k. Essentially, the
algorithm selects a random start vertex, takes Õ(

√
k) random walks from it, each of poly(ǫ−1 log k)-

length, and accepts if and only if the subgraph explored in these walks is bipartite.

The natural question is why does this algorithm reject graphs that are far from being bipartite.
The intuitive answer is as follows. Fixing a start vertex s, if many vertices are reached by an
odd-length random walk from s with about the same probability as by an even-length random walk
from s, then (with high probability) an odd-length cycle will be formed in the explored subgraph,
and the algorithm will reject. Otherwise, we can color each vertex according to the more frequent
parity of the random walk in which the vertex is reached, and infer that there are relatively few
monochromatic edges. Hence, if the graph is far from being bipartite, then the algorithm will reject
with high probability. This intuition will be implemented in Claims 9.21.3 and 9.21.2, respectively.
But before doing so, let us spell out the algorithm.

Algorithm 9.20 (testing Bipartiteness (in the bounded-degree graph model)): On input d, k,
ǫ and oracle access to an incidence function of an k-vertex graph, G = ([k], E), of degree bound d,

repeat the following steps t
def
= Θ(1

ǫ ) times:

1. Uniformly select s in [k].

2. (Try to find an odd-length cycle through vertex s):

= O(sd3/k)0.5s

and the claim follows.
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(a) Perform m
def
= poly((log k)/ǫ) ·

√
k random walks starting from s, each of length ℓ

def
=

poly((log k)/ǫ).

(b) Let R0 (respectively, R1) denote the set of vertices reached from s in an even (respec-
tively, odd) number of steps in any of these walks. That is, assuming that ℓ is even,
for every such walk (s = v0, v1, ..., vℓ), place v0, v2, ..., vℓ in R0 and place v1, v3, ..., vℓ−1

in R1.

(c) If R0 ∩R1 is not empty, then reject.

If the algorithm did not reject in any of the foregoing t iterations, then it accepts.

The time (and query) complexity of Algorithm 9.20 is t ·m · ℓ · log d = poly(1/ǫ) · Õ(
√

k), where
the log d factor is due to determining the degree of each vertex encountered in the random walk
(before selecting one of its neighbors at random). It is evident that the algorithm always accepts a
bipartite graph. Furthermore, Algorithm 9.20 can be easily modified so that in case of rejection it
outputs an odd-length cycle of length poly((log k)/ǫ), which constitutes a “witness” that the graph
is not bipartite. The difficult part of the analysis is proving the following.

Theorem 9.21 (Algorithm 9.20 is a Bipatitenss tester (for the bounded-degree graph model)):
If the input graph is ǫ-far from being bipartite, then Algorithm 9.20 rejects with probability at
least 2/3.

The proof of Theorem 9.21 is quite involved. We shall only provide a proof of the “rapid mixing”
case, and hint at the ideas used towards extending this proof to the general case.

The special case of rapid mixing graphs. We consider the special case in which the input
graph has a “rapid mixing” feature (defined next). Towards the analysis, it is convenient to modify
the random walks so that at each step each neighbor is selected with probability 1/2d, and otherwise
(with probability at least 1/2) the walk remains in the present vertex. Such a modified random
walk is often called a lazy random walk. Indeed, using a lazy random walk, the next vertex on a
walk can be selected at unit cost (rather than at log d cost, which is required for determining the
degree of the current vertex).

We will consider a single execution of Step 2, starting from an arbitrary vertex, s, which is fixed
for the rest of the discussion. (Indeed, in this special case it suffices to execute Step 2 once and
the start vertex s may be arbitrary (i.e., it need not be selected at random).) The rapid mixing
feature that we assume here is that, for every vertex v, a lazy random walk of length ℓ starting at
s reaches v with probability approximately 1/k (say, up-to a factor of 2).

Definition 9.21.1 (the rapid mixing feature): Let (v1, ..., vℓ) ← RWℓ be an ℓ-step lazy random

walk (on G = ([k], E)) starting at v0
def
= s; that is, for every {u, v} ∈ E and every i ∈ [ℓ], it holds

that

Pr(v1,...,vℓ)←RWℓ
[vi = v|vi−1 = u] =

1

2d
(9.3)

Pr(v1,...,vℓ)←RWℓ
[vi = u|vi−1 = u] = 1− dG(u)

2d
(9.4)
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where dG(u) denotes the degree of u in G. Then, the graph G is said to be rapidly mixing if, for
every v0, v ∈ [k], it holds that

1

2k
< Pr(v1,...,vℓ)←RWℓ

[vℓ = v] <
2

k
(9.5)

Indeed, Eq. (9.3) refers to moving to a neighbor of the current vertex, whereas Eq. (9.4) refers to
staying at the current vertex. Note that if the graph is an expander, then it is rapidly mixing (since
ℓ = ω(log k)).

The key quantities in the analysis are the following probabilities that refer to the parity of the
length of a path obtained from the lazy random walk by omitting the self-loops (transitions that
remain at the current vertex). Let p0(v) (respectively, p1(v)) denote the probability that a lazy
random walk of length ℓ, starting at s, reaches v while making an even (respectively, odd) number
of real (i.e., non-self-loop) steps. That is, for every σ ∈ {0, 1} and v ∈ [k],

pσ(v)
def
= Pr(v1,...,vℓ)←RWℓ

[vℓ =v ∧ |{i ∈ [ℓ] : vi 6= vi−1}| ≡ σ (mod 2)]. (9.6)

The path-parity of the walk (v1, ..., vℓ) is defined as |{i ∈ [ℓ] : vi 6= vi−1}| mod 2.

By the rapid mixing assumption (for every v ∈ [k]), it holds that

1

2k
< p0(v) + p1(v) <

2

k
(9.7)

We consider two cases regarding the sum
∑

v∈[k] p0(v)p1(v): If the sum is (relatively) “small”, then
we show that [k] can be 2-partitioned so that there are relatively few edges between vertices that
are placed in the same side, which implies that G is close to being bipartite. Otherwise (i.e., when
the sum is not “small”), we show that, with high probability, when Step 2 is started at vertex s,
it is completed by rejecting G. These two cases are analyzed in the following two (corresponding)
claims.

Claim 9.21.2 (a small sum implies closeness to being bipartite): Suppose
∑

v∈[k] p0(v)p1(v) ≤
0.01ǫ/k. Let V1

def
= {v ∈ [k] : p0(v) < p1(v)} and V2 = [k] \ V1. Then, the number of edges with

both end-points in the same Vσ is bounded above by ǫdk/2, which implies that G is ǫ-close to being
bipartite.

Proof Sketch: Consider an edge {u, v} such that both u and v are in the same Vσ, and assume,
without loss of generality, that σ = 1. Then, by the (lower bound of the) rapid mixing hypothesis,
both p1(v) and p1(u) are greater than 1

2 · 1
2k . Using the hypothesis that u and v are connected

in G, we infer that p0(v) > 1
3d · p1(u). Intuitively, this is the case because (1) if an (ℓ − 1)-step

walk reaches u, then, with probability exactly 1/2d, it continues to v in the next step; and (2) for
our purposes, an (ℓ− 1)-step random walk behaves like an ℓ-step random walk. Indeed, using the
following two observations, we infer that p0(v) > 1

3d · p1(u):

1. If an (ℓ − 1)-step walk reaches u, then, with probability exactly 1/2d, it continues to v in
the next step. Hence, p0(v) ≥ p′1(u)/2d, where p′1(u) denotes the probability that an (ℓ− 1)-
step lazy random walk (starting at s) reaches v while making an odd number of real (i.e.,
non-self-loop) steps.
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2. An (ℓ − 1)-step random walk of path-parity 1 ending at u is almost as likely as an ℓ-step
random walk of path-parity 1 ending at u; that is, it holds that p′1(u) ≈ p1(u), where p′1(u) is
as in Observation 1.

This can be shown by noting that if we take a random (ℓ− 1)-step walk of the type measured
in p′1(u) and insert a “staying in place” step at a random location in it, then we obtain a
distribution that is very close to the one measured in p1(u): see Exercise 9.11 for details.

Thus, the edge {u, v} contributes at least p1(u)
3d · p1(v) ≥ (1/4k)2

3d to the sum
∑

w∈[k] p0(w)p1(w).
More formally, we have

∑

v∈[k]

p0(v)p1(v) =
∑

σ∈{0,1}

∑

v∈Vσ

p1−σ(v)pσ(v)

≥
∑

σ∈{0,1}

∑

v∈Vσ

∑

u∈Vσ:{u,v}∈E

p′σ(u)

2d
· pσ(v)

>
∑

σ∈{0,1}

∑

v∈Vσ

∑

u∈Vσ:{u,v}∈E

pσ(u)

3d
· pσ(v)

≥
∑

σ∈{0,1}
|{{u, v} ∈ E : u, v ∈ Vσ}| ·

(1/4k)2

3d

where the first inequality is due to Observation 1, the second inequality is due to Observation 2,
and the third inequality is due to the rapid mixing hypothesis. Using the claim’s hypothesis, it
follows that we can have at most 0.01ǫ/k

1/(48dk2)
< ǫdk/2 such edges (i.e., edges with both endpoints in

same Vσ), and the claim follows.

Claim 9.21.3 (a large sum implies high rejection probability): Suppose
∑

v∈[k] p0(v)p1(v) ≥
0.01ǫ/k, and that Step 2 is executed with start vertex s. Then, for m ≥ 25

√
k/ǫ, with probability

at least 2/3, the set R0 ∩R1 is not empty (and rejection follows).

Proof: Consider the probability space defined by an execution of Step 2 (with start vertex s). For
every i 6= j such that i, j ∈ [m], we define an indicator random variable ζi,j representing the event
that the vertex encountered in the ℓth step of the ith walk equals the vertex encountered in the ℓth

step of the jth walk, and that the ith walk has an even path-parity whereas the jth walk has an odd
path-parity. (That is, ζi,j = 1 if the foregoing event holds, and ζi,j = 0 otherwise.) Recalling the
definition of the pσ(v)’s, observe that Pr[ζi,j =1] =

∑
v∈[k] p0(v)p1(v). Hence,

∑

i6=j

E[ζi,j] = m(m− 1) ·
∑

v∈[k]

p0(v)p1(v)

>
600k

ǫ
·
∑

v∈[k]

p0(v)p1(v)

≥ 6

where the first inequality is due to the setting of m, and the second inequality is due to the claim’s
hypothesis. On the other hand, note that Pr[|R0 ∩R1|>0] ≥ Pr[

∑
i6=j ζi,j >0], since whenever the
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event captured by ζi,j holds it is the case that the endpoints of the ith and jth paths are equal and
this common vertex is in R0 ∩R1.

Intuitively, the sum of the ζi,j’s should be positive with high probability, since the expected
value of the sum is large enough and the ζi,j’s are “sufficiently independent” (almost all pairs of
ζi,j’s are independent). The intuition is indeed correct, but proving it is less straightforward than
it seems, since the ζi,j’s are not pairwise independent.30 Yet, since the sum of the covariances of
the dependent ζi,j’s is quite small, Chebyshev’s Inequality is still very useful (cf. [22, Sec. 4.3]).

Specifically, letting µ
def
= E[ζi,j] =

∑
v∈[k] p0(v)p1(v), and ζi,j

def
= ζi,j − µ, we get:

Pr



∑

i6=j

ζi,j = 0


 <

V

[∑
i6=j ζi,j

]

(m(m− 1) · µ)2

=
1

m2(m− 1)2µ2
·

∑

i1 6=j1,i2 6=j2

E
[
ζi1,j1ζi2,j2

]

We partition the terms in the last sum according to the number of distinct indices appearing in each
term such that, for t ∈ {2, 3, 4}, we let (i1, j1, i2, j2) ∈ St ⊆ [m]4 if and only if |{i1, j1, i2, j2}| = t
(and i1 6=j1 ∧ i2 6=j2). Hence,

Pr



∑

i6=j

ζi,j = 0


 <

1

m2(m− 1)2µ2
·
∑

t∈{2,3,4}

∑

(i1,j1,i2,j2)∈St

E
[
ζi1,j1ζi2,j2

]
(9.8)

Now, note that if i1 = j2 (resp., i2 = j1), then E[ζi1,j1ζi2,j2] ≤ E[ζi1,j1ζi2,j2] = 0, where the equality
is due to the fact that in this case ζi1,j1 = 1 and ζi2,j2 = 1 make conflicting requirements of the
path-parity of walk number i1 = j2 (resp., i2 = j1).

31 Hence, rather than summing over the St’s,
we can sum over the coreresponding subsets S′t’s that contain only tuples (i1, j1, i2, j2) ∈ St such
that i1 6=j2 ∧ i2 6=j1. Furthermore, the contribution of each element in S′4 = S4 to the sum is zero,
since the four walks are independent and so E[ζi1,j1ζi2,j2] = E[ζi1,j1] · E[ζi2,j2] = 0. Plugging all of
this into Eq. (9.8), we get

Pr



∑

i6=j

ζi,j = 0


 <

1

m2(m− 1)2µ2
·
∑

t∈{2,3}

∑

(i1,j1,i2,j2)∈S′t

E
[
ζi1,j1ζi2,j2

]

=
1

m2(m− 1)2µ2
·



∑

i6=j

E

[
ζ
2
i,j

]
+

∑

i1,i2,i3:|{i1,i2,i3}|=3

(
E
[
ζi1,i2ζi1,i3

]
+ E

[
ζi1,i2ζi3,i2

])



<
m(m− 1) · µ + m(m− 1)(m− 2) · (E[ζ1,2ζ1,3] + E[ζ1,2ζ3,2])

m2(m− 1)2µ2

<
1

(m− 1)2µ
+

1

(m− 1)µ2
· (E[ζ1,2ζ1,3] + E[ζ1,2ζ3,2])

30Indeed, if the ζi,j ’s were pairwise independent, then a straightforward application of Chebyshev’s Inequality
would do.

31Recall that ζi1,j1 = 1 requires that the ith1 walk has even path-parity, whereas ζi2,j2 = 1 requires that the jth2
walk has odd path-parity, and these requirements conflict when i1 = j2. Ditto for the ith2 and jth1 walks when i2 = j1.
We also used the inequality E[(X −E[X]) · (Y −E[Y ])] ≤ E[XY ], which holds for any non-negative random variables
X and Y , and the equality E[XY ] = Pr[X = Y = 1], which holds for any 0-1 random variables.
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where in the second inequality we use E[ζ
2
i,j] ≤ E[ζ2

i,j] = µ and E[ζi1,j1ζi2,j2] ≤ E[ζi1,j1ζi2,j2]. For the
second term, we observe that E[ζ1,2ζ1,3] = Pr[ζ1,2 = ζ1,3 =1] is upper-bounded by Pr[ζ1,2 =1] = µ
times the probability that the ℓth vertex of the third walk appears as the ℓth vertex of the first path,
since ζ1,3 = 1 mandates the latter event. Using the (upper bound of the) rapid mixing hypothesis,
we upper-bound the latter probability by 2/k, and obtain E[ζ1,2ζ2,3] ≤ µ·2/k. (Ditto for E[ζ1,2ζ3,2].)
Hence,

Pr[|R0 ∩R1| = 0] <
1

(m− 1)2µ
+

2

(m− 1)µ2
· 2µ

k

=
1

(m− 1)2µ
+

4

(m− 1)µk

<
1

3

where the last inequality uses µ ≥ 0.01ǫ/k and (m − 1)2 ≥ 600k/ǫ (along with m > 2400/ǫ). The
claim follows.

Beyond rapid mixing graphs (an overview). For starters, suppose that the graph consists
of several connected components, each having the rapid mixing property. Then, we can apply the
foregoing argument to each connected component separately. Note that, already in this case, it is
important that we select a start vertex at random, since some of the connected components may be
bipartite (e.g., it may be that only an O(ǫ) fraction of the vertices reside in connected components
that are Ω(1)-far from being bipartite). But otherwise, the extension is straightforward. We define
a sum of the foregoing type (i.e.,

∑
v p0(v)p1(v)) for each connected components, and argue as in

Claims 9.21.2 and 9.21.3.
Intuitively, the same strategy should work also if these “strongly connected components” (which

each have the rapid mixing property) are actually connected by relatively few edges, however things
are less straightforward in this case. For starters, a random walk can exit such component (and
enter a different component that is connected to it), and the definition of pσ(v) should be adapted
accordingly. More importantly, we cannot assume that the graph has such a structure, but should
rather impose an adequate structure on it. Indeed, this is the complicated part of the analysis.

Teaching note: The following three paragraphs provide additional hints regarding the ideas used towards

extending the proof from the special case of rapid mixing to the general case. These paragraphs are terse

and abstract and may be hard to follow. An illustration of the basic strategy appears in the guidelines of

Exercise 9.10, which addresses a much weaker claim.

The proof in [148] refers to a more general sum of products; that is,
∑

u∈U podd(u)peven(u),
where U ⊆ [k] is an appropriate set of vertices, and podd(v) (respectively, peven(v)) is essentially the
probability that an ℓ-step random walk (starting at s) passes through v after more than ℓ/2 steps
and the corresponding path to v has odd (respectively, even) parity. Note that these probabilities
refers to the vertices visited in the last ℓ/2 steps of the walk rather than to the very last vertex
visited in it, and this change is done in order to account for walks that leave U (and possibly return
to it at a later stage).

Much of the analysis in [148] goes into selecting the appropriate U (and an appropriate starting
vertex s), and pasting together many such U ’s to cover all of [k]. Loosely speaking, U and s are
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selected so that there are few edges from U to the rest of the graph, and podd(u) + peven(u) ≈
1/
√

k · |U |, for every u ∈ U . The selection is based on the “combinatorial treatment of expansion”
of Mihail [208]. Specifically, it uses the contrapositive of the standard analysis, which asserts that
rapid mixing occurs when all cuts are relatively large, to assert that the failure of rapid mixing
yields small cuts that partition the graph so that vertices reached with relatively high probability
(in a short random walk) are on one side and the rest of the graph is on the other side. The first
set corresponds to the aforementioned U , and the cut is relatively small with respect to the size of
U . A start vertex s for which the corresponding sum is big is shown to cause Step 2 to reject (when
started with this s), whereas a small corresponding sum enables to 2-partition U while having few
violating edges among the vertices in each part of U .

The actual argument of [148] proceeds in iterations. In each iteration a vertex s for which Step 2
accepts with high probability is fixed, and an appropriate set of remaining vertices, U , is found.
The set U is then 2-partitioned so that there are few violating edges inside U . Since we want to
paste all these partitions together, U may not contain vertices treated in previous iterations. This
complicates the analysis, since the analydis must refer to the part of G, denoted H, not treated in
previous iterations. We consider walks over an (imaginary) Markov Chain representing the H-part
of the walks performed by the algorithm on G. Statements about rapid mixing are made with
respect to this Markov Chain, and are related to what happens in random walks performed on G.
In particular, a subset U of H is determined so that the vertices in U are reached with probability
≈ 1/

√
k · |U | (in the chain) and the cut between U and the rest of H is small. Relating the sum

of products defined for the chain to the actual walks performed by the algorithm, we infer that
U may be partitioned with few violating edges inside it. Edges to previously treated parts of the
graphs are charged to these parts, and edges to the rest of H \ U are accounted for by using the
fact that this cut is small (relative to the size of U). A simplified version of this argument appears
in the guideline for Exercise 9.10.

9.4.2 One-sided error tester for Cycle-freeness

Recall that, by Theorem 9.17, a one-sided error testers for Cycle-freeness requires Ω(
√

k) queries.
Here, we show that this lower bound can be almost met.

Theorem 9.22 (one-sided error tester for Cycle-freeness, in the bounded-degree graph model):
Cycle-freeness has a one-sided error tester of time (and query) complexity poly(d/ǫ) · Õ(

√
k).

As in the case of the tester for Bipartiteness, the asserted tester can be modified so that in case
of rejection it outputs a cycle of length poly((d log k)/ǫ). Hence, this one-sided error tester yields
an algorithm for finding (relatively short cycles) in graphs that are ǫ-far from being cycle-free. See
further discussion following the proof (i.e., right after Problem 9.23).

Proof: The proof is by a randomized (local) reduction of testing Cycle-freeness to testing
Bipartiteness, where the notion of such a reduction was presented in Section 7.4 and will be
reviewed (and modified) below. But before doing so, let us provide some intuition.

Given a graph G = ([k], E), which we wish to test for cycle-freeness, we shall map it at random
to a graph G′ = (V ′, E′) such that cycle-free graphs are mapped to bipartite graphs, whereas graphs
that are far from being cycle-free are mapped (with high probability) to graphs that are far from
being bipartite. Specifically, we shall map G = ([k], E) at random to a graph G′ = (V ′, E′) by
making, for each edge of G, a random choice on whether to keep this edge in G′ or to replace it by
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a 2-path (with a new auxikiary vertex). That is, with probability 1/2, the edge e = {u, v} is kept
as is, and otherwise it is replaced by the edges {u, ae} and {ae, v}, where ae is an auxiliary vertex
that is connected (only) to u and v. Note that if G is cycle-free then so is G′, which implies that G′

is bipartite. On the other hand, with probability 1/2, each cycle in G is mapped to an odd-length
cycle in G′. We shall show that, with high probability, the random transformation maps graphs
that are far from being cycle-free to graphs that are far from being bipartite.

Formally, for any function τ : E → {1, 2}, we denote by Gτ the graph obtained from G by
replacing each edge e ∈ E such that τ(e) = 2 by a 2-edge path (with an auxiliary intermediate
vertex), and keeping the edge in Gτ otherwise (i.e., if τ(e) = 1). That is, the graph Gτ = (Vτ , Eτ )
is defined as follows:

Vτ
def
= [k] ∪ {ae : e∈E ∧ τ(e)=2}

Eτ
def
= {e : e∈E ∧ τ(e)=1} ∪ {{u, ae}, {ae, v} : e = {u, v}∈E ∧ τ(e)=2}.

Hence, G′ is obtained by selecting τ : E → {1, 2} uniformly at random, and letting G′ = Gτ .
Suppose that G is cycle-free. Then, for any choice of τ (i.e., with probability 1 over all possible

choices of τ), the resulting graph Gτ is also cycle-free, which implies that Gτ is bipartite. On
the other hand, if G is not cycle-free, then, each of its cycles is mapped to an odd-length cycle
(in Gτ ) with probability 1/2. Hence, with probability at least 1/2, the graph Gτ is not bipartite.
However, we need to prove more than that in order to reduce testing Cycle-freeness to testing
Bipartitness. Indeed, we shall show that if G is ǫ-far from Cycle-freeness, then, with high
probability, the graph Gτ is Ω(ǫ)-far from Bipartitness.

Lemma 9.22.1 (analysis of the foregoing reduction): Suppose that G is ǫ-far from Cycle-freeness.
Then, with positive constant probability over the choice of τ , the graph Gτ is Ω(ǫ/d)-far from
Bipartitness.

The error probability can be made arbitrary small by invoking the reduction sufficiently many
times, and considering a single graph composed of the graphs obtained in the various invocations.
(This may reduce the constant hidden in the Ω-notation by a factor related to the constant success
probability that is asserted in the Lemma 9.22.1.)

Proof Sketch: Let ∆ ≥ |E|−(k−1) denote the actual number of edges that should be omitted from
G in order to obtain a cycle-free graph. We shall show that, with probability 1− exp(−Ω(∆)) over
the choice of τ , the number of edges that should be omitted from Gτ in order to obtain a bipartite
graph is Ω(∆).

The basic intuition is that the interesting case is when all vertices of G are of degree at least 3,
in which case ∆ > k/2. This is so because vertices of degree 1 and 2 (in G) do not really matter:
Vertices of degree 1 do not participate in any cycle, and their removal from the graph does not
change ∆, while it reduces |E| and k (by a similar amount). Vertices of degree 2 are intermediate
vertices on paths or cycles, and these paths or cycles act as a single edge, where in the anaylysis
(which is a mental experiment) we allow also multiple edges and self-loops. (See more details at
the end of the proof.)

The benefit of focusing on the case of ∆ > k/2 is that in this case we can afford to perform a
union bound on all possible 2-partitions of the vertex-set of G = ([k], E). Specifically, for each such
partition, we show that, with probability at least 1−2−k−Ω(∆) over the choice of τ , there exist more

than m
def
= Ω(∆) edges that are inconsistet with that partition (under τ), where an edge e = {u, v}
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is inconsistent with the partition (V1, V2) under τ if either u, v ∈ Vi and τ(e) = 1 or (u, v) ∈ V1 × V2

and τ(e) = 2. Applying a union bound, it follows that, with probability at least 1− 2−Ω(∆), more
than m edges should be omitted from Gτ in order to obtain a bipartite graph. Details follow.

We focus on the case that G is connected, where ∆ = |E| − (k − 1), leaving the general case
to the reader (see Exercise 9.12). Fixing any partition (V1, V2) of [k], observe that the probability,
over a random choice of τ , that s specific edges are all consistent with (V1, V2) under τ equals 2−s,
since for each edge e the value of τ(e) that is consistent with (V1, V2) is uniquely determined (i.e.,
if {u, v} is consistent with (V1, V2) under τ , then τ({u, v}) = 2 if u and v are in the same Vi,
and τ({u, v}) = 1 otherwise). Using a union bound (on all sets of m edges) it follows that the
probability, over a random choice of τ , that at most m edges of G = ([k], E) are inconsistent with
(V1, V2) under τ is at most

(|E|
m

)
· 2−(|E|−m), (9.9)

Using |E| = k + ∆− 1 and m = c ·∆, Eq. (9.9) yields

(
k + ∆− 1

c ·∆

)
· 2c·∆−k−∆+1 = 2−k+1 ·

(
k + ∆− 1

c ·∆

)
· 2−(1−c)·∆

< 2−k+1 ·
(

3∆

c ·∆

)
· 2−(1−c)·∆

≈ 2−k+1 · 2H2(c/3)·3∆ · 2−(1−c)·∆

where the inequality is due to ∆ > k/2. Hence, any choice of c > 0 that satisfies 3H2(c/3) + c < 1
will do. (The foregoing argument assumes a sufficiently large k, but otherwise we can just use the
fact that with probability at least 1/2 the graph Gr is not bipartite.)

It is left to justify the focus on graphs G in which all vertices are of degree at least 3. Formally,
we show that graphs G that do not satisfy this condition can be transformed into graphs that do
satisfy this condition, while preserving ∆ as well as (the distribution of) the number of edges that
have to be removed from Gτ to make it bipartite. As hinted at the beginning of this proof, vertices
of degree 1 are irrelevant and can be removed from the graph G (along with the edges that connects
them to the rest of G). As for vertices of degree 2, we contract paths (and cycles) that only contain
intermediate vertices of degree 2 to a single edge, while noting that the resulting graph may have
parallel edges and self-loops. We note, however, that the foregoing argument is oblivious to this fact
(i.e., it applies also to such non-simple graphs). The key observation is that the effect of applying
the reduction to a t-path (resp., t-cycle) is identical to applying it to the resulting edge: In both
cases, the reduction yields a path (resp., cycle) that has odd-length with probability exactly half.
The lemma follows.

On the locality of the reduction. Lemma 9.22.1 asserts that the foregoing reduction preserves dis-
tances in the sense that instances that are far from one property are mapped (with high probability)
to instances that are far from the second property. (We also noted that instances that have the
first property are mapped to instances that have the second property.) But this does not suffice
for a reduction between the corresponding testing problems: Towards that end, we have to show
that the reduction preserves the query complexity. Typically, this is done by showing that each
query of the tester of the second property can be answered by few queries to the instance of the
first problem.
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All these conditions are summarized in the definition of randomized reductions that was pre-
sented in Section 7.4. Here, we reproduce this definition (i.e., Definition 7.17) while adapting it to
the current context.

Definition 9.22.2 (randomized local reductions, specialized): Let Πn and Π′n be sets of functions
that represent graph properties in the bounded-degree model as in Definition 9.1; that is, the function
g : Dn → Rn, where Dn = [n/d] × [d] and Rn = {0, 1, ..., n/d}, represents an n/d-vertex graph of
degree bound d. A distribution of mappings Fn from the set of functions {f : Dn → Rn} to the
set of functions {f ′ : Dn′ → R′n′} is called a randomized q-local (ǫ, ǫ′)-reduction of Πn to Π′n′ if for
every f : Dn → Rn the following conditions hold with probability at least 5/6 when the mapping Fn

is selected according to the distribution Fn.

1. Locality (local reconstruction): There exist randomized algorithms Qn : Dn′ → (Dn)q and
Vn : Dn′ ×Rq

n → R′n′ , which may depend on Fn, such that for every e ∈ Dn′ it holds that

Pr(e1,...,eq)←Qn(e)[Vn(e, f(e1), ..., f(eq)) = (Fn(f))(e)] ≥ 2/3. (9.10)

2. Preservation of the properties: If f ∈ Πn, then Fn(f) ∈ Π′n′ .

3. Partial preservation of distance to the properties: If f is ǫ-far from Πn, then Fn(f) is ǫ′-far
from Π′n′ .

If Condition 2 holds for all Fn’s and Eq. (9.10) holds with probability 1, then the reduction is said
to have one-sided error.

Hence, if f ∈ Πn (resp., if f is ǫ-far from Πn), then, with probability at least 5/6, over the choice
of Fn, Conditions 1 and 2 both hold (resp., Conditions 1 and 3 both hold).

As hinted above, Lemma 9.22.1 asserts that the randomized mapping from Cycle-freeness

to Bipartitness satisfies Conditions 2 and 3 of Definition 9.22.2. Furthermore, the reduction has
one-sided error (since Condition 2 holds for all Fn’s), and so employing it preserves the one-sided
error of the tester for Bipartiteness. Unfortunately, this randomized mapping does not seem
to satisfy Condition 1. For starters, when applying the reduction to G = ([k], E), the number of
vertices in the reduced graph, Gτ = (Vτ , Eτ ), is not a fixed function of k (but is rather a random
variable that varies with τ). In addition, there is no simple mapping between Vτ and [|Vτ |]. This
means that, formally speaking, the representation of Gτ does not fit Definition 9.1. Nevertheless,
we overcome this difficulty by directly emulating the tester for Bipartitness that was presented
in Section 9.4.1, while capitalizing on some of its features.

Specifically, we observe that the tester for Bipartitness that was presented in Section 9.4.1
does not make arbitrary queries. It rather performs two types of operations: (1) it selects uniformly
a vertex in the graph, and (2) given a vertex name, it selects uniformly one of its neighbours. Hence,
it suffices to locally implement both these operations. Firstly, we select uniformly τ :

([k]
2

)
→ {1, 2}

(and use it rather than τ : E → {1, 2} used in our description). Next, we note that it is easy to
determine the ith neighbor of a vertex in Gτ by making the corresponding query to G (i.e., query its
incidence function g); specifically, for v ∈ [k] and i ∈ [d], we have gτ (v, i) = g(v, i) if either g(v, i) = 0
or τ({v, g(v, i)}) = 1, and gτ (v, i) = a{v,g(v,i)} otherwise (i.e., if w = g(v, i) ∈ [k] and τ({v,w}) = 2),
whereas for e = {u,w} ∈ E such that τ(e) = 2 it holds that {gτ (ae, 1), gτ (ae, 2)} = {u,w}. (Indeed,

238



gτ denotes the incidence function of Gτ .)32 Now, to select a random neighbor of v ∈ Vτ with uniform
probability distribution, we just retrieve all its neighbors (and select one of them at random).33

Selecting at random a vertex in Vτ (with uniform probability distribution) is slightly more complex,
and is done as follows (using the “repeated sampling” paradigm):

1. First, we select uniformly at random an identifier w ∈ [k]∪ ([k]× [d]) of a potential vertex in
Vτ . If w ∈ [k], then we just output it (and are done).

2. Otherwise (i.e., w ∈ ([k] × [d])), we let w = (v, i) and query G for the ith neighbor of v (i.e.,
we query its incidence function g).

(a) If v has less than i neighbors (i.e., g(v, i) = 0), then we stop with no output.

(b) Otherwise, letting u = g(v, i) be the ith neighbor of v, we check whether u < v and
τ({u, v}) = 2. If both conditions are satisfied, we output the vertex a{u,v}, and otherwise
we halt with no output.

Note that each vertex in Vτ is output with probability 1/(k +dk): A vertex w ∈ [k] is output if and
only if it was selected in Step 1, whereas a vertex a{u,v} is output in Step 2 if and only if w = (v, i)
was selected in Step 1 and it holds that g(v, i) = u < v and τ({u, v}) = 2. (In particular, a{u,v} is
output only if τ({u, v}) = 2, and in that case it is output if and only if (v, i) was chosen in Step 1,

where v > u and g(v, i) = u.) Indeed, with probability 1− |Vτ |
k+dk ≤ 1− 1

d+1 , there is no output, but
in such a case we just try again. We can stop trying after (d + 1) · log k attempts, which will just
add an error probability of q/k to the error probability of the q-query tester that we emulate. (In
order to obtain a one-sided error tester, we should accept in case we suspend the execution.)

Digest. We have presented a randomized reduction of Cycle-freeness to Bipartiteness that
satisfies a relaxed locality condition. The relaxation that we used allows the vertex-set of the reduced
graph to be arbitrary (rather than equal [k′] for some k′ that is determined by k), but required an
efficient way of sampling this vertex-set (and answering incidence queries with respect to it). This
raises a couple of questions.

Open Problem 9.23 (cleaner local reductions of Cycle-freeness to Bipartiteness): In both
items, we refer to q = poly(d log k) and seek reductions that have one-sided error probability.

1. Does there exist a non-relaxed (randomized) q-local reduction of Cycle-freeness to Bipartiteness?
That is, a reduction satisfying Definition 9.22.2.

2. Does there exist a (relaxed) deterministic q-local reduction of Cycle-freeness to Bipartiteness?

In fact, q = poly((d/ǫ) log k) will be interesting too.

32Hence, if w ∈ [k] is the ith neighbor of v in G (i.e., w = g(v, i)), then the ith neighbor of v ∈ [k] in Gτ is w if
τ ({v, w}) = 1 and a{v,w} otherwise, whereas for e = {u, w} ∈ E such that τ (e) = 2 the neighbors of ae in Gτ are u
and w. Here we assume that u and v are explicit in the name of a{u,v}, and so retrieving them requires no queries
to g.

33Alternatively (and in fact less wastefully), we can first determine the number of its neighbors, denoted dv, and
then select uniformly i ∈ [dv] (and answer with the ith neighbor of v). Yet another alternative is to just use, in the
algorithm, the version of a random walk that was used in the analysis (i.e., just select uniformly i ∈ [2d], use the ith

neighbor of v if such exists, and stay in place otherwise).
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Perspective: Finding substructures and one-sided error testers. As stated in the begin-
ning of this section, the one-sided error tester for Cycle-freeness yields a sublinear time algorithm
that finds (relatively small) cycles in a (bounded-degree) graph that is far from being cycle-free.
Likewise, the one-sided error tester for Bipartitness yields a sublinear time algorithm that finds
(relatively small) odd-length cycles in a (bounded-degree) graph that is far from being bipartite
(i.e., far from lacking odd-length cycles). The correspondence between one-sided error testers and
sublinear time algorithms that find certain substructures in the input arises whenever the property
can be characterized as the set of objects that lack this type of substructure. This fact provides
additional motivation for the interest in one-sided error (rather than general) testers, a motivation
that goes beyond the natural desire to avoid error probability in the case that the object is perfectly
fine (i.e., the object has the property).34

In light of the foregoing perspective, we mention a few additional results regarding finding
substructures in bounded degree graphs.

Theorem 9.24 (finding cycles and trees in graphs (in the bounded-degree graph model)):

1. For every ℓ ≥ 3, there exists a poly(dℓ/ǫ) · Õ(
√

k)-time algorithm that finds simple cycles of
length at least ℓ in k-vertex graphs that are ǫ-far from lacking such cycles.

2. For every ℓ ≥ 3, there exists an O(ℓ3/ǫ)-time algorithm that finds trees that have at least ℓ
leaves in k-vertex graphs that are ǫ-far from lacking such trees.

Indeed, Part 1 generalizes Theorem 9.22, which refers to the case ℓ = 3, whereas Part 2 extends
the trivial algorithm that finds edges in a graph that has many edges (and corresponds to the case
of ℓ = 2). Theorem 9.24 is proved in [81], which contains additional results of similar flavour.

9.5 Testing by implementing and utilizing partition oracles

The testers presented in this section are based on implementing and utilizing certain “partition
oracles” to be defined shortly (see Definition 9.27). We demonstrate this method by deriving
testers for any minor-free property, a notion we defined next.

The graph H is a minor of the graph G if H can be obtained from G by a sequence of edge
removal, vertex removal, and edge contraction operations, where contracting the edge {u, v} means
that u and v (as well as the edge {u, v}) are replaced by a single vertex that is incident to all
vertices that were incident to either u or v. We say that G is H-minor free if H is not a minor of G.
In particular, a graph is cycle-free if and only if it is K3-minor free, where Kt denotes the t-vertex
clique.35

The notion of minor freeness extends to sets of graphs; that is, for a set of graphs H, the graph
G is H-minor free if no element of H is a minor of G. Recall that a graph G is planar if and only
if it is {K5,K3,3}-free, where K3,3 denotes the biclique having three vertices on each side.

A graph property is minor-closed if it is closed under removal of edges, removal of vertices, and
edge contraction. Clearly, for every finite set of graphs H, the property of being H-minor free is
minor-closed. On the other hand, the celebrated theorem of Robertson and Seymour (see [239])

34
Advanced comment: Note the analogy to the notion of “perfect completeness” in the setting of probabilistic

proof systems [131, Chap. 9].
35Recall that a graph is cycle-free if and only if it contains no simple cycle (of length at least three).
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asserts that any minor-close property equals the set of H-minor free graphs, for some finite set of
graphs H. With these preliminaries in place, we can state the main result presented in this section.

Theorem 9.25 (testing minor-close graph properties (in the bounded-degree graph model)):36

Any minor-closed property can be tested in query (and time) complexity that is quasi-polynomial in
1/ǫ (i.e., exp(poly(log(1/ǫ)))). Actually, the time bound is (d/ǫ)O(log(1/ǫ)).

We mention that this tester has two-sided error, which is unavoidable for any tester of query
complexity o(

√
k), except in the case that the forbidden minors are all cycle-free. Before turning

to the proof of Theorem 9.25, we state the begging question of whether the bound in Theorem 9.25
can be improved to a polynomial.

Open Problem 9.26 (improving the upper bound of Theorem 9.25): Can any minor-closed prop-
erty be tested in query (and time) complexity that is polynomial in d/ǫ? What about the special
case of Planarity?

The proof of Theorem 9.25 (as well as several related studies in this area) evolves around the
local construction and utilization of a partition oracle. Loosely speaking, such an oracle provides a
partition of the input graph G = ([k], E) into small connected components with few edges connecting
different components. Specifically, for given parameters ǫ > 0 and t ∈ N, such a partition oracle of
a graph G = ([k], E) is a function P : [k]→ ∪i∈[t]

([k]
i

)
such that (1) vertex v resides in P (v) (which

has size at most t); (2) the P (v)’s form a partition of [k]; (3) the subgraph of G induced by each
P (v) is connected; and (4) the total number of edges among different P (v)’s is at most ǫk.

Definition 9.27 (partition oracles): We say that P : [k] → 2[k] is an (ǫ, t)-partition of the graph
G = ([k], E) if the following conditions hold.

1. For every v ∈ [k], vertex v is in the set P (v), and |P (v)| ≤ t.

2. The sets P (v)’s form a partition of [k]; that is, for every v, u ∈ [k], the sets P (v) and P (u)
are either identical or disjoint.37

3. For every v ∈ [k], the subgraph of G induced by P (v) is connected.

4. The number of edges among the different P (v)’s is at most ǫk; that is, |{{u,w} ∈ E : P (u) 6=
P (w)}| ≤ ǫk.

Note that the trivial partition (i.e., P (v) = {v} for every v ∈ [k]) is a (0.5d, 1)-partition of any
graph of maximum degree d, since Condition 4 holds vacuously when the error parameter is at
least half the maximum degree. We mention that Conditions 1–3 are quite local (i.e., they refer to
individual P (v)’s or to pairs of P (v)’s), whereas Condition 4 is global.

As shown next, if we are given access to a partition oracle P for a graph G, then we can test
whether G has a predetermined minor-close property. Of course, in the standard model, we are
only given oracle access to the (incidence representation of the) graph G; so the next item on the
agenda will be to implement a partition oracle for G when given oracle access only to G. But let
us first show the testing consequence.

36This result is due to [197], improving over [169], which improved upon [41]: The improvements are in the query
complexity. Specifically, the query complexity obtained in [41] is triple-exponential in 1/ǫ, and in [169] it is exponential
in poly(1/ǫ).

37The fact that ∪v∈[k]P (v) = [k] follows from Condition 1.
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Theorem 9.28 (testing minor-close graph properties by using a partition oracle): Let Π be a
minor-closed property and supposed that we are given oracle access to a graph G = ([k], E), rep-
resented by its incidence function g : [k] × [d] → {0, 1, ..., k}, as well as to an (dǫ/4, t)-partition
oracle P : [k] → 2[k] of G. Then, using O(td/ǫ) queries to g and to P , we can distinguish (in
poly(td/ǫ)-time) the case that G ∈ Π from the case that G is ǫ-far from Π. Actually, we accept
each graph in Π with probability at least 0.9, and reject with probability at least 0.9 any graph that
is ǫ-far from Π. Furthermore, a graph that is ǫ-far from Π is rejected with probability at least 0.9
even if P : [k]→ 2[k] only satisfies Conditions 1–3 of Definition 9.27.

The furthermore clause is important because our implementation of the partition oracle is guaran-
teed to satisfy Condition 4 (with high probability) only when the input graph is in Π. Hence, it is
important that the foregoing decision procedure rejects graphs that are far from Π also when the
partition oracle does not satisfy Condition 4. We mention that our implementation of the partition
oracle always satisfies Conditions 1–3.

Proof: Let G′ = ([k], E′) be the graph obtained from G = ([k], E) by omitting all edges that have

endpoints in different P (i)’s; that is, E′ def
= {{u, v} ∈ E : P (u) = P (v)}. On the one hand, if G ∈ Π,

then G′ ∈ Π (since Π is closed under omission of edges) and |E \E′| ≤ ǫdk/4 (by Condition 4). On
the other hand, if G is ǫ-far from Π, then either |E \ E′| ≥ ǫdk/4 (i.e., G′ is ǫ/2-far from G) or G′

is ǫ/2-far from Π. Hence, it suffices to estimate the size of E \ E′ and to test whether G′ is in Π.
The key observation is that when given oracle access to P and G, it is easy to emulate oracle

access to G′. Specifically, letting g′(v, i) = g(v, i) if P (v) = P (g(v, i)) and g′(v, i) = 0 otherwise
(where P (0) = ∅), we obtain an “unaligned” incidence function of G′ (see variants at the beginning
of Section 9.1). Hence, the neighbours of v in G′ can be found by making at most d queries to g
and d + 1 queries to P .

The next observation is that testing whether G′ has property Π reduces to checking whether
a random connected component of G′ has this property. Specifically, selecting O(1/ǫ) random
vertices, and exploring the connected component in which they reside, will do (see details below).
Since each P (v) has size at most t, each exploration is performed by making at most td queries,
and so the query complexity is as claimed. (Deciding whether the explorted subgraph is in Π can
be done in time that is polynomial of the subgraph’s size [238].)

Lastly, we turn to the task of estimating the size of E \ E′ = {{u, v} ∈ E : P (u) 6= P (v)};
that is, estimating the probability that {v, g(v, i)} ∈ E \ E′ when (v, i) is uniformly distributed
in [k] × [d]. Selecting O(1/ǫ) random pairs (v, i) ∈ [k] × [d], allows to distinguish the case that
|E \ E′| ≤ ǫdk/6 from the case that |E \ E′| > ǫdk/3. Hence, our actual algorithm proceeds as
follows, where we assume for simplicity that, for some set of connected graphs H, the set Π equals
the set of H-minor free graphs.38

1. Using O(1/ǫ) random pairs (v, i) ∈ [k] × [d], the algorithm estimates |E \ E′| up to an
additive deviation of ǫdk/12. If the estimate is greater than ǫdk/4, then the algorithm rejects.
Otherwise, it continute to the next step.

2. The algorithm tests whether G′ is in Π or is ǫ/3-far from it. This is done by selecting O(1/ǫ)
random vertices, exploring the connected component in which each of these vertices resides,

38The general case, where H may contain graphs that are not connected is left as an exercise. In that case, the tester
employed in Step 2 should check for minors that are distributed among several connected components. Likewise, the
analysis should refer to tuples of connected components that contain parts of a minor in H (cf. Exercise 9.3).
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and rejecting if any of the explored subgraphs contains a minor inH. If all explored subgraphs
are H-minor free, then the algorithm accepts.

The queries to G′ that are made by this algorithm are answered by emulating G′ as outlined in the
penultimate paragraph (i.e., by using oracle calls to G and P ).

Now, if G ∈ Π and P is an (ǫd/4, t)-partition oracle of it, then with high probability the
algorithm continues to Step 2, and in that case it always accepts. On the other hand, if G is ǫ-far
from Π, then there are two cases to consider. The first case is that the partition defined by P yields
a graph G′ = ([k], E′) such that |E \E′| > ǫdk/3. In this case, with high probability, Step 1 rejects.
The second case is that |E \ E′| ≤ ǫdk/3 (i.e., G′ is (2ǫ/3)-close to G), which implies that G′ is
ǫ/3-far from Π. In this case, with high probability, Step 2 rejects because at least ǫk/6 vertices
must reside in connected components that are not in Π (since otherwise G′ can be placed in Π by
omitting all edges that are incident at these vertices).39

We stress that the analysis of the case in which G is ǫ-far from Π does not refer to Condition 4
(and it holds also if P satisfies Conditions 1–3 only). The claim follows.

Implementing a partition oracle. In light of Theorem 9.28, we now focus on the task of
implementing (or rather emulating) partition oracles. Since the implementations that we use are
randomized, it is crucial that the same randomness (denoted ω) is used in all invocations of the
machine emulating the oracle. In other words, each choice of internal coin tosses for this machine
yields a function f : [k] → 2[k], and, with high probability (over these choices), this function is a
good partition oracle (i.e., it satisfies Definition 9.27). Specifically, f satisfies Condition 4 (with
high probability) if the input graph has a predetermined property Π (which in our application is
the property being tested), whereas f always satisfies Conditions 1–3 (even if the graph does not
have the property Π).

Definition 9.29 (implementing a partition oracle): We say that the oracle machine M emulates
an (ǫ, t)-partition oracle for graphs having property Π if the following two conditions hold.

1. For any possible outcome ω of M ’s internal coin tosses, when given oracle access to any
bounded-degree graph G = ([k], E), the answers provided by M to all possible inputs v ∈ [k]

correspond to a function P (v)
def
= MG(k, ω; v) that satisfies Conditions 1–3 of Definition 9.27.

2. For any graph G = ([k], E) in Π, with probability at least 0.9 over all possible choices of ω,

the function P (v)
def
= MG(k, ω; v) is an (ǫ, t)-partition; that is, it also satisfies Condition 4 of

Definition 9.27.

Typically, t is a function of ǫ. Actually, any graph G that satisfies a minor-close property has
(ǫ,O(d/ǫ)2)-partitions (for every ǫ > 0);40 the problem is finding such partitions “locally” or rather
implementing corresponding partition oracles. A crucial aspect of such implementations is the
number of queries that they make to their own oracle (i.e., the number of queries that M makes
to G, per each query that M answers). In particular, the overhead created by utilizing such an
implementation in Theorem 9.28 (i.e., using such an implementation instead of the hypothetic
oracle P ) is linear in the query (resp., time) complexity of the implementation. Typically, like t,

39This is the case because a graph is H-minor free if and only if all its connected components are H-minor free.
40See Alon et al. [16], as detailed in [197, Cor. 2].
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the query complexity of the implementation is a function of ǫ only (i.e., independent of the size of
the graph), but it will be larger than t. In these cases, the query complexity of the implementation
will dominate the complexity of the tester that is derived from Theorem 9.28.

We shall present two implementation of a partition oracle for any minor-free property Π. The
first (and simpler) implementation has query complexity that is exponential in poly(1/ǫ), whereas
the second implementation (which builds on the first) has quasi-polynomial (in 1/ǫ) complexity.

9.5.1 The simpler implementation

We first present the implementation as a linear-time algorithm that gets the entire graph as input
and generates an (ǫ, t)-partition of it, but the reader may notice that all operations are relatively
local. This means that it will be relatively easy to convert this algorithm into an oracle machine
that on input v ∈ [k] makes relatively few queries to G = ([k], E) and returns P (v), where P is
an (ǫ, t)-partition of G. In the following description, we shall assume that the graph G is H-minor
free, for some fixed graph H. (This assumption will be removed when using Theorem 9.28.)

The algorithm proceeds in iterations, starting with the trivial partition P0 in which each vertex
is in a part of its own (i.e., P0(v) = {v} for every v ∈ [k]). In each iteration, we “coarsen” the
partition (i.e., each set of the new partition is a union of sets in the prior partition). Note that
P0 satisfies Conditions 1–3 of Definition 9.27, but violates Condition 4 (unless G is very sparse).
Our goal, in each iteration, is to reduce the number of edges between different parts of the current
partition, while preserving Conditions 1–3, where the non-trivial issue is preserving Condition 3
(i.e., the subgraph of G induced by P (v) is connected).

The natural way of preserving Condition 3 is using edge contractions, which means replacing
two adjacent vertices u and v by a new vertex, denoted au,v, and connecting the edges incident at
u and v to au,v (while omitting the edge {u, v}).41 Note that we should do so without violating
Condition 1 (i.e., each P (v) has size at most t). (Indeed, we shall keep track both of the original
graph and of the currently contracted graph, where vertices of the contracted graph correspond to
sets of the current partition of the original graph.)

Of course, a key question is which edges to contract (in each iteration). This is a non-trivial
question because there is a tension between the number of inter-parts edges that are removed by
contraction and the size of the parts (which also effects the locality of the procedure). Note that
contracting an edge between u and v removes all the parallel edges between these two vertices,
where parallel edges are created by the contraction process (e.g., if both u and v are connected
to w, then the contraction of the edge {u, v} will form two parallel edges between the resulting
vertex and w). Hence, it is a good idea to contract an edge that has many parallel edges (which
can be represented as a single edge of corresponding weight). On the other hand, we should avoid
contracting a set of edges that span a large subgraph. Looking ahead to a local implementation,
it is natural that each vertex will contract an edge incident at it that has the largest number of
parallel edges, but we should avoid a long path of contractions (by some “symmetry breaking”
mechanism).42

It will be instructive to consider both the current partition (to be denoted Pi) of the original

41We stress that if there are parallel esges between u and v, then all are omitted (when contracting any of them).
42The term “symmetry breaking” is used because we may have a long path of vertices such that the local view

of each of them is identical (when ignoring vertex labels). In what follows, these potential symmetries are broken
by assigning random binary values to the vertices and using a non-symmetric contraction rule that refers to these
random values.
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graph G and the currently contracted graph (to be denoted Gi). Starting with G0 ≡ G, in the ith

iteration we shall contract some edges of Gi−1 obtaining a graph Gi and a corresponding partition
Pi such that each set in Pi corresponds to a vertex in Gi (i.e., the vertex set of Gi equals the set
{Pi(v) : v ∈ [k]}).43 Actually, we shall represent parallel edges by a single edge of corresponding
weight (which represents the number of pareallel edges). Hence, the graph Gi will have weighted
edges, whereas all edges in G0 have weight 1. The weight of edges in Gi will equal the number of
edges in G that connect the corresponding parts (i.e., the weight of {U, V } in Gi equals the number
of edges in G that connect vertices in U and vertices in V ). Finally, we get to the contraction rule
itself: Each vertex in Gi−1 selects uniformly at random a value in {L, C}, and the edge {U, V } is
contracted if and only if vertex U selected L, vertex V selected C, and {U, V } is the heaviest edge
incident at U , where ties are broken arbitrarily.44

That is, for every vertex U in Gi−1, which corresponds to a set in Pi−1 (which is a set of
vertices in G), we denote by hi(U) the neighbor of U in Gi−1 such that the edge {U, hi(U)} is
heaviest among all the edges incident at U (in Gi−1). (In other words, the number of edges in G
between U and hi(U) is the largest among the number of edges (in G) between U = Pi−1(u) and
any other Pi−1(v).) Letting ri(U) denote the random choice of U , we contract the edge {U, hi(U)}
if and only if ri(U) = L and ri(hi(U)) = C (see Figure 9.1, which depicts edges as directed from U
to hi(U)).

LL

L C L

CL

CC

L

LC

 

L L

CC

L

 
C

Figure 9.1: A directed graph of heaviest edges and a random choice of values for the vertices. The
edges are directed from each vertiex to its heaviest neighbor, and the edges that will be contracted
are shown by wider arrows.

Note that the set of heaviest edges incident at the various vertices defines a directed graph in
which there is a single edge directed from each vertex of Gi−1 to its heaviest neighbor. Hence, each
vertex in this directed graph has out-degree 1. Among these directed edges, only edges directed
from a vertex that chose L (for leaf) to a vertex that chose C (for center) are contracted. Thus, the
set of contracted edges correspond to a collection of inward-directed stars (see Figure 9.1), where
the center of each star is a vertex that chose C and the star’s other vertices chose L. (Hence, the
random values were used in order to “break” the directed graph, which may have directed paths of
unbounded length, into components of very small diameter.)

43Thus, G0 has the vertex set {{v} : v ∈ [k]} ≡ [k], and its edges are pairs of singletons of the form {{u}, {v}} such
that {u, v} is an edge of G.

44The symbol C (resp., L) stands for “center” (resp., “leaf”), and the justification for this term will be spelled-out
shortly. The foregoing description presumes that U is not an isolated vertex in Gi−1, and this assumption will be made
throughout the rest of this section. Formally, if U is an isolated vertex, then we may fictitiously define hi(U) = U
(and note that no contraction involving U takes place).
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The vertices of Gi are the sets obtained by the contraction of all the stars (or rather all the star
edges) as well as all vertices of Gi−1 that did not participate in any contraction. Hence, the weight
of each edge {Pi(u), Pi(v)} of Gi is the sum of the weight of the corresponding edges in Gi−1 (i.e.,
the weight of the edges between the vertices of Gi−1 that were contracted into Pi(v) and Pi(u),
resp.), which equals the number of edges in G between Pi(v) and Pi(u). Note that the weight of
contracted edges (of Gi−1) disappears from Gi, since they represent edges of G with both endpoints
in the same part of Pi. Hence, we are interested in the rate at which the weight of the edges in
the graphs Gi’s decreases during the iterations (see Item 2 of Lemma 9.30). We also spell-out the
dependence of Pi on Pi−1 (and hi, ri).

Lemma 9.30 (the effect of an iteration): Let G = ([k], E) be a graph of maximum degree d, and
consider the foregoing iterative process. Then, for every i ≥ 1 the following holds.

1. For every v ∈ [k], let Γi−1(v) denote the set of all vertices u ∈ [k] such that some vertex of
Pi−1(u) neighbors some vertex of Pi−1(v) in G; that is, Γi−1(v) consists of all vertices of G
that reside in some vertex U ∈ 2[k] of Gi−1 that neighbors vertex Pi−1(v) in Gi−1. Then:

(a) If ri(Pi−1(v)) = C, then

Pi(v) = Pi−1(v) ∪ {u∈Γi−1(v) : hi(Pi−1(u))=Pi−1(v)& ri(Pi−1(u))=L}. (9.11)

(b) Otherwise (i.e., ri(Pi−1(v)) = L), letting u be an arbitrary vertex in hi(Pi−1(v)), we have
Pi(v) = Pi(u) if ri(hi(Pi−1(v))) = C and Pi(v) = Pi−1(v) otherwise.

Hence, maxv∈[k]{|Pi(v)|} ≤ (d + 1) ·maxw∈[k]{|Pi−1(w)|2}.

2. Supposed that for some fixed graph H, the graph G is H-minor free. Then, with constant
probability, the total weight of the edges in Gi is a constant factor smaller than the total
weight of the edges in Gi−1. This holds even if the values of ri on the various parts are
selected in a pairwise independent manner.

We stress that Item 1 holds for any graph G = ([k], E) of maximum degree d.

Proof Sketch: The main part of Item 1 is proved by noting that the edge {Pi−1(v), hi(Pi−1(v))} is
contracted only if exactly one of its endpoint is assigned the value C (i.e., ri(Pi−1(v)) 6= ri(hi(Pi−1(v)))).
Assuming that ri(Pi−1(v)) = C, we note that the claim (i.e., Eq. (9.11)) holds (since Pi(v) contain
both Pi−1(v) and all Pi−1(u)’s such that hi(Pi−1(u)) = Pi−1(v) and ri(Pi−1(u)) = L). In this case,
Pi(v) ⊆ Pi−1(v) ∪⋃u∈Γi−1(v) Pi−1(u), and the conclusion follows since |Γi−1(v)| ≤ |Pi−1(v)| · d.

Item 2 relies on the hypothesis that the graph G is H-minor free, for some fixed graph H, and
the unspecified constants depend on H. Specifically, we shall rely on the fact that, for every H,
there exists a constant dH such that every H-minor free graph has a vertex of degree at most dH

(see [197] and the references therein).45 Using this fact, it can be shown (see Exercise 9.15) that the
set of heaviest edges in Gi−1 has total weight that is at least a 1/2dH fraction of the total weight
of the edges of Gi−1.

Focusing on the set of heaviest edges, note that if the values of ri (at the various parts) are
pairwise independent and uniformly distributed in {L, C}, then each heavy edge is contracted with

45Specifically, by [197, Fact 1] the edges of each such graph can be partitioned into dH forests. Noting that each
forest has average degree smaller than 1, the claim follows.
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probability 1/4. Hence, the expected total weight of the edges contracted in iteration i is at
least a 1/8dH fraction of the total weight of the edges in Gi−1, and the claim follows (by Markov
inequality).

Local implementation. We next show how to emulate oracle access to Pi, when given oracle
access to Pi−1 and to G as well as to ri. (Note that we do not emulate oracle access to Gi, nor do
we use oracle access to Gi−1, although this could be done too; the graphs Gi’s are only used in the
analysis.)

Algorithm 9.31 (emulating Pi based on Pi−1): Let Γ(v) = {u : {u, v} ∈ E} denote the set of
neighbors of v in G. On input v ∈ [k], we find Pi(v) as follows.

1. Using an oracle call to Pi−1, we obtain V ← Pi−1(v).

2. Using d · |V | oracle calls to G, we obtain U ← ⋃
v∈V Γ(v) \ V . Along the way, we also obtain

all edges between V and U .

3. Using |U | ≤ d · |V | oracle calls to Pi−1, we obtain the collection of sets {Pi−1(u) : u ∈ U},
which is part of the partition Pi−1. We denote these sets by U1, ..., Um, where m ≤ |U |.
Using the information gathered in Step 2, we compute, for each j ∈ [m], the weight of the
edge {V,Uj}, which is an edge of Gi−1; indeed, this weight equals

∑
v′∈V |Γ(v′) ∩ Uj|. This

determines hi(V ).

4. Using m + 1 oracle call to ri, we obtain ri(V ) and ri(U1), ..., ri(Um). Next, we determine
whether or not the edge {V, hi(V )} is contracted such that hi(V ) serves as the center of a
contracted star. Specifically:

(a) If ri(V ) = ri(hi(V )) = L, then we return V .

(b) If ri(V ) = L and ri(hi(V )) = C, then we return Pi(u) ⊇ V ∪ Pi−1(u), where u is an
arbitrary vertex in hi(V ).

(We stress that invoking the procedure in order to obtain the value of Pi(u) for u ∈ hi(V )
does not open a vicious cycle, because in that case ri(Pi−1(u)) = C, which means that
this invocation will not try to obtain the value of Pi(w) for some w ∈ hi(Pi−1(u)).)46

Otherwise (i.e., ri(V ) = C), we continue. (In this case, V serves as the center of a contracted
star, which consists of V and an arbitrary subset of the Ui’s.)

5. Using d ·∑j∈[m] |Uj | oracle calls to G, we obtain W ← ⋃
j∈[m]

⋃
u∈Uj

Γ(u) \ (V ∪⋃j∈[m] Uj).
Along the way, we also obtain all edges between each Uj and W .

6. Using |W | ≤ d·∑j∈[m] |Uj | oracle calls to Pi−1, we obtain the collection of sets {W1, ...,Wm′} ←
{Pi−1(w) : w ∈W}.
Using the information gathered in Step 5, we compute, for each j ∈ [m] and j′ ∈ [m′], the
weight of the edge {Uj ,Wj′}, which is an edge of Gi−1; indeed, this weight equals

∑
u∈Uj

|Γ(u)∩
Wj′ |. This determines hi(Uj) for all j ∈ [m].

46Alternatively, we can augment Step 6 so to allow determining hi(Wj′) for every j′ ∈ [m′]. This can be done by
finding X =

S

j′∈[m′]

S

w∈Wj′
Γ(w), and determining Pi−1(x) for each x ∈ X. Doing so allows to determine whether

or not hi(Wj′) = hi(V ) (for each j′ ∈ [m′]), and so determine Pi(u) for u ∈ hi(V ), which in turn determines Pi(v).
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The foregoing information determines Pi(v); that is, we return Pi(v) = V ∪ ⋃j∈J Uj such that
J = {j ∈ [m] : hi(Uj)=V ∧ ri(Uj)=L}.

Hence, Algorithm 9.31 makes poly(d·Ni−1) oracle calls to Pi−1 and G, where Ni−1 = maxw∈[k]{|Pi−1(w)|}.
The oracle calls to ri : 2[k] → {L, C} can be implemented by oracle calls to a random function
si : [k] → {L, C} that assigns pairwise independent (and uniformly distributed) values to elements
of [k], which in turn can be implemented using 2 log2 k random bits.47 (The latter comment matters
only for bounding the time complexity of Algorithm 9.31.)

We now consider what happens when Algorithm 9.31 is iterated ℓ
def
= O(log(d/ǫ)) times, where

in the ith itertation we use this algorithm to emulate Pi when using oracle access to Pi−1 (as well

as to G and ri). Letting Ni
def
= maxv∈[k]{|Pi(v)|}, recall that by Item 1 of Lemma 9.30 it holds that

Ni ≤ (d + 1) · N2
i−1, and Ni ≤ (d + 1)2

i−1 follows. Hence, each query to Pi can be implemented

at the cost of making
∏

j∈[i] poly(d · Ni−j) =
∏

j∈[i] poly(d2i−j
) = poly(d)2

i
queries to G, since∏

j∈[i] poly(d · Ni−j) upper-bounds the size of the tree that describes the recursive calls made by
Algorithm 9.31. On the other hand, by Item 2 of Lemma 9.30, with very high probability, after
ℓ iterations, the resulting graph has less than (1 − Ω(1))Ω(ℓ) · dk = ǫ · k edges, provided that G is
H-minor free.48 This means that, in this case, we can use Pℓ as the desired partition, since in this
case, with high probability, Pℓ is an (ǫ, t)-partition for t = poly(d)2

ℓ
= poly(d)poly(d/ǫ). Recall that

for any graph G of maximum degree d, the partition Pℓ can be emulated using poly(d)2
ℓ
= dpoly(d/ǫ)

queries.49

Reducing the size of sets. The size of the partitions generated by the foregoing iterations can
be reduced considerablly, while essentially maintaining the query complexity. This can be done by
emplying a partitioning algorithm to each set in the aforementioned partition.

Theorem 9.32 (finding good partitions in polynomial time):50 For every fixed graph H, there
exists a polynomial-time algorithm that, for every ǫ > 0, finds a (ǫ,O(d/ǫ)2)-partition in any given
H-minor free graph. Furthermore, if the input graph is not H-minor free, then the algorithm outputs
a (d,O(d/ǫ)2)-partition of it.51

Hence, for any ǫ > 0 and t ∈ N, when given an (ǫ, t)-partition oracle P : [k] → 2[k] of an H-minor
free graph G = ([k], E), we can emulate an O(2ǫ,O(d/ǫ)2)-partition oracle as follows. On input
v ∈ [k], we first retreive the set P (v), next we retreive the subgraph of G induced by P (v), and
finally we invoke the (deterministic) partitioning algorithm of Theorem 9.32 on this subgraph (and
answer with the set containing v).

47Specifically, let ri(X) equal si(x) such that x ∈ [k] is the smallest element in X ⊆ [k]. Hence, if the values

that si assigns to elements of [k] are pairwise independent and uniformly distributed in {L, C}, then so are the values

assigned by ri to sets in any fixed partition of [k]. Note that a k-long pairwise independent sequence over {0, 1} can
be generated by letting si(x) be the least significant bit of s′ + xs′′, where s′ and s′′ are uniformly distributed in Z2ℓ

and ℓ = ⌈log2 k⌉. (Indeed, here we associated [k] with Z2ℓ .)
48Indeed, (1 − Ω(1))Ω(ℓ) = exp(−Ω(ℓ)) < ǫ/d.
49Also recall that, when seeking an ǫ-tester, Theorem 9.28 is invoked with a purported (ǫd/4, t)-partition oracle.

Hence, the resulting tester has query complexity dpoly(1/ǫ).
50This result is based on a separator theorem of Alon et al. [16]; see [197, Cor. 2] for details.
51For example, it may use a trivial partition that places each vertex in a part of its own. In this case, the resulting

partition satisfies Conditions 1–3 of Definition 9.27, since Condition 4 of Definition 9.27 holds vacuously when the
error parameter is at least d/2.
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9.5.2 The better implementation

Invoking the algorithm of Theorem 9.32 on the final partition generated by (ℓ = O(log(d/ǫ))
iterations of) Algorithm 9.31 does reduce the size of the final sets in the partition, but it does not
(and cannot) improve the complexity of generating the partition. The key to improving the said
complexity is invoking the algorithm of Theorem 9.32 after each iteration of Algorithm 9.31.

This means that, in each iteration, we first decrease the number of edges between the sets of the
current partition by a constant factor (by employing Algorithm 9.31), and then increase it by an
additive term of ǫ′k (for an adequate constant ǫ′ > 0, by employing the algorithm of Theorem 9.32).
(This is slightly inaccurate since the decrease only occurs with constant probability, but this is
good enough.) So we lose a little in terms of the progress made in each iteration, but we gain in
maintaining the sets relatively small (i.e., we enter each iteration with a partition having sets of size
poly(d/ǫ)). In particular, while in Section 9.5.1 the size of the sets in the partition was squared in
each iteration, here these sets remain smaller than some fixed quantity (i.e., poly(d/ǫ)). It follows
that the query complexity of implementing the final partition is only poly(d/ǫ)O(log(d/ǫ)). Details
follows.

Algorithm 9.33 (emulating Pi based on Pi−1, revised): On input v ∈ [k], we find Pi(v) as follows.

1. Invoking Algorithm 9.31, denoted A, we obtain the part in which v reside, which we denote
P ′i (v); that is, P ′i (v) ← APi−1,G,ri(v). Recall that invoking Algorithm 9.31 requires providing
it with oracle access to Pi−1, G and ri.

2. Using oracle access to G, we first construct the subgraph induced by P ′i (v).52 Next, invoking
the algorithm of Theorem 9.32, with an error parameter ǫ′ = Θ(ǫ), we obtain an (ǫ′, O(d/ǫ′)2)-
partition of this induced subgraph, and let Pi(v) be the part containing v.

(Note that the algorithm of Theorem 9.32 is invoked on a graph that we hold in hand, so no
queries are needed in this step.)

Hence, Algorithm 9.33 makes poly(d · |Pi−1(v)|) oracle calls to Pi−1 and G, and the oracle calls
to ri are implemented as in Section 9.5.1. The point is that |Pi(v)| = O(d/ǫ)2 for all i ∈ [ℓ] (and
v ∈ [k]), and so the complexity of emulating the final partition is merely poly(d/ǫ)ℓ, since this is
an upper bound on the size of the recursion tree.

It is left to analyze the quality of the final partition, when assuming that the input graph G is
H-minor free. Let us denote by Zi the number of edges in Gi, which is the graph that corresponds
to the partition Pi; that is, Zi is a random variable that depends on r1, ..., ri. Letting Z ′i denote the
number of edges in the graph that corresponds to the partition P ′i , note that the proof of Lemma 9.30
actually establishes that E[Z ′i|Zi−1 = z] ≤ cH · z, where cH = (1 − (1/8dH )) is a constant that
depends on H. Hence, E[Zi] ≤ cH ·E[Zi−1] + ǫ′k, which implies E[Zℓ] < cℓ

H · dk + (1− cH)−1 · ǫ′k.53

Letting ℓ = O(log(d/ǫ)) such that cℓ
H < ǫ/20d, and ǫ′ = (1− cH) · ǫ/20, we have E[Zℓ] < ǫk/10. It

follows that Pr[Zℓ ≥ ǫk] < 1/10. Hence, we obtain:

Theorem 9.34 (implementing a partition oracle for a H-minor free graph): For every fixed H,
there exists an efficient mapping from ǫ > 0 to Mǫ such that Mǫ is an exp(O(log(d/ǫ))2)-time
oracle machine that emulates an (ǫ,O(d/ǫ)2)-partition oracle for H-minor free graphs of maximum
degree d.

52Actually, this subgraph is implicit in the information gathered by Algorithm 9.31.
53Here we use

Pℓ−1
i=0 c

i
H <

P

i≥0 c
i
H = 1/(1 − cH).
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Recall that the notion of emulating a partition oracle for a property (as stated in Definition 9.29)
mandates that, given oracle access to any graph of maximum degree d, (1) machine Mǫ always
implements a function that satisfies Conditions 1–3 of Definition 9.27, and that (2) when the graph
has the property then, with probability at least 0.9, machine Mǫ emulates an (ǫ,O(d/ǫ)2)-partition
oracle for it. Combining Theorems 9.28 and 9.34, we finally establish Theorem 9.25.

Proof of Theorem 9.25. For every fixed set of graphs H, we are required to present a tester
for H-minor freeness. Fixing an arbitrary H ∈ H (and given proximity parameter ǫ), we invoke
Theorem 9.34, while setting the approximation parameter to ǫd/4. This yields an implementation
of a (dǫ/4, O(1/ǫ2))-partition oracle of query (and time) complexity exp(O(log(1/ǫ))2) for H-minor
freeness (and hence also for H-minor freeness).54 Invoking the algorithm guaranteed by Theo-
rem 9.28, while providing it with this implementation, we obtain an ǫ-tester of query complexity
poly(1/ǫ)O(log(1/ǫ) · d for H-minor freeness.55

9.6 A Taxonomy of the known results

We first mention that, also in the current model, graph properties of arbitrary query complex-
ity are known: Specifically, in this model, graph properties (in NP) may have query complex-
ity ranging from O(1/ǫ) to Ω(k), and furthermore such properties are monotone and natural
(cf. [144], which builds on [61]). In particular, testing 3-Colorability requires Ω(k) queries, whereas
testing 2-Colorability (i.e., Bipartiteness) requires Ω(

√
k) queries [147] and can be done using

Õ(
√

k) · poly(1/ǫ) queries [148]. We also mention that many natural properties are testable in
query complexity that only depends on the proximity parameter (i.e., ǫ). A partial list includes
t-edge-connectivity, for every fixed t, and Planarity. Details follow.

9.6.1 Testability in q(ǫ) queries, for any function q

Recall that, with the exception of properties that only depend on the degree distribution, adaptive
testers are essential for obtaining query complexity that only depends on ǫ (see Theorem 9.2,
which is due to [233]). Still, as observed in [152], at the cost of an exponentially blow-up in the
query complexity, we may assume that the tester’s adaptivity is confined to performing searches of
predetermined depth from several randomly selected vertices. However, the best testing results are
typically obtained by testers that perform “more adaptive” searches such as performing searches
till a predetermined number of vertices is visited. In all these cases, the predetermimed number is
a function of the proximity parameter, denoted ǫ, and the degree bound, denoted d.

54Alternatively, we can invoke Theorem 9.28 (w.r.t H-minor freeness), obtain a tester for H-minor freeness, and
use the fact that the H-minor freeness property equals the intersection over all H ∈ H of the H-minor freeness
properties. Indeed, we use the fact that the testability of monotone properties is preserved under intersection (see
Theorem 1.13), while noting that minor-freeness properties are monotone (in the sense of being closed under removal
of edges).

55Note that H-minor free graphs are accepted with probability at least 0.92, whereas graphs that are ǫ-far from
being H-minor free are rejected with probability at least 0.9. The error bound in the first case accounts both for the
probability that Mǫ fails to satisfy Condition 4 and for the probability that the invoked algorithm (of Theorem 9.28)
errs. Hence, it is important that Theorem 9.28 asserts error probability that is strictly smaller than 1/3 and ditto
regarding the implementation error in Theorem 9.34. In the second case (i.e., graphs that are far from the property),
we only suffer the error of the invoked algorithm, since in this case Condition 4 is not relied upon.
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Testability in Õ(1/ǫ) queries. As shown in Section 9.2.3, Graph Connectivity can be tested
in Õ(1/ǫ) time. Essentially, the tester starts a search (e.g., a BFS) from a few randomly selected
vertices, and each such search is terminated after a predetermined number of vertices is encountered
(rather than after visiting all vertices that are at a predetermined distance from the start vertex).
Specifically, as per Levin’s economical work investment strategy (see Section 8.2.4), for every i ∈
[log(1/ǫ)], we select O(2i log(1/ǫ)) random start vertices, and conduct searches from each of them,
while suspending each search once O(2−i/dǫ) vertices are encountered (which guarantees that each
of these searches has complexity O(2−i/ǫ)). This tester rejects if and only if it detects a small
connected component, and thus it has one-sided error.

Testability in O(F (d)/ǫ) queries. The testers of degree regularity and Eulerian have
O(1/ǫ) query complexity when provided with a degree oracle (see Section 9.2.2), which can be
implemented at the cost of log d incidence queries. Hence, when using only incidence queries, the
complexity grows moderately as a function of d. In contrast, the dependence on d is much larger
in the testers of subgraph freeness: Specifically, these testers have query complexity O(F (d)/ǫ),
where F is a polynomial of degree that is linearly related to the radius of the fixed subgraph that
determines the property (see Section 9.2.1).

Testability in poly(1/ǫ) queries. As mentioned in Section 9.2.4, for every fixed t > 1, the
property t-edge-connectivity can be tested in Õ(t3/ǫc) time, where c = min(t − 1, 3). For
t-vertex-connectivity the known upper bound is Õ(t/dǫ)t; see [275].

Cycle-freeness can be tested in O(ǫ−3) time, by a tester having two-sided error probability
(see Section 9.2.5). Essentially, the tester compares the number of edges to the number of connected
components, while exploring any small connected components that it happens to visit. The two-
sided error probability is unavoidable for any Cycle-freeness tester that has query complexity
o(
√

k) (see Section 9.3.2).56

Testability in more than poly(d/ǫ) queries. Viewing cycle-free graphs as graphs that have
no K3-minor leads us to the following general result of [41], which refers to graph minors (see
Section 9.5). While their original result asserted that any minor-close property can be tested
in query complexity that is triple-exponential in O(d/ǫ), the currently known upper bound is
quasi-polynomial in d/ǫ; see [197], which builds on [169]. (These testers have two-sided error
probability.)57 It is indeed a begging open problem whether the bound can be improved to a
polynomial in d/ǫ (see Problem 9.26).

We mention that properties in a broader class, which consists of sets of hyperfinite graphs, are
each testable in complexity exp(dpoly(1/ǫ)). A graph is called (ǫ, t)-hyperfinite if it is (2ǫ/d)-close to
a graph that consists of connected components that are each of size at most t (i.e., removing ǫk
edges yields the latter graph). A set of graphs is hyperfinite if there exists a function T : (0, 1]→ N

such that, for every ǫ > 0, every graph in the set is (ǫ, T (ǫ))-hyperfinite. (Minor-closed properties
are hyperfinite [16].)58 The result of Hassidim et al. [169] implies that any monotone property of

56A one-sided error tester of query complexity poly(d/ǫ) · eO(
√
k) for Cycle-freeness is presented in Section 9.4.2.

57This is unavoidable in light of the lower bound on the query complexity of one-sided error testers for cycle-freeness
(presented in Section 9.3.2). Furthermore, by [81], for any H that is not cycle-free, one-sided error testing H-minor
freeness requires Ω(

√
k) queries.

58See [197, Cor. 2] for details.
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hyperfinite graphs is testable in exp(dO(T (poly(1/ǫ))))-time, where T is the foregoing function and a
property is called monotone if it is preserved under omission of edges.59

9.6.2 Testability in Õ(k1/2) · poly(1/ǫ) queries

The query complexity of testing Bipartiteness is Θ̃(k1/2) · poly(1/ǫ), and the time complexity
has the same form. Furthermore, the Bipartiteness tester has one-sided error, and whenever it
rejects it may also output a short proof that the graph is not bipartite (i.e., an odd cycle of length
poly(ǫ−1 log k)). A similar upper bound holds for testing Expansion, except that there the bound
refers to a “gap problem” (i.e., distinguishing graphs that are c-expanding from graphs that are
ǫ-far from being poly(c/d)-expanding (where d is the degree bound)) and has the form O(nα/ǫ) for
any constant α > 1/2.

In both cases, the algorithm is based on taking many random walks from a few randomly
selected vertices, where each walk has length poly(ǫ−1 log k). This algorithmic approach originates
in [148], where it was applied to testing Bipartiteness; for further details see Section 9.4.1.
(Indeed, this approach is even more natural for testing Expansion, but the analysis was blocked
by a combinatorial difficulty [149], which was resolved later in [175, 214].)60

The Ω(k1/2) lower bounds on the query complexity of testing each of the aforementioned prop-
erties were proved in [147]; for details see Section 9.3. We note that the lower bound for testing
Bipartiteness stands in sharp contrast to the situation in the dense graph model, where this testing
problem can be solved in poly(1/ǫ)-time. This discrepancy is due to the difference between the
notions of relative distance employed in the two models.

9.6.3 Additional issues

Let us highlight some issues that arise from the foregoing exposition.

Adaptive testers versus non-adaptive ones. As stated at the very beginning of this chapter
(see Theorem 9.2), non-adaptive testers are significantly handicapped in the current model: Unless
they use Ω(

√
k) queries, such testers cannot do more than gather statistics regarding the degrees of

vertices in a k-vertex graph. In contrast, adaptive testers of constant query complexity can explore
local neighborhood in the graph, which allows for deducing numerous global properties such as
connectivity and planarity (see Sections 9.2 and 9.5).

One-sided versus two-sided error probability. The problem of testing Cycle-freeness pro-
vides a dramatic illustration of the gap between one-sided error and two-sided error. Recall that
Theorem 9.17 asserts that one-sided error testers for Cycle-freeness require Ω(

√
k) queries,61

59We warn that the term “monotone graph properties” is sometimes defined as closure under the removal of edges
and vertices (see, e.g.,[18]). We also mention that a graph property is called hereditary if it is preserved under omission
of vertices (and their incident edges); that is, hereditary graph properties are preserved by induced subgraphs.

60
Advanced comment: As stated at the beginning of Section 9.4.1, it is not a priori clear that taking many

short random walks (from a random start vertex) is a good strategy towards testing Bipartiteness. In contrast, it
is apparent that the collision probability of random walks of logarithmic length is related to the graph’s expansion,
provided that we consider random walks that start at the worst possible vertex. Unfortunately, the tester only
approximates the collision probability of random walks that start at typical vertices, and relating this measure to the
distance of the graph from being an expander is more evasive.

61Recall that this lower bound is relatively tight (see Section 9.4.2).
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whereas two-sided error ǫ-testing of Cycle-freeness is possible within query complexity poly(1/ǫ)
(see Section 9.2.5).

Proximity Oblivious Testers. The testers for subgraph freeness and degree regularity (see
Sections 9.2.1 and 9.2.2, respectively) were obtained by presenting (one-sided error) proximity
oblivious testers (of constant-query complexity and detection probability that depends only on
the distance of the tested graph from the property). A partial characterization of properties that
have such testers appears in [152], where one of the directions relies on a natural combinatorial
conjecture.

An application to the study of the dense graph model. As noted several times, the
bounded-degree graph model differs fundamentally from the dense graph model. In light of this
fact, it is interesting to note that the Bipartiteness tester for the bounded-degree graph model was
used in order to derive an alternative Bipartiteness tester for the dense graph model [162]. For
any α ≥ 0, assuming that almost all vertices in the k-vertex graph have degree O(ǫ1−αk), this tester
has query complexity Õ(ǫ−(1.5+O(α))), which (for small α > 0) improves over the testers presented
in [140, 13]. Essentially, this dense-graph model tester invokes the foregoing bounded-degree model
tester on the subgraph induced by a sample S of Õ(ǫ−1) random vertices, while emulating neighbor
queries regarding a vertex v ∈ S by making adjacency queries of the form (v,w) for every w ∈ S.

Relations to other areas of algorithmic research. The fact that the bounded-degree graph
model is closer (than the dense graph model) to standard algorithmic research offers greater oppor-
tunities for interaction at the technical level. Indeed, techniques such as local search and random
walks are quite basic in both domains, and the relationship will become even tighter when we
move to the general graph model (in the next chapter). A few concrete examples in which such
interaction has occurred are stated next.

• Karger’s randomized algorithm for finding minimum-cuts [178] inspired the algorithm for
finding small t-connected components (i.e., Algorithm 9.10) and is used in its analysis (see
proof of Theorem 9.11).

• Distributed network algorithms with few communication rounds were used to obtain property
testers, super-fast parameter estimators, and local computation algorithms (see [223] followed
by [218]). Implications in the opposite direction were foreseen by Onak [218] and materialized
in [103].

• The idea underlying the Cycle-freeness tester (presented in Section 9.2.5) was employed
to the design of an algorithm for approximating the weight of a minimum spanning tree in
sub-linear time [74].

• The one-sided error testers for cycle-freeness and other minor-free properties yield sub-linear
time algorithms for finding natural substructures in graphs (see Theorem 9.24 and the dis-
cussion preceding it).62

62
Advanced comment: For further discussion and results of this nature, the interersted reader is referred to [81].
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9.7 Chapter notes

9.7.1 Historical perspective and credits

The study of property testing in the bounded-degree graph model was initiated by Goldreich and
Ron [147], with the aim of allowing the consideration of sparse graphs, which appear in numerous
applications. The point was that the dense graph model, introduced earlier in [140], seems irrelevant
to sparse graphs, both because the distance measure that underlies it deems all sparse graphs as
close to one another, and because adjacency queries seems unsuitable for sparse graphs. Sticking to
the paradigm of representing graphs as functions, where both the distance measure and the type of
queries are determined by the representation, the bounded-degree incidence function representation
seemed the most natural choice. Indeed, a conscious decision was (and is) made not to capture, at
this point (and in this model), sparse graphs that do not have constant (or low) maximum degree.

Most testers presented in Section 9.2 (which operate via “local searches”) are taken from the
work of Goldreich and Ron [147]. This includes the (one-sided error) testers for subgraph-freeness
and connectivity, and the two-sided error tester for cycle-freeness.63 (The one-sided error tester
for cycle-freeness (presented in Section 9.4.2) is due to [81], and the tester of degree-regularity
(presented in Section 9.2.2) is adapted from the one used for the dense graph model.) The tester
for t-Edge Connectivity is due to [147], and Algorithm 9.10 was inspired by Karger’s work [178].64

The tester for t-Vertex Connectivity is due to Yoshida and Ito [275], while only the case of t ≤ 3
was handled in (the conference version) of [147].

The Ω(
√

k) lower bounds on the query complexity of Bipartitness (presented in Section 9.3.1)
and its applications to testing cycle-freeness and expansion (presented in Section 9.3.2) are also due
to Goldreich and Ron [147]. The linear lower bound on the query complexity of 3-Colorability
is due to Bogdanov, Obata, and Trevisan [61].

The (random-walk based) tester for Bipartiteness was presented by Goldreich and Ron [148],
and the one-sided error tester for Cycle-freeness was presented in [81]. Using random walks
is most natural in the context of testing Expansion [149], but the analysis of such testers was
successfully completed only in later works [175, 214]. We mention that the reduction of testing the
uniformity of a distribution to estimating its collision probability, which underlies the Expansion

tester, has become quite pivotal to the study of testing distributions, which emerged with [35].
Testing minor-free properties was first considered by Benjamini, Schramm, and Shapira [41],

who presented testers of query complexity that is triple-exponential in 1/ǫ. (These testers as well
as all subsequent ones have two-sided error probability.) The bound was improved to a single
exponential by Hassidim, Kelner, Nguyen, and Onak [169], who also provided testers for any
hyperfinite properties (with complexity that is double-exponential in 1/ǫ). The quasi-polynomial
(in 1/ǫ) time-bound for testing minor-free properties (Theorem 9.25) is due to Levi and Ron [197].
The technique of constructing and using partition oracles was presented explicitly in [169, 218],
where two different approaches for constructing such oracles are outlined (see [218, Sec. 2.5.1]
and [218, Sec. 2.5.2], respecively).65 In Section 9.5, we followed the approach described in Onak [218,
Sec. 2.5.2], and its improvement by Levi and Ron [197], which leds to the aforementioned quasi-
polynomial bound.

63Actually, the two-sided error tester for cycle-freeness is a variant on the tester presented in [147], and the
complexity improvement (captured in Theorem 9.15) has not appeared before.

64Indeed, the proof of Claim 9.11.2 is essentially due to [178].
65The first approach is applicable to any hyperfinite graph, whereas the second approach is applicable only to

minor-free graphs.
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9.7.2 Directed graphs

Our exposition of the bounded-degree model was confined to undirected graphs. Nevertheless, as
noted in the prior chapter, the model extends naturally to the case of directed graphs. Actually,
when considering incidence queries, four natural sub-models emerge:66

1. The first two models refers to graphs in which the both the out-degree and the in-degree
is bounded by d. In the first sub-model the tester may only query for edges in the forward
direction, whereas in the second sub-model both forward and backward directions are allowed:

(a) In the first sub-model, the directed k-vertex graph G = ([k], E) is represented by a
function gout : [k]× [d]→ {0, 1, ..., k} such that gout(v, i) = u if the ith out-going edge of
v leads to u, and gout(v, i) = 0 if v have less than i out-going edges.

(b) In the second sub-model, the directed graph G = ([k], E) is represented by two functions,
gout and gin, where gout is as in the first sub-model and gin : [k] × [d] → {0, 1, ..., k} is
defined analogously with respect to in-coming edges (i.e., gin(v, i) = u if the ith in-coming
edge of v arrives from u).

These models were introduced and studied in [40].

2. The other two models refers to graphs in which the out-degree is bounded by d, but there
is no bound on the in-degree. Again, in the first sub-model the tester may only query for
edges in the forward direction, whereas in the second sub-model both forward and backward
directions are allowed. That is, in the first sub-model the graph is represented by a function
gout : [k] × [d] → {0, 1, ..., k} as in Model 1a, whereas in the second sub-model the tester is
also provided with oracle access to a function gin : [k]× [k − 1]→ {0, 1, ..., k} that represents
the in-coming edges (as in Model 1b, except that here k − 1 is used as an upper bound on
the in-degree).

To the best of our knowledge, these models were not considered so far.

The four different models can be justified by different settings, and they vastly differ in their power.
Needless to say, graphs of bounded out-degree and unbounded in-degree are not captured by the
first couple of models. The gap between the two query models (in the case that both the out-degree
and the in-degree are bounded) was demonstrated by Bender and Ron, who initiated the study of
testing properties of directed graphs [40]. In particular, they showed that Strong Connectivity

can be tested (with one-sided error) by Õ(1/ǫ) forward and backward queries [40, Sec. 5.1], but
when only forward queries are allowed the query complexity of testing Strong Connectivity is
Ω(
√

k) (even when allowing two-sided error [40, Sec. 5.2]).67 A recent study of the gap between
these two models shows that if a property can be tested with a constant number of queries in the bi-
directional query model, then it can be tested in a sublinear number of queries in the uni-directional
query model [83].68

66Actually, two additional models can be presented by considering in-coming edges only. These models are analogous
to the two sub-models that consider out-going edges only. We believe that the forward direction is more natural.

67The lower bound can be strengthened to Ω(k) when considering only one-sided error testers. In the case of
two-sided error, sublinear complexity is possible also in the uni-directional model (i.e., for every constant ǫ > 0,
strong connectivity is ǫ-testable by k1−Ω(1) forward queries) [133, Apdx. A.3].

68The transformation does not preserve one-sided error probability, and this is inherent, since there are properties
that have a constant-query one-sided error tester in the bi-directional model but no sublinear-query one-sided error
tester in the uni-directional model.
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Another task studied in [40] is testing whether a given directed graph is acyclic (i.e., has
no directed cycles). The authors presented an Acyclicity tester of poly(1/ǫ) complexity in the
adjacency predicate model, and showed that in the incidence list model no Acyclicity tester
has query complexity o(k1/3) (even when both forward and backward queries are allowed). The
question of whether Acyclicity can be tested with o(k) queries (in the bounded-degree digraph
model) remains open. In general, it seems that the study of the foregoing models deserves more
attention than it has received so far.

9.7.3 Exercises

In addition to exercises that are directly related to property testing problems (e.g., Exercises 9.2–
9.6), we suggest a few exercises of a graph theoretic nature (e.g., Exercises 9.9 and 9.10), and
highlight the repeated sampling paradigm (Exercise 9.13).

Exercise 9.1 (determining the degree of a vertex): Given a k-vertex graph G of maximal degree
d, represented by g : [k]× [d]→ {0, 1, ..., k}, prove the following claims.

1. The degree of a given vertex can be determined using ⌈log(d + 1)⌉ incidence queries.

2. Determining the degree of a given vertex requires at least ⌈log(d + 1)⌉ incidence queries.

3. Show that a randomized algorithm (which errs with probability at most 1/3), may use one
query less, and this is optimal upto one query.

Indeed, the first two claims refer to deterministic algorithms.

Guideline: The pivot of this exercise is reducing a question regarding a sequence over [k] to a
question regarding a binary sequence. This suggestion is quite straightforward with respect to the
upper bounds, but requires some care when applied to the derivation of lower bounds. Specifically,
regarding Claim 1, given vertex v, reduce the problem of determining its degree to the problem of
determining the largest i ∈ {0, 1, ..., d} such that f(i) = 1, where f : {0, 1, ..., d} → {0, 1} is defined
such that f(j) = 1 if and only if g(v, j) ∈ [k] (with g(v, 0) = 1).

Turning to Claim 2 (and assuming d < k), we consider k-vertex graphs such that, for each
i ∈ [d]∪{0}, the graph Gi consists of a single i-vertex star centered at vertex k. Specifically, for each
i ∈ {0, 1, ..., d}, it holds that Gi = ([k], {{j, k} : j ∈ [i]}) and the corresponding incidence function
gi : [k] × [d] → {0, 1, ..., k} satisfies gi(k, j) = j and gi(j, 1) = k for every j ∈ [i], and gi(v, j) = 0
for all other (v, j)’s. The key observation is that for some fixed function f : [k] × [d] → [k], which
does not depend on i, it holds that gi(v, j) ∈ {0, f(v, j)} for all i and v, j, and so each query has at
most two possible answers. Note that any q-query algorithm that determines i (which equals the
degree of vertex k), when given access to an unknown function gi, yields a depth q binary decision
tree that queries the unknown gi and has at least d + 1 leaves (which are labeled by the different
possible outputs i ∈ {0, 1, ..., d}).

For the positive part of Claim 3, consider an algorithm that discard of a random ⌊d/3⌋-subset
of [d] when applying the reduction of Claim 1. (That is, for a selected subset I of size ⌊d/3⌋,
we consider the function f ′ : ({0, 1, ..., d + 1} \ I) → {0, 1} such that f ′(j) = 1 if and only if
g(v, j) ∈ [k], and seek to find the largest i ∈ {0, 1, ..., d} \ I such that f ′(i) = 1.) For the negative
part, consider a choice of internal coin tosses for which the residual deterministic algorithm errs on
at most ⌊(d + 1)/3⌋ of the possible i’s (considered in Claim 2).
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Exercise 9.2 (non-adaptive tester of triangle-freeness):69 Show that triangle-freeness has a non-
adaptive tester of query complexity O(d

√
k/ǫ).

Guideline: First observe that a graph that is ǫ-far from being triangle-free must have more than
ǫdk/2 different triangles, since each triangle can be removed by omitting a single edge. Hence, at
least ǫk/2 different vertex pairs participate in some triangle, which means that a random vertex-
pair participates in a triangle with probability at least Ω(ǫ/k). The non-adaptive tester selects a
random sample S of O(

√
k/ǫ) vertices, and queries the graph at all the vertex-index pairs S × [d].

The claim is proved by considering the vertex-pairs S×S, while using the fact that S×S constitutes
an almost pairwise independent sample of all vertex-pairs (cf. proof of Claim 9.21.3).

Exercise 9.3 (testing subgraph freeness for an unconnected subgraph): Let H be a fixed graph
that consists of the connected components H1, ...,Hm, having radii r1, ..., rm, respectively. Let r =
maxi∈[m]{ri}. Show that H-freeness has a (one-sided error) proximity-oblivious tester of query
complexity O(m · dr+1) and polynomial detection probability. Furthermore, show that H-freeness
has a (one-sided error) tester of query complexity Õ(m) · dr+1/ǫ.

Guideline: A vertex v ∈ [k] is called i-detecting if it is a center of a copy of Hi that resides in G.
Prove that if G is at distance δ from H-free, then, for every i ∈ [m], the graph G must have at
least δk/2 vertices that are i-detecting. The POT selects m random vertices, performs an r-deep
BFS from each, and rejects if and only if (vertex disjoint) copies of all the Hi’s were found in these
m searches. The ǫ-tester selects m′ = O(m log m)/ǫ random vertices, performs an r-deep BFS
from each, and rejects if and only if (vertex disjoint) copies of all the Hi’s were found in these m′

searches.

Exercise 9.4 (on testing whether a graph is Eulerian): Suppose that G = ([k], E) has maximum
degree d, and k′ of its vertices have odd degree. Prove that there exists a k-vertex Eulerian graph
G′ = ([k], E′) of maximum degree d such that the symmetric difference between E and E′ is at
most 3k′/2. Present a (one-sided error) proximity oblivious tester based on this observation, and
determine its query complexity and detection probability.

Guideline: If d is even, then vertices of odd degree have degree smaller than d. In this case, we just
proceed in iterations such that at each iteration we choose a pair of vertices of (current) odd degree
and change their adjacency relation (i.e., if they were adjacent, then we omit the edge between
them, and otherwise we insert an edge between them). Hence, we are done in k′/2 iterations, while
modifying a single edge in each iteration. If d is odd, then we first omit a single edge from each
vertex that has degree d, while observing that this does not increase the number of vertices of odd
degree. Once this stage is completed, we proceed as before, while observing that (from this point
on) vertices of odd degree have degree at most d− 2.

Exercise 9.5 (on testing whether a graph is connected and Eulerian): We stress that all graphs
here are of maximal degree d, and distances between them are as in Definition 9.1.

1. Prove that if G = ([k], E) is ǫ1-close to being connected and ǫ2-close to being Eulerian, then
it is O(ǫ1 + ǫ2)-close to a graph that is both connected and Eulerian.

69Based on a result in [133, Apdx. A.2].
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2. Using Item 1, present and analyze a tester for the property of being a connected Eulerian
graph.

Guideline: Let G′ = ([k], E′) be an Eulerian graph that is ǫ2-close to G. Observe that G′ is (ǫ1 + ǫ2)-
close to being connected, and hence it has at most (ǫ1 + ǫ2) · (dk/2) + 1 connected components.
On the other hand, assuming that G′ has k′ connected components, turn it into a connected graph
while preserving the degrees of all vertices and making exactly 2k′ modifications.70

Exercise 9.6 (finding small 2-edge-connected components):71 Given a vertex v that resides in a
set S of size at most s such that the subgraph of G = ([k], E) induced by S is 2-edge-connected and
the cut (S, [k] \ S) contains at most one edge, prove that the following algorithm finds S in time
O(ds).

1. Invoke a DFS at the vertex v and suspend its execution as soon as more than s vertices are
encountered.

2. If the DFS detected a connected component of size at most s, then output it.

Otherwise, consider a directed graph, denoted ~G, that is obtained from G as follows. If {u, v}
is an edge of the DFS-tree that was first traversed (during the DFS) from u to v, then only
the edge directed from v to u is placed in ~G (i.e., we do not include edges in the direction used
by the DFS in discovering a new vertex). Any edge {u, v} that is not an edge of the DFS-tree
is replaced by a pair of anti-parallel edges (i.e., we include both (u, v) and (v, u), where (x, y)
denotes the edge directed from x to y).

3. Invoke a directed search, starting at vertex v, on the directed graph ~G, and output the set of
vertices visited in this search. The directed search (e.g., a directed BFS or DFS) only traverses
directed edges in the forward direction.

Guideline: Suppose that (S, [k] \ S) contains a single edge. Then, in Step 2, this edge must be
traversed by the DFS in the direction from S to [k] \S, and it follows that Step 3 outputs a subset
of S. Prove that the output cannot be a strict subset of S, by relying on the hypothesis that S is
2-edge-connected.

Exercise 9.7 (proof of Claim 9.11.1):72 Prove Claim 9.11.1 by showing that at each iteration of
Algorithm 9.10 the current set S′ satisfies S′ ⊆ S.

Guideline: Note that when S′ = S the algorithm halts in Step 1 (and outputs S). Otherwise (i.e.,
when S′ ⊂ S), the algorithm does not halt in Step 1 (since GS is t-connected). But in that case,
the cut C ′ = (S′, [k] \ S′) must contain an edge of the lightest spanning tree of GS , whereas all
edges of this tree are lighter than any edge of C. Hence, in Step 3, the algorithm chooses an edge
of C ′ \ C, which implies that S′ is extended by a vertex in S \ S′.

Exercise 9.8 (obtaining a rough estimation for the number of edges): Show that by using O(1/ǫ)
queries, one can distinguish the case that a k-vertex graph of maximum degree d has more than

m
def
= max(2k, ǫdk/2) edges from the case that it has less than m/2 edges.

70Using the fact that each of the connected components is Eulerian, omit a single edge {ui, vi} from the ith

connected component, and add the edges {vi, ui+1} for i = 1, ..., k′, where the index k′ + 1 is views as 1.
71Proved in [147].
72Proved in [147].
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Guideline: Show that such an approximation can be obtained by taking a sample of O(dk/m) pairs,
and note that O(dk/max(2k, ǫdk/2)) = O(min(d, ǫ−1)) = O(1/ǫ).

Exercise 9.9 (graphs that are far from being bipartite may lack odd cycles of sub-logarithmic
length):73 Show that there exist (bounded degree) k-vertex graphs that are Ω(1)-far from being
bipartite but have no odd-cycle of length o(log k).

Guideline: Using Theorem 9.16 infer that it cannot be the case that each k-vertex graph that is Ω(1)-
far from being bipartite has Ω(k) vertices that reside on odd-cycles of length at most L = o(log k).
(This is the case by virtue of a potential tester that selects a random start vertex and explores all
vertices at distance ⌈L/2⌉ from it.) Next, show that if every k-vertex graph that is ǫ-far from being
bipartite has an odd-cycle of length at most L, then every k-vertex graph that is (ǫ + 2ρ)-far from
being bipartite has at least ρ · k vertices that reside on odd-cycle of length at most L.

Exercise 9.10 (graphs that are far from being bipartite have odd cycles of logarithmic length):74

Prove that if a (bounded degree) k-vertex graph is ǫ-far from being bipartite, then it has an odd
cycle of length at most L = O(ǫ−1 log k).

Guideline: For starters, note that if all vertices of the graph are at distance at most (L− 1)/2 from
some vertex v, then the claim follows by considering a BFS that starts at v. (Note that some
layer of this BFS must contain an edge, which yields an odd cycle of length at most 1 + (L − 1),
since otherwise the graph is bipartite.) In the general case, we apply an iterative process. In each
iteration, we pick an arbitrary vertex in the residual graph and perform a truncated BFS that is
suspended when the next layer of the BFS grows by less than an ǫ/2 factor; that is, denoting by k′

the number of vertices visited so far by the current BFS, we stop (at the current layer) if the next
layer has less than ǫk′/2 vertices. Hence, the BFS is suspended after at most log1+0.5ǫ k iterations,
and if some layer of this BFS contains an edge, then we are done (as in the simple case). Otherwise,
we discard the explored k′-vertex portion of the graph and omit all edges that connect it to the rest
of the graph, which means that we omitted less than ǫk′d/2 edges. Note that this iterative process
must find an edge in some layer of some BFS, because otherwise the graph can be made bipartite
by omitting ǫdk/2 edges.

Exercise 9.11 (a detail for the proof of Claim 9.21.2): Let p1(u) and p′1(u) be as in Claim 9.21.2
(and in its proof sketch). Prove that p′1(u) ∈ [0.9 · p1(u), 1.1 · p1(u)].

Guideline: It is instructive to view the ℓ-step walks (starting at vertex s) as ℓ-long sequences over
[2d] such that the ith symbol in the sequence (α1, ..., αℓ) is interpreted as moving to the αth

i neighbor
of the current vertex if that vertex has at least αi neighbors, and staying in place otherwise. Hence,
symbols in [d + 1, 2d] always represent staying in place, since the degree of the current vertex is
always at most d. Now, define Sℓ,ℓ′ as the set of ℓ-long sequences with exactly ℓ′ symbols in [d+1, 2d]

73We mention that such graphs can be constructed: The explicit expander graphs in [201] are far from being
bipartite.

74Proved in [148]. The proof is analogous to the proof of the widely known upper bound on the girth of graphs with
certain edge density, where the girth of a graph is the length of its shortest simple cycle. Specifically, the latter claim
asserts that if a k-vertex graph has at least (1 + ǫ) · k edges (which means that, in the context of the bounded-degree
model, it is viewed as Ω(ǫ)-far from being cycle-free), then it has a cycle of length at most O(ǫ−1 log k).
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that correspond to walks of odd path-parity that end at u. Lastly, for every γ ∈ [d]ℓ−ℓ′ , let Sγ
ℓ,ℓ′

denote the set of sequences in Sℓ,ℓ′ whose [d]-symbols match γ; that is,

Sγ
ℓ,ℓ′

def
=

⋃

I∈([ℓ]

ℓ′)

{α ∈ Sℓ,ℓ′ : αI ∈ [d + 1, 2d]ℓ
′ ∧ α[ℓ]\I =γ}.

The sets Sℓ−1,ℓ′−1 and Sγ
ℓ−1,ℓ′−1 are define analogously. Prove the following claims:

1. Prα∈[2d]ℓ [α 6∈ ∪ℓ′∈[0.49ℓ,0.51ℓ]Sℓ,ℓ′ ] = exp(−Ω(ℓ)) < 0.01/k.

2. For every ℓ′ ∈ [ℓ] and γ ∈ [d]ℓ−ℓ′ , it holds that ℓ′ · |Sγ
ℓ,ℓ′| = d · ℓ · |Sγ

ℓ−1,ℓ′−1|.
Hence, Prα∈[2d]ℓ [α ∈ Sℓ,ℓ′ ] = dℓ

2d·ℓ′ ·Prβ∈[2d]ℓ−1[β ∈ Sℓ−1,ℓ′−1].

Finally, combine the two claims.

Exercise 9.12 (a detail for the proof of Lemma 9.22.1): Recall that the proof provided in the text
assumed that G is connected. Extend the proof to the general case.

Guideline: Focus on the case of ∆ > k/2, while observing that the reduction of the general case to
the case of ∆ > k/2 made no reference to connectivity. Considering a graph with m connected com-
ponents, having sizes k1, ..., km, use the fact that with probability at least max(0.5, 1−exp(−Ω(ki))),
the ith connected component is Ω(1)-far from being bipartite.

Exercise 9.13 (the repeated sampling paradigm): Let A be a randomized algorithm that, for
every i ∈ [n], outputs i with probability pi, and halts without output with probability 1−∑i∈[n] pi > 0.

Present an algorithm that generates a distribution that is 2−t-close to the distribution in which j ∈
[n] appears with probability pj/

∑
i∈[n] pi, by invoking A for O(t/

∑
i∈[n] pi) times.

Guideline: Output the result of the first invocation that produces any output, and output 0 if no
invocation produced an output.

Exercise 9.14 (correcting a given sampler): Suppose that you are given independently drawn sam-
ples from a distribution X over [n], but you wish to produce a distribution in which i occurs with
probability ρ(i) · Pr[X = i], where you have oracle access to ρ : [n] → [0, O(1)]. Solve this problem
by using a constant number of samples and a constant number of queries to ρ, in expectation.

Guideline: Using the repeated sampling paradigm (see Exercise 9.13), focus on producing output
with constant probability by using a single sample of X. Specifically, when given a sample i, output
it with probability ρ(i)/c, where c = O(1) is the guaranteed upper bound on ρ.

Exercise 9.15 (a detail for the proof of Lemma 9.30): Suppose that G′ = ([k′], E′) is an H-minor
free graph with weights on its edges and let h(v) denote the other endpoint of the heaviest edge
incident at vertex v (of G′). Show that the set of directed edges {(v, h(v)) : v ∈ [k′]} has total
weight that is at least a 1/dH fraction of the total weight of the edges of G′, where dH is a constant
such that every H-minor free graph has a vertex of degree at most dH . (Consequently, the set of
undirected edges {{v, h(v)} : v ∈ [k′]} has total weight that is at least a 1/2dH fraction of the total
weight of the edges of G′.)75

75Indeed, an edge {u, v} of E′ may be the heaviest edge of both u and v; that is, it is possible that h(v) = u and
h(u) = v.
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Guideline: Consider an iterative process of selecting a vertex of smallest degree in G′, and omitting
it and its edges from G′. Note that each of the resulting graphs is H-minor free, and thus has a
vertex of degree at most dH . It follows that the heaviest (directed) edge of this vertex, which may
not be present at the current graph, has weight that is at least a 1/dH fraction of the weight of the
edges omitted at this step. That is, if at the current iteration we omitted the vertex v and all edges
incident at it, then the weight of the directed edge (v, h(v)) is at least a 1/dH fraction of the total
weight of the undirected edges that are incident to v at the beginning of the current iteration.

Exercise 9.16 (graph properties are not random self-reducible): Show that, except for a few trivial
cases, graph properties of k-vertex graphs in the incidence function representation are not random
self-reducible by o(k) queries.76

Guideline: See Exercise 8.16.

76See Definition 5.9.
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Chapter 10

Testing Graph Properties in the
General Graph Model

Summary: This chapter is devoted to testing graph properties in the general graph
model, where graphs are inspected via incidence and adjacency queries, and distances
between graphs are normalized by their actual size (i.e., actual number of edges). The
highlights of this chapter include:

1. Demonstrating the derivation of testers for this model from testers for the bounded-
degree graph model.

2. Studying the tasks of estimating the number of edges in a graph and sampling
edges uniformly at random.

We concluded this chapter with some reflections regarding the three models of testing
graph properties.

The current chapter is based on several sources; see Section 10.5.2 for details.

Teaching note: Although it is possible to study the current chapter without first studying Chapter 9, we

strongly recommend not doing so. Basic familiarity with the bounded-degree graph model (see Section 9.1)

seems necessary for a good perspective on the general graph model. In addition, familarity with some of

the results and ideas of Chapter 9 will greatly facilitate the study of the current chapter. Specifically, it

will be most beneficial to be familiar with the connectivity tester and the bipartiteness tester (presented

in Sections 9.2.3 and 9.4.1, respectively).

Organization. Following an introduction to the general graph model (Section 10.1), we study
the issues that arise when trying to extend testers for the bounded-degree graph model to testers
for the current model (Section 10.2). Next, in Section 10.3, we study the related problems of
estimating the average degree in a general graph and selecting random edges in it, presenting two
different algorithmic approaches towards solving these problems (see Sections 10.3.2.1 and 10.3.2.2,
respectively). As illustrated in Section 10.2.2, these problems are pivotal for the design of some
testers. Lastly, in Section 10.4, we illustrate the possible benefits of using both incidence and
adjacency queries.
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Teaching note: We recommend covering only part of the contents of this chapter in class, and leaving

the rest for optional independent reading. Aside from Section 10.1, which seems a must, the choice of

what to teach and what to leave out is less clear. If pressed for our own choice, then the fact is that we

chose to cover Sections 10.2.2 and 10.3.2.1 in class.

10.1 The General Graph Model: Definitions and issues

The general graph model is intended to capture arbitrary graphs, which may be neither dense nor
of bounded-degree. Such graphs occur most naturally in many settings, but they are not captured
(or not captured well) by the models presented in the last two chapters (i.e., the dense graph model
and the bounded-degree graph model).

Recall that both in the dense graph model and in the bounded-degree graph model, the query
types (i.e., ways of probing the tested graph) and the distance measure (i.e., distance between
graphs) were linked to the representation of graphs as functions. In contrast to these two models,
in the general graph model the representation is blurred, and the query types and distance measure
are decoupled.

Giving up on the representation as a yardstick (for the relative distance between graphs) leaves
us with no absolute point of reference. Instead, we just define the relative distance between graphs
in relation to the actual number of edges in these graphs; specifically, the relative distance between

the graphs G = ([k], E) and G′ = ([k], E′) may be defined as |E△E′|
max(|E|,|E′|) , where E△E′ = (E \

E′) ∪ (E′ \ E) denotes the symmetric difference between E and E′. Indeed, the normalization
by max(|E|, |E′|) is somewhat arbitrary, and alternatives that seem as natural include |E| + |E′|,
|E ∪ E′| and (|E| + |E′|)/2; yet, all these alternatives are within a factor of two from one another
(and the slackness is even smaller in the typical case where |E ∪ E′| ≈ |E ∩ E′|).

Turning to the question of query types, we again need to make a choice, which is now free from
representational considerations. The most natural choice is to allow both incidence queries and
adjacency queries; that is, we allow the two types of queries that were each allowed in one of the
two previous models. Hence, the graph G = ([k], E) is (redundantly) represented by (or rather
accessed via) two functions:

1. An incidence function g1 : [k]× [k − 1]→ {0, 1, ..., k} such that g1(u, i) = 0 if u has less than
i neighbors and g1(u, i) = v if v is the ith neighbor of u. That is, if dG(u) denotes the degree
of u in G, then {g1(u, i) : i ∈ [dG(u)]} = {v : {u, v}∈E}.
Indeed, here k− 1 serves as a (trivial) degree bound. (Recall that the bounded-degree graph
model relied on an explicit degree bound, which was denoted d.)

2. An adjacency predicate g2 : [k]× [k]→ {0, 1} such that g2(u, v) = 1 if and only if {u, v} ∈ E.

Typically, adjacency queries are more useful when the graph is more dense, whereas incidence
queries (a.k.a neighbor queries) are more useful when the graph is more sparse (cf. [42]). Neverthe-
less, both types of queries are allowed in the current model, and at times both are useful (see, e.g.,
Algorithm 10.13).

10.1.1 Perspective: Comparison to the two previous models

Recall that in the bounded-degree graph model we have implicitly assumed that the degree bound,
denoted d, is of the same order of magnitude as the actual average degree (i.e., d = O(|E|/k),
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or, equivalently, |E| = Ω(dk)). This assumption is mute in case the parameter d is viewed as a
constant, but the meaningfulness of the model for the case of a variable d relies on the assumption
that the average degree is Ω(d), or so. When this assumption holds, the difference between the
measure of relative distance used here (i.e., in the general graph model) and the measure used in
the bounded-degree graph model is not significant.

Likewise, in the dense graph model we have implicitly assumed that the density of edges is a
constant (i.e., |E| = Ω(k2)). Whenever this assumption holds, the difference between the measure
of relative distance used here (i.e., in the general graph model) and the measure used in the dense
graph model is not significant.

We also note that in each of the two previous models, when the corresponding implicit assump-
tion holds, it was easy to approximate the number of edges in the graph and to sample an edge
uniformly at random: In the bounded-degree graph model, if |E| = Ω(dk), then we can approxi-
mate |E| (resp., select an edge at random) by uniformly selecting (u, i) ∈ [k]× [d] at random, and
checking whether g1(u, i) ∈ [k] (resp., output {u, g1(u, i)} if and only if g1(u, i) ∈ [k]). Hence, we
obtain a 1 ± ǫ factor approximation by repeating this experiment for O(1/ǫ2) times (resp., obtain
a random edge after O(1) trials).1 Likewise, in the dense graph model, if |E| = Ω(k2), then we
can approximate |E| (resp., select an edge at random) by uniformly selecting (u, v) ∈ [k] × [k] at
random, and checking whether g2(u, v) = 1 (resp., output {u, v} if and only if g(u, v) = 1). Hence,
we obtain a 1±ǫ factor approximation by repeating this experiment for O(1/ǫ2) times (resp., obtain
a random edge after O(1) trials).2

10.1.2 The actual definition

For sake of good order, we explicitly present the definition of testing graph properties in the general
graph model.

Definition 10.1 (testing graph properties in the general graph model): A tester for a graph prop-
erty Π is a probabilistic oracle machine that, on input parameters k and ǫ and access to functions
answering incidence queries and adjacency queries regarding an k-vertex graph G = ([k], E), outputs
a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ǫ-far from Π, then the tester accepts with probability at most 1/3, where G is ǫ-far
from Π if for every k-vertex graph G′ = ([k], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ǫ ·max(|E|, |E′|).

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error. A tester is called non-adaptive if it determines all its
queries based solely on its internal coin tosses (and the parameters k and ǫ); otherwise, it is called
adaptive.

The query complexity of a tester is the total number of queries it makes to any graph G = ([k], E),
as a function of the graph’s parameters (i.e., k and |E|) and the proximity parameter ǫ. We stress
that we count both the incidence queries and the adjacency queries, and each of these queries is
counted as one unit.

1In both cases, the O-notation hides a factor of dk/|E|.
2In both cases, the O-notation hides a factor of k2/|E|.
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As stated upfront, the motivation for the model captured by Definition 10.1 is to allow the
consideration of arbitrary graphs (which may be neither dense nor of bounded-degree). In doing
so, this model strengthens the relation between property testing and standard algorithmic studies.
On the other hand, forsaking the paradigm of representing graphs as functions means that the
connection to the rest of property testing is a bit weakened (or at least becomes more cumbersome).

On extremely sparse graphs. Extremely sparse graphs, in which the number of edges is sig-
nificantly smaller than the number of vertices, raise conceptual questions regarding the testing
model captured by Definition 10.1. Conceptually, defining the relative distance between graphs as
a fraction of the number of edges in these graphs represents the feeling that the number of edges
in a graph represent its size. This is indeed the case in the typical cases in which the graph is not
extremely sparse (i.e., the number of edges in the graph is at least of the same order of magnitude
as the number of vertices). But in the pathological case of extremely sparse graphs, it seems that
the number of vertices represents its size better. Hence, in general, it seems that k + |E| represents
the size of the graph G = ([k], E) better than either |E| or k. This leads to the following revision
of the testing model (where the difference is at the very end of the definition).

Definition 10.2 (testing graph properties in the general graph model, revised): A tester in the
revised model is defined as in Definition 10.1, except that the definition of distance to the graph
property Π is modified so that the graph G = ([k], E) is said to be ǫ-far from Π if for every k-vertex
graph G′ = ([k], E′) ∈ Π it holds that the symmetric difference between E and E′ has cardinality
that is greater than ǫ · (k + max(|E|, |E′|)).

Definitions 10.1 and 10.2 differ only in the definition of (relative) distance between graphs: In
Definition 10.1 the symmetric difference is divided by max(|E|, |E′|), whereas in in Definition 10.2
the symmetric difference is divided by k + max(|E|, |E′|). This difference is insignificant whenever
|E| = Ω(k); that is, for |E| = Ω(k), the definitions of (relative) distance underlying Definitions 10.1
and 10.2 coincide up to a constant factor, which we can ignore just as we ignored the difference
between |E|+ |E′|, |E ∪E′|, max(|E|, |E′|) and (|E|+ |E′|)/2. Furthermore, the definitions collide
(up to a constant factor) also in case the property contains only k-vertex graphs with Ω(k) edges
(e.g., Connectivity).

We note that the two definitions do differ when applied to properties that contain the empty
graph (or any other extremely sparse graphs). Consider, for example, the case of Bipartitness. In
this case, the k-vertex graph that consists of a single triangle and k− 3 isolated vertices is deemed
0.33-far from Bipartiteness by Definition 10.1, whereas Definition 10.2 views it as 1/k-close to
Bipartiteness. Hence, Ω(1)-testing Bipartiteness under Definition 10.1 requires Ω(k) queries,
merely due to the need to find a tiny portion of the graph that violates the property. But this need
stands in contrast to the entire mindset of property testing that postulates that small parts of the
object that violate the property can be ignored. The source of trouble is that Definition 10.1 may
view such small portions as a large fraction of the object. We believe that the foregoing illustrates
our opinion that Definition 10.1 does not account properly for the “size” of the tested object (when
the tested object is an extremely sparse graph).

In light of the above, we believe that Definition 10.2 should be preferred over Definition 10.1.
Hence, whenever there is a significant difference between these two definitions, we shall use Defini-
tion 10.2.
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10.2 On obtaining testers for the current model

The general graph model is closer in spirit to the bounded-degree graph model than to the dense
graph model, since the focus of the two former models is on sparse (or at least non-dense) graphs.
The main difference between the general graph model and the bounded-degree model is that the
former deals with graphs in which vertex degree may vary in an extreme manner. An additional
issue is that the dependence of the complexity on the average vertex degree is viewed as more
important. (We shall elaborate on these two issues shortly.)

Since a tester in the general graph model must definitely work also in the bounded-degree graph
model and since designing testers in the general graph model is typically more difficulty, it makes
sense to try first to design a tester for the bounded-degree graph model. (One may object the
foregoing assertion by claiming that the general graph model endows the tester with additional
power (i.e., it allows adjacency queries), but this power is irrelevant in the case that the graph has
bounded degree.)3

In light of the foregoing, designing testers for the general graph model may be viewed as adapting
and/or extending testers designed for the bounded-degree graph model to the general graph model.
Such an adaptation and/or extension faces the two aforementioned difficulties (or issues).

1. The dependence of the original tester on the degree bound: In the bounded-degree graph
model, one tends to ignore the dependence of the complexity of testing on the degree bound,
denoted d, which is often viewed as a constant. Note that this parameter has two opposite
effects. On the one hand, when d increases, the relative distances decrease, and so testing
may become easier. On the other hand, the complexity of some operations (e.g., scanning all
neighbors of a given vertex) may grow with d. So the first challenge is figuring out the exact
effect of d on the complexity of the original tester.

For example, the tester for Bipartiteness, presented in [148], was originally analyzed as-
suming that the degree bound is a constant, which led to ignoring the dependence of its
complexity on the degree bound. Fortunately, a closer look at the analysis, taken in [180],
revealed that the complexity does not grow with the degree bound (since the two opposite
effects cancel out).4 Note that this is the case also with the tester for connectivity (see
Section 9.2.3).

2. The effect of drastically varying vertex degrees: A more acute problem with the bounded-
degree graph model is that it tends to blur the difference between the average degree of
the graph and its maximal degree. But in the general graph model these two quantities play
different roles. The average degree is used to normalize the relative distance of the input graph
to the property (since this distance is normalized by the input’s average degree), whereas the
query complexity may depend on the maximal degree. (In contrast, in the bounded-degree
graph model, the relative distance is also normalized by the maximum degree.)

Hence, when these two quantities are significantly different, the aforementioned cancelling
effect does not apply, and typically we cannot use the tester for the bounded-degree graph
model as is. Instead, we should adapt the tester so that its operation is better tailored to the
varying degrees of the vertices of the input graph. There are two ways of doing so.

3Formally, adjacency queries can be emulated by d incidence queries, when d is the maximum degree in the graph.
Hence, when d is a constant, we gain very little by using adjacency queries.

4This can be seen in the special case of rapid-mixing, which was analyzed in Section 9.4.1.
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(a) An explicit adaption: Changing the original tester, by possibly generalizing an idea that
underlies the original design.

(b) A reduction: The original tester remains intact, but it is not applied to the input graph
but rather to a graph that is derived from it by a local reduction. Needless to say, in
this case, the reduced graph will have a maximum degree that is of the same order of
magnitude as its average degree.

We shall demonstrate both ways next.

Before turning to the actual demonstrations, let us comment that the second approach (i.e., using
a reduction) seems to require estimating the average degree of the graph (as well as selecting edges
uniformly at random in the input graph). But as will be shown in Section 10.3.1, estimating the
average degree of a k-vertex graph requires query complexity Ω(

√
k), at least in case that it has

O(k) edges, and so this route is to be avoided when seeking lower complexity.

Teaching note: In Sections 10.2.1 and 10.2.2 we demonstrate the two routes outlined in Items 2a and 2b,

respectively, while referring to the specific testers for Connectivity and Bipartiteness. Since our focus

is on demonstrating the general principles, we do not provide detailed analyses of the two resulting testers,

but rather confine ourselves to overviews.

10.2.1 An explicit adaptation: the case of connectivity

The tester for Connectivity in the bounded-degree graph model, presented in Section 9.2.3, can be
easily adapted to the current context. We first recall that if a graph has m connected components,
then it can be made connected by adding m− 1 edges. In our context, this means that the k-vertex
graph is m/k-close to being connected; specifically, if G = ([k], E) has m connected components,
then it is ǫ-close to being connected for ǫ = m−1

|E|+m−1 ≤ m−1
k−1 ≤ m

k (since |E| + m− 1 ≥ k − 1 and

k ≥ m).5

Recall that the tester for Connectivity (in the bounded-degree graph model), presented in the
proof of Theorem 9.8, consisted of conducting truncated BFSes that are suspended once a specified
number of vertices, denoted s, is encountered. In the context of the bounded-degree graph model,
the complexity of such a search was d ·s, where d was the degree bound. But in the current setting,
there is no degree bound; still, the complexity of the search is smaller than s2, since the subgraph
induced by these s vertices has at most

(s
2

)
edges. Hence, the complexity of the tester is Õ(1/ǫ2)

rather than Õ(1/ǫ).
A minor improvement over the foregoing upper bound can be obtained by a different setting

of the parameters in Levin’s economical work investment strategy. Specifically, for i = 0, 1, ..., ℓ
def
=

log(1/ǫ), we select at random O(i2 · 2i) start vertices, and conduct a truncated BFS from each of
them such that the search is suspended once O(2−i/ǫ) vertices are encountered. Using an analysis
as in Section 8.2.4, we obtain:

Theorem 10.3 (testing connectivity (in the general graph model)):6 Connectivity has a (one-sided
error) tester of time (and query) complexity O(1/ǫ2).

5Recall that the bound used in Section 9.2.3 was 2m−1
dk/2

, where d was the degree bound (and the factor of two was

due to the need to preserve the degree bound).
6This result holds under both testing models presented in Section 10.1 (cf. Definitions 10.1 and 10.2).
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10.2.2 Using a reduction: the case of Bipartiteness

Our aim here is to present an extension of the testing result for Bipartiteness from the bounded-
degree graph model to the general graph model.

Theorem 10.4 (testing Bipatiteness (in the general graph model)):7 Bipatiteness has a (one-
sided error) tester of time (and query) complexity poly(1/ǫ) · Õ(

√
k).

This result will be established by a reduction from testing in the general graph model to testing
in the bounded-degree graph model. That is, we shall transform the input graph, which may have
vertices of significantly varying degrees, into a graph that fits the bounded-degree graph model, and
apply the original tester on the resulting graph. But first, we observe that the performance of the
original tester (for Bipartiteness in the bounded-degree graph model) does not deteriorate when
the degree bound d increases. Furthermore, its analysis continues to hold also if the input graph
is not simple (i.e., has parallel edges). The reader can easily verify both claims for the special case
of rapid-mixing, presented in Section 9.4.1. Hence, we focus on handling the case that the degree

in the input graph G = ([k], E) vary significantly; that is, the average degree d
def
= 2|E|/k may be

much smaller than the maximal degree dmax
def
= maxv∈[k]{dG(v)}, where dG(v)

def
= |{u : {u, v}∈E}|.

For sake of simplicity, we assume that d ≥ 1 is an integer (which is definitely the case if G contains
no isolated vertices).

We obtain a tester for Bipartiteness in the general graph model by invoking the original tester
on an imaginary graph that is obtained by replacing vertices of high degree (in the input graph
G = ([k], E)) with adequate gadgets, and distributing the edges incident at the original high-degree
vertices among the vertices of these gadgets. Specifically, a vertex v having degree dG(v) is replaced
by a O(⌈dG(v)/d⌉)-vertex graph Gv of maximal degree d, while connecting the original neighbors
of v to vertices of the gadget Gv such that each vertex of the gadget has at most d external edges
(which lead to other gadgets, which replace the neighbors of v).8

Needless to say, this intended replacement of vertices by gadgets should preserve the distance
of the original graph from being bipartite (up to a constant factor). That is, if G is bipartite,
then the resulting graph G′ should be bipartite, and if G is ǫ-far from being bipartite, then G′

should be Ω(ǫ)-far from being bipartite. In such a case, we obtain a (local) reduction of testing
Bipartiteness in the general graph model to testing Bipartiteness in the bounded-degree graph
model.

The choice of adequate gadgets is, of course, crucial. For starters, these gadgets should be
bipartite graphs, since otherwise bipartiteness is not preserved by the replacement. Furthermore,
for connections to other gadgets, we should only use vertices of one side of the bipartite graph,
called its external side. However, preserving the distance to Bipartitness requires more than that
(i.e., more than preserving the distance in case it is zero). We want it to be the case that if the
original graph G is far from being bipartite, then so is the resulting graph G′; equivalently, if G′ is
close to being bipartite, then so is G. This will be the case if for every 2-partition of G′ that has
few violating edges (i.e., edges with both endpoints on the same side), the gadgets “force” placing

7We stress that this result refers to the testing model captured by Definition 10.2.
8Indeed, it unnecessary to apply this replacement to vertices of degree at most d, but it is simpler to apply it

also to these vertices. In this case (i.e., when dG(v) ≤ d), the graph Gv consists of a single pair of vertices that are
connected by d parallel edges, which means that v remains connected to its original neighbors, but also gets connected
to a new auxiliary neighbor.
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all the external vertices of each gadget on the same side of the 2-partition. In such a case, the
2-partition of G′ (with few violating edges) induces a 2-partition of G with a few violating edges.

(The reader may observe that the foregoing feature is satisfied by random d-regular bipartite
graphs (see Exercise 10.1), and may assume at this point that this is what we use, although we shall
actually use d-regular bipartite graphs that are expanders in a sense to be defined in the sequel.)

The actual transformation (i.e., the gadgets). In general, a vertex v having degree dG(v) is replaced
by a d-regular bipartite graph Gv with tv = ⌈dG(v)/d⌉ vertices on each side, while connecting the
original neighbors of v (or rather the gadgets that replace them) to vertices on the external side of
the gadget Gv . That is, at most d edges that are incident at v are connected to each vertex on the
external side of the bipartite gadget Gv , whereas the vertices on the “internal” side of Gv are only
connected to the “external” vertices of Gv (see Figure 10.1).9

v

I Xv v

Figure 10.1: The gadget Gv for the case of d = 2 and tv = 3. The vertex v is replaced by a bipartite
graph with sides Xv and Iv, where “X” stands for external and “I” for internal.

Hence, each vertex in the resulting graph, denoted G′, has degree between d and 2d. Note that the
number of vertices in G′ is

∑

v∈[k]

2 · ⌈dG(v)/d⌉ < 2 ·
∑

v∈[k]

((dG(v)/d) + 1) = 2k + 2k. (10.1)

Recall that in such a case (i.e., when the average degree and the maximal degree are of the same
order of magnitude), the definition of relative distance in the general graph model fits the definition
of relative distance in the bounded-degree graph model (up to a constant factor). We stress that
the bipartite gadget graphs (i.e., the Gv ’s) are not necessarily simple graphs (i.e., they may have
parallel edges),10 and consequently the graph G′ is not necessarily a simple graph.

9Denoting the bipartite graph by Gv = ((Xv , Iv), Ev) such that |Xv | = |Iv| = tv and Ev ⊆ Xv × Iv, we connect
the neighbors of v to vertices in Xv , where “X” stands for external and “I” for internal. Indeed, the vertices in Iv

are only connected to vertices in Xv.
10This will definitely happen when ⌈dG(v)/d⌉ < d.
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Having described the transformation of G into G′, we need to address two key questions: Does
this transformation preserve the distance from Bipartiteness? and is this transformation local?
In other words, we need to address the conditions of the definition of a local reduction, as defined
in Section 7.4 and adapted in Section 9.4.2.

Preservation of the distance from Bipartiteness. Starting with the first question, we first note
that if G is bipartite, then so is the reduced graph G′. In order to guarantee that if G is ǫ-far
from bipartite, then G′ is Ω(ǫ)-far from bipartite, we use d-regular bipartite gadgets that have
an expansion feature that is postulated below (in Definition 10.4.1). To motivate this definition,
suppose that G is far from being bipartite, and consider an arbitrary 2-partition of G′. In such a
case, if the vertices of each gadget are 2-partitioned in the natural way (i.e., all external vertices
of each gadget are assigned the same side), then the 2-partition of G′ induces a 2-partition of G,
which imply that the fraction of edges in G′ with both endpoints on the same side is large (since
the edges that connect different gadgets constitute a constant fraction of the edges in G′).11 We
stress that, in this case, the number of violating edges with respect to a natural 2-partition of G′

equals the number of violating edges in the corresponding 2-partition of G, where an edge is called
violating with respect to a 2-partition if its two endpoints are assigned to the same side.

The problem is that a general 2-partition of G′ may split some of the external vertices of some
gadgets, and in this case it does not yield a 2-partition of G. The expansion feature (defined next)
penalizes such a 2-partition in a way that makes it violate at least a constant fraction of the number
of edges that are violated by the best natural 2-partition of G′. This happens because such a 2-
partition has many violating edges that are internal to the gadgets. In particular, placing t′ ≤ t/2
out of the t external vertices of a gadget on the “wrong” side of a 2-partition may allow to avoid
t′d violating edges that connect this gadget to other gadgets, but it causes Ω(t′d) violations inside
the gadget. This feature is exactly what the following definition provides.

Definition 10.4.1 (bipartite expanders): A (not necessarily simple) d-regular bipartite graph with
vertex partition (X,Y ) is c-edge expanding if for every S ⊂ X of size at most |X|/2 it holds that

∑

y∈Y

min(|Γ(y) ∩ S|, |Γ(y) \ S|) ≥ c · d · |S|

where Γ(y) ⊆ X denotes the multiset of neighbors of y. For c > 0, we say that a family of (not
necessarily simple) regular bipartite graphs {Bd,t : d, t∈N} is c-edge expanding if, for all sufficiently
large d, t ∈ N, the bipartite graph Bd,t is d-regular, contains t vertices on each side, and is c-edge
expanding.

The definition mandates that typical vertices in Y have many neighbors in both S and X \S, where
“many” is related to the density of S in X; that is, Definition 10.4.1 asserts that the average “edge
mixture” (the ratio |Γ(y) ∩ S|/|Γ(y)| for a random y ∈ Y ) is related to |S|/|X|. This is a slightly
non-standard definition of expansion in that it refers to bipartite graphs and to edge expansion,
but it follows from the standard definition of expander graphs.12 Using c-edge expanding d-regular

11Recall that the number of edges that connect different gadgets is |E| = dk/2, whereas the number of edges in G′

is at most 2d · 4k/2.
12The standard definition refers to families of non-bipartite (regular) graphs of constant degree and to vertex

expansion. It asserts that, for some constants d ∈ N and c > 1, and for each n ∈ N, the family contain a d-regular
n-vertex graph Gn such that any set S of at most n/2 vertices in Gn has at least c · |S| neighbors. A bipartite graph
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bipartite graphs as gadgets in the transformation of G into G′, we observe that if G is ǫ-far from
bipartite, then G′ is (c · ǫ/8)-far from bipartite (see Exercise 10.3).

On the locality of the transformation. We now turn to the question of the locality of the transforma-
tion of G into G′. Intuitively, the transformation, which is based on local gadgets, seems very local.
However, as in Section 9.4.2, the transformation is not local enough to fit the definition presented
in Section 7.4. Specifically, the set of vertices of G′ is not easily put in correspondence with a
set of the form [n′]. Furthermore, unlike in Section 9.4.2, it is not clear how to emulate incidence
queries to G′ by using incidence queries to G: The problem is that an incidence query (v, i) to G
is answered with a vertex u that is the ith neighbor of v, but the answer does not reveal an index j
such that v is the jth neighbor of u. Consequently, it is not clear to which of the external vertices
of the gadget that replace u we should connect the (corresponding external vertex of the) gadget
of v. Nevertheless, as will be outlined below, the transformation does fit a relaxed notion of a local
reduction.

We first note that vertices in G′ can be represented by tuples of the form 〈v, i, σ〉 such that
v ∈ [k], i ∈ [tv] and σ ∈ {0, 1} (where σ = 1 corresponds to an external vertex associated with
v and σ = 0 corresponds to an internal vertex). Note, however, that determining tv = ⌈dG(v)/d⌉
requires determining d; actually, using a reasonable approximation of d rather than its exact value
does suffice for the reduction we describe here. Now, assuming we know d (or an approximation
of it), given 〈v, i, σ〉 and j ∈ [2d], we can tell whether 〈v, i, σ〉 is a vertex of G′ and in the case of
an internal vertex (i.e., σ = 0) we can also determine who is its jth neighbor. In the case of an
external vertex 〈v, i, 1〉, its neighbors in the same gadget are determined as for internal vertices,
whereas its neighbors in other gadgets are determined on-the-fly as follows. (Indeed, the issue is
handling queries that correspond to inter-gadget edges of G′, which correspond to edges of G.)

Throughout our emulation of G′, we maintain the list of inter-gadget edges (equiv., edges of
G) seen so far. For each such edge, we maintain the pair of ports that it uses, where the jth edge
incident at 〈v, i, 1〉 is said to use the (i, j)th port of v. We also maintain the list of all queries we
made to G along with the answers provided for these queries. When a new query to G′ is made,
we first check whether it corresponds to an edge that is already on the list (possibly due to a query
made at its other endpoint). If the edge is on the list, then it is answered accordingly, and otherwise
we proceed as follows.

On query (〈v, i, 1〉, j), which refers to a possible inter-gadget edge (i.e., incident at the (i, j)th

port of v), we first determine the degree of v in G, and answer with 0 if (i − 1) · d + j > dG(v).
Otherwise, we select a new random neighbor of v in G, denoted u, and select a random vacant port
of u, denoted (i′, j′). The query is answered with 〈u, i′, 1〉, and the edge {u, v} is placed on the
list of assigned edges along with the port indices (i, j) and (i′, j′), which means that the (possible
future) query (〈u, i′, 1〉, j′) will be answered with 〈v, i, 1〉. A new random neighbor of v (in G) is
selected by selecting uniformly an index r in [dG(v)]\Sv and querying (the incidence function of) G
at (v, r), where Sv is the set of indices that correspond to neighbors of v that were selected before.
Note that, when selecting a neighbor of v, we may select u although v was already selected as a
neighbor of u (i.e., the index of v is in Su although the index of u is not in Sv), which means that

Bt as in Definition 10.4.1 is obtained by considering a “double cover” of Gt (i.e., replacing each vertex v in Gt by
two vertices, denoted v′ and v′′, and connecting v′ and w′′ if and only if {v, w} is an edge in Gt). Note that since
d is a constant, the edge expansion of Bt follows from its vertex expansion feature (see Exercise 10.2, which shows
that Bt is ((c− 1)/d)-edge expanding). To obtain a bipartite graph of larger (and possibly non-constant) degree D,
one can just duplicate each edge for D/d times.

272



the edge {u, v} is on the list of assigned edges. In this case, we update Sv and try again.13

Lastly, selecting a vertex in G′ uniformly at random reduces to selecting at random v ∈ [k] with
probability that is proportional to tv. Using a few sampling tricks,14 the latter task is reducible to
selecting v ∈ [k] with probability that is proportional to dG(v), which is equivalent to uniformly
selecting an edge of the graph G (see Exercise 10.4).

Hence, emulating the execution of the Bipartiteness tester (presented in Section 9.4.1) on G′

amounts to approximating d and sampling O(1/ǫ) edges of G with probability that is sufficiently
close to the uniform distribution. These tasks will be addressed in the next section. (Actually, we
can avoid the task of approximating d by just trying all powers of two, and relying on the fact that
the tester has one-sided error.)15

10.3 Estimating the average degree and selecting random edges

We focus on estimating the average degree (equiv., the number of edges) in a graph, while noting
that similar considerations apply to selecting an edge uniformly at random (equiv., selecting a vertex
with probability proportional to its degree),16 and detailing the required adaptations whenever
they are not straightforward (i.e., in Section 10.3.2). To justify the relatively high complexity of
these tasks, we first present lower bounds (see Section 10.3.1). Specifically, we show that these
tasks require Ω(

√
k) queries, and we shall indeed meet these lower bound in the algorithms that are

presented in Section 10.3.2. We stress that we confine ourselves to simple graphs, because for graph
with parallel edges no meaningful approximation can be obatined in sub-linear (in k) complexity
(see Exercise 10.5).

10.3.1 Lower bounds

For perspective, we first consider the analogous problem for functions; that is, given oracle access
to a function f : [k] → {0, 1, ..., k − 1}, we wish to obtain an approximation to

∑
i∈[k] f(i). In

this case, any constant factor approximation requires Ω(k) queries to f . To see this, consider the
set of functions {fi : i ∈ [k]} such that fi(j) = k − 1 if j = i and fi(j) = 0 otherwise (i.e.,
j ∈ [k] \{i}). Then, an algorithm that makes o(k) queries cannot distinguish a random fi from the
all-zero function.17

13Hence, each edge {u, v} may cause at most one failure, which involves one useless query to G, which can be
charged to the useful query made before (in the opposite direction).

14Specifically, with probability 1/2 we select v ∈ [k] uniformly at random, and otherwise we select v with probability

proportional to dG(v). Hence, v is selected with probability 1
2
· 1

k
+ 1

2
· dG(v)

k·d
=

t′v
2k

, where t′v = dG(v)

d
+1 > tv. Finally,

we output v with probability tv/t
′
v, and repeat the selection process otherwise.

15The point is that using a very bad approximation of d will not lead the tester to reject a bipartite graph (but
may only effect the number of vertices in G′ (e.g., increasing the number in case of underestimation)). Hence, the
desired tester is obtained by invoking the original tester with all possible approximate values of d and accepting if
and only if all invocations accepted. Specifically, we may invoke the original tester log k times such that in the ith

invocation we use 2i as an approximation of d.
16See Exercise 10.4.
17In light of the discussion at the end of Section 10.1, one may ask what happens if we confine ourselves to

functions of average value at least one. In this case, one can trivially obtain a factor k − 1 approximation, but, for
any t < k/2, obtaining a factor t approximation requires Ω(k/t) queries. This can be shown by considering, for every
t-subset I ⊂ [k], the function fI(j) = k − 1 if j ∈ I and fI(j) = 1 otherwise. Note that each fI has average value
t + 1 − (2t/k) > t, but an algorithm that makes o(k/t) queries cannot distinguish a random function fI from the
all-one function.
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Estimating the average degree via degree queries. In contrast to the situation with generic
functions, as will be shown in Section 10.3.2, when f : [k] → {0, 1, ..., k − 1} describes the vertex
degrees of a simple k-vertex graph, for any c > 2, a factor c approximation can be obtained in time
O(
√

k). This is obtained by an algorithm that uses only degree queries, and we next observe that
such an algorithm cannot obtain a better approximation factor.

Proposition 10.5 (limitations on approximating the average degree with degree queries): Suppose
that, algorithm A approximating the average degree of a simple graph G = ([k], E) by making only
degree queries such that

Pr

[ |E|
k
≤ AG(k) ≤ 2|E|

k

]
≥ 2/3. (10.2)

Then, A makes Ω(k) queries, even if it is guaranteed that |E| = Θ(k).

Indeed, Eq. (10.2) refers to an approximation factor of 2|E|/k
|E|/k = 2.

Proof Sketch: We show that an algorithm that makes o(k) degree queries cannot distinguish the
following two distributions.

1. The uniform distribution on the set of (k−1)-stars; that is, k-vertex graphs consisting of k−1
edges that are all incident at a single vertex (i.e., the graphs Gi = ([k], {{i, j} : j ∈ [k]\{i}}),
where i ∈ [k]).

2. The uniform distribution on the set of k-vertex graphs consisting of a matching of size (k−2)/2
and two isolated vertices; that is, k-vertex graphs containing k − 2 vertices of degree 1 and
four vertices of degree 0.

When using only degree queries, these two distributions can be distinguished only by querying one
of the vertices that have degree different from 1, whereas there is only one such vertex in the first
distribution and only four such vertices in the second distribution. But, when given access to a
(k−1)-star, algorithm A is required to output a value that is at least (k−1)/k, whereas when given
access to a matching of size (k − 2)/2 it is required to output a value that is at most (k − 2)/k.

Estimating the average degree via incidence and adjacency queries. The complexity of
approximating the average degree in a graph is also lower-bounded when we consider algorithms
that also use incidence and adjacency queries. But here the complexity bound is Ω(

√
k) (rather

than Ω(k), as in the case of Proposition 10.5, where only degree queries were allowed but the
approximation factor was required to be 2).

Proposition 10.6 (on the complexity of approximating the average degree): Any constant-factor
approximation algorithm for the average degree of a simple graph G = ([k], E) must make Ω(

√
k)

queries, even when allowed degree, incidence and adjacency queries, and even if it is guaranteed
that |E| = Θ(k).

Proof Sketch: For any constant γ > 0, we show that an algorithm that makes o(
√

k) queries
cannot distinguish the following two distributions.
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1. The uniform distribution on k-vertex graphs consisting of a clique of size k′ =
√

γk and an
isolated matching of size (k − k′)/2.

2. The uniform distribution on a k-vertex graphs consisting of a single perfect matching.

These two distributions can be distinguished only by making a query that refers to a vertex that
belongs to the k′-clique, since any other query is answered in the same manner by both distribu-
tions (e.g., degree queries are answered with 1).18 But, the average degree of vertices in the first
distribution is k−k′

k · 1 + k′

k · (k′ − 1) ≈ 1 + γ, whereas the average degree of vertices in the second
distribution is 1.

10.3.2 Algorithms

We show that, for every constant α > 1, a 2α-factor approximation of the average degree can be
obtained by using Õ(

√
k) degree queries, and that a α-factor approximations can be obtained by

using Õ(
√

k) incidence queries. These results refer to the case that the average degree is Ω(1), and
a more general statement holds: Denoting the average degree by d, one can obtain an arbitrary

good constant factor approximation of d in expected time Õ(
√

k/d), which is the best possible (see

Exercise 10.6, which extends Proposition 10.6). That is, when d≫ 1 we actually obtain algorithms
of complexity o(

√
k), but when d≪ 1 the complexity may be ω(

√
k).

Teaching note: Actually, we shall show two algorithmic approaches that obtain the stated result. The

first approach (presented in Section 10.3.2.1) seems more intuitive, but the second approach (presented in

Section 10.3.2.2) seems more insightful. We believe that both approaches have educational benefits.

10.3.2.1 Bucketing vertices according to their degree

The basic idea is to partition the vertices to “buckets” according to their approximate degree, and
distinguish large buckets from small buckets, where “large” means having size at least

√
k. The

key observation is that the size of large buckets can be approximated at reasonable cost, yielding
an approximation to the number of edges that are incident at vertices that belong to large buckets,
whereas there are few edges with both endpoints in a small bucket. Hence, giving up on small
buckets means that there are only relatively few edges that are not counted at all. In addition, edges
with a single endpoint in a small bucket are counted once, whereas edges with no endpoint in a
small bucket are counted twice. This discrepancy is the reason that when using only degree queries
we obtain an approximation factor of two (or rather arbitrary close to two).

Note that we can determine to which bucket a vertex belongs (by determining its degree), and
estimate the size of buckets by sampling enough vertices (where for large buckets we obtain a good
approximation of their size and for small buckets we only obtain an indication that they are small).
Hence, by using Õ(

√
k) degree queries, we obtain good estimates of the sizes of large buckets, which

yields good estimates the number of edges that are incident at large buckets, which in turn provides
a 2-factor approximation to the total number of edges. (More generally, if we are willing to tolerate

18When referring to the second distribution, it is instructive to designate k′ vertices as “corresponding to the k′-
clique” (although there is no clique in this case). Incidence queries involving a vertex not in the k′-clique are answered
with the matched neighbor if the query refers to the first neighbor and by zero otherwise. Adjacency queries regarding
a pair of vertices not in the clique are answered by 1 if and only if these vertices are matched.
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an additive error term of
(s
2

)
, then we can let s be the threshold below which a bucket is considered

small, and make only O(k/s) degree queries.)

To get a better approximation factor, we also use incidence queries. Specifically, we estimate,
for each large bucket, the fraction of edges that have one endpoint in this bucket and the other
endpoint in a small bucket. This estimation is obtained by picking random vertices in the bucket,
selecting a random neighbor of each of them (by using incidence queries), and determining whether
this vertex reside in a small bucket.

The resulting algorithm is described next, while referring to a size parameter, denoted s (which
governs the definition of a “small bucket”),19 and to an approximation parameter, denoted β > 1.
The algorithm outputs approximations to the foregoing quantities (i.e., to the sizes of buckets and to
the number of edges going from each large bucket to small buckets), which yield an approximation
to the average degree of the input graph. Specifically, fixing an input graph G = ([k], E), and letting

dG(v) denote the degree of vertex v in G, for i = 0, 1, ..., ℓ
def
= logβ k (so ℓ = O((β − 1)−1 log k), the

ith bucket is defined as Bi = {v ∈ [k] : βi−1 ≤ dG(v) < βi}. Note that

ℓ∑

i=0

|Bi| · βi−1 ≤
∑

v∈[k]

dG(v) <

ℓ∑

i=0

|Bi| · βi. (10.3)

Hence, a β-factor approximations to the sizes of all the buckets yield a β2-factor approximation to
the average degree of G. Recall, however, that we shall obtain such good approximations only for
large buckets (i.e., buckets of size at least s).

Algorithm 10.7 (a basic algorithmic scheme for estimating the average degree): On input a
graph G = ([k], E), parameters β > 1 and s ∈ N, and while referring to buckets Bi’s such that
Bi = {v ∈ [k] : βi−1 ≤ dG(v) < βi}, proceed as follows.

1. Estimate the sizes of the various buckets: Take a sample of m = Õ(k)/s vertices, determine
the degree of each of them and let ρi denote the fraction of sampled vertices that reside in Bi.
If ρi < s/k, then call Bi small; otherwise, estimate |Bi| as ρik.

2. Estimate the number of edges to small buckets: For each vertex v selected in Step 1, select
uniformly at random a neighbor u of v, by selecting uniformly j ∈ [dG(v)] and taking the jth

neighbor of v. Let ρ′i ≤ ρi denote the fraction of sampled vertices v that reside in Bi such
that their neighbour u resides in a small bucket. That is, denoting by v1, ..., vm the sample of
vertices selected in Step 1 and by u1, ..., um their random neighbors as selected in the current
step, we let ρ′i denote the fraction of j ∈ [m] such that vj ∈ Bi and uj ∈ ∪i′:ρi′<s/kBi′.

Output ρ0, ..., ρℓ as well as ρ′0, ..., ρ
′
ℓ.

Note that, with probability at least 0.9, for every i it holds that Bi is declared small only if
|Bi| < (1 + o(1)) · s, and otherwise ρik ∈ (1 ± o(1)) · |Bi|. Recall that the contribution of an edge
to
∑

i:ρi≥s/k

∑
v∈Bi

dG(v) depends on the number of endpoints it has in large buckets (i.e., buckets
deemed not small): If both endpoints are in large buckets the edge contributes two units, if a single
endpoint is in a large bucket the edge contributes one unit, and otherwise (i.e., no endpoint is in

19The reader may think of s =
√
k, but we shall consider other settings too.
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a large bucket) the edge contributes nothing. Hence, in this case (i.e., with high probability), we
have

∑

i:ρi≥s/k

βi−1 · (1− o(1)) · ρik ≤
∑

v∈[k]

dG(v) < (1 + o(1)) · (ℓs)2 + 2 ·
∑

i:ρi≥s/k

βi · (1 + o(1)) · ρik, (10.4)

where 2 ·
(
(1+o(1))ℓs

2

)
< (1 + o(1)) · (ℓs)2 is an upper bound on the contribution to

∑
v∈[k] dG(v)

of edges with both end-points in small buckets, whereas each other edge contribute either one or
two units to

∑
i:ρi≥s/k

∑
v∈Bi

dG(v) (and so the lower bound uses one unit and the upper bound

uses two).20 Hence, if (ℓs)2 = o(1) ·∑v∈[k] dG(v), then Eq. (10.4) yields a 2 · (β + o(1))-factor
approximation to the average degree of G. Note that this approximation is obtained based on
Step 1 only, which only uses degree queries. But using the quantities estimated in Step 2, we can
do better.

Specifically, recall that βi−1 · (1 − o(1)) · ρik was used in Eq. (10.4) as a lower bound on the
contribution of vertices in (a large) Bi to

∑
v∈[k] dG(v) whereas 2 · βi · (1 + o(1)) · ρik was used

as an upper bound. But assuming that ρ′i/ρi estimates the average over v ∈ Bi of the fraction of
neighbors of v that reside in small buckets, we get much tigher bounds: The contribution of vertices
in a large Bi to

∑
v∈[k] dG(v) is at least (1−o(1))·(ρi +ρ′i)·βi−1k and at most (1+o(1))·(ρi+ρ′i)·βik,

since ρ′i represents the “lost” contribution of edges with one endpoint in Bi and one endpoint in a
small bucket. This argument is captured in the following claim and further detailed in its proof.

Claim 10.8 (the core of the analysis of Algorithm 10.7): Suppose that for every i it holds that if
ρi < s/k, then |Bi| < (1 + o(1)) · s, and otherwise ρik ∈ (1 ± o(1)) · |Bi|. Further suppose that if
ρi ≥ s/k, then

ρ′i = (1± o(1)) · 1
k
·
∑

v∈Bi

d′G(v)

dG(v)
,

where d′G(v) denotes the number of neighbors of v in S = ∪i′:ρi′<s/kBi′ . Then,

(1−o(1)) ·
∑

i:ρi≥s/k

(ρi +ρ′i) ·βi−1k <
∑

v∈[k]

dG(v) < (1+o(1)) ·(ℓs)2 +(1+o(1)) ·
∑

i:ρi≥s/k

(ρi +ρ′i) ·βik.

Proof: The claim reduces to proving that

∑

v∈[k]

dG(v) = 2 · |E(S, S)| +
∑

i:ρi≥s/k

∑

v∈Bi

(dG(v) + d′G(v)) (10.5)

where E(S, S) denotes the set of edges with both endpoints in S. To prove Eq. (10.5), we consider
the contribution of each edge {v, u} to each of its sides. First note that each edge contributes exactly
two units to the l.h.s of Eq. (10.5). Now, we consider its contribution to the r.h.s of Eq. (10.5), by
distinguishing three cases.

20Furthermore, for every i such that ρi ≥ s/k, we use

βi−1 · (1 − o(1)) · ρik ≤
X

v∈Bi

dG(v) < βi · (1 + o(1)) · ρik,

which relies on ρik ∈ (1 ± o(1)) · |Bi|.
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1. If both endpoints of {u, v} are in S, then {u, v} contributes two units to 2 · |E(S, S)| and
nothing to the sum.

2. If exactly one endpoint of {u, v} is in S, then {u, v} contributes nothing to 2 · |E(S, S)| and
contributes two units to the sum, since it contributes one unit to dG(v) and one unit to d′G(v),
where we assume (w.l.o.g.) that u ∈ S.

3. If no endpoint of {u, v} is in S, then {u, v} contributes nothing to 2 · |E(S, S)| and contributes
two units to the sum, since it contributes one unit to dG(v) and one unit to dG(u), while
contributing nothing to d′G(v) + d′G(u).

Hence, in all cases, the edge {u, v} contributes two units to the r.h.s of Eq. (10.5). In fact, the
argument can be summarized by writing

∑

v∈[k]

dG(v) = 2 · |E(S, S)| +
∑

v∈[k]\S
dG(v) +

∑

v∈[k]\S
d′G(v), (10.6)

but Eq. (10.5) is more instructive towards finishing the proof. Indeed, the claim follows since
2 · |E(S, S)| < |S|2, whereas for i ∈ [k] such that ρi ≥ s/k it holds that

∑
v∈Bi

dG(v) ≈ |Bi| · βi ≈
ρik · βi and

∑
v∈Bi

d′G(v) ≈ ρ′ik · βi (since dG(v) ≈ βi for every v ∈ Bi).

Digest. The idea underlying Algorithm 10.7 is that all vertices in the same bucket have approxi-
mately the same contribution to

∑
v∈[k] dG(v) (i.e., each vertex in Bi contributes approxmately βi).

Hence, approximating all |Bi|’s yields an approxmation to the said sum. The problem is that we
cannot afford to approxuimate all |Bi|’s well enough, since some Bi may be too small. Fortunately,
as shown in the foregoing discussion, a good approximation of the sizes of the large Bi’s (which
we can afford) suffices for a factor two approximation of the sum, since there are very few edges
that have both endpoints in small buckets. Getting a better approximation requires approximating
the fraction of edges that have a single endpoint in a large bucket, and this can actually be done
without attributing these edges to specific large buckets (although Algorithm 10.7 did use such
an attribution). The last assertion hints that the bucketing is actually not so important; what
is important is the handling the case that a small set of vertices (i.e., the set of vertices in small
buckets) has many incident edges (especially, edges to the rest of the graph).21 This observation
will become more explicit in Section 10.3.2.2.

Teaching note: The rest of Section 10.3.2.1 is a bit tedious, and can be skipped if under time pressure.

In such a case, we recommend leaving it for independent reading, since it does make two important points.

The first point is that we can set the threshold s “adaptively” rather than rely on its being given to us

from the outside. The technique used here is quite generic and good to know (see also Exercises 10.7

and 10.8). The second point is using the output provided by Algorithm 10.7 in order to sample random

edges in the graph.

21For example, consider the case of a (k − 1)-star versus the case of a k-vertex graph in which all vertices have
degree 1 (see the proof of Proposition 10.5).
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Setting the parameters. As apparent in Claim 10.8, the parameter β > 1 determines the
quality of the approximation, and it can be set to a constant that is arbitrarily close to 1. This

means that ℓ = logβ k = O(ǫ−1 log k), where ǫ
def
= β − 1 > 0 is a positive constant. Hence, for

constant β > 1, we have ℓ = O(log k).

The setting of the parameter s is less obvious. On the one hand, we should set s such that
(ℓs)2 < ǫ · |E|, which guarantees that the omission of edges with both endpoints in small buckets
has little effect on the quality of the approximation of |E|. On the other hand, we should set s
as large as possible (subject to (ℓs)2 < ǫ · |E|), since the complexity of Algorithm 10.7 is inversely
proportional to s. Specifically, recall that the time complexity of Algorithm 10.7 is Õ(k)/s, so
under an optimal setting (i.e., s = Ω(

√
ǫ · |E|/ℓ)) we get a complexity bound of Õ(k)/

√
ǫ · |E|,

which equals Õ(
√

k)/
√

d, since ǫ > 0 is a constant and d = 2|E|/k.

Note that if we know that |E| = Ω(k), then we can use s = Ω(
√

k/ log k) and get a complexity
bound of Õ(

√
k). However, if we know a higher lower bound on |E|, then we get a better complexity

bound. In general, if we know that |E| ≥ L, then we can set s accordingly (i.e., s = Θ(
√

L/ log k)),
and obtain a good estimate of |E| in time Õ(k)/

√
L.

Actually, we can avoid the use of an a priori lower bound on |E|, and obtain an algorithm
with a complexity bound that depends on the actual value of |E|. This is done by iteratively
invoking Algorithm 10.7 using guesses for |E| that are cut by half in each iteration, and producing
an output as soon as we obtain an estimate that exceeds the current guess. The analysis relies
on the fact that, with high probability, Algorithm 10.7 does not overestimate the value of |E|
(beyond a possible 1 + o(1) factor), regardless of the value of s that is used; that is, the bound
(1−o(1)) ·∑i:ρi≥s/k(ρi+ρ′i) ·βi−1k <

∑
v∈[k] dG(v) holds regardless of the value of the parameter s

(see Claim 10.8). Let us spell out the result obtained.

Theorem 10.9 (approximating the average degree with incidence queries): For every constant
α > 1, there exists an algorithm that approximates the average degree, d, in a given k-vertex graph

to within a factor of α in expected time Õ(
√

k/d).

Note that the time bound provided in Theorem 10.9 refers to the expectation, while admitting that
much longer executions are possible (typically when some approximations fail, which happens with
small probability).

Proof Sketch: We shall only prove a weaker bound of Õ(
√

k)/
√

d, while noting that obtaining
the better bound is possible by a small modification of Algorithm 10.7.22 On input G = ([k], E),
we proceed in iterations such that in the ith iteration, guessing that d ≈ k/2i−1, we invoke Algo-
rithm 10.7 while using s =

√
k2/2i/O(ℓ) = k/O(2i/2ℓ). (We also apply error reduction so that the

probability the algorithm provides an overestimate of |E| in any iteration is at most 1/3.)23 Actu-
ally, in the ith iteration we use the hypothesis that d ≥ k/2i−1, while noting that if this hypothesis
is correct then (w.h.p.) we obtain a good estimate of d, and in any case (w.h.p.) we do not get an

22
Advanced comment: Basically, the source of trouble is that the analysis of the algorithm referred to ℓ = logβ k

buckets and to the setting of s =
p

kd/ℓ, whereas it suffices to consider the ℓ′
def
= logβ(k/d) + O((β − 1)−1) buckets

that contain vertices of degree at least (β − 1) · d and to use s =
p

kd/ℓ′. Alternatively, one can prove the better
bound by using the approach presented in Section 10.3.2.2.

23Since there are only 2 log k iterations, the cost of such an error reduction is rather small. Furthermore, we can
apply non-identical levels of error reduction in the various iterations so that in the ith iteration the error probability
is at most 1/(i+ 3)2. Doing so allows to have a smaller overhead in the first iterations, which have lower complexity.
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overestimate of d (beyond a possible 1 + o(1) factor). If the ith iteration outputs an estimate (for
d) that is larger than k/2i−1, then we output it and halt, since (w.h.p.) the algorithm does not
overestimate d, which implies that our current hypothesis d ≥ k/2i−1 was correct and so (w.h.p)
the output is a good estimate of d. Otherwise, we proceed to the next iteration.

Hence, with high constant probability, we halt by iteration i = log(2k/d), which has complexity

Õ(k)/(k/2i/2) = Õ(
√

k)/
√

d. The claim about the expected running time follows by observing that

invoking Algorithm 10.7 with smaller than required value of s (i.e., the value s = Θ(
√

kd)/ℓ) yields

error probability that is exponentially decreasing in
√

kd/s. Alternatively, see Exercise 10.8.

Sampling. In order to sample uniformly at random an edge in the graph G = ([k], E), we
first approximate the number of edges as described in the proof of Theorem 10.9. Recall that
this approximation procedure also provides us with the identity of the large buckets and their
approximate sizes, denoted by ai’s (i.e., ai = ρi · k). Note that within the very same complexity
bound, we can sample vertices uniformly at random from each of the large buckets. Hence, we can
sample vertices in the large buckets at random according to their degree, by first selecting a bucket
Bi with probability proportional to ai ·βi, and then select a vertex v ∈ Bi. Lastly, with probability
one half we output v, and with probability one half we select uniformly a neighbor of v, denoted
u, and output u if and only if u resides in a small bucket (i.e., we output nothing if the neighbor
u resides in a large bucket). This description is to be understood within the repeated sampling
paradigm, where in case no output is generated the procedure is repeated. Letting L denote the set
of large buckets and M =

∑
i∈L ai · βi, observe that (in each iteration of this sampling procedure)

each vertex v that resides in a large bucket Bi is output with probability

Pr[i chosen] ·Pr[v chosen in Bi] ·Pr[v is output] =
ai · βi

M
· 1

|Bi|
· 1
2

≈ dG(v)

M
· 1
2

=
|E|
M
· dG(v)

2|E|
where the approximation is due to ai ≈ |Bi| and βi ≈ dG(v). Similarly, the probability that such
an iteration outputs a vertex u that resides in a small bucket equals

Pr[a neighbor of u is chosen in a large bucket] ·Pr[u is output]

=
∑

i∈L

∑

v∈Γ(u)∩Bi

Pr[v is chosen] ·Pr[u is output]

=
∑

i∈L

∑

v∈Γ(u)∩Bi

(
ai · βi

M
· 1

|Bi|

)
·
(

1

2
· 1

dG(v)

)

≈
∑

i∈L

∑

v∈Γ(u)∩Bi

1

2M

=
|E|
M
· d
′′
G(u)

2|E|
where Γ(u) denotes the set of u’s neighbors and d′′G(u) = |Γ(u) \ S| ≤ dG(u) denotes the number
of neighbors of u that reside in large buckets (while recalling that S denotes the set of vertices
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that reside in small buckets). Recall that
∑

u∈S(dG(u) − d′′G(u)) = 2 · |E(S, S)| ≪ |E|, which
means that 1

k ·
∑

u∈S dG(u) = 1
k ·
∑

u∈S d′′G(u)± o(d). Hence, a single iteration produces an output
with probability approximately |E|/M ≥ 0.5 − o(1), and the output distribution is close to the
distribution of vertices selected in proportion to their degree.

10.3.2.2 Sorting vertices according to their degree

The bottom-line of the digest provided in the middle of Section 10.3.2.1 is that, when approximating
the average degree of a graph, the main issue is handling the case that a small set of vertices has
many incident edges. The observation that fuels the current approach is that these vertices are
necessarily those of the highest degree. Hence, rather that setting aside buckets of size at most s,
we set aside the s vertices that have highest degree (breaking ties arbitrarily).

To see what is gained by setting aside these high degree vertices, let us consider a naive approach
to approximating d (i.e.,

∑
v∈[k] dG(v)/k). This approach consists of selecting m random vertices

and using their average degree as an estimator to d. Now, let the random variable ζi denote the
result of the ith experiment; that is, ζi = dG(vi), where vi is uniformly distributed in [k]. Then,
E[ζi] = d obviously holds, but the problem is that V[ζi] can only be upper-bounded by k ·d (whereas
in some cases a lower bound of Ω(k · d) does hold).24 The point is that, when using a law of large

numbers (e.g., Chernoff Bound), we need to set m = Ω
(

V[ζi]
E[ζi]2

)
= Ω(k/d). In particular, if d = Θ(1),

then we get m = Ω(k), which is useless.

Denoting the set of s vertices of highest degree by H, let us now see what happens when
we approximate d by

∑
v∈[k]\H dG(v)/k, where the latter term is approximated by sampling.25

Specifically, suppose that we select m random vertices and use as our estimate the average contri-
bution to the foregoing sum. Let ζ ′i denote the result of the ith experiment; that is, ζ ′i = dG(vi)
if vi ∈ [k] \H and ζ ′i = 0 otherwise, where vi is uniformly distributed in [k]. Note that E[ζ ′i] ≤ d

and E[ζ ′i] ≥ (|E| − s2)/k = 0.5d− (s2/k) ≈ 0.5d, provided that s =
√

kd/O(1). The good news are

that V[ζ ′i] can be upper-bounded by maxv∈[k]\H{dG(v)} · d ≤ k · d2
/s, since maxv∈[k]\H{dG(v)} ≤

minv∈H{dG(v)} ≤ k · d/s (which holds because
∑

v∈H dG(v) ≤ k · d and |H| = s). Hence, when

using a law of large numbers, we can set m = O
(

V[ζ′i]
E[ζ′i]

2

)
= O

(
k·d2

/s

d
2

)
= O(k/s), provided that

E[ζ ′i] > d/3, which holds when s2 < dk/3. In particular, if we pick s =
√

kd/O(1), then we get a

constant (larger than two) factor approximation using m = O(
√

k/d).

Note that the foregoing procedure assumes that we can tell whether or not a sampled vertex is in
H (i.e., is among the s vertices of highest degree). While it is not clear how to determine the exact
ranking of vertices according to this order, we can approximate their rank based on the degrees of
the sampled vertices, and such approximation will suffice. However, this issue will disappear in the
modification presented next, which is aimed at reducing the approximation factor from (a constant
arbitrary close to) two to a constant arbitrary close to one. Recall that the source of problem is
that we only have the following bounds

24Here (and in the rest of this exposition), we use the fact that, for any random variable Z ∈ [0, B], it holds that
V[Z] ≤ E[Z2] ≤ B ·E[Z]. In general, this inequality is tight (e.g., when Pr[Z = B] = p ≤ 1/2 and Pr[Z = 0] = 1− p,
we get E[Z] = pB and V[Z] = p · B2 − (p · B)2 ≥ B · E[Z]/2). This inequality is tight also when Z represents the
degree distribution in a graph. For example, generalizing the proof of Proposition 10.5, consider the graph Kt,k−t.
Then, letting ζi be as above, we have d < 2t and V[ζi] >

t
k
· (k− t−d)2 > t · (k−3t)2/k, which is Ω(tk) when t < k/4.

25Obtaining such an approximation is not obvious (and will be discussed later).
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|E| − 2 · |E(H,H)| ≤
∑

v∈[k]\H
dG(v) ≤ 2 · |E|, (10.7)

where the additive loss of 2 · |E(H,H)| is due to edges with both endpoints in H and the loss of
a factor of two is due to edges with exactly one endpoint in H, which are counted (only) at the
endpoint that resides in [k]\H. The new idea is to count edges only at the endpoint that has lower
degree (while breaking ties arbitrarily). Specifically, let ~dG(v) denote the number of neighbours
of v that have rank higher than v (i.e., ~dG(v) = |{u ∈ Γ(v) : (dG(u), u) > (dG(v), v)}|).26 Then,∑

v∈[k]
~dG(v) = |E| and

|E| − |E(H,H)| ≤
∑

v∈[k]\H

~dG(v) ≤ |E|. (10.8)

(This observation holds for any way of assigning edges to one of their endpoints.) The key obser-
vation is that ~dG(v) ≤

√
2|E| holds for every v ∈ [k]. In particular, if G is sparse, then ~dG(v)≪ k

for every v.

Claim 10.10 (bounding ~dG(v)): For every vertex v in the graph G = ([k], E), it holds that ~dG(v) ≤√
2|E|.

Proof: If v is one of the first
√

2|E| vertices according to the foregoing order, then the claim holds

since ~dG(v) only counts edges that go to the higher ranked vertices. But otherwise (i.e., at least√
2|E| vertices have higher ranking than v), it must holds that ~dG(v) ≤ dG(v) ≤

√
2|E|, since (by

the hypothesis) the number of higher ranked vertices is at least
√

2|E|, whereas the degree of each
of them is at least dG(v), which implies

√
2|E| · dG(v) ≤ 2|E|.

In light of the foregoing, for any ǫ > 0, we can obtain a factor (1 + ǫ) approximation of |E| by

selecting a sample of m = O(
√

2|E|/ǫ2d) vertices, denoted S, and using Z
def
=
∑

v∈S
~dG(v)/m as

our estimate. Letting ζ ′′i denote the result of the ith experiment (i.e., ζ ′′i = ~dG(vi) for a uniformly

distributed vi ∈ [k]), we have E[Z] = E[ζ ′′i ] = 1
k ·
∑

v∈[k]
~dG(v) = d/2 and V[Z] = V[ζ ′′i ]/m ≤√

2|E| · E[ζ ′′i ]/m (where we use V[ζ ′′i ] ≤ E[(ζ ′′i )2] ≤ maxv∈[k]{~dG(v)} · E[ζ ′′i ]). Hence,

Pr[|Z − 0.5d| ≥ 0.5ǫ · d] ≤ V[Z]

(0.5ǫd)2
(10.9)

≤
√

2|E| · 0.5d/m

(0.5ǫd)2

=

√
8|E|

ǫ2d ·m
(10.10)

which can be made an arbitrary small positive constant by setting m = O(
√
|E|/ǫ2d) appropriately.

The “only” problem is that it is not clear how to compute ~dG. Fortunately, we can approximate
∑

v∈S
~dG(v) by computing

∑
v∈S dG(v) and approximating ρ

def
=

P

v∈S
~dG(v)

P

v∈S dG(v) , since
∑

v∈S
~dG(v) =

ρ ·∑v∈S dG(v). Specifically, we approximate ρ by sampling pairs (v, u) such that v ∈ S and
{v, u} ∈ E, and computing the fraction of pairs such that (dG(v), v) < (dG(u), u). This works

26Note that the definition of ~dG(v) breaks ties (in the ranking according to degrees) by using a lexicographic order
on pairs consisting of the vertex’s degree and its label.
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well, provided that the foregoing fraction (i.e., ρ =
P

v∈S
~dG(v)

P

v∈S dG(v) ) is not too small, which can be

guaranteed by lower-bounding the numerator and upper-bounding the denumerator. As noted
in Eq. (10.9)&(10.10), the numerator is “well concentrated” around its mean, but dealing with
expression in the denominator is what we were trying to avoid. Still a very weak upper bound,
of the type that is provided by Markov’s inequality, will suffice here (i.e., the value of

∑
v∈S dG(v)

cannot be much larger than its expectation). Details follow.
Starting with the actual algorithm, we let m′ denote a generic parameter; the reader may think

of the case that m′ equals Θ(
√
|E|/d) = Θ(

√
k/d).

Algorithm 10.11 (an alternative algorithmic scheme for estimating the average degree): On input
a graph G = ([k], E) and parameters m′ and ǫ, proceed as follows.

1. Take a primary sample (of uniformly distributed vertices): Select uniformly at random m =
O(m′/ǫ2) vertices, and let {v1, ..., vm} denote the resulting multiset. Using degree queries,
compute D ←∑

i∈[m] dG(v).

2. Take a secondary sample of edges: For j = 1, ..., t
def
= O(1/ǫ2), select ij ∈ [m] such that

Pr[ij = i] = dG(vi)/D, and select uij uniformly at random among the neighbours of vij . Let
J denote the set of j ∈ [t] such that (dG(vij ), vij ) < (dG(uij ), uij ).

The value of |J |t ·Dm can be output as an estimate of |E|/k, and a uniformly chosen edge in {{vij , uij} :
j ∈ J} can be output as an almost uniformly distributed edge of the graph.

As shown in the foregoing motivating discussion, if m′ ≥
√

8|E|/d and m ≥ c ·m′/ǫ2, then 1
m ·∑

i∈[m]
~dG(vi) = (1± ǫ) · |E|k with probability at least 1− (1/c), where we pick c to be a sufficiently

large constant.27 We next observe that the expected value of D is m · 2|E|/k, and hence Pr[D >
2cm|E|/k] < 1/c. Assuming that D ≤ 2cm|E|/k, note that

∑
i∈[m]

~dG(vi)

D
>

(1− ǫ) · (m|E|)/k
2cm|E|/k =

1− ǫ

2c
= Ω(1).

Hence, sampling O(ǫ−2) pairs uniformly in {(vi, u) : i∈ [m] ∧ {u, vi}∈E} yields an (1 + ǫ)-factor
approximation of

∑
i∈[m]

~dG(vi) (w.h.p.). Specifically, with high probability,

|J |
t

= (1± ǫ) ·
∑

i∈[m]
~dG(vi)

D
.

Recalling that 1
m ·
∑

i∈[m]
~dG(vi) = (1± ǫ) · |E|k (w.h.p.), we conclude that

|J |
t
· D
m

= (1± ǫ) ·
∑

i∈[m]
~dG(vi)

m
= (1± ǫ)2 · |E|

k
.

Lastly, we turn to the analysis of the sampling feature provided by Algorithm 10.11 (when m′ ≥√
8|E|/d and m = Ω(m′/ǫ2)). Letting ~ΓG(v) denote the set of neighbors of v with rank higher than

27This was essentially shown in the motivating discussion that preceded Algorithm 10.11 (see Eq. (10.9)&(10.10)),

where Z represented the average of the ~dG(vi)’s and 0.5d was used instead of |E|/k.
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v (i.e., the vertices counted in ~dG(v)), we first observe that each edge {u, v} ∈ E appears in the set

E′ def
=
⋃

i∈[m]{{vi, u
′} : u′∈~ΓG(vi)} with probability 1− (1− (1/k))m ≈ m/k, since the edge appears

in E′ if and only if its lower ranked endpoint is selected in the primary sample {v1, ..., vm}. Next
note that, conditioned on v appearing in the primary sample, the edge {u, v} ∈ E′ is selected (for
output) with probability approximately (t · (dG(v)/D)) · (1/dG(v)) · (1/|J |), where the first factor
is due to the probability that v is selected in the secondary sample, the second factor is due to the
probability that u is included in J , and the third factor is due to u being actually selected. Recall
that, with high probability, it holds that |J |/t = (1± ǫ) · |E′|/D and |E′|/m = (1± ǫ) · |E|/k, since
|E′| =

∑
i∈[m]

~dG(vi). In this case, (t/D)) · (1/|J |) = (1 ± ǫ)/|E′|, which implies that each edge

appears as output with probability approximately (m/k) · (1± ǫ)/|E′| = (1± ǫ)2/|E|.

10.4 Using adjacency queries: the case of Bipartiteness

Two natural questions arise regarding the tester for Bipatiteness asserted in Theorem 10.4:
Firstly, recall that in case the input graph is dense (i.e., |E| = Ω(k2)), testing Bipartiteness

is possible within complexity that is independent of the size of the graph (see Section 8.3.1), but
this is not reflected in Theorem 10.4. In other words, in light of the results regarding the dense
graph model (let alone their contrast with the results for the bounded-degree graph model), one
may suspect that the complexity of testing Bipartitness in the general graph model may be re-
lated to the density of edges in the input graph, whereas Theorem 10.4 does not relate to the edge
density. Secondly, we note that the algorithm used in the proof of Theorem 10.4 only uses incidence
queries, whereas the model allows also adjacency queries.

The issues raised by these two questions are actually related. As shown in [180], for every k and
ρ = ρ(k) ∈ (Ω(1/k), 1), a tester for Bipatiteness (of k-vertex graphs) that only makes incidence
queries must have query complexity Ω(

√
k) even when guaranteed that the edge density in the

input graph is Θ(ρ). On the other hand, we observe that using adjacency queries (only), allows
to emulate the tester for the dense graph model within complexity that only depends on the edge
density. This is actually a generic result.

Theorem 10.12 (emulating testers for the dense graph model (in the general graph model)): Let
T be a tester of the graph property Π in the dense graph model, and let q : N× [0, 1]→ N denote its
query complexity. Then, Π can be tested in the general graph model such that the expected query

complexity of ǫ-testing the input graph G = ([k], E) is q(k, 0.9ρ · ǫ) + Õ(1/ρ), where ρ
def
= 2|E|/k2.

Furthermore, the resulting tester preserves one-sided error and only uses adjacency queries.

The fact that the complexity bound refers to the expectation is due to the need to approximate ρ
(and this is also the source of the Õ(1/ρ) term). If we know a lower bound ρ′ on ρ, then we can
ǫ-test the input graph G = ([k], E) using exactly q(k, ρ′ · ǫ) queries.

Proof Sketch: We first observe that using Õ(1/ρ) random adjacency queries, we can approximate
ρ up to any desired constant factor (where the point is actually getting a good lower bound ρ′ on ρ).
This is done in iterations such that in the ith iteration we try to confirm the hypothesis ρ ≈ 2−i+0.5.
Using O(i · 2i) random queries in the ith iteration, we can upper-bound the error probability of
iteration i by 0.1 · 2−i.

Having obtained an approximation ρ̃ to ρ, we invoke the tester T with proximity parameter
ρ̃ · ǫ, where ǫ is the proximity parameter given to us and (w.l.o.g.) ρ ≥ ρ̃. The point is that a
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proximity-parameter value of ǫ in the general graph model, where we normalize by |E| = ρk2/2,
corresponds to a proximity-parameter value of ρǫ in the dense graph model (where we normalize
by k2/2).

Back to the special case of Bipartiteness. Applying Theorem 10.12 to the Bipartiteness

tester (of the dense graph model), we derive a tester of (query and time) complexity Õ(1/ǫρ)2

for the general graph model.28 But this result is not optimal: An alternative approach, to be
presented next, yields a tester of (query and time) complexity poly(ǫ−1 log k) · ρ−1. (Note that the
improvement is significant when ρ = k−Ω(1); e.g., ρ = k−1/3, let alone ρ = k−2/3).

The following algorithm uses both adjacency and incidence queries. In light of the ideas pre-
sented in Section 10.2.2, we shall focus on the case that the maximal degree of the input graph is
of the same order of magnitude as its average degree; that is, we assume that the maximal degree
is O(d), where d denotes the average degree of the input graph. Furthermore, we assume that the
algorithm is given an upper bound, denoted d, on the maximal degree, and that d = O(d). The
following algorithm is a variant of the Bipartite tester presented in Section 9.4.1. It differs in the
number of random walks that it takes from each vertex (as determined by m), and in what it does
with the sets R0 and R1 (see Step 2c).

Algorithm 10.13 (an alternative algorithm for testing Bipartiteness (in the general graph
model)): On input d, k, ǫ and oracle access to incidence and adjacency functions of a k-vertex

graph, G = ([k], E), of degree bound d, repeat t
def
= Θ(1

ǫ ) times:

1. Uniformly select s in [k].

2. (Try to find an odd-length cycle through vertex s):

(a) Perform m
def
= poly(ǫ−1 log k) ·

√
k/d random walks starting from s, each of length ℓ

def
=

poly(ǫ−1 log k).29

(b) Let R0 (respectively, R1) denote the set of vertices reached from s in an even (respec-
tively, odd) number of steps in any of these walks. That is, assuming that ℓ is even, for
every such walk (s = v0, v1, ..., vℓ), place v0, v2, ..., vℓ in R0 and place v1, v3, ..., vℓ−1 in
R1.

(c) For every σ ∈ {0, 1} and u, v ∈ Rσ, if {u, v} is an edge in G, then reject.

If the algorithm did not reject in any of the foregoing t iterations, then it accepts.

Note that Step 2a is implemented by using incidence queries, whereas Step 2c is implemented using
adjacency queries. The time (and query) complexity of Algorithm 10.13 is t · (m · ℓ · log d + (m ·
ℓ)2) = poly(ǫ−1 log k) · (k/d), where the log d factor is due to determining the degree of each vertex
encountered in the random walk. It is evident that the algorithm always accepts a bipartite graph.

As in Section 9.4.1, the core of the analysis is proving that if the input graph is ǫ-far from
being bipartite and d = Ω(d), then Algorithm 10.13 rejects with probability at least 2/3.30 Again,

28Recall that the best ǫ′-tester for the dense graph model has time complexity eO(1/ǫ′)2 and that Ω(1/ǫ′)3/2 is a
lower bound on the query complexity in this case.

29Recall that a random walk of length ℓ starting at s is a path (s = v0, v1, ..., vℓ) in G selected at random such that
vi is uniformly distributed among the neighbors of vi−1.

30The hypothesis d = Ω(d) is used in Claim 10.13.3, where it is postulated that m = Ω(
q

k/dǫ).
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we confine ourselves to the “rapid mixing” case, and consider a single execution of Step 2, starting
from an arbitrary vertex s, and using lazy random walks instead of the natural random walks that
are used in the algorithm. (For sake of self-containment, we reproduce the relevant definitions
next.)

Definition 10.13.1 (lazy random walks and the rapid mixing feature): Let (v1, ..., vℓ)← RWℓ be

an ℓ-step lazy random walk (on G = ([k], E)) starting at v0
def
= s; that is, for every {u, v} ∈ E and

every i ∈ [ℓ], it holds that

Pr(v1,...,vℓ)←RWℓ
[vi = v|vi−1 = u] =

1

2d
(10.11)

Pr(v1,...,vℓ)←RWℓ
[vi = u|vi−1 = u] = 1− dG(u)

2d
(10.12)

where dG(u) ≤ d denotes the degree of u in G. The graph G is said to be rapidly mixing if, for every
v0, v ∈ [k], it holds that

1

2k
< Pr(v1,...,vℓ)←RWℓ

[vℓ = v] <
2

k
(10.13)

As in Section 9.4.1, the key quantities in the analysis are the following probabilities that refer
to the parity of the length of a path obtained from the lazy random walk by omitting the self-loops
(transitions that remain at the current vertex). Let p0(v) (respectively, p1(v)) denote the probability
that a lazy random walk of length ℓ, starting at s, reaches v while making an even (respectively,
odd) number of real (i.e., non-self-loop) steps. That is, for every σ ∈ {0, 1} and v ∈ [k],

pσ(v)
def
= Pr(v1,...,vℓ)←RWℓ

[vℓ =v ∧ |{i ∈ [ℓ] : vi 6= vi−1}| ≡ σ (mod 2)] (10.14)

The path-parity of the walk (v1, ..., vℓ) is defined as |{i ∈ [ℓ] : vi 6= vi−1}| mod 2. By the rapid
mixing assumption (for every v ∈ [k]), it holds that 1

2k < p0(v) + p1(v) < 2
k .

At this point the analysis finally depart from the exposition of Section 9.4.1: Rather than
considering the sum

∑
v∈[k] p0(v)p1(v), we consider the sum

∑
σ∈{0,1}

∑
{u,v}∈E pσ(u)pσ(v). If the

sum is (relatively) “small”, then we show that [k] can be 2-partitioned so that there are relatively
few edges between vertices that are placed in the same side, which implies that G is close to being
bipartite. Otherwise (i.e., when the sum is not “small”), we show that with significant probability,
when Step 2 is started at vertex s, it is completed by rejecting G. These two cases are analyzed in
the following two (corresponding) claims.

Claim 10.13.2 (a small sum implies closeness to being bipartite): Suppose that
∑

σ

∑
{u,v}∈E pσ(u)pσ(v) ≤

0.01ǫd/k, where d is the average degree of G = ([k], E). Let V1
def
= {v ∈ [k] : p0(v) < p1(v)} and

V2 = [k] \ V1. Then, the number of edges with both end-points in the same Vσ is less than ǫdk/2.

Note that the proof of this claim is easier than the proof of Claim 9.21.2 (i.e., the corresponding
claim in Section 9.4.1).

Proof Sketch: Consider an edge {u, v} such that both u and v are in the same Vσ, and assume,
without loss of generality, that σ = 1. Then, by the (lower bound of the) rapid mixing hypothesis,
both p1(v) and p1(u) are greater than 1

2 · 1
2k . Hence, the edge {u, v} contributes at least (1/4k)2 to

the sum, and it follows that we can have at most 0.01ǫd/k
1/(16k2)

< ǫdk/2 such edges. The claim follows.
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Claim 10.13.3 (a large sum implies high rejection probability): Suppose that
∑

σ

∑
{u,v}∈E pσ(u)pσ(v) ≥

0.01ǫd/k, where d is the average degree of G = ([k], E), and that Step 2 is started with vertex s.

Then, for m = Ω(
√

k/dǫ), with probability at least 2/3, there exist an edge with both endpoints in

the same Rσ (and rejection follows).

The proof of this claim is very similar to the proof of Claim 9.21.3 (i.e., the corresponding claim in
Section 9.4.1).31

The final result. Applying the reduction of Section 10.2.2, while approximating d and sampling
edges by using adjacency queries (see Exercise 10.9), we obtain an alternative Bipartiteness tester,
for the general graph model, that has expected time complexity poly(ǫ−1 log k)·(k/d).32 Combining
the two algorithms (i.e., the algorithm of Theorem 10.4 and Algorithm 10.11), we obtain.

Theorem 10.14 (testing Bipatiteness (in the general graph model), revised):33 Bipatiteness

has a (one-sided error) tester of expected time (and query) complexity poly(ǫ−1 log k)·min(
√

k, k/d),
where d denotes the average degree of the input graph.

In other words, ignoring poly(ǫ−1 log k) factors, the time complexity of the tester is O(
√

k) if d ≤
√

k
and O(k/d) otherwise. We mention that the “non-smooth” behavior of the complexity bound stated
in Theorem 10.14 (i.e., the change of behavior at d ≈

√
k) is not an artifact of its proof (which

combines two different algorithms), but rather reflects the reality: For every value of d ∈ [k], any
Bipartiteness tester in the general graph model must have query complexity min(

√
k, k/d), even

when guaranteed that the input graph has average degree d± 1.

10.5 Chapter notes

10.5.1 Gaps between the general graph model and the bounded-degree model

As argued at the begining of Section 10.2, a good starting point for the design of testers for the
general graph model is the design of testers for the bounded-degree graph model. In Section 10.2
we presented cases in which either an adaptation of the latter testers or a local reduction (from
testing in the general graph model) to testing in the bounded-degree graph model works well. It is
fair to indicate that there are cases in which such an adaptation inherently fails (and any reduction
must have significant overhead). This is certainly the case when there are lower bounds on the
complexity of testing graph properties in the general graph model that are significantly higher than
the corresponding upper bounds that hold in the bounded-degree graph model. Examples include

31Here we define ζi,j = 1 if there exists an edge {u, v} ∈ E such that the ℓth step of the ith walk reaches u, the
ℓth step of the jth walk reaches v, and both walks have the same path-parity. Note that E[ζi,j ] equals the sum in
the claim, since the events referring to different edges {u, v} are mutually exclusive. We use the hypothesis that
lower-bounds the said sum by 0.01ǫ · d/k, and the hypothesis that lower-bounds the number of pairs of walks by
Ω(ǫ−1k/d).

32We believe that the poly(log k) factor can be eliminated when d ≥ kΩ(1), since it is due to considerations related
to the distribution of the endpoint of a random walk on regular k-vertex graphs. Recall that in the original context
(of bounded-degree graphs), these graphs had constant degree, and so a random walk had to be of length Ω(log k) in
order to have its endpoint well distributed. But here we deal with d-regular k-vertex graphs, where d > kΩ(1), and
so it stands to reason that a constant length random walk will do.

33We stress that this result refers to the testing model captured by Definition 10.2.
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testing cycle-freeness and subgraph freeness. In both cases (as well as for degree regularity), testers
of time complexity poly(1/ǫ) are known for the bounded-degree graph model, but it is easy to see
that testing these properties in the general graph model requires Ω(

√
k) queries (even when the

average degree is a constant).

Theorem 10.15 (lower bound on testing cycle-freeness and subgraph freeness): Testing the fol-
lowing properties in the general graph model requires Ω(

√
k) queries, when allowed both incidence

and adjaceny queries to a k-vertex graph.

1. Cycle-freeness.

2. H-freeness, for any fixed connected graph H that havs more than a single edge.

3. Degree regularity.

Furthermore, this holds even if it is guaranteed that the average degree of the tested graph is be-
tween 1 and 2 (and the maximum degree is

√
k).

The furthermore clause clarifies that the difficulty lies in the varying vertex degrees (equiv., the gap
between the average degree and the maximal degree) rather than in the magnitude of the average
degree. (Theorem 10.15 is implicit in the proof of Proposition 10.6; in fact, we use the very same
proof strategy here.)

Proof Sketch: We show that an algorithm that makes o(
√

k) queries cannot distinguish the
following two distributions.

1. The uniform distribution on k-vertex graphs that consist of k/2 isolated edges.

2. The uniform distribution on k-vertex graphs that consist of (k −
√

k)/2 isolated edges and a
clique of

√
k vertices.

The point is that as long as the algorithm makes no query to a vertex in the clique, the two
distributions are identical. However, graphs in the first distribution are cycle-free and H-free (and
degree regular), whereas graphs in the second distribution are Ω(1)-far from being cycle-free (resp.,
H-free and degree regular).34

Another lower bound. Theorem 10.15 asserts the existence of graph properties that are ǫ-
testable with poly(1/ǫ) queries in the bounded-degree graph model but requires Ω(

√
k) queries

for testing in the general graph model. Recall that the lower bound is established also under the
guarantee that the average degree of the tested graph is Θ(1) and the maximum degree is

√
k,

which represents a gap of Ω(
√

k) between the average and maximal degrees. We mention that,
in the general graph model, testing triangle freeness has query complexity Ω(k1/3) also when
the average degree of the graph is k1−o(1), which represents a smaller gap between the average

34To see that a
√
k-vertex clique is far from being H-free, observe that a k′-vertex graph of average degree at least

(1 − ǫ) · k′ must have a clique of size Ω(1/ǫ). For starters, note that the subgraph induced by most sets of
p

1/ǫ
vertices in such a graph is a clique. To prove the stronger bound, observe that at least k′/2 vertices in such a k′-vertex
graph have degree at least (1 − 2ǫ) · k′, and consider an (0.25/ǫ)-step interative process of selecting vertices of high
degree that neighbor all previously selected vertices.
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degree and the maximal degree [12].35 Recalling that the query complexity of triangle freeness

in the the other two model is independent of the size of the graph, this shows that the query
complexity of testing the graph property Π in the general graph model cannot be upper-bounded by
poly(r(G), Qdns, Qbd), where r(G) denotes the ratio between the maximal and average degrees in the
tested graph G, and Qdns (resp., Qbd) denotes the query complexity of testing Π in the dense graph
model (resp., in the bounded-degree graph model).

10.5.2 History and credits

The study of property testing in the general graph model was initiated by Parnas and Ron [222],
who only considered incidence queries, and extended by Kaufman, Krivelevich, and Ron [180], who
considered both types of queries.36 Needless to say, the aim of these works was to address the
limitations of the previous models for testing graph properties; that is, to allow the consideration
of arbitrary graphs. (Recall that the dense graph model is suitable mostly for dense graphs and the
bounded-degree model is applicable only to graph of bounded degree.) Allowing the consideration
of arbitrary graphs also strengthen the relation between property testing and standard algorithmic
studies. However, forsaking the paradigm of representing graphs as functions means that the
connection to the rest of property testing is a bit weakened (or at least becomes more cumbersome).

Turning to the specific results, we mention that the adaptation of the connectivity tester to the
current model is due to [222]. The results regarding testing Bipartitenss in the general graph
model were obtained by Kaufman, Krivelevich, and Ron [180]. This refers both to the upper and
lower bounds when only incidence queries are allowed, and to the upper and lower bounds in the
full fledged model (where also adjacency queries are allowed).

The lower and upper bounds on the complexity of degree estimation when only degree queries are
allowed were proved by Feige [106], and the corresponding bounds for the case when also incidence
(and adjacency) queries are allowed were proved by Goldreich and Ron [150]. The method presented
in Section 10.3.2.1 is the one used in [150]; the alternative method presented in Section 10.3.2.2
was discovered recently by Eden, Ron, and Seshadhri [99].

10.5.3 Reflections

The bulk of algorithmic research regarding graphs refers to general graphs. Of special interest are
graphs that are neither very dense nor have a bounded degree. In contrast, research in testing
properties of graphs started (in [140]) with the study of dense graphs, proceeded to the study of
bounded-degree graphs (in [147]), and reached general graphs only in [222, 180]. This evolution
has historical reasons, which will be reviewed next.

Testing graph properties was initially conceived (by Goldreich, Goldwasser, and Ron [140]) as a
special case of the framework of testing properties of functions. Thus, graphs had to be represented
by functions, and two standard representations of graphs (indeed the ones used in Chapters 8
and 9) seemed most fitting in this context. In particular, in the dense graph model graphs are
represented by their adjacency predicate, whereas in the bounded-degree (graph) model graphs are

35Note that this does not contradict Theorem 10.12, since the query complexity of ǫ-testing triangle freeness

in the dense graph model is greater than any polynomial in 1/ǫ. Recall that Theorem 10.12 implies that if ǫ-testing
triangle freeness in the dense graph model has query complexity q(ǫ), then ǫ-testing triangle freeness in the
general graph model has query complexity q(ρǫ), where ρ · k is the average degree of the tested graph.

36The suggested treatement of extremely sparse graphs as captured in Definition 10.2 did not appear before (as far
as we know).
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represented by their (bounded-degree) incidence functions. Hence, the representation of graphs by
functions, which originated in the dense graph model, was maintained in the bounded-degree graph
model, introduced by Goldreich and Ron [147], although the functions in this case were different.
We stress that both models were formulated in a way that identifies the graphs with a specific
functional representation, which in turn defines both the type of queries allowed to the tester and
the notion of relative distance (which underlies the performance guarantee).

The identification of graphs with a specific functional representation was abandoned by Parnas
and Ron [222], who developed a more general model by decoupling the type of queries allowed to the
tester from the distance measure: Whatever is the mechanism of accessing the graph, the distance
between graphs is defined as the number of edges in their symmetric difference (rather than the
number of different entries with respect to some specific functional representation). Furthermore,
the relative distance is defined as the size of the symmetric difference divided by the actual (total)
number of edges in both graphs (rather than divided by some (possibly non-tight) upper bound on
the latter quantity). Also, as advocated by Kaufman et al. [180], it is reasonable to allow the tester
to perform both adjacency and incidence queries (and indeed each type of query may be useful
in a different range of edge densities). Needless to say, this model seems adequate for the study
of testing properties of arbitrary graphs, and it strictly generalizes the positive aspects of the two
prior models (i.e., the models based on the adjacency matrix and bounded-degree incidence list
representations).

We wish to advocate further study of the general graph model. We believe that this model,
which allows for a meaningful treatment of property testing of general graphs, is the one that is
most relevant to computer science applications. Furthermore, it seems that designing testers in this
model requires the development of algorithmic techniques that may be applicable also in other areas
of algorithmic research. As an example, we mention that techniques in [180] underly the average
degree approximation of [150]. (Likewise techniques of [147] underly the minimum spanning tree
weight approximation of [74]; indeed, as noted next, the bounded-degree incidence list model is
also more algorithmic oriented than the adjacency matrix model.)37

Let us focus on the algorithmic contents of property testing in the context of graphs. Recall that,
when ignoring a quadratic blow-up in the query complexity, property testing in the adjacency matrix
representation reduces to sheer combinatorics (as reflected in the notion of canonical testers, see
Theorem 8.25). Indeed, as shown in [151], a finer look (which does not allow for ignoring quadratic
blow-ups in complexity) reveals the role of algorithmic design also in this model. Still, property
testing in the incidence list representation seems to require more sophisticated algorithms. Testers
in the general graph models seem to require even more algorithmic ideas (cf. [180]).

To summarize, we advocate further study of the model of [222, 180] for two reasons. The first
reason is that we believe in the greater relevance of this model to computer science applications. The
second reason is that we believe in the greater potential of this model to have cross fertilization with
other branches of algorithmic research. Nevertheless, this advocation is not meant to undermine
the study of the dense graph and bounded-degree graph models. The latter models have their
own merits and also offer a host of interesting open problems, which are of potential relevance to
computer science at large.

37Here and in the rest of this section, we use the terms “bounded-degree incidence list model” and “adjacency
matrix model” rather than the terms “bounded-degree graph model” and “dense graph model” (used so far).
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10.5.4 Exercises

Exercises 10.7 and 10.8 present a general technique for converting approximation algorithms that
rely on a rough estimate into ones that do not need such an estimate.

Exercise 10.1 (random bipartite graphs are good gadgets for the proof of Theorem 10.4): Let
G = ((X,Y ), E) be a random d-regular graph such that |X| = |Y | = t and E ⊆ {{x, y} : x ∈
X ∧ y∈Y }.

1. Show that, with high probability, for every S ⊆ X and T ⊆ Y it holds that |E(S, T )| =
Ω(d · |S| · |T |/t), where E(S, T ) = {{u, v}∈E : x∈S ∧ y∈T}.

2. Using Part 1, show that, with high probability, for each 2-partition (S, S) of the vertices of
X such that |S| ≤ t/2 and for every 2-partition (T, T ) of the vertices of Y it holds that
min(|E(S, T )|, |E(S, T )|) = Ω(d · |S|).

3. Using Part 2, infer that any 2-partition of G that places t′ ≤ t/2 vertices of X on one side,
has at least Ω(t′d) violating edges (i.e., edges with both endpoints on the same side).

We mention that for a fixed set as in Part 3, a 2-partition of Y that has the least violating edges
places each y ∈ Y on opposite side to the majority of its neighbors.

Guideline: For Part 1, fix any S and T , and note that for a random d-regular G = ((X,Y ), E) it
holds that |E(S, T )| =∑u∈S,v∈T ζu,v, where ζu,v is a random variable indicating whether {u, v} ∈ E
(which means that E[ζu,v] = d/t). As a warm-up, establish a variant of Part 1 that refers to the
case that the ζu,v’s are totally independent, then handle the case that each vertex in X is assigned
d random neighbors (while assuming, w.l.o.g., that |S| ≥ |T |), and finally handle random d-regular
graphs. The other parts follow easily.38

Exercise 10.2 (obtaining edge expanding bipartite graphs): For any constants d ∈ N and c > 1,
let {Gn = ([n], En)}n∈N be a family of d-regular n-vertex expanding graphs in the sense that every
S ⊂ [n] of size at most n/2 it holds that |Γn(S)| ≥ c·|S|, where Γn(S) = ∪v∈S{u ∈ [n] : {u, v} ∈ En}.
Consider a bipartite graph Bn with vertex-set [2n] such that {i, n + j} is an edge in Bn if and only
if either {i, j} ∈ En or i = j. Prove that for every S ⊂ [n] of size at most n/2 it holds that

∑

y∈[n+1,2n]

min(|Γ(y) ∩ S|, |Γ(y) \ S|) ≥ (c− 1) · |S|

where Γ(y) ⊆ [n] denotes the set of neighbors of y.

Guideline: Observe that
∑

y∈[n+1,2n] min(|Γ(y) ∩ S|, |Γ(y) \ S|) is lower-bounded by

|{y ∈ [n + 1, 2n] : Γ(y) ∩ S 6= ∅ ∧ Γ(y) \ S 6= ∅}| = |Γn(S) ∩ Γn([n] \ S)|

which is at least (c− 1) · |S|, since |Γn(S)| ≥ c · |S| and |Γn([n] \ S)| ≥ |[n] \ S|.
38In Part 2, observe that if |T | ≥ t/2 (resp., |T | ≥ t/2), then d · |S| · |T |/t = Ω(d · |S|) (resp., d · |S| · |T |/t = Ω(d · |S|)).

In Part 3, let S denote the aforementioned t′-subset of X, and let T denote the set of vertices being on the same side
as S.
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Exercise 10.3 (distance preservation of the reduction presented in Section 10.2.2):39 Referring to
the transformation presented in Section 10.2.2, suppose that G is transformed to G′ by replacing
vertices with c-edge expanding d-regular bipartite graphs. Show that if G is ǫ-far from bipartite,
then G′ is (c · ǫ/8)-far from bipartite

Guideline: Given a 2-coloring χ′ of the vertices of G′, consider a 2-coloring χ : [k] → {1, 2} of G
obtained by coloring each v ∈ [n] according to the majority color used by the external vertices
associated with v; that is, χ(v) = 1 if the majority of the vertices in Xv (the external vertices of
the bipartite graph replacing v) are χ′-colored 1, and χ(v) = 0 otherwise. Denoting the minority
vertices in Xv by Sv, observe that the number of χ′-monochromatic edges in the bipartite graph
replacing v is at least c · d · |Sv|, since the number of monochromatic edges incident at an internal
vertex y is at least min(|Γ(y)∩Sv |, |Γ(y)\Sv |). On the other hand, the number of edges between Sv

and other bipartite graphs is at most d · |Sv|. Hence, extending χ to the vertices of G′ increases the
number of monochromatic edges by a factor of at most 1/c (in comparison to χ′). It follows that
the number of χ-monochromatic edges in G is at most 1/c times the number of χ′-monochromatic
edges in G′. Recalling that G′ has at most 4k · 2d/2 edges (whereas G has k · d/2 edges), infer that
if G′ is δ-close to being bipartite, then G is (8δ/c)-close to being bipartite.

Exercise 10.4 (on sampling edges and vertices): Show that selecting an edge uniformly at random
in a given graph and selecting a random vertex with probability proportional to its degree in the
graph are locally reducible to one another, where one of the reductions utilizes logarithmically many
queries mainly in order to determine the degree of the sampled vertex.

Exercise 10.5 (estimating the average degree of graphs with parallel edges): Show that for any t
(e.g., t = ω(k)), a ((k + t−2)/k)-factor approximation to the number of edges in k-vertex graphs in
which there are at most t parallel edges requires Ω(k) queries, even when allowed degree, incidence,
and adjacency queries, and even when guaranteed that the graph has no isolated vertices.

Guideline: Consider a random graph that consists of a perfect matching, and a graph in which one
of these matching edges is duplicated t times.

Exercise 10.6 (extending Proposition 10.6)40 For every ρ ∈ (0, 1), any constant-factor approxi-
mation algorithm for the average degree of a graph G = ([k], E) must make Ω(k/

√
|E|) queries to

G, even when allowed degree, incidence and adjacency queries, and even if it is guaranteed that
|E| = Θ(ρk2).

Guideline: For any ρ = ρ(k) > 1/k and constant approximation factor γ > 1, proceed as in the

proof of Proposition 10.6, while setting k′ =
√

γρ · k (rather than k′ =
√

γk) and using d
def
= ⌊ρk⌋

matchings (rather than one).41 Note that the average degree in the second distribution is d, whereas
the average degree in the first distribution is k−k′

k ·d+ k′

k ·(k′−1) ≈ (1+γ−√γρ)·d ≥ (1+γ−o(
√

γ))·d,
where we assume that ρ = o(1). (Note that Ω(k/k′) queries are required to distinguish these two
distributions, whereas k′ ≈ √γ · dk.) For ρ < 1/k, we also use k′ =

√
γρ · k but only match ρk2 of

39Based on a result in [180].
40Based on a result in [150].
41In the first distribution use d matchings of the remaining k − k′ vertices (rather than one), and in the second

distribution just use d perfect matchings (rather than one).
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the remaining k − k′ vertices (rather than all of them).42 Here, the average degree in the second

distribution is d
def
= ρk, whereas the average degree in the first distribution is d + k′

k · (k′ − 1) ≈
(1 + γ) · d.

Exercise 10.7 (getting rid of the need for a rough estimate – deterministic case): Let ν : {0, 1}∗ →
(0, 1] be a value functions and suppose that A is a deterministic algorithm that approximates ν when
given a valid lower for it. Specifically, suppose that A satisfies the following conditions.

1. A never overestimates ν: For every x and b, it holds that A(x, b) ≤ ν(x).

2. A performs well when given a valid lower bound on ν(x): For some α ∈ (0, 1) and every
(x, b), if ν(x) ≥ b, then A(x, b) ≥ α · ν(x).

3. The complexity of A grows with 1/b: The complexity of A on (x, b) is upper bounded by Qx(b),
where Qx : (0, 1) → N is monotonically non-increasing and Qx(b) = Ω(1/b).

Then, ν(x) can be approximate to within a factor of 1/α within complexity Õ(Qx(α · ν(x)/2)).
Actually, an upper bound of

∑
i∈[⌈log2(1/α·ν(x))⌉] Qx(2−i) holds regardless of the growth rate of Qx.

Guideline: On input x, invoke A iteratively such that in the ith iteration A is invoked on input
(x, 2−i), and halt in iteration i if and only if the output is at least 2−i (i.e., if A(x, 2−i) ≥ 2−i).43

Exercise 10.8 (getting rid of the need for a rough estimate – randomized case): In continuation
to Exercise 10.7, suppose that A is randomized and that Conditions 1 and 2 only hold with probabil-
ity 2/3. Consider an algorithm as in the guidelines to Exercise 10.7, except that in the ith iteration
it invokes A(2−i, x) for Θ(log Qx(2−(i+1))) times and treats the median value as if it was the ver-
dict of a deterministic algorithm. Analyze the probility that this algorithm outputs an 1/α-factor
approximation of ν(x) as well as its expected complexity. Assuming that Qx(b/2) ≤ poly(Qx(b))
and Qx(b) ≥ b−Ω(1) for every b ∈ (0, 1], upper-bound the expected complexity by Õ(Qx(α · ν(x)/2)).

Guideline: Letting t
def
= ⌈log2(1/α · ν(x))⌉, observe that the probability that A fails to output an

1/α-factor approximation of ν(x) is at most

∑

i∈[t]
exp(−Ω(log Qx(2−(i+1)))) <

∑

i∈[⌈log2(1/α·ν(x))⌉]
2−2(i+1) <

1

8

where the first inequality uses Qx(b) ≥ b−Ω(1), and that its expected complexity is

∑

i∈[t]
O(Qx(2

−i) log Qx(2−(i+1))) +
∑

i>t

2−2 log Qx(2−i)) ·O(Qx(2−i) log Qx(2−(i+1))).

Lastly, note that Qx(b/2) ≤ poly(Qx(b)) implies that log Qx(b/2) = O(log Qx(b)).

Exercise 10.9 (estimating average degree and sampling edges by using adjacency queries):

1. Show that the number of edges in a given graph G = ([k], E) can be approximated to within
any constant factor by making O(k2/|E|) adjacency queries, in expectation.

42In the second distribution, we only match ρk2 of the k vertices (rather than all of them).
43Note that in this case ν(x) ≥ 2−i (by Contition 1), and so Condition 2 is applicable.
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2. Show that given a graph G = ([k], E), an edge can be sampled uniformly at random by making
O(k2/|E|) adjacency queries, in expectation.

Guideline: The key observation is that a random pair of vertices constitutes an edge with probability

|E|/
(k
2

)
. In Part 1, for any desired constant factor α > 1, sample pairs till t

def
= O((α− 1)−2) edges

are seen, and output the empirical frequency (i.e., t over the number of trials).44 In Part 2, apply
the paradigm of repeated sampling.

44In the analysis, letting ρ
def
= 2|E|/k2 and assuming that ǫ = α− 1 ∈ (0, 1), consider the probability that at least

t (resp., at most t) edges are seen in a sample of size (1 − ǫ) · t/ρ (resp., (1 + ǫ) · t/ρ).
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Chapter 11

Testing Properties of Distributions

Summary: We provide an introduction to the study of testing properties of distribu-
tions, where the tester obtains samples of an unknown distribution (resp., samples from
several unknown distributions) and is required to determine whether the distribution
(resp., the tuple of distributions) has some predetermined property. We focus on the
problems of testing whether an unknown distribution equals a fixed distribution and
of testing equality between two unknown distributions. Our presentation is based on
reductions from the general cases to some seemingly easier special cases. In addition,
we also provide a brief survey of general results.

The current chapter is based on many sources; see Section 11.5.1 for details.

Teaching note: Unless one intends to devote several lectures to the current topic, one cannot hope

to cover all the material that is presented in this chapter in class. Hence, we recommend focusing on

Sections 11.1 and 11.2, while leaving Sections 11.3 and 11.4 for optional independent reading. Note that

Section 11.3 is quite technical, whereas Section 11.4 is mostly an overview section.

Key notations: We consider discrete probability distributions. Such distributions have a finite
support, which we assume to be a subset of [n], where the support of a distribution is the set of
elements assigned positive probability mass. We represent such distributions either by random
variables, like X, that are assigned values in [n] (indicated by writing X ∈ [n]), or by probability
mass functions like p : [n] → [0, 1] that satisfy

∑
i∈[n] p(i) = 1. These two representations are

related via p(i) = Pr[X = i]. At times, we also refer to distributions as such, and denote them by
D. (Distributions over other finite sets can be treated analogously, but in such a case one should
provide the tester with a description of the set; indeed, n serves as a concise description of [n].)

11.1 The model

The difference between property testing as discussed so far and testing distributions is quite sub-
stantial. So far, we have discussed the testing of objects that were viewed as functions (equiv., as
sequences over some alphabet), whereas distributions were only mentioned implicitly (when view-
ing the distance between functions as the probability that they differ on a uniformly distributed
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argument).1 That is, the tested object was a function, and the tested property was a property of
functions (equiv., a set of functions). Furthermore, the tester was given query access to the tested
object, and the (uniform) distribution was used merely as a basis for defining distance between
objects.2

In contrast, in the context of testing distributions, the tested object is a distribution, the tested
property is a propery of distributions (equiv., a set of distributions), and the tester (only) obtains
samples drawn according to the tested distribution. For example, we may be given samples that
are drawn from an arbitrary distribution over [n], and be asked to “determine” whether the given
distribution is uniform over [n].

The foregoing formulation raises some concerns. We can never determine, not even with (non-
trivial) error probability, whether samples that are given to us were taken from some fixed distri-
bution. That is, given s(n) (say s(n) = 2n) samples from X ∈ [n], we cannot determine whether or
not X is the uniform distribution, since X may be such that Pr[X = i] = 1

n− 1
2ns(n) if i ∈ [n−1] and

Pr[X =n] = 1
n + n−1

2ns(n) otherwise. Of course, what is missing is a relaxed interpretation of the term

“determine” (akin to the interpretation we gave when defining approximate decision problems).
But before presenting this natural relaxation, we stress that here exact decision faces an im-

possiblity result (i.e., any finite number of samples does not allow to solve the exact decision
problem), whereas in the context of deciding properties of functions exact decision “only” required
high complexity (i.e., it only ruled out decision procedures of sub-linear query complexity).

The natural choice of a relaxation (for the aforementioned task) is to only require the rejection
of distributions that are far from having the property, where the distance between distributions is
defined as the total variation distance between them (a.k.a. the statistical difference). That is, X
and Y are said to be ǫ-close if

1

2
·
∑

i

|Pr[X = i]−Pr[Y = i]| ≤ ǫ, (11.1)

and otherwise they are deemed ǫ-far. With this definition in place, we are ready to provide the
definition of testing properties of distributions.

11.1.1 Testing properties of single distributions

Having specified the objects (i.e., distributions), the view obtained by the tester (i.e., samples), and
the distance between objects (i.e., Eq. (11.1)), we can apply the “testing” paradigm and obtain
the following definition. (Let us just stress that, unlike in the context of testing properties of
functions, the tester is not an oracle machine but is rather an ordinary algorithm that is given a
predetermimed number of samples.)3

Definition 11.1 (testing properties of distributions): Let D = {Dn}n∈N be a property of distribu-
tions such that Dn is a set of distributions over [n], and s : N × (0, 1] → N. A tester, denoted T ,

1An extension of this study to testing properties of functions under arbitrary distributions on their domain was
briefly mentioned in Section 1.3.2, but not discussed further. A different extension, pursued in Chapter 10, focused on
testing properties of graphs that are accessible via various types of queries (without specifying their representation).

2Actually, we also mentioned (in Section 1.3.2) and used (in Section 6.2) the notion of testing functions based on
random (labeled) examples.

3Indeed, such ordinary machines are also used in the case of sample-based testing, discussed in Section 1.3.2 and
defined in Section 6.2. In both cases, the sample complexity is stated as part of the basic definition, rather than
being introduced later (as a relevant complexity measure). (We deviate from this convention in Exercise 11.7.)
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of sample complexity s for the property D is a probabilistic machine that, on input parameters n
and ǫ, and a sequence of s(n, ǫ) samples drawn from an unknown distribution X ∈ [n], satisfies the
following two conditions.

1. The tester accepts distributions that belong to D: If X is in Dn, then

Pri1,...,is∼X [T (n, ǫ; i1, ..., is)=1] ≥ 2/3,

where s = s(n, ǫ) and i1, ..., is are drawn independently from the distribution X.

2. The tester rejects distributions that are far from D: If X is ǫ-far from any distribution in Dn

(i.e., X is ǫ-far from D), then

Pri1,...,is∼X [T (n, ǫ; i1, ..., is)=0] ≥ 2/3,

where s = s(n, ǫ) and i1, ..., is are as in the previous item.

If the tester accepts every distribution in D with probability 1, then we say that it has one-sided
error.

Indeed, the error probability of the tester is bounded by 1/3. As in the case of testing properties
of functions (cf. Definition 1.6), the error can be decreased by repeated application of the tester
(while ruling by majority; see Exercise 11.1). Note that n fully specifies the set of distributions
Dn, and we do not consider the computational complexity of obtaining an explicit description of
Dn from n (not even when Dn is a singleton). For sake of simplicity, in the rest of this chapter, we
will consider a generic n and present the relevant properties as properties of distributions over [n].

We comment that testers of one-sided error are quite rare in the context of testing properties
of distributions (unlike in the context of testing properties of functions). This phenomenon seems
rooted in the fact that one-sided error testers exist only for a very restricted class of properties of
distributions. Specifically, a property of distributions, D, has a one-sided error tester if any only if
there exists a collection of sets C ⊆ 2[n] such that D consists of all distributions that have a support
that is a subset of some S ∈ C. We stress that the impossibility claim holds regardless of the sample
complexity. To verify the impossibility claim, it is instructive to restate it as asserting that if there
exist distributions X and Y such that X is in D but Y is not in D and the support of Y is a subset
of the support of X, then D has no one-sided error tester.4 On the other hand, whenever one-sided
error testing is possible, it is possible using O(n/ǫ) samples (see Exercise 11.2).

Relation to learning distributions. As in the context of testing properties of functions, it is
possible to reduce testing to learning, alas in the context of testing properties of distributions the
cost of such a reduction is higher. Nevertheless, let us outline this reduction.

1. When using proximity parameter ǫ, the tester uses part of the sample in order to learn a
distribution in D such that if the input distribution X is in D then, with high probability,
the learning algorithm outputs a description of a distribution Y in D that is ǫ/2-close to X.

4The claim follows by noting that any possible sample of Y is also a possible sample of X, which implies that an
algorithm that rejects Y with positive probability must also reject X with positive probability. Now, since, for some
ǫ > 0, the distribution Y is ǫ-far from D, an ǫ-tester for D must reject Y with probability at least 2/3, and so must
reject X with positive probability, which implies that it is not a one-sided error tester for D.
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2. The tester uses a different part of the sample in order to check whether X is ǫ/2-close to Y
or is ǫ-far from it.

The problem with this reduction is that, in general, Step 2 has almost linear complexity (i.e., it has
complexity Ω(n/ log n)). In contrast, recall that in the context of testing properties of functions, the
analogous step has extremely low complexity.5 Furthermore, in many natural cases (of distribution
testing) the cost of Step 2 is significantly higher than the cost of Step 1 (e.g., Step 2 may require
Ω(n/ log n) samples also when Step 1 is trivial, as in the case that D is the singleton containing the
uniform distribution). Hence, like in the context of testing properties of functions, we shall seek to
outperform this reduction; however, unlike in the case of testing functions, typically this will not
be because learning (i.e,., Step 1) is too expensive but rather because testing closeness (i.e., Step 2)
is too expensive. Nevertheless, in some cases, this reduction or variants of it (cf., e.g., [263, 2]) are
very useful. Finally, we note that Step 2 can always be performed by using O(n/ǫ2) samples, and
the same holds for Step 1 (see [87, Lem. 3]).6

Notations: In order to simplify some of the discussion, we refer to ǫ-testers derived by setting the
proximity parameter to ǫ. Nevertheless, all testers discussed here are actually uniform with respect
to the proximity parameter ǫ. This refers also to testers of properties of pairs of distributions,
defined next.

11.1.2 Testing properties of pairs of distributions

Definition 11.1 generalizes naturally to testing properties of m-tuples of distributions (i.e., sets of
m-tuples of distributions), where the cases of m = 1 and m = 2 are most popular. When testing an
m-tuple of distributions, we are given samples drawn from each of the m distributions being tested
(where the samples are presented separately so that it is clear which samples belong to which of
the tested distributions). For example, given samples from two distributions, one may be asked to
test whether they are identical.

Definition 11.2 (testing properties of m-tuples of distributions):7 Let D be a property of m-tuples
of distributions and s : N× (0, 1]→ N. A tester, denoted T , of sample complexity s for the property
D is a probabilistic machine that, on input parameters n and ǫ, and m sequences each consisting

5Recall that O(1/ǫ) samples suffice in order to determine whether an unknown input function is ǫ/2-close to a
fixed function or is ǫ-far from it.

6It turns out that approximating an unknown distribution X ∈ [n] by the “empirical distribution” of O(n/ǫ2)
samples will do (for both tasks). The analysis, presented in Exercise 11.4, is highly recommended. As a motivation,
we point out that naive attempts at such an analysis do not yield the desired result. For example, one may seek to
approximate each p(i) = Pr[X = i] up to an additive term of ǫ/4n (or so), but this will require Ω(n/ǫ)2 samples.
A less naive attempt is based on the observation that it suffices to have a 1 + 0.1ǫ factor approximation of each
p(i) ≥ 0.1ǫ/n (as well as a list containing all i’s such that p(i) < 0.1ǫ/n). Such an approximation can be obtained,

with high probability, using a sample of size eO(n)/ǫ2. That is, for each i, using a sample of such size, with probability
at least 1/3n, we either provide a 1 + 0.1ǫ factor approximation of p(i) or detect that p(i) < 0.1ǫ/n. As stated
upfront, a better approach is presented in Exercise 11.4. Furthermore, as discussed in Section 11.4, relaxed forms
of both tasks (i.e., learning and testing closeness), which suffice for many testing problems, can be performed using
O(ǫ−2 · n/ log n) samples (see [263, Thm. 1]).

7The current definition mandates that the same number of samples are given for each of the m distributions. A
more flexible definition that allows a different sample size for each distribution is natural and has been used in several
studies.
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of s(n, ǫ) samples drawn from one of the m unknown distributions X1, ...,Xm ∈ [n], satisfies the
following two conditions.

1. The tester accepts tuples that belong to D: If (X1, ...,Xm) is in D, then

Pr
i
(1)
1 ,...,i

(1)
s ∼X1;...;i

(m)
1 ,...,i

(m)
s ∼Xm

[T (n, ǫ; i
(1)
1 , ..., i(1)s ; . . . ; i

(m)
1 , ..., i(m)

s )=1] ≥ 2/3,

where s = s(n, ǫ) and i
(j)
1 , ..., i

(j)
s are drawn independently from the distribution Xj .

2. The tester rejects tuples that are far from D: If (X1, ...,Xm) is ǫ-far from any tuple in D (i.e.,
for every (Y1, ..., Ym) in D the average variation distance between Xj and Yj, where j ∈ [m],
is greater than ǫ), then

Pr
i
(1)
1 ,...,i

(1)
s ∼X1;...;i

(m)
1 ,...,i

(m)
s ∼Xm

[T (n, ǫ; i
(1)
1 , ..., i(1)s ; . . . ; i

(m)
1 , ..., i(m)

s )=0] ≥ 2/3,

where s = s(n, ǫ) and i
(j)
1 , ..., i

(j)
s are as in the previous item.

We stress that the property that consists of pairs of identical distributions (i.e., {(D1,D2) : D1 =
D2}) is a property of pairs of distributions. In contrast the property that consists of being identical
to a fixed distribution D (i.e., the property {D}) is a property of (single) distributions. In the
former case, the tester is given samples from two unknown distributions, whereas in the latter case
the tester is given samples from one unknown distribution (whereas the fixed distribution D is a
(“massive”) parameter of the testing problem).

Note that, for any m > 1, testing m-tuples of distributions includes testing (m − 1)-tuples of
distributions as a special case (e.g., by just ignoring the last distribution). On the other hand,
testing m-tuples of distributions reduces to testing the single distribution that corresponds to the
Cartesian product of the m distributions, but this (single distribution) testing task may be harder
than the original testing task (for m-tuples), because the tester also has to deal with the case that
the input distribution is not a product of m distributions. (In contrast, when testing an m-tuple
of distributions, the tester is guaranteed that the samples provided for the various m distributions
are independent.)8

11.1.3 Label-invariant properties

A very natural class of properties of distributions consists of label invariant properties: For a
distribution X ∈ [n] and a permutation π : [n]→ [n], we let Y = π(X) be the distribution obtained
by sampling X and applying π to the outcome; that is, Pr[Y =π(i)] = Pr[X = i]. A property D of
distributions (over [n]) is label invariant if for every distribution X in D and for every permutation
π : [n] → [n] the distribution π(X) is in D. Likewise, a property D of m-tuples of distributions is
label invariant if for every tuple (X1, ...,Xm) in D and for every permutation π : [n]→ [n] the tuple
(π(X1), ..., π(Xm)) is in D.

8Let D be a property of m-tuples of distributions. When testing whether the m-tuple of distributions (X1, ..., Xm)

is in D, we are given a sequence (i
(1)
1 , ..., i

(1)
s ; . . . ; i

(m)
1 , ..., i

(m)
s ) such that the i

(j)
k ’s are drawn from Xj independently

of all other i
(j′)

k′ ’s (for j′ 6= j). But when testing whether the distribution X ∈ [n]m is in D, where D = {D ≡
D1 × · · · ×Dm : (D1, ..., Dm) ∈ D}, we are given a sequence i1, ..., is such that each ik is drawn independently from
X, but it is not necessarily the case that X ≡ X1 × · · · ×Xm for some distributions X1, ..., Xm ∈ [n].
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Note that the property that consists of the uniform distribution over [n] and the property that
consists of pairs of identical distributions are both label-invariant. On the other hand, the property
that consists of a single distribution D that is not uniform over [n] is not label-invariant. Other
label-invariant properties include the set of distributions over [n] having support that is smaller
than some threshold, and the set of distributions having entropy greater than some threshold.

In general, properties of distributions that only depend on the histograms of the distributions
are label-invariant, and vice versa. The histogram of a distribution D over [n] is a multiset of all
the probabilities in the distribution D; that is, the histogram of the distribution represented by the
probability function p : [n] → [0, 1] is the multiset {p(i) : i ∈ [n]}. We stress that this multiset is
presented in a fixed order (typically, as a sequence of n sorted values). Equivalently, the histogram
of p is the set of pairs {(v,m) : m = |{i∈ [n] : p(i)=v}| > 0}.

11.1.4 Organization

We focus on the problems of testing whether an unknown distribution equals a fixed distribution and
of testing equality between two unknown distributions: Solutions to these problems are presented
in Sections 11.2 and 11.3, respectively. The corresponding testers have complexity poly(1/ǫ) · n1/2

and poly(1/ǫ) · n2/3, respectively, which is the best possible.

In Section 11.4 we consider the general study of the complexity of testing properties of (single)
distributions, and survey a few general results. On the positive side, it turns out that any label-
invariant property of distributions can be tested in complexity poly(1/ǫ) · n/ log n, which means
cutting off a logarithmic factor in comparison to the result obtained via the generic learning al-
gorithm (mentioned at the end of Section 11.1.1, see also Exercise 11.4). On the negative side, it
turns out that, for many natural properties, this is the best possible.

11.2 Testing equality to a fixed distribution

By testing equality to a fixed distribution D, we mean testing whether an unknown distribution
over [n] equals the distribution D. In other words, we refer to testing the property {D}, which is
a property of single distributions. Recall that the analogous task is quite trivial in the context of
testing properties of functions (i.e., testing whether an unknown function equals a fixed function can
be performed by using O(1/ǫ) random samples). In contrast, ǫ-testing the property {D} typically9

requires Ω(ǫ−2 ·√n) samples, and this holds also in the case that D is uniform over [n]. It turns out
that this bound can always be achieved; that is, for every distribution over [n], testing the property
{D} can be performed in time O(ǫ−2 · √n).

We start by considering the special case in which D is the uniform distribution over [n], denoted
Un. Testing the property {Un} will be reduced (in Section 11.2.1) to estimating the collision prob-
ability of the tested distribution, where the collision probability of a distribution is the probability
that two samples drawn independently from it collide (i.e., yield the same value). In Section 11.2.2
we shall reduce the task of testing the property {D}, for any D (over [n]), to the task of testing
the property {Un}.

9Pathological examples do exist. For example, if D is concentrated on few elements, then the complexity depends
on this number rather than on n. A general study of the complexity of ǫ-testing the property {D} as a function of
D (and ǫ) was carried out by Valiant and Valiant [264]. As shown in subsequent work [55], the complexity depends
on the “effective support” size of D.

300



11.2.1 The collision probability tester and its analysis

The collision probability of a distribution X is the probability that two samples drawn according to
X are equal; that is, the collision probability of X is Pri,j∼X [i = j], which equals

∑
i∈[n] Pr[X = i]2.

For example, the collision probability of Un is 1/n. Letting p(i) = Pr[X = i], observe that

∑

i∈[n]

p(i)2 =
1

n
+
∑

i∈[n]

(
p(i)− n−1

)2
, (11.2)

which means that the collision probability of X equals the sum of the collision probability of Un

and the square of the L2-norm of X−Un (viewed as a vector, i.e., ‖X−Un‖22 =
∑

i∈[n] |p(i)−u(i)|2,
where u(i) = Pr[Un = i] = 1/n).

The key observation is that, while the collision probability of Un equals 1/n, the collision

probability of any distribution that is ǫ-far from Un is greater than 1
n + 4ǫ2

n . To see the latter claim,
let p denote the corresponding probability function, and note that if

∑
i∈[n] |p(i)− n−1| > 2ǫ, then

∑

i∈[n]

(
p(i)− n−1

)2 ≥ 1

n
·



∑

i∈[n]

∣∣p(i)− n−1
∣∣



2

>
(2ǫ)2

n

where the first inequality is due to Cauchy-Schwarz inequality.10 Indeed, using Eq. (11.2), we get∑
i∈[n] p(i)2 > 1

n + (2ǫ)2

n . This yields the following test.

Algorithm 11.3 (the collision probability tester): On input (n, ǫ; i1, ..., is), where s = O(
√

n/ǫ4),

compute c← |{j < k : ij = ik}|, and accept if and only if c

(s
2)

< 1+2ǫ2

n .

Algorithm 11.3 approximates the collision probability of the distribution X from which the sample
is drawn, and the issue at hand is the quality of this approximation. The key observation is that
each pair of sample points provides an unbiased estimator11 of the collision probability (i.e., for
every j < k it holds that Prij ,ik∼X [ij = ik] =

∑
i∈[n] Pr[X = i]2), and that these

(s
2

)
pairs are

“almost pairwise independent” (in the same sense as in the proof of Claim 9.21.3). Recalling that
the collision probability of X ∈ [n] is at least 1/n, it follows that a sample of size O(

√
n) (which

“spans” O(n) pairs) provides a good approximation of the collision probability of X.

10That is, use
P

i∈[n] |p(i) − n−1| · 1 ≤
“

P

i∈[n] |p(i) − n−1|2
”1/2

·
“

P

i∈[n] 1
2
”1/2

.
11A random variable X (resp., an algorithm) is called an unbiased estimator of a quantity v if E[X] = v (resp., the

expected value of its output equals v). Needless to say, the key question with respect to the usefulness of such an
estimator is the magnitude of its variance (and, specifically, the relation between its variance and the square of its
expectation). For example, for any NP-witness relation R ⊆ Sn∈N

({0, 1}n × {0, 1}p(n)), the (trivial) algorithm that

on input x selects at random y ∈ {0, 1}p(|x|) and outputs 2p(|x|) if and only if (x, y) ∈ R, is an unbiased estimator
of the number of witnesses for x, whereas counting the number of NP-witnesses is notoriously hard. The catch is, of
course, that this estimation has a huge variance; letting ρ(x) > 0 denote the fraction of witnesses for x, this estimator
has expected value ρ(x) · 2p(|x|) whereas its variance is (ρ(x) − ρ(x)2) · 22·p(|x|), which is typically much larger than
the expectation squared (i.e., when 0 < ρ(x) ≪ 1/poly(|x|)).
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Lemma 11.4 (analysis of the collision probability estimation): Suppose that i1, ..., is are drawn
from a distribution X that has collision probability µ. Then,

Pr

[∣∣∣∣∣
|{j < k : ij = ik}|(s

2

) − µ

∣∣∣∣∣ ≥ γ · µ
]

< 1/3,

provided that s = Ω(γ−2 · µ−1/2).

Hence, if X is the uniform distribution (i.e., µ = 1/n), then, with probability at least 2/3, Algo-
rithm 11.3 accepts (since Pr[c/

(
s
2

)
≥ (1 + ǫ2)/n] < 1/3).12 On the other hand, if µ > (1 + 4ǫ2)/n,

then (setting γ = ǫ2 again) it follows that Pr[c/
(s
2

)
≤ (1 − ǫ2) · µ] < 1/3, whereas (1 − ǫ2) · µ >

(1− ǫ2) · (1+4ǫ2)/n > (1+2ǫ2)/n. Thus, in this case, with probability at least 2/3, Algorithm 11.3
rejects. It follows that Algorithm 11.3 constitutes a tester for the property {Un}.
Proof:13 As noted before, each pair of samples provides an unbiased estimator of µ. If these pairs
of samples would have been pairwise independent, then O(γ−2µ−1) such pairs would have sufficed
to obtain a (1+γ) factor approximation of µ. But the pairs are not pairwise independent, although
they are close to being so (i.e., (ij , ik) and (ij′ , ik′) are independent if and only if |{j, k, j′, k′}| = 4).
Hence, the desired bound is obtained by going inside the standard analysis of pairwise independent
sampling, and analyzing the effect of the few pairs that are not independent.

Specifically, we consider m =
(s
2

)
random variables ζj,k that represent the possible collision

events; that is, for j, k ∈ [s] such that j < k, let ζj,k = 1 if the jth sample collides with the kth

sample (i.e., ij = ik) and ζj,k = 0 otherwise. Then, E[ζj,k] =
∑

i∈[n] Pr[ij = ik = i] = µ and

V[ζj,k] ≤ E[ζ2
j,k] = µ. Letting ζi,j

def
= ζi,j −µ and using Chebyshev’s Inequality (while recalling that

V[Z] = E[(Z − E[Z])2]), we get:

Pr




∣∣∣∣∣∣

∑

j<k

ζj,k

∣∣∣∣∣∣
> m · γµ


 <

E

[(∑
j<k ζj,k

)2
]

(m · γµ)2

=
1

m2γ2µ2
·

∑

j1<k1,j2<k2

E
[
ζj1,k1

ζj2,k2

]

We partition the terms in the last sum according to the number of distinct indices that occur in
them such that, for t ∈ {2, 3, 4}, we let (j1, k1, j2, k2) ∈ St ⊆ [s]4 if and only if |{j1, k1, j2, k2}| = t
(and j1 <k1 ∧ j2 <k2). Hence,

Pr




∣∣∣∣∣∣

∑

j<k

ζj,k

∣∣∣∣∣∣
> m · γµ


 <

1

m2γ2µ2
·
∑

t∈{2,3,4}

∑

(j1,k1,j2,k2)∈St

E
[
ζj1,k1

ζj2,k2

]
(11.3)

The contribution of each element in S4 to the sum is zero, since the four samples are independent
and so E[ζj1,k1

ζj2,k2
] = E[ζj1,k1

] · E[ζj2,k2
] = 0. Each element in S2 (which necessarily satisfies

(j1, k1) = (j2, k2)) contributes E[ζ
2
j1,k1

] = V[ζj1,k1] ≤ µ to the sum, but there are only m such

12Indeed, here we use γ = ǫ2.
13The following proof is similar to the technical core of the proof of Claim 9.21.3.
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elements, and so their total contribution is at most m · µ. Turning to S3, we note that each of its
O(ms) elements contributes

E[ζ1,2ζ2,3] ≤ E[ζ1,2ζ2,3]

=
∑

i∈[n]

Pr[X = i]3

≤ µ3/2

where the first inequality holds since the variables have non-negative expectation, and the second
inequality holds since Pr[X = i] ≤ √µ (for each i).14 Hence, the total contribution of the elements

of S3 is O(ms) · µ3/2 = O(mµ)3/2. Plugging all of this into Eq. (11.3), we get an upper bound of
mµ+O(mµ)3/2

m2µ2γ2 = O((mµγ4)−1/2). Recalling that m =
(s
2

)
= Ω(γ−4µ−1), the claim follows.

Reflection. When trying to test label-invariant properties of distributions, the only relevant
information provided by the sample is the collision statistics, where the collision statistics of the
sequence (i1, ..., is) is the sequence (c1, ..., ct) such that cj denotes the number of elements that
occur j times in the sequence (i.e., cj = |{i ∈ [n] : #i(i1, ..., is) = j}|, where #i(i1, ..., is) = |{k ∈
[s] : ik = i}|). Indeed, by the label-invariance condition, the specific labels of the cj elements that
have each occurred j times do not matter for determining how likely it is that the sample was
drawn from a distribution that has the property (or is at any given distance from the property).
This is formally proved in Theorem 11.12. Intuitively, this is the case since, for every distribution
X ∈ [n] and every permutation π : [n]→ [n], the sample (i1, ..., is) is as likely to be drawn from X
as the sample (π(i1), ..., π(is)) is to be drawn from π(X).

The most basic type of information that can be deduced from the collision statistics is an esti-
mate to the collision probability of the original distribution. Given a sequence of samples (i1, ..., is),
this estimate is computed as |{j < k : ij = ik}|/

(
s
2

)
. (Letting (c1, .., ct) denote the collision statis-

tics, this value equals
∑

j≥2

(j
2

)
· cj/

(s
2

)
.) In any case, this statistic is the basis of the test that is

captured by Algorithm 11.3.

Testing uniformity. As stated right after Lemma 11.4, an immediate corollary of Lemma 11.4
is that the property of being the uniform distribution over [n] can be tested in poly(1/ǫ) ·√n time.

Corollary 11.5 (an upper bound on the complexity of testing uniformity): Let Un denote the
uniform distribution over [n]. Then, the property {Un} can be ǫ-tested in sample and time complexity
O(ǫ−4√n).

We comment that an alternative analysis of the collision probability tester (of Algorithm 11.3) as
well as some closely related testers yield an upper bound of O(ǫ−2√n), which is optimal.15

14Recall that X denotes the distribution from which the samples are drawn; hence, E[ζ1,2ζ2,3] =
P

i∈[n] Pr[i1 =

i2 = i3 = i] equals
P

i∈[n] Pr[X = i]3. (Also, Pr[X = i]2 ≤ µ, for each i.) We mention that in the second inequality

we used
P

i∈[n] Pr[X= i]3 ≤ √
µ ·Pi∈[n] Pr[X= i]2, and in the first inequality we used E[(Y − E[Y ]) · (Z − E[Z])] =

E[Y Z] − E[Y ] · E[Z].
15Both this upper bound and the matching lower bound are due to [221]. Alternative proof of these bounds can be

found in [73] (see also [90, Apdx.]) and [89, Sec. 3.1.1], respectively. The fact that O(
√
n/ǫ2) samples actually suffice

for the collision probability test (of Algorithm 11.3) was recently established by Diakonikolas et al. [88].
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Approximating the L2-norm. Lemma 11.4 implies more than a tester for the property {Un}.
It actually asserts that the collision probability of a distribution can be approximated up to any
desired multiplicative factor by using a number of samples that is inversely proportional to the
square root of the collision probability. Viewing the collision probability of a distribution as the
square of the L2-norm (i.e., ‖ · ‖2) of the distribution (viewed as a vector), we get

Corollary 11.6 (approximating the L2-norm of a distribution):16 Given s samples from a un-
known distribution p, Algorithm 11.3 yields an (1 + γ)-factor approximation of ‖p‖2 with proba-

bility 1 − O(1/(γ2‖p‖2 · s)). Furthermore, this estimate equals
√

c/
(s
2

)
, where c is as computed by

Algorithm 11.3.

We mention that, in a model that allows the algorithm to obtain samples on demand, the L2-norm
of a distribution can be approximated within expected sample complexity that is inversely related
to its norm (see Exercise 11.5).

Proof: Indeed, Lemma 11.4 only asserts that Pr
[∣∣(c/

(
s
2

)
)− ‖p‖22

∣∣ ≥ γ · ‖p‖22
]

< 1/3, provided
that s = Ω(γ−2 · ‖p‖−1

2 ), but its proof actually establishes

Pr

[∣∣∣∣∣
c(s
2

) − ‖p‖22

∣∣∣∣∣ ≥ γ · ‖p‖22

]
= O(1/(γ2‖p‖2 · s))

for any s. Hence, with probability 1 − O(1/(γ2‖p‖2 · s)), it holds that c/
(s
2

)
is (1 ± γ) · ‖p‖22, and

the claim follows.

11.2.2 The general case (treated by a reduction to testing uniformity)

Recall that testing equality to a fixed distribution D means testing the property {D}; that is,
testing whether an unknown distribution equals the fixed distribution D. For any distribution D
over [n], we present a reduction of the task of ǫ-testing {D} to the task of ǫ/3-testing the uniform
distribution over [O(n)].

We decouple the reduction into two steps. In the first step, we assume that the distribution
D has a probability function q that ranges over multiples of 1/m, for some parameter m ∈ N;
that is, m · q(i) is a non-negative integer (for every i). We call such a distribution m-grained, and
reduce testing equality to any fixed m-grained distribution to testing uniformity (over [m]). Since
every distribution over [n] is ǫ/4-close to an O(n/ǫ)-grained distribution, it stands to reason that
the general case can be reduced to the grained case. This is indeed true, but the reduction is
less obvious than the treatment of the grained case. (Actually, we shall use a different “graining”
procedure, which yields a better result.)

Definition 11.7 (grained distributions): We say that a probability distribution over [n] having a
probability function q : [n] → [0, 1] is m-grained if q ranges over multiples of 1/m; that is, if for
every i ∈ [n] there exists a non-negative integer mi such that q(i) = mi/m.

Clearly, the uniform distribution over [n] is n-grained. More generally, if a distribution D results
from applying some function to the uniform distribution over [m], then D is m-grained. On the
other hand, any m-grained distribution must have support size at most m.

16Recall that ‖p‖2 =
q

P

i∈[n] p(i)
2, which is the square root of the collision probability of p.
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3 7 (3,.) (7,.)

 

 

Figure 11.1: The grained-to-uniform filter corresponding to the 5-grained distribution q that satis-
fies q(3) = 3/5 and q(7) = 2/5.

11.2.2.1 Testing equality to a fixed grained distribution

Fixing any m-grained distribution (represented by a probability function) q : [n] → {j/m : j ∈
N∪{0}}, we consider a randomized transformation (or “filter”), denoted Fq, that maps the support
of q to S = {〈i, j〉 : i∈ [n] ∧ j ∈ [mi]}, where mi = m · q(i). Specifically, for every i in the support
of q, we map i uniformly to Si = {〈i, j〉 : j ∈ [mi]}; that is, Fq(i) is uniformly distributed over
Si. If i is outside the support of q (i.e., q(i) = 0), then we map it to 〈i, 0〉. (An illustration of
this filter is depicted in Figure 11.1.) We stress that invoking the filter several times on the same
input yields independently and identically distributed outcomes.17 Note that |S| =

∑
i∈[n] mi =∑

i∈[n] m · q(i) = m. The key observations about this filter are:

1. The filter Fq maps q to a uniform distribution: If Y is distributed according to q, then Fq(Y )
is distributed uniformly over S; that is, for every 〈i, j〉 ∈ S, it holds that

Pr[Fq(Y ) = 〈i, j〉] = Pr[Y = i] ·Pr[Fq(i) = 〈i, j〉]

= q(i) · 1

mi

=
mi

m
· 1

mi

which equals 1/m = 1/|S|.

2. The filter preserves the variation distance between distributions: The total variation distance
between Fq(X) and Fq(X

′) equals the total variation distance between X and X ′. This holds
since, for S′ = S ∪ {〈i, 0〉 : i ∈ [n]}, we have

∑

〈i,j〉∈S′

∣∣Pr[Fq(X) = 〈i, j〉]−Pr[Fq(X
′) = 〈i, j〉]

∣∣

=
∑

〈i,j〉∈S′

∣∣Pr[X = i] ·Pr[Fq(i) = 〈i, j〉]−Pr[X ′ = i] ·Pr[Fq(i) = 〈i, j〉]
∣∣

=
∑

〈i,j〉∈S′

Pr[Fq(i) = 〈i, j〉] ·
∣∣Pr[X = i]−Pr[X ′ = i]

∣∣

17This convention is consistent with the standard convention regarding repeated applications of randomized algo-
rithms (including property testers), but not with the definition of randomized local reductions (i.e., Definition 7.17,
where a global random choice (i.e., the mapping Fn) was fixed and used in all invocations).
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=
∑

i∈[n]

∣∣Pr[X = i]−Pr[X ′ = i]
∣∣ .

Indeed, this is a generic statement that applies to any filter that maps i to a pair 〈i, Zi〉,
where Zi is an arbitrary distribution that only depends on i. (Equivalently, the statement
holds for any filter that maps i to a random variable Zi that only depends on i such that the
supports of the different Zi’s are disjoint; see Exercise 11.6.)

Observing that a knowledge of q allows to implement Fq as well as to map S to [m], yields the
following reduction.

Algorithm 11.8 (reducing testing equality to m-grained distributions to testing uniformity over
[m]): Let D be an m-grained distribution with probability function q : [n]→ {j/m : j ∈ N∪{0}}. On
input (n, ǫ; i1, ..., is), where i1, ..., is ∈ [n] are samples drawn according to an unknown distribution p :
[n]→ [0, 1], invoke an ǫ-tester for uniformity over [m] by providing it with the input (m, ǫ; i′1, ..., i

′
s)

such that for every k ∈ [s] the sample i′k is generated as follows:

1. Generate 〈ik, jk〉 ← Fq(ik).

Recall that if mik
def
= m · q(ik) > 0, then jk is selected uniformly in [mik ], and otherwise

jk ← 0. We stress that if Fq is invoked t times on the same i, then the t outcomes are
(identically and) independently distributed. Hence, the s samples drawn independently from p
are mapped to s samples drawn independently from p′ such that p′(〈i, j〉) = p(i)/mi if j ∈ [mi]
and p′(〈i, 0〉) = p(i) if mi = 0. (If j > mi > 0, then p′(〈i, j〉) = 0, whereas by convention
[0] = ∅.)

2. If jk ∈ [mik ], then 〈ik, jk〉 ∈ S is mapped to its rank in S (according to a fixed order of S),
where S = {〈i, j〉 : i∈ [n] ∧ j∈ [mi]}, and otherwise 〈ik, jk〉 6∈ S is mapped to m + 1.

(Alternatively, the reduction may just reject if any of the jk’s equals 0.)18

The foregoing description presumes that the tester for uniform distributions over [m] also operates
well when given arbitrary distributions (which may have a support that is not a subset of [m]).
However, any tester for uniformity can be easily extended to do so (see Exercise 11.7). Hence,
the sample complexity of testing equality to m-grained distributions equals the sample complexity of
testing uniformity over [m] (which is indeed a special case). Using any of the known uniformity
(over [n]) testers that have sample complexity O(

√
n/ǫ2),19 we obtain –

Corollary 11.9 (testing equality to m-grained distributions): For any fixed m-grained distribution
D, the property {D} can be ǫ-tested in sample complexity O(

√
m/ǫ2).

Note that the complexity of the said tester depends on the level of grainedness of D, which may
be smaller than the a prior bound on the size of the support of the tested distribution. Hence,
the foregoing tester for equality to grained distributions is of independent interest, which extends
beyond its usage towards testing equality to arbitrary distributions.

18The justification for this alternative is implicit in Exercise 11.7 (see Footnote 55). Another alternative is presented
in Exercise 11.8.

19Recall that the alternatives include the testers of [221] and [73] or the collision probability test (of Algorithm 11.3),
per its improved analysis in [88].
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11.2.2.2 From arbitrary distributions to grained ones

We now turn to the problem of testing equality to an arbitrary known distribution, represented
by q : [n] → [0, 1]. The basic idea is to round all probabilities to multiples of γ/n, for an error
parameter γ (which will be a small constant). Of course, this rounding should be performed so
that the sum of the probabilities equals 1. For example, we may use a randomized filter that, on
input i, outputs i with probability mi·γ/n

q(i) , where mi = ⌊q(i) · n/γ⌋, and outputs n + 1 otherwise.

Hence, if i is distributed according to p : [n] → [0, 1], then the output of this filter will be i with

probability γmi/n
q(i) · p(i). This works well if γmi/n ≈ q(i), which is the case if q(i) ≫ γ/n (equiv.,

mi ≫ 1), but may run into trouble otherwise.

For starters, we note that if q(i) = 0, then we should replace γmi/n
q(i) by γ/n, because otherwise

we may not distinguish between distributions that differ significantly on i’s on which q(i) = 0
(but are identical when conditioned on i’s such that q(i) > 0).20 Similar problems occur when
q(i) ∈ (0, γ/n): In this case mi = 0 and so the proposed filter ignores the probability assigned by
the distribution p on this i. Hence, we modify the basic idea such as to avoid these problems.

Specifically, we first use a filter that averages the input distribution p with the uniform distri-
bution, and so guarantees that all elements occur with probability at least 1/2n, while preserving
distances between different input distributions (up to a factor of two). Only then do we apply the

foregoing proposed filter (which outputs i with probability mi·γ/n
q(i) , where mi = ⌊q(i) · n/γ⌋, and

outputs n + 1 otherwise). Details follow.

 

 

3 7 3 7 n+1

Figure 11.2: The general-to-grained filter (as applied to part of the fixed distribution q that satisfies
q(3) = 3.2/6n and q(7) = 2.8/6n). The dotted lines indicate multiples of γ/n, for γ = 1/6.

1. We first use a filter F ′ that, on input i ∈ [n], outputs i with probability 1/2, and outputs the
uniform distribution (on [n]) otherwise. Hence, if i is distributed according to the distribution
p, then F ′(i) is distributed according to p′ = F ′◦p such that

p′(i) =
1

2
· p(i) +

1

2
· 1
n

. (11.4)

(Indeed, we denote by F ′◦p the probability function of the distribution obtained by selecting
i according to the probability function p and outputting F ′(i).)

Let q′ = F ′◦q; that is, q′(i) = 0.5 · q(i) + (1/2n) ≥ 1/2n for every i ∈ [n].

20Consider for example the case that q(i) = 2/n on every i ∈ [n/2] and a distribution X that is uniform on [n].
Then, Pr[X = i|q(X) > 0] = q(i) for every i ∈ [n/2], but Pr[X = i|q(X) = 0] = 2/n for every i ∈ [(n/2) + 1, n].
Hence, X and the uniform distribution on [n/2] are very different, but are identical when conditioned on i’s such
that q(i) > 0.
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2. Next, we apply a filter F ′′q′ , which is related to the filter Fq used in Algorithm 11.8. Letting

mi = ⌊q′(i) · n/γ⌋, on input i ∈ [n], the filter outputs i with probability mi·γ/n
q′(i) , and outputs

n + 1 otherwise (i.e., with probability 1 − miγ/n
q′(i) ), where γ > 0 is a small constant (e.g.,

γ = 1/6 will do). (An application of this filter is depicted in Figure 11.2.)

Note that miγ/n
q′(i) ≤ 1, since mi ≤ q′(i) · n/γ. On the other hand, observing that mi · γ/n >

((q′(i) · n/γ) − 1) · γ/n = q′(i) − (γ/n), it follows that miγ/n
q′(i) > q′(i)−(γ/n)

q′(i) ≥ 1 − 2γ, since

q′(i) ≥ 1/2n.

Now, if i is distributed according to the distribution p′, then F ′′q′(i) is distributed according
to p′′ : [n + 1]→ [0, 1] such that, for every i ∈ [n], it holds that

p′′(i) = p′(i) · mi · γ/n

q′(i)
(11.5)

and p′′(n + 1) = 1−∑i∈[n] p
′′(i).

Let q′′ denote the probability function related to q′. Then, for every i ∈ [n], it holds that

q′′(i) = q′(i) ·miγ/n
q′(i) = mi ·γ/n ∈ {j ·γ/n : j ∈ N∪{0}} and q′′(n+1) = 1−∑i∈[n] mi ·γ/n < γ,

since m
def
=
∑

i∈[n] mi >
∑

i∈[n]((n/γ) · q′(i) − 1) = (n/γ) − n. We highlight the fact that if

n/γ is an integer, then q′′ is (n/γ)-grained.21

Combining these two filters, we obtain the desired reduction.

Algorithm 11.10 (reducing testing equality to a general distribution to testing equality to an
O(n)-grained distribution): Let D be an arbitrary distribution with probability function q : [n] →
[0, 1], and T be an ǫ′-tester for m-grained distributions having sample complexity s(m, ǫ′). On input
(n, ǫ; i1, ..., is), where i1, ..., is ∈ [n] are s = s(O(n), ǫ/3) samples drawn according to an unknown
distribution p : [n]→ [0, 1], the tester proceeds as follows:

1. It produces an s-long sequence (i′′1 , ..., i
′′
s ) by applying F ′′F ′◦q ◦ F ′ to (i1, ..., is), where F ′ and

F ′′q′ are as in Eq. (11.4)&(11.5); that is, for every k ∈ [s], it produces i′k ← F ′(ik) and
i′′k ← F ′′F ′◦q(i

′
k).

(Recall that F ′′q′ depends on a universal constant γ, which we shall set to 1/6.)

2. It invokes the (ǫ/3)-tester T for the O(n)-grained distribution q′′ = F ′′F ′◦q ◦ F ′ ◦ q providing it
with the sequence (i′′1 , ..., i

′′
s ). Note that this is a sequence over [n + 1].

We stress that if F ′′F ′◦q ◦ F ′ is invoked t times on the same i, then the t outcomes are (identically
and) independently distributed. Hence, the s samples drawn independently from p are mapped to s
samples drawn independently from p′′ that satisfies Eq. (11.4)&(11.5).

Using the notations of Eq. (11.4)&(11.5), we first observe that the total variation distance between
p′ = F ′◦p and q′ = F ′◦q is half the total variation distance between p and q (since p′(i) =
0.5 · p(i) + (1/2n) and ditto for q′). Next, we observe that the total variation distance between

21We also mention that if m = n/γ, which happens if and only if q′ is n/γ-grained (since
P

i∈[n]mi = n/γ iff

mi = q′(i) · n/γ for every i ∈ [n]), then q′′ has support [n], and otherwise q′′ has support [n+ 1].
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p′′ = F ′′q′◦p′ and q′′ = F ′′q′◦q′ is lower-bounded by a constant fraction of the total variation distance
between p′ and q′. To see this, let X and Y be distributed according to p′ and q′, respectively, and
observe that

∑

i∈[n+1]

∣∣Pr[Fq′(X) = i]−Pr[Fq′(Y ) = i]
∣∣ ≥

∑

i∈[n]

∣∣Pr[Fq′(X) = i]−Pr[Fq′(Y ) = i]
∣∣

=
∑

i∈[n]

∣∣∣∣p
′(i) · miγ/n

q′(i)
− q′(i) · miγ/n

q′(i)

∣∣∣∣

=
∑

i∈[n]

miγ/n

q′(i)
·
∣∣p′(i)− q′(i)

∣∣

≥ min
i∈[n]

{
miγ/n

q′(i)

}
·
∑

i∈[n]

·
∣∣p′(i)− q′(i)

∣∣ .

As stated above, recalling that q′(i) ≥ 1/2n and mi = ⌊(n/γ) · q′(i)⌋ > (n/γ) · q′(i) − 1, it follows
that

miγ/n

q′(i)
>

((n/γ) · q′(i)− 1) · γ/n

q′(i)
= 1− γ/n

q′(i)
≥ 1− γ/n

1/2n
= 1− 2γ.

Hence, if p is ǫ-far from q, then p′ is ǫ/2-far from q′, and p′′ is ǫ/3-far from q′′, where we use
γ ≤ 1/6. On the other hand, if p = q, then p′′ = q′′. Recalling that q′′ is an (n/γ)-grained
distribution, provided that n/γ is an integer (as is the case for γ = 1/6), we complete the analysis
of the reduction. Hence, the sample complexity of ǫ-testing equality to arbitrary distributions over
[n] equals the sample complexity of (ǫ/3)-testing equality to O(n)-grained distributions (which is
essentially a special case).

Digest. One difference between the filter underlying Algorithm 11.8 and the one underlying
Algorithm 11.10 is that the former preserves the exact distance between distributions, whereas the
later only preserves them up to a constant factor. The difference is rooted in the fact that the first
filter maps the different i’s to distributions of disjoint support, whereas the second filter (which
is composed of the filters of Eq. (11.4)&(11.5)) maps different i’s to distributions of non-disjoint
support. (Specifically, the filter of Eq. (11.4) maps every i ∈ [n] to a distribution that assigns each
i′ ∈ [n] probability at least 1/2n, whereas the filter of Eq. (11.5) typically maps each i ∈ [n] to a
distribution having the support {i, n + 1}.)

11.2.2.3 From arbitrary distributions to the uniform one

Combining the reductions captured by Algorithms 11.10 and 11.8, we obtain:

Theorem 11.11 (testing equality to any fixed distribution): For any fixed distribution D over [n],
the property {D} can be ǫ-tested in sample complexity O(

√
n/ǫ2).

Indeed, this generalizes Corollary 11.5. We mention that Ω(ǫ−2√n) is a lower bound for testing
{D} for many fixed distributions D over [n], including the uniform one. Nevertheless, as indicated
by Corollary 11.9, in some (natural) cases testing the property {D} has lower complexity. We
mention that the complexity of ǫ-testing the property {D} as a function of D (and ǫ) is roughly
known [264]; as shown in subsequent work [55], the complexity depends on the “effective support”
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size of D (essentailly, the size of a minimal set that is assigned almost all the probability mass of
D).

Proof: We first reduce the problem of ǫ-testing equality to D to the problem of (ǫ/3)-testing
equality to a O(n)-grained distribution (by using Algorithm 11.10), and then reduce the latter task
to (ǫ/3)-testing equality to the uniform distribution over [O(n)] (by using Algorithm 11.8). Finally,
we use any of the known uniformity testers that have sample complexity O(

√
n/ǫ2).22

11.2.3 A lower bound

We first establish the claim eluded to in the reflection that follows the proof of Lemma 11.4.
We say that a distribution tester T is label-invariant if it ignores the labels of the samples and
only considers their collision statistics. In other words, for every sequence (i1, ..., is) and every
permutation π : [n]→ [n], the verdict of T on input (n, ǫ; i1, ..., is) is identical to its verdict on the
input (n, ǫ;π(i1), ..., π(is)).

Theorem 11.12 (label-invariant algorithms suffice for testing label-invariant properties): Let D
be a label-invariant property of distributions that is testable with sample complexity s. Then, D has
a label-invariant tester of sample complexity s.

A similar statement holds for testing label-invariant properties of m-tuples of distributions.

Proof: Given a tester T of sample complexity s for D, consider a tester T ′ that on input
(n, ǫ; i1, ..., is) selects uniformly a random permutation φ : [n]→ [n], invokes T on input (n, ǫ;φ(i1), ..., φ(is)),
and rules accordingly. (Actually, it suffices to select random distinct values φ(ij)’s, for the distinct
ij ’s that appear in the sample.)

By construction, for every sequence (i1, ..., is) and every permutation π : [n]→ [n], the verdict
of T ′ on input (n, ǫ; i1, ..., is) is identical to its verdict on the input (n, ǫ;π(i1), ..., π(is)). On the
other hand, the verdict of T ′ on distribution X is identical to the verdict of T on the distribution
Y obtained from X by selecting a random permutation φ and letting Y ← φ(X). Using the label-
invariance feature of D, it follows that T ′ is a valid tester (because, if X is in D then so is Y , and
if X is ǫ-far from D then so is Y ).

Corollary 11.13 (lower bound on the complexity of testing uniformity): Let Un denote the uni-
form distribution over [n]. Then, 0.99-testing the property {Un} requires Ω(

√
n) samples.

Note that this result does not say how the complexity of ǫ-testing the property {Un} depends
on ǫ. Yet, the argument can be extended to show a lower bound of Ω(min(n2/3, ǫ−2√n)) on the
sample complexity of ǫ-testing {Un} (see Exercise 11.11). The latter lower bound is not tight
either: Recall that it is known that ǫ-testing the property {Un} has sample (and time) complexity
Θ(ǫ−2√n) (cf. [221, 73]).

Proof: Using Theorem 11.12, it suffices to consider label-invariant testers. Note that, with
probability at least 1−(s2/n), a sequence of s samples that are drawn from the uniform distribution
on [n] contains no collisions (i.e., the collision statistics is c1 = s and cj = 0 for all j > 1).23 Note

22Recall that the alternatives include the testers of [221] and [73] or the collision probability test (of Algorithm 11.3),
per its improved analysis in [88].

23Recall that cj denotes the number of elements that occur j times in the sequence of samples (i1, ..., is); that is,
cj = |{i ∈ [n] : #i(i1, ..., is) = j}|, where #i(i1, ..., is) = |{k ∈ [s] : ik = i}|.
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that the same happens, with probability 1− (s2/(0.01n − 1)), when the s samples are drawn from
the uniform distribution on [0.01n − 1], which is 0.99-far from Un. Hence, in both cases, a sample
of size s = o(

√
n) is likely to contain s different elements, and so the tester cannot distinguish the

two cases.

11.3 Testing equality between two unknown distributions

Here we consider the problem of testing the property {(D1,D2) : D1 = D2}, where (D1,D2) denotes
a generic pair of distributions (over [n]). We stress that this is a property of pairs of distributions,
and accordingly the tester obtains samples from each of the two unknown distributions (whose
equality is being tested).

The pivot of our presentation is a rather natural algorithm for estimating the L2-distance
between two distributions. This algorithm takes s samples from each of the distributions, and
outputs √∑

i∈[n] ((xi − yi)2 − (xi + yi))

s
, (11.6)

where xi (resp., yi) denotes the number of occurrences of i in the sample taken from the first (resp.,
second) distribution.

To see why this makes sense, suppose first that the number of samples is huge (e.g., s = ω(n)),
which is not what we actually want (since we seek algorithms of sublinear complexity). Still, in
this case xi and yi will reflect the actual probability of item i in each of the two distributions, and
so (

∑
i∈[n](xi − yi)

2)1/2/s is close to the L2-distance between the two distributions. Note that this
is not exactly the quantity used in Eq. (11.6).

It turns out that Eq. (11.6) actually performs better. For starters, it ignores the contribution
of items i that appears exactly once (i.e., xi + yi = 1). This is a good thing because, when
s = o(n), such a case indicates nothing and should not “count” towards asserting that the distance
between the two distributions is large. In general, the statistic (xi, yi) contributes positively if
|xi − yi| >

√
xi + yi, and contributes negatively if |xi − yi| <

√
xi + yi. This reflects the intuition

that a deviation of less than a square root of the expectation actually indicates that i is as likely
in both distributions. But the question, of course, is how well does this algorithm approximate the
L2-distance between two distributions?

Answering this simple question (i.e., analyzing this simple algorithm) turns out to be quite
challenging.24 In particular, the analysis is simplified if the number of samples is not fixed (pos-
sibly as a function of other parameters), but is rather selected at random according to a Poisson
distribution. Since this phenomenon is not unique to the current algorithm, but is rather very
common within the study of testing properties of distributions, we start with a brief review of the
Poisson distribution (and the reasons that it is useful in this study).

11.3.1 Detour: Poisson Distributions

When we take s samples from a distribution p, the number of occurrences of each value i behave
like a binomial distribution with parameters s and p(i); that is, the probability that i occurs t
times is

(s
t

)
· p(i)t · (1 − p(i))s−t. But when we condition on the number of occurrences of j 6= i,

24Recall that this phenomenon is quite common also in the context of testing properties of functions.
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this affects the distribution on the number of occurrences of i, and calculations that depend on the
latter distribution become messy. In contrast, if we take a number of samples that is distributed
as a Poisson distribution with parameter s (defined next), then the frequency of occurrence of i
is independent of the frequency of occurrence of j 6= i. This fact is the reason for the popularity
of taking a number of samples that is Poisson distributed rather than taking a fixed number of
samples. The appeal of this practice is enhanced by the fact (shown in Proposition 11.15) that the
number of samples under the Poisson distribution is well concentrated.

Definition 11.14 (Poisson distribution): The Poisson distribution with parameter λ > 0, denoted
Ψ(λ), is a discrete distribution over non-negative integers such that the number k occurs with
probability

λk · e−λ

k!
(11.7)

where e is the natural base and 0! = 1. (It is also convenient to fictitiously define the “Poisson
distribution” for the parameter 0 (i.e., Ψ(0)) as the distribution that is identically 0.)25

We first observe that
∑

k≥0
λk·e−λ

k! = 1: This follows from the fact that the Taylor expansion of ex

at 0 equals
∑

k≥0
e0

k! · (x− 0)k, which implies that eλ =
∑

k≥0
λk

k! . We next establish the following
facts regarding the Poisson distribution.

Proposition 11.15 (basic facts about the Poisson distribution): Let X ← Φ(λ) be a random
variable describing a number drawn from the Poisson distribution with parameter λ > 0. Then:

1. The expectation of X equals λ.

2. The variance of X equals λ.

In general, for every t ∈ N, it holds that E[Xt] =
∑t

i=1 S(t, i) · λi, where S(t, i) = 1
i! ·∑i

j=0(−1)i−j ·
(i
j

)
· jt is the Stirling number of the second type.26

3. For every ∆ > 0, it holds that Pr[|X − λ| > ∆] = exp(−Ω(∆2/(λ + ∆))).

We note, for perspective, that Pr[X =λ] = Θ(λ)−1/2 for any integer λ > 0.27

Teaching note: The proof of Proposition 11.15 consists of straightforward manipulations of the proba-

bility function of the Poisson distribution (as defined in Eq. (11.7)). Hence, the proof may be skipped,

but the claims are important and should be communicated. The same applies to Proposition 11.16.

Proof: We first present a recursive formula for E[Xt]. For every t ≥ 1, we have

E[Xt] =
∑

k≥0

λk · e−λ

k!
· kt

25This is consistent with the common technical definitions of 00 = 0! = 1.
26Recall that S(t, i) is the number of i-partitions of [t]; that is, the number of ways to partition [t] into i non-empty

sets.
27This holds since

Pr[X=λ] =
λλ · e−λ

λ!
=

λλ · e−λ

Θ(λ1/2) · (λ/e)λ
= Θ(λ)−1/2.
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= λ ·
∑

k≥1

λk−1 · e−λ

(k − 1)!
· kt−1

= λ ·
∑

k≥1

λk−1 · e−λ

(k − 1)!
·

t−1∑

i=0

(
t− 1

i

)
· (k − 1)i

= λ ·
t−1∑

i=0

(
t− 1

i

)
·
∑

k≥0

λk · e−λ

k!
· ki.

Hence, we get

E[Xt] = λ ·
t−1∑

i=0

(
t− 1

i

)
· E[Xi]. (11.8)

Fact 1 follows from Eq. (11.8) (for t = 1) by using E[X0] = 1. Fact 2 follows from Eq. (11.8) (for
t = 2) by using V[X] = E[X2]−E[X]2 = λ · (1 + λ)− λ2. The general formula for E[Xt] follows by
induction on t (and using S(0, 0) = 1 and S(0, j) = S(j, 0) = 0 for j ≥ 1):

E[Xt] = λ ·
t−1∑

i=0

(
t− 1

i

)
· E[Xi]

= λ ·
t−1∑

i=0

(
t− 1

i

)
·

i∑

j=0

S(i, j) · λj

=
t−1∑

j=0

t−1∑

i=j

(
t− 1

i

)
· S(i, j) · λj+1

=

t−1∑

j=0

S(t, j + 1) · λj+1

where the last equality uses the combinatorial identity S(t, j + 1) =
∑t−1

i=j

(t−1
i

)
· S(i, j).

Turning to Fact 3, for every integer k ∈ (0, λ], we have

Pr[X =λ− k] =
λ−k

(λ− k)!/(λ!)
·Pr[X =λ]

< λ−k ·
k−1∏

i=0

(λ− i)

=

k−1∏

i=0

(
1− i

λ

)

<

(
1− (k/2) − 1

λ

)k/2

≈ exp(−k2/4λ),

where the approximation is up to constant factors. Similarly, for every integer k > 0, we have

Pr[X =λ + k] =
λk

(λ + k)!/(λ!)
·Pr[X =λ]
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< λk ·
k∏

i=1

(λ + i)−1

=

k∏

i=1

(
1− i

λ + i

)

<

(
1− k/2

λ + (k/2)

)k/2

≈ exp(−k2/(4λ + 2k)).

The claim follows.

The relevance to the study of sampling algorithms. We now turn back to our original
motivation for reviewing the Poisson distribution. Recall that Ψ(s) denotes the Poisson distribution
with parameter s.

Proposition 11.16 (Poisson sampling): Let p : [n]→ [0, 1] be a distribution and suppose that we
select m according to Ψ(s), and then select m samples from the distribution p. Then, the numbers
of occurrences of the various values i ∈ [n] are independently distributed such that the number of
occurrences of the value i is distributed as Ψ(s · p(i)).

(The implies that if Xi’s are selected independently such that Xi is a Poisson distribution with
parameter λi, then

∑
i Xi is a Poisson distribution with parameter

∑
i λi.)

Proof Sketch: We prove the claim for n = 2, but the proof generalizes easily.28 Let X denote
the number of occurrences of the value 1, and Y denote the number of occurrences of the value 2.
Then, for every k and ℓ, it holds that

Pr[X =k ∧ Y =ℓ] =
sk+ℓ · e−s

(k + ℓ)!
·
(

k + ℓ

k

)
· p(1)k · p(2)ℓ

=
(s · p(1))k · (s · p(2))ℓ · e−s·p(1) · e−s·p(2)

k! · ℓ!

=
(s · p(1))k · e−s·p(1)

k!
· (s · p(2))ℓ · e−s·p(2)

ℓ!

which equals Pr[X =k] ·Pr[Y =ℓ].

11.3.2 The actual algorithm and its analysis

Having defined (and discussed) the Poisson distribution, we now present the actual algorithm that
we shall analyze. This algorithm depends on a parameter s, which will determine the distribution
of the number of samples obtained from two unknown distributions, denoted p and q.

Algorithm 11.17 (the basic L2-distance estimator): On input parameters n and s, and access to
m′ ← Ψ(s) samples from an unknown distribution p : [n]→ [0, 1] and to m′′ ← Ψ(s) samples from
an unknown distribution q : [n]→ [0, 1], the algorithm proceeds as follows.

28Alternatively, the claim can be proved by induction on m.
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1. For each i ∈ [n], let xi denote the number of occurrences of i in the sample taken from p, and
yi denote the number of occurrences of i in the sample taken from q.

2. Compute z ←∑
i∈[n]((xi − yi)

2 − (xi + yi)).

If z < 0 output a special symbol, otherwise output
√

z/s.

Recall that by Item 3 of Proposition 11.15, it holds that Pr[|m − s| > s] = exp(−Ω(s)). Hence,
Algorithm 11.17 yields an algorithm that always uses 2s samples from each of the two distribu-
tions. This algorithm selects m′ ← Ψ(s) and m′′ ← Ψ(s), aborts in the highly rare case that
max(m′,m′′) > 2s, and otherwise invokes Algorithm 11.17 while providing it the first m′ samples
of p and the first m′′ samples of q.

We now turn to the analysis of Algorithm 11.17. Let Xi (resp., Yi) denote the number of
occurrences of i when taking Ψ(s) samples from distribution p (resp., q), and let Zi = (Xi− Yi)

2−
(Xi + Yi). By Proposition 11.16, Xi (resp., Yi) is a Poisson distribution with parameter s · p(i)
(resp., s · q(i)). The next (key) lemma implies that E[Zi] = (s · p(i) − s · q(i))2, whereas V[Zi] can
be bounded by a degree 3 polynomial in s · p(i) and s · q(i). Actually, it is important to assert that
the degree 3 term has the form O(s3) · (p(i) + q(i)) · (p(i)− q(i))2.

Lemma 11.18 (the expectation and variance of the Zi’s): Suppose that X ← Ψ(a) and Y ← Ψ(b)
are independent Poisson distributions, and let Z = (X−Y )2− (X +Y ). Then, E[Z] = (a− b)2 and
V[Z] ≤ B(a, b) for some universal bivariate polynomial B of degree three. Furthermore, B(a, b) =
O((a− b)2 · (a + b) + (a + b)2).

Proof Sketch: For the expectation of Z, using Proposition 11.15, we have

E[(X − Y )2 − (X + Y )] = E[X2 − 2XY + Y 2]− (a + b)

= E[X2]− 2 · E[X] · E[Y ] + E[Y 2]− (a + b)

= (a2 + a)− 2ab + (b2 + b)− (a + b)

which equals (a − b)2 as asserted. Turning to the variance of Z, we only provide a proof of the
main part. By Part 2 of Proposition 11.15, for every t ∈ N, there exists a degree t polynomial Pt

such that E[Ψ(λ)t] = Pt(λ); furthermore, Pt(z) = zt + P ′t−1(z), where P ′t−1 has degree t − 1 (and
free term that equals zero). Using this fact, it follows that

V[(X − Y )2 − (X + Y )] = E[((X − Y )2 − (X + Y ))2]− E[(X − Y )2 − (X + Y )]2

= E[(X − Y )4]− 2 · E[(X − Y )2 · (X + Y )] + E[(X + Y )2]− ((a− b)2)2

which is a bivariate polynomial B of total degree four in a and b, since E[XiY j ] = E[Xi] · E[Y j ] =
Pi(a) · Pj(b) for every i, j ∈ N. Furthermore, using the aforementioned form of Pt (i.e., Pt(z) =
zt + P ′t−1(z)), it follows that B is of degree three, since the degree-four terms of E[(X − Y )4] are
cancelled by (a − b)4. This establishes the main claim. A very tedious calculation shows that
B(a, b) = 4 · (a− b)2 · (a + b) + 2 · (a + b)2. (Needless to say, an insightful or at least a non-painful
proof of the fact that B(a, b) = O((a− b)2 · (a + b) + (a + b)2) would be most welcome.)

Teaching note: The proofs of the next four results are rather technical. In our applications (see Sec-

tion 11.3.3), we shall only use Part 2 of Corollary 11.22, and the reader may just take this result on faith.

The proof of Corollary 11.19 illustrates the benefit of Poisson sampling, by relying on the fact that the

Xi’s (resp., Yi’s) are independent. The proofs of Theorem 11.20 and Corollaries 11.21 and 11.22 are rather

tedious, and reading them can serve as an exercise.
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Corollary 11.19 (the expectation and variance of the square of the output of Algorithm 11.17):
Let Xi (resp., Yi) denote the number of occurrences of i when taking Ψ(s) samples from distribution
p : [n]→ [0, 1] (resp., q : [n]→ [0, 1]), and let Zi = (Xi−Yi)

2− (Xi +Yi) and Z =
∑

i∈[n] Zi. Then,

E[Z] = s2 · ‖p− q‖22 and V[Z] = O(s3 · ‖p− q‖22 · β + s2β2), where β = max(‖p‖2, ‖q‖2) ≥ 1/
√

n.

Hence, Z/s2 is an unbiased estimator of µ
def
= ‖p − q‖22, whereas V[Z/s2] = O(µ · β/s) + O(β2/s2).

It follows that the probability that Z/s2 deviates from µ by more than ǫ is

O(µβ)

s · ǫ2
+

O(β2)

s2 · ǫ2 .
(11.9)

For ǫ = Ω(µ), Eq. (11.9) simplifies to O(β/sǫ) + O(β/sǫ)2, which means that setting s = Ω(β/ǫ)
will do. Before exploring this direction, let us prove Corollary 11.19.

Proof: We first note that, by construction, the sequence of Xi’s is independent of the sequence
of Yi’s, where the crucial fact is that the number of samples taken from p is selected independently
of the number of samples taken from q (i.e., in Algorithm 11.17, the numbers m′ and m′′ are
independently distributed (according to Ψ(s))). Combining this fact with Proposition 11.16, it
follows that Lemma 11.18 can be applied to each of the Zi’s. Hence, we have

E[Z] =
∑

i∈[n]

E[Zi]

=
∑

i∈[n]

(s · p(i)− s · q(i))2

which equals s2 · ‖p− q‖22.
We now turn to the analysis of V[Z]. The key fact here is that the Zi’s are (pairwise) in-

dependent, which follows by the independence of the Xi’s (resp., Yi’s), which is guaranteed by
Proposition 11.16. Now, invoking Lemma 11.18, we have

V[Z] =
∑

i∈[n]

V[Zi]

=
∑

i∈[n]

B(s · p(i), s · q(i)),

where B(a, b) = O((a− b)2 · (a + b) + (a + b)2). Applying Cauchy-Schwarz inequality, we obtain

∑

i∈[n]

(p(i)− q(i))2 · (p(i) + q(i)) ≤



∑

i∈[n]

(p(i)− q(i))4




1/2

·



∑

i∈[n]

(p(i) + q(i))2




1/2

= ‖p − q‖24 · ‖p + q‖2
≤ ‖p − q‖22 · ‖p + q‖2.

Finally, using
∑

i∈[n]

B(s · p(i), s · q(i)) = O(s3) ·
∑

i∈[n]

(p(i)− q(i))2 · (p(i) + q(i)) + O(s2) ·
∑

i∈[n]

(p(i) + q(i))2

≤ O(s3) · ‖p− q‖22 · ‖p + q‖2 + O(s2) · ‖p + q‖22,
the claim follows.
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Algorithm 11.17 as an approximator of L2 and L1 distances. Recall that Algorithm 11.17
was presented as an approximator of the L2-distance between the distributions p and q. We now
establish two forms of this feature, while referring to the L2-norm of the individual distributions.29

(Part 1 provides a good multiplicative approximation of ‖p − q‖2 in the case that the sample is
large enough, while Part 2 refers to smaller sample sizes. In both cases, no reference is made to
the range of the distributions.)

Theorem 11.20 (Algorithm 11.17 as a L2-distance approximator): Referring to the distributions
p and q, suppose that max(‖p‖2, ‖q‖2) ≤ β.

1. (Multiplicative approximation of ‖p − q‖2): Let γ ∈ (0, 0.1]. For δ
def
= ‖p − q‖2 > 0, if

s = Ω(β/γ2δ2), then, with probability at least 2/3, Algorithm 11.17 outputs a value in (1±γ)·δ.
2. (Crude approximation of ‖p − q‖2): Let ǫ ∈ (0, 1). If s = Ω(β/ǫ2), then, with probability at

least 2/3, Algorithm 11.17 distinguishes between the case that ‖p − q‖2 ≤ ǫ/2 and the case
that ‖p − q‖2 ≥ ǫ.

Note that Part 2 is meaningful only for ǫ ≤ 2β, since ‖p− q‖2 ≤ ‖p‖2 + ‖q‖2 ≤ 2β always holds.

Proof: Recall that Corollary 11.19 means that E[Z/s2] = δ2 and V[Z/s2] = O(δ2 · (β/s)+(β/s)2),
where δ = ‖p− q‖2 > 0. Starting with Part 1, we have

Pr

[∣∣∣∣
Z

s2
− δ2

∣∣∣∣ > γ · δ2

]
≤ V[Z/s2]

(γδ2)2

≤ O(δ2 · β)

s · γ2δ4
+

O(β2)

s2 · γ2δ4

=
O(β)

s · γ2δ2
+ γ2 ·

(
O(β)

s · γ2δ2

)2

.

Using s = Ω(β/γ2δ2) and γ < 1, we get Pr[Z/s2 = (1± γ) · δ2] ≥ 2/3, and Part 1 follows (because
Pr[
√

Z/s = (1± γ)1/2 · δ] ≥ 2/3 and (1± γ)1/2 ≈ 1± (γ/2), since γ ≤ 1/10.).
Turning to Part 2, we note that by Part 1 (using γ = 0.1), if ‖p−q‖2 ≥ ǫ and s = Ω(β/ǫ2), then

Pr[
√

Z/s < 0.9ǫ] ≤ 1/3. On the other hand, if δ = ‖p−q‖2 ≤ ǫ/2 and s = Ω(β/ǫ2), then (as shown
next) Pr[

√
Z/s > 0.6ǫ] ≤ 1/3. The point is that, in this case, V[Z/s2] = O(ǫ2 · (β/s) + (β/s)2),

and we can perform a calculation as in Part 1. Specifically, we get

Pr

[√
Z

s
> 0.6ǫ

]
≤ Pr

[∣∣∣∣
Z

s2
− δ2

∣∣∣∣ > (0.62 − 0.52) · ǫ2

]

≤ V[Z/s2]

Ω(ǫ4)

≤ O(ǫ2 · β)

s · ǫ4
+

O(β2)

s2 · ǫ4

=
O(β)

s · ǫ2
+

(
O(β)

s · ǫ2

)2

29Unfortunately, establishing this feature seems to require the sharper analysis of the variance of Z that is provided
by the furthermore part of Lemma 11.18. Recall that this part of Lemma 11.18 establishes V[Zi] ≤ B(p(i), q(i)), where
B(a, b) = O((a− b)2 · (a+ b) + (a+ b)2), which implies V[Z] = O(s3 · ‖p− q‖2

2 · β+ s2β2), where β = max(‖p‖2, ‖q‖2)
(see Corollary 11.19). As noted in the proof of Lemma 11.18, it seems easier to only prove that V[Zi] is a degree three
polynomial in max(p(i), q(i)), and V[Z] = O(s3β3 + s2β2) will follow (but does not suffice for the following proof).
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where the first inequality is due to the fact that x > v > u and y ≤ u implies x2 − y2 > v2 − u2.
Recalling that s = Ω(β/ǫ2), we get Pr[

√
Z/s > 0.6ǫ] ≤ 1/3, and Part 2 follows.

Corollary 11.21 (Algorithm 11.17 as a very crude L1-distance approximator): Let p, q : [n] →
[0, 1] be distributions, and suppose that max(‖p‖2, ‖q‖2) ≤ β. For ǫ ∈ (0, 1), if s = Ω(βn/ǫ2), then,
with probability at least 2/3, Algorithm 11.17 distinguishes between the case that p = q and the case
that ‖p− q‖1 ≥ ǫ.

In other words, Algorithm 11.17 yields an ǫ-tester of sample complexity O(βn/ǫ2) for equality
between two given distributions (i.e., the property {(p, q) : p = q}), under the promise that both
distributions have bounded L2-norm (i.e., max(‖p‖2, ‖q‖2) ≤ β). In the case that β = O(1/

√
n),

the claimed tester has sample complexity O(
√

n/ǫ2), which is optimal, but for very large β (e.g.,
β = Ω(1)) this tester is not optimal. Nevertheless, as shown in Section 11.3.3, Corollary 11.21 (or
rather its revision provided as Corollary 11.22), can be used towards obtaining optimal testers for
the general case (i.e., for arbitrary β).

Proof: Clearly, p = q implies ‖p− q‖2 = 0. On the other hand, if ‖p− q‖1 ≥ ǫ, then

‖p− q‖2 =



∑

i∈[n]

(p(i) − q(i))2




1/2

≥
∑

i∈[n]

|p(i)− q(i)| · 1/√n

≥ ǫ/
√

n

where the first inequality is due to Cauchy-Schwarz inequality.30 By Part 2 of Theorem 11.20, if
s = Ω(β/(ǫ/

√
n)2) = Ω(βn/ǫ2), then, with probability at least 2/3, Algorithm 11.17 distinguishes

between the case that ‖p− q‖2 = 0 and the case that ‖p− q‖2 ≥ ǫ/
√

n, and the claim follows.

Moving from a bound on max(‖p‖2, ‖q‖2) to a bound on min(‖p‖2, ‖q‖2). Theo-
rem 11.20 and Corollary 11.21 rely on an upper bound on the L2-norm of both distributions.
It turns out that (in two of the three cases)31 it suffices to upper bound the L2-norm of one of
the two distributions. This is the case because ‖p − q‖ ≥ ‖p‖ − ‖q‖, for any norm ‖ · ‖, since
‖q + (p− q)‖ ≤ ‖q‖+ ‖p− q‖. Hence, we can first check whether ‖p‖2 ≈ ‖q‖2, reject if the answer
is negative and invoke the algorithm that refers to max(‖p‖2, ‖q‖2) otherwise.

Corollary 11.22 (Part 2 of Theorem 11.20 and Corollary 11.21, revised): Let p, q : [n]→ [0, 1] be
distributions, and suppose that min(‖p‖2, ‖q‖2) ≤ β.

1. (Approximation of ‖p − q‖2): If s = Ω(β/ǫ2) and ǫ ∈ (0, β], then there exists an algorithm
that uses s samples and distinguishes between the case that ‖p − q‖2 ≤ ǫ/2 and the case that
‖p − q‖2 ≥ ǫ.

30That is, use
P

i∈[n] |p(i) − q(i)| · 1 ≤
“

P

i∈[n] |p(i) − q(i)|2
”1/2

·
“

P

i∈[n] 1
2
”1/2

.
31Specifically, for Part 2 of Theorem 11.20 and for Corollary 11.21.
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2. (Very crude approximation of ‖p− q‖1): If s = Ω(βn/ǫ2) and ǫ ∈ (0, 1), then there exists an
algorithm that uses s samples and distinguishes between the case that p = q and the case that
‖p − q‖1 ≥ ǫ.

This result is non-vacuous only for β ≥ n−1/2, whereas when β = O(n−1/2) we can use s = O(
√

n/ǫ2)
in Part 2.

Proof: We first approximate ‖p‖2 and ‖q‖2 by invoking the L2-approximation algorithm of Corol-
lary 11.6 with s = Ω(1/β). This allows us to distinguish the case that ‖p‖2 ≤ 2β from the case that
‖p‖2 ≥ 3β, and ditto for ‖q‖2. If one of the two distributions is judged to have norm greater than
2.5 · β (whereas the other is smaller than β by the hypothesis), then we can safely announce that
the distributions are far apart (hereafter referred to as an early verdict). Otherwise, we assume
that max(‖p‖2, ‖q‖2) ≤ 3β, in which case we can afford to invoke Algorithm 11.17, where in Part 1
we use s = O(β/ǫ2) and in Part 2 we use s = O(βn/ǫ2).

In analyzing this algorithm we assume that the approximation provided by the algorithm of
Corollary 11.6 is within a factor of 1 ± 0.1 of the true value. Hence, if max(‖p‖2, ‖q‖2) > 3β,
then (with high probability) this is reflected by the early verdict, since in this case (w.h.p.) the
approximate value of max(‖p‖2, ‖q‖2) is greater than 2.5·β. On the other hand, if max(‖p‖2, ‖q‖2) ≤
2β, then (with high probability) the approximate value of max(‖p‖2, ‖q‖2) is smaller than 2.5 · β,
and we invoke Algorithm 11.17. (In the latter case, the output of Algorithm 11.17 is as desired:
For Part 1 we use Part 2 of Theorem 11.20, whereas for Part 2 we use Corollary 11.21.)

We now show that, when the early verdict is made, it is rarely wrong. That is, we assume that
max(‖p‖2, ‖q‖2) > 2β, and show that in this case it is justified to assert that p and q are sufficiently
far apart. For Part 1 this is justified because ‖p− q‖2 ≥ |‖p‖2 − ‖q‖2| > 2β − β ≥ ǫ, where we use
the hypothesis ǫ ≤ β. In Part 2, we just observe that ‖p‖2 6= ‖q‖2 implies p 6= q.

It is left to upper bound the sample complexity of the full algorithm. In Part 1 the overall
sample complexity is O(1/β) + O(β/ǫ2) ≤ O(β/ǫ2), where the inequality is due to the hypothesis
ǫ ≤ β. In Part 2 the overall sample complexity is O(1/β) + O(βn/ǫ2) ≤ O(βn/ǫ2), where the
inequality is due to the fact β ≥ 1/

√
n (and the hypothesis ǫ ≤ 1).

11.3.3 Applications: Reduction to the case of small norms

As noted upfront, Corollary 11.21 (resp., Corollary 11.22) is interesting only when the probability
distributions have very small L2-norm (resp., when at least one of the probability distributions has
very small L2-norm). This deficiency is addressed by the following transformation that preserves
L1-distances between distributions, while mapping a target distribution into one of small max-norm
(and, hence, small L2-norm). In other words, the transformation flattens the target distribution
(according to max-norm and thus also according to L2-norm), while preserving L1-distances be-
tween distributions. Hence, the transformation offers a unified way of deriving many testing results
by a reduction to the case of small norms. We shall illustrate this phenomenon by presenting two
reductions (in Sections 11.3.3.2 and 11.3.3.3, respectively).

11.3.3.1 Flattening distributions

The core of the aforementioned reductions is a (randomized) filter, tailored for a given distribution
q : [n] → [0, 1] and a parameter m. This filter maps q to a distribution q′ : [n + m] → [0, 1] of
max-norm at most 1/m, which implies that ‖q′‖2 ≤ 1/

√
m, while preserving the variation distances
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between distributions. Setting m = n, we obtain a distribution q′ with extremely small L2-norm,
since in this case ‖q′‖2 = O(1/

√
2n), where 1/

√
2n is the minimum L2-norm of any distribution

over [2n]. But, as we shall see in Section 11.3.3.3, other settings of m are also beneficial. In any
case, it seems fair to say that q′ is flat, and view the filter as intended to flatten q.

The aforementioned filter is closely related to the filter underlying Algorithm 11.8. Specifically,
for any probability function q : [n] → [0, 1] and a parameter m (e.g., m = n), we consider a
randomized filter, denoted Fq,m, that maps [n] to S = {〈i, j〉 : i ∈ [n] ∧ j ∈ [mi]}, where mi =
⌊m · q(i)⌋ + 1, such that Fq,m(i) is uniformly distributed in {〈i, j〉 : j ∈ [mi]}. Hence, if i is
distributed according to the probability function p, then each 〈i, j〉 ∈ S occurs as output with
probability p(i)/mi; that is, if X is distributed according to p, then

Pr[Fq,m(X)=〈i, j〉] = p(i) · 1

mi
(where mi = ⌊m · q(i)⌋ + 1). (11.10)

The key observations about this filter are:

1. The filter Fq,m maps q to a distribution with small max-norm: If Y is distributed according
to q, then, for every 〈i, j〉 ∈ S, it holds that

Pr[Fq,m(Y ) = 〈i, j〉] = q(i) · 1

mi

=
q(i)

⌊m · q(i)⌋ + 1

which is upper-bounded by 1/m. Hence, the L2-norm of Fq,m◦q is at most
√

m · (1/m)2 =√
1/m < 1+(n/m)√

|S|
, where the inequality is due to |S| =∑i∈[n] mi ≤

∑
i∈[n](m·q(i)+1) = m+n.

In case, m = n, we get ‖Fq,m◦q‖2 < 2/
√
|S|.

2. The filter preserves the variation distance between distributions: The total variation distance
between Fq,m(X) and Fq,m(X ′) equals the total variation distance between X and X ′. Indeed,
this is a generic statement that applies to any filter that maps i to a pair 〈i, Zi〉, where Zi is an
arbitrary distribution that only depends on i, and it was already proved in the corresponding
item of Section 11.2.2.1 (see also Exercise 11.6).

In short, the filter Fq,m flattens q while preserving the total variation distance between q and any
other distribution p. We also stress that knowledge of q (and m) allows to implement Fq,m as well
as to map S to [m′], where m′ = |S|.

Note that the parameter m only governs the level of flatness obtained by the filter Fq,m (when
applied to q); larger values of m yield smaller max-norm (and L2-norm) of Fq,m◦q, but this comes
at the cost of a larger support (i.e., the support size of Fq,m◦q is at least m). The filter preserves
the variation distance between distributions for any value of m, including m = 0 (which essentially
corresponds to the identity transformation; i.e., Fq,0(i) = 〈i, 1〉 for every i).

11.3.3.2 Testing equality to a fixed distribution

The foregoing observations regarding the filter Fq,n (when using the setting m = n), lead to the
following reduction of the task of testing equality to a fixed distribution D to the task captured by
Part 2 of Corollary 11.22. (Indeed, this yields an alternative proof of Theorem 11.11.)
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Algorithm 11.23 (reducing testing equality to an arbitrary distribution to testing equality be-
tween pairs of distributions such that at least one of them has a small L2-norm): Let D be an
arbitrary distribution with probability function q : [n] → [0, 1], and T be an ǫ′-tester of sample
complexity s(m′, β, ǫ′) for equality between distribution pairs over [m′] such that at least one of
the two distributions has L2-norm at most β. On input (n, ǫ; i1, ..., is), where i1, ..., is ∈ [n] are
s = s(2n, n−1/2, ǫ) samples drawn according to an unknown distribution p, the tester proceeds as
follows:

1. It produces a s-long sequence (i′1, ..., i
′
s) by sampling each i′k from the known distribution D.

2. It produces a s-long sequence (e′1, ..., e
′
s) by applying Fq,n to (i′1, ..., i

′
s), where Fq,n is as in

Eq. (11.10); that is, for every k ∈ [s], it produces e′k ← Fq,n(i′k).

(Recall that each e′k is in S, and that the L2-norm of Fq,n◦q is at most 1/
√

n ≤ 2/
√
|S|.)

3. It produces a s-long sequence (e1, ..., es) by applying Fq,n to (i1, ..., is); that is, for every k ∈ [s],
it produces ek ← Fq,n(ik).

4. It invokes the ǫ-tester T for equality providing it with the sequence (e1, ..., es, e
′
1, ..., e

′
s). Note

that this is a sequence over S, but it can be translated to a sequence over [m′] such that
m′ = |S| (by mapping each element of S to its rank in S).

We stress that if Fq,n is invoked t times on the same i, then the t outcomes are (identically and)
independently distributed.

Hence, the complexity of testing equality to a general distribution D over [n] is upper-bounded by
the complexity of testing equality between two unknown distributions over [2n] such that one of them
has L2-norm at most 1/

√
n. Using Part 2 of Corollary 11.22, we re-establish Theorem 11.11.32

Digest. We solved a testing task regarding a single unknown distribution by reducing it to a
testing task regarding two unknown distributions. This was done (in Step 1 of Algorithm 11.23)
by generating samples from the fixed distribution D, and presenting these samples as samples of a
second (supposedly unknown) distribution. Obviously, there is nothing wrong with doing so (i.e.,
such a reduction is valid), except that it feels weird to reduce a seemingly easier problem to a
seemingly harder one. Note, however, that the two problems are not really comparable, since the
problem of testing two distributions refers to a special case in which one of these distributions is
flat. Indeed, the core of the reduction is the use of the flattening filter, which mapped the fixed
distribution to a flat one, and by doing so allows to apply the two-distribution tester (which requires
one of the distributions to be flat).

In Section 11.3.3.3, we shall see a reduction that uses the flattening filter in order to reduce one
testing problem regarding two distributions to another testing problem regarding two distributions
(of which one is flat).

32Recall that by Part 2 of Corollary 11.22, the tester T , used in the foregoing reduction, can be implemented within
complexity O(

√
n/ǫ2).
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11.3.3.3 Testing equality between two unknown distributions

The filter Fq,m captured in Eq. (11.10) can be applied also to testing properties of tuples of dis-
tributions. Actually, this is a more interesting application, since reducing a problem regarding a
single unknown distribution to a problem regarding two unknown distributions seems an over-kill.
On the other hand, the reader may wonder how one can apply this filter (i.e., the filter Fq,m) when
the distribution (i.e., q) is not known. The answer is that we shall use one part of the sample of
q in order to obtain some statistics of q, denoted q̃, and then use a filter tailored to this statistics
(i.e., F

eq, em). Of course, the larger the sample we take of q, the better statistics q̃ we derive, which
in turn offers lower norm of F

eq, em◦q. This leads to the following reduction, where m is a parameter
that governs the size of the aforementioned sample.

Algorithm 11.24 (reducing testing equality between pairs of arbitrary distributions to testing
equality between pairs of distributions such that at least one of them has a small L2-norm):33 Let
T be an ǫ-tester of sample complexity s(m′, β, ǫ) for equality between distribution pairs over [m′] such
that at least one of the two distributions has L2-norm at most β. On input (n, ǫ; i1, ..., is; i

′
1, ...., i

′
s+2m),

where i1, ..., is ∈ [n] are s = s(n + 2m,O(m−1/2), ǫ) samples drawn according to an unknown dis-
tribution p : [n]→ [0, 1] and i′1, ..., i

′
s+2m ∈ [n] are s + 2m samples drawn according to an unknown

distribution q : [n]→ [0, 1], the tester proceeds as follows:

1. Generates m̃← Ψ(m), and halts and accepts if m̃ > 2m.

Let q̃ : [n]→ [0, 1] be the distribution function that corresponds to the sample (i′s+1, ..., i
′
s+ em);

that is, q̃(i) = |{k ∈ [m̃] : i′s+k = i}|/m̃.

2. Produces a s-long sequence (e′1, ..., e
′
s) by applying F

eq, em to (i′1, ..., i
′
s), where F

eq, em is as in
Eq. (11.10); that is, for every k ∈ [s], it produces e′k ← F

eq, em(i′k).

(Recall that each e′k is in S = {〈i, j〉 : i∈ [n]∧j∈ [mi]}, where mi = ⌊m̃ · q̃(i)⌋+1 = m̃· q̃(i)+1.
Hence, |S| = m̃ + n ≤ 2m + n.)34

(We shall show that, with high probability, the L2-norm of F
eq, em◦q is at most O(

√
1/m).)

3. Produces a s-long sequence (e1, ..., es) by applying F
eq, em to (i1, ..., is); that is, for every k ∈ [s],

it produces ek ← F
eq, em(ik).

4. Invokes the tester T for equality providing it with the input (n + 2m, ǫ; e1, ..., es; e
′
1, ..., e

′
s).

Note that (e1, ..., es, e
′
1, ..., e

′
s) is a sequence over S, but it can be translated to a sequence over

[n + 2m] (by mapping each element of S to its rank in S).

We stress that if F
eq, em is invoked t times on the same i, then the t outcomes are (identically and)

independently distributed.35

33Note that the resulting tester takes s samples from p and s + 2m samples of q. Needless to say, we can fit
Definition 11.2 by taking s+ 2m samples from each distribution, and ignoring the 2m last samples of p.

34Note that ⌊ em · eq(i)⌋ = em · eq(i) holds since eq(i) is a multiple of 1/em.
35

Advanced comment: We mention that using the filter Feq, em is the most natural choice, although we could have
used the filter Feq,n′ for any n′ ∈ [em,O(n)]. Note that for each i such that q(i) = O(1/m), with positive constant
probability eq(i) = 0, and in that case (Feq,n′◦q)(i) = q(i) for any n′. Hence, for q that is uniform over a set of size
Θ(m), the L2-norm of Feq,n′◦q is Θ(1/

√
m) for any n′ ≥ em.
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Recall that, for every q̃ (and m̃), the total variation distance between F
eq, em◦p and F

eq, em◦q equals
the total variation distance between p and q. Hence, the analysis of Algorithm 11.24 reduces to
proving that, with high probability, it holds that the L2-norm of F

eq, em◦q is at most O(
√

1/m).

Lemma 11.25 (the L2-norm of F
eq, em◦q): Let m̃ and q̃ be generated at random as in Algorithm 11.24.

Then, for every t, the probability that ‖F
eq, em◦q‖2 exceeds t ·m−1/2 is lower than t−2.

We stress that this lemma refers to a probability space that includes the event that m̃ > 2m, but this
event occurs with probability exp(−m) and it can be ignored (in the analysis of Algorithm 11.24).

Proof: Before presenting the actual proof, we offer some intuition as to why the lemma holds.
Suppose that q(i) = ω(1/m). Then, with high probability, q̃(i) = Θ(q(i)), and so F

eq, em◦q maps i to
the uniform distribution over a set of si elements, where si = Θ(m ·q(i)). Hence, the contribution of
i to the square of the L2-norm of F

eq, em◦q is q(i)2/si = O(q(i)/m), and so the aggregated contribution
of all such i’s is O(1/m). Furthermore, the contribution of each i is always at most q(i)2, and for
q(i) = O(1/m) this bound is good enough (since q(i)2 = O(q(i)/m) holds).36 Ignoring the low
probability events (for the case of q(i) = ω(1/m)), we infer that the square of the L2-norm of
F

eq, em◦q is O(1/m).

Teaching note: The actual proof is quite technical and can be skipped. It consists of various manipula-

tions and utilizes features of the probability function of the Poisson distribution.

Turning to the actual proof, we first bound the expected square of the L2-norm of F
eq, em◦q, where

the expectation is taken over the sample of q that defines q̃ (and over the choice of m̃← Ψ(m)). Let
ζi be a random variable representing the distribution of mi; that is, ζi−1 equals |{k ∈ [m̃] : ik = i}|,
which indeed equals m̃ · q̃(i). Then, for fixed m̃ and (is+1, ..., is+2m), which determine q̃ and S, the
square of the L2-norm of q′ = F

eq, em◦q equals

∑

〈i,j〉∈S

q′(〈i, j〉)2 =
∑

i∈[n]

∑

j∈[ζi]

(q(i)/ζi)
2 =

∑

i∈[n]

q(i)2/ζi.

Hence, our first task is to upper-bound E[1/ζi], while assuming q(i) > 0 (as otherwise ζi ≡ 1).
Recalling that (by Proposition 11.16) the random variable ζ ′i = ζi − 1 is distributed as Ψ(m · q(i)),
we have37

E

[
1

1 + ζ ′i

]
= E

[∫ 1

0
xζ′idx

]

=

∫ 1

0
E

[
xζ′i

]
dx

=

∫ 1

0
e(x−1)·m·q(i)dx

=
1− e−m·q(i)

m · q(i)
36We mention that, if q(i) = o(1/m), then, with high probability, eq(i) = 0, and so Feq, em◦q maps i to itself. Hence,

the contribution of this i to the square of the L2-norm of Feq, em◦q equals q(i)2 = o(q(i)/m).
37The first equality is due to the fact that for every c ∈ N ∪ {0} it holds that

R 1

0
xcdx = (1 − 0)/(c + 1). The

third equality is due to the fact that for every r ∈ [0, 1] it holds that E[rΨ(λ)] = e(r−1)λ, which can be proved by
straightforward manipulations of the probability function of the Poisson distribution (as defined in Eq. (11.7)).
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which is at most 1/(m · q(i)). Hence, the expected value of ‖F
eq, em◦q‖22 equals

E



∑

i∈[n]

q(i)2/ζi


 =

∑

i∈[n]

q(i)2 · E[1/ζi]

≤
∑

i∈[n]

q(i)2

m · q(i)

which equals 1/m. Using Markov’s inequality, we have Pr[‖F
eq, em◦q‖22 > t2/m] < 1/t2.

Setting the parameter m. Algorithm 11.24 works under any choice of the parameter m = Ω(1).
Combined with a tester T as provided by Part 2 of Corollary 11.22 (while setting β = O(m−1/2)),
Algorithm 11.24 yields an ǫ-tester of sample complexity O(m+(n+2m) ·m−1/2/ǫ2). (Indeed, with
small constant probability, T is invoked on an input distribution that violates the promise, but this
event is accounted for by the error probability of the resulting tester.) Using m = min(n2/3/ǫ4/3, n),
we get38

Theorem 11.26 (testing equality of two unknown distributions): The property consisting of pairs
of identical distributions over [n] (i.e., {(D,D) : D ∈ [n]}) can be ǫ-tested in sample and time
complexity O(max(n2/3/ǫ4/3,

√
n/ǫ2)).

We mention that this result is tight; that is, ǫ-testing equality of two unknown distributions over
[n] requires Ω(max(n2/3/ǫ4/3,

√
n/ǫ2)) samples [266] (see also [73]).

11.4 On the complexity of testing properties of distributions

As noted at the end of Section 11.1.1, any distribution p : [n]→ [0, 1] can be learned up to accuracy
of ǫ by a O(n/ǫ2)-time algorithm (Exercise 11.4). Thus, our focus is on testers that outperform
this bound. We have already seen such testers in Sections 11.2 and 11.3, but here we address the
question of testing proprties of distributions in full generality.

A very general positive answer is provided via “learning distributions up to relabelling” (where
the notion of “relabelling” is implicit in Section 11.1.3). Specifically, we call the distribution
q : [n] → [0, 1] a relabelling of the distribution p : [n] → [0, 1] if there exists a permutation
π : [n] → [n] such that q(i) = p(π(i)) for every i ∈ [n]. Equivalently, we may consider the task
of learning the histogram of an unknown distribution p : [n] → [0, 1], where the histogram of p is
defined as the set of pairs {(v,m) : m = |{i∈ [n] : p(i)=v}| > 0}.39 The following result of Valiant
and Valiant [263] asserts that the histogram of an unknown distribution can be learned faster (and
using less samples) than the distribution itself, where the saving is of a logarithmic factor.

38Under this setting (which implies m ≤ n), the complexity is O(m + n · m−1/2/ǫ2), which can be bounded by
considering the two cases (i.e., m = n2/3/ǫ4/3 and m = n ≤ n2/3/ǫ4/3).

39Note that this is one of the two equivalent definitions of a histogram that were presented in Section 11.1.3. We
prefer this definition here since it yields a more succinct representation.
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Theorem 11.27 (learning the histogram):40 There exists an O(ǫ−2 ·n/ log n) time algorithm that,
on input n, ǫ and O(ǫ−2 · n/ log n) samples drawn from an unknown distribution p : [n] → [0, 1],
outputs, with probability 1− exp(−nΩ(1)), a histogram of a distribution that is ǫ-close to p.

(The error probability is stated here, since error reduction to such a (lower than usual) level would
have increased the time and sample complexities by more than a O(log n) factor.) The implication
of this result on testing any label-invariant property of distributions is immediate.

Corollary 11.28 (testing label-invariant properties of single distributions): Let D be a label-
invariant property of distributions over [n]. Then, D has a tester of sample complexity s(n, ǫ) =
O(ǫ−2 · n/ log n).

The tester consists of employing the algorithm of Theorem 11.27 with proximity parameter ǫ/2 and
accepting if and only if the output fits a histogram of a distribution that is ǫ/2-close to D. Using
the same idea, we get algorithms for estimating the distance of an unknown distribution to any
label-invariant property of distributions. Actually, obtaining such an estimation may be viewed as
a special case of Corollary 11.28, by considering, for any property D and any distance parameter
δ > 0, the set of all distributions that are δ-close to D.

On the negative side, it turns out that, for many natural properties, the tester asserted in
Corollary 11.28 is the best possible (up to a factor of 1/ǫ). Examples are presented in the sequel
(see Corollaries 11.30 and 11.31), while relying on Theorem 11.29.

Theorem 11.29 (optimality of Theorem 11.27):41 For every sufficiently small η > 0, there exist
two distributions p1, p2 : [n]→ [0, 1] that are indistinguishable by O(ηn/ log n) samples although p1

is η-close to the uniform distribution over [n] and p2 is η-close to the uniform distribution over
[n/2].42

Hence, learning the histograms of distributions in the sense stated in Theorem 11.27 (even with
proximity parameter ǫ = 1/5) requires Ω(n/ log n) samples.43 As an immediate corollary, we infer
that testing the property that consists of all relabellings of p1 requires Ω(n/ log n) samples, which
means that Corollary 11.28 is, in general, optimal (up to a factor of 1/ǫ).44

40Valiant and Valiant [263] stated this result for the “relative earthmover distance” (REMD) and commented that
the total variation distance up to relabelling is upper-bounded by REMD. This claim appears as a special case of [265,
Fact 1] (using τ = 0), and a detailed proof appears in [154].

41Like in Footnote 40, we note that Valiant and Valiant [263] stated this result for the “relative earthmover distance”
(REMD) and commented that the total variation distance up to relabelling is upper-bounded by REMD. This claim
appears as a special case of [265, Fact 1] (using τ = 0), and a detailed proof appears in [154].

42Here indistinguishability means that the distinguishing gap of such potential algorithms is o(1). Note that the
statement is non-trivial only for η < 1/4, since the uniform distribution over [n] is 0.5-close to the uniform distribution
over [n/2].

43This is the case because otherwise, given o(n/ log n) samples of p1 (resp., p2), w.h.p., the algorithm outputs a
histogram of a distribution that is ǫ-close to p1 (resp., p2), which in turn is η-close to the uniform distribution over
[n] (resp., over [n/2]). But by Theorem 11.29 the output in these two cases is distributed almost identically, which
implies that (w.h.p.) this output describes a distribution that is (ǫ + η)-close both to the uniform distribution over
[n] and to the uniform distribution over [n/2], which is impossible since these two distributions are at distance 1/2
apart (whereas ǫ = 1/5 and we can have η < 1/20).

44Some indication to the possible non-optimality of Corollary 11.28 with respect to the dependence on ǫ is provided
in [271, 1].
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Corollary 11.30 (testing the set of relabellings of a fixed distribution may require Ω(n/ log n)
samples): Let p1 be as in Theorem 11.29, and D1 be the set of all distributions that have the same
histogram as p1 (i.e., are relabellings of p1). Then, testing D1 requires Ω(n/ log n) samples.

We stress that the property D1 is label-invariant (by its very definition); hence, for fixed ǫ > 0,
the sample complexity of ǫ-testing D1 is Θ(n/ log n). In contrast, {p1} is ǫ-testable with O(

√
n)

samples (see Theorem 11.11). Hence, testing equality to a fixed distribution may be easier than
testing equality to any of its relabellings. (The two problems are trivially equivalent when the fixed
distribution is uniform on the predetermined domain.)

Proof Sketch: The key observation is that p2 is far from D1, since p2 is close to the uniform
distribution over [n/2] whereas each distribution in D1 is close to the uniform distribution over [n].
Hence, any tester of D1 must reject p2 with probability at least 2/3. But such a tester must accept
p1 with probability at least 2/3, whereas distinguishing these two distributions requires Ω(n/ log n)
samples.

More on the optimality of Corollary 11.28. Additional cases in which Corollary 11.28 yields
the best possible testers (up to a factor of 1/ǫ) are presented next. For any property of distributions
D0 and δ > 0, we may consider the set of distributions D that are δ-close to D0. Indeed, if D0 is
label-invariant, then so is D (and Corollary 11.28 applies to it). Corollary 11.31 asserts that for
some “base properties” D0 testing the corresponding property D requires Ω(n/ log n) samples. In
general, as detailed in Claim 11.31.1, any property that contains all distributions that are close to
the uniform distribution over [n] but is far from the uniform distribution over [n/2] cannot be tested
by o(n/ log n) samples. Ditto for any property that contains all distributions that are close to the
uniform distribution over [n/2] but is far from the uniform distribution over [n]. In particular:

Corollary 11.31 (optimality of Corollary 11.28 in some cases): For all sufficiently small constant
δ > 0, testing each of the following (label-invariant) properties of distributions over [n] requires
Ω(n/ log n) samples.

1. The set of distributions that are δ-close to the uniform distribution over [n].

2. The set of distributions that are δ-close to having support size (exactly or at most) n/2.

3. The set of distributions that are δ-close to being m-grained, for any integer m ∈ [Ω(n), O(n)].

Here, testing means ǫ-testing for a sufficiently small constant ǫ > 0. Furthermore, the bound holds
for any δ ∈ (0,Ω(η0)) and any ǫ ∈ (0, 0.5 − 2δ), where η0 ∈ (0, 0.25) is the constant implicit in
Theorem 11.29 (i.e., in the phrase “for all sufficiently small η > 0”).45

We stress that the lower bounds do not necessarily hold for the “base property” (i.e., the case of
δ = 0): This is definitely the case with respect to Item 1, since the uniform distribution over [n] is
testable by O(

√
n) samples (see Corollary 11.5). On the other hand, the Ω(n/ log n) lower bound

holds also for the base case of Item 2 (i.e., testing the set of distributions over [n] that have support

45The case of small δ > 0, which may depend on ǫ, is typically called “tolerant testing” (for the “base property”);
see Section 12.1.
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size at most n/2 requires Ω(n/ log n) samples).46 We also note that the restriction on m in Item 3
is inherent (for example, note that any distribution over [n] is ǫ-close to being ⌈n/ǫ⌉-grained).

Proof: We first detail the general observation that underlies all results, while letting Um denote
the uniform distribuition over [m].

 

 

P1

P2

Figure 11.3: The proof of Claim 11.31.1. The shaded region represents D, and the dashed (resp.,
dotted) line represents distance ǫ (resp., ǫ+η) from D. The left (resp., right) circle represent the set
of distributions that are η-close to Un (resp., to Un/2), which contains p1 (resp., p2). In the figure
p2 is depicted as being at distance δ ∈ (ǫ, ǫ + η] from D, but it may the case that p2 is (ǫ + η)-far
from D.

Claim 11.31.1 (the general observation): Let η ∈ (0, η0] and suppose that D is a property of
distributions over [n] such that all distributions that are η-close to Un are in D and Un/2 is (ǫ+ η)-
far from D. Then, ǫ-testing D requires Ω(n/ log n) samples. Ditto when all distributions that are
η-close to Un/2 are in D and Un is (ǫ + η)-far from D.

Proof: We focus on the primary claim. Invoking Theorem 11.29, observe that p1 is in D (since p1 is
η-close to Un), whereas p2 is ǫ-far from D (since p2 is η-close to Un/2, which is (ǫ + η)-far from D).
The situation is illustrated in Figure 11.3. The main claim follows since Theorem 11.29 asserts that
p1 and p2 are indistinguishable by o(n/ log n) samples, whereas ǫ-testing D requires distinguishing
them. The secondary claim follows by reversing the roles of p1 and p2 (i.e., noting that in this case
p2 is in D whereas p1 is ǫ-far from D).

Using Claim 11.31.1, we establish the various items of the current corollary. Specifically, denoting
by Di the set of distributions defined in Item i, we proceed as follows. For ǫ + 2δ < 1/2, we recall

46This follows from [261, Sec. 5.5] which implies that approximating the support size of n-grained distributions
(up to an additive term of n/8) requires Ω(n/ log n) samples. Hence, there exists i ∈ [17] such that testing the set of
distributions over [n] that have support size at most i · n/17 requires Ω(n/ log n) samples. We do not know whether
the lower bounds for Item 3 hold also for the “base property” (i.e., the case of δ = 0); we consider this an interesting
open problem.
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that D1 equals the set of all distributions that are δ-close to Un, and observe that Un/2 is (ǫ+ δ)-far
from D1 (since otherwise Un/2 is ((ǫ + δ) + δ)-close to Un, which contradicts ǫ + 2δ < 1/2). Item 1
follows by applying the primary claim (with η = min(δ, η0)).

Turning to Item 2, for ǫ + 2δ < 1/2, observe that D2 contains all distributions that are δ-close
to Un/2 whereas Un is (ǫ + δ)-far from D2 (since otherwise Un is ((ǫ + δ) + δ)-close to a distribution
with support size n/2, which contradicts ǫ + 2δ < 1/2). Item 2 follows by applying the secondary
claim (with η = min(δ, η0)). The same holds for Item 3 when m = n/2, but we have to handle
the other cases too. For m < n/2 we proceed as in the case of m = n/2, while resetting n to 2m,
which means that we consider distributions over [n] with a support that is a subset of [2m]. (So
the lower bound is Ω(m/ log m) = Ω(n/ log n), where the inequality uses m = Ω(n).) For m > n/2
(satisfying m = O(n)), we provide a lower bound by reducing the case of m ∈ (0.25n, 0.5n] to the
case of m = O(n).

Claim 11.31.2 (a reduction for Item 3): Let Gn,m,δ denote the set of distributions over [n] that
are δ-close to being m-grained. Then, for every ǫ > 0 and t ∈ N, the task of ǫ-testing Gn,m,δ is
reducible to the task of ǫ/t-testing Gn+1,tm,δ/t, while preseving the number of samples.

Proof Sketch: Consider a randomized filter, denoted Fn,t, that with probability 1/t maps i ∈ [n]
to itself, and otherwise maps it to n + 1. This filter maps m-grained distributions over [n] to
tm-grained distributions over [n+1]. Furthermore, a distribution p : [n]→ [0, 1] that is at distance
γ from being m-grained is mapped by Fn,t to a distribution that is at distance γ/t from being
tm-grained. (This follows by observing that the distribution p′ = Fn,t◦p satisfies p′(i) = p(i)/t for
every i ∈ [n], and p′(n + 1) = (t− 1)/t.)

Item 3 follows by using an adequate t = O(1). Specifically, wishing to establish the claim for
m > n/2, pick t = ⌈2m/n⌉ and reduce from ǫ-testing Gn,⌊m/t⌋,δ, which yields a lower bound for
ǫ/t-testing Gn,m′,δ/t such that m′ = t · ⌊m/t⌋ ∈ (m − t,m]. (See Exercise 11.13 for a reduction to
the case of m′ = m.)

11.5 Chapter notes

As stated at the very beginning of this chapter, testing properties of distributions, also known as
distribution testing, is fundamentally different from testing properties of functions (as discussed in
the rest of this book). Nevertheless, as observed in [257, Sec. 2.1] and detailed in [153, Sec. 6.3],
testing properties of distributions is closely related to testing symmetric properties of functions
(i.e., properties that are invariant under all permutations of the domain). Articulating this relation
requires stating the complexity of testers of (symmetric) properties of functions in terms of the size
of the range of the function (rather than in terms of the size of its domain).47

The key observation is that, when testing symmetric properties of functions, we may confine
our attention to the frequency in which the various range elements appear as values of the function.
Furthermore, when the domain is significantly larger than the range, we can ignore the difference
between sampling with repetitions and sampling without repetitions. In such a case, we may restrict
the tester to obtaining the value of the function at uniformly distributed arguments, while ignoring
the identity of the argument.48 Hence, the function f : S → R is identified with the distribution

47Of course, one may use a statement that refers to the sizes of both the domain and the range.
48The hypothesis that the domain is sufficiently large justifies ignoring the probability that the same s ∈ S was

selected twice.
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generated by selecting uniformly at random s ∈ S and outputting f(s), and the testing tasks are
related accordingly.

While the foregoing perspective attempts to link distribution testing (i.e., testing properties
of distributions) to the rest of property testing, the following perspective, which advocates the
study of distribution testing of linear or even super-linear (sample) complexity, goes in the opposite
direction. Recall that any property of functions can be tested by querying all arguments of the
function (i.e., locations in the object), and that the aim of property testing is to obtain sub-linear
time (or at least query) complexity. In contrast, distribution testing does not trivialized when one
obtains O(n) samples from a distribution over [n]. In particular, learning such a distribution up
to a deviation of ǫ requires Ω(n/ǫ2) samples. So the question is whether one can do better than
this yardstick. While the study of property testing typically focuses on the dependence of the
complexity on n, as noted by Ilias Diakonikolas, in some settings of distribution testing, one may
care more about the dependence on ǫ.

11.5.1 History and credits

The study of testing properties of distributions was initiated by Batu, Fortnow, Rubinfeld, Smith,
and White [35].49 Their starting point was a test of uniformity, which was implicit in the work
of Goldreich and Ron [149], where it is applied to test the distribution of the endpoint of a rela-
tively short random walk on a bounded-degree graph. Generalizing this tester of uniformity, Batu
et al. [35, 34] presented testers for the property consisting of pairs of identical distributions as well
as for all properties consisting of any single distribution.50 Both results are presented in this text,
but the presentation follows an approach proposed recently by Diakonikolas and Kane [89].

Actually, our presentation focused on these two classes of properties (of distributions): the class
of single-distribution properties that are singletons (i.e., testing equality to a known distribution),
and the class of pairs of distributions that are equal or close according to some norm.

We start with the tester for the property of being the uniform distribution over [n], which
is implicit in [149]. (As noted in the text, the analysis that we present yields optimal sample
complexity in terms of n, but not in terms of ǫ; a recent result of Diakonikolas et al. [88] establishes
the optimality of this tester over both n and ǫ.)51 Next, we apply the approach that underlies [89]
in order to reduce testing any property consisting of a single distribution (i.e., testing equality to
a known distribution) to testing the uniform distribution; this reduction appeared in [137].

Turning to the task of testing equality between a pair of unknown distributions, we start with
a (sample optimal) tester for the case that the distributions have small L2-norm, which is provided
in [73], and then apply the reduction presented in [89].

The results surveyed in Section 11.4 are based on the work of Valiant and Valiant [263]. In
particular, Theorems 11.27 and 11.29 are due to [263], but the corollaries were not explicitly stated

49As an anecdote, we mention that, in course of their research, Goldreich, Goldwasser, and Ron considered the
feasibility of testing properties of distributions, but being in the mindset that focused on complexity that is polylog-
arithmic in the size of the object (see discussion in Section 1.4), they found no appealing example and did not report
of these thoughts in their paper [140].

50The original results obtained an optimal dependence on n but not on ǫ. Specifically, in these results the complexity
is proportional to poly(1/ǫ) rather than to O(1/ǫ2). Optimal results were obtained in [221, 73, 264].

51Recall that the optimal O(
√
n/ǫ2) upper bound was first established by Paninski [221] (for ǫ = Ω(n−1/4)) and

then extended in [73] for all ǫ > 0, where both bounds are based on the analysis of a slightly different test. The
optimality of this upper bound (i.e., a matching lower bound) was first established in [221] (see alternative proof in
[89, Sec. 3.1.1]).
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there.52 Theorem 11.27 was inspired by works of Orlitsky et al. [219, 220, 3], which are pivoted at
finding a distribution that maximizes the likelihood of a given collision statistics.53 Theorem 11.29
builds on [232], which presents two n-grained distributions with vastly different support sizes (i.e.,
Θ(n) versus n1−o(1) = o(n)) that cannot be distinguished using less than n1−o(1) samples.

We stress that the current chapter covers only few of the many distribution testing problems
that were studied in computer science in the last two decades (see, e.g., [32, 261, 263, 266]). The
interested reader is referred to Canonne’s survey [68] (which also reviews alternative models such
as the model of conditional sampling [70]).

Lastly, we mention the work of Daskalakis, Diakonikolas, and Servedio, which crucially uses
testing as a tool for learning [84]. Indeed, the use of testing towards learning is in line with one
of the generic motivations for testing, but this work demonstrates the potential in a very concrete
manner.

11.5.2 Exercise

Some of the following exercises are quite educational. We call the reader’s attention to Exer-
cise 11.15, which was not referred to in the main text, that shows that distribution testers can be
made deterministic at a minor cost.

Exercise 11.1 (error reduction for distribution testers): Show that the error probability of a dis-
tribution tester can be reduced to 2−t at the cost of increasing its sample (and time) complexity by
a factor of O(t), and while preserving one-sided error.

Guideline: See Exercise 1.4.

Exercise 11.2 (one-sided testers for properties of distributions): Suppose that D is a property of
distributions over [n] such that for some collection of sets C ⊆ 2[n] it holds that the distribution X
is in D if and only if the support of X is a subset of some S ∈ C. Prove that D has a one-sided
error tester of sample complexity O(n/ǫ).

Guideline: The tester rejects a distribution Y if and only if the multi-set of samples that it sees
forms a set that is not a subset of a set in C. Show that if Y is ǫ-far from having a support that is
a subset of S, then a sample of O(n/ǫ) elements drawn from Y will hit a point outside of S with
probability at least 1− exp(−n).

Exercise 11.3 (on the optimality of the sample complexity asserted in Exercise 11.2): Show that
there exists a property of distributions D that satisfies the hypothesis of Exercise 11.2 such that the
sample complexity of ǫ-testing D with one-sided error is Ω(n/ǫ).

Guideline: Consider the set D of all distributions over [n] such that each distribution in D has
support of size smaller than n/2. Note that a one-sided tester may reject a distribution only when
it sees at least n/2 different elements of [n] in the sample. On the other hand, the distribution p
that satisfies p(n) = 1− 3ǫ and p(i) = 3ǫ/(n − 1) for all i ∈ [n− 1] is ǫ-far from D.

52Actually, Corollary 11.30 did not appear before, whereas Item 3 of Corollary 11.31 only appeared in [137].
53Note that, rather than finding a distribution that maximizes the likelihood of a given collision statistics, Valiant

and Valiant [263] find a distribution that has a similar collision statistics in expectation. This yields O(ǫ−2n/ log n)
sample complexity estimators for various statistical measures (e.g., entropy and support size), which is optimal in
terms of n but not neccessaily in terms of ǫ (cf. [1]).
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Exercise 11.4 (learning via the empirical distribution):54 Let p : [n] → [0, 1] be a probability
function. Consider an algorithm that on input m = O(n/ǫ2) samples, i1, ..., im ∈ [n], that are drawn
according to p, outputs the empirical distribution p̃ defined by letting p̃(i) = |{j ∈ [m] : ij = i}|/m
for every i ∈ [n]; that is, p̃ represents the relative frequency of each of the values i ∈ [n] in the
sample i1, ..., im. Using the following steps, prove that, with high probability, p̃ is ǫ-close to p.

1. For every i ∈ [n], let Xi denote the distribution of the fraction of the number of occurrences
of i in the sample. Then, E[Xi] = p(i) and V[Xi] ≤ p(i)/m.

2. Show that E[|Xi − p(i)|] ≤ V[Xi]
1/2.

3. Show that E

[∑
i∈[n] |Xi − p(i)|

]
≤
√

n/m.

Setting m = 9n/ǫ2, we get E

[∑
i∈[n] |Xi − p(i)|

]
≤ ǫ/3, which implies that Pr

[∑
i∈[n] |Xi − p(i)| > ǫ

]
<

1/3.

Guideline: In Step 1, use V[m ·Xi] = m · p(i) · (1− p(i)), since m ·Xi is the sum of m independent
Bernoulli trials, each having success probability p(i). In Step 2, use E[|Xi − p(i)|] ≤ E[|Xi −
p(i)|2]1/2 = V[Xi]

1/2, where the inequality is due to V[Y ] = E[Y 2] − E[Y ]2 ≥ 0, and the equality
uses p(i) = E[Xi]. In Step 3, use

E



∑

i∈[n]

|Xi − p(i)|


 =

∑

i∈[n]

E[|Xi − p(i)|] ≤
∑

i∈[n]

√
p(i)/m,

where the last inequality is due to Steps 1-2, and
∑

i∈[n]

√
p(i)/m <

√
n/m can be justified by the

Cauchy-Schwarz inequality.

Exercise 11.5 (approximating the L2-norm of a distribution): Consider a model in which the
algorithm obtains samples on demand; that is, the algorithm is only presented with the parameters
n and ǫ, and it obtains an additional sample when asking for it. Hence, the number of samples
used by such an algorithm is a random variable, and we consider the distribution of that random
variable. Now, for any γ > 0, using Corollary 11.6, present an algorithm that when obtaining
samples from an unknown distribution p, outputs, with probability at least 2/3, an (1 + γ)-factor
approximation of ‖p‖2 while using at most O(1/γ2‖p‖2) samples. Present an alternative algorithm
that achieves the same goal while using Õ(1/γ2‖p‖2) samples in expectation.

Guideline: The basic idea is to proceed in iterations such that in the ith iteration we check the
hypothesis that ‖p‖2 ≈ 2−i. Hence, in the ith iteration we apply Corollary 11.6, using O(2i/γ2)
samples, and note that (for every t > 0) the probability that we halt before iteration log2(1/‖p‖2)−t
(resp., after iteration log2(1/‖p‖2) + t) is 2−t−4. Note that the expected number of samples used
this algorithm can be bounded by suspending the execution after 0.5 log2 n iterations (relying on
‖p‖2 ≥ 1/

√
n). The claimed bound on the expected number of samples can be obtained by using

O(i2 · 2i/γ2) samples in the ith iteration. An alternative solution is implied by Exercise 10.8.

54This seems to be based on folklore, which was communicated to the author by Ilias Diakonikolas.
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Exercise 11.6 (filters that perfectly preserve distances between distributions): Let F : [n] → S
be a randomized process such that the supports of the different F (i)’s are disjoint. Prove that for
every two distributions X and X ′ over [n], the total variation distance between F (X) and F (X ′)
equals the total variation distance between X and X ′. Note that distances may not be preserved
if the supports of some F (i)’s are not disjoint, and that the level of preservation is related to the
relation between the distributions of the various F (i)’s.

Guideline: Just use the definition of the total variation distance; that is, show that

∑

j∈S

∣∣Pr[F (X)=j] −Pr[F (X ′)=j]
∣∣ =

∑

i∈[n]

∣∣Pr[X = i]−Pr[X ′= i]
∣∣ .

Exercise 11.7 (testing the uniform distribution over [n], extended): By definition, a tester for
the uniform distribution over [n] is supposed to satisfy the conditions of Definition 11.1 when given
an arbitrary distribution over [n]; in particular, when given the parameters n and ǫ, the tester is
required to reject any distribution over [n] that is ǫ-far from Un (the uniform distribution over [n]).
Show that any such tester T can be easily adapted to satisfy the rejection requirement also when
given an arbitrary distribution, which may have a support that is not a subset of [n].

Guideline: The adapted tester rejects if the sample contains any element not in [n] and otherwise
invokes T on the sample. Provide a rigorous analysis of this tester.55

Exercise 11.8 (testing uniform distributions, yet another look): In continuation to Exercise 11.7,
present a filter that maps Um to U2m, while mapping any distribution X that is ǫ-far from Um to
a distribution over [2m] that is ǫ/2-far from U2m. We stress that X is not necessarily distributed
over [m] and remind the reader that Un denotes the uniform distribution over [n].

Guideline: The filter, denoted F , maps i ∈ [m] uniformly at random to an element in {i,m + i},
while mapping any i 6∈ [m] uniformly at random to an element in [m]. Observe that F (Um) ≡ U2m,
while for every X it holds that

∑

i∈[m+1,2m]

|Pr[F (X)= i] −Pr[U2m = i]| =
1

2
·
∑

i∈[m]

|Pr[X = i]−Pr[Um = i]|

∑

i∈[m]

|Pr[F (X)= i] −Pr[U2m = i]| ≥ Pr [F (X) ∈ [m]]−Pr [U2m ∈ [m]]

55Denoting the tested distribution by p : S → [0, 1], we may assume that q
def
=
P

i∈[n] p(i) > 0, and let i0 ∈ [n] be

such that p(i0) ≥ p(i) for every i ∈ [n]. The key observation is that the rejection probability of the adapted tester

can be related to the rejection probability of a mental experiment in which we map each sample-point not in [n]
to i0 and invoke T on the resulting sample. Specifically, in the mental experiment, T is invoked on a distribution
p′ : [n] → [0, 1] such that p′(i0) = p(i0) + (1 − q) and p′(i) = p(i) for every i ∈ [n]. Note that if p′(i0) ≥ 1/n,
then

P

i∈[n] |p′(i) − u(i)| =
P

i∈S |p(i) − u(i)|, where u(i) = 1/n for every i ∈ [n] and u(i) = 0 otherwise, since

|p′(i0)− u(i0)| = (1− q) + |p(i0)− u(i0)|. Otherwise (i.e., p′(i0) < 1/n), it holds that
P

i∈S |p(i)− u(i)| = 2 · (1− q),
and

P

i∈[n] |p′(i)−u(i)| = 2·(1−q)−2·|p(i0)−u(i0)| ≥ n−1
n

·Pi∈S |p(i)−u(i)|, since p(i0) ≥ q/n. An alternative analysis

starts with an arbitrary distribution X that is ǫ-far from Un, and considers two cases regarding q = Pr[X ∈ [n]]. If
1 − q ≥ ǫ/2, then the adapted tester rejects with high probability (since its sample complexity is definitely Ω(1/ǫ)).
Otherwise (i.e., 1− q < ǫ/2), the distribution of X conditioned on X ∈ [n] is ǫ/2-far from Un, and the tester T (which
is invokes on it) rejects with probability at least 2/3.
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=
1

2
·Pr [X ∈ [m]] + Pr [X 6∈ [m]]− 1

2

=
1

2
·Pr [X 6∈ [m]]

=
1

2
·
∑

i6∈[m]

|Pr[X = i]−Pr[Um = i]| .

Exercise 11.9 (optimizing the reduction that underlies the proof of Theorem 11.11):56 Optimize
the choice of γ in Algorithm 11.10 so to obtain “optimal” sample complexity in that reduction. Note
that the filter of Eq. (11.4) can also be generalized by using a suitable parameter, which can then be
optimized. (Recall that n/γ must be an integer.)

Guideline: Start by generalizing the filter of Eq. (11.4) by introducing a parameter β ∈ (0, 1) and
letting p′(i) = (1 − β) · p(i) + β/n. Present the complexity of the resulting tester as a function of
β and γ ∈ (0, β) (in addition to its dependence on n and ǫ), and minimize this function.

Exercise 11.10 (another filter): For a fixed probability function p : [n] → [0, 1], consider the
randomized process F : [n] → [n] that, on input i ∈ [n], outputs i with probability 0.5 + 0.5 · p(i),
and outputs j ∈ [n] \ {i} with probability 0.5 · p(j).

1. Prove that for every two distributions X and X ′ over [n], the total variation distance between
F (X) and F (X ′) is at least half of the total variation distance between X and X ′.

2. Prove that for every distribution X over [n] and every i ∈ [n], it holds that Pr[F (X)= i] ≥
p(i)/2.

Exercise 11.11 (extending the lower bound of Corollary 11.13): Show that ǫ-testing the property
{Un} requires Ω(min(n2/3, ǫ−2√n)) samples.

Guideline: Note that, with probability 1 − (s3/n2), a sequence of s samples that are drawn from
the uniform distribution on [n] contains no three-way collisions (i.e., cj = 0 for all j > 2).57 This
happens, with similar probability, also when the distribution assigns probability either (1 − 2ǫ)/n
or (1 + 2ǫ)/n to each element. Hence, a tester that uses o(n2/3) samples may only rely on the two-
way collisions that it sees. Assuming that

√
n/ǫ2 < n2/3 (and resetting ǫ such that

√
n/ǫ2 = n2/3

otherwise), observe that Ω(
√

n/ǫ2) samples are required in order to tell the two distributions apart,
since the collision probability of the second distribution equals (1 + Θ(ǫ2))/n. (Hence we need to
estimate the collision probability to within a factor of 1 + Ω(ǫ2), and so the number of pairs of
samples must be Ω((ǫ2)−2 · (1/n)−1).)

Exercise 11.12 (upper bounds on the length of approximate histogram): Recall that Theorem 11.27
implies that every distribution p : [n] → [0, 1] is ǫ-close to a distribution that has a histogram of
length O(ǫ−2 · n/ log n). Provide a direct proof of this fact by proving that p is actually ǫ-close to a
distribution that has a histogram of length O(ǫ−1 · log(n/ǫ)).

56We do not consider such an optimization important, but it may serve as a good exercise.
57Recall that cj denotes the number of elements that occur j times in the sequence of samples (i1, ..., is); that is,

cj = |{i ∈ [n] : #i(i1, ..., is) = j}|, where #i(i1, ..., is) = |{k ∈ [s] : ik = i}|.
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Guideline: First, modify p into p′ such that p′(i) = p(i) if p(i) > ǫ/2n, and p′(ii) = p′(i2) for
every i1, i2 that satisfy p(i1), p(i2) ≤ ǫ/2n. Next, partition the i’s that satisfy p′(i) > ǫ/2n into
log1+0.5ǫ(2n/ǫ) buckets Bj’s such that Bj = {i : (1 + 0.5ǫ)j−1 · ǫ/2n < p′(i) ≤ (1 + 0.5ǫ)j · ǫ/2n},
and modify p′ such that it is uniform on the i’s in each Bj. Note that the resulting distribution is
ǫ-close to p, and has a histograph of length at most 1 + log1+0.5ǫ(2n/ǫ).

Exercise 11.13 (reduction among testing grained properties): For every m1 < m2, present a re-
duction of the task of estimating the distance to m1-grained distributions over [n] to estimating the
distance to m2-grained distributions over [n]. Specifically, present a filter that maps m1-grained
distributions to m2-grained distributions such that the filter preserved the distance between distri-
butions up to a fixed scaling (of m1/m2).

Guideline: For starters, consider the filter F ′m1,m2
that maps i ∈ [n] to itself with probability m1/m2

and maps it to n+1 otherwise. Then, consider the filter Fm1,m2 that maps the excessive probability
mass (of (m2 −m1)/m2) to n (rather than to n + 1).

Exercise 11.14 (testing whether two unknown distributions are identical up-to relabelling): Let
D2 denote the set of pairs of distributions over [n] that have equal histograms (i.e., are identical
up to relabelling). Show that for every constant ǫ > 0, the sample complexity of ǫ-testing D2 is
Θ(n/ log n).

Guideline: Use Theorem 11.27 for the upper bound, and Corollary 11.30 for the lower bound.

Exercise 11.15 (distribution testers can be made deterministic at a minor cost): Let D be a
property of distributions over [n]. Show that if D can be tested in sample complexity s(n, ǫ), then
it can be tested by a deterministic machine of sample complexity 3 · s(n, ǫ) + O(ℓ/ǫ), where ℓ =
log s(n, ǫ) + log log n). (The factor of 3 increase in the sample complexity is due to the desire
to maintain the same error bound, and it can be avoided if one is willing to increase the error
probability from 1/3 to, say, 0.35. Hence, the actual cost of the derandomization is captured by
the relatively small additive term of O(ℓ/ǫ).)

Guideline: First reduce the randomness complexity of the randomized tester by using ideas as in
Exercise 1.21, obtaining a tester of randomness complexity log s(n, ǫ) + log log n + O(1) that has
error probability at most 0.34 (rather than at most 1/3). This is done by considering all ns possible
s-long sequences of samples, and picking a set of O(s · log n) random pads that approximate the
behavior of the tester (on all possible sample sequences). Next, present a deterministic tester that
emulates the execution of a randomized tester that uses s samples and r random coins, by using
O(r/ǫ) additional samples. The idea is to partition these additional samples into pairs and try to
extract a random bit from each pair (x, y) such that the extracted bit is 1 (resp., 0) if x < y (resp.,
if x > y), where in case x = y no bit is extracted. Specifically, for some suitable constant c, we are
given c · r/ǫ samples from the tested distribution X, and we attempt to extract at least r bits by
using the foregoing procedure. Consider the following three (somewhat overlapping) cases.

1. The typical case is that at least r random bits were extracted. In this case, we just emulate
the randomized tester.
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2. A pathological case, which arises when the tested distribution X is concentrated on one value
i ∈ [n] (i.e., Pr[X = i] > 1− ǫ/2), is that a majority of the pairs equal (i, i) for some i ∈ [n].
In this case we accept if and only if the distribution that assigns all the probability mass to i
is ǫ/2-close to D.

3. An extremely rare case is that less than r bits were extracted but no pair (i, i) appears in
majority. This case is extremely unlikely, and it does not matter what we do when it occurs.

The analysis refers to two overlapping cases regarding X. On the one hand, if the tested distribution
X satisfies Pr[X = i] < 1 − ǫ/4 for all i ∈ [n], then Case 1 occurs with very high probability. On
the other hand, if there exists i ∈ [n] such that Pr[X = i] > 1− ǫ/2, then with very high probability
either Case 1 or Case 2 occurs. In this case X is ǫ/2-close to X ′ that assigns all the probability
mass to i, and so if X is in D (resp., X is ǫ-far from D), then X ′ is ǫ/2-close to D (resp., ǫ/2-far
from D).

Exercise 11.16 (on the algebra of distribution testing):58 Let D′ and D′′ be properties of distri-
butions over [n] that are each testable within sample complexity s.

1. Show that D′ ∪ D′′ is testable within sample complexity O(s).

2. Show that the sample-complexity of testing D′ ∩ D′′ may be Ω(n/ log n) even if s = Õ(1/ǫ)
and each of the properties is label-invariant.

Guideline: Part 1 can be proven as Theorem 1.10. To prove Part 2, start with any of the properties
D of Corollary 11.31. Let D′ (resp., D′′) consist of D as well as of all distributions that have a
support of odd (resp., even) size. Then, each distribution over [n] is 1/n-close to D′ (resp., D′′),
whereas D′ ∩D′′ = D. Lastly, for the sake of formal preciseness, present an ǫ-tester for the case of
ǫ < 1/n, while relying on the fact that O(ǫ−1 log n) = Õ(1/ǫ) holds in this case.

Exercise 11.17 (testing the union of many properties): Suppose that D(1), ...,D(k) are properties
of distributions that are each testable within sample complexity s. Show that

⋃
i∈[k]D(i) is testable

within sample complexity O(log k)·s. (Note that only the case of k = 2 was treated in Exercise 11.16,
and that an iterative application of it to the general case would yield sample complexity poly(k) ·s.)

Guideline: First reduce the error probability to 1/3k, by repeating each tester O(log k) times.
Invoking all the resulting tests, while providing each tester with a different sample, would yield a
tester of sample complexity Õ(k) · s. The key observation is that the same sample can be used for
all testers.

58See analogous section on the algebra of testing properties of functions (i.e., Section 1.3.4).
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Chapter 12

Ramifications and related topics

In continuation to Section 1.3.2, we review a few ramifications of the notion of property testers
as well as related topics. Some of these ramifications were briefly mentioned in Section 1.3.2, and
others were not even mentioned there.

Summary: We briefly review a few ramifications of the notion of property testers as
well as related topics. The list includes

1. Tolerant testing and distance approximation.

2. Testing under additional promises on the input.

3. Sample-based testers.

4. Testing with respect to other distance measures.

5. Local computation algorithms.

6. Non-interactive proofs of proximity (MAPs).

While some of these topics have received a fair amount of attention, others still beg for
more attention.

The different sections of this chapter can be read independently of one another.

12.1 Tolerant testing and distance approximation

In some settings, objects that are close to having the property may be almost as useful for these
settings as objects that have the property (e.g., see some of the settings discussed in Section 1.1.2).
But in such a case, when testing for the property, it may be desirable not to reject objects that
are very close to having the property (or, put differently, “tolerate” a small deviation). This leads
to a natural generalization of the testing task that calls for distinguishing between objects that
are ǫ′-close to the property and objects that are ǫ-far from the property, for parameters ǫ′ < ǫ.
Indeed, standard property testing refers to the case of ǫ′ = 0, and tolerant testing may be viewed
as “tolerating” a small deviation of the object from having the property, where typically ǫ′ is a
function of ǫ (and sometimes also of n).
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Definition 12.1 (tolerant testers): Let Π = ∪n∈NΠn such that Πn ⊆ {f : [n] → Rn}, and ǫ′ :
N × (0, 1] → (0, 1]. An ǫ′-tolerant tester for Π is a probabilistic oracle machine, denoted T , that
satisfies the following two conditions.

1. T accepts inputs that are ǫ′-close to Π: For every n ∈ N and ǫ > 0, and for every f : [n]→Rn

such that δΠ(f) ≤ ǫ′(n, ǫ), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. T rejects inputs that are ǫ-far from Π: For every n ∈ N and ǫ > 0, and for every f : [n]→Rn

such that δΠ(f) > ǫ, it holds that Pr[T f (n, ǫ)=0] ≥ 2/3.

(Recall that δΠ(f) denotes the distance of f from Πn.)

We avoided defining a one-sided error probability version, because it is quite useless (see Exer-
cise 12.1). Note that standard testers (as in Definition 1.6) may be viewed as 0-tolerant testers. On
the other hand, tolerant testing is related to distance approximation, where no proximity param-
eter is given and the tester is required to output an approximation (up to a given approximation
parameter) of the distance of the object to the property.

Definition 12.2 (distance approximation for a property): Let Π = ∪n∈NΠn and δΠ be as in
Definition 12.1. A distance approximator for Π is a probabilistic oracle machine, denoted M , that
satisfies one of the following two conditions.

Additive version: For every n ∈ N and f : [n]→Rn and for every η > 0, it holds that

Pr
[∣∣∣Mf (n, η)−δΠ(f)

∣∣∣ ≤ η
]
≥ 2/3.

Multiplicative version1: For every η, η′ > 0, every n ∈ N and f : [n]→Rn that is η′-far from Πn, it
holds that

Pr
[∣∣∣Mf (n, η, η′)−δΠ(f)

∣∣∣ ≤ η · δΠ(f)
]
≥ 2/3.

Typically, the term “tolerant testing” is used when the parameter ǫ′ is a fixed function of ǫ (e.g.,
ǫ′ = ǫ/2 or ǫ′ = ǫ2), and “distance approximation” is used when one seeks an approximation
scheme that is governed by an approximation parameter (which corresponds to ǫ − ǫ′ when the
sought approximation is additive and to ǫ/ǫ′ when it is multiplicative).

Note that any property tester that makes queries that are each uniformly distributed in [n] yields
a mildly tolerant tester. Specifically, if the tester has query complexity q(n, ǫ), then it accepts every
function that is (1/10q(n, ǫ))-close to the property with probability at least 2/3 − 0.1, and using
error reduction we can regain the original error bound of 2/3 (see Exercise 12.2). Providing higher
(i.e., higher than 1/q(n, ǫ)) levels of tolerance is typically harder than providing standard testers.

1We warn that, when defining multiplicative approximation, one should be careful in the case that the optimized
value may be zero (as is the case here), since asking for a multiplicative approximation in such cases will force the
approximator to distinguish the value zero from a value that is extremely close to zero. This problem is resolved
by confining the approximation task to cases in which the value is above some minimal threshold (which is denoted
here by η′). Indeed, the problem does not arise in cases where the optimized value is always inside an interval that
is sufficiently far from zero (e.g., the interval [1, 2]). A good practice in other cases is to combine the use of both
approximators; that is, first invoke an additive approximator with deviation parameter set to 0.1η′, and invoke a
multiplicative approximator with parameters (η, η′) only if the first estimate is at least 1.1η′. Thus, we obtain a 0.1η′

additive approximation to values in [0, 1.1η′] and a 1 ± η multiplicative approximation to values above 1.1η′.
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Furthermore, in some cases the tolerant testers must have significantly higher complexity: In fact, a
very dramatic gap may exist, in general, even for properties of Boolean functions [109]. Specifically,
there exists a property of functions f : [n]→ {0, 1} that is testable in a number of queries that only
depends on the proximity parameter, but tolerantly testing it requires nΩ(1) queries. Nevertheless,
in some cases, good tolerant testers can be obtained. A few examples follow.

In the context of testing graph properties. We first consider testing graph properties in the
dense graph model (of Chapter 8). Recall that ǫ-testing whether a graph is bipartite can be done
by inspecting the subgraph induced by a random set of Õ(1/ǫ) vertices. In contrast, an ǫ′-tolerant
ǫ-tester of this property is known only when inspecting a polynomially larger induced subgraph.
Specifically, such tolerant testing can be performed by invoking a tester for a generalized partition
problem (see Exercise 12.3). A much more general result follows.

Theorem 12.3 (tolerant testing in the dense graph model): Let Π be a graph property that can
be tested within query complexity that only depends on the proximity parameter. Then, for every
constants ǫ > ǫ′ > 0, the property Π has an ǫ′-tolerant ǫ-tester of query complexity that only depends
on ǫ and ǫ′.

We note that the query complexity of the tolerant tester provided by the known proof of Theo-
rem 12.3 is significant higher than that of the corresponding standard tester. An interesting open
problem is providing a functional relationship between the complexity of testing and the complexity
of tolerant testing, even just for a natural subclass of graph properties. Specifically, consider the
following version of this question.

Open Problem 12.4 (tolerant testing in the dense graph model): Let C be a natural class of
graph properties. Present a function F : N → N such that, for every Π ∈ C and every constant
ǫ > 0, it holds that if Π is ǫ-testable in query complexity q(n, ǫ), then Π has an 0.5ǫ-tolerant ǫ-tester
of query complexity F (q(n, ǫ)). Alternatively, show that no such function F may exist for C.

The same question can be posed with respect to testing graph properties in the bounded-degree
graph model. We mention that some of the testers presented in Section 9.2 are tolerant or can be
easily modified to be tolerant (see Exercise 12.4).

In the context of testing distributions. Tolerant testing and distance approximation have
been studied extensively in the context of testing distributions (see Chapter 11). Recall that, in
this context, the tester gets samples from the tested distribution (rather than oracle access to some
function). Actually, Corollaries 11.28 and 11.31 are typically stated in terms of tolerant testing.
We do so next, while referring to the notion of label-invariant properties of distributions (defined
in Section 11.1.3).

Corollary 12.5 (tolerantly testing label-invariant properties of single distributions): Let D be a
label-invariant property of distributions over [n]. Then, for every ǫ′ : (0, 1]→ [0, 1], the property D
has an ǫ′-tolerant tester of sample complexity s(n, ǫ) = O((ǫ− ǫ′(ǫ))−2 · n/ log n).

Corollary 12.6 (optimality of Corollary 12.5): For all sufficiently small constants ǫ > ǫ′ > 0, any
ǫ′-tolerant ǫ-tester for each of the following properties of distributions over [n] requires Ω(n/ log n)
samples.
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1. The uniform distribution over [n].

2. The set of distributions that have support size (exactly or at most) n/2.

3. The set of distributions that are m-grained, for any integer m ∈ [Ω(n), O(n)], where a distri-
bution is m-grained if each element appears in it with probability that is an integer multiple
of 1/m.

Recall that these lower bounds do not necessarily hold for standard testing of the same properties
(i.e., the case of ǫ′ = 0): Part 1 provides a striking example, since (as shown in Chapter 11) the
uniform distribution over [n] is ǫ-testable by O(ǫ−2 · √n) samples.

12.2 Additional promises on the input

As stated at the very beginning of this book, property testing refers to promise problems (cf. [105,
129] or [131, Sec. 2.4.1]) of a specific type. These problems consist of distinguishing inputs that
have a predetermined property from inputs that are far from that property, where inputs that are
neither in the property nor far from it are disregarded. (Tolerant testing follows this theme in
distinguishing between inputs that are ǫ′-close to the property and inputs that are ǫ-far from it,
where ǫ′ < ǫ.)

We note that, as in all of computer science, some additional promises are typically made about
the format in which the input is presented.2 For example, when the tester is given the size parameter
n, it is guaranteed that the oracle (which represents the main input) is a function over [n]. Most
conspicuously, in the study of testing graph properties, we have made such explicit assumption.
Specifically, in the study of the dense graph model, we assumed that the adjacency predicate g :
[k]× [k]→ {0, 1} is symmetric (i.e., g(u, v) = g(v, u) for every u, v ∈ [k]). Likewise, when studying
the bounded-degree graph model, we assumed that the incidence function g : [k]× [d]→ {0, 1, ..., k}
is consistent in the sense that if g(u, i) = v for some u, v ∈ [k] and i ∈ [d], then there exists j ∈ [d]
such that g(v, j) = u. These, however, are syntactic assumptions, which are easy to dispose of (or
waive) by first testing whether the input oracle satisfies the corresponding syntactic condition.3

More essential promises refer to real properties of the objects, rather than to syntactic properties
of their representation that only mandate that the representation is legal. Such promises are
sometimes introduced for scholarly reasons, but in many cases they are justified by natural settings.4

The point is that in many cases more efficient testers may be obtained under the promise. A few
examples, all in the domain of graph properties, follow.

• Assuming a degree bound in the dense graph model: For any constant η > 0, the promise is
that each vertex in the input k-vertex graph has degree at most η · k. Under this promise,

2For a wider perspective see discussions in [129] and [131, Sec. 2.4.1].
3In the dense graph model, one may just selects O(1/ǫ) pairs (u, v) ∈ [k] × [k] at random and checks whether

g(u, v) = g(v, u) holds. In addition, when answering queries of the original tester, we answer the query (u, v) with
the conjunction of g(u, v) and g(v, u), which means that we effectively replace (or “self-correct”) g by the ǫ/2-close g′

such that g′(u, v) = g(u, v) ∧ g(v, u). In the bounded-degree graph model, for each random choice (u, i) ∈ [k]× [d], if
g(u, i) = v ∈ [k] then we may need to query g(v, j) for all j ∈ [d] (and apply a similar self-correction); see Exercise 12.5.

4A clear case where a promise is introduced for scholarly reasons appears in [151, Sec. 5.4], where a natural
conjecture regarding complexity gaps between adaptive and nonadaptive testers is established in the context of
promise problems. We mention that in some cases promise problems were introduced for scholarly reasons, but
turned out to have good conceptual justifications.
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ǫ-testing Bipartiteness has query complexity poly(⌈η/ǫ⌉) · Õ(ǫ−3/2), whereas for general
graphs only a bound of Õ(ǫ−2) is known (see [162] and [13], respectively).

• Assuming minor-freeness in the bounded-degree graph model: For any constant graph H, the
promise is that the input graph is H-minor free (and of bounded degree). Under this promise,
ǫ-testing any graph property has query complexity that only depends on ǫ (see [217]). The
result extends to any family of minor-closed graphs (and actually even to hyperfinite graphs).5

In contrast, recall that testing 3-Colorability of general k-vertex graphs, in this model,
requires Ω(k) queries.

• Assuming planarity in the general graph model: The promise is that the input graph is planar
(or, more generally, belongs to a family of minor-closed graphs). Under this promise, ǫ-testing
Bipartiteness has query complexity that only depends on ǫ (see [82]).

In contrast, recall that testing Bipartiteness of general k-vertex graphs, in this model,
requires Ω(

√
k) queries (even when the input graph is promised to be of bounded-degree).

12.3 Sample based testers

Throughout most of this book (i.e., with the exception of Chapter 11), we studied testers that may
freely query the functions that they test. In contrast, here we consider testers that only obtain
“labeled samples”; that is, when testing a function f : [n]→Rn, the tester is given a sequence of
f -labeled samples, ((i1, f(i1)), ..., (is, f(is))), where i1, ..., is are drawn independently and uniformly
in [n]. Such a tester is called sample-based, and it was already introduced (as a tool) in Section 6.2.
We reproduce its definition (i.e., Definition 6.2) next.

Definition 12.7 (sample-based testers): Let Π = ∪n∈NΠn such that Πn ⊆ {f : [n] → Rn}, and
s : N× (0, 1] → N. A sample-based tester of (sample) complexity s for Π is a probabilistic machine,
denoted T , that satisfies the following two conditions.

1. T accepts inputs in Π: For every n ∈ N and ǫ > 0, and for every f ∈ Πn, it holds that
Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is)))=1] ≥ 2/3, where s = s(n, ǫ) and i1, ..., is are drawn inde-
pendently and uniformly in [n].

2. T rejects inputs that are ǫ-far from Π: For every n ∈ N and ǫ > 0, and for every f with
domain [n] such that δΠ(f) > ǫ, it holds that Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is))) = 0] ≥ 2/3,
where i1, ..., is are as in Item 1.

If the first condition holds with probability 1, then we say that T has one-sided error.

We mention that any class Π = ∪n∈NΠn can be tested by using a sample of size O(ǫ−1 log |Πn|),
via reducing (sample-based) testing to (sample-based) proper learning (see Section 1.3.5).

As we have seen in prior chapters, the ability to make queries is very powerful: even when the
queries are selected non-adaptively, they may be selected to depend on one another. In contrast,
a sample-based tester is quite restricted (i.e., it cannot obtain related samples). Nevertheless, a

5See terminology in Sections 9.5 and 9.6.1.
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sample-based tester is desirable in many applications where obtaining samples is far more feasible
than obtaining answers to queries of one’s choice. The question, of course, is what can such sample-
based testers achieve. One general answer is that sample-based testers of sub-linear complexity
exist for any property that has a constant-query proximity-oblivious tester in which each query is
uniformly distributed.6

Theorem 12.8 (from POTs to sample-based testers): Let Π = ∪n∈NΠn such that Πn ⊆ {f : [n]→
Rn}, and suppose that Π has a q-query POT with threshold probability τ and detection probability
̺.

1. If each query made by this POT is uniformly distributed in the function’s domain, then Π has a
sample-based tester of sample complexity s(n, ǫ) = max(O(n(q−1)/q/̺(ǫ)b+(3/q)), O(̺(ǫ)−(3+b))),
where b = 2 in the general case and b = 1 if the POT has one-sided error (i.e., τ = 1). Fur-
thermore, if the POT has one-sided error, then so does the sample-based tester.

2. If the POT is non-adaptive and has one-sided error (i.e., τ = 1), then Π has a sample-based
ǫ-tester that uses O(log |Rn|) · nγ samples, where γ depends on q and ̺(ǫ), and ditto for the
hidden constant in the O-notation. In the general case (i.e., adaptive POT with τ < 1), the
exponent γ may also depend on |Rn|.

Both parts of Theorem 12.8 are actually more general, but some flavor of the conditions made
in them is inherent (since there exists a property Π that has no sample-based tester of sub-linear
complexity although it does have a one-sided non-adaptive two-query POT [153, Prop. 3.3]).7

Applying Part 1 of Theorem 12.8 to any of the known 2-query POTs for monotonicity, which were
presented in Chapter 4, we obtain a sample-based tester of sample complexity Õ(

√
n) ·poly(1/ǫ). It

is actually easy to obtain such testers directly: Considering, for example, the “edge tester” presented
in Section 4.2.1, we can emulate a selection of a random edge in the ℓ-dimensional hypercube by
using a sample of O(

√
2ℓ/ℓ) vertices.

12.4 Testing with respect to other distance measures

Recall that distance between functions (having the same domain [n]) was defined in Section 1.3.1
as the fraction of the domain on which the functions disagree, which can be interpreted as the
probability that the functions disagree on a uniformly distributed point in their domain. A more
general definition may refer to the disagreement with respect to an arbitrary distribution Dn over
[n]; that is, we may have

δDn(f, g)
def
= Pri∼Dn [f(i) 6=g(i)], (12.1)

where i ∼ Dn means that i is distributed according to Dn. In such a case, for a “distribution

ensemble” D = {Dn}, we let δΠ,D(f)
def
= ming∈Πn{δDn(f, g)}. This leads to a definition of testing

with respect to an arbitrary distribution ensemble D, viewing Definition 1.6 as a special case in
which Dn is the uniform distribution over [n].

One step farther is to consider distribution-free testers. Such a tester should satisfy the foregoing
requirement for all possible distributions D, and it is typically equipped with a special device that

6We stress that different queries are allowed to depend on one another; we only postulate that each query, by
itself, is uniformly distributed in the function’s domain.

7The range of the corresponding functions is exponential in n.
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provides it with samples drawn according to the distribution in question (i.e., the distribution Dn

used in the definition of distance). That is, a distribution-free tester for Π is an oracle machine that
can query the function f : [n]→Rn as well as obtain samples drawn from any distribution Dn, and
its performance should refer to δΠ,D(f) (i.e., the distance of f from Πn as measured according to
the distribution Dn). We stress that Dn is a priori unknown to the tester, which may gain partial
information about it from the samples.

Definition 12.9 (distribution-free testing): A distribution-free tester for Π is a probabilistic oracle
machine, denoted T , such that for every ǫ > 0 and n ∈ N and every distribution Dn over [n], the
following two conditions hold:

1. For every f ∈ Πn, it holds that Pr[T f,Dn(n, ǫ)=1] ≥ 2/3.

2. For every f : [n]→Rn such that δΠ,D(f) > ǫ, it holds that Pr[T f,Dn(n, ǫ)=0] ≥ 2/3.

In both items, T f,Dn(n, ǫ) denotes the output of T when given oracle access to f : [n]→Rn as well
as samples that are drawn independently from Dn (and explicit inputs n and ǫ).

Note that, unlike in Section 12.3, the tester has oracle access to the function f . It is provided
with samples drawn according to Dn, but there is no need to provide it with the corresponding
f -labels (since it can obtain these by itself by querying f). In such a case, one may consider both
the tester’s query complexity and its sample complexity.8

In order to justify the foregoing definition, let us spell out the type of settings that it is supposed
to capture. In such settings the function f represents some measurement (or numerical parameter)
of possible situations, which are represented by f ’s domain. In other words, f represents an
assignment of values to possible situations. The distribution Dn represents an (a priori) unknown
distribution on the possible situations, and testing is defined with respect to this distribution
because this is the distribution in which situations occur. But in such a case, it stands to reason
that samples from this distribution are available to the tester.

Taking a more technical attitude, one may say that if the tester is being evaluated with respect
to an arbitrary distribution, then it is fair to provide it with some information regarding this
distribution. Failure to do so, will deem the testing task infeasible; that is, for any non-degenerate
property, a distribution-free tester that obtains no samples of the distribution will have to query
all locations in the function’s domain (since the distribution may be totally concentrated on any of
them).

Few efficient distribution-free testers are known (see, e.g., [167, 97]); in general, it seems that
distribution-free testing is quite hard (see, e.g., [126]). We wonder whether this gloomy picture may
change if one restricts the class of distributions. For example, one may consider only distributions
that have a minimal amount of min-entropy, where a distribution over [n] is said to have min-entropy
(at least) t if no element occurs with probability greater than 2−t (e.g., the uniform distribution
over [n] has min-entropy log2 n). Indeed, a model of lower-bounded randomness (i.e., a lower bound
on the min-entropy) seems reasonable here like in other cases in which one seeks a probabilistic
model of a natural reality.

8In particular, one may also consider the case that the tester does not query the function on each sample obtained
from Dn; see [30].
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Beyond (weighted) Hamming distance. Almost all research in property testing focuses on
the distance measure defined in Section 1.3.1, which corresponds to the relative Hamming distance
between sequences. We already saw a deviation from this archetypical case in Eq. (12.1), but
the measure defined in Eq. (12.1) is merely a weighted Hamming distance. That is, the distance
between functions is defined in terms of the set of domain elements on which they disagree. In the
archetypical definition (presented in Section 1.3.1) one just considers the density of this set in the
domain, and in Eq. (12.1) one considers its weighted density. But measures of the set of points of
disagreements do not exhaust the natural measures of distance between functions (or objects).

Different distance measures, which are natural in some settings, include the edit distance and
the L1-distance. The edit distance is most natural when the object is viewed as a sequence. In
such a case, deleting or inserting a symbol has unit cost, regardless of the position in which the
operation takes place (whereas the Hamming distance may charge such an operation according to
the length of the corresponding suffix, which is being shifted by the operation).9 As in the case of
Hamming distance, a relative notion of edit distance is obtained by dividing the absolute distance
(or edit cost) by the total length of the sequences (which may be of different length). Variants of
“edit distance” vary with the set of operations that are counted at unit cost (e.g., in addition to
symbol deletion and insertion, one sometimes includes also operations on substrings such as the
cut-and-paste operation).

We stress that the Hamming distance (and also the edit distance) counts each disagreement
alike (i.e., for every two values σ and τ , it only distinguishes σ = τ from σ 6= τ). But when
the function’s values are non-binary and its range is equipped with a natural notion of distance, it
makes sense to “charge” disagreements according to their magnitude. This is particularly appealing
for function that range over the reals. Specifically, for f, g : [n]→ [0, 1], it makes sense to consider
the norm of the function f − g, and the L1-norm is indeed most appealing. In contrast, Hamming
distance corresponds to the “L0-norm” (i.e., ‖h‖0 =

∑
i∈[n] h(i)0, where 00 = 0). The reader may

easily conceive of situations in which a tiny L1-distance is insignificant (e.g., it may be due to
“measurement error”), and in such cases considering the Hamming distance is inappropriate.

12.5 Local computation algorithms

Recall that property testing is a decision problem (of the promise type); that is, the desired output
is a bit, which indicates whether the (huge) object has the tested property or is far from having
it. Distance approximation (see Definition 12.2) generalizes property testing in the sense that the
desired output is supposed to approximate a quantity in [0, 1]. More generally, we can consider
super-fast algorithms that approximate other parameters of the (huge) object such as the average
degree of a graph, its girth, its diameter, its expansion coefficient, etc (where we confined ourselves
to the domain of graphs). In all cases, we refer to a relatively short output that approximates a
numerical parameter of the huge object.

A more general task refers to solving search problems concerning these huge objects, where the
desired output is also a huge object. Clearly, we cannot expect a super-fast algorithm to output
an object that is larger than its running time. Hence, the notion of outputting an object is to be
modified. The algorithm will not explicitly output the desired object, but will rather provide oracle
access to it; that is, the algorithm will answer queries regarding the output by making queries to

9For example, the string (01)t is at Hamming distance 2t from the string (10)t, but the edit distance between
them is only two, since (10)t = 1(01)t−10.
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its own input oracle.

12.5.1 Definitions

The following definition generalizes the definition of a local (deterministic) reduction, presented in
the context of lower bound techniques (i.e., Definition 7.13). Actually, we extend the definition by
allowing the algorithm to be adaptive and make a non-constant number of queries. Furthermore,
we consider any search problem Sǫ that is parameterized by a tuple10 of approximation parameters
ǫ > 0; that is, on input f , the task is to find a (solution) f ′ such that (f, f ′) ∈ Sǫ. We denote the
set of solutions (for f) by Sǫ(f) = {f ′ : (f, f ′) ∈ Sǫ}.

Definition 12.10 (local computation algorithms, deterministic version): For every ǫ > 0, let Sǫ

be a binary relation containing pairs of finite functions, and let q : N× (0, 1]∗ → N. A deterministic
oracle machine M is said to q-locally solve the search problem {Sǫ}ǫ>0 if for every n ∈ N there exists
n′ ∈ N such that for every ǫ > 0 and for every function f over [n] there exists a function f ′ over
[n′] such that the following conditions hold.

1. Locality (emulating oracle access to f ′): On input n, ǫ and i ∈ [n′], and oracle access to f ,
the machine M outputs f ′(i) after making at most q(n, ǫ) queries.

2. Validity (i.e., f ′ is a valid solution to f): If Sǫ(f) 6= ∅, then the pair (f, f ′) is in Sǫ.

In addition, we require that n′ be computable based on n.

Note that for functions f such that Sǫ(f) = ∅, it is only required that the machine answers consis-
tently with some function f ′. Indeed, Definition 7.13 (a local (ǫ, ǫ′)-reduction of Π to Π′) is a special
case of Definition 12.10: It corresponds to the case that the local computation algorithm defines a
mapping of functions over [n] to functions over [n′] such that any f ∈ Πn is mapped to f ′ ∈ Π′n′
and any f that is ǫ-far from Πn is mapped to f ′ that is ǫ′-far from Π′n′ ; that is, (f, f ′) ∈ Sǫ,ǫ′ if
either f ∈ Πn and f ′ ∈ Π′n′ or f is ǫ-far from Πn and f ′ is ǫ′-far from Π′n′ .

Definition 12.10 is restricted to deterministic computation, whereas we may gain more applica-
tions by allowing also randomized machines (let alone that our entire mindset in this book views
randomized algorithms as the norm). It is crucial, however, that all invocations of the local compu-
tation algorithm refer to the same function f ′. Towards this end, we provide the machine M with
global randomness, denoted ω, which should be used in all invocations. In addition, the machine
may use auxiliary (“local”) randomness, which is implicit in our notation. We distinguish the
global randomness from the local randomness, because we wish to use different error probability
parameters with respect to each of them (see further discussion following Definition 12.11). The
following definition generalizes the definition of a randomized local reduction (i.e., Definition 7.17,
although the presentation here is different).11

Definition 12.11 (local computation algorithms, randomized version): Let q and {Sǫ}ǫ>0 be as in
Definition 12.10, and let r : N × (0, 1]∗ → N and η : N → [0, 1]. A randomized oracle machine M
is said to q-locally solve the search problem {Sǫ}ǫ>0 with error probability η if for every n ∈ N there

10A tuple of approximation parameters (rather than a single parameter) is used for greater expressibility. In fact,
this is essential in some cases (e.g., for capturing the notion of a local (ǫ, ǫ′)-reduction presented in Definition 7.13).

11Specifically, as in Definition 12.10, we explicitly refer to the (possibly adaptive) computing machine. In addition,
here we explicitly refer to the global randomness and to the error probability.
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exists n′ ∈ N such that for every ǫ > 0 and for every function f over [n] the following conditions
hold.

1. Locality (emulating oracle access to f ′ω): For every ω ∈ {0, 1}r(n,ǫ) there exists a function
f ′ω over [n′] such that, on input n, ǫ, ω and i ∈ [n′], and oracle access to f , with probability
at least 2/3, the machine M outputs f ′ω(i) after making at most q(n, ǫ) queries. In other
words, M always makes at most q(n, ǫ) queries and Pr[Mf (n, ǫ, ω; i) = f ′ω(i)] ≥ 2/3, where
the probability is over the internal coin tosses of M (whereas ω is fixed).

2. Validity (i.e., f ′ω is a valid solution to f): If Sǫ(f) 6= ∅, then, with probability at least 1− η(n)
over the choice of ω, the pair (f, f ′ω) is in Sǫ, where f ′ω is as in the locality condition. That
is,

Prω∈{0,1}r(n,ǫ) [(f, f ′ω) ∈ Sǫ] ≥ 1− η(n).

In addition, we require that n′ be computable based on n. The string ω is called the global random-
ness, and the internal coin tosses of M are called the local randomness.

Note that ω ∈ {0, 1}r(n,ǫ) constitutes a succinct representation of a function f ′ω, which is an alleged
solution for the function f . Hence, the length of ω is of major interest, whereas the length of
the local randomness is less important. We stress that Definition 12.11 refers to two types of
error probability. The first type is the probability that the choice of the global randomness ω
yields an invalid solution f ′ω. Note that this error probability can not be generically reduced by
repetitions, since different ω’s may yield different functions f ′ω (whereas it is not necessarily easy
to determine whether or not f ′ω is in Sǫ(f)).12 This is a general phenomenon that refers to any
randomized algorithms for solving search problems, and it is the reason that we introduced an
explicit parameter, denoted η, for bounding this error probability. In contrast, the second type of
error probability, which refers to the (implicit) local randomness of M , can be reduced by repetitions
(and therefore we felt no need to introduce a parameter that governs it, but rather set this error
probability to 1/3).13

A richer formalism. In Definition 12.11, the oracle machine M is provided with the global
randomness ω. A richer formalism allows to provide it (or rather its query-serving module) with
arbitrary information that is computed based on ω and the oracle f during a preprocessing stage.
In such a case, the query complexity of the preprocessing stage (or rather module) is stated sepa-
rately. Needless to say, an oracle machine as in Definition 12.11 can be obtained by invoking the
preprocessing module each time a query (to f ′ω) needs to be served, but this is wasteful (especially
since typically the preprocessing module has higher complexity than the query-serving module).
This motivates the following definition, where the output of the preprocessing module, denoted z,
may (but need not) explicitly contain the global randomness ω.

Definition 12.12 (local computation algorithms, two-stage version): Let r, η and {Sǫ}ǫ>0 be as
in Definition 12.11, and q1, q2 : N × (0, 1]∗ → N. A pair of oracle machines, (M1,M2), is said to

12Indeed, if the property Sǫ(f) has an efficient property tester, then error reduction is possible.
13This difference provides an additional motivation for distinguishing the local randomness from the global random-

ness. In contrast, incorporating the local randomness in the global randomness would have set the error probability for
each computation of f ′ω to η, whereas the current formalism allows greater flexibility (which is particularly important
in the case that the expected number of local computations is larger than 1/η(n)).
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(q1, q2)-locally solve the search problem {Sǫ}ǫ>0 with error probability η if for every n ∈ N there exists
n′ ∈ N such that for every ǫ > 0 and for every function f over [n] the following conditions hold.

1. Preprocessing: The oracle machine M1 is deterministic, and for every ω ∈ {0, 1}r(n,ǫ), on
input (n, ǫ) and ω, it makes at most q1(n, ǫ) queries.

2. Locality (emulating oracle access to f ′z): For every z ∈ {0, 1}∗ there exists a function f ′z
over [n′] such that, on input n, ǫ, z and i ∈ [n′], and oracle access to f , with probability
at least 2/3, the machine M2 outputs f ′z(i) after making at most q2(n, ǫ) queries. In other

words, M2 always makes at most q2(n, ǫ) queries and Pr[Mf
2 (n, ǫ, z; i) = f ′z(i)] ≥ 2/3, where

the probability is over the internal coin tosses of M2.

3. Validity (i.e., f ′z is a valid solution to f): If Sǫ(f) 6= ∅, then, with probability at least 1− η(n)

over the choice of ω ∈ {0, 1}r(n,ǫ), the pair (f, f ′z) is in Sǫ, where z ← Mf
1 (n, ǫ, ω) and f ′z is

as in the locality condition.

Again, we require that n′ be computable based on n. The string ω is called the global randomness,
and the internal coin tosses of M2 are called the local randomness.

Without loss of generality, z may consist of ω and the sequence of answers provided to M1 in the
execution Mf

1 (n, ǫ, ω). As noted above, every (q1, q2)-local solver yields a (q1 + q2)-local solver, but
it is beneficial to use the former formulation when q1 ≫ q2. (On the other hand, any q-local solver
yields a (0, q)-local solver, where the fictitious preprocessing just maps ω to itself, but this trivial
fact is quite useless.)

We comment that locally decodable codes (briefly discussed in Section 13.4.4) can be viewed
within the current framework. Specifically, given oracle access to a slightly corrupted codeword,
the task is to recover the original message (locally); that is, a q-local decodable code C : {0, 1}k →
{0, 1}n, is equipped with a q-local algorithm for the search problem that consists of all pairs
(w, x) ∈ {0, 1}n × {0, 1}k such that w that is close to the codeword C(x).

12.5.2 Finding huge structures

As mentioned in Section 8.3, local computations of huge structures are implicit in the testers for the
various graph partition problems (in the dense graph model). For concreteness, we consider the case
of Bipartiteness. In this case, we seek a local computation algorithm that finds a 2-partition of
the vertices of a given bipartite graph such that there are relatively few edges with both endpoints
in the same part. Such a local computation algorithm is implicit in the corresponding tester.

Proposition 12.13 (finding approximate 2-colorings in bipartite graphs, in the dense graph model):
There exists a (poly(1/ǫ) · log(1/η), Õ(1/ǫ))-local algorithm that, on input k, ǫ, η and oracle access
to an adjacency predicate of a k-vertex Bipartite graph, G = ([k], E), finds, with probability at least
1− η, a 2-partition χ : [k]→ {1, 2} such that |{{u, v}∈E : χ(u) = χ(v)}| < ǫk2/2.

In other words, the algorithm solve the search problem Sǫ with error probability η, where Sǫ contains
all pairs (G,χ) such that G = ([k], E) is a bipartite graph and |{{u, v}∈E : χ(u) = χ(v)}| < ǫk2/2,
where k2/2 is used as an approximation to the total number of pairs over [k] (see discussion in
Section 8.2).
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Proof Sketch: Our starting point is the analysis of Algorithm 8.7, which views the sample of
Õ(1/ǫ2) vertices selected by the algorithm as consisting of two parts, U and S, such that |U | =
Õ(1/ǫ) and |S| = Õ(1/ǫ2). The analysis establishes that for 5/6 of the possible U ’s, there exists a
2-partition of U , denoted (U1, U2), such that letting χ(v) = 1 if and only if v has no neighbor in U1

yields a 2-partition χ : [k]→ {1, 2} as desired (i.e., |{{u, v}∈E : χ(u) = χ(v)}| < ǫk2/2). The set S
is used to (implicitly) estimate the suitability of each of the 2-partitions of U . Specifically, if χ has
at least ǫk2/4 monochromatic (w.r.t χ) edges, then, with probability at least 1− exp(−Ω(ǫ · |S|)) =
1− 2−|U |−3, the subgraph induced by S will contain a monochromatic edge.14 Hence, we can find,
in a preprocessing stage, a partition of U that determines a suitable χ.

Let us spell out the local computation algorithm that emerges. The preprocessing stage of this
algorithm uses the global randomness in order to select random sets of vertices U and S such that
|U | = Õ(1/ǫ) and |S| = Õ(1/ǫ2). It then determines a 2-partition of U , denoted (U1, U2), such
that, with high probability (over the choice of U and S), the corresponding 2-partition χ is a good
solution (where χ(v) = 1 if and only if v has no neighbor in U1). The 2-partition of U is determined
by finding a legal 2-coloring of the subgraph of G that is induced by U ∪S, and using the 2-partition
that it induces on U . The query-serving stage is deterministic: It answers the query v by querying
the graph G on the pairs {v, u} for all u ∈ U1, and answers accordingly. (Hence, this algorithm
uses no local randomness.)

As shown in the proof of Lemma 8.8, with high probability, the set U neighbors both endpoints
of almost all edges in G (i.e., all but at most ǫk2/4 of the edges). Whenever this event occurs, a
2-partition of U that yields a bad solution χ : [k] → {1, 2} will be detected as bad (by S), with
overwhelmingly high probability. Hence, with high probability, the 2-partition of U selected in
the preprocessing stage is good. Finally, in order to obtain error probability of η, we perform the
foregoing procedure using ℓ = O(log(1/η)) candidate sets U and a set S that is ℓ times larger.15

Finding other huge structures. In general, in the context of graphs, two notable types of
desired output are (1) a partition of the vertices of the (input) graph that satisfies some properties,
and (2) a subgraph (of the input graph) that satisfies some properties. We briefly review these
types of problems next.

As mentioned in the beginning of this section, in the dense graph model, for any fixed t and
any sequence of desired vertex and edge densities, a t-partition of the vertices that approximately
satisfies these densities can be found by a poly(1/ǫ)-local algorithm (with error probability poly(ǫ),
whenever the exact t-partition exists), where ǫ is the proximity parameter. This follows from the
methods used to construct testers for the corresponding graph partition problems (discussed in
Section 8.3).

Turning to the bounded-degree graph model, we mention that Section 9.5 evolves around the

14Actually, letting S = {s1, ..., sm}, it suffices to check the pairs (s2i−1, s2i) for i = 1, ..., m/2.
15That is, in the preprocessing stage, we select ℓ random sets U (1), ..., U (ℓ), each of size eO(1/ǫ) and a single set S of

size ℓ · eO(1/ǫ2), find an i such that U (i) is good (per Definition 8.8.1), determine the 2-partition of U (i) by considering
the subgraph of G that is induced by U (i) ∪ S, and output this 2-partition (for use by the query-serving module).
Recall that a set is good if it neighbors all but at most ǫk/6 of the vertices that have degree at least ǫk/6, and note

that we can use S (or an auxiliary set of ℓ · eO(1/ǫ2) random vertices) in order to test this condition. Hence, the
verdict regarding the goodness of each U (i) is correct with probability 1− exp(−ℓ), and with the same probability at
least one of the U (i)’s is good. Lastly, since |S| = Ω(ℓ · |U (i)|/ǫ), with probability 1 − exp(−ℓ), the 2-coloring of the
subgraph induced by U (i) ∪ S yields a valid 2-partition of [k].
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local construction and utilization of partition oracles. Recall that for given parameters ǫ > 0 and
t ∈ N, such a partition oracle of a graph G = ([k], E) is a function P : [k] → ∪i∈[t]

([k]
i

)
such that

(1) for every vertex v ∈ [k] it holds that v ∈ P (v); (2) the subgraph of G induced by P (v) is
connected (and has at most t vertices); and (3) different P (v)’s are disjoint and the total number
of edges among them is at most ǫk.

The problem of finding huge subgraphs that satisfy various properties was also considered in
several works. In particular, the related problems of finding a maximal matching and approximate
maximum matching in bounded-degree graphs were considered in several works (see [103] and the
references therein).16 The problem of finding a sparse spanning subgraph was studied in [198].

12.5.3 Local reconstruction

A natural computational problem, which falls within the framework of local computation, is design-
ing a “filter” that returns the input function if theis function has a designed property and returns
an arbitrary function having the property otherwise. In other words, the filter must always return
an output in Π, but if the input f is in Π then the filter must return f itself. That is, for a property
of functions Π, we consider the search problem S such that for every f it holds that ∅ 6= S(f) ⊆ Π,
and S(f) = {f} if f ∈ Π. A more smooth definition requires that, for some monotonically non-
decreasing function ρ : [0, 1] → [0, 1] such that ρ(0) = 0, it holds that if f is δ-close to Π, then
S(f) ⊆ Π contains only functions that are ρ(δ)-close to f (and, as before, S(f) 6= ∅ for any f).17

Needless to say, the aim is to solve this search problem by a local computation algorithm; that is,
the filter is required to implement an oracle access to some f ′ ∈ S(f) by making few queries to f .

Such filters, also called local reconstructors, are extremely beneficial in settings that are com-
plimentary to ones that motivate tolerant testers. Specifically, here we envision a gap between the
usefulness of functions having a certain property and functions lacking it. Testing the function for
the property eliminates the danger of functions that are far from the property. The foregoing filters
guarantee that also functions that are close to the property will not cause problems; they will be
transformed into functions that have the property and are close to the original functions (and so
they may preserve other features of the original functions).

A concrete case where this issue arises is the one of mechanisms that preserve the “privacy” of
the data when answering questions that correspond to functions of the data, provided that these
functions satisfy certain properties (e.g., Lipschitz properties, cf. [173]). The point is that the
security guarantee (i.e., “privacy”) may be compromised even if the function deviates only a little
from the property, but the utility of the function does not change by much if the function is slightly
modified.

In any case, properties that consist of functions that are randomly self-reducible by few queries
(see Definition 5.9) have trivial local reconstruction algorithms, which use no global randomness
(but do use local randomness). Recall, however, that such properties must have distance (i.e.,
every two distinct functions in the property are far apart). Hence, the focus of the study of local
reconstruction algorithms is on properties that have no distance, like monotonicity (and Lipschitz)
properties.

16These works also study finding d-coloring in graphs of maximal degree d.
17Indeed, it follows that S(f) = {f} for any f ∈ Π, since in this case S(f) contains only functions that are 0-close

to f .
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12.6 Non-interactive proofs of proximity (MAPs)

The P 6= NP conjecture means that, in general, verifying the validity of a proof for a given assertion
is easier than deciding the validity of the given assertion, when it is not accompanied by a proof. A
natural question is whether the same holds also with respect to approximate decisions; that is, can
short proofs assist property testers, which in this case may be called property verifiers.

This question leads to the following model of probabilistic proof systems, which is a hybrid of MA
(“randomized NP”) and property testing. These proof systems, called MAPs (for Merlin-Arthur
proofs of proximity), consist of a (relatively short) proof given to a verifier that has (randomized)
query access to the main (tested) object. We stress that the verifier has free access to the alleged
proof, and that our focus is on short proofs (i.e., proofs that are significantly shorter than the
input).18 Insisting on short proofs is natural in the current context, since our final goal is to
obtain super-fast algorithms; recall that, in general, property testing is concerned with sub-linear
complexity (i.e., sub-linear in input length).

The choice of considering a randomized proof system, rather than a deterministic one, also fits
the context of property testing, since property testers are inherently randomized.19 Hence, we view
the MAP model as the natural “NP analogue” of property testing.

The following definition augments the property testing framework by providing the tester, which
may be called a verifier, with free access to a short proof (denoted π), in addition to its oracle access
to the input (denoted f). The guarantee is that, for any input that has the property, there exists a
proof that makes the verifier accept (with high probability), whereas for any input that is far from
the property the verifier will reject any alleged proof (with high probability).

Definition 12.14 (non-interactive proofs of proximity (MAPs)): Let Π = ∪n∈NΠn such that Πn ⊆
{f : [n]→ Rn}. A system of non-interactive proofs of proximity (MAP) for Π is a probabilistic oracle
machine, called a verifier and denoted V , that satisfies the following two conditions, for every n ∈ N

and ǫ > 0.

1. Completeness: V accepts inputs in Π when given an adequate proof. Specifically, for every
f ∈Πn there exists π ∈ {0, 1}∗ such that Pr[V f (n, ǫ, π)=1] ≥ 2/3.

If Pr[V f (n, ǫ, π)=1] = 1, then we say that V has perfect completeness.

2. Soundness: V rejects inputs that are far from Π. Specifically, for every f : [n]→Rn that is
ǫ-far from Πn and every π ∈ {0, 1}∗ it holds that Pr[V f (n, ǫ, π)=0] ≥ 2/3.

We say that V has proof complexity p : N → N if the completeness condition holds with a proof π
of length at most p(n). We say that V has query complexity q : N × (0, 1] → N if, on input n, ǫ, π
and oracle access to any f : [n]→Rn, the verifier makes at most q(n, ǫ) queries.20

In addition, one may limit the computational complexity of the verifier; for example, require that
its running time is sub-linear in the length of the input (or almost linear in its proof and query

18Jumping ahead, we mention that any property can be ǫ-verified by making O(1/ǫ) queries, when given access to
a proof of linear length (see Exercise 12.6). On the other hand, if the proof is shorter than the query complexity,
then having free access (rather than query access) to it is immaterial; however, this is not necessarily the case.

19Indeed, deterministic MAPs are quite restricted; see Exercise 12.7.
20Indeed, as in the definition of property testers, the query complexity of the verifier depends on ǫ. A concious

decision is made here not to allow the proof complexity to depend on ǫ (and not to allow the query complexity to
depend on π), since this choice seems more natural.
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complexities). We note that property testers may be viewed as MAPs of proof complexity zero,
and in that case perfect completeness corresponds to one-sided error probability.

As mentioned upfront, our focus is on MAPs of sub-linear proof complexity; indeed, any property
has a “trivial” MAP with linear proof complexity and query complexity O(1/ǫ) (see Exercise 12.6).
Interestingly, even very short proofs can reduce the query complexity in a significant fashion: For
example, Π = {uuvv : u, v ∈ {0, 1}∗} has a MAP of logarithmic proof complexity and query
complexity O(1/ǫ), whereas testing Π requires Ω(

√
n) queries (see Exercise 12.9).

General results. A few of the known results regarding MAPs include:

• MAPs versus property testers. There exists a property Π that has a MAP of logarithmic
proof complexity and query complexity poly(1/ǫ), whereas testing Π requires Ω(n0.999) queries
(see [141], building on [166]). Indeed, 0.999 stands for any constant smaller than 1.

• Proof length versus query complexity trade-off in MAPs. There exists a property Π such
that, for every p ≥ 1, the property Π has a MAP of proof complexity p and query com-
plexity poly(1/ǫ) · n/p, whereas every MAP of proof complexity p for Π requires Ω(n0.999/p)
queries [166].

• Two-sided versus one-sided error MAPs. Any MAP can be transformed into a MAP with
perfect completeness at the cost of increasing its proof and query complexities by at most a
polylogarithmic (in n) factor [166].

• Properties that are extremely hard for MAPs. There exists a property Π such that every MAP
of proof complexity n/100 for Π requires Ω(n) queries [166].

In addition, we mention that, for every p < n, every context-free language has a MAP of proof
complexity p and query complexity ǫ−1 · Õ(n)/p; the same holds for sets recognized by read-once
branching programs of polynomial size [142].

Relation to other forms of non-interactive proof systems. MAPs are a type of non-
interactive and probabilistic proof systems, and as such they are related to but different from
three other types of such proof systems. The other proof systems that we refer to are PCPPs
(PCPs of Proximity), PCPs, and “randomized NP” proof systems (captured by the complexity
class MA).21 These four non-interactive proof systems differ in the way they refer to the (pur-
ported) assertion and to the (alleged) proof. In MAPs and PCPPs, the verifier only gets oracle
access to the assertion, its queries are accounted for (in the query complexity), but the sound-
ness condition only refers to inputs that are far from the set of valid assertions. In contrast, in
(randomized) NP-proof systems and in PCPs the verifier gets free access to the assertion (and the
soundness condition refers to all invalid assertions). Turning to the alleged proof, in (randomized)
NP-proofs and in MAPs, the verifier gets free access to it, whereas in PCPs and PCPPs the verifier
only gets oracle access to the alleged proof. A crucial difference between MAPs and all the other
three types of proof systems is that in MAPs the focus is on short proofs (whereas in NP, as well as

21PCPs and PCPPs are discussed in Chapter 13; see, in particular, Sections 13.2.2 and 13.2.3.3. For a wider
perspective on probabilistic proof systems, the interested reader is referred to [131, Chap. 9].
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in PCPs and PCPPs, the proof is typically longer than the assertion).22 The taxonomy that arises
is captured in Figure 12.1.

PROOF

ASSERTION

free access to the proof oracle access to the proof

proof

assertion proof

assertion

PCPP

PCP

proof

assertion

MAP

assertion

proof

NP / MA

oracle access

to the assertion

to the assertion

free access

Figure 12.1: A taxonomy of four non-interactive proof systems.

To summarize: In MAPs, the input is presented via an oracle (like in PCPP and in property testers),
whereas the proof is presented explicitly (like in NP/MA). Hence, as stated upfront, MAPs are an
NP version of property testers.

Relation to interactive proofs of proximity. The MAP model can be viewed as a special
case of the more general model of interactive proofs of proximity (IPP), which is an interactive
proof (IP) version of property testing. In an IPP, the prover and verifier exchange messages, but
the verifier can only access the main input via oracle queries. In this case the verifier V is an
interactive strategy, which also has oracle access to the main input (denoted f). In addition, we
also consider interactive strategies for the prover. For a pair of interactive strategies, (A,B), we
denote by 〈A,Bf 〉(z) the output of strategy B after interacting with A on explicit input z, while
having oracle access to f .23

Definition 12.15 (interactive proofs of proximity (IPPs): Let Π = ∪n∈NΠn such that Πn ⊆ {f :
[n]→ Rn}. A system of interactive proofs of proximity (IPP) for Π is a probabilistic and interactive
strategy, called a verifier and denoted V , that satisfies the following two conditions, for every n ∈ N

and ǫ > 0.

1. Completeness: V accepts inputs in Π when interacting with an adequate prover. Specifically,
for every f ∈Πn there exists a prover strategy P such that Pr[〈P, V f 〉(n, ǫ)=1] ≥ 2/3.

22
Advanced comment: The focus on short proofs is reminicent of the study of laconic interactive proof systems,

but that study focused on systems in which at least two messages are sent [159].
23In the following definition the first strategy (i.e., A) may depend arbitrarily on f , and so there is no point in

providing it with oracle access to f .
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2. Soundness: V rejects inputs that are far from Π. Specifically, for every f : [n]→Rn that is
ǫ-far from Πn and every strategy P̃ it holds that Pr[〈P̃ , V f 〉(n, ǫ)=0] ≥ 2/3.

We say that V has query complexity q : N × (0, 1] → N if, on input n, ǫ and oracle access to any
f : [n]→Rn, the verifier makes at most q(n, ǫ) queries. The communication complexity of the IPP
is defined as the total length of messages sent by the prover to the verifier.

As with MAPs, the focus is on IPPs of sub-linear query and communication complexities. In
addition, we may also bound the length of the messages sent by the verifier, and the total number
of messages exchanges (a.k.a the number of communication rounds). And, again, we may also limit
the computational complexity of the verifier.

Indeed, MAPs may be viewed as IPPs with uni-directional communication going from the
prover to the verifier, and in this case the prover may just send a single message. We mention that
IPPs are more powerful than MAPs: there exists a property Π that has an IPP of polylogarithmic
communication and query complexities such that every MAP of proof complexity n0.499 for Π requires
more than n0.499 queries [166]. We also mention that IPPs of sub-linear complexity are known for
natural complexity classes such as NC and SC. Specifically:

1. Every set that has log-space uniform circuits of polynomial-size and no(1) depth, has an IPP
in which the verifier total running time is n0.5+o(1) [244].

2. For every constant γ > 0, every set that can be decided in polynomail-time and nγ space, has
an IPP of constant round complexity in which the verifier total running time is n0.5+O(γ) [236].

A complexity theoretic perspective. The foregoing separation results illustrate complexity
gaps between property testing, non-interactive proofs of proximity, and interactive proofs of prox-
imity. Tentatively denoting by PT pl, MAPpl and IPPpl the classes of properties that admit
testers and verifiers of polylogarithmic query and communication complexity,24 we get a separation
between these classes; that is, PT pl ⊂ MAPpl ⊂ IPPpl. In some sense, this means that (very
natural) approximate decision versions of the complexity classes RP,MA and IP are separated.

12.7 Chapter notes

12.7.1 Historical notes

Property testing with respect to general distributions as well as distribution-free testing, sample-
based testing, and tolerant testing were all mentioned in [140, Sec. 2]. However, the focus of [140]
as well as of almost all subsequent works was on the basic framework of Definition 1.6 (i.e., using
queries in testing w.r.t the uniform distribution). An explicit study of the various ramifications
started (later) in [167, 153, 225], respectively.

The study of tolerant testing of properties (and distance approximation for them) was initiated
by Parnas, Ron, and Rubinfeld [225]. Theorem 12.3 was proved by Fischer and Newman [116].

24More generally, we may denote by PT [q] the class of properties that admit testers of query complexity q,
and by MAP[p, q] (resp., IPP[c, q]) the classe of properties that admit verifiers of query complexity q and proof
complexity p (resp., communication complexity c). The foregoing results assert that PT [n0.999] does not contain
MA[O(log n),poly(1/ǫ)], and that MA[n0.499 , n0.499] does not contain IPP[poly(log n),poly(ǫ−1 logn)].
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Distance approximation in the context of bounded-degree and general graphs were first studied
in [203].

An extensive study of sample-based testers was initiated by Goldreich and Ron [153]. Part 1 of
Theorem 12.8 is due to [153], whereas Part 2 is due to [112]. A characterization of properties that
have sample-based testers of constant complexity has recently appeared in [57].

The study of distribution-free testers was effectively initiated by Halevy and Kushilevitz [167],
and a few works followed. We mention the work of Glasner and Servedio, which proves that
distribution-free testing is significantly harder than standard testing even for very basic properties
of Boolean functions [126].

The study of property testing with respect to the edit distance was initiated by Batu et al. [33],
and a study of testing with respect to the Lp-distance was initiated by Berman, Raskhodnikova,
and Yaroslavtsev [50].

Local computation algorithms were defined, in full generality, by Rubinfeld et al. [247]. This
notion generalizes the notion of finding huge structures, which is implicit in [140], and the notion
of local reconstruction proposed by Ailon et al. [5] (and pursued in [248, 173]). An analogue of the
notion of local reconstruction for the context in which the object is a distribution, called sampling
correctors, was recently proposed in [69].

The notion of non-interactive proofs of proximity (MAPs) was introduced and studied by Gur
and Rothblum [166], subsequent to the introduction and study of interactive proofs of proximity
(IPPs) by Rothblum, Vadhan, and Wigderson [244].25 We mention that IPPs are a special case
of a general framework suggested before by Ergün, Kumar, and Rubinfeld [102]. We also mention
that the notion of MAPs is implicit in the work of Fischer, Goldhirsh, and Lachish [110], who
(concurrently and independently of [166]) referred to the existence of MAPs as an obstacle to
proving lower bounds on a robust notion of testing (which they call “partial tests”).

12.7.2 Massively parameterized properties

Before concluding this chapter, we briefly discuss the notion of testing massively parameterized
properties. Strictly speaking, this notion falls within the framework of property testing, but con-
ceptually it does represent a certain deviation from that mind-frame.

Recall that throughout this book, we focused on properties of the form Π = ∪n∈NΠn such that
Πn is a set of functions over the domain [n]. Thus, the (size) parameter n, which was given to the
tester, specifies a set of functions over [n]. A generalization of this setting consists of considering
properties that are arbitrarily parameterized such that the parameter determines the size of the
tested object but is not confined to that role. Specifically, we consider properties of the form
Π = ∪z∈{0,1}∗Πz such that Πz is a set of functions over [n(z)], where n : {0, 1}∗ → N. In this case,
the tester is given the parameter z (rather than n(z)) as an explicit input, and its running-time is
at least linear in |z| (although its query complexity may be much lower).

The term massively parameterized properties refers to the case that |z| ≥ n(z)Ω(1) (or even
|z| = Ω(n(z))), which means that the size of the tested object is at most polynomial (or at most
linear) in the length of the parameter z (i.e., n(z) = poly(|z|), or even n(z) = O(|z|)). This stands in
contrast to the standard case in which the length of the size-parameter n is logarithmic in the size of
the object (i.e., n = exp(|n|)). In particular, when n(z) = O(|z|), the running-time of the tester is at
least linear in the size of the tested object (although, again, its query complexity may be sublinear

25We mention that Rothblum in [166], is different from Rothblum in [244].
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in n(z)). In this case, property testing no longer offers sub-linear time algorithms, although it may
still offer sublinear query complexity, which is valuable in settings in which accessing the input is
more expensive than computing time.

For example, as briefly mentioned in Section 6.4, the massive parameter may be a Boolean
formula φ : {0, 1}n → {0, 1}, and the property may consist of the set of (n-bit long) assignments
that satisfy this formula (cf. [47]). In this case, the input assignment is typically shorter than the
description of the formula (i.e., n < |φ|); still, the tester is given the formula “for free” and is only
charged for queries to the assignment. Another example is the graph orientation model, where the
massive parameter is a graph G = ([k], E), and the property consists of a set of orientations of
the edges (e.g., all orientations that yield a directed Eulerian graph). Again, the input orientation
ξ : E → {±1} is shorter than the description of the parameter (graph).

We comment that the framework of massively parameterized properties has often been used
implicitly. For example, the problem of testing equality to a fixed target distribution (studied
in Section 11.2) is massively parameterized (by the target distribution). Likewise, the property
of being isomorphic to a fixed target graph, studied in [114], is massively parameterized (by the
target graph).26 For a survey of studies of testing massively parameterized properties, the reader
is referred to [216].

12.7.3 Exercises

Exercise 12.1 (tolerant testers with one-sided error probability):27 We say that a tolerant tester
(as in Definition 12.1) has one-sided error if Condition 1 holds with probability 1 (i.e., T accepts
with probability 1 any f : [n]→Rn that is ǫ′-close to Π). Show that if for some ǫ > 0 and n ∈ N

it holds that Πn is non-trivial w.r.t ǫ-testing (i.e., Πn 6= ∅ and there exists a function that is ǫ-far
from Π), then any ǫ′-tolerant ǫ-tester for Πn makes more than ǫ′n queries, for any ǫ′ ∈ (0, ǫ).

Guideline: Suppose that an ǫ′-tolerant ǫ-tester T makes q queries, and consider its execution when
given access f : [n]→Rn that is ǫ-far from Π. Then, with positive probability, T rejects. Fix such
a rejecting sequence of coins for T , and consider the set of locations Q that were queried. Finally,
for an arbitrary g ∈ Πn, consider a hybrid, denoted h, of g and f such that h(j) = f(j) if j ∈ Q
and h(j) = g(j) otherwise. Since, h is rejected with positive probability, it must hold that h is
ǫ′-far from g ∈ Πn, which implies |Q| > ǫ′n.

Exercise 12.2 (generic derivation of a weak tolerant tester): Show that any ǫ-tester for Π that
makes q queries that are each uniformly distributed,28 yields and (1/10q)-tolerant ǫ-tester for Π of
query complexity O(q).

Guideline: Observe that such a tester accepts any function that is ǫ′-close to Π with probability at
least 2/3− q · ǫ′. Use error reduction to regain the original error bound of 2/3.

Exercise 12.3 (tolerant tester for t-colorability in the dense graph model): For any t ≥ 2, present
an ǫ′-tolerant ǫ-tester for t-Colorability by using a reduction to several graph partition problems.
Specifically, referring to the framework presented in Definition 8.11, use t-partition problems in

26Interestingly, this paper also studies the problem of testing isomorphism between two unknown input graphs.
27Based on [260].
28We stress that different queries are allowed to depend on one another; we only postulate that each query, by

itself, is uniformly distributed in the function’s domain.
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which the absolute upper bounds on the edge density inside parts (i.e., the Habs
i,i ’s) sum-up to ǫ′, and

test these properties with a proximity parameter set to (ǫ− ǫ′)/2 or so.

Guideline: In case of t = 2, let ǫ′′ = (ǫ − ǫ′)/4, and, for every i ∈ [⌈1/ǫ′′⌉], consider the property
associated with the non-trivial bounds Habs

1,1 = i · ǫ′′ and Habs
2,2 = ǫ′ − (i − 1) · ǫ′′. Essentially, run

each of the m corresponding testers with proximity parameter ǫ′′, and accept if and only if at least
one of them accepts.

Exercise 12.4 (tolerant testers in the bounded-degree graph model): Present tolerant testers for
degree regularity, connectivity, and cycle-freeness. Specifically, present ǫ′-tolerant ǫ-testers of query
complexity poly(1/ǫ′) for some ǫ′ = Ω(ǫ).

Guideline: Use Claim 9.5.1, Proposition 9.7, and Proposition 9.12, respectively. Note that algorith-
mic steps that reject based on the mere existence of evidence for violation of the property should
be replaces by steps that reject only based on sufficient amount of such evidence.

Exercise 12.5 (disposing of a promise underlying the bounded-degree graph model): Recall that,
in the bounded-degree graph model, the tester is given oracle access to a purported incidence function
g : [k]× [d]→ {0, 1, ..., k} of a k-vertex graph of maximal degree d such that if g(u, i) = v for some
u, v ∈ [k] and i ∈ [d], then there exists j ∈ [d] such that g(v, j) = u. Show that we can waive the
latter assumption by increasing the query complexity of the tester by a factor of d and an additive
term of O(d/ǫ).

Guideline: First, test the condition by selecting O(1/ǫ) random pairs (u, i) ∈ [k] × [d]. Assuming
that this test passed, invoke the original tester while answering its queries according to the function
g′ : [k]× [d]→ {0, 1, ..., k} such that g′(u, i) = v if g(u, i) = v ∈ [k] and u ∈ {g(v, j) : j ∈ [d]} (and
set g′(u, i) = 0 otherwise). Provide a detailed analysis of the performance of this tester.

Exercise 12.6 (MAPs with linear length proofs): Show that every property Π has a MAP of linear
proof complexity and query complexity O(1/ǫ).

Guideline: The proof π consists of a copy of the input function f ; the verifier checks whether π ∈ Π,
and then checks that π = f by quering f at O(1/ǫ) random locations.

Exercise 12.7 (a lower bound on the randomness complexity of MAPs):29 Consider a promise
problem (Πyes,Πno) regarding functions from [n] to R, and say that Π is strongly ρ-evasive if
there exists a function f1 : [n] → R in Πyes such that for every Q ⊂ [n] of density ρ, there exists
f0 ∈ Πno such that for every x ∈ Q it holds that f1(x) = f0(x). Suppose that (Πyes,Πno) is
strongly ρ-evasive and that membership in Πyes can be verified (say, with error probability 1/3)
by an oracle machine M that makes q queries, while getting a proof of arbitrary length, and being
guaranteed that the input is in Πyes ∪ Πno. Show that M must toss at least log2(ρn/q) coins.
Note that this means that if (Π, {f : δΠ(f) > ǫ}) is strongly ρ-evasive, then an ǫ-MAP for Π (i.e.,
a MAP that works when the proximity parameter is set to ǫ) must toss at least log2(ρn/q) coins.30

29This exercise is related to Exercise 1.22, which refers to the case of deciding rather than verifying. In Exercise 1.22,
ρ-evasive meant that there exists a function f : [n] → R such that for every Q ⊂ [n] of density ρ, there exist f1 ∈ Πyes

and f0 ∈ Πno such that for every x ∈ Q it holds that f1(x) = f0(x) = f(x). Here, we also mandate that f = f1.
30Note that for many natural properties and for sufficiently small constant ǫ > 0, the problem of ǫ-testing the

property is strongly Ω(1)-evasive. A partial list includes sets of low degree polynomials, any code of linear distance,
monotonicity, juntas, and various graph properties.
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Guideline: Suppose that M tosses r coins, and let f1 be a function as in the strong ρ-evasive
condition, and π be a suitable proof for f1. Consider all 2r possible executions of Mf1(π), and
let Q denote the set of queries made in these executions. Then, |Q| ≤ 2r · q. On the other hand,
|Q| > ρ · n, since otherwise these executions cannot distinguish f1 from the corresponding function
f0 that is guaranteed by the strong ρ-evasive condition.

Exercise 12.8 (upper bound on the randomness complexity of MAPs):31 Let Π = ∪nΠn, where Πn

is a subset of {f : [n]→ Rn}. Suppose that Π has a MAP of error probability 1/4, query complexity
q, and proof complexity p such that p(n) = O(n). Show that Π has a MAP of query complexity q,
proof complexity p, and randomness complexity at most log n + log log |Rn|+ O(1) coins. Note that
the randomness-efficient verifier derived here is not necessarily computationally-efficient.

Guideline: Suppose that the MAP V tosses r = r(n) coins, and observe that the number of possible
functions that V is required to rule about is at most |Rn|n, whereas each such function has 2p(n)

possible proofs. Using the probabilistic method, show that there exists a set S ⊆ {0, 1}r of size
O(log(|Rn|n · 2p(n))) such that for every function f : [n]→ R and every π ∈ {0, 1}p(n) it holds that

|Prω∈S [Mf (ω;π) = 1]−Prω∈{0,1}r [M
f (ω;π) = 1]| < 1/12.

Then, a randomness-efficient machine may select ω uniformly in S, and emulate M while providing
it with ω (as the outcome of the internal coin tosses used by M).

Exercise 12.9 (MAPs are stronger than property testers):32 Show that the property Π = {uuvv :
u, v ∈ {0, 1}∗} has a MAP of logarithmic proof complexity and query complexity O(1/ǫ), whereas it
is not testable with o(

√
n) queries.

Guideline: Regarding the MAP, for uuvv ∈ Π, consider the proof π = |u| ∈ [n] ≡ {0, 1}log2 |uuvv|. As
for the lower bound, consider the uniform distribution over Πn = Π ∩ {0, 1}n versus the uniform
distribution over all n-bit long strings. Actually, consider a minor variation on the first distribution
obtained by picking i ∈ [n/2] uniformly at random and selecting u ∈ {0, 1}i and v ∈ {0, 1}0.5n−i

uniformly at random. Note that a machine that makes o(
√

n) queries cannot distinguish these two
distributions, since in the first distribution only locations that are at distance either i or 0.5n − i
apart are correlated.

31Based on [155, 166]. This exercise extends Exercise 1.21, which refers to the case of deciding rather than verifying.
32Based on [14, 110]: The lower bound is based on [14], which actually considered the context-free language

{uuRvvR : u, v ∈ {0, 1}∗}, where uR = um · · ·u1 is the “reverse” of u = u1 · · ·um. The upper bound was first
mentioned in [110].
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Chapter 13

Locally Testable Codes and Proofs

Summary: We survey known results regarding locally testable codes and locally
testable proofs (known as PCPs). Local testability refers to approximately testing large
objects based on a very small number of probes, each retrieving a single bit in the repre-
sentation of the object. This yields super-fast approximate-testing of the corresponding
property (i.e., being a codeword or a valid proof).

In terms of property testing, locally testable codes are error correcting codes such that
the property of being a codeword can be tested within low query complexity. As for
locally testable proofs (PCPs), these can be viewed as massively parameterized proper-
ties that are testable within low query complexity such that the parameterized property
is non-empty if and only if the corresponding parameter is in a predetermined set (of
“valid statements”).

Our first priority is minimizing the number of probes, and we focus on the case that
this number is a constant. In this case (of a constant number of probes), we aim at
minimizing the length of the constructs. That is, we seek locally testable codes and
proofs of short length.

We stress a fundamental difference between the study of locally testable codes and the study of
property testing. Locally testable codes are artificially designed with the aim of making codeword
testing easy. (The same holds with respect to locally testable proofs.) In contrast, property testing
envisions natural objects and properties that are prescribed by an external application.

This chapter has been adapted from our survey [130, 132], which was intended for readers that
have general background in the theory of computation but may lack familiarity with property test-
ing. We chose to maintain this feature of the original text, and keep this chapter self-contained.
Hence, the property testing perspective is mentioned but is not extensively relied upon. In par-
ticular, the fact that locally testable codes correspond to a special case of property testing is not
pivotal to the presentation, although it is spelled out. Viewing PCPs in terms of property testing
is less natural, yet this perspective is offered too (even in the foregoing summary); but again it is
not pivotal to the presentation.

This chapter also differs from the other chapters in its style: It only provides overviews of results
and proofs, rather than detailed proofs. Furthermore, the footnotes provide additional details that
may be more essential than in other chapters.
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13.1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable proofs) are fundamental
to computer science as well as to related disciplines such as mathematics and computer engineering.
Redundancy is inherent to error-correcting codes, whereas testing validity is inherent to proofs. In
this survey we also consider less traditional combinations such as testing validity of codewords and
the use of proofs that contain redundancy. The reader may wonder why we explore these non-
traditional possibilities, and the answer is that they offer various advantages (as will be elaborated
next).

Testing the validity of codewords is natural in settings in which one may want to take an action
in case the codeword is corrupted. For example, when storing data in an error correcting format,
we may want to recover the data and re-encode it whenever we find that the current encoding is
corrupted. Doing so may allow to maintain the data integrity over eternity, although the encoded
bits may all get corrupted in the course of time. Of course, we can use the error-correcting decoding
procedure associated with the code in order to check whether the current encoding is corrupted,
but the question is whether we can check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow for a super-fast
probabilistic testing of whether a given string is a valid codeword or is far from any such codeword.
In particular, the tester works in sub-linear time and reads very few bits of the tested object.
Needless to say, the answer provided by such a tester can only be approximately correct (i.e.,
distinguish, with high probability, between valid codewords and strings that are far from the code),
but this may suffice in many applications (including the one outlined in the previous paragraph).

Similarly, locally testable proofs are proofs that allow for a super-fast probabilistic verification.
Again, the tester works in sub-linear time and reads very few bits of the tested object (i.e., the
alleged proof). The tester’s (a.k.a. verifier’s) verdict is only correct with high probability, but this
may suffice for many applications, where the assertion is rather mundane but of great practical
importance. In particular, it suffices in applications in which proofs are used for establishing the
correctness of specific computations of practical interest. Lastly, we comment that such locally
testable proofs must be redundant (or else there would be no chance for verifying them based on
inspecting only a small portion of them).

Our first priority is on minimizing the number of bits of the tested object that the tester reads,
and we focus on the case that this number is a constant. In this case (of a constant number of
probes), we aim at minimizing the length of these constructs (i.e., codes or proofs). An opposite
regime, studied in [191, 192], refers to codes of linear length and seeks to minimize the number of
bits read. We shall briefly review this alternative regime in Section 13.4.3.

Our interest in relatively short locally testable codes and proofs is not surprising in view of the
fact that we envision such objects as actually being used in practice. Of course, we do not suggest
that one may actually use (in practice) any of the constructions surveyed here (especially not the
ones that provide the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the current concepts
and techniques may lead to such applications.

Organization: In Section 13.2 we provide a quite comprehensive definitional treatment of locally
testable codes and proofs, while relating them to PCPs, PCPs of Proximity, and property testing.
In Section 13.3, we survey the main results regarding locally testable codes and proofs as well as
many of the underlying ideas.
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13.2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester is an oracle
machine, and the object that it tests is viewed as an oracle. When talking about oracle access
to a string w ∈ {0, 1}n we viewed w as a function w : {1, ..., n} → {0, 1}. For simplicity, we
confine ourselves to non-adaptive probabilistic oracle machines; that is, machines that determine
their queries based on their explicit input (which in case of codes is merely a length parameter)
and their internal coin tosses (but not depending on previous oracle answers). Most importantly,
this simplifies the composition of testers (see Section 13.3.2.1), and it comes at no real cost (since
almost all known testers are actually non-adaptive).1 Similarly, we focus on testers with one-sided
error probability. Here, the main reason is aesthetic (since one-sided error is especially appealing
in case of proof testers), and again almost all known testers are actually of this type.2

13.2.1 Codeword testers

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k (output) bits. Such
a generic code is denoted by C : {0, 1}k → {0, 1}n, and the elements of {C(x) : x∈{0, 1}k} ⊆ {0, 1}n
are called codewords (of C).3

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming) distance between its
codewords; that is, minx 6=y{∆(C(x), C(y))}, where ∆(u, v) denotes the number of bit-locations on
which u and v differ. Throughout this work, we focus on codes of linear distance; that is, codes
C : {0, 1}k → {0, 1}n of distance Ω(n).

The distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ∆C(w), is the minimum

distance between w and the codewords of C; that is, ∆C(w)
def
= minx{∆(w, C(x))}. For δ ∈ [0, 1], the

n-bit long strings u and v are said to be δ-far (resp., δ-close) if ∆(u, v) > δ ·n (resp., ∆(u, v) ≤ δ ·n).
Similarly, w is δ-far from C (resp., δ-close to C) if ∆C(w) > δ · n (resp., ∆C(w) ≤ δ · n).

Loosely speaking, a codeword tester (or a tester for the code C) is a tester for the property of
being a codeword; that is, such a tester should accept any valid codeword, and reject (with high
probability) any string that is far from being a codeword. In the following (basic) version of this
notion, we fix the proximity parameter ǫ (which determines which words are considered “far” from
the code) as well as the query complexity, denoted q. (Furthermore, since we consider a one-sided
error version, we fix the rejection probability to 1/2 (rather than to 1/3).)4

Definition 13.1 (codeword tests, basic version): Let C : {0, 1}k → {0, 1}n be a code (of distance
d), and let q ∈ N and ǫ ∈ (0, 1). A q-local (codeword) ǫ-tester for C is a (non-adaptive) probabilistic
oracle machine M that makes at most q queries and satisfies the following two conditions:5

1In particular, all testers that we shall present are non-adaptive. Furthermore, any oracle machine that makes a
constant number of queries (to a binary oracle) can be emulated by a non-adaptive machine that makes a constant
number of queries to the same oracle, albeit the second constant is exponential in the first one. Finally, we mention
that if the code is linear, then adaptivity is of no advantage [47].

2In the context of proof testing (or verification), one-sided error probability is referred to as perfect completeness.
We mention that in the context of linear codes, one-sided error testing comes with no extra cost [47].

3Indeed, we use C to denote both the encoding function (i.e., the mapping from k-bit strings to n-bit codewords)
and the set of codewords.

4This is done in order to streamline this definition with the standard definition of PCP. As usual, the error
probability can be decreased by repeated invocations of the tester.

5In order to streamline this definition with the definition of PCP, we provide the tester with 1k (rather than
with n) as an explicit input. Since n = n(k) can be determined based on k, the tester can determine the length of its
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Accepting codewords (a.k.a. completeness): For any x ∈ {0, 1}k, given oracle access to C(x), ma-
chine M accepts with probability 1. That is, Pr[MC(x)(1k)=1] = 1, for any x ∈ {0, 1}k.

Rejection of non-codeword (a.k.a. soundness): For any w ∈ {0, 1}n that is ǫ-far from C, given ora-
cle access to w, machine M rejects with probability at least 1/2. That is, Pr[Mw(1k)=1] ≤
1/2, for any w ∈ {0, 1}n that is ǫ-far from C.

We call q the query complexity of M , and ǫ the proximity parameter.

The foregoing definition is interesting only in case ǫn is smaller than the covering radius of C (i.e.,
the smallest r such that for every w ∈ {0, 1}n it holds that ∆C(w) ≤ r).6 Actually, we shall focus
on the case that ǫ < d/2n ≤ r/n, while noting that the case ǫ > 1.01d/n is of limited interest (see
Exercise 13.1).7 On the other hand, observe that q = Ω(1/ǫ) must hold, which means that we focus
on the case that d = Ω(n/q).

We next consider families of codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K , where n, d : N → N

and K ⊆ N, such that Ck has distance d(k). While we do not mandate K = N, we do wish K
to be a “dense” subset of N (or rather have “relatively small gaps” in K).8 In accordance with
the above, our main interest is in the case that ǫ(k) < d(k)/2n(k). Furthermore, seeking constant
query complexity, we focus on the case d = Ω(n).

Definition 13.2 (codeword tests, asymptotic version): For functions n, d : N → N, let C = {Ck :
{0, 1}k → {0, 1}n(k)}k∈K be such that Ck is a code of distance d(k). For functions q : N → N and
ǫ : N → (0, 1), we say that a machine M is a q-local (codeword) ǫ-tester for C = {Ck}k∈K if, for
every k ∈ K, machine M is a q(k)-local ǫ(k)-tester for Ck. Again, q is called the query complexity
of M , and ǫ the proximity parameter.

Recall that being particularly interested in constant query complexity (and recalling that d(k)/n(k) ≥
2ǫ(k) = Ω(1/q(k))), we focus on the case that d = Ω(n) and ǫ is a constant smaller than d/2n.
In this case, we may consider a stronger definition (which mandates local testability for all ǫ > 0
rather than for a specific value of ǫ > 0).

Definition 13.3 (locally testable codes (LTCs)): Let n, d and C be as in Definition 13.2 and
suppose that d = Ω(n). We say that C is locally testable if for every constant ǫ > 0 there exist a
constant q and a probabilistic polynomial-time oracle machine M such that M is a q-local ǫ-tester
for C.

We will be concerned of the growth rate of n as a function of k, for locally testable codes C = {Ck :
{0, 1}k → {0, 1}n(k)}k∈K of distance d = Ω(n). In other words, our main focus is on the case in

oracle (before making any query to it). Recall that providing the tester with the length of its oracle is the standard
convention in property testing.

6Note that ⌊d/2⌋ ≤ r ≤ n−⌈d/2⌉. The lower bound on r follows by considering a string that resides in the middle
of the shortest path between two distinct codewords, and the upper bound follows by considering the distance of any
string to an arbitrary set of two codewords. Codes satisfying r = ⌊d/2⌋ do exist but are quite pathologic (e.g., the
code {0t, 1t}). The typical case is of r ≈ d (see, e.g., Hadamard codes and the guideline to Exercise 13.1).

7This observation was suggested to us by Zeev Dvir. Recall that the case of ǫ ≥ r/n, which implies ǫ ≥ d/2n, is
always trivial.

8Note that a local testable code C = {Ck}k∈K does not yield a local testable code for lengths in K − 1 (e.g., the
code C′k−1(x) = Ck(0x) does not necessarily have a local codeword tester).
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which ǫ > 0 and q are fixed constants; that is, we consider the mapping k 7→ n(k) that supports
q-local ǫ-tesability for every ǫ > 0, when q = q(ǫ) and k ∈ K is sufficiently large.9

13.2.2 Proof testers

We start by recalling the standard definition of PCP.10 Here, the verifier is explicitly given a main
input, denoted x, and is provided with oracle access to an alleged proof, denoted π; that is, the
verifier can read x for free, but its access to π is via queries and the number of queries made by the
verifier is the most important complexity measure. Another key complexity measure is the length
of the alleged proof (as a function of |x|).

Definition 13.4 (PCP, standard definition): A probabilistically checkable proof (PCP) system for a
set S is a (non-adaptive) probabilistic polynomial-time oracle machine (called a verifier), denoted
V , satisfying

Completeness: For every x ∈ S, there exists a string πx such that, on input x and oracle access to
πx, machine V always accepts x; that is, Pr[V πx(x)=1] = 1.

Soundness: For every x 6∈ S and every string π, on input x and oracle access to π, machine V
rejects x with probability at least 1

2 ; that is, Pr[V π(x)=1] ≤ 1/2,

Let Qx(ω) denote the set of oracle positions inspected by V on input x and random-tape ω ∈ {0, 1}∗.
The query complexity of V is defined as q(n)

def
= maxx∈{0,1}n,ω∈{0,1}∗{|Qx(ω)|}. The proof complexity

of V is defined as p(n)
def
= maxx∈{0,1}n{|

⋃
ω∈{0,1}∗ Qx(ω)|}.

Note that the proof complexity (i.e. p) of V is upper-bounded by 2r · q, where r and q are the
randomness complexity and the query complexity of the verifier, respectively. On the other hand,
all known PCP constructions have randomness complexity that is at most logarithmic in their proof
complexity (and in some sense this upper-bound always holds [37, Prop. 11.2]). Thus, the proof
complexity of a PCP is typically captured by its randomness complexity, and the latter is prefered
since using it is more convenient when composing proof systems (cf. Section 13.3.2.2).

Recall that the proof complexity of V is defined as the number of bits in the proof that are
inspected by V ; that is, it is the “effective length” of the proof. Typically, this effective length
equals the actual length; that is, all known PCP constructions can be easily modified such that the
oracle locations accessed by V constitute a prefix of the oracle (i.e.,

⋃
ω∈{0,1}∗ Qx(ω) = {1, ..., p(|x|)}

holds, for every x). (For simplicity, the reader may assume that this is the case throughout the
rest of this exposition.) More importantly, all known PCP constructions can be easily modified to
satisfy the following definition, which is closer in spirit to the definition of locally testable codes.

Definition 13.5 (PCP, augmented): For functions q : N → N and ǫ : N → (0, 1), we say that a
PCP system V for a set S is a q-locally ǫ-testable proof system if it has query complexity q and

9
Advanced comment: More generally, for d = Ω(n), one may consider the trade-off between n, the proximity

parameter ǫ, and the query complexity q; that is, n = n(k) may depend on ǫ and q.
10For a more paced introduction to the subject as well as a wider perspective, see [131, Chap. 9].
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satisfies the following condition, which augments the standard soundness condition.11

Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every string π that is ǫ-far from Πx
def
= {w :

Pr[V w(x)=1] = 1}, on input x and oracle access to π, machine V rejects x with probability
at least 1

2 , where Πx 6= ∅ if and only if x ∈ S.

The proof complexity of V is defined as in Definition 13.4.

At this point it is natural to refer to the verifier V as a proof tester. Note that Definition 13.5 uses
the tester V itself in order to define the set (denoted Πx) of valid proofs (for x ∈ S). That is, V is
used both to define the set of valid proofs and to test for the proximity of a given oracle to this set.
A more general definition (presented next), refers to an arbitrary proof system, and lets Πx equal
the set of valid proofs (in that system) for x ∈ S. Obviously, it must hold that Πx 6= ∅ if and only if
x ∈ S. (The reader is encouraged to think of Πx as of a set of (redundant) proofs for an NP-proof
system, although this is only the most appealing case.) Typically, one also requires the existence
of a polynomial-time procedure that, on input a pair (x, π), determines whether or not π ∈ Πx.12

For simplicity we assume that, for some function p : N → N and every x ∈ {0, 1}∗, it holds that
Πx ⊆ {0, 1}p(|x|). The resulting definition follows.

Definition 13.6 (locally testable proofs): Suppose that, for some function p : N → N and every
x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). For functions q : N→ N and ǫ : N→ (0, 1), we say that
a (non-adaptive) probabilistic polynomial-time oracle machine V is a q-locally ǫ-tester for proofs in
Π = {Πx}x∈{0,1}∗ if V has query complexity q and satisfies the following conditions:

Accepting valid proofs:13 For every x ∈ {0, 1}∗ and every π ∈ Πx, on input x and oracle access to
π, machine V accepts x with probability 1.

Rejecting invalid proofs:14 For every x ∈ {0, 1}∗ and every π ∈ {0, 1}p(|x|) that is ǫ(|x|)-far from
Πx, on input x and oracle access to π, machine V rejects x with probability at least 1

2 .

The proof complexity of V is defined as p, and ǫ is called the proximity parameter. In such a case, we
say that Π = {Πx}x∈{0,1}∗ is q-locally ǫ-testable, and that S = {x ∈ {0, 1}∗ : Πx 6= ∅} has q-locally
ǫ-testable proofs of length p.
We say that Π is locally testable if for every constant ǫ > 0 there exists a constant q such that Π is
q-locally ǫ-testable. In such a case, we say that S has locally testable proofs of length p.

11Definition 13.5 relies on two natural conventions:

1. All strings in Πx are of the same length, which equals |Sω∈{0,1}∗ Qx(ω)|, where Qx(ω) is as in Definition 13.4.
Furthermore, we consider only π’s of this length.

2. If Πx = ∅ (which happens if and only if x 6∈ S), then every π is considered ǫ-far from Πx.

These conventions will also be used in Definition 13.6.
12Recall that in the case that the verifier V uses a logarithmic number of coin tosses, its proof complexity is of

polynomial length (and so the “effective length” of the strings in Πx must be polynomial in |x|). Furthermore, if
in addition it holds that Πx = {w : Pr[V w(x) = 1] = 1}, then (scanning all possible coin tosses of) V yields a
polynomial-time procedure for determining whether a given pair (x, π) satisfies π ∈ Πx.

13Note that the definition does not mention the set of inputs having valid proofs (i.e., the set {x : Πx 6= ∅}).
14Recall that if Πx = ∅, then all strings are far from it. Also, since the length of the valid proofs for x is

predetermined to be p(|x|), there is no point to consider alleged proofs of different length. Finally, note that the
current definition of the proof complexity of V is lower-bounded by the definition used in Definition 13.4.
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This notion of locally testable proofs is closely related to the notion of probabilistically checkable
proofs (i.e., PCPs). The difference is that in the definition of locally testable proofs (i.e., Defini-
tion 13.6) we required rejection of strings that are far from any valid proof also in the case that
valid proofs exists (i.e., Πx 6= ∅, which means that x is a valid assertion). In contrast, the standard
rejection criterion of PCPs (see Definition 13.4) refers only to false assertions (i.e., x’s such that
Πx = ∅). Still, all known PCP constructions actually satisfy the stronger definition.15

Needless to say, the term “locally testable proof” was introduced to match the term “locally
testable codes”. In retrospect, “locally testable proofs” seems a more fitting term than “proba-
bilistically checkable proofs”, because it stresses the positive aspect (of locality) rather than the
negative aspect (of being probabilistic). The latter perspective has been frequently advocated by
Leonid Levin.

13.2.3 Ramifications and relation to property testing

We first comment about a few definitional choices made above. Firstly, we chose to focus on one-
sided error testers; that is, we only consider testers that always accept valid objects (i.e., accept
valid codewords (resp., valid proofs) with probability 1). In the current context, this is more
appealing than allowing two-sided error probability, but the latter weaker notion is meaningful too.
A second choice, which is a standard one, was to fix the error probability (i.e., the probability of
accepting objects that are far from valid), rather than introducing yet another parameter. Needless
to say, the error probability can be reduced by sequential invocations of the tester.

In the rest of this section, we consider an array of definitional issues. First, we consider two
natural strengthenings of the definition of local testability (cf. Section 13.2.3.1). Next, we discuss
the relation of local testability to property testing (cf. Section 13.2.3.2) and to PCPs of Proximity
(cf. Section 13.2.3.3), while reviewing the latter notion. In Section 13.2.3.4, we discuss the motiva-
tion for the study of short local testable codes and proofs. Finally (in Section 13.2.3.5), we mention
a relaxed (non-monotone) definition, which seems natural only in the context of codes.

13.2.3.1 Stronger definitions

The definitions of testers presented so far, allow for the construction of a different tester for each
relevant value of the proximity parameter. However, whenever such testers are actually constructed,
they tend to be “uniform” over all relevant values of the proximity parameter ǫ. Thus, it is natural
to present a single tester for all relevant values of the proximity parameter, provide this tester with
the said parameter, allow it to behave accordingly, and measure its query complexity as a function
of that parameter. For example, we may strengthen Definition 13.3, by requiring the existence of a
function q : (0, 1) → N and an oracle machine M such that, for every constant ǫ > 0, all (sufficiently
large) k and all w ∈ {0, 1}n(k), the following conditions hold:

1. On input (1k, ǫ), machine M makes q(ǫ) queries.

2. If w is a codeword of C, then Pr[Mw(1k, ǫ) = 1] = 1.

3. If w is ǫ-far from {C(x) : x ∈ {0, 1}k}, then Pr[Mw(1k, ǫ) = 1] ≤ 1/2.

15
Advanced comment: In some cases this holds only under a weighted version of the Hamming distance, rather

than under the standard Hamming distance. Alternatively, these constructions can be easily modified to work under
the standard Hamming distance.
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An analogous strengthening applies to Definition 13.6. A special case of interest is when q(ǫ) =
O(1/ǫ). In this case, it makes sense to ask whether or not an even stronger “uniformity” condition
may hold. Like in Definitions 13.1 and 13.2 (resp., Definitions 13.5 and 13.6), the tester M will
not be given the proximity parameter (and so its query complexity cannot depend on it), but we
shall only require it to reject with probability that is proportional to the distance of the oracle from
the relevant set. For example, we may strengthen Definition 13.3, by requiring the existence of an
oracle machine M and a constant q such that for every (sufficiently large) k and w ∈ {0, 1}n(k), the
following conditions hold:

1. On input 1k, machine M makes q queries.

2. If w is a codeword of C, then Pr[Mw(1k) = 1] = 1.

3. If w is δ-far from {C(x) : x ∈ {0, 1}k}, then Pr[Mw(1k) = 1] < 1− Ω(δ).

More generally, we may require the existence of a monotonically non-decreasing function ̺ such
that inputs that are δ-far from the code are rejected with probability at least ̺(δ) (rather than
with probability at least Ω(δ)).

13.2.3.2 Relation to Property Testing

Locally testable codes (and their corresponding testers) are essentially special cases of property test-
ing algorithms (i.e., property testers), as studied throughout this book. Specifically, the property
being tested is membership in a predetermined code. The only difference between the definitions
presented in Section 13.2.1 and the formulation that is standard in the property testing literature
is that in the latter the tester is given the proximity parameter as input and determines its be-
havior (and in particular the number of queries) accordingly. This difference is eliminated in the
first strengthening outlined in Section 13.2.3.1, while the second strengthening outlined in Sec-
tion 13.2.3.1 is related to the notion of proximity oblivious testing (cf. [152]). Specifically, using
the language of property testing (cf., Definitions 1.6 and 1.7), we have

Definition 13.7 (locally testable codes, property testing formulations): Let n, d and C = {Ck :
{0, 1}k → {0, 1}n(k)}k∈K be as in Definition 13.2, and suppose that d = Ω(n).

1. Weak version:16 For q : (0, 1]→ N, we say that C is uniformly q-locally testable if there exists
a non-adaptive tester of query complexity q and one-sided error for the property C. (We stress
that, here, the query complexity q only depends on the proximity parameter ǫ.)

2. Strong version:17 For a a monotonically non-decreasing function ̺ : (0, 1] → (0, 1], we say that
C is locally testable in a ̺-strong sense if there exists a (non-adaptive) proximity oblivious tester
of constant query complexity, detection probability ̺, and one-sided error for the property C.

16Indeed, this version corresponds to the first strengthening outlined in Section 13.2.3.1. Recall that the formulation
in Section 13.2.3.1 only required testability for any constant ǫ > 0 and sufficiently large k (which is formulated by
saying that “for every ǫ > 0, there exists kǫ such that for all k ≥ kǫ ...”). Nevertheless, as shown in Exercise 13.2,
this implies the current version. We warn, however, that the effectiveness of the derived query complexity bound
depends on the rate in which kǫ grows as an (inverse) function of ǫ. Likewise the computational complexity of the
derived tester depends on the complexity of the mapping ǫ 7→ kǫ.

17Indeed, this version corresponds to the second strengthening outlined in Section 13.2.3.1. Recall that the restricted
version of this definition referred to the case that ̺ is linear (i.e., ̺(δ) = Ω(δ)). When ̺ is not specified one often
means that it is linear.
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Although locally testable codes emerge as a special case of property testing, we stress that most
of the property testing literature is concerned with “natural” objects (e.g., graphs, sets of points,
functions) presented in a “natural” form rather than with objects designed artificially to withstand
noise (i.e., codewords of error correcting codes).

Our general formulation of proof testing (i.e., Definition 13.6) can also be viewed within the
framework of property testing. Specifically, we view the set Πx as a set of objects having a certain
x-dependent property (rather than as a set of valid proofs for some property of x). In other
words, Definition 13.6 allows to consider properties that are parameterized by auxiliary information
(i.e., x), which falls into the framework of testing massively parameterized properties (cf. [216] or
Section 12.7.2). Note that Πx ⊆ {0, 1}p(|x|), where p is typically a polynomial (which means that
the length of the tested object is polynomial in the length of the parameter). In contrast, most
property testing research refers to the case that the length of the tested object is exponential in
the length of the parameter (i.e., Πn ⊆ {0, 1}n = {0, 1}exp(|n|)).18 Hence, using the language of
property testing, we can reformulate Definition 13.6, as follows:

Definition 13.8 (locally testable proofs as property testers):19 Suppose that, for some function
p : N→ N and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|), and let q : {0, 1}∗ × (0, 1]→ N. We
say that a (non-adaptive) probabilistic polynomial-time oracle machine V is a q-locally tester for
proofs in {Πx}x∈{0,1}∗ if V has query complexity q and constitutes an tester for the parameterized
property {Πx}x∈{0,1}∗ , where such a tester gets x and ǫ as input parameters and ǫ-tests membership
in Πx using q(x, ǫ) queries.

A special case of interest is when q(x, ǫ) = q′(ǫ) for some function q′ : (0, 1]→ N.

13.2.3.3 Relation to PCPs of Proximity

We start by reviewing the definition of a PCP of Proximity, which may be viewed as a “PCP version”
of a property tester (or a “property testing analogue” of PCP).20 In the following definition, the
tester (or verifier) is given oracle access both to its main input, denoted x, and to an alleged proof,
denoted π, and the query complexity account for its access to both oracles (which can be viewed
as a single oracle, (x, π)). That is, in contrast to the definition of PCP and like in the definition of
property testing, the main input is presented as an oracle and the verifier is charged for accessing
it. In addition, like in the definition of PCP (and unlike in the definition of property testing), the
verifier gets oracle access to an alleged proof.

Definition 13.9 (PCPs of Proximity):21 A PCP of Proximity for a set S with proximity parameter
ǫ and proof complexity p : N→ N is a (non-adaptive) probabilistic polynomial-time oracle machine,

18Indeed, in the context of property testing, the length of the oracle must always be given to the tester (although
some sources neglect to account for this fact).

19Here, we allow the query complexity to depends (also) on the parameter x, rather than merely on its length
(which also determines the length p(|x|) of the tested object). This seems more natural in the context of testing
massively parameterized properties.

20An “NP version” (or rather an “MA version”) of a property tester was presented by Gur and Rothblum [166]
(and is discussed in Section 12.6). In their model, called MAP, the verifier has oracle access to the main input x, but
gets free access to an alleged proof π.

21Note that this definition builds on Definition 13.4 (rather than on Definition 13.6), except that the proof com-
plexity is defined as in Definition 13.6. (We mention that PCPs of Proximity, introduced by Ben-Sasson et al. [44],
are almost identical to Assignment Testers, introduced independently by Dinur and Reingold [94]. Both notions are
(important) special cases of the general definition of a “PCP spot-checker” formulated before by Ergün et al. [102].)
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denoted V , satisfying

Completeness: For every x ∈ S there exists a string πx ∈ {0, 1}p(|x|) such that V always accepts
when given access to the oracle (x, πx); that is, Pr[V x,πx(1|x|)=1] = 1.

Soundness: For every x that is ǫ-far from S∩{0, 1}|x| and for every string π, machine V rejects with
probability at least 1

2 when given access to the oracle (x, π); that is, Pr[Mx,π(1|x|)=1] ≤ 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to the x-part are
counted.

The definition of a property tester (i.e., an ǫ-tester for S) is obtained as a special case by requiring
that the proof complexity (or length) equals zero. As shown in Exercise 13.3, for any (efficiently
computable) code C of constant relative distance, a PCP for a set S can be obtained from a PCP
of Proximity for {C(x) : x ∈ S}, where the complexity of the PCP is related to the complexity
of the PCP of Proximity via the rate of the code (since the complexities of these proof testers are
measured in terms of the length of their main input).

Relation to locally testable proofs (a bit contrived). The definition of a PCP of Proximity
is related to but different from the definition of a locally testable proof: Definition 13.9 refers to
the distance of the input-oracle x from S, whereas locally testable proofs (see Definition 13.6) refer
to the distance of the proof-oracle from the set Πx of valid proofs of membership of x ∈ S. Still,
PCPs of Proximity can be viewed within the framework of locally testable proofs, by considering
an artificial set of proofs for membership in a generic set. Specifically, given a PCP of Proximity
verifier V of proof complexity p and proximity parameter ǫ for a set S (such that S ∩ {0, 1}n 6= ∅
for all sufficiently large n), we consider the set of proofs (for membership of 1n in the generic set
{1}∗)

Π′1n
def
=

{
xtπ : x ∈ (S ∩ {0, 1}n) , π ∈ Πx , t =

p(n)

ǫn

}
(13.1)

where Πx
def
= {π ∈ {0, 1}p(|x|) : Pr[V x,π(1n) = 1]} (13.2)

so that |π| = ǫ · |xt|. A 3ǫ-tester for proofs in Π′ = {Π′1n}n∈N can be obtained by emulating the
execution of V and checking that the t copies in the tn-bit long prefix of the oracle are indeed
identical.22 On the other hand, any ǫ-tester for proofs in Π′ yields a PCP of Proximity verifier of
proof complexity p and proximity parameter ǫ+ ǫ2 for a set S, since if x is (ǫ + ǫ2)-far from S then
xtπ is ǫ-far from Π′ for every π ∈ {0, 1}p(|x|).

Digest: the use of repetitions. The problem we faced in the construction of Π′ is that the
proof-part (i.e., π) is essential for verification, but we wish the distance to be dominated by the
input-part (i.e., x). The solution was to repeat x multiple times so that these repetitions dominate
the length of the oracle. The new tester can still access the alleged proof π, but we are guaranteed

22That is, on input x(1) · · · x(t)π, the verifier invokes V x(1),π(1n) as well as performs checks to verify that x(1) = x(i)

for every i ∈ [t]. The latter test is conducted by selecting uniformly several i ∈ [t] and several j ∈ [n] per each i, and

comparing x
(1)
j to x

(i)
j . The key observation is that if x(1) · · ·x(t)π is 3ǫ-far from Π′1n , then either x(1) · · ·x(t) is ǫ-far

from (x(1))t or x(1) is ǫ-far from S = {x : Πx 6= ∅}, since |π| < ǫ · |x(1) · · · x(t)π|. See related Exercise 13.4.
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that if xtπ is 3ǫ-far from Π′, then x is 2ǫ-far from S. The repetition test is used in order to handle
the possibility that the oracle does not have the form xtπ but is rather ǫ-far from any string having
this form.

PCPs of Proximity yield locally testable codes. We mention that PCPs of Proximity (of
constant query complexity) yield a simple way of obtaining locally testable codes. More generally,
we can combine any code C0 with any PCP of Proximity V , and obtain a q-locally testable code with
distance essentially determined by C0 and rate essentially determined by the proof complexity of V ,
where q is the query complexity of V . Specifically, x will be encoded by appending c = C0(x) with a
proof that c is a codeword of C0, and distances will be determined by the weighted Hamming distance
that assigns all weight (uniformly) to the first part of the new code. As in the previous paragraph,
these weights can be (approximately) “emulated” by making suitable repetitions. Specifically, the
new codeword, denoted C(x), equals C0(x)tπ(x), where π(x) ∈ {0, 1}p(|x|) is the foregoing proof and
t = ω(|π(x)|)/|C0(x)|. We stress that π(x) is a unique designated proof for x ∈ S. Turning to the
codeword tester, on input w ∈ {0, 1}t·n+p(n), it checks that the tn-bit long prefix of w consists of
t repetitions of some n-bit long string, and invokes the PCP of Proximity, while providing it with
access to the n-bit prefix of w (as main input) and to the p(n)-bit long suffix of w (as an alleged
proof). As before, the analysis is based on the observation that a string that is 3/t-far from a
codeword (of C), must have a tn-bit long prefix that is far from being a repetition of a codeword of
C0. For details, see Exercise 13.4.

We stress that the foregoing construction only yields a weak locally testable code (as in Defini-
tion 13.3 or in the weak version of Definition 13.7), since nothing is guaranteed for non-codewords
(of C) that consists of repetitions of some C0(x) and an undesignated (resp., false) proof (i.e.,
π̃ 6= π(x)).23 Obtaining a strong locally testable code using this method is possible when the PCP
of Proximity is stronger in a sense that is analogous to Definition 13.6, but with a single valid proof
(called canonical) per each x ∈ S (i.e., |Πx| = 1 for every x ∈ S). Such strong PCPs of Proximity
were introduced in [157]; see also [141].

13.2.3.4 Motivation for the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester makes only a
constant number of bit probes, and determining the probed locations (as well as the final decision)
can often be done in time that is poly-logarithmic in the length of the probed object. Recall that
the tested object is supposed to be related to some primal object; in the case of codes, the probed
object is supposed to encode the primal object, whereas in the case of proofs the probed object
is supposed to help verify some property of the primal object. In both cases, the length of the
secondary (probed) object is of natural concern, and this length is stated in terms of the length of
the primary object.

The length of codewords in an error-correcting code is widely recognized as one of the two most
fundamental parameters of the code (the second one being the code’s distance). In particular,
the length of the code is of major importance in applications, because it determines the overhead
involved in encoding information.

23Note that a standard PCP of Proximity is not required to reject (with positive probability) proof-oracles that
are different from the designated proof oracle for x ∈ S (i.e., eπ 6= π(x)), let alone that it is not required to do so with
probability that is related to the distance of these proof-oracles from the designated proof oracle.
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As argued in Section 13.1, the same considerations apply also to proofs. Unfortunately, in the
case of proofs, this obvious point has been blurred by the (unexpected and) highly influential appli-
cations of PCPs to establishing hardness results regarding the complexity of natural approximation
problems. In our view, the significance of locally testable proofs (or PCPs) extends far beyond
their applicability to deriving non-approximability results. The mere fact that proofs can be trans-
formed into a format that supports super-fast probabilistic verification is remarkable. From this
perspective, the question of how much redundancy is introduced by such a transformation is a fun-
damental one. Furthermore, locally testable proofs (i.e., PCPs) have been used not only to derive
non-approximability results but also for obtaining positive results (e.g., CS-proofs [190, 207] and
their applications [31, 67]), and the length of the PCP affects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of the complexity of natural ap-
proximation problems, we note that the length of PCPs is relevant also to these non-approximability
results; specifically, the length of PCPs affects the tightness with respect to the running time of the
non-approximability results derived from these PCPs. For example, suppose that (exact) SAT has
complexity 2Ω(n). Then, while the original PCP Theorem [25, 24] only implies that approximating
MaxSAT requires time 2nα

, for some (small constant) α > 0, the results of [48, 92] yield a lower
bound of 2n/poly(log n). We mention that the result of [210] (cf. [93]) allows to achieve a time lower

bound of 2n1−o(1)
simultaneously with optimal non-approximability ratios, but this is currently un-

known for the better lower bound of 2n/poly(log n). (A lower bound of 2Ω(n) is also unknown for any
constant approximation ratio (see Problem 13.12).)

13.2.3.5 A relaxed (non-monotone) definition

One of the concrete motivations for locally testable codes refers to settings in which one may want
to re-encode the information when discovering that the codeword is corrupted. In such a case,
assuming that re-encoding is based solely on the corrupted codeword, one may assume (or rather
needs to assume) that the corrupted codeword is not too far from the code. Thus, the following
version of Definition 13.1 may suffice for various applications.

Definition 13.10 (relaxed non-monotone codeword tests): Let C : {0, 1}k → {0, 1}n be a code of
distance d, and let q ∈ N and ǫ1, ǫ2 ∈ (0, 1) be such that ǫ1 < ǫ2. A q-local (codeword) (ǫ1, ǫ2)-tester
for C is a (non-adaptive) probabilistic oracle machine M that makes at most q queries, accepts any
codeword with probability 1, and rejects (w.h.p.) non-codewords that are both ǫ1-far and ǫ2-close to
C. That is, the rejection condition of Definition 13.1 is modified as follows.

Rejection of non-codeword (relaxed non-monotone version): For any w ∈ {0, 1}n such that ∆C(w) ∈
[ǫ1n, ǫ2n], given oracle access to w, machine M rejects with probability at least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It requires rejection of non-
codewords that are somewhat far from the code, but not the rejection of codewords that are very far
from the code. In other words, the rejection probability of this tester may be non-monotone in the
distance of the tested string from the code. Still, such non-monotone codeword testers may suffice
in some applications. Interestingly, non-monotone codeword testers seem easier to consrtruct than
standard locally testable codes; they even achieve linear length (cf. [255, Chap. 5]), whereas this
is not known for the standard notion (see Problem 13.12). We mention that the non-monotonicity
of the rejection probability of testers has been observed before; the most famous example being
linearity testing (see Section 13.3.1.1).
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13.2.4 On relating locally testable codes and proofs

This section offers an advanced discussion, which is mainly intended for PCP enthusiasts. We
discuss the common beliefs that locally testable codes and proofs are closely related, and point out
that the relation is less clear than one may think.

Locally testable codes can be thought of as the combinatorial counterparts of the complexity
theoretic notion of locally testable proofs (PCPs). In particular, as detailed below, the use of codes
with features related to local testability is implicit in known PCP constructions. This perspective
raises the question of whether one of these notions implies the other, or at least is useful towards
the understanding of the other.

13.2.4.1 Do PCPs imply locally testable codes?

As started above, the use of codes with features related to local testability is implicit in known
PCP constructions. Furthermore, each of the the known constructions of PCPs (and locally testable
proofs) provides a transformation of standard proofs (for say SAT) to locally testable proofs (i.e.,
PCP-oracles) such that transformed strings are accepted with probability one by the PCP verifier.
Specifically, denoting by Sx the set of standard proofs (i.e., NP-witnesses) that establish the validity

of an assertion x, there exists a polynomial-time mapping fx of Sx to Rx
def
= {fx(y) : y ∈ Sx}

such that for every π ∈ Rx it holds that Pr[V π(x) = 1] = 1, where V is the PCP verifier.
Moreover, starting from different standard proofs, one obtains locally testable proofs that are far
apart, and hence constitute a good code (i.e., for every x and every y 6= y′ ∈ Sx, it holds that
∆(fx(y), fx(y′)) ≥ Ω(|fx(y)|)). It is tempting to think that the corresponding PCP verifier yields
a codeword tester, but this is not really the case.

For starters, we stress that Definition 13.4 refers only to the case of false assertions, in which
case all strings are far from any valid proof (since the latter does not exist). Indeed, this deficiency is
addressed by Definition 13.5 that requires rejection of strings that are far from any valid proof (i.e.,
any string far from Πx), and the known PCP constructions do satisfy this augmented requirements.
However, Definition 13.5 does not mandate that the only valid proofs (w.r.t V ) are those in Rx (i.e.,
the proofs obtained by the transformation fx of standard proofs (in Sx) to locally testable ones).
In fact, the standard PCP constructions accept also valid proofs that are not in the range of the
corresponding transformation (i.e., fx); that is, Πx as in Definition 13.5 is a strict superset of Rx

(rather than satisfying Πx = Rx). Nevertheless, many known PCP constructions can be modified
to satisfy Πx = Rx, and so to yield a locally testable code, but these modifications are far from
being trivial. The interested reader is referred to [157, Sec. 5.2] for a discussion of typical problems
that arise when trying this way. In any case, this is not necessarily the best way to obtain locally
testable codes from PCPs; an alternative way is outlined in Section 13.2.3.3.

13.2.4.2 Do locally testable codes imply PCPs?

Saying that locally testable codes are the combinatorial counterparts of locally testable proofs
(PCPs) raises the expectation (or hope) that it would be easier to construct locally testable codes
than to construct PCPs. The reason being that combinatorial objects (e.g., codes) should be easier
to understand than complexity theoretic ones (e.g., PCPs). Indeed, this feeling was among the main
motivations of Goldreich and Sudan, and their first result (cf. [157, Sec. 3]) was along this vein:
They showed a relatively simple construction (i.e., simple in comparison to PCP constructions) of a
locally testable code of length ℓ(k) = kc for any constant c > 1. Unfortunately, their stronger result,
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providing a locally testable code of even shorter length (i.e., length ℓ(k) = k1+o(1)) is obtained by
constructing (cf. [157, Sec. 4]) and using (cf. [157, Sec. 5]) a corresponding locally testable proof
(i.e., PCP).

Most subsequent works (e.g., [44, 92]) have followed this route (i.e., of going from a PCP to
a code), but there are notable exceptions. Most importantly, we mention that Meir’s work [204]
provides a combinatorial construction of a locally testable code that does not seem to yield a
corresponding locally testable proof. The prior work of Ben-Sasson and Sudan [48] may be viewed
as reversing the course to the “right one”: They first construct locally testable codes, and next use
them towards the construction of proofs, but their set of valid codewords is an NP-complete set.
Still, conceptually they go from codes to proofs (rather than the other way around).

13.3 Results and Ideas

We review some of the known constructions of locally testable codes and proofs, starting from codes
and proofs of exponential length and concluding with codes and proofs of nearly linear length. In
all cases, we refer to testers of constant query complexity.24 Before embarking on this journey, we
mention that random linear codes (of linear length) require any codeword tester to read a linear
number of bits of the codeword (see Exercises 1.12–1.14). Furthermore, good codes that correspond
to random “low density parity check” matrices are also as hard to test [47]. These facts provide a
strong indication to the non-triviality of local testability.

Teaching note: Recall that this section only provides overviews of the constructions and their analysis.

The intention is merely to offer a taste of the ideas used. The interested reader should look for detailed

descriptions in other sources, which are indicated in the text.

13.3.1 The mere existence of locally testable codes and proofs

The mere existence of locally testable codes and proofs, regardless of their length, is non-obvious.
Thus, we start by reviewing the simplest constructions known.

13.3.1.1 The Hadamard Code is locally testable

The simplest example of a locally testable code (of constant relative distance) is the Hadamard
code. This code, denoted CHad, maps x ∈ {0, 1}k to a string (of length n = 2k) that provides the
evaluation of all GF(2)-linear functions at x; that is, the coordinates of the codeword are associated
with linear functions of the form ℓ(z) =

∑k
i=1 ℓizi and so CHad(x)ℓ = ℓ(x) =

∑k
i=1 ℓixi. Testing

whether a string w ∈ {0, 1}2k
is a codeword amounts to linearity testing. This is the case because

w is a codeword of CHad if and only if, when viewed as a function w : GF(2)k → GF(2), it is linear
(i.e., w(z) =

∑k
i=1 cizi for some ci’s, or equivalently w(y+z) = w(y)+w(z) for all y, z). Hence, local

testability of CHad is achieved by invoking the linearity tester of Blum, Luby, and Rubinfeld [59],
which amounts to uniformly selecting y, z ∈ GF(2)k and checking whether w(y + z) = w(y)+w(z).

This natural tester always accepts linear functions, and (as shown in Chapter 2) it rejects any
function that is δ-far from being linear with probability at least min(δ/2, 1/6). Surprisingly, the
exact behavior of this tester is unknown; that is, denoting by ̺(δ) the minimum rejection probability

24The opposite regime, in which the focus is on linear length codes and the aim is to minimize the query complexity,
is briefly reviewed in Section 13.4.3.
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1/4
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Figure 13.1: The lower bounds that underlie the function Γ. The dashed diagonal line represents
the bound ̺(x) ≥ x, which is slightly improved by the bound ̺(x) ≥ x + η(x).

of a string that is at (relative) distance δ from CHad, we know lower and upper bounds on ̺ that are
tight only in the interval [0, 5/16] (and at the point 0.5). Specifically, it is known that ̺(δ) ≥ Γ(δ),
where the function Γ : [0, 0.5] → [0, 1] is defined as follows:

Γ(x)
def
=





3x− 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ τ2 where τ2 ≈ 44.9962/128
x + η(x) τ2 ≤ x ≤ 1/2,

where η(x)
def
= 1376 · x3 · (1− 2x)12 ≥ 0.

(13.3)

The lower bound Γ is composed of three different bounds with “phase transitions” at x = 5
16 and

at x = τ2, where τ2 ≈ 44,9962
128 is the solution to x+ η(x) = 45/128 (see Figure 13.1).25 It was shown

in [36] that the first segment of Γ (i.e., for x ∈ [0, 5/16]) is the best bound possible, and that the
first “phase transitions” (i.e., at x = 5

16) is indeed a reality; in other words, ̺ = Γ in the interval
[0, 5/16].26 We highlight the non-trivial behavior of the detection probability of the aforementioned
test, and specifically the fact that the detection probability does not increase monotonically with
the distance of the tested string from the code (i.e., Γ decreases in the interval [1/4, 5/16], while
being equal to ̺ in this interval).

Other codes. We mention that Reed-Muller Codes of constant order are also locally testable [11].
These codes have sub-exponential length, but are quite popular in practice. The Long Code is also

25The third segment is due to [181], which improves over the prior bound of [36] that asserted ̺(x) ≥ max(45/128, x)
for every x ∈ [5/16, 1/2].

26In contrast, the lower bound provided by the other two segments (i.e., for x ∈ [5/16, 1/2]) is unlikely to be tight,
and in particular it is unlikely that the “phase transitions” at x = τ2 represents the behavior of ̺ itself. We also note
that η(x) ≥ 59 · (1 − 2x)12 > 0 for every x ∈ [τ2, 0.5), but η(x) < 0.0001 for every x ∈ [τ2, 0.5). Lastly, recall that
̺(0.5) = Γ(0.5) = 0.5.
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locally testable [37], but this code has double-exponential length (and was introduced merely for
the design of PCPs).27

13.3.1.2 The Hadamard-Based PCP of ALMSS

The simplest example of a locally testable proof (for arbitrary sets in NP)28 is the “inner verifier” of
the PCP construction of Arora, Lund, Motwani, Sudan and Szegedy [24], which in turn is based on
the Hadamard code. Specifically, proofs of the satisfiability of a given system of quadratic equations
over GF(2), which is an NP-complete problem (see Exercise 13.6), are presented by providing a
Hadamard encoding of the outer-product of a satisfying assignment with itself (i.e., a satisfying
assignment α ∈ {0, 1}n is presented by CHad(β), where β = (βi,j)i,j∈[n] and βi,j = αiαj). Hence,

the alleged proofs are of length 2n2
, and locations in these proofs correspond to n2-bit long strings

(or, equivalently, to n-by-n Boolean matrices).

Given an alleged proof π ∈ {0, 1}2n2

, viewed as a Boolean function π : GF(2)n
2 → GF(2), the

proof-tester (or verifier) proceeds as follows:29

1. Tests that π is indeed a codeword of the Hadamard Code (i.e., that it is a linear function
from GF(2)n

2
to GF(2)). If this test passes (with high probability), then π is close to some

codeword CHad(β), for an arbitrary β = (βi,j)i,j∈[n]; that is, for (say) 99% of the Boolean
matrices C = (ci,j)i,j∈[n], it holds that π(C) =

∑
i,j∈[n] ci,jβi,j .

2. Tests that the aforementioned β is indeed an outer-product of some α ∈ {0, 1}n with itself.
This means that for every C = (ci,j)i,j∈[n] (or actually for 99% of them), it holds that π(C) =∑

i,j∈[n] ci,jαiαj . That is, we wish to test whether (βi,j)i,j∈[n] equals (αiαj)i,j∈[n] (i.e., the
equality of two Boolean matrices).

Teaching note: Some readers may prefer to skip the description of how the current step is implemented,

proceed to Step 3, and return to the current step later.

Note that the Hadamard encoding of α is supposed to be part of the Hadamard encoding of β
(because

∑n
i=1 ciαi =

∑n
i=1 ciα

2
i is supposed to equal

∑n
i=1 ciβi,i).

30 So we would like to test
that the latter codeword matches the former one. (Recall that this means testing whether
the matrix (βi,j)i,j∈[n] equals the matrix (αiαj)i,j∈[n].)

This test can be performed by uniformly selecting (r1, ..., rn), (s1, ..., sn) ∈ GF(2)n, and com-
paring

∑
i,j risjβi,j and

∑
i,j risjαiαj = (

∑
i riαi) · (

∑
j sjαj), where the value

∑
i,j risjβi,j

is supposed to reside in the location that corresponds to the outer-product of (r1, ..., rn) and
(s1, ..., sn). The key observation here is that for n-by-n matrices A 6= B, when r, s ∈ {0, 1}n

27We also mention that some of the best PCP results are obtained by using a relaxed notion of local testability [170,
171]. Loosely speaking, this relaxed notion requires that if the tester accepts a strong w with some noticeable probability

α > 0, then this event may be attributed (or charged) to poly(1/α) codewords (which are not necessarily close to w).
28A simpler example for a set not known to be in BPP is provided by the interactive proof for graph non-

isomorphism [146]. Note that any interactive proof system in which the prover sends a constant number of bits yields
a PCP system (see Exercise 13.5).

29See [131, Sec. 9.3.2.1] for a more detailed description.
30Note that, for every (c1, ..., cn) ∈ {0, 1}n, it holds that

P

i∈[n] ciβi,i =
P

i,j∈[n] ci,jβi,j , where ci,j = ci if i = j

and ci,j = 0 otherwise. Hence, the value of location (c1, ..., cn) in CHad(α) appears at location (ci,j)i,j∈[n] in CHad(β).
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are uniformly selected (vectors), it holds that Prs[As = Bs] = 2−rank(A−B) and it follows
that Prr,s[rAs = rBs] ≤ 3/4 (see Exercise 13.7).

The foregoing suggestion would have been fine if π = CHad(β), but we only know that π is close
to CHad(β). The Hadamard encoding of α is a tiny part of the latter, and so we should not try
to retrieve the latter directly (because this tiny part may be totally corrupted).31 Instead, we
use the paradigm of self-correction (cf. Section 5.2.3): In general, for any fixed c = (ci,j)i,j∈[n],
whenever we wish to retrieve

∑
i,j∈[n] ci,jβi,j, we uniformly select ω = (ωi,j)i,j∈[n] and retrieve

both π(ω) and π(ω + c). Thus, we obtain a self-corrected value of π(c); that is, if π is δ-close
to CHad(β) then π(ω + c) − π(ω) =

∑
i,j∈[n] ci,jβi,j with probability at least 1 − 2δ (over the

choice of ω).

Using self-correction, we indirectly obtain bits in CHad(α), for α = (αi)i∈[n] = (βi,i)i∈[n]. Sim-
ilarly, we can obtain any other desired bit in CHad(β), which in turn allows us to test whether
(βi,j)i,j∈[n] = (αiαj)i,j∈[n]. In fact, we are checking whether (βi,j)i,j∈[n] = (βi,iβj,j)i,j∈[n], by
comparing

∑
i,j risjβi,j and (

∑
i riβi,i)·(

∑
j sjβj,j), for randomly selected (r1, ..., rn), (s1, ..., sn) ∈

GF(2)n.

3. Finally, we get to the purpose of all of the foregoing, which is checking whether the afore-
mentioned α satisfies the given system of quadratic equations. Towards this end, the tester
uniformly selects a linear combination of the equations, and checks whether α satisfies the (sin-
gle) resulting equation. Note that the value of the corresponding quadratic expression (which
is a linear combination of quadratic (and linear) forms) appears as a bit of the Hadamard
encoding of β, but again we retrieve it from π by using self-correction.

The foregoing description presumes that each step performs a constant number of checks such that
if the corresponding condition fails then this step rejects with high (constant) probability.32 In
the analysis, one shows that if π is 0.01-far from a valid Hadamard codeword, then Step 1 rejects
with high probability. Otherwise, if π is 0.01-close to CHad(β) for β = (βi,j)i,j∈[n] that is not an
outer-product of some α = (αi)i∈[n] with itself (i.e., (βi,j)i,j∈[n] 6= (αiαj)i,j∈[n]), then Step 2 rejects
with high probability. Lastly, if π is 0.01-close to CHad(β) such that βi,j = αiαj for some α (and all
i, j ∈ [n]) but α does not satisfy the given system of quadratic equations, then Step 3 rejects with
high probability.

13.3.2 Locally testable codes and proofs of polynomial length

The constructions presented in Section 13.3.1 have exponential length in terms of the relevant
parameter (i.e., the amount of information being encoded in the code or the length of the assertion
being proved). Achieving local testability by codes and proofs that have polynomial length turns
out to be much more challenging.

31Likewise, the values at the locations that correspond the outer-product of (r1, ..., rn) and (s1, ..., sn) should not

be retrieved directly, because these locations are a tiny fraction of all 2n2

locations in CHad(β).
32An alternative description may have each step repeat the corresponding check only once so that if the corre-

sponding condition fails, then this step rejects with some (constant) positive probability. In this case, the analysis
will only establish that the entire test rejects with some (constant) positive probability, and repetitions will be used
to reduce the soundness error to 1/2.
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13.3.2.1 Locally testable codes of almost quadratic length

A rather natural interpretation of low-degree tests (cf. [29, 28, 124, 246, 120]) yields a locally
testable code of almost quadratic length over a sufficiently large alphabet. Similar (and actually
better) results for binary codes required additional ideas, and have appeared only later (cf. [157]).
We sketch both constructions below, starting with locally testable codes over very large alphabets
(which are defined analogously to the binary case).

Locally testable codes over large alphabets. In Chapter 3 we presented low-degree tests for
degree d≪ |F| and functions f : Fm → F as picking d + 2 points over a random line (in Fm) and
checking whether the values of f on these points fits a degree d univariate polynomial. We also
commented that such a test can be viewed as a PCP of Proximity that test whether f is of degree
d by utilizing a proof-oracle (called a line oracle) that provides the univariate degree d polynomials
that describe the value of f on every line in Fm.33 (When queried on (x, h) ∈ Fm × Fm, this
proof-oracle returns the d + 1 coefficients of a polynomial that supposedly describes the value of f
on the line {x + ih : i ∈ F}, and the verifier checks that the value assigned by this polynomial to
a random i ∈ F matches f(x + ih).)

Taking another step, we note that given access only to a “line oracle” L : Fm × Fm → Fd+1,
we can test whether L describes the restrictions of a single degree d multivariate polynomial to
all lines. This is done by selecting a random pair of intersecting lines and checking whether they
agree on the point of intersection. Friedl and Sudan [120] and Rubinfeld and Sudan [246] proposed
to view each valid L as a codeword in a locally testable code over the alphabet Σ = Fd+1. This
code maps each m-variate polynomial of degree d to the sequence of univariate polynomials that
describe the restrictions of this polynomial to all possible lines; that is, the polynomial p is mapped
to Lp : Fm × Fm → Fd+1 such that, for every (x, h) ∈ Fm × Fm, it holds that Lp(x, h) is (or
represents) a univariate polynomial that describes the value of p on the line {x + ih : i ∈ F}. The
corresponding 2-query tester of L : Fm×Fm → Fd+1 will just select a random pair of intersecting
lines and check whether they agree on the point of intersection.34 The analysis of this tester reduces
to the analysis of the corresponding low degree test, undertaken in [24, 228].

The question at this point is what are the parameters of the foregoing code, denoted C : Σk →
Σn, where Σ = Fd+1 (and n = |Fm|2).35 This code has distance (1−d/|F|)·n = Ω(n), since different
polynomials agree with probability at most d/|F| on a random point (and ditto on a random line).
Since Σk corresponds to all possible m-variate polynomials of degree d over F (which have

(m+d
d

)

possible monomials), it follows that Σk = |F|(m+d
d ), which implies

k =

(
m+d

d

)

d + 1
≈ (d/m)m

d
=

dm−1

mm
(13.4)

where the approximation presumes m ≪ d (which is the preferred setting here (see next)). Note

33This comment appears as Footnote 18 in Chapter 3. Recall that PCPs of Proximity were defined in Sec-
tion 13.2.3.3.

34That is, it select uniformly at random x1, x2, h1, h2 ∈ Fm and i1, i2 ∈ F such that x1 + i1h1 = x2 + i2h2, and
checks whether the value of the polynomial L(x1, h1) at i1 equals the value of the polynomial L(x2, h2) at i2.

35Indeed, it would have been more natural to present the code as a mapping from sequences over F to sequences
over Σ = Fd+1. Following the convention of using the same alphabet for both the information and the codeword, we
just pack every d+ 1 elements of F as an element of Σ.
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that n = |Fm|2, which (by Eq. (13.4)) means that

n ≈
(

mm · k
dm−1

)2

· |F|2m = d2 ·m2m · (|F|/d)2m · k2 ≫ k2, (13.5)

since |F| > d. Lastly,

|Σ| = |F|d+1 > k(d+1)/(m−1) ≫ k, (13.6)

since k < dm−1 < |F|m−1. Hence, the smaller m, the better the rate (i.e., relation of n to k),
but this comes at the expense of using a relatively larger alphabet. In particular, we consider two
instantiations, where in both |F| = Θ(d):

1. Using d = mm, we get k ≈ (mm)m−1/mm = mm2−2m and n = O(d)2m = m2m2+o(m), which
yields n ≈ exp(

√
log k) · k2 and log |Σ| = log |F|d+1 ≈ d log d ≈ exp(

√
log k).

2. Letting d = mc for any constant c > 1, we get k ≈ m(c−1)m−c and n = m2cm+o(m), which
yields n ≈ k2c/(c−1) and log |Σ| ≈ d log d ≈ (log k)c.

In both cases, we obtain a locally testable code of polynomial length, but this code uses a large
alphabet, whereas we seek codes over binary alphabet.

Alphabet reduction. A natural way of reducing the alphabet size of codes is using the well-
known paradigm of concatenated codes [117]: A concatenated code is obtained by encoding the
symbols of an “outer code” (using the coding method of the “inner code”). Specifically, let C1 :
Σk1

1 → Σn1
1 be the outer code and C2 : Σk2

2 → Σn2
2 be the inner code, where Σ1 ≡ Σk2

2 . Then, the
concatenated code C′ : Σk1k2

2 → Σn1n2
2 is obtained by letting C′(x1, ..., xk1) = (C2(y1), ..., C2(yn1)),

where xi ∈ Σk2
2 ≡ Σ1 and (y1, ..., yn1) = C1(x1, ..., xk1). That is, first C1 is applied to the k1-long

sequence of k2-long blocks (of symbols in Σ2), which are viewed as symbols of Σ1, and then C2 is
applied to the each of the resulting n1 blocks, which is now viewed as k2-long sequences over Σ2

(see Figure 13.2, where k1 = 4, n1 = 6, k2 = 8 and n2 = 16). Using a good inner code for relatively
short sequences, allows to transform good codes for a large alphabet into good codes for a smaller
alphabet.

 

 

outer code

inner code

Figure 13.2: Concatenated codes. The outer (resp., inner) encoding is depicted by the horizontal
arrow (resp., vertical arrows).

The problem, however, is that concatenated codes do not necessarily preserve local testability.
Here, we shall use special features of the specific tester used for the outer codes presented in the
penultimate paragraph. Specifically, observe that, for each of the two queries made by the tester
of the line-oracle C : Σk → Σn, the tester does not need the entire polynomial represented in
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Σ = Fd+1, but rather only its value at a specific point. Thus, encoding Σ by an error correcting
code that supports recovery of the said value while using a constant number of probes will do.36

In particular, for integers h, e such that d + 1 = he, Goldreich and Sudan used an encoding of
the elements of Σ = Fd+1 = Fhe

by sequences of length |F|eh over F (i.e., this inner code mapped
he-long F-sequences to |F|eh-long F-sequences), and provided testing and recovery procedures
(for this inner code) that make O(e) queries [157, Sec. 3.3]. Note that the case of e = 1 and
|F| = 2 corresponds to the Hadamard code, and that a bigger constant e allows for shorter codes

(e.g., for |F| = 2, we have length 2eh = 2e·t1/e
, where t = he denotes the length of the encoded

information). The resulting concatenated code, denoted C′ : F (d+1)·k → Fn′ , is a locally testable
code over F , and has length n′ = n · |F|ed = n · exp((e log d) · d1/e). Using a constant e = 2c ∈ N

and setting d = mc ≈ (log k)c, we get n′ ≈ k2c/(c−1) · exp(d1/e) ≈ k2c/(c−1) · exp(Õ(log k)1/2) and
|F| = O(d) = poly(log k), which means that we have reduced the alphabet size considerably (from
|F|d+1 to |F|, where d = Θ(|F|)).

Finally, a binary locally testable code is obtained by concatenating C′ : Fk′ → Fn′ with the
Hadamard code (which is used to encode elements of F), while noting that the latter supports
a “local recovery” property that suffices to emulate the tester for C′. In particular, the tester of
C′ merely checks a linear (over F) equation referring to a constant number of F-elements, and
for F = GF(2ℓ), this can be emulated by checking related random linear combinations of the bits
representing these elements, which in turn can be locally recovered (or rather self-corrected) from
the Hadamard code. The final result is a locally testable (binary) code of nearly quadratic length;
that is, the length is n′ · 2ℓ = n′ · poly(log k), whereas the information contents is k′ · ℓ > k (and
n′ ≈ k2c/(c−1) ·exp(Õ(log k)1/2)).37 We comment that a version of this tester may use three queries,
whereas 2-query locally testable binary codes are essentially impossible (cf., [46]).

13.3.2.2 Locally testable proofs of polynomial length: The PCP Theorem

The case of proofs is far more complex than that of codes: Achieving locally testable proofs of
polynomial length is essentially the contents of the celebrated PCP Theorem of Arora, Lund,
Motwani, Sudan and Szegedy [24], which asserts that every set in NP has a PCP system of constant
query complexity and logarithmic randomness complexity.38 The construction is analogous to (but
far more complex than) the one presented in the case of codes:39 First we construct locally testable
proofs over a large alphabet, and next we compose such proofs with corresponding “inner” proofs
(over a smaller alphabet, and finally over a binary one).

36Indeed, this property is related to locally decodable codes (to be briefly discussed in Section 13.4.4). Here we
need to recover one out of |F| specific linear combinations of the encoded (d + 1)-long sequence of F-symbols. In
contrast, locally decodable refers to recovering one out of the F-symbols of the original (d+ 1)-long sequence.

37Actually, the aforementioned result is only implicit in [157], since Goldreich and Sudan apply these ideas directly
to a truncated version of the low-degree based code.

38Recall that the proof complexity of PCPs is exponential in their randomness complexity (and linear in their query
complexity).

39Our presentation reverses the historical order in which the corresponding results (for codes and proofs) were
achieved. That is, the constructions of locally testable proofs of polynomial length predated the coding counterparts.
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Teaching note: This subsection is significantly more complex than the rest of this section, and some
readers may prefer to skip it and proceed directly to Section 13.3.3. Specifically, we proceed in four steps:

1. Introduce an NP-complete problem, denoted PVPP.

2. Present a PCP over large alphabet for PVPP.

3. Perform alphabet (and/or query complexity) reduction for PCPs.

4. Discuss the proof composition paradigm, which underlies the prior step.

(The presentation of Step 1-3 (which follows [256, Apdx. C] and [44]) is different from the standard

presentation of [24].) The second and third steps are most imposing and complex, but the reader may

benefit from the discussion of the proof composition paradigm (Step 4) even when skipping all prior steps.

Our presentation of the composition paradigm follows [44], rather than the original presentation of [25, 24].

For further details regarding the proof composition paradigm, the reader is referred to [131, Sec. 9.3.2.2].

The partially vanishing polynomial problem (PVPP). As a preliminary step, we introduce
the following NP-complete problem, for which we shall present a PCP. The input to the problem
consists of a finite field F , a subset H ⊂ F of size |F|1/15, an integer m < |H|, and a (3m + 4)-
variant polynomial P : F3m+4 → F of total degree 3m|H| + O(1). The problem is to determine
whether there exists an m-variant (“assignment”) polynomial A : Fm → F of total degree m|H|
such that P ′(x, y, z, τ)

def
= P (x, y, z, τ,A(x), A(y), A(z)) vanishes on H3m × {0, 1}3; that is,

P (x, y, z, τ,A(x), A(y), A(z)) = 0 for every x, y, z ∈ Hm and τ ∈ {0, 1}3 ⊂ H. (13.7)

Note that the instance (i.e., the polynomial P ) can be explicitly described by a sequence of
|F|3m+4 log2 |F| bits, whereas the solution sought can be explicitly described by a sequence of
|F|m log2 |F| bits. We comment that the NP-completeness of the aforementioned problem can
be proved via a reduction from 3SAT, by identifying the variables of the formula with Hm (for
m = |H|/ log |H|) and essentially letting P be a low-degree extension of a function f : H3m ×
{0, 1}3 → {0, 1} that encodes the structure of the formula (by considering all possible 3-clauses).40

In fact, the resulting P has degree |H| − 1 in each of the first 3m variables and constant degree in
each of the other variables, and this fact can be used to improve the parameters below (but not in
a fundamental way).

A PCP over large alphabet for PVPP. The proof that a given input P satisfies the condition
in Eq. (13.7) consists of an m-variant polynomial A : Fm → F (which is supposed to be of total
degree m|H|) as well as 3m + 1 auxiliary polynomials Ai : F3m+1 → F , for i = 1, ..., 3m + 1
(each supposedly of degree (3m|H| + O(1)) · m|H|). The polynomial A is supposed to satisfy
Eq. (13.7); that is, P (x, z, y, τ,A(x), A(y), A(z)) = 0 should hold for every x, y, z ∈ Hm and

τ ∈ {0, 1}3 ⊂ H. Furthermore, A0(x, y, z, τ)
def
= P (x, z, y, τ,A(x), A(y), A(z)) should vanish on

H3m+1 (i.e., A0(x, y, z, τ) = 0 for every x, y, z ∈ Hm and τ ∈ H). The auxiliary polynomials are
given to assist the verification of the latter condition. In particular, Ai should vanish on F iH3m+1−i,
a condition that is easy to test for A3m+1 (assuming that A3m+1 is a low degree polynomial). The
point is that if, for each i ∈ [3m − 1], the polynomials Ai and Ai−1 agree on the H-segment of
each axis-parallel line in the ith direction (i.e., for every (u, v) ∈ F i−1 × F3m+1−i and h ∈ H, it

40Specifically, f(x, y, z, µνξ) = 1 if and only if xµ ∨ yν ∨ zξ appears as a clause in the given formula, where xµ

denotes x if µ = 0 and ¬x otherwise. The construction of low-degree extensions is reviewed in Exercise 3.1.
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holds that Ai(uhv) = Ai−1(uhv)), then the fact that Ai vanishes on F iH3m+1−i implies that Ai−1

vanishes on F i−1H3m+1−i+1.
Hence, a valid proof consists of a polynomial A that satisfies Eq. (13.7) and a sequence of

polynomials (A1, ..., A3m−1) such that Ai vanishes on F iH3m+1−i. Verifying that Ai−1 agrees
with Ai on F i−1H3m+1−(i−1), for i = 1, ..., 3m + 1, and that all Ai’s are low degree polynomials,
establishes the claim for A0. Thus, testing an alleged proof (A,A1, ..., A3m+1) is performed as
follows:

1. Testing that A is a polynomial of total degree m|H|.
(This is a low-degree test. Recall that it can be performed by selecting a random line through
Fm, and testing whether A restricted to this line agrees with a degree m|H| univariate
polynomial).

2. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai is of total degree d
def
= (3m|H|+ O(1)) ·

m|H|.
(Here we select a random line through F3m+1, and test whether Ai restricted to this line
agrees with a degree d univariate polynomial.)

3. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai agrees with Ai−1 on F i−1HF3m+1−i,
which implies that Ai agrees with Ai−1 on F i−1H3m+1−(i−1).

This is done by uniformly selecting r′ = (r1, ..., ri−1) ∈ F i−1 and r′′ = (ri+1, ..., r3m+1) ∈
F3m+1−i, and comparing Ai−1(r

′, e, r′′) to Ai(r
′, e, r′′), for every e ∈ H. In addition, we check

that Ai, when restricted to the axis-parallel line (r′, ·, r′′), agrees with a univariate polynomial
of degree at most d.41

We stress that the values of A0 are computed according to the given polynomial P by accessing
A at the appropriate locations (i.e., by definition A0(x, z, z, τ) = P (x, z, y, τ,A(x), A(y), A(z))).

4. Testing that A3m+1 vanishes on F3m+1.

This is done by uniformly selecting r ∈ F3m+1, and testing whether A3m+1(r) = 0.

The foregoing tester may be viewed as making O(m|F|) queries to an oracle of length |F|m +(3m+
1) · |F|3m+1 over the alphabet F , or alternatively, as making O(m|F| log |F|) binary queries to a
binary oracle of length O(m · |F|3m+1 log |F|). We mention that the foregoing description (which
follows [256, Apdx. C]) is somewhat different than the original presentation in [24], which in turn
follows [29, 28, 107].42

Note that we have already obtained a highly non-trivial tester. It makes Õ(m|F|) queries to

a proof of length Õ(m · |F|3m+1) in order to verify a claim regarding an input of length n
def
=

|F|3m+4 log2 |F|. Using m = Θ(log n/ log log n), |H| = log n and |F| = poly(log n), which satisfies
m < |H| = |F|1/15, we have obtained a tester of poly-logarithmic query complexity and polynomial
proof complexity (equivalently, logarithmic randomness complexity).43

41Thus, the values of Ai−1 at {r′hr′′ : h ∈ H}, which equal the values of Ai at these points, are consistent with
the values of Ai on the entire line (r′, ·, r′′), whereas the latter sequence of values constitutes a codeword (of an error
correcting code that has a large distance). This means that the values of Ai at {r′fr′′ : f ∈ F} provides a “robust”
encoding of the values of Ai−1 at {r′hr′′ : h ∈ H}.

42The point is that the sum-check, which originates in [202], is replaced here by an analogous process (which is
non-sequential in nature).

43In fact, the proof complexity is sub-linear, since eO(m · |F|3m+1) = o(n).
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Although the foregoing tester is highly non-trivial, it falls short from our aim, because it employs
a non-constant number of queries to a proof-oracle over a non-constant alphabet. Of course, we can
convert the latter alphabet to a binary alphabet by increasing the number of queries, but actually
the original proof of the PCP Theorem went in the opposite direction and reduce the number
of queries by “packing” them into a constant number of queries to an oracle over an even larger
alphabet (see the “parallelization technique” below). Either way, we are faced with the problem of
reducing the total amount of information obtained from the oracle.

Alphabet (and/or query complexity) reduction for PCPs. To further reduce the query
complexity, we invoke the “proof composition” paradigm, introduced by Arora and Safra [25] (and
further discussed at the end of the current subsection). Specifically, we compose an “outer” tester
(e.g., the foregoing tester) with an “inner” tester that locally checks the residual condition that
the “outer” would have checked (regarding the answers it would have obtained). That is, rather
than letting the “outer” verifier read (small) portions of the proof-oracle and decide accordingly,
we let the “inner” verifier probe these portions and check whether the “outer” verifier would have
accepted based on them. This composition is not straightforward, because we wish the “inner”
tester to perform its task without reading its entire input (i.e., the answers to the “outer” tester).
This seems quite paradoxical, since it is not clear how the “inner” tester can operate without
reading its entire input. The problem can be resolved by using a “proximity tester” (i.e., a PCP of
Proximity)44 as an “inner” tester, provided that it suffices to have such a proximity test (for the
answers to the “outer” tester). Thus, the challenge is to reach a situation in which the “outer”
tester is “robust” in the sense that, when the assertion is false, the answers obtained by this tester
are far from being convincing (i.e., far from any sequence of answers that is accepted by this tester).
Two approaches towards obtaining such robust testers are known.

• One approach, introduced in [24], is to convert the “outer” tester into one that makes a
constant number of queries over some larger alphabet, and furthermore have each answer be
presented in an error correcting format. Thus, robustness is guaranteed by the fact that the
answers are presented as a sequence consisting of a constant number of codewords, which
implies the uniqueness of a properly formatted sequence that is close to a fixed sequence.

The implementation of this approach consists of two steps. The first step is to convert the
“outer” tester that makes t = poly(log ℓ) queries to an oracle π : [ℓ]→ {0, 1} into a tester that
makes a constant number of queries to an oracle that maps [poly(ℓ)] to {0, 1}poly(t). This step
uses the so-called parallelization technique, which replaces each possible t-sequence of queries
by a (low degree) curve that passes through these t queries as well as through a random point
(cf. [196, 24]). The new proof-oracle answers each such curve C with a (low degree) univariate
polynomial pC that is supposed to describe the values of (a low degree extension π′ of) π at
all poly(t) points that reside on C (i.e., pC(i) = π′(C(i)). The consistency of these pC ’s with
π is check by selecting a random curve C, and comparing the value that pC assigns a random
point on C to the value assigned to this point by π′ (i.e., the low-degree extension of π).45

44See Section 13.2.3.3.
45

Advanced comment: Specifically, we associate [ℓ] with Hm, where H resides in a finite field F such that
|F| = poly(t, |H |) and |F|m = poly(ℓ). (We stress that m,H and F used here are different from those used in the
foregoing description of the PCP for PVPP, although here too m = |H |/ log |H | will do.) For every sequence of
queries q = (q1, ..., qt) ∈ (Hm)t made by the original verifier and every r ∈ Fm, we consider the degree t + 1 curve
Cq,r : F → Fm such that Cq,r(0) = r and Cq,r(i) = qi for every i ∈ [t] ⊂ F . Hence, the set of curves corresponds
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In the second step, an error correcting code is applied to the poly(t)-bit long answers provided
by the foregoing oracle, while assuming that the “inner (proximity) verifier” can handle inputs
that are presented in this format (i.e., that it can test an input that is presented in a constant
number of parts, where each part is encoded separately).46

• An alternative approach, pursued and advocated in [44], is to take advantage of the specific
structure of the queries, “bundle” the answers together (into a constant number of bundles)
and show that the “bundled” answers are “robust” in a sense that fits proximity testing.
(Furthermore, the robustness of individual bundles is inherited by any constant sequence
of bundles.) Hence, the (generic) parallelization step is replaced by a closer analysis of the
specific (outer) tester, which establishes the robustness of individual sub-tests, and the ability
to bundle these sub-tests (i.e., use the same sequence of queries when emulating the different
sub-tests). The bundling is captured by Eq. (13.8), and the text that follows it explains how
to emulate the various sub-tests using a constant number of queries to these bundles.

Hence, while the first approach relies on a general technique of parallelization (and, historically
(see Footnote 46), also on the specifics of the inner verifier), the second approach refers explicitly
to the notion of robustness and relies on the specifics of the outer verifier. An advantage of the
second approach is that it almost preserves the length of the proofs (whereas the first approach may
square this length). We will outline the second approach next, but warn that this terse description
may be hard to follow.

First, we show how the queries of the foregoing tester for PVPP can be “bundled” such that
the O(m) sub-tests of this tester can be performed by inspecting a constant number of bundles. In
particular, we consider the following “bundling” that accommodates the 3m + 1 different sub-tests
performed in Step (3): Consider B : F3m+1 → F3m+1 such that

B(x1, ...., x3m+1)
def
= (A1(x1, x2, ...., x3m+1), A2(x2, ...., x3m+1, x1), ..., A3m+1(x3m+1, x1, ...., x3m)) (13.8)

to Ω × Fm, where Ω is the set of all possible outcomes of the internal coin tosses of the original verifier. The new
proof-oracle consists of a function π′ : Fm → F , which is supposed to be a degree m|H | extension of the original
proof π, viewed as a Boolean function π : Hm → {0, 1}, as well as univariate polynomials of degree m|H | · (t + 1)
that are supposed to represent the restrictions of π′ to all |Ω × Fm| curves (i.e., the polynomial pC : F → F that
corresponds to the curve C is supposed to satisfy pC(i) = π′(C(i)) for every i ∈ F). The new verifier will

1. test that π′ has degree m|H |;
2. test that π′ matches the univariate polynomials by selecting a random point i ∈ F on a random curve C and

comparing the value given by the corresponding univariate polynomial pC to the value given by π′ (i.e., cheching
that pC(i) = π′(C(i)) holds); and

3. select a random curve C = Cq,r and emulate the original tester based on the values pC(1), ..., pC(t) obtained
from the polynomial that corresponds to this curve.

Due to the randomization of the curves via their value at zero, it holds that a random point on a random curve
is distributed almost uniformly in Fm, where the possible slackness is due to the first t points on the curve. The
analysis is based on the fact that if π′ has degree m|H | and the polynomial that corresponds to a curve does not
agree with it at some point, then they disagree on most of the points.

46The aforementioned assumption holds trivially in case one uses a general-purpose “proximity tester” (e.g., a PCP
of Proximity (a.k.a. an Assignment Tester) for sets in P) as done in [94]. But the aforementioned approach can be
applied (and, in fact, was originally applied) using a specific “proximity tester” that can only handle inputs presented
in one specific format (cf. [24]).
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and perform all 3m + 1 tests of Step (3) by selecting uniformly (r2, ..., r3m+1) ∈ F3m and querying
B at (e, r2, ..., r3m+1) and (r2, ..., r3m+1, e) for all e ∈ F . Thus, all 3m + 1 tests of Step (3) can be
performed by retrieving the 2 · |F| values of B on two axis parallel random line through F3m+1

(i.e., the lines (·, r2, ..., r3m+1) and (r2, ..., r3m+1, ·)).47 Likewise, all 3m + 1 tests of Step (2) can be
performed by retrieving the |F| values of B on a single (arbitrary) random line through F3m+1.
(The test of Step (1), which refers to A, remains intact, whereas the test of Step (4) is conducted
on B rather than on A3m+1.) Lastly, observe that these tests are “robust” in the sense that if,
for some i, the function Ai is (say) 0.01-far from satisfying the condition (i.e., being low-degree or
agreeing with Ai−1), then with constant probability the |F|-long sequence of values of Ai on an
appropriate random line will be far from satisfying the corresponding predicate. This robustness
feature is inherited by B, since each symbol of B encodes the corresponding values of all Ai’s.
Hence, we have bundled O(m) tests that refer to O(m) different functions (i.e., the Ai’s and A)
into four tests that refer to two functions (i.e., B and A), where each of these tests queries one (or
both) of the functions for its value at O(|F|) points.48

Next, we encode the symbols of B (resp., of A) by a good binary error-correcting, and obtain a
binary function B′ (resp., A′) that preserves the robustness up to a constant factor (which equals the
relative distance of the code). Specifically, we may replace A : Fm → F and B : F3m+1 → F3m+1

by A′ : Fm × [O(log |F|)]→ {0, 1} and B′ : F3m+1 × [O(log |F|3m+1)]→ {0, 1}, and conduct all all
tests by making O(m2|F| log |F|) queries to A′ and B′ (since each query to A : Fm → F (resp.,
to B : F3m+1 → F3m+1) is replace by O(log |F|) queries to A′ (resp., O(m log |F|) queries to B′)).
The resulting robustness feature asserts that if the original polynomial P had no solution (i.e., an
A satisfying Eq. (13.7)), then the answers obtained by the tester will be far from satisfying the
residual decision predicate of the tester.

Now, if the robustness feature of the resulting (“outer”) tester fits the proximity testing feature
of the “inner tester” (i.e., the threshold determining what is “far” w.r.t robustness is greater than or
equal to the threshold of “far” w.r.t proximity), then composition is possible. Indeed, we compose
the “outer” tester with an “inner tester” that checks whether the residual decision predicate of the
“outer tester” is satisfies. The benefit of this composition is that the query complexity is reduced
from poly-logarithmic (in n) to polynomial in a double-logarithm function (in n). At this point we
can afford the Hadamard-Based proof tester (because the overhead in the proof length will only
be exponential in poly(log log n) = O(log n)), and obtain a locally testable proof of polynomial (in
n) length. That is, we compose the poly(log log)-query tester (acting as an outer tester) with the
Hadamard-Based tester (acting as an inner tester), and obtain a locally testable proof of polynomial
length (as asserted by the PCP Theorem).

On the proof composition paradigm. The PCP Theorem asserts a PCP system for NP that
simultaneously achieve the minimal possible randomness and query complexity (up to a multiplica-
tive factor).49 The foregoing construction obtains this remarkable result by combining two different

47Indeed, the values of B(e, r2, ...., r3m+1) and B(r2, ...., r3m+1, e) yield the values of Ai(ri, ..., r3m+1, e, r2, ..., ri−1)
and Ai−1(ri, ..., r3m+1, e, r2, ..., ri−1) for every i ∈ [3m + 1]. Recall, however, that the values of A0 are determined
based on A. Hence, for emulating the first of these tests (i.e., the test corresponding to i = 1), we use both B and A.

48Actually, the fourth test (corresponding to Step (4)) queries B at a single point. Recall that Step (1) queries A
on a random line, Step (2) queries B on a random line, and Step (3) queries B (and A) on two random axis-parallel
lines.

49The claim of minimality assumes that P 6= NP. Furthermore, the claim that the randomness complexity is at
least logarithmic refers to low query complexity (e.g., query complexity that is smaller than the square root of the
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PCPs: the first PCP obtains logarithmic randomness but uses poly-logarithmically many queries,
whereas the second PCP uses a constant number of queries but has polynomial randomness com-
plexity. We stress that each of these two PCP systems is highly non-trivial and very interesting by
itself. We also highlight the fact that these PCPs are combined using a very simple composition
method (which refers to auxiliary properties such as robustness and proximity testing). Details
follow.50

Loosely speaking, the proof composition paradigm refers to composing two proof systems such
that the “inner” verifier is used for probabilistically verifying the acceptance criteria of the “outer”
verifier. That is, the combined verifier selects coins for the “outer” verifier, determines the cor-
responding locations that the “outer” verifier would have inspected (in the proof), and verifies
that the “outer” verifier would have accepted the values that reside in these locations. The latter
verification is performed by invoking the “inner” verifier, without reading the values residing in all
the aforementioned locations. Indeed, the aim is to conduct this (“composed”) verification while
using much fewer queries than the query complexity of the “outer” proof system. In particular, the
inner verifier cannot afford to read its input, which makes the composition more subtle than the
term suggests.

In order for the proof composition to work, the verifiers being combined should satisfy some
auxiliary conditions. Specifically, the outer verifier should be robust in the sense that its soundness
condition guarantee that, with high probability, the oracle answers are “far” from satisfying the
residual decision predicate (rather than merely not satisfying it).51 The inner verifier is given oracle
access to its input and is charged for each query made to it, but it is only required to reject (with
high probability) inputs that are far from being valid (and, as usual, accept inputs that are valid).
That is, the inner verifier is actually a verifier of proximity (i.e., a PCP of Proximity, as defined in
Section 13.2.3.3).

Composing two such PCPs yields a new PCP, where the new proof-oracle consists of the proof-
oracle of the “outer” system and a sequence of proof-oracles for the “inner” system (one “inner”
proof per each possible random-tape of the “outer” verifier). The resulting verifier selects coins
for the outer-verifier and uses the corresponding “inner” proof in order to verify that the outer-
verifier would have accepted under this choice of coins. Note that such a choice of coins determines
locations in the “outer” proof that the outer-verifier would have inspected, and the combined verifier
provides the inner-verifier with oracle access to these locations (which the inner-verifier considers as
its input) as well as with oracle access to the corresponding “inner” proof (which the inner-verifier
considers as its proof-oracle).

The quantitative effect of such a composition is easy to analyze. Specifically, composing
an outer-verifier of randomness-complexity r′ and query-complexity q′ with an inner-verifier of
randomness-complexity r′′ and query-complexity q′′ yields a PCP of randomness-complexity r(n) =
r′(n) + r′′(q′(n)) and query-complexity q(n) = q′′(q′(n)), because q′(n) represents the length of the
input (oracle) that is accessed by the inner-verifier. Thus, assuming q′′(m) ≪ m, the query com-
plexity is significantly decreased (from q′(n) to q′′(q′(n))), while the increase in the randomness
complexity is moderate provided that r′′(q′(n)) ≪ r′(n). Furthermore, the verifier resulting from

length of the NP-witness). The point is that a PCP system of randomness complexity r(n) and query complexity
q(n) yields an NP-proof system that utilizes proofs of length 2r(n) · q(n).

50Our presentation of the composition paradigm follows [44], rather than the original presentation of [25, 24]. A
more detailed overview of the composition paradigm is available in [131, Sec. 9.3.2.2].

51Furthermore, the latter predicate, which is well-defined by the non-adaptive nature of the outer verifier, must
have a circuit of size that is at most polynomial in the number of queries.
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the composition inherits the robustness features of the inner verifier, which is important in case we
wish to compose the resulting verifier with another inner-verifier.

The proof composition paradigm is reminiscent of the paradigm of concatenated codes that was
used for alphabet reduction in the context of locally testable codes (cf. Section 13.3.2.1). We stress
that the classical presentations of the paradigm of concatenated codes do not address the issue of
local testability, which is the core of the proof composition paradigm. Recall that local testability
of concatenated codes was shown in Section 13.3.2.1 based on some local decodability features of
the outer code, whereas local testability of the outer and inner codes does not seem to suffice. In
contrast, the proof composition paradigm is tailored for the preservation of local testability.

13.3.3 Locally testable codes and proofs of nearly linear length

We now move on to even shorter codes and proofs; specifically, codes and proofs of nearly linear
length. The latter term has been given quite different interpretations, and we start by sorting these
out. Currently, this taxonomy is relevant mainly for second-level discussions and review of some
past works.52

Types of nearly linear functions. A few common interpretations of the term “nearly linear”
are listed below (going from the most liberal to the most strict one).

T1-nearly linear: A very liberal notion, which seems at the verge of an abuse of the term, refers
to a sequence of functions fǫ : N → N such that, for every ǫ > 0, it holds that fǫ(n) ≤ n1+ǫ.
That is, each function is actually of the form n 7→ nc, for some constant c > 1, but the
sequence as a whole can be viewed as approaching linearity.

The PCP of Polishchuk and Spielman [228] and the simpler locally testable code of Goldreich
and Sudan [157, Thm. 2.4] have nearly linear length in this sense. The locally testable (binary)
code presented in Section 13.3.2.1 has nearly quadratic length in an analogous sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-
tions f such that f(n) = n1+o(1). Specifically, for some function ǫ : N → [0, 1] that tends to
zero, it holds that f(n) ≤ n1+ǫ(n). Common sub-types include the following:

1. ǫ(n) = 1/ log log n.

2. ǫ(n) = 1/(log n)c for some constant c ∈ (0, 1).

The locally testable codes and proofs of [157, 49, 44] have nearly linear length in this
sense. Specifically, in [157, Sec. 4-5] and [49] any c > 1/2 will do, whereas in [44] any
c > 0 will do.

3. ǫ(n) = exp((log log n)c)
log n for some constant c ∈ (0, 1).

Note that poly(log log n)≪ exp((log log n)c)≪ (log n)Ω(1), for any constant c ∈ (0, 1).

4. ǫ(n) = poly(log log n)
log n , which corresponds to f(n) = q(log n)·n, where q(m) = exp(poly(log m)).

Here near-linearity means linearity up to a quasi-poly-logarithmic factor, and one is
tempted to view it as a relaxation of the following type (T3).

52Things were different when the original version of this text [130] was written. At that time, only T2-nearly linear
length was know for O(1)-local testability, and the T3-nearly linear result achieved later by Dinur [92] seemed a
daring conjecture (which was, nevertheless, stated in [130, Conj. 3.3]).
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Indeed, the case in which ǫ(n) = O(log log n)
log n deserves a special category, presented next.

T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic

factor; that is, f(n) = Õ(n)
def
= poly(log n) ·n, which corresponds to the case of f(n) ≤ n1+ǫ(n)

with ǫ(n) = O(log log n)/ log n.

The results of [48, 92, 267, 268], reviewed in Section 13.3.3.1, refer to this notion.

We note that while [48, 92, 267, 268] achieve T3-nearly linear length, the low-error results of [210, 93]
only achieve T2-nearly linear length.

13.3.3.1 Local testability with nearly linear length

The celebrated gap amplification technique of Dinur [92] is best known for providing an alternative
proof of the PCP Theorem (which asserts that every set in NP has a PCP system of constant
query complexity and logarithmic randomness complexity). However, applying this technique to a
PCP that was (previously) provided by Ben-Sasson and Sudan [48] yields locally testable codes
and proofs of T3-nearly linear length. In particular, the overhead in the code and proof length is
only polylogarithmic in the length of the primal object (which establishes [130, Conj. 3.3]).

Theorem 13.11 (Dinur [92], building on [48]): There exists a constant q and a poly-logarithmic
function f : N → N such that there exist q-locally testable codes and proofs (for SAT) of length
f(k) ·k, where k denotes the length of the primal information (i.e., the encoded information in case
of codes and the assertion in case of proofs).

The PCP system asserted in Theorem 13.11 is obtained by applying the gap amplification method
of Dinur [92] (reviewed in Section 13.3.3.2) to the PCP system of Ben-Sasson and Sudan [48].
We mention that the PCP system (for NP) of Ben-Sasson and Sudan [48] is based on the NP-
completeness of a certain code (of length n = Õ(k)), and on a randomized reduction of testing
whether a given n-bit long string is a codeword to a constant number of similar tests that refer
to
√

n-bit long strings. Applying this reduction log log n times yields a PCP of query complexity
poly(log n) and length Õ(n); actually, this reduction yields a 3-query “weak PCP with soundness
error 1− 1/poly(log n)” (which is the construct to which we apply the gap amplification method).

The PCP system of Theorem 13.11 can be adapted to yield a PCP of Proximity with the same
parameters, which (as shown in Section 13.2.3.3) yields a (weak) locally testable code with similar
parameters (i.e., constant number of queries and length n = Õ(k)). Recall that this transformation
of PCP of Proximity to locally testable codes only works for the weak version of the latter notion.
A strong locally testable code with similar parameters was only obtained later (by Viderman [267,
268]).53

Is a polylogarithmic overhead the best one can get? In the original version of this chap-
ter [130], we conjectured that a polylogarithmic (length) overhead is inherent to local testability

53Viderman’s code is based on a refined analysis of the locally testable code of [48], which can be viewed as a
PCP of Proximity, and on the effect of applying gap amplification to PCP of Proximity systems. In particular, an
essential conceptual step is separating the lower-bounding of the rejection probability of a PCP of Proximity system
in terms of its input-oracle from its lower-bounding in terms of its proof-oracle, and observing that gap amplification
acts differently on the two parameters that capture these two relations.
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(or, at least, that linear length O(1)-local testability is impossible). We currently have mixed feel-
ings with respect to this conjecture (even when confined to proofs), and thus rephrase it as an open
problem.

Open Problem 13.12 (local testability in linear length): Determine whether there exist locally
testable codes and proofs of linear length.

13.3.3.2 The gap amplification method

Essentially, Theorem 13.11 is proved by applying the gap amplification method (of Dinur [92])
to the (weak) PCP system constructed by Ben-Sasson and Sudan [48]. The latter PCP system
has length ℓ(k) = Õ(k), but its soundness error is 1 − 1/poly(log k) (i.e., its rejection probability
is at least 1/poly(log k)). Each application of the gap amplification step doubles the rejection
probability while essentially maintaining the initial complexities. That is, in each step, the constant
query complexity of the verifier is preserved and its randomness complexity is increased only by a
constant term (and so the length of the PCP oracle is increased only by a constant factor). Thus,
starting from the system of [48] and applying O(log log k) amplification steps, we essentially obtain
Theorem 13.11. (Note that a PCP system of polynomial length can be obtained by starting from a
trivial “PCP” system that has rejection probability 1/poly(k), and applying O(log k) amplification
steps.)54

In order to rigorously describe the aforementioned process we need to redefine PCP systems
so as to allow arbitrary soundness error. In fact, for technical reasons, it is more convenient to
describe the process in terms of an iterated reduction of a “constraint satisfaction” problem to
itself. Specifically, we refer to systems of 2-variable constraints, which are readily represented by
(labeled) graphs such that the vertices correspond to (non-Boolean) variables and the edges are
associated with constraints.

Definition 13.13 (CSP with 2-variable constraints): For a fixed finite set Σ, an instance of CSP
consists of a graph G = (V,E), which may have parallel edges and self-loops, and a sequence of
2-variable constraints Φ = (φe)e∈E associated with the edges, where each constraint has the form
φe : Σ2 → {0, 1}. The value of an assignment α : V → Σ is the number of constraints satisfied by α;
that is, the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G,Φ) (standing
for violation) the fraction of unsatisfied constraints under the best possible assignment; that is,

vlt(G,Φ) = min
α:V→Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}

.

(13.9)

For various functions τ : N → (0, 1], we will consider the promise problem gapCSPΣ
τ , having in-

stances as above, such that the yes-instances are fully satisfiable instances (i.e., vlt = 0) and the
no-instances are pairs (G,Φ) for which vlt(G,Φ) ≥ τ(|G|) holds, where |G| denotes the number of
edges in G.

Note that 3SAT (over m clauses) is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m
(e.g., replace each clause of the 3SAT instance by a vertex, and use edge constraints that enforce

54See Exercise 13.8.
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mutually consistent and satisfying assignments to each pair of clauses).55 Furthermore, the PCP
system of [48] yields a reduction of 3SAT to gapCSPΣ0

τ1
for τ1(m) = 1/poly(log m) where the size of

the graph is T3-nearly linear in the length of the input formula.

Our goal is to reduce gapCSPΣ0
τ0 (or rather gapCSPΣ0

τ1 ) to gapCSPΣ
c , for some fixed finite Σ and

constant c > 0, where in the case of gapCSPΣ0
τ1 we wish the reduction to preserve the length of the

instance up to a polylogarithmic factor.56 The PCP Theorem (resp., a PCP of T3-nearly linear
length) follows by showing a simple PCP system for gapCSPΣ

c (e.g., the PCP verifier selects a
random edge and checks whether the pair of values assigned to its endpoints by the alleged proof
satisfies the constraint associated with this edge).57 As noted before, the reduction is obtained by
repeated applications of an amplification step that is captured by the following lemma.

Lemma 13.14 (an amplifying reduction of gapCSP to itself): For some finite Σ and constant
c > 0, there exists a polynomial-time computable function f such that, for every instance (G,Φ)
of gapCSPΣ, it holds that (G′,Φ′) = f(G,Φ) is an instance of gapCSPΣ and the two instances are
related as follows:

1. If vlt(G,Φ) = 0, then vlt(G′,Φ′) = 0.

2. vlt(G′,Φ′) ≥ min(2 · vlt(G,Φ), c).

3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas instances that violate a ν
fraction of the constraints are mapped to instances that violate at least a min(2ν, c) fraction of the
constraints. Furthermore, the mapping increases the number of edges (in the instance) by at most
a constant factor. We stress that both Φ and Φ′ consists of Boolean constraints defined over Σ2.
Thus, by iteratively applying Lemma 13.14 for a logarithmic (resp., double-logarithmic) number of
times, we reduce gapCSPΣ

τ0 (resp., gapCSPΣ
τ1) to gapCSPΣ

c .

Teaching note: The rest of this subsection is also quite complex, and some readers may prefer to skip it

and proceed directly to Section 13.4.

Outline of the proof of Lemma 13.14: Before turning to the proof, let us highlight the
difficulty that it needs to address. Specifically, the lemma asserts a “violation amplifying effect”
(i.e., Items 1 and 2), while maintaining the alphabet Σ and allowing only a moderate increase in
the size of the graph (i.e., Item 3). Waiving the latter requirements allows a relatively simple proof
that mimics (an augmented version of) the “parallel repetition” of the corresponding PCP. Thus,
the challenge is significantly decreasing the “size blow-up” that arises from parallel repetition and

55That is, given the instance ∧i∈[m]ψi, we construct a graph G = ([m], E) such that vertices i and j are connected
by an edge if and only if ψi and ψj have some common variable. In this case the constraint φ(i,j) : Σ2

0 → {0, 1} is such
that φ(i,j)(σ, τ ) = 1 if and only if ψi(σ) = ψj(τ ) = 1 and the values assigned to the common variable are identical.
For example, if ψi = x∨y∨z and ψj = u∨¬x∨¬v, then φ(i,j)(σ, τ ) = 1 if and only if σ1∨σ2∨σ3 = τ1∨¬τ2∨¬τ3 = T

and σ1 = τ2.
56Hence, for some fixed Σ and constant c > 0, the problem gapCSPΣ

c is NP-complete. As shown in Exercise 13.9,
this cannot be the case if |Σ| = 2, unless P = NP .

57For Σ ≡ {0, 1}ℓ, given a gapCSPΣ
c instance (G,Φ), consider the PCP oracle π : [n] × [ℓ] → {0, 1}, where n

denotes the number of vertices in G. The verifier selects a random edge (u, v) in G, obtains σ = π(u, 1) · · · π(u, ℓ)
and τ = π(v, 1) · · ·π(v, ℓ), and checks whether φ(u,v)(σ, τ ) = 1.
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maintaining a fixed alphabet. The first goal (i.e., Item 3) calls for a suitable derandomization, and
indeed we shall use a “pseudorandom” generator based on random walks on expander graphs. The
second goal (i.e., fixed alphabet) can be handled by using the proof composition paradigm, which
was outlined at the end of Section 13.3.2.2.

The lemma is proved by presenting a three-step reduction. The first step is a pre-processing
step that makes the underlying graph suitable for further analysis (e.g., the resulting graph will
be an expander). The value of vlt may decrease during this step by a constant factor. The heart
of the reduction is the second step in which we can increase vlt by any desired constant factor.
This is done by a construction that corresponds to taking a random walk of constant length on the
current graph. The latter step also increases the alphabet Σ, and thus a post-processing step is
employed to regain the original alphabet (by using any inner PCP systems; e.g., the one presented
in Section 13.3.1.2). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary parameters d and t
(to be introduced in the following two paragraphs), are fixed constants that will be determined
such that various conditions (which arise in the course of our argument) are satisfied. Specifically,
t will be the last parameter to be determined (and it will be made greater than a constant that is
determined by all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the input (G,Φ)
of gapCSPΣ to an instance (G1,Φ1) such that G1 is a d-regular expander graph.58 Furthermore,
each vertex in G1 will have at least d/2 self-loops, the number of edges will be preserved up to a
constant factor (i.e., |G1| = O(|G|)), and vlt(G1,Φ1) = Θ(vlt(G,Φ)). This step is quite simple:
essentially, the original vertices are replaced by expanders of size proportional to their degree, and
a big (dummy) expander is “superimposed” on the resulting graph. (The constraints associated
with the edges of the former expanders mandate equality, whereas the the constraints associated
with the edges of the latter expander are trivial (i.e., require nothing).)

The main step is aimed at increasing the fraction of violated constraints by a sufficiently large
constant factor. The intuition underlying this step is that the probability that a random (t-edge
long) walk on the expander G1 intersects a fixed set of edges is closely related to the probability
that a random sample of (t) edges intersects this set. Thus, we may expect such walks to hit a
violated edge with probability that is at least min(Θ(t · ν), c), where ν is the fraction of violated
edges. Indeed, the current step consists of reducing the instance (G1,Φ1) of gapCSPΣ to an instance
(G2,Φ2) of gapCSPΣ′ such that the edges of G2 correspond to t-step walks on G1 and Σ′ = Σdt

(equiv., Σ′ = {f : [d]t → Σ}). Specifically, G2 and Φ2 are defined as follows.

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge long path in G1 is
replaced by a corresponding edge in G2, which is thus a dt-regular graph.

Since there are self-loops on each vertex in G1, each two vertices that are at distance t′ ≤ t
in G1 are connected by an edge in G2 (which corresponds to a t-step walk that takes t′ real
steps, and remains in place in t− t′ steps).

2. The constraints in Φ2 treat each element of Σ′ as a Σ-labeling of the (“distance ≤ t”) neigh-
borhood of a vertex (i.e., the label α′v ∈ Σ′ of vertex v is viewed as a function from the

58A graph is d-regular if each of its vertices has exactly d incident edges. Loosely speaking, an expander graph
has the property that each cut (i.e., partition of its vertex set) has relatively many edges crossing it. An equivalent
definition, also used in the actual analysis, is that all the eigenvalues of the corresponding adjacency matrix, except
for the largest one (which equals d), have absolute value that is bounded away from d.
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t-neighborhood of v to Σ). Each constraint mandates that the two corresponding labelings
(of the endpoints of the G2-edge) are consistent as well as satisfy Φ1. That is, the following
two types of conditions are enforced by the constraints of Φ2:

(consistency): If vertices u and w are connected in G1 by a path of length at most t and vertex
v resides on this path, then the Φ2-constraint associated with the G2-edge between u
and w mandates the equality of the entries corresponding to vertex v in the Σ′-labeling
of vertices u and w (i.e., α′u(v) = α′w(v), where α′x : [d]t → Σ is the Σ′-label of vertex x).

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t starting at u, then the
Φ2-constraint associated with the G2-edge that corresponds to this path enforces the
Φ1-constraint that is associated with (v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set to a constant.
(Indeed, the relatively moderate increase in the size of the graph corresponds to the low randomness-
complexity of selecting a random walk of length t in G1.)

Turning to the analysis of this step, we note that vlt(G1,Φ1) = 0 implies vlt(G2,Φ2) = 0.
The interesting fact is that the fraction of violated constraints increases by a factor of Ω(

√
t);

that is, vlt(G2,Φ2) ≥ min(Ω(
√

t · vlt(G1,Φ1)), c). Here we merely provide a rough intuition and
refer the interested reader to [92]. We may focus on any Σ′-labeling of the vertices of G2 that is
consistent with some Σ-labeling of G1, because relatively few inconsistencies (among the Σ-values
assigned to a vertex by the Σ′-labeling of other vertices) can be ignored, while relatively many such
inconsistencies yield violation of the “consistency constraints” of many edges in G2. Intuitively,
relying on the hypothesis that G1 is an expander, it follows that the set of violated edge-constraints
(of Φ1) with respect to the aforementioned Σ-labeling causes many more edge-constraints of Φ2 to
be violated (because each edge-constraint of Φ1 is enforced by many edge-constraints of Φ2). The
point is that any set F of edges of G1 is likely to appear on a min(Ω(t) · |F |/|G1|,Ω(1)) fraction of
the edges of G2 (i.e., t-paths of G1). (Note that the claim would have been obvious if G1 were a
complete graph, but it also holds for an expander.)59

The factor of Ω(
√

t) gained in the second step makes up for the constant factor lost in the first
step (as well as the constant factor to be lost in the last step). Furthermore, for a suitable choice
of the constant t, the aforementioned gain yields an overall constant factor amplification (of vlt).
Note, however, that so far we obtained an instance of gapCSPΣ′ rather than an instance of gapCSPΣ,
where Σ′ = Σdt

. The purpose of the last step is to reduce the latter instance to an instance of
gapCSPΣ. This is done by viewing the instance of gapCSPΣ′ as a PCP-system,60 and composing it
with an inner-verifier using the proof composition paradigm outlined in Section 13.3.2.2. We stress
that the inner-verifier used here needs only handle instances of constant size (i.e., having description
length O(dt log |Σ|)), and so the verifier presented in Section 13.3.1.2 will do. The resulting PCP-

system uses randomness r
def
= log2 |G2|+O(dt log |Σ|)2 and a constant number of binary queries, and

has rejection probability Ω(vlt(G2,Φ2)), where the constant in the Ω-notation is independent of
the choice of the constant t. Moving back to the world of gapCSP, for Σ = {0, 1}O(1), we can obtain
an instance of gapCSPΣ that has a Ω(vlt(G2,Φ2)) fraction of violated constraints. Furthermore,
the size of the resulting instance (which is used as the output (G′,Φ′) of the three-step reduction)

59We mention that, due to a technical difficulty, it is easier to establish the claimed bound of Ω(
√
t · vlt(G1,Φ1))

rather than Ω(t · vlt(G1,Φ1)).
60The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the instance (G2,Φ2) with proba-

bility vlt(G2,Φ2) ∈ [0, 1]).
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is O(2r) = O(|G2|), where the equality uses the fact that d and t are constants. Recalling that
vlt(G2,Φ2) ≥ min(Ω(

√
t · vlt(G1,Φ1)), c) and vlt(G1,Φ1) = Ω(vlt(G,Φ)), this completes the

(outline of the) proof of the entire lemma.

Reflection. In contrast to the proof outlined in Section 13.3.2.2, which combines two remarkable
constructs by using a simple composition method, the current proof of the PCP Theorem is based
on a powerful amplification method that improves the quality of the single system to which it is
applied. The amplification method, captured by Lemma 13.14, improves the quality of the system
in a moderate manner, and so it is applied iteratively many times. Hence, remarkable results are
obtained by a gradual process of many moderate amplification steps. (In contrast, the composition
applied in Section 13.3.2.2, does not improve the quality of the systems to which it is applied but
rather inherits the best aspects of the two systems (i.e., it inherits the randomness complexity of
the “outer” system and the query complexity of the “inner” system).)

13.4 Chapter notes

The term “locally testable proof” was introduced in [130] with the intension of matching the
term “locally testable codes”. As started at the end of Section 13.2.2, the term “locally testable
proofs” seems more fitting than the standard term “probabilistically checkable proofs” (abbreviated
PCPs), because it stresses the positive aspect (of locality) rather than the negative aspect (of being
probabilistic). The latter perspective has been frequently advocated by Leonid Levin.

13.4.1 Historical notes

The celebrated story of the PCP Theorem is well-known; still we provide a brief overview of this
story and refer the interested reader to the account in [127, Sec. 2.6.2] (partially reproduced in the
chapter notes of [131, Chap. 9]).

The PCP model was suggested by Fortnow, Rompel, and Sipser [118] as a model capturing
the power of the (related) model of multi-prover interactive proofs, which was introduced by Ben-
Or, Goldwasser, Kilian and Wigderson [43] as a generalization of the model of interactive proofs
(introduced by Goldwasser, Micali and Rackoff [161]).

The PCP Theorem itself is a culmination of a sequence of works, starting with Babai, Fortnow,
and Lund [29], who showed that (unrestricted) PCPs (which are merely restricted by the verification
time) captured the class NEXP, continuing with the different “scale downs”61 of that result to
the poly-logarithmic query complexity level (by Babai, Fortnow, Levin and Szegedy [28] and Feige,
Goldwasser, Lovász, Safra and Szegedy [107]), and culminating with the PCP characterizations
of NP (by Arora and Safra [25] and Arora, Lund, Motwani, Sudan and Szegedy [24]). These
developments were inspired by the discovery of the power of interactive proof systems and made use
of techniques developed towards this end (by Lund, Fortnow, Karloff, Nisan, and Shamir [202, 253]).
The alternative proof of the PCP Theorem was found by Dinur [92] more than a decade later.

The model of PCPs of Proximity was introduced by Ben-Sasson, Goldreich, Harsha, Sudan and
Vadhan [44], and is almost identical to the notion of Assignment Testers introduced independently

61The term “scale down” is meant to capture the conceptual contents of moving from NEXP to NP . It is certainly
not meant to diminish the impressive technical achievement involved.
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by Dinur and Reingold [94].62 We believe that the proof composition paradigm (of [25]) becomes
much more clear when explicitly referring to the inner verifiers as PCPs of Proximity (and to the
outer verifiers as being robust). In retrospect, the work of [28] should be viewed as a PCP of
Proximity of poly-logarithmic verification time for statements that are encoded using a specific
error correction code.

There is a fair amount of confusion regarding credits for the introduction of the notion of locally
testable codes (LTCs). This definition (or at least a related notion)63 is arguably implicit in [28]
as well as in subsequent works on PCP. However, as discussed in Section 13.2.4, these implicit
definitions do not differentiate between the actual notion and related ones (see, e.g., Footnote 63).
The definition of locally testable codes has appeared independently in the works of Friedl and
Sudan [120] and Rubinfeld and Sudan [246] as well as in the PhD Thesis of Arora [23]. The
distinction between the weak and strong notions (see Definition 13.7) is due to Goldreich and
Sudan [157], which initiated a systematic study of these notions.

As stated in Footnote 39, our presentation reverses the historical order in which the correspond-
ing results (for codes and proofs) were achieved. That is, the constructions of locally testable proofs
of polynomial length, captured in the PCP Theorem [25, 24], predated the coding counterparts.

13.4.2 On obtaining super-fast testers

Our motivation for studying locally testable codes and proofs referred to super-fast testing, but
our actual definitions have focused on the query complexity of these testers. While the query
complexity of testing has a natural appeal, the hope is that low query complexity testers would
also yield super-fast testing. Indeed, in the case of codes, it is typically the case that the testing time
is related to the query complexity. However, in the case of proofs there is a seemingly unavoidable
(linear) dependence of the verification time on the input length. This (linear) dependence can be
avoided if one considers PCP of Proximity (see Section 13.2.3.3) rather than standard PCP. But
even in this case, additional work is needed in order to derive testers that work is sub-linear time.
The interested reader is referred to [45, 205].

13.4.3 The alternative regime: LTCs of linear length

It is quite conceivable that there is a trade-off between the level of locality (i.e., number of queries)
and length of the object being tester (i.e., code or proof). At least, the currently known results
exhibit such a trade-off.

As stated upfront, we have focused on one extreme of the query-vs-length trade-off: We have
insisted on a constant number of queries and sought to minimize the length of the code (or proof).
The opposite extreme is to insist on codes (or proofs) of linear length, and to seek to minimize the
number of queries. In the case of codes, the state of the art in this regime was set by Kopparty,
Meir, Ron-Zewi, and Saraf [191, 192], who obtained codes of optimal rate (with respect to their
distance) that can be tested using quasi-poly-logarithmically number of queries. Specifically, for

62Both notions are (important) special cases of the general definition of a “PCP spot-checker” formulated before
by Ergün et al. [102].

63The related notion refers to the following relaxed notion of codeword testing: For two fixed good codes C1 ⊆
C2 ⊂ {0, 1}n, one has to accept (with high probability) every codeword of C1, but reject (with high probability) every
string that is far from being a codeword of C2. Indeed, our definitions refer to the special (natural) case that C2 = C1,
but the more general case suffices for the construction of PCPs (and is implicitly achieved in most of them). See
further discussion in [157, Sec. 5.2].

392



any constant δ, η > 0 and a sufficiently large finite set Σ, they obtain codes from Σk to Σn, where
k = (1 − δ − η) · n, that have relative distance δ and can be tested using (log k)O(log log k) queries.
We briefly review their ideas next.64

A warm-up: the prior state-of-art. For every constant c > 0, a folklore construction, which
may be traced to [28], achieves a code of constant rate (i.e., n = O(k)) that can be tested using kc

queries. For any constant m ∈ N, the construction identifies [k] with Hm, and uses a finite field F
of size O(|H|). The code maps m-variate functions f : Hm → {0, 1} to their low degree extension;
that is, f is mapped to the polynomial p : Fm → F of individual degree |H| − 1 that agrees with f

on Hm. This code has relative distance 1− m·(|H|−1)
|F| > 1

2 , rate (|H|/|F|)m = exp(−O(m)), and it

can be checked by inspecting the values of the purported codeword w : Fm → F on O(m) random
axis-parallel lines, which means making O(m) · |F| = O(m) · k1/m queries. (A binary code can be
obtained by encoding the symbols of F via a good binary error correcting code.)

Note that we can use the foregoing construction with m = 1 and |F| = (1 + η(k)) · k, for a
vanishing function η (e.g., η(k) = 1/

√
k). In this case, we obtain a code with very low relative

distance (i.e., the relative distance is η(k)/(1 + η(k)) ≈ η(k)) such that testing is performed by
reading the entire purported codeword. Still, such simple codes (which have very poor distance
but very high rate) will be an ingredient in the following construction. A crucial tool that allows
their usage is distance amplification, which is actually the pivot of the entire construction.

 

 

E

Π

C

Figure 13.3: Distance amplification for a code C : Σ40 → Σ48, when using the encoding E : Σ8 →
Σ12, and a random permuation π : [72]→ [72], yields a code C ′ : Σ40 → Γ6.

Distance amplification. Our aim here is to amplify the relative distance of locally testable codes
while preserving their local testability. Specifically, starting with a code of relative distance δ, we
can obtain a code of any desired relative distance δ′ ∈ (0, 1), while increasing the query complexity
(of codeword testing) by a factor of poly(1/δ), and decreasing the rate by only a factor of 1−δ′−o(δ′).
(We shall be using δ′ =

√
δ for a small δ.) Denoting the initial code by C : Σℓ → Σs·m, where

64Our presentation uses extracts from [192, Sec. 1.2], and we thank the authors for the permission to use these
extracts. We omit the credits for various ingredients of the construction, and refer the interested reader to [192,
Sec. 1.2].
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s = (1− δ′ − o(δ′)) · t and t = poly(1/δ), we derive a code C ′ : Σℓ → Γm, where Γ ≡ Σt, as follows.
Towards this end, we shall use an auxiliary encoding E : Σs → Σt (of rate 1− δ′−o(δ′) and relative
distance δ′ + o(δ′)) and a permutation π : [m · t] → [m · t], The codeword C ′(x) is obtained by
partitioning C(x) into m equal-length blocks, denoted y1, y2, ..., ym ∈ Σs, encoding each block via
E, permuting the resulting m · t-long sequence E(y1) ·E(y2) · · ·E(ym) ∈ (Σt)m according to π, and
viewing each block of t consecutive Σ-symbols (in the result) as a symbol of Γ (see Figure 13.3).
That is, the ith symbol of C ′(x) equal the t-tuple

((E(y1) ·E(y2) · · ·E(ym))π((i−1)·t+1), ..., (E(y1) ·E(y2) · · ·E(ym))π(i·t)) (13.10)

where y1 · y2 · · · ym = C(x) such that |y1| = · · · = |ym| = s.

If π is “sufficiently random” (e.g., the permutation defined by the edge-set of a t-regular m-vertex
expander will do)65, then this construction amplifies distances (see next) although the alphabet
size is increased (which is an issue that we already dealt with in other parts of this chapter).66 To
see why the distance is increased by Eq. (13.10), consider any x 6= x′. Recall that the (s ·m-long)
codewords y1 · · · ym = C(x) and y′1 · · · y′m = C(x′), where y1, .., ym, y′1, ..., y

′
m ∈ Σs, are at relative

distance at least δ, which implies that |{i ∈ [m] : yi 6= y′i}| ≥ δm, whereas the encoding E maps
blocks of different values (i.e., yi 6= y′i) to blocks (i.e., E(yi) and E(y′i)) that are at relative distance
at least δ′ + o(δ′). The key observation is that for a sufficiently large t (i.e., t = poly(1/δ)), the
permutation π “distributes” any (δ′+ o(δ′)) · t symbols of any δm blocks among at least δ′m blocks
(see Footnote 65), which yields the claimed relative distance of δ′. Testing the codewords of C ′ is
done by checking the validity of the E-encodings of the Σ-blocks and emulating (O(t) executions
of) the codeword tester of C, where in both cases we need to retreive the encoded Σ-blocks from
the locations to which they were mapped by π. (Recall that the encoding of each symbol of the
C-codeword is distributed among up to t symbols of the C ′-codeword.)67

The iterative construction. With these preliminaries in place, we turn to the heart of the
construction (of [192]), which is an iterative process. The process starts with a code of very small
length, which can be tested simply by reading the entire purported codeword. Then, the length is
increased iteratively, while the rate, relative distance, and query complexity (of codeword testing)
are not harmed too much. Specifically, when wishing to obtain a code with length n, we start
with a code of length poly(log n), rate 1 − (1/poly(log n)), and relative distance 1/poly(log n).
In each iteration (to be described next), the length and the rate are (roughly) squared, the rel-
ative distance is maintained, and the query complexity is increased by a factor of poly(log n).
Thus, after approximately log log n iterations, we obtain a code of length n, constant rate (since

(1 − (1/poly(log n)))2
log log n

= 1 − o(1)), relative distance 1/poly(log n), and query complexity

65Specifically, we consider the permutation that maps (u, i) ∈ [m]× [t] ≡ [mt] to (v, j) if {u, v} is both the ith edge
incident at u and the jth edge incident at v. We shall use the fact that in the underlying t-regular m-vertex expander,
for each set S of δ′m vertices, at most δm vertices have at least (δ′ + o(δ′))t neighbors in S.

66Such an alphabet reduction involves using another auxiliary encoding of the form E′ : Σt → Σt/(1−δ′), which
means that it decreases the distance by a factor of δ′. Hence, wishing to obtain a relative distance of δ′′, we actually
use δ′ =

√
δ′′, which means that we decrease the rate by a factor of (1 −

√
δ′′)2. We comment that the actual

parameter setting in [192] is different, since additional slackness has to be created in order to handle complications
that arise from the use of tensor codes.

67The ith symbol of C′ contains a part of the encoding of the pth block of C if there exists j, q ∈ [t] such that
π((i− 1) · t+ j) = (p− 1) · t+ q.
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(log n)O(log log n). Using the foregoing distance-amplification (which is also used inside the itera-
tive process), this gives a code of high rate with constant relative distance and query complexity
(log n)O(log log n), as asserted upfront.

A single iteration. Suppose that iteration i begins with a code Ci that has length ni, rate ri,
relative distance δi, and query complexity qi. The iteration consists of two steps.

• Tensor product: First, we take the tensor product of Ci, denoted C2
i , where the tensor product

of Ci consists of all ni×ni matrices such that that each of the rows and columns of the matrix
is a codeword of Ci. The code C2

i has length n2
i , rate r2

i , and relative distance δ2
i . Using

additional features of the code Ci, which are preserved in the iterations, one can show that
C2

i is testable with query complexity qi · poly(1/δi).

• Distance amplification: Next, we apply the foregoing distance-amplification to the code C2
i ,

and amplify the relative distance from δ2
i to δi. The resulting code, denoted Ci+1, has length

ni+1 = O(n2
i ), relative distance δi+1 = δi = δ1, rate ri+1 = (1 − δ1) · r2

i = (1 − δ1)
2i−1 · r2i

1 ,
and query complexity qi+1 = qi · poly(1/δ1) = poly(1/δ1)

i · q1.

Indeed, a crucial detail that we refrained from addressing is the testing of the tensor code. The
interested reader is referred to [192].

13.4.4 Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes. Here, one is
given a slightly corrupted codeword (i.e., a string close to some unique codeword), and is required
to recover individual bits of the encoded information based on a constant number of probes (per
recovered bit).68 That is, a code is said to be locally decodable if whenever relatively few location
are corrupted, the decoder is able to recover each information-bit, with high probability, based on
a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of strictly sub-exponential length. Specifically, k
information bits can be encoded by codewords of length n = exp(ko(1)) that are locally decodable
using three bit-probes (cf. [100], building on [274]). It is also known that locally testable codes
cannot be T2-nearly linear: Recovery based on q queries requires length at least k1+(2/(q−1)) (cf. [179,
185]). Indeed, the gap between the known upper and lower bounds is huge. (We mention that locally
decodable codes are related to schemes of (information theoretic) Private Information Retrieval,
introduced in [79].)

A natural relaxation of the definition of locally decodable codes requires that, whenever few
location are corrupted, the decoder should be able to recover most of the individual information-
bits (based on a constant number of queries), and for the rest of the locations the decoder may
output a special failure symbol (but not the wrong value). That is, the decoder must still avoid
errors (with high probability), but on a few bit-locations it is allowed to say “don’t know”. This
relaxed notion of local decodability can be supported by codes that have length ℓ(k) = kc for any
constant c > 1 (cf. [44, Sec. 4.2]).69

68The aim in this case is to minimize the length of the code. A dual regime refers to allowing only linear length
codes and minimizing the query complexity (cf. [191]).

69That is, relaxed locally decodable codes of T1-nearly linear length are known [44]. In contrast, by [179], there
exist no (non-relaxed) locally decodable codes of T2-nearly linear length.
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An obvious open problem is to separate locally decodable codes from relaxed locally decodable
codes (or to refute this conjectured separation). This separation may follow if one establishes a
k1+ℓ(q) lower bound on the length of q-query locally decodable codes and a ki+u(k) upper bound on
the length of the relaxed counterparts such that ℓ(q) > u(q), but currently we have ℓ(q) = 2/(q−1)
and u(q) = O(1/

√
q). A more ambitious goal is to determine whether there exist locally decodable

codes of polynomial length.

13.4.5 Exercises

Exercise 13.1 (ǫ-testing a code of relative distance 0.99ǫ): Show that, for every ǫ ∈ (0, 0.001),
there exists a code of relative distance 0.99ǫ and constant rate that can be ǫ-tested with O(1/ǫ)
queries.

Guideline: We start with any code C0 ⊂ {0, 1}n of constant rate, distance d = 0.499n and covering
radius smaller than d. (Such a code can be obtained by iteratively adding to the code any n-
bit string that is (d/n)-far from the current code.) Now, for m = 1.001d/ǫ, consider the code
C(x) = C0(x) · 0m, and note that C has relative distance greater than d/(n + m) > 0.99ǫ whereas
any string that is ǫ-far from C contains at least ǫ · (n + m)− d = Ω(ǫm) non-zeros in its m-bit long
suffix. Hence, codewords can be ǫ-tested by merely checking if this suffix is the all-zero string, and
the claim follow.

Exercise 13.2 (on the weak version of Definition 13.7): Suppose that C = {Ck : {0, 1}k →
{0, 1}n(k)}k∈K is locally testable in the (weaker) sense of Section 13.2.3.1; that is, for every con-
stant ǫ > 0 and all sufficiently large k, the tester accepts Ck and rejects strings that are ǫ-far from
Ck. Show that, for some q′ : (0, 1] → N, the code C is universally q′-locally testable (per the weak
version of Definition 13.7).

Guideline: For each ǫ > 0, let kǫ be such that for every k ≥ kǫ the tester accepts Ck and rejects
strings that are ǫ-far from Ck. Consider a tester that on input parameters (k, ǫ), determines kǫ,
activates the original tester if k ≥ kǫ, and reads the entire input-oracle otherwise. This yields
q′(ǫ) = max(q(ǫ), kǫ).

Exercise 13.3 (obtaining a PCP from a PCP of Proximity for a corresponding set of codewords):
For constant ǫ > 0 and ρ : N → N, suppose that C is an efficiently computable code of relative

distance greater than ǫ > 0 and rate ρ, and that V is a PCP of Proximity for T
def
= {C(x) : x ∈ S}

with proximity parameter ǫ, query complexity q and proof complexity p. Present a PCP for S with
query complexity q′(n) = q(n/ρ(n)) and proof complexity p′(n) = p(n/ρ(n)).

Guideline: On input x and access to an alleged proof π, the verifier computes w = C(x), and invokes
V w,π(1|w|); that is, the verifier emulates queries to w by itself and answers queries to π by querying
its own oracle. The point is that if x 6∈ S, then C(x) is ǫ-far from T .

Exercise 13.4 (from PCP of Proximity to a locally testable code): Let C0 : {0, 1}k → {0, 1}n
be an efficiently computable code of constant rate. Suppose that V is a PCP of Proximity for the
set of all C0-codewords with proximity parameter ǫ, query complexity q, and proof complexity p.
Construct a q-locally 3ǫ-testable code of length O(p(n)/ǫ) and relative distance that approximately
equals that of C0. Show that the weak version of Definition 13.7 can be met, by using ǫ = ǫ(k) that
tends to zero with k.
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Guideline: Let C(x) = C0(x)tπ(x), where π(x) is the (canonical) proof that C0(x) is a codeword of C0,
and t = O(ǫ−1|π(x)|/|C0(x)|). On input w(1) · · ·w(t)π, the 3ǫ-tester for C checks that w(1) · · ·w(t)

consists of t repetitions of the n-bit string w(1), and invokes V while providing it access to w(1) (as
main input) and to π (as an alleged proof). The key observation is that if w(1) · · ·w(t)π is 3ǫ-far
from C, then w(1) · · ·w(t) is 2ǫ-far from Ct

0. Hence, either w(1) · · ·w(t) is ǫ-far from w(1) · · ·w(1) or
w(1) is ǫ-far from C0. Finally, note that using ǫ = ǫ(k) = o(1) requires using a PCP of Proximity
that works with this value of the proximity parameter, and constructing a code of length that is
inversely proportional to ǫ(k). (We mention that such PCP of Proximity that have query complexity
poly(1/ǫ(k)) are known.)

Exercise 13.5 (interactive proofs yield PCPs): Suppose that S has an interactive proof system in
which the prover sends b bits. Show that S has a PCP of query complexity b.

Guideline: The queries correspond to possible partial transcripts of the interaction of the verifier
with the prover.

Exercise 13.6 (Satisfiability of Quadratic Systems over GF(2)): Prove that the following problem
is NP-complete. An instance of the problem consists of a system of quadratic equations over GF(2),
and the problem is to determine whether there exists an assignment that satisfies all the equations.

Guideline: Start by showing that the corresponding problem for cubic equations is NP-complete, by
a reduction from 3SAT that maps the clause x∨¬y∨z to the equation (1−x)·y ·(1−z) = 0. Reduce
the problem for cubic equations to the problem for quadratic equations by introducing auxiliary
variables; that is, given an instance with variables x1, ..., xn, introduce the auxiliary variables xi,j’s
and add equations of the form xi,j = xi · xj.

Exercise 13.7 (on testing equality of matrices): Prove that for Boolean n-by-n matrices A 6= B,

when r, s ∈ GF(2)n are uniformly selected vectors, it holds that Prs[As = Bs] = 2−rank(A−B) and
it follows that Prr,s[rAs = rBs] ≤ 3/4.

Guideline: The second assertion follows from the first one by observing that if (u1, ..., un) 6=
(v1, ...., vn) ∈ GF(2)n, then Prr[

∑
i riui =

∑
i rivi] = 1/2, when r = (r1, ...., rn) is uniformly

distributed in GF(2)n. The first assertion is proved by a generalization of the latter argument.70

Exercise 13.8 (a trivial PCP with large soundness error): Present a three-query PCP of logarith-
mic radomness complexity and soundness error 1− (1/m) for 3SAT, where m denotes the number
of clauses.

Guideline: View the proof-oracle as a truth assignment to the input formula.

Exercise 13.9 (on the complexity of gapCSP
{0,1}
c ): Show that for every function τ : N → (0, 1],

the problem gapCSP
{0,1}
τ is solvable in polynomial-time.

Guideline: Reduce solving gapCSP
{0,1}
τ to deciding the satisfiability of 2CNF formulae.

70To analyze Prr[
P

i riui =
P

i rivi] = 1/2, consider (w1, ..., wn) = (u1, ..., un) − (v1, ...., vn), and show that

Prr[
P

i riwi = 0] = 1/2, by observing that
P

i∈[n] riwi =
P

i:wi=1 ri. Similarly, prove that Prs[Ds = 0] = 2−rank(D),

by showing that for any full rank k-by-k submatrix D′ and any v′ ∈ GF(2)k it holds that Prs′ [D
′s′ = v′] = 2−k.
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Appendix A

Probabilistic Preliminaries

Summary: This appendix presents background from probability theory, which will
be used extensively throughout the book. This background and preliminaries include
conventions regarding random variables, basic notions and facts, and three useful prob-
abilistic inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality, and Chernoff
Bound).

A.1 Notational Conventions

We assume that the reader is familiar with the basic notions of probability theory. In this section,
we merely present the probabilistic notations that are used throughout the book.

Throughout the entire text we refer only to discrete probability distributions. Actually, we shall
typically consider finite probability distributions (i.e., distributions supported by a finite probability
space). Specifically, the underlying probability space consists of the set of all strings of a certain
length ℓ, taken with uniform probability distribution. That is, the sample space is the set of all
ℓ-bit long strings, and each such string is assigned probability measure 2−ℓ. Traditionally, random
variables are defined as functions from the sample space to the reals. Abusing the traditional
terminology, we use the term random variable also when referring to functions mapping the sample
space into the set of binary strings. One important case of such a random variable is the output of
a randomized process (e.g., a probabilistic oracle machine).

We often do not specify the probability space, but rather talk directly about some random
variables. For example, we may say that X is a 0-1 random variable such that Pr[X =0] = 1

4 and
Pr[X =1] = 3

4 , without specifying the underlying probability space. (Indeed, this random variable
may be defined over the sample space {0, 1}2, such that X(11) = 0 and X(00) = X(01) = X(10) =
1.)

Many probabilistic statements refer to random variables that are defined beforehand. Typically,
we may write Pr[χ(X)], where X is a random variable defined beforehand and χ is a predicate
(e.g., we may write Pr[f(X) = v], when f : R→R is a function and v ∈ R). In other cases, we
may write Prx∼D[χ(x)], meaning that x is drawn according to a predetermined distribution D.
In case D is the uniform distribution over some finite set S, we may write Prx∈S [χ(x)] instead of
Prx∼D[χ(x)].
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A.2 Some basic notions and facts

We shall often use the following notions and facts.

Union bound. An obvious fact regarding finite sets is that the size of their union is upper-
bounded by the sum of their sizes; that is, if S1, ..., St are finite sets, then | ∪i∈[t] Si| ≤

∑
i∈[t] |Si|.

It follows that
Prr∈U

[
r ∈ ∪i∈[t]Si

]
≤
∑

i∈[t]
Prr∈U [r ∈ Si],

where S1, ..., St ⊆ U . Recalling that events over a probability space are merely subsets of that
space, and considering the events E1, ..., Et, it holds that Pr[∨i∈[t]Ei] ≤

∑
i∈[t] Pr[Ei].

Independent random variables. A sequence of random variables, X1, ...,Xn, is called indepen-
dent if for every x1, ..., xn it holds that

Pr [(X1, ...,Xn)=(x1, ..., xn)] =
∏

i∈[n]

Pr[Xi =xi].

This is often written in terms of conditional probabilities; namely, by writing Pr[Xi+1 =xi+1|(X1, ...,Xi)=
(x1, ..., xi)] = Pr[Xi+1 =xi+11] (for all i ∈ [n−1]), which implies that Pr[(X1, ...,Xi)=(x1, ..., xi)|Xi+1 =
xi+1] = Pr[(X1, ...,Xi) = (x1, ..., xi)]. The latter assertion is based on Bayes’ Law, which asserts
that, for any two events A and B, it holds that

Pr[A|B] =
Pr[B|A] ·Pr[A]

Pr[B]

(which holds since both sides equal Pr[A&B]
Pr[B] ).

Statistical difference. The statistical distance (a.k.a variation distance) between the random
variables X and Y is defined as

1

2
·
∑

v

|Pr[X =v]−Pr[Y =v]| = max
S
{Pr[X ∈ S]−Pr[Y ∈ S]} . (A.1)

(The equality can be verified by considering the set S = {v : Pr[X = v] > Pr[Y = v]}.) We say
that X is δ-close to Y (resp., δ-far from Y ) if the statistical distance between A and Y is at most
(resp., greater than) δ. A useful fact is that statistical distance may only decease when the same
function (or even the same random process) is applied to both random variables.

Claim A.1 (statistical distance is non-increasing): Let X and Y be random variables, and A
be an arbitrary randomized algorithm. Then, the statistical distance between A(X) and A(Y ) is
upper-bounded by the statistical distance between X and Y .

Proof: We first prove the claim for a deterministic algorithm or rather any function, denoted f .
In that case

∑

v

|Pr[f(X)=v]−Pr[f(Y )=v]| =
∑

v

∣∣∣∣∣∣

∑

z∈f−1(v)

Pr[X =z]−
∑

z∈f−1(v)

Pr[Y =z]

∣∣∣∣∣∣

400



≤
∑

v

∑

z∈f−1(v)

|Pr[X =z]−Pr[Y =z]|

=
∑

z

|Pr[X =z]−Pr[Y =z]| .

We next observe that the statistical distance is preserved when appending an independent random
variable to a given pair of random variables; that is, let Z be a random variable independent of both
X and Y , then
∑

v,w

|Pr[(X,Z)=(v,w)] −Pr[(Y,Z)=(v,w)]| =
∑

v,w

|Pr[X =v] ·Pr[Z =w]−Pr[Y =v] ·Pr[Z =w]|

=
∑

v,w

Pr[Z =w] · |Pr[X =v]−Pr[Y =v]|

=
∑

v

|Pr[X =v]−Pr[Y =v]| .

Finally, letting f(z, r) denote the output of a randomized algorithm A on input z when using
internal coins r, we observe that the random variable A(z) is represented by f(z,R), where R is a
random variable representing the internal coin tosses of A. Denoting the statistical distance by ∆,
we have

∆(A(X), A(Y )) = ∆(f(X,R), f(Y,R))

≤ ∆((X,R), (Y,R))

= ∆(X,Y )

establishing the claim.

A.3 Basic facts regarding expectation and variance

Throughout the rest of this appendix, we refer to random variables that are assigned real values.
Typically, we shall only consider random varaibles that are supported by a finite probability space.
In this case, the expectation and variance of these random variables are always well-defined (or
“exist”). We first recall these two standard notions.

Definition A.2 (expectation and variance): The expectation of a random variable X ∈ R, denoted
E[X], is defined as

∑
x∈R

Pr[X =x] ·x, and its variance, denoted V[X], is defined as E[(X−E[X])2].

To see that the expectation and variance are well-defined, replace the summation over R by a
summation over the support of X, where the support of X is the set of values v such that Pr[X =
v] > 0. Three useful facts that we often use without reference follow.

Fact 1: Linearity of expectation. For every sequence of (possibly dependent) random vari-
ables, X1, ...,Xn, it holds that

E



∑

i∈[n]

Xi


 =

∑

i∈[n]

E[Xi].

This holds by commutativity of summation.
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Fact 2: Variance versus the expectation of the square. For every random variable X, it
holds that V[X] = E[X2]− E[X]2.

This follows by E[(X − E[X])2] = E[X2 − 2 · E[X] ·X + E[X]2] and linearity of expectation.

Notable consequences of this fact include V[X] ≤ E[X2] and E[X2] ≥ E[X]2.

Fact 3: Functions of independent random variables are independent. If X1, ...,Xn are in-
dependent random variables, then for every sequence of functions f1, ..., fn : R → R it holds
that f1(X1), ..., fn(Xn) are independent random variables.

This follows by writing Pr [(f1(X1), ..., fn(Xn))=(v1, ..., vn)]
as
∑

(x1,...,xn)∈(f−1
1 (v1)×···×f−1

n (vn)) Pr [(X1, ...,Xn)=(x1, ..., xn)].

The following two additional facts will be used in this appendix, but we shall use them less often
outside this appendix.

Fact 4: The expectation of the product of independent random variables. For every se-
quence of independent random variables X1, ...,Xn, it holds that

E



∏

i∈[n]

Xi


 =

∏

i∈[n]

E[Xi].

This holds by distributivity of multiplication.

Fact 5: Linearity of the variance of independent random variables. For every sequence of
independent random variables X1, ...,Xn, it holds that

V



∑

i∈[n]

Xi


 =

∑

i∈[n]

V[Xi].

This can be shown by letting X i = Xi − E[Xi], and using

V

[∑
i∈[n] Xi

]
= E

[(∑
i∈[n] Xi

)2
]

[Fact 1]

= E

[∑
i,j∈[n] X iXj

]

=
∑

i,j∈[n] E[XiXj ] [Fact 1]

=
∑

i∈[n] E[X
2
i ] +

∑
i,j∈[n]:i6=j E[XiXj]

=
∑

i∈[n] V[Xi] +
∑

i,j∈[n]:i6=j E[Xi] · E[Xj ] [Fact 4]

=
∑

i∈[n] V[Xi]

where the last equality holds since E[Xi] = 0 and the one before it uses the fact that Xi and
Xj are independent.

The trick of considering Xi = Xi − E[Xi] is good to bear in mind. We also observe that the latter
proof only relied on the fact that each two variables are independent. For sake of future reference,
let us state the consequence of this fact.
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Claim A.3 (linearity of the variance of pairwise independent random variables): Let X1, ...,Xn be
a sequence of random variables such that every two variables in the sequence are independent; that
is, for every i 6= j and every y, z it holds that Pr[(Xi,Xj)=(y, z)] = Pr[Xi =y] ·Pr[Xj =z]. Then,

V



∑

i∈[n]

Xi


 =

∑

i∈[n]

V[Xi].

Indeed, a sequence as in the hypothesis of Claim A.3 is called pairwise independent.

A.4 Three Inequalities

The following probabilistic inequalities are very useful. They provide upper-bounds on the proba-
bility that a random variable deviates from its expectation.

A.4.1 Markov’s Inequality

The most basic inequality is Markov’s Inequality that applies to any random variable with bounded
maximum or minimum value. For simplicity, this inequality is stated for random variables that are
lower-bounded by zero, and reads as follows:

Theorem A.4 (Markov’s Inequality): Let X be a non-negative random variable and v be a positive
real number. Then

Pr [X≥v] ≤ E(X)

v
(A.2)

Equivalently, Pr[X ≥ t · E(X)] ≤ 1
t . The proof amounts to the following three lines:

E(X) =
∑

x

Pr[X =x] · x

≥
∑

x<v

Pr[X =x] · 0 +
∑

x≥v

Pr[X =x] · v

= Pr[X≥v] · v.

A.4.2 Chebyshev’s Inequality

Using Markov’s inequality, one gets a potentially stronger bound on the deviation of a random
variable from its expectation. This bound, called Chebyshev’s inequality, is useful when having
additional information concerning the random variable (specifically, a good upper bound on its
variance).

Theorem A.5 (Chebyshev’s Inequality): Let X be a random variable, and δ > 0. Then

Pr [|X − E(X)|≥δ] ≤ V(X)

δ2 .
(A.3)
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Proof: Defining a random variable Y
def
= (X −E(X))2, and applying Markov’s inequality to it, we

get

Pr [|X − E(X)|≥δ] = Pr
[
(X − E(X))2 ≥ δ2

]

≤ E[(X − E(X))2]

δ2

and the claim follows.

Pairwise Independent Sampling: Chebyshev’s inequality is particularly useful in the analysis
of the error probability of approximation via repeated sampling. It suffices to assume that the
samples are picked in a pairwise independent manner, where X1,X2, ...,Xn are pairwise independent
if for every i 6= j and every α, β it holds that Pr[Xi =α∧Xj =β] = Pr[Xi =α] ·Pr[Xj =β]. Then,
as a corollary to Chebyshev’s inequality, we get

Corollary A.6 (pairwise independent sampling): Let X1,X2, ...,Xn be pairwise independent ran-
dom variables with identical expectation, denoted µ, and identical variance, denoted σ2. Then, for
every ǫ > 0, it holds that

Pr

[∣∣∣∣∣

∑
i∈[n] Xi

n
− µ

∣∣∣∣∣ ≥ ǫ

]
≤ σ2

ǫ2n .
(A.4)

Using ǫ = γ · µ and m = n · µ, we obtain a (“multiplicative”) bound of the form

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi −m

∣∣∣∣∣∣
≥ γ ·m


 ≤ σ2/µ

γ2m
(A.5)

where we used ǫn = γµn = γm and σ2

(γµ)2n
= σ2/µ

γ2m
. Assuming that σ2 ≤ µ (which always holds

when Xi ∈ [0, 1])1, the probability bound of Eq. (A.5) simplifies to 1/γ2m.

Proof: Combining Chebyshev’s inequality with Claim A.3, we get

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi − n · µ

∣∣∣∣∣∣
≥ n · ǫ


 ≤

V

[∑
i∈[n] Xi

]

(nǫ)2

=

∑
i∈[n] V[Xi]

(nǫ)2

=
n · σ2

n2ǫ2

and the claim follows. (Note that if the Xi’s were not pairwise independent, then V[
∑

i∈[n] Xi] =

Ω(n2) could hold.)

1Since in that case E[X2
i ] ≤ E[Xi], whereas V[X] ≤ E[X2] always holds.
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Sampling by t-wise independent points: A sequence of random variables is called t-wise
independent if every t variables in it are totally independent. While we shall not use the following
result in this book, we find it useful in many other setting and believes that its derivation highlights
the ideas that underly the proof of Corollary A.6. For simplicity, we consider the case that the
random variable range over [0, 1]; a generalization to other bounded ranges can be derived similarly
to the way this is done in the proof of Theorem A.11 (in next section).

Theorem A.7 (2k-wise independent sampling): For k ≤ n/2, let X1,X2, ...,Xn ∈ [0, 1] be 2k-wise
independent random variables and µ =

∑
i∈[n] E[Xi]/n. Suppose that V[Xi] ≤ β for every i ∈ [n].

Then, for every ǫ > 0, it holds that

Pr

[∣∣∣∣∣

∑
i∈[n] Xi

n
− µ

∣∣∣∣∣ ≥ ǫ

]
<

(
3kβ

nǫ2

)k

(A.6)

Recall that for any random variable Z ranging in [0, 1], it holds that V[Z] ≤ E[Z]. Hence, if the
Xi’s have identical expectation (which equals µ), then we may use β = µ.

Proof: Define the random variables X i
def
= Xi−E(Xi). Note that the X i’s are 2k-wise independent,

and each has zero expectation. Mimicking the proof of Chebyshev’s inequality, we have

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi

n
− µ

∣∣∣∣∣∣
≥ ǫ


 ≤

E

[(∑
i∈[n] Xi

)2k
]

ǫ2k · n2k
(A.7)

The rest of the proof is devoted to upper-bounding the numerator in the r.h.s of Eq. (A.7). This
is done by generalizing the proof of Claim A.3. We start with

E






∑

i∈[n]

Xi




2k

 = E




∑

i1,...,i2k∈[n]

∏

j∈[2k]

X ij




=
∑

i1,...,i2k∈[n]

E



∏

j∈[2k]

Xij




.

Now, the key observation is that each term (in this sum) that contains a random variable that
appears in it with multiplicity 1 equals zero. More generally, for each sequence i = (i1, ..., i2k) and
j ∈ [n], denoting by mj(i) the multiplicity of j in i, we have

E



∏

j∈[2k]

X ij


 = E



∏

j∈[n]

X
mj(i)
j




=
∏

j∈[n]

E

[
X

mj(i)
j

]
,

where the last equality is due to the 2k-wise independence of the random variables Xi1 , ...,X i2k
.

Denoting by S the set of 2k-long sequences over [n] in which no element appears with multiplicity 1
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(and recalling that E[Xj ] = 0), we get

E






∑

i∈[n]

Xi




2k

 =

∑

(i1,...,i2k)∈S

∏

j∈[n]

E

[
X

mj(i1,...,i2k)
j

]
.

(A.8)

Note that the maximum number of elements that may appear in any sequence (i1, ..., i2k) ∈ S is k,
since each element that appears in (i1, ..., i2k) must appear in it with multiplicity at least 2. This
already yields an upper bound of |S| ≤

(n
k

)
· k2k < (nk2)k on Eq. (A.8). A better upper bound can

be obtained by partitioning S into (S1, ..., Sk) such that St ⊂ S contains all sequences such that
each sequence contains exactly t elements. Then:

∑

(i1,...,i2k)∈S

∏

j∈[n]

E

[
X

mj(i1,...,i2k)
j

]
=

∑

t∈[k]

∑

(i1,...,i2k)∈St

∏

j∈[n]

E

[
X

mj(i1,...,i2k)
j

]

≤
∑

t∈[k]

|St| ·max
i∈[n]

{
E

[
X

2
i

]t}
(A.9)

<
∑

t∈[k]

(en/k)t · t2k · βt

where the first inequality uses the fact that for every m > 2 and Z ∈ [−1, 1] it holds that E[Zm] ≤
E[Z2], and the last inequality uses |St| ≤

(n
t

)
· t2k < (en/t)t · t2k (for t ≤ n/2). Combining

Eq. (A.7)&(A.8)&(A.9), we get

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi

n
− µ

∣∣∣∣∣∣
≥ ǫ


 ≤

E

[(∑
i∈[n] Xi

)2k
]

ǫ2k · n2k

<

∑
t∈[k](en/k)t · t2k · βt

ǫ2k · n2k

<
k2k ·∑t∈[k](βen/k)t

ǫ2k · n2k

<
k2k · 2 · (βen/k)k

ǫ2k · n2k

<

(
3kβ

nǫ2

)k

as required.

A.4.3 Chernoff Bound

Note that when using pairwise independent sample points, the error probability of the approxi-
mation decreases linearly with the number of sample points (see Eq. (A.4)). In contrast, when
using totally independent sample points, the error probability in the approximation can be shown
to decrease exponentially with the number of sample points. Probability bounds supporting the
latter statement are commonly referred to as Chernoff Bounds. We present such bounds next.
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The bound that we present first is not the most popular bound, but it is a better starting point
for deriving the popular bounds (and other useful bounds), as we shall do later. In particular, the
following bound considers independent random variables ranging arbitrarily in [0, 1], where these
random variables are not necessarily identical.

Theorem A.8 (a Chernoff Bound): Let X1,X2, ...,Xn be independent random variables ranging
in [0, 1], and β > 0. Let µ =

∑
i∈[n] E[Xi] and suppose that

∑
i∈[n] V[Xi] ≤ β. Then, for every

α ∈ (0, 2β], it holds that

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi − µ

∣∣∣∣∣∣
> α


 < 2 · e−α2/4β (A.10)

Note that
∑

i∈[n] V[Xi] ≤
∑

i∈[n] E[X2
i ] ≤ µ, where the last inequality uses the fact that E[X2] ≤

E[X] holds for every random variable X ∈ [0, 1]. Hence (assuming µ > 0)2, we can always use
β = µ, and obtain a meaningful bound whenever α > 2

√
µ.

Proof: We upper-bound Pr[
∑

i∈[n] Xi > µ + α], and Pr[
∑

i∈[n] Xi < µ− α] is bounded similarly
(or, alternatively, by letting Yi = 1 − Xi and using the bound on Pr[

∑
i∈[n] Yi > (n − µ) + α]).

Letting X i
def
= Xi − E(Xi), we apply Markov’s inequality to the random variable eλ

Pn
i=1 Xi , where

λ ∈ (0, 1] will be determined to optimize the expression that we derive. Specifically, we get

Pr



∑

i∈[n]

Xi > α


 = Pr

[
eλ

P

i∈[n] Xi > eλα
]

≤
E

[
eλ

P

i∈[n] Xi

]

eλα

= e−λα · E



∏

i∈[n]

eλXi




= e−λα ·
∏

i∈[n]

E

[
eλXi

]

where the last equality is due to the independence of the random variables. Now, using ex ≤
1 + x + x2 for every x ∈ [−1, 1], and observing that E[Xi] = 0, we get E[eλXi ] ≤ 1 + λ2 · E[X

2
i ],

which equals 1 + λ2 · V[Xi]. Hence,

Pr



∑

i∈[n]

X i > α


 ≤ e−λα ·

∏

i∈[n]

E

[
eλXi

]

≤ e−λα ·
∏

i∈[n]

(
1 + λ2 · V[Xi]

)

≤ e−λα ·
∏

i∈[n]

eλ2·V[Xi]

= e−λα · eλ2·Pi∈[n] V[Xi]

2Note that µ = 0 implies that each Xi is identically zero.
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where the last inequality is due to using 1+y ≤ ey for every y ∈ [0, 1]. Recalling that
∑

i∈[n] V[Xi] ≤
β and optimizing at λ = α/2β ∈ (0, 1], we obtain

Pr



∑

i∈[n]

Xi > α


 ≤ e−λα+λ2β

= e−α2/4β

and the claim follows.

The popular Chernoff Bounds. The popular bounds refer to the case that all Xi’s are indenti-
cal (and range in [0, 1]) and consider the average of the random variables (i.e.,

∑
i∈[n] Xi/n) rather

than their sum (i.e.,
∑

i∈[n] Xi). The most popular version refers to an additive deviation of ǫ > 0.

Corollary A.9 (a standard (“additive”) Chernoff Bound): Let X1,X2, ...,Xn be identical inde-
pendent random variables ranging in [0, 1], and let p = E[X1]. Then, for every ǫ ∈ (0, 2(1− p)p], it
holds that

Pr




∣∣∣∣∣∣
1

n
·
∑

i∈[n]

Xi − p

∣∣∣∣∣∣
> ǫ


 < 2 · e−ǫ2n/(4p(1−p)) < 2 · e−ǫ2n (A.11)

and, for every ǫ ∈ (0, 1], it holds that

Pr




∣∣∣∣∣∣
1

n
·
∑

i∈[n]

Xi − p

∣∣∣∣∣∣
> ǫ


 < 2 · e−ǫ2n/4. (A.12)

Proof: We invoke Theorem A.8 with µ = n ·p and α = n ·ǫ. For Eq. (A.11) we use β = n · (1−p)p,
while noting that V[Xi] ≤ E[Xi]− E[Xi]

2 = (1− p)p (since Xi ∈ [0, 1] implies E[X2
i ] ≤ E[Xi]). For

Eq. (A.11) we use β = n · p ≤ n, while assuming without loss of generality that p ≥ 1/2 (which
allows for ǫ ∈ (0, 1], and considering the 1−Xi’s otherwise).

Corollary A.10 (a standard multiplicative Chernoff Bound): Let X1,X2, ...,Xn be identical in-
dependent random variables ranging in [0, 1], and let p = E[X1]. Then, for every γ ∈ (0, 2], it holds
that

Pr




∣∣∣∣∣∣
1

n
·
∑

i∈[n]

Xi − p

∣∣∣∣∣∣
> γ · p


 < 2 · e−γ2pn/4. (A.13)

Proof: We invoke Theorem A.8 with µ = n · p and α = γ · µ, and use β = µ (while relying on
V[Xi] ≤ E[Xi]).

Generalization to an arbitrary bounded range. The case that the Xi’s range in an arbitrary
interval can be handled by using a linear transformation that maps this interval to [0, 1].
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Theorem A.11 (Theorem A.8, generalized): Let X1,X2, ...,Xn be independent random variables
ranging in [a, b], and β > 0. Let µ =

∑
i∈[n] E[Xi] and suppose that

∑
i∈[n] V[Xi] ≤ β. Then, for

every α ∈ (0, 2β/(b − a)], it holds that

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi − µ

∣∣∣∣∣∣
> α


 < 2 · e−α2/4β (A.14)

Note that in this case (i.e., of independent Xi’s ranging in [a, b]) it holds that
∑

i∈[n] V[Xi] ≤
(b− a) · (µ−n · a), where the inequality uses V[Xi] = V[Xi− a] = (b− a)2 ·V[(Xi− a)/(b− a)] and
the fact that (Xi − a)/(b− a) ∈ [0, 1].3 Hence, we may use β = (b− a) · (µ− n · a).

Before proving Theorem A.11, we note that a multiplicative version of Theorem A.11 can be
obtained by letting γ = α/(µ−n · a) and using β = (b− a) · (µ− n · a). Hence, for every γ ∈ (0, 2],
it holds that

Pr




∣∣∣∣∣∣

∑

i∈[n]

Xi − µ

∣∣∣∣∣∣
> γ · (µ− n · a)


 < 2 · e−γ2(µ−n·a)/4(b−a) (A.15)

For a = 0, the bound simplifies to 2 · e−γ2µ/4b.

Proof: We consider the random variables X ′1, ...,X
′
n such that X ′i = (Xi − a)/(b − a) ∈ [0, 1].

Let α′ = α/(b − a) and β′ = β/(b − a)2, and note that
∑

i∈[n] V[X ′i] =
∑

i∈[n] V[Xi]/(b − a)2 ≤ β′

and that α′ ∈ (0, 2β′]. Invoking Theorem A.8 (with parameters α′ and β′, while noting that∑
i∈[n] E[X ′i] = (µ− na)/(b− a)), we get

Pr




∣∣∣∣∣∣

∑

i∈[n]

X ′i −
µ− na

b− a

∣∣∣∣∣∣
>

α

b− a


 < 2 · e−(α/(b−a))2/4(β/(b−a)2)

and the claim follows.

A.4.4 Pairwise independent versus totally independent sampling

Totally independent samples will be our first choice, since (except in Section 13.3) we do not care
about the randomness complexity of testers. We shall resort to pairwise independent sampling (or
to “almost pairwise independent sampling”) only when this is imposed on us by the application
(see, e.g., the proofs of Claim 9.21.3 and Lemma 11.4). Still, for sake of a wider perspective, we
mention that the advantage of totally independent samples over pairwise independent ones is (only)
in the dependency of the number of samples on the error probability.

In order to make the discussion more clear, we consider the problem of estimating the average
value of a function f : Ω → [0, 1]. In general, we say that a random variable Z provides an (ǫ, δ)-
approximation of a value v if Pr[|Z − v| > ǫ] ≤ δ. By Chernoff Bound (e.g., Corollary A.9), the
average value of f evaluated at n = O((ǫ−2 · log(1/δ)) independent samples (selected uniformly
in Ω) yield an (ǫ, δ)-approximation of µ =

∑
x∈Ω f(x)/|Ω|. Thus, the number of sample points

is polynomially related to ǫ−1 and logarithmically related to δ−1. In contrast, by Corollary A.6
an (ǫ, δ)-approximation by n pairwise independent samples calls for setting n = O(ǫ−2 · δ−1). We

3Hence, V[Xi] ≤ (b− a)2 · E[(Xi − a)/(b− a)], whereas E[(Xi − a)/(b− a)] = (E[Xi] − a)/(b− a). It follows that
P

i∈[n] V[Xi] is upper-bounded by (b− a) ·Pi∈[n](E[Xi] − a).
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stress that, in both cases the number of samples is polynomially related to the desired accuracy of the
estimation (i.e., ǫ). The only advantage of totally independent samples over pairwise independent
ones is in the dependency of the number of samples on the error probability (i.e., δ).
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Appendix B

A Mini-Compendium of General
Results

Summary: This appendix restates several general results that were presented in the
main body of this book, including

1. deriving standard testers from POTs;

2. positive results on the algebra of property testing;

3. reducing testing to learning;

4. the randomness complexity of testers;

5. archetypical application of self-correction;

6. the effect of local reductions.

While most results in the area of property testing refer to specific properties or to classes of
properties (which at best are chracterized in terms of invariances), there are a handful of general
results that apply to property testing at large (with the exception of distribution testing). These
results are restated in this appendix, while referring to their prior statement in the text, which also
provides their proofs.

Deriving standard testers from Proximity Oblivious Testers. We refer to the (very basic)
notions of property testers and proximity oblivious testers (i.e., POTs) as presented in Section 1.3.

Theorem B.1 (deriving standard testers from POTs – Theorem 1.9): Let Π be a property of
functions.

1. If Π has a one-sided error POT of query complexity q with detection probability ̺, then Π has
a one-sided error tester of query complexity q′ such that q′(ǫ) = O(q/̺(ǫ)).

2. If Π has a POT of query complexity q with threshold probability τ ∈ (0, 1) and detection
probability ̺, then Π has a tester of query complexity q′ such that q′(ǫ) = O(q/̺(ǫ)2).

The time complexity of the derived tester relates to that of the POT in a similar manner. If the
POT is non-adaptive, then so is the derived tester.
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On the algebra of property testing. In Section 1.3.4 we show that natural classes of testable
properties are closed under union but not under intersection (and complementation). That is, if Π′

and Π′′ are testable within some complexity bounds, then so is Π′ ∪ Π′′ (up to a constant factor),
but Π′ ∩Π′′ may be much harder to test.1

Theorem B.2 (testing the union of properties – Theorem 1.10): Let Π′ and Π′′ be properties of
functions.

1. If Π′ and Π′′ are each testable within query complexity q, then Π′∪Π′′ is testable within query
complexity O(q). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∪Π′′ has a 2q-query one-sided error POT with detection probability
̺2.

Furthermore, the time complexity is preserved up to a constant factor.

We say that Π ⊆ {0, 1}∗ is monotone if for every x ∈ Π and w ∈ {0, 1}|x| it holds that x ∨ w =
(x1∨w1, ..., xn∨wn) is in Π; that is, Π is preserved under resetting some bits to 1. We first mention
that the discrepancy between the complexity of testing a property and the complexity of testing
its complement is maintained also for monotone properties (see Exercise 1.16). More importantly,
in contrast to Theorem 1.12, we have

Theorem B.3 (testing the intersection of monotone properties – Theorem 1.13): Let Π′ and Π′′

be monotone properties.

1. If Π′ and Π′′ are testable within query complexity q′ and q′′, respectively, then, for every
ǫ′ ∈ (0, ǫ), the property Π′ ∩ Π′′ is ǫ-testable within query complexity q(n, ǫ) = O(q′(n, ǫ′) +
q′′(n, ǫ− ǫ′)). Furthermore, one-sided error testing is preserved.

2. Suppose that Π′ has a q-query one-sided error POT with detection probability ̺ : (0, 1]→ (0, 1],
and ditto for Π′′. Then, Π′∩Π′′ has a 2q-query one-sided error POT with detection probability
̺′(δ) = ̺(δ/2).

Furthermore, the time complexity is preserved up to a constant factor.

Testing via learning. A general observation is that property testing reduces to learning. This
observation is rarely used, because typically one seeks testers that are more efficient than the
corresponding learners. Still, for sake of perspective, we detail the said connection. We refer to the
definitions of general and proper learning as presented in Section 1.3.5.

Theorem B.4 (learning implies testing – Theorem 1.15): Let Π = ∪n∈NΠn be a set of functions,
and suppose that Π can be learned within query complexity q(n, ǫ). Then, Π can be tested within
query complexity q′(n, ǫ) = q(n, 0.3ǫ) + O(1/ǫ). Furthermore, if the learning algorithm is proper,
runs in time t(n, ǫ) and outputs descriptions of functions such that, with respect to that represen-
tation, evaluating these functions and checking their membership in Π can be done in time T (n),
then Π can be tested within query complexity q′(n, ǫ) = q(n, 0.7ǫ) + O(1/ǫ) and time complexity
t′(n, ǫ) = t(n, 0.7ǫ) + O(T (n)/ǫ).

1This is a general result that refers to all possible Π′ and Π′′. In contrast, in some cases, both Π′∪Π′′ and Π′∩Π′′

may be much easier to test than Π′ and Π′′.
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We mention that similar results hold with respect to a variety of models including sample-based
learning and testing and distribution-free learning and testing. Note that in the case of non-
proper learning we invoke the learner with a proximity parameter that is strictly smaller than ǫ/2,
whereas in the case of proper learning we may use a proximity parameter that is larger than ǫ/2
(as long as it is strictly smaller than ǫ). More importantly, the stated bound on time complexity
(i.e., t′(n, ǫ) = t(n, 0.7ǫ) + O(T (n)/ǫ)) does not hold in the case of non-proper learning (see [140,
Sec. 3.2]).

On the randomness complexity of testers. The following result is a special case of Exer-
cise 1.21, which refers to arbitrary oracle machines. For simplicity, we assume that the given tester
has error probability at most 1/4, and derive a tester of error probability 1/3. This discrepancy
can be eliminated using error reduction, while increasing the query complexity by a fixed constant.

Theorem B.5 (upper bound on the randomness complexity of property testing – a special case of
Exercise 1.21): Let Π be a property of functions from [n] to R, and suppose that Π can be ǫ-tested
using q queries with error probability at most 1/4. Then, Π can be ǫ-tested using q queries with
error probability at most 1/3, while tossing at most log2 n + log log |R|+ O(1) coins.

We warn that the randomness-efficient tester derived here is not necessarily computationally-
efficient.

An archetypical application of self-correction. We refer to the notion of random self-
reducibility as defined in Section 5.2.3 and to the notion of solving a promise problem. Recall
that a promise problem is specified by two sets, P and Q, where P is the promise and Q is the
question. The problem, denoted (P,Q), is define as given an input in P , decide whether or not the
input is in Q (where standard decision problems use the trivial promise in which P consists of the
set of all possible inputs). Equivalently, the problem consists of distinguishing between inputs in
P ∩Q and inputs in P \Q.

Theorem B.6 (testing intersection with a self-correctable property – Theorem 5.11): Let Π′ and
Π′′ be sets of functions over [n]. Suppose that functions in Π′ are randomly self-reducible by q
queries, that Π′ is ǫ-testable using q′(ǫ) queries, and that the promise problem (Π′,Π′′) can be solved
in query complexity q′′ (i.e., a probabilistic q′′-query oracle machine can distinguish between inputs
in Π′ ∩Π′′ and inputs in Π′ \Π′′). Then, Π′ ∩Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′)
queries.

We stress that Theorem 5.11 does not employ a tester for Π′′, but rather employs a decision
procedure for the promise problem (Π′,Π′′). However, as shown in Exercise 5.5, such a decision
procedure is implied by any (1/q)-tester for Π′′, since Π′ has distance at least 1/q (see Exercise 5.4).

The effect of local reductions. We refer to the notion of a randomized local reduction as
defined in Section 7.4.

Theorem B.7 (randomized local reductions preserve testability – Exercise 7.10): Let Π = ∪n∈NΠn

and Π′ = ∪n′∈NΠ′n′ be sets of functions, and suppose that Π is randomly q-local (ǫ, ǫ′)-reducible to
Π′ with length function L. Then, if Π′ can be ǫ′-tested with q′(n′, ǫ′) queries, then Π can be ǫ-tested
with q(n) · Õ(q′(L(n), ǫ′)) queries. Furthermore, if the reduction is deterministic, then Π can be
ǫ-tested with q(n) · q′(L(n), ǫ′) queries.
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Appendix C

An Index of Specific Results

Summary: This appendix provides an index to all results regarding specific properties
that were presented in this book. For each property, we only provide references to the
sections (or statements) in which relevant results can be found.

The properties are partitioned into five main groups, whereas in each group the listing is by alpha-
betic order. The first list contains all properties of objects that are most naturally described as
functions or sequences. The next three lists refer to the three models of testing graph properties,
which were studied in Chapters 8–10. The last list refers to properties of distributions, which were
studied in Chapter 11.

Properties of functions. Such properties were studied mostly in Chapters 2–6.

affine functions: Last paragraph of Chapter 2.

affine subspaces: Section 5.2.2.2 as well as Exercises 5.9–5.11.

codewords: Chapter 13.

• For the Hadamard code see also linearity.

• For general linear codes see Proposition 1.11.

• For the Long Code see also dictatorship.

• For the Reed-Muller code see also low-degree polynomials.

dictatorship: Section 5.2.

homomorphism (aka group homomorphism): Chapter 2.

junta: Section 5.3 and Corollary 7.20.

linearity: Special case of homomorphism.

low degree polynomials: Chapter 3.

majority: Proposition 1.1.

monomials: Section 5.2.2 as well as Corollaries 6.4 and 6.7.
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monotonicity: Chapter 4. See also sorted.

proofs: Chapter 13.

sparse (low-degree) polynomials (and linear functions): Corollary 7.12.

sorted: Proposition 1.5 and 1.8. See also monotonicity.

Graph properties (in the dense graph model). All in Chapter 8.

biclique: Proposition 8.6.

bipartiteness: Section 8.3.1.

colorability (by fixed number of colors): Theorem 8.13.

degree regularity: Theorem 8.5.

induced subgraph freeness: Theorem 8.20.

max-clique: Special case of Theorem 8.12.

max-cut: Special case of Theorem 8.12.

min-bisection: Special case of Theorem 8.12.

subgraph freeness: Section 8.4.2.

Recall that properties of sparse graphs (e.g., planarity) and properties that are close to any graph
(e.g., connectivity) are easy to test in this model.

Graph properties (in the bounded-degree graph model). All in Chapter 9.

bipartiteness: Sections 9.3.1 and 9.4.1.

colorability (by three colors): Theorem 9.19.

connectivity: Section 9.2.3. See Section 9.2.4 for t-connectivity.

cycle-freeness: Section 9.2.5, Theorem 9.17, and Section 9.4.2.

degree regularity: Section 9.2.2.

Eulerian: See the last paragraph in Section 9.2.2 and the last paragraph in Section 9.2.3.

expansion: Theorem 9.18.

planarity: Special case of Theorem 9.25.

subgraph freeness: Theorem 9.4.
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Graph properties (in the general graph model). All in Chapter 10.

bipartiteness: Sections 10.2.2 and 10.4.

connectivity: Section 10.2.1.

cycle-freeness: Theorem 10.15.

degree regularity: Theorem 10.15.

subgraph freeness: Theorem 10.15.

The tasks of estimating the average degree and selecting random edges are studied in Section 10.3.

Properties of distributions. All in Chapter 11.

equality (between two unknown distributions): Section 11.3.

identity (aka equality to a fixed distribution): Section 11.2.

uniformity (aka equality to the uniform distribution): Section 11.2.1.
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Locally testable codes, 359–363, 365–397
Locally testable proofs, 359–361, 363–393, 396–

397
Long Code, 90, 107, 373

MA, 351–352

MAP, 349–354
Markov’s Inequality, 403
Massively parameterized properties, 15, 128,

299, 354–355, 359, 367
min-entropy, 343
Minimax Theorem, 134, 152

Non-interactive proofs of proximity, see MAP
NP, 351–352

PCP, 28–29, 45, 47, 90, 108, 351–352, 359–397
PCP of Proximity, see PCPP
PCPP, 351–352, 367–369, 384, 386
Poisson Distributions, 311–315

Probability Theory
conventions, 399–401
inequalities, 401–410

Promise problems, 7, 35–36, 99–101, 133, 139–
142, 151, 340–341, 356, 413

Promises on the input, 340–341

Random self-reducibility, 98–101, 108, 147–
148, 205, 261

Random variables, 399–410
pairwise independent, 404–406, 409–410
totally independent, 406–410

Reed-Muller code, 29, 144, 373
Repeated sampling paradigm, 239, 260, 280–

281, 294
Robust characterization, 27–28, 40, 55, 63

Sample-based testers, 17–18, 26, 28, 118–123,
126–127, 341–342, 353, 354

Schwartz–Zippel Lemma, 108
Self-correction, 43, 49–50, 61, 91–94, 98–101,

107–108, 375, 378
set disjointness, 142–144
Statistical difference, 296, 400
Submodular functions, 85
Szemeŕedi’s Regularity Lemma, 181–190, 193,

198

Tolerant testing, 18, 28, 196–197, 326, 337–
340, 353, 354

Union bound, 400

Variation distance, see Statistical difference
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