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Preface

I was advised to start the preface with the following couple of preliminary remarks. An
overview of the material that is presented in the body of this text follows.

Two Preliminary Remarks

By Randomized Methods in Computation I mean the collection of tools, methods, and per-
ceptions that have an explicit or implicit randomized flavour and are used in the analysis
of computation. Typically, but not always, the computation being analyzed is randomized,
and in such cases the use of probabilistic analysis is explicit. Nevertheless, this text is not a
course in probability theory; material that can be labeled as classical “probability theory”
occupies only the first five (or so) pages of the first chapter (and material that can be labeled
“probability theory” appears only in the first chapter).1

This tentative collection of reading material regarding Randomized Methods in Computa-
tion was compiled based on extracts taken from a variety of sources. Some of the “chapters”
are extracts from my book on computational complexity, while others reproduce surveys that
I wrote on different occasions and for different audiences. Consequently, this collection suf-
fers from some drawbacks (which also offer some advantages). Most importantly:

• Some material appears in more than one of the “chapters” (but the perspectives offered
are usually different). Furthermore, in some cases there are inconsistencies (between
“chapters”) regarding the exact formulations and notation.

• Some “chapters” put a greater emphasis on the results obtained while others put more
emphasis on the techniques used. (This may be OK; forcing uniformity here may be
undesired.)

• The expositional style varies from a novice-friendly style of a textbook to a laconic
style aimed at experts. (Even this may have a bright side: It exposes the novice to
the style that prevails in the literature.)

• Lastly, this text still contains some typos and minor errors.

Hopefully, I will revise this collection in the future and eliminate some of its drawbacks, but
for the time being this collection is what I have to offer.

1Indeed, the second part of the first chapter contains material that may be labeled “probability theory”,
but I doubt one can find this material in any standard textbook on probability theory.
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Overview

A variety of randomized methods are being employed in the study of computation. The aim
of the current course is to make the students familiar with some of these methods. We wish
to stress three aspects regarding this course:

1. This course focuses on methods (i.e., tools and techniques) and not on concepts.

2. These methods are closely related to randomization.

3. The focus is on applications to the study of computation.

Specific topics included:

• Elements of Probability Theory: Linearity of expectation, Markov Inequality, Cheby-
shev’s Inequality, and Laws of Large Numbers (for pairwise-independent, k-wise inde-
pendent, and fully independent samples (aka Chernoff Bound)).

• The Probabilistic Method: Applications to the existence of good error-correcting codes
and 3-regular expander graphs.

• Pairwise-independence, hashing, and related topics: Constructions (via matrices and
low-degree polynomials), and applications (to Approximate Counting and Uniform
Generation).

• Small bias spaces: constructions and applications.

• Expander graphs and random walks on them: Eigenvalues versus expansion, analysis
of random walks (Hitter), and the Median-of-Average Sampler.

• Randomness-Extractors: brief overview of constructions and applications.

• Some randomized algorithms: Undirected Connectivity (via a random walk), Polyno-
mial Identity Testing, and Primality Testing (via SQRT extraction).

Recurring notation: For any natural number n, we denote [n]
def
= {1, 2, ..., n}.
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Additional sources

Lecture notes of my 2001 course on the subject are available from

http://www.wisdom.weizmann.ac.il/∼oded/rnd.html.

In addition, there are several books that cover parts of the material. These include:

• N. Alon and J.H. Spencer: The Probabilistic Method, John Wiley & Sons, Inc., 1992.

• O. Goldreich: Computational Complexity: A Conceptual Perspective, Cambridge Uni-
versity Press, 2008. Drafts are available from
http://www.wisdom.weizmann.ac.il/∼oded/cc-drafts.html.

• R. Motwani and P. Raghavan: Randomized Algorithms, Cambridge University Press,
1995.

Additional related material can be found in

• D.P. Dubhashi and A. Panconesi: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, 2009.

• M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005
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Lecture 1

Probabilistic Preliminaries

The probabilistic preliminaries include our conventions regarding random variables, which
are used throughout the book. In addition we provide overviews of three useful inequalities:
Markov Inequality, Chebyshev’s Inequality, and Chernoff Bound. Also included are two
(purely probabilistic) XOR Lemmas.

1.1 Notational Conventions

We assume that the reader is familiar with the basic notions of probability theory. In this
section, we merely present the probabilistic notations that are used throughout the text.

Throughout the entire course we will refer only to discrete probability distributions.
Specifically, the underlying probability space will consist of the set of all strings of a certain
length ℓ, taken with uniform probability distribution. That is, the sample space is the set of
all ℓ-bit long strings, and each such string is assigned probability measure 2−ℓ. Traditionally,
random variables are defined as functions from the sample space to the reals. Abusing the
traditional terminology, we use the term random variable also when referring to functions
mapping the sample space into the set of binary strings. We often do not specify the
probability space, but rather talk directly about random variables. For example, we may say
that X is a random variable assigned values in the set of all strings such that Pr[X=00] = 1

4
and Pr[X = 111] = 3

4 . (Such a random variable may be defined over the sample space
{0, 1}2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One important case of a
random variable is the output of a randomized process (e.g., a probabilistic polynomial-time
algorithm).

All our probabilistic statements refer to functions of random variables that are defined
beforehand. Typically, we may write Pr[f(X) = 1], where X is a random variable defined
beforehand (and f is a function). An important convention is that all occurrences of the
same symbol in a probabilistic statement refer to the same (unique) random variable. Hence,
if B(·, ·) is a Boolean expression depending on two variables, andX is a random variable then
Pr[B(X,X)] denotes the probability that B(x, x) holds when x is chosen with probability
Pr[X = x]. For example, for every random variable X , we have Pr[X = X ] = 1. We
stress that if we wish to discuss the probability that B(x, y) holds when x and y are chosen

1



2 LECTURE 1. PROBABILISTIC PRELIMINARIES

independently with identical probability distribution, then we will define two independent
random variables each with the same probability distribution. Hence, if X and Y are two
independent random variables then Pr[B(X,Y )] denotes the probability that B(x, y) holds
when the pair (x, y) is chosen with probability Pr[X=x] · Pr[Y =y]. For example, for every
two independent random variables, X and Y , we have Pr[X=Y ] = 1 only if both X and Y
are trivial (i.e., assign the entire probability mass to a single string).

Throughout the entire book, Un denotes a random variable uniformly distributed over
the set of strings of length n. Namely, Pr[Un = α] equals 2−n if α ∈ {0, 1}n and equals 0
otherwise. We will often refer to the distribution of Un as the uniform distribution (neglecting
to qualify that it is uniform over {0, 1}n). In addition, we will occasionally use random
variables (arbitrarily) distributed over {0, 1}n or {0, 1}ℓ(n), for some function ℓ : N→N.
Such random variables are typically denoted by Xn, Yn, Zn, etc. We stress that in some
cases Xn is distributed over {0, 1}n, whereas in other cases it is distributed over {0, 1}ℓ(n),
for some function ℓ(·), which is typically a polynomial. We will often talk about probability
ensembles, which are infinite sequence of random variables {Xn}n∈N such that each Xn

ranges over strings of length bounded by a polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between the ran-
dom variables X and Y is defined as

1

2
·
∑

v

|Pr[X = v]− Pr[Y = v]| = max
S
{Pr[X ∈ S]− Pr[Y ∈ S]}. (1.1)

(Showing the equality is deferred to Exercise 1.1.) We say that X is δ-close (resp., δ-far) to
Y if the statistical distance between them is at least (resp., at most) δ.

Expectation and variance. Recall that the expectation of a random variable X , denoted
E(X), is defined as

∑
v Pr[X = v] · v. The variance of X , denoted Var(X), is defined as

E((X − E(X))2). Proving the following properties of the expectation operator is left for
Exercise 1.2:

• Linearity of expectation: For every two random variables (not necessarily independent
ones), X and Y , it holds that E(X + Y ) = E(X) + E(Y ).

• Alternative form for variance: Var(X) = E(X2)− E(X)2.

1.2 Three Inequalities

The following probabilistic inequalities are very useful. These inequalities refer to random
variables that are assigned real values and provide upper-bounds on the probability that
the random variable deviates from its expectation.

1.2.1 Markov’s Inequality

The most basic inequality is Markov’s Inequality that applies to any random variable with
bounded maximum or minimum value. For simplicity, this inequality is stated for random
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variables that are lower-bounded by zero, and reads as follows: Let X be a non-negative
random variable and v be a non-negative real number. Then

Pr [X≥v] ≤ E(X)

v
(1.2)

Equivalently, Pr[X ≥ r · E(X)] ≤ 1
r . The proof amounts to the following sequence:

E(X) =
∑

x

Pr[X=x] · x

≥
∑

x<v

Pr[X=x] · 0 +
∑

x≥v

Pr[X=x] · v

= Pr[X≥v] · v

1.2.2 Chebyshev’s Inequality

Using Markov’s inequality, one gets a potentially stronger bound on the deviation of a
random variable from its expectation. This bound, called Chebyshev’s inequality, is useful
when having additional information concerning the random variable (specifically, a good
upper bound on its variance). For a random variable X of finite expectation, we denote by

Var(X)
def
= E[(X − E(X))2] the variance of X , and observe that Var(X) = E(X2) − E(X)2.

Chebyshev’s Inequality then reads as follows: Let X be a random variable, and δ > 0. Then

Pr [|X − E(X)|≥δ] ≤ Var(X)

δ2 .
(1.3)

Proof: We define a random variable Y
def
= (X − E(X))2, and apply Markov’s inequality.

We get

Pr [|X − E(X)|≥δ] = Pr
[
(X − E(X))2 ≥ δ2

]

≤ E[(X − E(X))2]

δ2

and the claim follows.

Corollary (Pairwise Independent Sampling): Chebyshev’s inequality is particularly useful
in the analysis of the error probability of approximation via repeated sampling. It suffices to
assume that the samples are picked in a pairwise independent manner, where X1, X2, ..., Xn

are pairwise independent if for every i 6= j and every α, β it holds that Pr[Xi = α ∧ Xj =
β] = Pr[Xi =α] · Pr[Xj =β]. The corollary reads as follows: Let X1, X2, ..., Xn be pairwise
independent random variables with identical expectation, denoted µ, and identical variance,
denoted σ2. Then, for every ε > 0, it holds that

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ ≥ ε
]
≤ σ2

ε2n .
(1.4)



4 LECTURE 1. PROBABILISTIC PRELIMINARIES

Proof: Define the random variables X i
def
= Xi − E(Xi). Note that the Xi’s are pairwise

independent, and each has zero expectation. Applying Chebyshev’s inequality to the random
variable

∑n
i=1

Xi

n , and using the linearity of the expectation operator, we get

Pr

[∣∣∣∣∣

n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε
]
≤ Var

[∑n
i=1

Xi

n

]

ε2

=
E
[(∑n

i=1X i

)2]

ε2 · n2

Now (again using the linearity of expectation)

E



(

n∑

i=1

Xi

)2

 =

n∑

i=1

E
[
X

2

i

]
+

∑

1≤i6=j≤n

E
[
XiXj

]

By the pairwise independence of the X i’s, we get E[XiXj ] = E[Xi] · E[Xj ], and using
E[Xi] = 0, we get

E



(

n∑

i=1

X i

)2

 = n · σ2

The corollary follows.

Generalization: k-Wise Independent Sampling. The foregoing corollary can be gen-
eralized to random variables with higher level of independence. Specifically, for k ∈ {2, .., n},
we say that X1, X2, ..., Xn are k-wise independent if for every i1 < i2 < · · · < ik and ev-
ery α1, α2, ..., αk it holds that Pr[∧k

j=1Xij
=αj ] equals

∏k
j=1 Pr[Xij

=αj ]. The generalized
corollary reads: Let X1, X2, ..., Xn be k-wise independent random variables with identical
expectation, denoted µ, and variance at most 1. Then, for every ε > 0, it holds that

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ ≥ ε
]
<

(
2k

ε2n

)⌊k/2⌋
(1.5)

The proof is implicit in the proof of Lemma 4.6; see also Exercise 1.6. Note that Eq. (1.5)
is a simplified form, which does not imply the previous corollary as a special case (since it
assumes σ2 ≤ 1 and looses a factor of 2k/σ2).

1.2.3 Chernoff Bound

When using pairwise independent sample points, the error probability in the approximation
decreases linearly with the number of sample points (see Eq. (1.4)). When using totally
independent sample points, the error probability in the approximation can be shown to
decrease exponentially with the number of sample points. (Recall that the random variables
X1, X2, ..., Xn are said to be totally independent if for every sequence a1, a2, ..., an it holds
that Pr[∧n

i=1Xi = ai] =
∏n

i=1 Pr[Xi = ai].) Probability bounds supporting the foregoing
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statement are given next. The first bound, commonly referred to as Chernoff Bound, concerns
0-1 random variables (i.e., random variables that are assigned as values either 0 or 1), and
asserts the following. Let p ≤ 1

2 , and X1, X2, ..., Xn be independent 0-1 random variables
such that Pr[Xi =1] = p, for each i. Then, for every ε ∈ (0, p], it holds that

Pr

[∣∣∣∣
∑n

i=1Xi

n
− p
∣∣∣∣ > ε

]
< 2 · e−c·ε2·n , where c = max(2, 1

3p ). (1.6)

The more common formulation sets c = 2, but the case c = 1/3p is very useful when p is
small and one cares about a multiplicative deviation (e.g., ε = p/2).

Proof Sketch: We upper-bound Pr[
∑n

i=1Xi − pn > εn], and Pr[pn −∑n
i=1Xi > εn] is

bounded similarly. Letting Xi
def
= Xi − E(Xi), we apply Markov’s inequality to the random

variable eλ
∑

n

i=1
Xi , where λ ∈ (0, 1] will be determined to optimize the expressions that we

derive. Thus, Pr[
∑n

i=1Xi > εn] is upper-bounded by

E[eλ
∑

n

i=1
Xi ]

eλεn
= e−λεn ·

n∏

i=1

E[eλXi ]

where the equality is due to the independence of the random variables. To simplify the rest
of the proof, we establish a sub-optimal bound as follows. Using a Taylor expansion of

ex (e.g., ex < 1 + x + x2 for |x| ≤ 1) and observing that E[Xi] = 0, we get E[eλXi ] <

1+λ2E[X
2

i ], which equals 1+λ2p(1−p). Thus, Pr[
∑n

i=1Xi−pn > εn] is upper-bounded by
e−λεn · (1+λ2p(1−p))n < exp(−λεn+λ2p(1−p)n), which is optimized at λ = ε/(2p(1−p))
yielding exp(− ε2

4p(1−p) · n) ≤ exp(−ε2 · n).

The foregoing proof strategy can be applied in more general settings.1 A more general
bound, which refers to independent random variables that are each bounded but are not
necessarily identical, is given next (and is commonly referred to as Hoefding Inequality). Let
X1, X2, ..., Xn be n independent random variables, each ranging in the (real) interval [a, b],

and let µ
def
= 1

n

∑n
i=1 E(Xi) denote the average expected value of these variables. Then, for

every ε > 0,

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ > ε

]
< 2 · e−

2ε2

(b−a)2
·n

(1.7)

The special case (of Eq. (1.7)) that refers to identically distributed random variables is easy
to derive from the foregoing Chernoff Bound (by recalling Footnote 1 and using a linear
mapping of the interval [a, b] to the interval [0, 1]). This special case is useful in estimating
the average value of a (bounded) function defined over a large domain, especially when the
desired error probability needs to be negligible (i.e., decrease faster than any polynomial in
the number of samples). Such an estimate can be obtained provided that we can sample
the function’s domain (and evaluate the function).

1For example, verify that the current proof actually applies to the case that Xi ∈ [0, 1] rather than
Xi ∈ {0, 1}, by noting that Var[Xi] ≤ p(1 − p) still holds.
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1.2.4 Pairwise independent versus totally independent sampling

To demonstrate the difference between the sampling bounds provided in Section 1.2.2 and
Section 1.2.3, we consider the problem of estimating the average value of a function f :
Ω → [0, 1]. In general, we say that a random variable Z provides an (ε, δ)-approximation
of a value v if Pr[|Z − v| > ε] ≤ δ. By Eq. (1.7), the average value of f evaluated
at n = O((ε−2 · log(1/δ)) independent samples (selected uniformly in Ω) yield an (ε, δ)-
approximation of µ =

∑
x∈Ω f(x)/|Ω|. Thus, the number of sample points is polynomially

related to ε−1 and logarithmically related to δ−1. In contrast, by Eq. (1.4), an (ε, δ)-
approximation by n pairwise independent samples calls for setting n = O(ε−2 · δ−1). We
stress that, in both cases the number of samples is polynomially related to the desired accuracy
of the estimation (i.e., ε). The only advantage of totally independent samples over pairwise
independent ones is in the dependency of the number of samples on the error probability
(i.e., δ).

1.3 Two Information Theoretic XOR Lemmas

We present two (information theoretic) XOR lemmas, which refer to 0-1 random variables
and to the effect of XORing certain subsets of these variables. The first lemma refers to
totally independent but possibly biased random variables, and asserts that when XORing
all variables the bias of the result (i.e., its deviation from a uniformly distributed random
bit) vanishes exponentially with the number of variables that are being XORed. The second
lemma refers to an arbitrary sequence of (potentially dependent) random variables, and
relates the deviation of their joint distribution from the uniform distribution to the biases of
the XOR of all subsets of variables.

1.3.1 The bias of the XOR of all variables

The following lemma is presented for three reasons. Firstly, it is quite a useful fact, which
is often used as is. Secondly, it is a simple analogue of the celebrated XOR Lemma of Yao
(which refers to computational unpredictability, see [47] or [44, §7.2.1.2]). Thirdly, its proof
reveals the great benefit that can be obtained by a simple change in notation: Moving from
{0, 1} to {±1} by x 7→ (−1)x.

Lemma 1.1 (XORing totally independent 0-1 random variables): Let p ∈ [0, 1], and
X1, X2, ..., Xn be totally independent 0-1 random variables such that Pr[Xi = 1] = p, for

each i. Then, Pr[
∑n

i=1Xi≡1 (mod 2)] = 1
2 −

(1−2p)n

2 .

Proof: We start by moving to ±1 notation:

Pr

[
n∑

i=1

Xi≡0 (mod 2)

]
= Pr

[
n∏

i=1

(−1)Xi =1

]
(1.8)

Next, we use the fact that for a random variable Z obtaining values in {±1}, it holds that

E[Z] = Pr [Z=1]− Pr [Z=−1] = 1− 2 · Pr [Z=−1] . (1.9)
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Combining Eq. (1.8) and Eq. (1.9), the lemma’s claim is restated as

E

[
n∏

i=1

(−1)Xi

]
= (1 − 2p)n. (1.10)

Using the hypothesis that the Xi’s are totally independent (and E[(−1)Xi ] = 1 − 2p),
Eq. (1.10) follows. (Indeed, if X1, ..., Xn are independent, then f(X1), ..., f(Xn) are inde-
pendent for any function f ; see Exercise 1.5.)

Digest. Indeed, the punchline of the forgoing proof is that for totally independent random
variables, Z1, ..., Zn, in R it holds that E[

∏n
i=1 Zi] =

∏n
i=1 E[Zi]. This fact can be easily

proved using the formal definition of expectation (see Exercise 1.5).

1.3.2 Statistical Difference vs Bias of all XORs

The following lemma is presented for two reasons, which are similar to those cited in Sec-
tion 1.3.1:2 Firstly, this result is also very useful. Secondly, its proof reveals the great benefit
that can be obtained by looking at things in a non-obvious way; specifically, by looking at
probability distributions (over {0, 1}n) as functions (from {0, 1}n to the reals), and looking
at the latter as (2n-dimensional) vectors.

The following lemma relates two measures of the “randomness” of distributions over
n-bit long strings.

• The statistical difference from uniform; namely, the statistical difference (variation
difference) between the “target” distribution and the uniform distribution over the set
of all n-bit strings.

• The maximum bias of the xor of certain bit positions; namely, the bias of a 0-1 random
variable obtained by taking the exclusive-or of certain bits in the “target” distribution.

We show that the statistical difference from uniform is upper-bounded by
√

2n times the
maximum bias of the xor’s, and that this upper bound is tight in general.

The proof of this assertion is based on viewing probability distributions over {0, 1}n as
elements of a 2n-dimensional vector space (i.e., the vector space of all functions from {0, 1}n
to the reals). Furthermore, it turns out that the statistical difference from uniform and the
maximum bias of the xor’s correspond to two norms defined over this vector space, which are
related via the dimention (i.e., 2n). This connection will be detailed after formally dening
all notions.

1.3.2.1 Formal Setting

Let π be a an arbitrary probability distribution over {0, 1}n and let µ denote the uniform
distribution over {0, 1}n (i.e., µ(x) = 2−n for every x ∈ {0, 1}n). Let x = x1 · · ·xn and

N
def
= 2n. The XOR-Lemma relates two “measures of closeness” of π and µ.

2Actually, this lemma too has an interesting computational analogue (see [42, Lem. 2.5.8]), alas a less
famous one.
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• The statistical difference (“variation difference”) between π and µ; namely,

stat(π)
def
=

1

2
·
∑

x

|π(x) − µ(x)| (1.11)

• The “maximum bias” of the exclusive-or of certain bit positions in strings chosen
according to the distribution π; namely,

maxbias(π)
def
= max

I 6=∅
{|π({x :

⊕

i∈I

xi = 0})− π({x :
⊕

i∈I

xi = 1})|} (1.12)

where for every set S ⊆ {0, 1}n, we let π(S) denote
∑

x∈S π(x). Indeed each term in

Eq. (1.12) can be written as E(x1,...,xn)∼π[(−1)
∑

i∈I
xi ], where x ∼ π denotes that x is

distributed according to π.

Note that maxbias(µ) = 0, since for every I 6= ∅ it holds that |{x :
⊕

i∈I xi = 0}| =
2n−1.

A simplified version of the XOR-Lemma states that stat(π) ≤ N ·maxbias(π). The proof is
based on viewing distributions as elements in an N -dimensional vector space and observing
that the two measures considered by the lemma are merely two norms taken with respect
to two different orthogonal bases (see Section 1.3.2.2). Hence, the XOR-Lemma follows
from a (more general and quite straightforward) technical lemma that relates norms taken
with respect to different orthonormal bases (see Section 1.3.2.3). It turns out this argument
actually yields stat(π) ≤

√
N · maxbias(π), and the inferior bound (i.e., stat(π) ≤ N ·

maxbias(π)) is due to a less careful use of the same underlying ideas.

1.3.2.2 Preliminaries: the XOR-Lemma and vector spaces

Probability distributions over {0, 1}n are functions from {0, 1}n to the reals. Such functions
form a N -dimensional vector space, where N = 2n. We shall consider two alternative bases
of this vector space.

Recall that vectors (functions) in such a vector space are represented in various bases by
considering their inner product with the basis vectors. Thus, the function f : {0, 1}n → R

is represented in the basis B = {bi : i ∈ [N ]} as

f(x) =

2n∑

i=1

〈f, bi〉 · bi(x) (1.13)

where 〈f, bi〉 =
∑

z∈{0,1}n f(z)bi(z) denotes of the inner product of f and bi.
The standard basis, denoted K, is the orthonormal basis defined by the Kroniker func-

tions; that is, the Boolean functions {kα : α ∈ {0, 1}n}, where kα(x) = 1 if x = α and
kα(x) = 0 otherwise. Indeed, 〈f, kα〉 = f(α), and the statistical difference between two
distributions equals (half) the norm L1 of their difference taken in the above K basis (i.e.,∑

x∈{0,1}n |f(x)− g(x)| =∑x∈{0,1}n |〈f − g, kx〉|).
On the other hand, as we shall see, the maxbias of a distribution equals the maximum

Fourier coefficient of the distribution, which in turn corresponds to the max-norm (norm
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L∞) of the distribution taken in a different basis. This basis is defined by the functions

{bI : I ⊆ {1, 2, ..., n}}, where bI(x) = (−1)
∑

i∈I
xi . Note that bI(x) = 1 if the exclusive-

or of the bits {xi : i ∈ I} is 0 and bI(x) = −1 otherwise (e.g., b∅ ≡ 1). The new basis

is orthogonal but not orthonormal (i.e., 〈bI , bJ〉 =
∑

x∈{0,1}n(−1)
∑

i∈I⊕J
xi = 0 if I 6= J

and 〈bI , bI〉 = N).3 Hence, we consider the normalized basis, denoted F , consisting of the
functions fI = 1√

N
· bI (where N = 2n). Indeed, the function g : {0, 1}n → R is represented

in this basis via the coefficients 〈g, fI〉 (for all I ⊆ [n]), and 〈g, fI〉 =
∑

x g(x)bI(x)/
√
N

equals
∑

x g(x)(−1)
∑

i∈I
xi/
√
N .

Notation: Let B be an orthonormal basis and r an integer. We denote by NB
r (v) the

norm Lr of v with respect to the basis B. Namely, NB
r (v) = (

∑
e∈B |〈e, v〉|r)(1/r), where

〈e, v〉 denotes of the inner product of the vectors e and v. We denote by NB
∞(v) the limit of

NB
r (v) when r →∞ (i.e., NB

∞(v) is maxe∈B{|〈e, v〉|}).
We now relate two of the foregoing norms to the measures of closeness presented in

Section 1.3.2.1. Thus, Fact 1.2 reduces the XOR-Lemma to relating two norms, which refer
to two different orthonormal bases.

Fact 1.2 stat(π) = 1
2 · NK

1 (π − µ) whereas maxbias(π) =
√
N · NF

∞(π − µ).

The first equality is immediate by the definitions. Following is a proof of the second equality.
Let δ(x) = π(x) − µ(x). Since maxbias(µ) = 0, we have maxbias(π) = maxbias(δ). Also∑

x δ(x) = 0, which implies that
∑

x f∅(x)δ(x). We get

maxbias(δ) = max
I 6=∅
{|δ({x : bI(x)=1})− δ({x : bI(x)=−1})|}

= max
I 6=∅

{∣∣∣∣∣
∑

x

bI(x) · δ(x)
∣∣∣∣∣

}

=
√
N ·max

I

{∣∣∣∣∣
∑

x

fI(x) · δ(x)
∣∣∣∣∣

}

=
√
N ·max

I
{|〈fI , δ〉|}

=
√
N · NF

∞(δ)

We now turn to the actual proof of the XOR Lemma.

1.3.2.3 Proof of the XOR-Lemma

The XOR-Lemma follows from the following technical lemma.

3Here we let I⊕J denote the symmetric difference of the sets I and J . Note that for any non-empty set K

it holds that
∑

x∈{0,1}n(−1)

∑
i∈K

xi equals
∑

x∈{0,1}n

∏
i∈K

(−1)xi = 2n−|K| ·
∏

i∈K

∑
xi∈{0,1}

(−1)xi .
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Technical Lemma: For every two orthogonal bases A and B and every vector v, it holds
that

NA
1 (v) ≤ N · NB

∞(v). (1.14)

This technical lemma has a three line proof:

For every orthogonal basis A,
NA
1 (v) ≤

√
N · NA

2 (v). (1.15)

For every pair of orthonormal bases A and B,

NA
2 (v) = NB

2 (v). (1.16)

For every orthogonal basis B,
NB
2 (v) ≤

√
N · NB

∞(v) (1.17)

Indeed, the Technical Lemma (i.e., Eq. (1.14)) is obtained by combining Eq. (1.15)–(1.17).
Next, using this Technical Lemma, we get:

Lemma 1.3 (The XOR-Lemma, revised): stat(π) ≤ 1
2 ·
√
N ·maxbias(π).

Proof: By Eq. (1.14) (and Fact 1.2), we have

stat(π) =
1

2
· NK

1 (π − µ) ≤ 1

2
·N · NF

∞(π − µ) =
1

2
·
√
N ·maxbias(π).

1.3.2.4 Discussion

The inferior bound, stat(π) ≤ N ·maxbias(π), has been derived by using one of the following
two bounds instead of our Technical Lemma:

1. NA
1 (v) ≤

√
NNB

1 (v) ≤
√
N ·NNB

∞(v).

The first inequality is proved similarly to the proof of our Technical Lemma (i.e., using
NB
2 (v) ≤ NB

1 (v) instead of Eq. (1.17)). The second inequality is trivial. Each of the
two inequalities is tight, but their combination is wasteful.

2. NA
1 (v) ≤ N · NA

∞(v) ≤ N ·
√
NNB
∞(v).

The second inequality is proved similarly to the proof of our Technical Lemma (i.e.,
using NA

∞(v) ≤ NA
2 (v) instead of Eq. (1.15)). The first inequality is trivial. Again, each

of the inequalities is tight, but their combination is wasteful.

Variants. Using small variations on the foregoing argument, we obtain the following vari-
ants of the XOR-Lemma:

1. maxx∈{0,1}n{|π(x) − µ(x)|} ≤ maxbias(π).

2. stat(π) ≤
√∑

I 6=∅ biasI(π)2, where biasI(π) =
∑

x bI(x) · π(x).

Proof: The first claim follows by using NA
∞(v) ≤ NA

2 (v) (instead of NA
1 (v) ≤

√
N ·NA

2 (v)), and
obtaining NK

∞(π−µ) ≤
√
N ·NF

∞(π−µ). The second claim follows by using NA
1 (v) ≤

√
N ·NB

2 (v)

and NF
2 (π − µ) =

√∑
I 6=∅ biasI(π)2. In both parts we also use bias∅(π − µ) = 0.
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1.3.2.5 Advanced topic: Generalization to GF(p), for any prime p

The entire treatment can be generalized to distributions over GF(p)n, for any prime p. In

this case, we redefine N
def
= pn, and let stat(π) denote the statistical difference between π

and the uniform distribution over GF(p)n (cf. Eq. (1.11)). Letting ω denote the pth root of
unity, we generalize Eq. (1.12) to

maxbias(π)
def
= max

β∈GF(p)n\{0}n






∣∣∣∣∣∣

∑

e∈GF(p)

ωe · π
({
x :
∑

i∈[n]βixi ≡ e (mod p)
})
∣∣∣∣∣∣






= max
β∈GF(p)n\{0}n

{∣∣∣∣E(x1,...,xn)∼π

[
ω

∑
i∈[n]

βixi

]∣∣∣∣
}

,

where x ∼ π denotes that x is distributed according to π. The Fourier basis is generalized
analogously: The new basic consists of the functions {bβ : β ∈ GF(p)n}, where bβ(x) =

ω

∑
i∈[n]

βixi . The normalized basis, denoted F , consists of the functions fβ = N−1/2 · bβ.
Note that, in the case of p = 2, these definitions coincides with the definitions presented

before. By following exactly the same manipulations as in the case of p = 2, we obtain the
following generalization.

The XOR-Lemma, generalized to GF(p): Let π be an arbitrary distribution over
GF(p)n, and let µ denote the uniform distribution over GF(p)n. Then

1. stat(π) ≤ 1
2 ·
√
N ·maxbias(π).

2. maxx∈{0,1}n{|π(x) − µ(x)|} ≤ maxbias(π).

3. stat(π) ≤ 1
2 ·
√∑

β 6=0n biasβ(π)2, where biasβ(π) =
∑

x bβ(x) · π(x).

Notes

The three probabilistic inequalities discussed in Section 1.2 appear in almost any standard
textbook on probability theory as well as in any textbook that is aimed at randomized
computation.

The first XOR Lemma (which refers to the XOR of all variables) is a special case of
a famous information theoretic bservation, which asserts that some functions of a message
(e.g., the XOR of its bits) that is sent over a noisy channel are pracitically impossible to
recover. This lemma is the information theoretic analogue of Yao’s XOR Lemma, which
plays a central role in complexity theory and is much harder to prove (see [47] or [44,
§7.2.1.2]).

The second XOR lemma (which relates the statistical difference to the maximum bias
of some XOR of bits (see Section 1.3.2)) is commonly attributed to Umesh Vazirani [111].4

The proof presented here has appeared as an appendix in [8].

4The special case in which the maxbias is zero appears in Chor et. al.—[32].
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Exercises

Exercise 1.1 (the two forms of statistical difference) Prove the equality stated in Eq. (1.1);
that is,

1

2
·
∑

v

|Pr[X = v]− Pr[Y = v]| = max
S
{Pr[X ∈ S]− Pr[Y ∈ S]}.

Guideline: Consider the set S = {v : Pr[X = v] > Pr[Y = v]}.

Exercise 1.2 (basic properties of expectation) Prove the following facts:

1. For any two random varaibles X and Y (not necessarilty independent ones) and any
two reals a, b ∈ R, it holds that E(aX + bY ) = a · E(X) + b · E(Y ).

2. For every random varaible X , it holds that Pr[X ≥ E(X)] > 0.

3. For every random varaible X , it holds that E((X − E(X))2) = E(X2)− E(X)2.

4. For every random varaible X and real a ∈ R, it holds that Var(aX) = a2 · Var(X).

Guideline: In all cases, just start from the formal definition and apply some elementary algebraic

maipulations.

Exercise 1.3 (using linearity of expectation) Prove that for every 3CNF formula, there
exists a truth assignment that satisfies at least 7/8 of the clauses.

Guideline: Consider a uniformly distributed truth assignment, and define Xi = 1 if this assignment

satisfies the ith clause. Next, lower-bound E[
∑

i
Xi], and use Pr[Y ≥ E(Y )] > 0.

Exercise 1.4 (Markov Inequality, variants) Prove the following inequality both by a
reduction to Markov Inequality and by a direct argument. Let X be a random variable such
that Pr[X > b] = 0 and µ = E(X). Then, for every v < µ, it holds that Pr [X≤v] ≤ b−µ

b−v .
Show that, for every ε > 0, it holds that Pr [X>µ− ε] ≥ ε

b−µ+ε .

Exercise 1.5 (basic properties of independent random variables) Prove the follow-
ing two facts:

1. Let X1, ..., Xn be totally independent random variables and f be an arbitrary function
defined on their support. Then, the random variables f(X1), ..., f(Xn) are totally
independent.

2. For any two independent random varaiblesX and Y , it holds that E[XY ] = E[X ]·E[Y ].

Guideline: In all cases, just start from the formal definition and apply some elementary algebraic

maipulations.
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Exercise 1.6 (k-wise independent sampling) Prove that for any k-wise independent
random variables X1, X2, ..., Xn such that µ =

∑n
i=1 E[Xi]/n and maxi∈[n]{Var[Xi]} ≤ 1,

and any ε > 0, it holds that

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ ≥ ε
]
<

(
2k

ε2n

)⌊k/2⌋

Guideline: It is, again, a good idea to consider the random variables Xi
def
= Xi − E(Xi), which

are k-wise independent. Generalize Chebyshev’s inequality and the succesive corollary (regarding
pairwise independent sampling) by considering the kth power of

∑n

i=1
Xi/n.

Pr

[∣∣∣∣∣

n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε

]
≤

E

[(∑n

i=1
Xi

)k
]

εk · nk

=
1

εk · nk
·

∑

i1,...,ik∈[n]

E

[
k∏

j=1

Xij

]

.

The crucial observation is that of all the nk terms, the only non-zero terms are those in which no

variable occurs exactly once. This is the case since (by k-wise independence) each term E

[∏k

j=1
Xij

]

equals
∏

i∈I
E

[
X

ei

i

]
, where I = {ij : j ∈ [k]} and ei

def
= |{j : ij = i}|. (Indeed, E

[
X

ei

i

]
= 0 if

ei = 1, and E

[
X

ei

i

]
≤ E

[
X

2
i

]
if e1 ≥ 2.) Upper-bounding the number of terms in which each

occurring variable appears at least twice, we obtain the desired bound. Specifically, show that the

number of such terms is at most
(

n
k/2

)
· (k/2)k < nk/2 · (2k)k/2.
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Lecture 2

The Probabilistic Method

The current text is highly tentative. It includes several applications of the Probabilistic
Method, where each of these applications is in an area that deserves a much more compre-
hensive treatement. In one case (i.e., error correcting codes), we found it hard to refrain
from providing a brief overview of the area, whereas in another case (i.e., expander graphs)
we refer the reader to the treatment provided in Lecture 5. We mention that a compre-
hensive treatment of the probabilistic method is provided in Alon and Spencer’s book The
Probabilistic Method [9].

Loosely speaking, the probabilistic method consists of proving the existence of objects
that have certain properties by defining a probability distribution on objects and showing that
objects drawn according to this distribution have the desired property with positive probability.
Often, the definition of the probability distribution is simple, but sometimes it is quite
complex. Likewise, often objects drawn according to this distribution have the desired
property with overwhelmingly high probability, but in other cases they have the property
only with small non-zero probability. Several examples follow.1

2.1 Graphs of High Degree with no Large Cliques

While it is obvious that there exist graphs that have no large cliques, this fact is less obvious
when one insists on a minimum vertex degree. The existence of such graphs can be proved
easily using the probabilistic method.

Proposition 2.1 (on the existence of graphs of high degree with no large cliques): For
all sufficiently large N , there exists an N -vertex graph of minimum vertex degree N/2 and
maximal clique size at most 2 log2N + 2.

Proof: Consider a random process in which anN -vertex graph is constructed by connecting
each pair of vertices with probability p = 0.5+N−1/3, independently of all other pairs. Then,
with overwhelmingly high probability, each vertex in the resulting has degree greater than

1We mention that an even simpler example appears in Exercise 1.3.

15
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N/2 (and we may consider an N -vertex subgraph of minimum vertex degree N/2). On the
other hand, the probability that this random graph has a clique of size k is at most

p(
k

2) ·
(
N

k

)
< pk(k−1)/2 ·Nk/(k!). (2.1)

Letting k = 2 log2N + 3, we obtain an expression that tends to zero, which means that
a random graph is unlikely to have a k-clique. We conclude that there exists an N -vertex
graph that satisfies the degree requirement and has no clique of size 2 log2N + 3.

Digest. Indeed, in the proof of Proposition 2.1, we refrained from using the uniform dis-
tribution over all graphs only because we aimed at graphs in which the minimum vertex
degree equals N/2 (see also Exercise 2.1). Still, the distribution used is simple enough. Fur-
thermore, we did show that the desired property holds with overwhelmingly high probability
(over the distribution considered).

2.2 Polynomial-Size Monotone Formula for Majority

This section provides a proof of the existence of polynomial-size monotone formula for
Majority. The exposition follows the main principles of Valiant’s proof (cf. [108]), but
deviates from it in some details.

While it is easy to construct quasi-polynomial-size monotone formulae for majority (by
relying on divide-and-conquer approaches)2, it is less obvious how to construct polynomial-
size formulae (let alone monotone ones; cf. [108] and the references there-in).

Notation. Suppose, for simplicity that n is odd, and consider the majority function MAJ :
{0, 1}n → {0, 1} defined as MAJ(x) = 1 if wt(x) > n/2 and MAJ(x) = 0 otherwise, where
wt(x) = {i ∈ [n] : xi = 1} denotes the Hamming weight of x = x1 · · ·xn.

Theorem 2.2 There exist polynomial-size monotone formulae for computing majority.

The existence of polynomial-size (monotone) formulae is known to be equivalent to the exis-
tence of logarithmic-depth (monotone) circuits of bounded fan-in.3 Anyhow, we shall prove
the existence of logarithmic-depth monotone formulae (of bounded fan-in) for majority. Ac-
tually, two radically different proofs are known: The first proof uses a rather complicated
construction of sorting networks of logarithmic depth [4, 86].4 The second proof, presented
below, uses the probabilistic method.

2One way is using the recursion THt(x′x′′) = ∨t
i=0(THi(x

′)∧THt−i(x
′′), where THt(z) = 1 iff wt(z) ≥ t.

Using MAJ(x) = TH|x|/2(x), this yields a size recursion of the form S(n) = O(n) · S(n/2), which solves to

S(n) = O(n)log2 n.
3One direction is almost trivial, for the other direction see [98].
4Sorting networks may be viewed as Boolean circuits with bit-comparison gates (a.k.a comperators),

where each comperator is a (2-bit) sorting device. Observe that a comparator can be implemented by a
small monotone circuit (i.e., comp(x, y) = (min(x, y),max(x, y)) = ((x ∧ y), (x ∨ y))), and that the middle
bit of the sorted sequence equals the majority value.
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Proof: We prove the existence of logarithmic-depth monotone formulae (of bounded fan-
in) for majority. The proof proceeds in two main steps. The first step consists of reducing
the worst-case problem (i.e., of computing MAJ on all inputs) to an average-case problem,
denoted Π, where the point of the reduction is that it seems easier to cope with random
inputs (than with all possible inputs). Specifically, we shall use a (simple) randomized
reduction of the computation of MAJ(x) to the computation of Π(R(x)), where R(x) denotes
the output of the reduction on input x. The key observation is that if the error probability
is sufficiently low (i.e., lower than 2−|x|), then this randomized reduction yields a non-
uniform reduction that is correct on all inputs. (Hence the existence of such a non-uniform
reduction is proved by using the probabilistic method.) Next (i.e., in the second step), we
show that a very simple (monotone) formula suffices for solving Π on random instances.
Finally, composing the (monotone) reduction with the latter formula, we obtain the desired
(monotone) formula.

We start with the randomized reduction. Specifically, given an n-bit long input x =
x1 · · ·xn, we consider a sequence of independent identically distributed 0-1 random variables
R(x) = (y1, ..., ym) such that for every j ∈ [m] an index i ∈ [n] is selected uniformly and
yj is set to xi. Thus, Pr[yi = 1] = wt(x)/n. Now, let F : {0, 1}m → {0, 1} be an arbitrary
function. The key observation is captured by the following fact.

Fact 2.3 If, for every x ∈ {0, 1}n, it holds that Pr[F (R(x)) = MAJ(x)] > 1−2−n, then there
exists a choice of coin tosses ω for the random process R such that for every x ∈ {0, 1}n
it holds that F (Rω(x)) = MAJ(x), where Rω denotes the deterministic function obtained by
fixing the coins of R to ω. Furthermore, for every fixed ω, the function Rω just projects its
input bits to fixed locations in its output sequence.

(Here the probabilistic method is used to infer the existence of ω such that F ◦ Rω = MAJ,
based on Prω[(∀x∈{0, 1}n) F (Rω(x))=MAJ(x)] > 0.) Note that, by the furthermore-clause,
F ◦Rω preserves the complexity and monotonicity of F .

Regarding the feasibility of the hypothesis of Fact 2.3 (i.e., Pr[F (R(x)) = MAJ(x)] >
1 − 2−n for every x), consider the case that m = Θ(n3) and F = MAJ. (This is merely a
sanity check; we cannot afford using this F , because this would reduce the problem to itself
on longer input length.) In this case, for every x it holds that

Pr[MAJ(R(x)) = MAJ(x)] > Pr

[∣∣∣∣
wt(R(x))

m
− wt(x)

n

∣∣∣∣ <
1

2n

]

,

(2.2)

which indeed is at least 1− 2−n (by Chernoff bound).
We now turn to the second step, which consists of presenting a monotone formula F of

O(log n) depth. Generalizing the foregoing hypothesis, we wish F to satisfy the following
condition: If Y1, ..., Ym are independent identically distributed 0-1 random variables such
that for some b it holds that Pr[Y1 = b] ≥ 0.5 + 1/2n, then Pr[F (Y1, ..., Ym) = b] > 1− 2−n.
(For simplicity, we assume that m is a power of three.)

The construction uses a full ternary tree of depth ℓ = log3m, where internal vertices
compute the majority of their three children. Specifically, let MAJ3 denote the three-variable
majority function. Then, F1(z1, z2, z3) = MAJ3(z1, z2, z3) and for every i ≥ 1

Fi+1(z1, ..., z3i+1) = MAJ3(Fi(z1, ..., z3i), Fi(z3i+1, ..., z3i+3i), Fi(z2·3i+1, ..., z3i+1)). (2.3)
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Finally, we let F (z1, ..., zm) = Fℓ(z1, ..., zm).
The intuition is that each level in F amplifies the bias of the corresponding random

variables (i.e., functions of Y1, ..., Ym) towards the majority value. This amplification is due
to the amplifiaction property of MAJ3, which is stated next.

Fact 2.4 Let Z1, Z2, Z3 be three independent identically distributed 0-1 random variables,

and let p
def
= Pr[Z1 =1]. Then:

1. p′
def
= Pr[MAJ3(Z1, Z2, Z3)=1] = 3(1− p)p2 + p3.

2. Letting δ
def
= p− 0.5, it holds that p′ = 0.5 + (1.5− 2δ2) · δ.

3. p′ < 3p2.

The three parts of the foregoing fact follow by straightforward calculations.5

The second part of Fact 2.4 asserts that if p = 0.5 + δ > 0.5 and δ ≤ δ0 < 0.5, then
p′ ≥ 0.5+(1.5−2δ20) ·δ, which means that the bias (i.e., p−0.5) increases by a multiplicative
factor in each iteration (until it exceeds δ0). (Note that we assumed p ≥ 0.5 + 1/2n, but
similar considerations hold for p ≤ 0.5 − 1/2n.)6 This means that we can increase the
bias from its initial level of at least 1/2n to any constant level of δ0 < 1/2, by using
ℓ1 = c1 · log2(2δ0n) iterations of MAJ3, where c1 = 1/ log2(1.5− 2δ20).

The best result is obtained by using an arbitrary small δ0 > 0. In this case, we may use
c1 ≈ 1/ log2(1.5) ≈ 1.70951129. Using ℓ2 = O(1) additional iterations, we may increase the
bias from δ0 to, say, 0.4.

At this point, we use the third part of Fact 2.4, while considering the probability for a
wrong majority value. In each such iteration, this probability is reduced from a current value
of 1− p to less than 3(1− p)2. Thus, using ℓ3 = log2 n additional iterations, the probability

of a wrong value reduces from 1− (0.5 + 0.4) < 1/6 to 32ℓ3−1 · (1/6)2
ℓ3
< 2−2ℓ3

= 2−n.
Letting ℓ = ℓ1 + ℓ2 + ℓ3 < 2.71 log2 n and m = 3ℓ, we obtain a formula F = Fℓ on

m variables, but this formula uses the non-standard MAJ3-gates. Yet, a MAJ3-gate can be
implemented by a depth-three monotone formula (e.g., MAJ3(z1, z2, z3) equals (z1 ∧ z2) ∨
(z2 ∧ z3) ∨ (z3 ∧ z1)), and hence F is a monotone formula of depth 3ℓ < 8.13 log2 n. Note
that if Y1, ..., Ym are independent identically distributed 0-1 random variables such that
for some b it holds that Pr[Y1 = b] ≥ 0.5 + 1/2n, then Pr[F (Y1, ..., Ym) = 1 − b] < 2−n.
Thus, for every x ∈ {0, 1}n it holds that Prω[F (Rω(x)) = 1− MAJ(x)] < 2−n and Prω[(∀x ∈
{0, 1}n) F (Rω(x)) = MAJ(x)] > 0 follows. Hence, there exists a choice of ω such that F ◦Rω

computes the majority of n-bit inputs.

Comment. Interestingly, Valiant [108] obtains a better result by using an iterated con-
struction that uses the function V (z1, z2, z3, z4) = (z1 ∨ z2) ∧ (z3 ∨ z4) as the basic building
block (rather than MAJ3). Since V is not a balanced predicate (i.e., Pr[V (U4) = 1] = 9/16),
the random process used in [108] maps the string x ∈ {0, 1}n to a sequence of independent
identically distributed 0-1 random variables, (y1, ..., ym), such that for every j ∈ [m] the bit

5For the second part, use p′ = (3−2p)p2 = (3−1−2δ) ·(0.25+δ+δ2), which implies p′ = 0.5+1.5δ−2δ3.
6One way to see this is to define p = Pr[Z1 = 0].



2.3. ERROR CORRECTING CODES 19

yj is set to zero with some constant probability β (and is set to xi otherwise, where i ∈ [n] is
uniformly distributed). The value of β is chosen such that if Z1, Z2, Z3, Z4 are independent

identically distributed 0-1 random variables satisfying Pr[Z1 = 1] = p
def
= (1 − β)/2, then

Pr[V (Z1, Z2, Z3, Z4) = 1] = p. It turns out that V amplifies deviation from p slightly bet-
ter than MAJ3 does (w.r.t 1/2).7 More importantly, V can be implemented by a monotone
formula of depth two, whereas MAJ3 requires depth three. Thus, Valiant [108] performs
2.65 log2 n iterations (rather than 2.71 log2 n itertations), and obtains a formula of depth
5.3 log2 n.

2.3 Error Correcting Codes

The application of the probabilistic method is given in the proof of Proposition 2.5, but
the current section goes well beyond this example. Indeed, we seize the opportunity to
highlight some issues and aspects of coding theory that are most relevant to the theory of
computation. The interested reader is referred to [101] for a more comprehensive treatment
of the computational aspects of coding theory. Structural aspects of coding theory, which
are at the traditional focus of that field, are covered in standard textbook such as [80].

2.3.1 Basic Notions

Loosely speaking, an error correcting code is a mapping of strings to longer strings such that
any two different strings are mapped to a corresponding pair of strings that are far apart
(and not merely different). Specifically, C : {0, 1}k → {0, 1}n is a (binary) code of distance
d if for every x 6= y ∈ {0, 1}k it holds that C(x) and C(y) differ on at least d bit positions.
Indeed, the relation between k, n and d is of major concern: typically, the aim is having a
large distance (i.e., large d) without introducing too much redundancy8 (i.e., have n as small
as possible with respect to k (and d)).

It will be useful to extend the foregoing definition to sequences over an arbitrary (finite)
alphabet Σ, and to use some notations. Specifically, for x ∈ Σm, we denote the ith symbol
of x by xi (i.e., x = x1 · · ·xm), and consider codes over Σ (i.e., mappings of Σ-sequences to
Σ-sequences). The mapping (code) C : Σk → Σn has distance d if for every x 6= y ∈ Σk it
holds that |{i : C(x)i 6= C(y)i}| ≥ d. The members of {C(x) : x ∈ Σk} are called codewords
(and in some texts this set itself is called a code).

In general, we define a metric, called Hamming distance, over the set of n-long sequences
over Σ. The Hamming distance between y and z, where y, z ∈ Σn, is defined as the number
of locations on which they disagree (i.e., |{i : yi 6= zi}|). The Hamming weight of such
sequences is defined as the number of non-zero elements (assuming that one element of Σ
is viewed as zero). Typically, Σ is associated with an additive group, and in this case the
distance between y and z equals the Hamming weight of w = y− z, where wi = yi − zi (for
every i).

7This is surprising only if we forget that V takes four inputs rather than three.
8Note that a trivial way of obtaining distance d is to duplicate each symbol d times. This (“repetition”)

code satisfies n = d · k, while we shall seek n≪ d · k. Indeed, as we shall see, one can obtain simultaneously
n = O(k) and d = Ω(k).
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Asymptotics. We will actually consider infinite families of codes; that is, {Ck : Σk
k →

Σ
n(k)
k }k∈S , where S ⊆ N (and typically S = N). (N.B., we allow Σk to depend on k.) We

say that such a family has distance d : N → N if for every k ∈ S it holds that Ck has
distance d(k). Needless to say, both n = n(k) (called the block-length) and d(k) depend
on k, and the aim is having a linear dependence (i.e., n(k) = O(k) and d(k) = Ω(n(k))).
In such a case, one talks of the relative rate of the code (i.e., the constant k/n(k)) and
its relative distance (i.e., the constant d(k)/n(k)). In general, we will often refer to relative
distances between sequences. For example, for y, z ∈ Σn, we say that y and z are ε-close
(resp., ε-far) if |{i : yi 6= zi}| ≤ ε · n (resp., |{i : yi 6= zi}| ≥ ε · n).

Explicitness. A mild notion of explicitness refers to constructing the list of all codewords
in time that is polynomial in its length (which is exponential in k). A more standard notion
of explicitness refers to generating a specific codeword (i.e., producing C(x) when given x),
which coincides with the encoding task mentioned next. Stronger notions of explicitness
refer to other computational problems concerning codes (e.g., various decoding tasks).

Computational problems. The most basic computational tasks associated with codes
are encoding and decoding (under noise). The definition of the encoding task is straight-
forward (i.e., map x ∈ Σk

k to Ck(x)), and an efficient algorithm is required to compute each
symbol in Ck(x) in poly(k, log |Σk|)-time.9 When defining the decoding task we note that

“minimum distance decoding” (i.e., given w ∈ Σ
n(k)
k , find x such that Ck(x) is closest to w

(in Hamming distance)) is just one natural possibility. Two related variants, regarding a
code of distance d, are:

Unique decoding: Given w ∈ Σ
n(k)
k that is at Hamming distance less than d(k)/2 from some

codeword Ck(x), retrieve the corresponding decoding of Ck(x) (i.e., retrieve x).

Needless to say, this task is well-defined because there cannot be two different code-
words that are each at Hamming distance less than d(k)/2 from w.

List decoding: Given w ∈ Σ
n(k)
k and a parameter d′ (which may be greater than d(k)/2),

output a list of all codewords (or rather their decoding) that are at Hamming distance
at most d′ from w. (That is, the task is outputting the list of all x ∈ Σk

k such that
Ck(x) is at distance at most d′ from w.)

Typically, one considers the case that d′ < d(k). See Section 2.3.4 for a discussion of
upper-bounds on the number of codewords that are within a certain distance from a
generic sequence.

Two additional computational tasks are considered in Section 2.3.3.

9The foregoing formulation is not the one that is common in coding theory, but it is the most natural
one for our applications. On one hand, this formulation is applicable also to codes with super-polynomial
block-length. On the other hand, this formulation does not support a discussion of practical algorithms that
compute the codeword faster than is possible when computing each of the codeword’s bits separately.
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Linear codes. Associating Σk with some finite field, we call a code Ck : Σk
k → Σ

n(k)
k

linear if it satisfies Ck(x + y) = Ck(x) + Ck(y), where x and y (resp., Ck(x) and Ck(y))
are viewed as k-dimensional (resp., n(k)-dimensional) vectors over Σk, and the arithmetic
is of the corresponding vector space. A useful property of linear codes is that their distance
equals the Hamming weight of the lightest codeword other than Ck(0k) (= 0n(k)); that
is, minx 6=y{|{i : Ck(x)i 6= Ck(y)i}|} equals minx 6=0k{|{i : Ck(x)i 6= 0}|}. Another useful
property of linear codes is that the code is fully specified by a k-by-n(k) matrix, called the
generating matrix, that consists of the codewords of some fixed basis of Σk

k. That is, the set
of all codewords is obtained by taking all |Σk|k different linear combination of the rows of
the generating matrix.

2.3.2 A Few Popular Codes

Our focus will be on explicitly constructible codes; that is, (families of) codes of the form

{Ck : Σk
k → Σ

n(k)
k }k∈S that are coupled with efficient encoding and decoding algorithms.

But before presenting several such codes, let us consider a non-explicit code (having “good
parameters”); that is, the following result asserts the existence of certain codes without
pointing to any specific code (let alone an explicit one).

Proposition 2.5 (on the distance of random linear codes): Let n, d, t : N → N be such
that, for all sufficiently large k, it holds that

n(k) ≥ max

(
2d(k),

k + t(k)

1−H2(d(k)/n(k))

)

,

(2.4)

where H2(α)
def
= α log2(1/α) + (1 − α) log2(1/(1 − α)) is the binary entropy function.10

Then, for all sufficiently large k, with probability greater than 1 − 2−t(k), a random linear
transformation of {0, 1}k to {0, 1}n(k) constitutes a code of distance d(k).

Indeed, for asserting that most random linear codes are good it suffices to set t = 1, while
for merely asserting the existence of a good linear code even setting t = 0 will do. Also, for
every constant δ ∈ (0, 0.5) there exists a constant ρ > 0 and an infinite family of codes {Ck :
{0, 1}k → {0, 1}k/ρ}k∈N of relative distance δ. Specifically, any constant ρ ≥ (1 − H2(δ))
will do.

Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2), and
upper-bound the probability that it yields a linear code of distance less than d(k). We use a
union bound on all possible 2k−1 linear combinations of the rows of the generating matrix,
where for each such combination we compute the probability that it yields a codeword of
Hamming weight less than d(k). Observe that the result of each such linear combination
is uniformly distributed over {0, 1}n(k), and thus this codeword has Hamming weight less

than d(k) with probability p
def
=
∑d(k)−1

i=0

(
n(k)

i

)
· 2−n(k). Clearly, for d(k) ≤ n(k)/2, it holds

that p < d(k) · 2−(1−H2(d(k)/n(k)))·n(k)), but actually p ≤ 2−(1−H2(d(k)/n(k)))·n(k)) holds as
well (e.g., use [9, Cor. 14.6.3]). Using (1−H2(d(k)/n(k))) ·n(k) ≥ k+ t(k), the proposition
follows.

10Recall that the entropy of a random variable X is defined as
∑

x
Pr[X = x] · log2(1/Pr[X = x]). Thus,

H2(α) equals the entropy of a 0-1 random variable that is 1 with probability α.
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2.3.2.1 A mildly explicit version of Proposition 2.5

Note that Proposition 2.5 yields a deterministic algorithm that finds a linear code of distance
d(k) by conducting an exhaustive search over all possible generating matrices; that is, a good
code can be found in time exp(k ·n(k)). The time bound can be improved to exp(k+n(k)),
by constructing the generating matrix in iterations such that, at each iteration, the current
set of rows is augmented with a single row while maintaining the natural invariance (i.e., all
non-empty linear combinations of the current rows have weight at least d(k)). Thus, at each
iteration, we conduct an exhaustive search over all possible values of the next (n(k)-bit long)
row, and for each such candidate value we check whether the foregoing invariance holds (by
considering all linear combinations of the previous rows and the current candidate).

To analyze the foregoing algorithm, note that the proof of Proposition 2.5 can be adapted
to assert that, as long as we have less than k rows, a random choice of the next row will do
with positive probability. Thus, the foregoing iterative algorithm finds a good code in time∑k

i=1 2n(k) · 2i−1 · poly(n(k)) = exp(n(k) + k). In the case that n(k) = O(k), this yields an
algorithm that runs in time that is polynomial in the size of the code (i.e., the number of
codewords (i.e., 2k)). Needless to say, this mild level of explicitness is inadequate for most
coding applications; however, it will be useful to us in Section 2.3.2.5.

2.3.2.2 The Hadamard Code

The Hadamard code is the longest (non-repetitive) linear code over {0, 1} ≡ GF(2). That
is, x ∈ {0, 1}k is mapped to the sequence of all n(k) = 2k possible linear combinations of
its bits; that is, bit locations in the codewords are associated with k-bit strings such that
location α ∈ {0, 1}k in the codeword of x holds the value

∑k
i=1 αixi. It can be verified

that each non-zero codeword has weight 2k−1, and thus this code has relative distance
d(k)/n(k) = 1/2 (albeit its block-length n(k) is exponential in k).

Turning to the computational aspects, we note that encoding is very easy. As for de-
coding, the warm-up discussion at the beginning of the proof of [44, Thm. 7.7] provides a
very fast probabilistic algorithm for unique decoding, whereas [44, Thm. 7.8] itself provides
a very fast probabilistic algorithm for list decoding.

We mention that the Hadamard code has played a key role in the proof of the PCP
Theorem (see [11, 12] or [44, Thm. 9.16]).

A propos long codes. We mention that the longest (non-repetitive) binary code (called
the Long-Code and introduced in [19]) is extensively used in the design of “advanced” PCP
systems (see, e.g., [56, 57]). In this code, a k-bit long string x is mapped to the sequence of

n(k) = 22k

values, each corresponding to the evaluation of a different Boolean function at
x; that is, bit locations in the codewords are associated with Boolean functions such that
the location associated with f :{0, 1}k→{0, 1} in the codeword of x holds the value f(x).

2.3.2.3 The Reed–Solomon Code

Reed-Solomon codes can be defined for any adequate non-binary alphabet, where the al-
phabet is associated with a finite field of n elements, denoted GF(n). For any k < n, the
code maps univariate polynomials of degree k− 1 over GF(n) to their evaluation at all field
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elements. That is, p ∈ GF(n)k (viewed as such a polynomial), is mapped to the sequence
(p(α1), ..., p(αn)), where α1, ..., αn is a canonical enumeration of the elements of GF(n).11

This mapping is called a Reed-Solomon code with parameters k and n, and its distance is
n− k + 1 (because any non-zero polynomials of degree k − 1 evaluates to zero at less than
k points). Indeed, this code is linear (over GF(n)), since p(α) is a linear combination of

p0, ..., pk−1, where p(ζ) =
∑k−1

i=0 piζ
i.

The Reed-Solomon code yields infinite families of codes with constant rate and constant
relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but the alphabet size grows
with k (or rather with n(k) > k). Efficient algorithms for unique decoding and list decoding
are known (see [100] and references therein). These computational tasks correspond to
the extrapolation of polynomials based on a noisy version of their values at all possible
evaluation points.

2.3.2.4 The Reed–Muller Code

Reed-Muller codes generalize Reed-Solomon codes by considering multi-variate polynomials
rather than univariate polynomials. Consecutively, the alphabet may be any finite field,
and in particular the two-element field GF(2). Reed-Muller codes (and variants of them)
are extensively used in complexity theory; for example, they underly hardness amplification
schemes (see, e.g., [44, Const. 7.11]) and some PCP constructions (e.g., [12, 11]). The
relevant property of these (non-binary) codes is that, under a suitable setting of parameters
that satisfies n(k) = poly(k), they allow super fast “codeword testing” and “self-correction”
(see discussion in Section 2.3.3).

For any prime power q and parameters m and r, we consider the set, denoted Pm,r, of
all m-variate polynomials of total degree at most r over GF(q). Each polynomial in Pm,r is
represented by the k = logq |Pm,r| coefficients of all relevant monomials, where in the case

that r < q it holds that k =
(
m+r

m

)
. We consider the code C : GF(q)k → GF(q)n, where

n = qm, mapping m-variate polynomials of total degree at most r to their values at all qm

evaluation points. That is, the m-variate polynomial p of total degree at most r is mapped
to the sequence of values (p(α1), ..., p(αn)), where α1, ..., αn is a canonical enumeration of
all the m-tuples of GF(q). The relative distance of this code is lower-bounded by (q − r)/q
(cf. Section 9.1.3).

In typical applications one sets r = Θ(m2 logm) and q = poly(r), which yields k > mm

and n = poly(r)m = poly(mm). Thus we have n(k) = poly(k) but not n(k) = O(k).
As we shall see in Section 2.3.3, the advantage (in comparison to the Reed-Solomon code)
is that codeword testing and self-correction can be performed at complexity related to
q = poly(logn). Actually, most complexity applications use a variant in which only m-
variate polynomials of individual degree r′ = r/m are encoded. In this case, an alternative
presentation (analogous to the one presented in Footnote 11) is preferred: The information
is viewed as a function f : Hm → GF(q), where H ⊂ GF(q) is of size r′ + 1, and is encoded
by the evaluation at all points in GF(q)m of the (unique) m-variate polynomial of individual
degree r′ that extends the function f (see [44, Const. 7.11]).

11Alternatively, we may map (v1, ..., vk) ∈ GF(n)k to (p(α1), ..., p(αn)), where p is the unique univariate
polynomial of degree k − 1 that satisfies p(αi) = vi for i = 1, ..., k. Note that this modification amounts to
a linear transformation of the generating matrix.
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2.3.2.5 Binary codes of constant relative distance and constant rate

Recall that we seek binary codes of constant relative distance and constant rate. Propo-
sition 2.5 asserts that such codes exists, but does not provide an explicit construction.
The Hadamard code is explicit but does not have a constant rate (to say the least (since
n(k) = 2k)).12 The Reed-Solomon code has constant relative distance and constant rate
but uses a non-binary alphabet (which grows at least linearly with k). Thus, all codes
we have reviewed so far fall short of providing an explicit construction of binary codes of
constant relative distance and constant rate. We achieve the desired construction by using
the paradigm of concatenated codes [38], which is of independent interest. (Concatenated
codes may be viewed as a simple analogue of the proof composition paradigm of [12] (cf. [44,
§9.3.2.2]).)

Intuitively, concatenated codes are obtained by first encoding information, viewed as a
sequence over a large alphabet, by some code and next encoding each resulting symbol,
which is viewed as a sequence of over a smaller alphabet, by a second code. Formally,
consider Σ1 ≡ Σk2

2 and two codes, C1 : Σk1
1 → Σn1

1 and C2 : Σk2
2 → Σn2

2 . Then, the
concatenated code of C1 and C2, maps (x1, ..., xk1) ∈ Σk1

1 ≡ Σk1k2
2 to (C2(y1), ..., C2(yn1)),

where (y1, ..., yn1) = C1(x1, ..., xk1).
Note that the resulting code C : Σk1k2

2 → Σn1n2
2 has constant rate and constant relative

distance if both C1 and C2 have these properties. Encoding in the concatenated code is
straightforward. To decode a corrupted codeword of C, we view the input as an n1-long
sequence of blocks, where each block is an n2-long sequence over Σ2. Applying the decoder
of C2 to each block, we obtain n1 sequences (each of length k2) over Σ2, and interpret
each such sequence as a symbol of Σ1. Finally, we apply the decoder of C1 to the resulting
n1-long sequence (over Σ1), and interpret the resulting k1-long sequence (over Σ1) as a
k1k2-long sequence over Σ2. The key observation is that if w ∈ Σn1n2

2 is ε1ε2-close to
C(x1, ..., xk1 ) = (C2(y1), ..., C2(yn1)) then at least (1− ε1) ·n1 of the blocks of w are ε2-close
to the corresponding C2(yi).

13

We are going to consider the concatenated code obtained by using the Reed-Solomon
Code C1 : GF(n1)

k1 → GF(n1)
n1 as the large code, setting k2 = log2 n1, and using the

mildly explicit version of Proposition 2.5 (see also Section 2.3.2.1) C2 : {0, 1}k2 → {0, 1}n2

as the small code. We use n1 = 3k1 and n2 = O(k2), and so the concatenated code is
C : {0, 1}k → {0, 1}n, where k = k1k2 and n = n1n2 = O(k). The key observation is that
C2 can be constructed in exp(k2)-time, whereas here exp(k2) = poly(k). Furthermore, both
encoding and decoding with respect to C2 can be performed in time exp(k2) = poly(k).
Thus, we get:

Theorem 2.6 (an explicit good code): There exists constants δ, ρ > 0 and an explicit
family of binary codes of rate ρ and relative distance at least δ. That is, there exists
a polynomial-time (encoding) algorithm C such that |C(x)| = |x|/ρ (for every x) and a
polynomial-time (decoding) algorithm D such that for every y that is δ/2-close to some
C(x) it holds that D(y) = x. Furthermore, C is a linear code.

12Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and constant
rate.

13This observation offers unique decoding from a fraction of errors that is the product of the fractions
(of error) associated with the two original codes. Stronger statements regarding unique decoding of the
concatenated code can be made based on more refined analysis (cf. [38]).



2.3. ERROR CORRECTING CODES 25

The linearity of C is justified by using a Reed-Solomon code over the extension field
F = GF(2k2), and noting that this code induces a linear transformation over GF(2). Specif-
ically, the value of a polynomial p over F at a point α ∈ F can be obtained as a linear
transformation of the coefficient of p, when viewed as k2-dimensional vectors over GF(2).

Relative distance approaching one half. Note that starting with a Reed-Solomon
code of relative distance δ1 and a smaller code C2 of relative distance δ2, we obtain a
concatenated code of relative distance δ1δ2. Recall that, for any constant δ1 < 1, there
exists a Reed-Solomon code C1 : GF(n1)

k1 → GF(n1)
n1 of relative distance δ1 and constant

rate (i.e., 1− δ1). Thus, for any constant ε > 0, we may obtain an explicit code of constant
rate and relative distance (1/2) − ε (e.g., by using δ1 = 1 − (ε/2) and δ2 = (1 − ε)/2).
Furthermore, giving up on constant rate, we may start with a Reed-Solomon code of block-
length n1(k1) = poly(k1) and distance n1(k1) − k1 over [n1(k1)], and use a Hadamard
code (encoding [n1(k1)] ≡ {0, 1}log2 n1(k1) by {0, 1}n1(k1)) in the role of the small code
C2. This yields a (concatenated) binary code of block length n(k) = n1(k)

2 = poly(k)
and distance (n1(k) − k) · n1(k)/2. Thus, the resulting explicit code has relative distance
1
2 − k

2
√

n(k)
= 1

2 − o(1), provided that n(k) = ω(k2).

2.3.3 Advanced Topic: Two Additional Computational Problems

In this section we briefly review relaxations of two traditional coding theoretic tasks. The
purpose of these relaxations is enabling the design of super-fast (randomized) algorithms
that provide meaningful information. Specifically, these algorithms may run in sub-linear
(e.g., poly-logarithmic) time, and thus cannot possibly solve the unrelaxed version of the
corresponding problem.

Local testability. This task refers to testing whether a given word is a codeword (in a pre-
determine code), based on (randomly) inspecting few locations in the word. Needless
to say, we can only hope to make an approximately correct decision; that is, accept
each codeword and reject with high probability each word that is far from the code.
(Indeed, this task is within the framework of property testing; see [92].)

Local decodability. Here the task is to recover a specified bit in the plaintext by (ran-
domly) inspecting few locations in a mildly corrupted codeword. This task is somewhat
related to the task of self-correction (i.e., recovering a specified bit in the codeword
itself, by inspecting few locations in the mildly corrupted codeword).

Note that the Hadamard code is both locally testable and locally decodable as well as self-
correctable (based on a constant number of queries into the word). However, the Hadamard
code has an exponential block-length (i.e., n(k) = 2k), and the question is whether one can
achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)). As hinted
in Section 2.3.2.4, the answer is positive (when we refer to performing these operations in
time that is poly-logarithmic in k):

Theorem 2.7 For some constant δ > 0 and polynomials n, q : N → N, there exists an
explicit family of codes {Ck : [q(k)]k → [q(k)]n(k)}k∈N of relative distance δ that can be locally
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testable and locally decodable in poly(log k)-time. That is, the following three conditions
hold.

1. Encoding: There exists a polynomial time algorithm that on input x ∈ [q(k)]k returns
Ck(x).

2. Local Testing: There exists a probabilistic polynomial-time oracle machine T that
given k (in binary)14 and oracle access to w ∈ [q(k)]n(k) (viewed as w : [n(k)]→ [q(k)])
distinguishes the case that w is a codeword from the case that w is δ/2-far from any
codeword. Specifically:

(a) For every x ∈ [q(k)]k it holds that Pr[TCk(x)(k)=1] = 1.

(b) For every w ∈ [q(k)]n(k) that is δ/2-far from any codeword of Ck it holds that
Pr[Tw(k)=1] ≤ 1/2.

As usual, the error probability can be reduced by repetitions.

3. Local Decoding: There exists a probabilistic polynomial-time oracle machine D that
given k and i ∈ [k] (in binary) and oracle access to any w ∈ [q(k)]n(k) that is δ/2-close
to Ck(x) returns xi; that is, Pr[Dw(k, i)=xi] ≥ 2/3.

Self correction holds too: there exists a probabilistic polynomial-time oracle machine
M that given k and i ∈ [n(k)] (in binary) and oracle access to any w ∈ [q(k)]n(k) that
is δ/2-close to Ck(x) returns Ck(x)i; that is, Pr[Dw(k, i)=Ck(x)i] ≥ 2/3.

We stress that all these oracle machines work in time that is polynomial in the binary
representation of k, which means that they run in time that is poly-logarithmic in k.
The code asserted in Theorem 2.7 is a (small modification of a) Reed-Muller code, for
r = m2 logm < q(k) = poly(r) and [n(k)] ≡ GF(q(k))m (see Section 2.3.2.4).15 The
aforementioned oracle machines queries the oracle w : [n(k)]→GF(q(k)) at a non-constant
number of locations. Specifically, self-correction for location i ∈ GF(q(k))m is performed
by selecting a random line (over GF(q(k))m) that passes through i, recovering the values
assigned by w to all q(k) points on this line, and performing univariate polynomial extrap-
olation (under mild noise). Local testability is easily reduced to self-correction, and (under
the aforementioned modification) local decodability is a special case of self-correction.

Constant number of (binary) queries. The local testing and decoding algorithms
asserted in Theorem 2.7 make a polylogarithmic number of queries into the oracle. Further-
more, these queries (which refer to a non-binary code) are non-binary (i.e., they are each
answered by a non-binary value). In contrast, the Hadamard code has local testing and
decoding algorithms that use a constant number of binary queries. Can this be obtained
with much shorter (binary) codewords? That is, redefining local testability and decodabil-
ity as requiring a constant number of queries, we ask whether binary codes of significantly
shorter block-length can be locally testable and decodable. For local testability the answer

14Thus, the running time of T is poly(|k|) = poly(log k).
15The modification is analogous to the one presented in Footnote 11: For a suitable choice of k points

α1, ..., αk ∈ GF(q(k))m, we map v1, ..., vk to (p(α1), ..., p(αn)), where p is the unique m-variate polynomial
of degree at most r that satisfies p(αi) = vi for i = 1, ..., k.
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is definitely positive: one can construct such (locally testable and binary) codes with block-
length that is nearly linear (i.e., linear up to polylogarithmic factors; see [25, 35]). For local
decodability, the shortest known code has super-polynomial length (see [114]). In light of
this state of affairs, we advocate natural relaxations of the local decodability task (e.g., the
one studied in [24]).

The interested reader is referred to [43], which includes more details on locally testable
and decodable codes as well as a wider perspective. (Note, however, that this survey was
written prior to [35] and [114], which resolve two major open problems discussed in [43].)

2.3.4 Advanced Topic: A List Decoding Bound

A necessary condition for the feasibility of the list decoding task is that the list of codewords
that are close to the given word is short. In this section we present an upper-bound on the
length of such lists, noting that this bound has found several applications in complexity
theory (and specifically to studies related to the contents of this book). In contrast, we do
not present far more famous bounds (which typically refer to the relation among the main
parameters of codes (i.e., k, n and d)), because they seem less relevant to the contents of
this book.

We start with a general statement that refers to any alphabet Σ ≡ [q], and later specialize
it to the case that q = 2. Especially in the general case, it is natural and convenient to
consider the agreement (rather than the distance) between sequences over [q]. Furthermore,
it is natural to focus on agreement rate of at least 1/q, and it is convenient to state the
following result in terms of the “excessive agreement rate” (i.e., the excess beyond 1/q).16

Loosely speaking, the following result upper-bounds the number of codewords that have a
(sufficient) large agreement rate with any fixed sequence, where the upper-bound depends
only on this agreement rate and the agreement rate between codewords (as well as on the
alphabet size, but not on k and n).

Lemma 2.8 (Part 2 of [48, Thm. 15]): Let C : [q]k → [q]n be an arbitrary code of distance

d ≤ n− (n/q), and let ηC

def
= (1− (d/n))− (1/q) ≥ 0 denote the corresponding upper-bound

on the excessive agreement rate between codewords. Suppose that η ∈ (0, 1) satisfies

η >

√(
1− 1

q

)
· ηC

.

(2.5)

Then, for any w ∈ [q]n, the number of codewords that agree with w on at least ((1/q)+ η) ·n
positions (i.e., are at distance at most (1− ((1/q) + η)) · n from w) is upper-bounded by

(1− (1/q))2 − (1− (1/q)) · ηC

η2 − (1 − (1/q)) · ηC .

(2.6)

In the binary case (i.e., q = 2), Eq. (2.5) requires η >
√
ηC/2 and Eq. (2.6) yields the

upper-bound (1− 2ηC)/(4η2 − 2ηC). We highlight two specific cases:

16Indeed, we only consider codes with distance d ≤ (1 − 1/q) · n (i.e., agreement rate of at least 1/q) and
words that are at distance at most d from the code. Note that a random sequence is expected to agree with
any fixed sequence on a 1/q fraction of the locations.
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1. At the end of Section 8.2.2 we refer to this bound (for the binary case) while setting
ηC = (1/k)2 and η = 1/k. Indeed, in this case (1 − 2ηC)/(4η2 − 2ηC) = O(k2).

2. In the case of the Hadamard code, we have ηC = 0. Thus, for every w ∈ {0, 1}n and
every η > 0, the number of codewords that are (0.5− η)-close to w is at most 1/4η2.

In the general case (and specifically for q ≫ 2) it is useful to simplify Eq. (2.5) by η >
min{√ηC, (1/q) +

√
ηC − (1/q)} and Eq. (2.6) by 1

η2−ηC
.

2.4 Expander Graphs

In this section we prove the existence of 3-regular expanders, where expander graphs are
defined and discussed in Lecture 5. Specifically, we say that a graph G = (V,E) is ε-
expanding if for every vertex set S of cardinality at most |V |/2 it holds that |ΓG(S)| ≥
(1 + ε) · |S|, where ΓG(S)

def
= {v : ∃u ∈ S s.t. {u, v} ∈ E} denote the set of vertices that

neighbor some vertex in S.

Theorem 2.9 (on the existence of 3-regular expanders): For a sufficiently small ε > 0 and
all sufficiently large N there exists a 3-regular N -vertex graph that is ε-expanding.

Proof: It is actually easier to prove the related statement that refers to the alternative
definition of combinatorial expansion that refers to the relative size of Γ+

G(S) = ΓG(S) \ S
(rather than to the relative size of ΓG(S)). That is, we shall first prove that, for a sufficiently
small ε > 0 and all sufficiently largeN , a random 3-regularN -vertex graph is “ε-expanding”
(i.e., |Γ+

G(S)| ≤ ε|S| for every S of size at most N/2) with overwhelmingly high probability.
The proof proceeds by considering a (not necessarily simple) graphG obtained by combining
three uniformly chosen perfect matchings of the elements of [N ]. For every S ⊆ [N ] of size
at most N/2 we consider the probability that |ΓG(S) \S| ≤ ε|S|. This probability is upper-
bounded by ∑

T1,T2,T3⊂[N ]: (∀i) |Ti|≤ε|S|
pS,T1 · pS,T2 · pS,T3 , (2.7)

where pS,T denotes the probability that for a random perfect matching M it holds that

every element in S′
def
= S ∪ T is matched by M to an element in S′. (The point is that

|ΓG(S) \ S| ≤ ε|S| implies that there exists T1, T2, T3 of size at most ε|S| such that the ith

matching pairs S ∪ Ti with itself.) Viewing each random matching as induced by pairing
consecutive elements in a random ordering of [N ] and letting K = |S′|, we consider the K/2
pairs that contain elements of S′, and get

pS,T =

(N/2
K/2

)
·K! · (N −K)!

N !

=

(N/2
K/2

)
(

N
K

)

<

(
N

K

)−1/2

.
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The argument is concluded by applying a union bound. Specifically, the number of tuples

(S, T1, T2, T3) that we need to consider equals
(

N
s

)
·
(

N
εs

)3 ≈
(
N
s

)1+3ε
, where s denotes the

size of S. Thus, we get an upper bound of
∑

s≤N/2

(
N
s

)1+3ε ·
(

N
(1+ε)s

)−3/2
, which tends to

zero with N .

We now turn to the actual claim of the theorem, which is proved by considering a 3-
regular graph obtained by combining an N -cycle with a random matching of the first N/2
vertices and the remaining N/2 vertices. As a warm-up, we first establish the existence of d-
regular expanders, for some constant d. In particular, foreseeing the case of d = 3, consider
a random graph G on the vertex set V = {0, ..., 2n−1} constructed by augmenting the fixed
edge set {{i, i+1 mod n} : i=0, ..., n−1}∪{{n+i, n+(i+1 mod n)} : i=0, ..., n−1}with d−2

uniformly (and independently) chosen perfect matchings of the vertices of L
def
= {0, ..., n−1}

to the vertices of R
def
= {n, ..., 2n − 1}. (See Figure 2.1.) That is, we start with two fixed

n-cycles (one traversing all vertices in L and the other traversing all vertices in R) with
d − 2 random matchings of L to R. For a sufficiently small universal constant ε > 0, we
upper-bound the probability that such a random graph is not ε-expanding.

L R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2.1: The fixed cycle edges in the random expander (with n = 10).

Let us denote by ΓC(S) the vertices that are adjacent to vertices in S via (the fixed) cycle
edges; that is, ΓC(S ∩L) = {i± 1 mod n : i∈S ∩L} and ΓC(S ∩R) = {n+ (i± 1 mod n) :
i ∈ S ∩ R}. Similarly, we denote by ΓM (S) the vertices that are adjacent to vertices in
S via the random matching edges; that is, ΓM (S ∩ L) = ΓG(S ∩ L) \ ΓC(S ∩ L), which
equals ΓG(S ∩ L) ∩R, and similarly for S ∩R. We note that, for every set S, it holds that
|ΓG(S∩L)∩L| ≥ |S∩L| (and similarly for R), because ΓC(S∩L) ⊆ {i+1 mod n : i∈S∩L}.
Let us also assume that |ΓC(S) ≤ (1 + ε) · |S|, since we are done with the set S otherwise.
Thus, we focus on the sizes of ΓM (S ∩L)\ΓC(S ∩R) and ΓM (S ∩R)\ΓC(S ∩L), which are
the contributions to ΓG(S) that are due to the random matchings of L to R. Fixing a set S
of size at most n = |V |/2, we upper-bound the probability that the foregoing contribution
is smaller than ε|S|. Actually, assuming without loss of generality that |S∩L| ≥ |S∩R|, we
upper-bound the probability that |ΓM (S ∩L) \ΓC(S ∩R)| < ε|S|. The latter probability is
upper-bounded by pd−2

S , where pS denotes the probability that a uniformly selected matching
of L to R matches S ∩ L to a set that contains less than ε|S| elements in R \ ΓC(S ∩ R).
That is,

pS
def
=

ε|S|−1∑

i=0

(|R|−|ΓC(S∩R)|
i

)
·
(|ΓC(S∩R)|
|S∩L|−i

)
( |R|
|S∩L|

)

<

(
n−ℓ
ε|S|
)
·
(ℓ+ε|S|
|S∩L|

)
(

n
|S∩L|

)
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where ℓ = |ΓC(S ∩R)|. Indeed, we may focus on the case that |S ∩ L| ≤ ℓ+ ε|S| (because
in the other case pS = 0),17 and observe that for every α < 1/2 (e.g., α = 1/3) there exists

a sufficiently small ε > 0 such that pS <
(
2n
|S|
)−α

(since in this case pS <
(

n
|S|/2

)−(1−5ε)
).18

The claim follows for d ≥ 5, by using a union bound on all sets S of size at most n (i.e.,
∑

S:|S|≤n

(
2n
|S|
)
· pd−2

S vanishes, since pS ≪
(
2n
|S|
)−1/3

).

To deal with the case d = 3, we use a more sophisticated union bound. Intuitively, we
partition the elements of S to elements that occur on relatively long arithmetic subsequences
(with a step increment of either 1 or 2) and to the rest. The number of sets that have many
elements of the first type is relatively small (and so we gain in the union bound), whereas
elements of the second type contribute a significant expansion via the cycle edges. Details
follow.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

a 3-run w step=1 a 3-long run with step=2 a 4-long run with step=1

Figure 2.2: Vertices in the set S′′′ in the random expander (with t > 4).

Fixing an adequate constant t (i.e., t = 1/
√
ε) and an arbitrary set S, we denote by S′

the set of all elements of S that reside in t-long intervals of S; that is, S′ contains i if there
exist s ∈ {1, ..., t} such that {i+j−s : j = 1, ..., t} ⊆ S. Next, we place in S′′ all elements of
S\S′ that reside in t-long arithmetic sequence with step increment 2; that is, S′′ contains i if
there exist s ∈ {1, ..., t} such that {i+2j−2s : j = 1, ..., t} ⊆ S\S′. (See Figure 2.2.) Letting

S′′′
def
= S \ (S′ ∪ S′′), we first claim that |ΓC(S)| > |S| + |S′′′|/2t. This claim is proved by

observing that any arithmetic sequence (i.e., of any step increament) has a C-neighborhood
greater than itself, whereas S′′′ has no (step 1 or 2) arithmetic sequence of length t (and
the additional units contributed by the various arithmetic sequences are counted at most
twice).19 Thus, if |S′′′| > 2|S|/t, then |ΓC(S)| > |S′∪S′′|+(1+(1/2t)) · |S′′′| > (1+ t−2) · |S|
and |ΓG(S)| > (1 + ε) · |S| follows (since t = 1/

√
ε). Hence, it suffices to consider the case

17Indeed, if |S ∩ L| > ℓ + ε|S|, then more than ε|S| elements of S ∩ L are matched to elements in
R \ ΓC(S ∩R).

18We may assume that ℓ = |ΓC(S ∩ R)| ≤ |S ∩ R| + ε|S|, since we are done with the set S otherwise
(becuase |ΓG(S)| ≥ |ΓC(S ∩ R)| + |S ∩ L|). Combining this hypothesis with the foregoing upper bound on
pS , we get

pS <

(
n

ε|S|

)
·
(
|S∩R|+2ε|S|

|S∩L|

)
(

n
|S∩L|

)

≤

(
n

ε|S|

)
·
(
|S∩L|+2ε|S|

2ε|S|

)
(

n
|S∩L|

)

where the second inequality is due to |S ∩ L| ≥ |S ∩R|. Recalling that |S ∩ L| ≤ ℓ+ ε|S| ≤ |S ∩R| + 2ε|S|,
we obtain pS <

(
n

ε|S|

)3
/
(

n
(1+2ε)|S|/2

)
.

19Thus, the argument consists of three observations. The first observation is that, for any ℓ < n, any
arithmetic sequence A = {i + s · j : j = 1, .., ℓ} satisfies |ΓC(A)| ≥ |A| + 1. Furthermore, if s = 1 and
ℓ > 2, then |ΓC(A)| = |A| + 2. Next, we partition S into disjoint maximal arithmetic sequences, denoted
A1, ...,Ak, such that arithmetic sequences of step 1 have maximum length (singletons are considered as
sequences of step 2). Note that if Ai and Aj cannot neighbor one another (i.e., if Ai ends at p then Aj
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|S′′′| ≤ 2|S|/t and apply the same analysis as before (while uasing a finer counting). Recall

that for any fixed S, the probability that |ΓM (S) \ΓC(S)| ≤ ε · |S| is smaller than
(
2n
|S|
)−1/3

.

On the other hand, the number of possible choices of S = S′ ∪ S′′ ∪ S′′′ of total size s such
that |S′′′| ≤ 2s/t is at most

2s/t∑

i=0

(
2n

i

) s/t∑

j=1

(
2n− i

2j

)
· 2j < 2 ·

(
2n

2s/t

)(
2n

2s/t

)
· 2s/t,

where i = |S′′′| and j denotes the number of arithmetic sequences in S′ ∪ S′′ (where each
such sequence is determined by the choice of its endpoints and the type of step). Thus,

the union bound yields
∑

s≤n

(
2n

2s/t

)2 · 2(s/t)+1 ·
(
2n
s

)−1/3
, and we are done (provided t is

sufficiently large).

Notes

Indeed, the standard application of the argument presented in Proposition 2.1 is for prov-
ing that, for sufficiently large N , there exists an N -vertex graph that contains neither a
(2 log2N +3)-vertex clique nor a (2 log2N +3)-vertex independent set (cf., e.g., [9, Sec. 1.1]).
We mention that the latter result is relatively tight, since every N -vertex graph has either
a (0.5 log2N + 1)-vertex clique or a (0.5 log2N + 1)-vertex independent set.20

Other applications of the probabilistic method occur in Exercises 3.2 and 3.10 (which
assert the existence of certain pseudorandom generators) and in Exercise 8.2 (which assert
the existence of certain randomness extractors).

We repeat our warning regarding the highly tentative nature of the current text and
refer the reader again to the textbook of Alon and Spencer (The Probabilistic Method [9].

Exercises

Exercise 2.1 (generalization of Proposition 2.1) Prove the following statement for k :
N×N→ N that is large as you can: For every N and d < N , there exists a N -vertex graph
of minimum vertex degree d and maximal clique size at most k(N, d).

cannot start at p + 1). Furthermore, if Ai ends at p and Aj starts at p + 2, then it cannot be that both
use step increament 2. Hence, |ΓC(

⋃
i∈[k]

Ai)| is lower bounded by
∑

i∈[k]
|Ai| + (k/2), because in each

case where a double accounting occurs it is the case that at least one of the two contributed sequences has
step 1. We conclude that |ΓC(S)| ≥ |S| + (k/2), where k ≥ |S′′′|/t.

20The latter claim follows as a special case of Ramsey’s Theorem (cf., e.g., [54]): Let R(k, ℓ) be the smallest
integer N such that any N-vertex graph has either a k-vertex clique or an ℓ-vertex independent set. Then,
R(k, ℓ) ≤ R(k − 1, ℓ) + R(k, ℓ − 1), and R(k, ℓ) ≤ 2k+ℓ−2 follows (by also using R(k, 1) = R(1, ℓ) = 1).
The inductive claim is proved by picking an arbitrary vertex v in the generic graph G = (V, E), and

observing that either |ΓG(v)| ≥ R(k − 1, ℓ) or |ΓG(v)| ≥ R(k, ℓ− 1), where ΓG(v)
def
= V \ (ΓG(v) ∪ {v}). If

|ΓG(v)| ≥ R(k − 1, ℓ), then either the subgraph induced by ΓG(v) contains an ℓ-vertex indepedent set (and
so does G), or the subgraph induced by ΓG(v) contains a (k−1)-vertex clique (and so G contains a k-vertex
clique). If |ΓG(v)| ≥ R(k− 1, ℓ), then either the subgraph induced by ΓG(v) contains a k-vertex clique (and
so does G), or the subgraph induced by ΓG(v) contains an (ℓ− 1)-vertex indepedent set (and so G contains
an ℓ-vertex indepedent set).
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Lecture 3

Special Purpose Generators

Although our interest in this course is confined to special types of pseudorandom generators,
we consider it a good idea to discuss these special cases within the general framework of
pseudorandom generators.

3.1 The Wider Picture: A General Paradigm

We advocate a unified view of various notions of pseudorandom generators. That is, we view
these notions as incarnations of a general abstract paradigm, to be presented in this section.
A reader who is interested only in one of these incarnations may still use this section as
a general motivation towards the specific definitions used later. On the other hand, some
readers may prefer reading this section after studying one of the specific incarnations.

Gen
seed output  sequence

a  truly random  sequence
?

Figure 3.1: Pseudorandom generators – an illustration.

3.1.1 Three fundamental aspects

A generic formulation of pseudorandom generators consists of specifying three fundamental
aspects – the stretch measure of the generators; the class of distinguishers that the gen-
erators are supposed to fool (i.e., the algorithms with respect to which the computational

33
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indistinguishability requirement should hold); and the resources that the generators are
allowed to use (i.e., their own computational complexity). Let us elaborate.

Stretch function: A necessary requirement from any notion of a pseudorandom generator
is that the generator is a deterministic algorithm that stretches short strings, called seeds,
into longer output sequences.1 Specifically, this algorithm stretches k-bit long seeds into
ℓ(k)-bit long outputs, where ℓ(k) > k. The function ℓ :N→N is called the stretch measure (or
stretch function) of the generator. In some settings the specific stretch measure is immaterial
(e.g., see [44, Sec. 8.2]).

Computational Indistinguishability: A necessary requirement from any notion of a
pseudorandom generator is that the generator “fools” some non-trivial algorithms. That
is, it is required that any algorithm taken from a predetermined class of interest cannot
distinguish the output produced by the generator (when the generator is fed with a uniformly
chosen seed) from a uniformly chosen sequence. Thus, we consider a class D of distinguishers
(e.g., probabilistic polynomial-time algorithms) and a class F of (threshold) functions (e.g.,
reciprocals of positive polynomials), and require that the generator G satisfies the following:
For any D ∈ D, any f ∈ F , and for all sufficiently large k it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k) , (3.1)

where Un denotes the uniform distribution over {0, 1}n, and the probability is taken over
Uk (resp., Uℓ(k)) as well as over the coin tosses of algorithm D in case it is probabilistic.
The reader may think of such a distinguisher, D, as an observer who tries to tell whether
the “tested string” is a random output of the generator (i.e., distributed as G(Uk)) or is a
truly random string (i.e., distributed as Uℓ(k)). The condition in Eq. (3.1) requires that D
cannot make a meaningful decision; that is, ignoring a negligible difference (represented by
f(k)), D’s verdict is the same in both cases.2 The archetypical choice is that D is the set of
all probabilistic polynomial-time algorithms, and F is the set of all functions that are the
reciprocal of some positive polynomial.

We note that there is a clear tension between the stretching and the computational indis-
tinguishability conditions. Indeed, as shown in Exercise 3.1, the output of any pseudoran-
dom generator is “statistically distinguishable” from the corresponding uniform distribution.
However, there is hope that a restricted class of (computationally bounded) distinguishers
cannot detect the (statistical) difference; that is, be fooled by some suitable generators. In
fact, placing no computational requirements on the generator (or, alternatively, imposing
very mild requirements such as upper-bounding the running-time by a double-exponential

1Indeed, the seed represents the randomness that is used in the generation of the output sequences; that
is, the randomized generation process is decoupled into a deterministic algorithm and a random seed. This
decoupling facilitates the study of such processes.

2The class of threshold functions F should be viewed as determining the class of noticeable probabilities
(as a function of k). Thus, we require certain functions (i.e., those presented on the l.h.s of Eq. (3.1)) to
be smaller than any noticeable function on all but finitely many integers. We call the former functions
negligible. Note that a function may be neither noticeable nor negligible (e.g., it may be smaller than any
noticeable function on infinitely many values and yet larger than some noticeable function on infinitely many
other values).
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function), yields “generators” that can fool any subexponential-size circuit family (see Ex-
ercise 3.2). However, we are interested in the complexity of the generation process, which
is the aspect addressed next.

Complexity of Generation: This aspect refers to the complexity of the generator itself,
when viewed as an algorithm. That is, here we refer to the resources used by the generator
(e.g., its time and/or space complexity). The archetypical choice is that the generator has
to work in polynomial-time (i.e., make a number of steps that is polynomial in the length
of its input – the seed). Other choices will be discussed as well.

3.1.2 Notational conventions

We will consistently use k for denoting the length of the seed of a pseudorandom generator,
and ℓ(k) for denoting the length of the corresponding output. In some cases, this makes our
presentation a little more cumbersome, where in these cases it is more natural to focus on a
different parameter (e.g., the length of the pseudorandom sequence) and let the seed-length
be a function of the latter. However, our choice has the advantage of focusing attention
on the fundamental parameter of pseudorandom generation process – the length of the
random seed. We note that whenever a pseudorandom generator is used to “derandomize”
an algorithm, n will denote the length of the input to this algorithm, and k will be selected
as a function of n.

3.1.3 Some instantiations of the general paradigm

Two important instantiations of the notion of pseudorandom generators relate to polynomial-
time distinguishers.

1. General-purpose pseudorandom generators correspond to the case where the generator
itself runs in polynomial-time and needs to withstand any probabilistic polynomial-
time distinguisher, including distinguishers that run for more time than the generator.
Thus, the same generator may be used safely in any efficient application. (This notion
is treated in [44, Sec. 8.2].)

2. In contrast, pseudorandom generators intended for derandomization may run for more
time than the distinguisher, which is viewed as a fixed circuit having size that is upper-
bounded by a fixed polynomial. (This notion is treated in [44, Sec. 8.3].)

In addition, the general paradigm may be instantiated by focusing on the space-complexity
of the potential distinguishers (and the generator), rather than on their time-complexity.
Furthermore, one may also consider distinguishers that merely reflect probabilistic properties
such as pairwise independence, small-bias, and hitting frequency.

3.1.4 Our focus: special-purpose generators

The two instantiations of pseudorandom generators considered in Section 3.1.3 were aimed at
decreasing the amount of randomness utilized by any algorithm of certain time complexity
(or even fully derandomizing the corresponding complexity class). Specifically, one often
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considers the goal of providing relatively efficient deterministic algorithms for any problem
in BPP. In the current text our goal is less ambitious. We only seek to derandomize (or
decrease the randomness of) specific algorithms or rather classes of algorithms that use
their random bits in certain (restricted) ways. For example, the algorithm’s correctness
may only require that its sequence of coin tosses (or “blocks” in such a sequence) are
pairwise independent. Indeed, the restrictions that we shall consider here have a concrete
and “structural” form, rather than the abstract complexity theoretic forms considered in
previous chapters.

The aforementioned restrictions induce corresponding classes of very restricted distin-
guishers, which in particular are much weaker than the classes of distinguishers considered
in previous chapters. These very restricted types of distinguishers induce correspondingly
weak types of pseudorandom generators (which produce sequences that fool these distin-
guishers). Still, such generators have many applications (both in complexity theory and in
the design of algorithms).

We start with the simplest of these generators: the pairwise independence generator,
and its generalization to t-wise independence for any t≥ 2. Such generators perfectly fool
any distinguisher that only observe t locations in the output sequence. This leads naturally
to almost pairwise (or t-wise) independence generators, which also fool such distinguishers
(albeit non-perfectly). The latter generators are implied by a stronger class of generators,
which is of independent interest: the small-bias generators. Small-bias generators fool any
linear test (i.e., any distinguisher that merely considers the xor of some fixed locations
in the input sequence). We finally turn to the Expander Random Walk Generator: This
generator produces a sequence of strings that hit any dense subset of strings with probability
that is close to the hitting probability of a truly random sequence.3

Comment regarding our parameterization: To maintain consistency with other no-
tions of pseudorandom generators, we continue to present the generators in terms of the seed
length, denoted k. Since this is not the common presentation for most results presented in
the sequel, we provide (in footnotes) the common presentation in which the seed length is
determined as a function of other parameters.

3.2 Pairwise Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two (resp., t)
elements in the output sequence of the generator. Such local tests are indeed very restricted,
yet they arise naturally in many settings. For example, such a test corresponds to a prob-
abilistic analysis (of a procedure) that only relies on the pairwise independence of certain
choices made by the procedure. We also mention that, in some natural range of parameters,
pairwise independent sampling is as good as sampling by totally independent sample points
(see, e.g., Section 1.2.4).

A t-wise independence generator of block-length b : N→N (and stretch function ℓ) is a
relatively efficient deterministic algorithm (e.g., one that works in time polynomial in the
output length) that expands a k-bit long random seed into a sequence of ℓ(k)/b(k) blocks,

3Related notions such as samplers, dispersers, and extractors are not treated here. The interested reader
is directed to Lecture 6 and Lecture 8, respectively.
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each of length b(k), such that any t blocks are uniformly and independently distributed in
{0, 1}t·b(k). That is, denoting the ith block of the generator’s output (on seed s) by G(s)i,
we require that for every i1 < i2 < · · · < it (in [ℓ(k)/b(k)]) it holds that

G(Uk)i1 , G(Uk)i2 , ..., G(Uk)it
≡ Ut·b(k). (3.2)

We note that this condition holds even if the inspected t blocks are selected adaptively (see
Exercise 3.3). In case t = 2, we call the generator pairwise independent.

3.2.1 Constructions

In the first construction, we refer to GF(2b(k)), the finite field of 2b(k) elements, and associate
its elements with {0, 1}b(k).

Theorem 3.1 (t-wise independence generator):4 Let t be a fixed integer and let b, ℓ, ℓ′ :
N→N such that b(k) = k/t, ℓ′(k) = ℓ(k)/b(k) > t and ℓ′(k) ≤ 2b(k). Let α1, ..., αℓ′(k) be

fixed distinct elements of the field GF(2b(k)). For s0, s1, ..., st−1 ∈ {0, 1}b(k), let

G(s0, s1, ..., st−1)
def
=




t−1∑

j=0

sjα
j
1 ,

t−1∑

j=0

sjα
j
2 , ...,

t−1∑

j=0

sjα
j
ℓ′(k)


 (3.3)

where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence generator of
block-length b and stretch ℓ.

That is, given a seed that consists of t elements of GF(2b(k)), the generator outputs a
sequence of ℓ′(k) such elements.

Proof: The proof is based on the observation that, for any fixed v0, v1, ..., vt−1, the condition
{G(s0, s1, ..., st−1)ij

= vj}t−1
j=0 constitutes a system of t linear equations over GF(2b(k)) (in

the variables s0, s1, ..., st−1) such that the equations are linearly-independent. Thus, linear
independence of certain expressions yields statistical independence of the corresponding
random variables. Details follow.

For every i = 1, ..., ℓ′(k), let Xi = G(s0, s1, ..., st−1)i ∈ GF(2b(k)) be a random variable
representing the distribution of the ith element in the generated sequence, when s0, s1, ..., st−1

are uniformly distributed in GF(2b(k)). Our aim is to prove that, for every t fixed sequence
of indices i1, ..., it ∈ [ℓ′(k)] and every sequence of t possible values v1, ..., vt ∈ GF(2b(k)), it
holds that Pr[(∀j ∈ [t])Xij

=vj ] = 2−t·b(k). Using Eq. (3.3), we have

Pr







Xi1

Xi2
...
Xit


 =




v1
v2
...
vt





 = Prs0,s1,...,st−1







∑t−1
j=0 sjα

j
i1∑t−1

j=0 sjα
j
i2

...∑t−1
j=0 sjα

j
it




=




v1
v2
...
vt







4In the common presentation of this t-wise independence generator, the length of the seed is determined
as a function of the desired block-length and stretch. That is, given the parameters b and ℓ′ ≤ 2b, the seed
length is set to t · b.
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= Prs0,s1,...,st−1







1 αi1 · · · αt−1
i1

1 αi2 · · · αt−1
i2

...
...

...
...

1 αit
· · · αt−1

it







s0
s1
...

st−1


 =




v1
v2
...
vt







= Prs0,s1,...,st−1







s0
s1
...

st−1


 =




1 αi1 · · · αt−1
i1

1 αi2 · · · αt−1
i2

...
...

...
...

1 αit
· · · αt−1

it




−1


v1
v2
...
vt







=
1

|GF(2b(k))|t .

Indeed, the crucial observation is that the vectors (1 , αi1 , α
2
i1
, . . . , αt−1

i1
) through (1 , αit

, α2
it
, . . . , αt−1

it
)

are linearly independent (cf. Vandermonde matrix). Hence, we “reduces” the stochastic in-
dependence of the random variables Xi1 through Xit

to the linear independence of the
vectors (1 , αi1 , α

2
i1
, . . . , αt−1

i1
) through (1 , αit

, α2
it
, . . . , αt−1

it
).

A somewhat tedious comment. We warn that Eq. (3.3) does not provide a fully explicit
construction (of a generator). What is missing is an explicit representation of GF(2b(k)),
which requires an irreducible polynomial of degree b(k) over GF(2). For specific values of

b(k), a good representation does exist; e.g., for d
def
= b(k) = 2 · 3e (with e being an integer),

the polynomial xd + xd/2 + 1 is irreducible over GF(2).
We note that a construction analogous to Eq. (3.3) works for every finite field (e.g., a

finite field of any prime cardinality), but the problem of providing an explicit representation
of such a field remains non-trivial also in other cases (e.g., consider the problem of finding
a prime number of size approximately 2b(k)). The latter fact is the main motivation for
considering the following alternative construction for the case of t = 2.

The following construction uses (random) affine transformations (as possible seeds). In
fact, better performance (i.e., shorter seed length) is obtained by using affine transforma-
tions affected by Toeplitz matrices. A Toeplitz matrix is a matrix with all diagonals being
homogeneous (see Figure 3.2); that is, T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1 for
all i, j. Note that a Toeplitz matrix is determined by its first row and first column (i.e., the
values of t1,j ’s and ti,1’s).

Theorem 3.2 (alternative pairwise independence generator, see Figure 3.2):5 Let b, ℓ, ℓ′,m :
N→N such that ℓ′(k) = ℓ(k)/b(k) and m(k) = ⌈log2 ℓ

′(k)⌉ = k − 2b(k) + 1. Associate
{0, 1}n with the n-dimensional vector space over GF(2), and let v1, ..., vℓ′(k) be fixed distinct

vectors in the m(k)-dimensional vector space over GF(2). For s ∈ {0, 1}b(k)+m(k)−1 and
r ∈ {0, 1}b(k), let

G(s, r)
def
= (Tsv1 + r , Tsv2 + r , ..., Tsvℓ′(k) + r) (3.4)

5In the common presentation of this pairwise independence generator, the length of the seed is determined
as a function of the desired block-length and stretch. That is, given the parameters b and ℓ′, the seed length
is set to 2b + ⌈log2 ℓ

′⌉ − 1.
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+ =

m(k)

b(k)

Figure 3.2: An affine transformation affected by a Toeplitz matrix.

where Ts is a b(k)-by-m(k) Toeplitz matrix specified by the string s. Then, G is a pairwise
independence generator of block-length b and stretch ℓ.

That is, given a seed that represents an affine transformation defined by a b(k)-by-m(k)
Toeplitz matrix and a b(k)-dimensional vector, the generator outputs a sequence of ℓ′(k) ≤
2m(k) strings, each of length b(k). Note that k = 2b(k) +m(k)− 1, and that the stretching
property requires ℓ′(k) > k/b(k). We mention that a construction analogous to Eq. (3.4)
works for every finite field.

Proof: The current proof is also based on the observation that linear independence of
certain expressions yields statistical independence of the corresponding random variables:
Here, for every distinct i, j ∈ [ℓ′(k)] and every α, β ∈ {0, 1}b(k) we consider the 2b(k) linear
equations over GF(2) that arise from the equalities {G(s, r)i = α , G(s, r)j = β}. This
system of 2b(k) linear equations over GF(2) refers to Boolean variables representing the bits
of s and r, and we shall implicitly show that these equations are linearly-independent.

The argument will refer explicitly to the joint distribution of G(s, r)i and G(s, r)j (which
equal Tsvi+r and Tsvj +r, respectively), when (s, r) ∈ {0, 1}k−m(k)×{0, 1}m(k) is uniformly
distributed. (We comment that it is simpler to analyze an analogous construction in which
a random matrix is used instead of a Toeplitz matrix; see Exercise 3.4.)6

Let us shorthand Ts by T , and refer to selecting at random a uniformly distributed
Toeplitz matrix T and a r ∈ GF(2)b, where b = b(k) and m = m(k). Then, for every i 6= j
and α, β ∈ GF(2)b, we have

PrT,r

[
Tvi + r = α
Tvj + r = β

]
= PrT,r [Tvi + r = α|Tvi ⊕ Tvj = α⊕ β] · PrT,r [Tvi ⊕ Tvj = α⊕ β]

= PrT,r [Tvi + r = α|Tw = γ] · PrT [Tw = γ] ,

where w = vi⊕vj ∈ GF(2)m \{0m} and γ = α⊕β ∈ GF(2)b. Clearly, for any α, γ ∈ GF(2)b

and any b-by-m matrix T ′ (representing a possible choice of T such that Tw = γ), it holds

6However, using a random matrix requires a longer seed (i.e., k = (m(k) + 1) · b(k) rather than k =
2b(k) + m(k) − 1), since s should specify an arbitrary b(k)-by-m(k) matrix rather than a b(k)-by-m(k)
Toeplitz matrix.
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that:

PrT,r[Tvi + r = α|Tw = γ] = Prr[T
′vi + r = α]

= 2−b

It is thus left to show that, for any w 6= 0m, when T is a uniformly chosen Toeplitz matrix, the
vector Tw is uniformly distributed over GF(2)b. It may help to consider first the distribution
of Mw, where M is a uniformly distributed b-by-m matrix. In this case Mw is merely the
sum of several (not zero) uniformly and independently chosen column vectors, and so is
uniformly distributed over GF(2)b. (Indeed, see Exercise 3.4.) The argument regarding a
uniformly chosen Toeplitz matrix, which is presented next, is slightly more involved.

f

j

0
0

0
1

f

  m

  b =

Figure 3.3: The distribution of Tw for a random Toeplitz matrix T .

Let f be the first non-zero entry of w = (w1, ..., wm) 6= 0m (i.e., w1 = · · · = wf−1 = 0
and wf = 1). We make the mental experiment of selecting T = (ti,j), by uniformly selecting
elements determining T as follows. First we uniformly and independently select t1,m, ..., t1,f .
Next, we select t2,f , ..., tb,f (here it is important to select tj,f before tj+1,f ). Finally, we select
tb,f−1, ..., tb,1. See Figure 3.3. Clearly, this determines a uniformly chosen Toeplitz matrix,
denoted T . We conclude by showing that each of the bits of Tw is uniformly distributed
given the previous bits. To prove the claim for the jth bit of Tw, consider the time by
which t1,m, ..., t1,f , ..., tj−1,f were determined. Note that these determine the first j− 1 bits
of Tw. The key observation is that the value of the jth bit of Tw is a linear combination
of the above determined values xored with the still undetermined tj,f . (Here we use the
hypothesis that w1 = · · · = wf−1 = 0 and wf = 1.) Thus, uniformly selecting tj,f makes
the jth bit of Tw be uniformly distributed given the past.

A stronger notion of efficient generation. Ignoring the issue of finding a representa-
tion for a large finite field, both the foregoing constructions are efficient in the sense that
the generator’s output can be produced in time that is polynomial in its length. Actually,
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the aforementioned constructions satisfy a stronger notion of efficient generation, which is
useful in several applications. Specifically, there exists a polynomial-time algorithm that
given a seed, s ∈ {0, 1}k, and a block location i ∈ [ℓ′(k)] (in binary), outputs the ith block
of the corresponding output (i.e., the ith block of G(s)). Note that, in the case of the first
construction (captured by Eq. (3.3)), this stronger notion depends on the ability to find a
representation of GF(2b(k)) in poly(k)-time.7 Recall that this is possible in the case that
b(k) is of the form 2 · 3e.

3.2.2 A taste of the applications

Pairwise independence generators do suffice for a variety of applications (cf., [113]). Many
of these applications are based on the fact that “Laws of Large Numbers” hold for sequences
of trials that are pairwise independent (rather than totally independent).8 This fact stems
from the application of Chebyshev’s Inequality (cf. Section 1.2.2), and is the basis of the
(rather generic) application to (“pairwise independent”) sampling (cf. Section 6.4).

As a concrete example, we mention the derandomization of a fast parallel algorithm for
the Maximal Independent Set problem (as presented in [83, Sec. 12.3]).9

In general, whenever the analysis of a randomized algorithm only relies on the hypothesis
that some objects are distributed in a pairwise independent manner, we may replace its
random choices by a sequence of choices that is generated by a pairwise independence
generator. Thus, pairwise independence generators suffice for fooling distinguishers that are
derived from some natural and interesting randomized algorithms.

Referring to Eq. (3.3), we remark that, for any constant t ≥ 2, the cost of derandom-
ization (i.e., going over all 2k possible seeds) is exponential in the block-length (because
b(k) = k/t). On the other hand, the number of blocks is at most exponential in the block-
length (because ℓ′(k) ≤ 2b(k)), and so if a larger number of blocks is needed, then we can
artificially increase the block-length in order to accommodate this (i.e., set b(k) = log2 ℓ

′(k)).
Thus, the cost of derandomization is polynomial in max(ℓ′(k), 2b′(k)), where ℓ′(k) denotes
the desired number of blocks and b′(k) the desired block-length. (In other words, ℓ′(k)
denotes the desired number of random choices, and 2b′(k) represents the size of the domain
of each of these choices.) It follows that whenever the analysis of a randomized algorithm
can be based on a constant amount of independence between feasibly-many random choices,
each taken within a domain of feasible size, then a feasible derandomization is possible.

3.3 Small-Bias Generators

As stated in Section 3.2.2, O(1)-wise independence generators allow for the efficient deran-
domization of any efficient randomized algorithm the analysis of which is only based on a
constant amount of independence between the bits of its random-tape. This restriction is
due to the fact that t-wise independence generators of stretch ℓ require a seed of length

7For the basic notion of efficiency, it suffices to find a representation of GF(2b(k)) in poly(ℓ(k))-time,
which can be done by an exhaustive search in the case that b(k) = O(log ℓ(k)).

8See discussions in Sections 1.2.4 and 6.4.
9The core of this algorithm is picking each vertex with probability that is inversely proportional to the

vertex’s degree. The analysis only requires that these choices be pairwise independent. Furthermore, these
choices can be (approximately) implemented by uniformly selecting values in a sufficiently large set.
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Ω(t · log ℓ). Trying to go beyond constant-independence in such derandomizations (while
using seeds of length that is logarithmic in the length of the pseudorandom sequence) was
the original motivation of the notion of small-bias generators. Specifically, as we shall see in
Section 3.3.2, small-bias generators yield meaningful approximations of t-wise independence
sequences (based on logarithmic-length seeds).

While the aforementioned type of derandomizations remains an important application
of small-bias generators, the latter are of independent interest and have found numerous
other applications. In particular, small-bias generators fool “global tests” that examine the
entire output sequence and not merely a fixed number of positions in it (as in the case of
limited independence generators). Specifically, a small-bias generator produces a sequence
of bits that fools any linear test (i.e., a test that computes a fixed linear combination of the
bits).

For ε : N → [0, 1], an ε-bias generator with stretch function ℓ is a relatively efficient
deterministic algorithm (e.g., working in poly(ℓ(k))-time) that expands a k-bit long random
seed into a sequence of ℓ(k) bits such that for any fixed non-empty set of indices I ⊆
{1, ..., ℓ(k)} the bias of the output sequence over I is at most ε(k). The bias of a sequence of
n (possibly dependent) Boolean random variables ζ1, ..., ζn ∈ {0, 1} over a set I ⊆ {1, ..., n}
is defined as

2 ·
∣∣∣∣∣Pr

[
⊕

i∈I

ζi = 1

]
− 1

2

∣∣∣∣∣ =

∣∣∣∣∣Pr

[
⊕

i∈I

ζi = 1

]
− Pr

[
⊕

i∈I

ζi = 0

]∣∣∣∣∣
.

(3.5)

The factor of 2 was introduced to make these biases correspond to the Fourier coefficients of
the distribution (viewed as a function from {0, 1}n to the reals). To see the correspondence
replace {0, 1} by {±1}, and substitute xor by multiplication. The bias with respect to a
set I is thus written as

∣∣∣∣∣Pr

[
∏

i∈I

ζi = +1

]
− Pr

[
∏

i∈I

ζi = −1

]∣∣∣∣∣ =

∣∣∣∣∣E
[
∏

i∈I

ζi

]∣∣∣∣∣
,

(3.6)

which is merely the (absolute value of the) Fourier coefficient corresponding to I.

3.3.1 Constructions

Relatively efficient small-bias generators with exponential stretch and exponentially vanish-
ing bias are known.

Theorem 3.3 (small-bias generators):10 For some universal constant c > 0, let ℓ :N→N

and ε : N→ [0, 1] such that ℓ(k) ≤ ε(k) · exp(k/c). Then, there exists an ε-bias generator
with stretch function ℓ operating in time that is polynomial in the length of its output.

In particular, we may have ℓ(k) = exp(k/2c) and ε(k) = exp(−k/2c). Four simple con-
structions of small-bias generators that satisfy Theorem 3.3 are known (see [8] and [105,

10In the common presentation of this generator, the length of the seed is determined as a function of
the desired bias and stretch. That is, given the parameters ε and ℓ, the seed length is set to c · log(ℓ/ε).
We comment that using [8] the constant c is merely 2 (i.e., k ≈ 2 log2(ℓ/ε)), whereas using [85] k ≈
log2 ℓ+ 4 log2(1/ε).
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Sec. 3.4]). One of these constructions is based on Linear Feedback Shift Registers (LFSRs),
where the seed of the generator is used to determine both the “feedback rule” and the
“start sequence” of the LFSR. Specifically, a feedback rule of a t-long LFSR is an irreducible
polynomial of degree t over GF(2), denoted f(z) = zt +

∑t−1
j=0 fjz

j where f0 = 1, and
the (ℓ-bit long) sequence produced by the corresponding LFSR based on the start sequence
s0s1 · · · st−1 ∈ {0, 1}t is defined as r0r1 · · · rℓ−1, where

ri =

{
si if i ∈ {0, 1, ..., t− 1},∑t−1

j=0 fj · ri−t+j if i ∈ {t, t+ 1, ..., ℓ− 1} (3.7)

(see Figure 3.4). As stated previously, in the corresponding small-bias generator the k-bit
long seed is used for selecting an almost uniformly distributed feedback rule f (i.e., a random
irreducible polynomial of degree t = k/2) and a uniformly distributed start sequence s (i.e.,
a random t-bit string).11 The corresponding ℓ(k)-bit long output r = r0r1 · · · rℓ(k)−1 is
computed as in Eq. (3.7).

r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 3.4: The LFSR small-bias generator (for t = k/2).

Proposition 3.4 (analysis of the LFSR small-bias generator): The foregoing generator,
captured in Eq. (3.7) and depicted in Figure 3.4, has bias at most O(ℓ/2t).

Proof Sketch: The pivot of the analysis is a correspondance between formal polynomials
(in z) reduced modulo the polynomial f and linear combinations of the bits r0, r1, ..., rℓ(k)−1.
This correspondance emerges from the fact that ri relates to ri−t, ..., ri−1 in the same way
that zi relates to zi−t, ..., zi−1 (or zt relates to z0, ..., zt−1). Specifically, we rely on the
following observations:

1. Each formal polynomial p of degree at most ℓ(k)− 1, which is a linear combination of
the formal polynomials z0, z1, ..., zℓ(k)−1. More importantly, the reduction of p modulo
the polynomial f can be written as a linear combination of the formal polynomials
z0, z1, ..., zt−1, where the coefficients are functions of f .

11Note that an implementation of this generator requires an algorithm for selecting an almost random
irreducible polynomial of degree t = Ω(k). A simple algorithm proceeds by enumerating all irreducible
polynomials of degree t, and selecting one of them at random. This algorithm can be implemented (using
t random bits) in exp(t)-time, which is poly(ℓ(k)) if ℓ(k) = exp(Ω(k)). A poly(t)-time algorithm that uses
O(t) random bits is described in [8, Sec. 8].
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2. Each linear combination of the bits r0, r1, ..., rℓ(k)−1 can be written as a linear combi-
nation of the bits s0, s1, ..., st−1, where the coefficients are functions of f .

3. Furthermore, the coefficients used for presenting the (reduction of the) formal poly-

nomial p(z) =
∑ℓ(k)−1

i=0 piz
i (modulo p) equals the coefficients used for presenting (the

linear combination)
∑ℓ(k)−1

i=0 piri as a linear combination of the bits s0, s1, ..., st−1.

Indeed, it suffices to prove the foregoing claim for the special case in which a single pi

is 1. Thus, we first prove that ri equals
∑t−1

j=0 c
(f,i)
j · sj such that c

(f,i)
j is the coefficient of

zj in the (degree t − 1) polynomial obtained by reducing zi modulo the polynomial f(z)

(i.e., zi ≡ ∑t−1
j=0 c

(f,i)
j zj (mod f(z))). This is proved by recalling that zt ≡ ∑t−1

j=0 fjz
j

(mod f(z)), and thus for every i ≥ t it holds that zi ≡ ∑t−1
j=0 fjz

i−t+j (mod f(z)).

(Note the correspondence to ri =
∑t−1

j=0 fj · ri−t+j .)
Next, for any non-empty index set I ⊆ {0, ..., ℓ(k) − 1}, we evaluate the bias of the

sequence r0, ..., rℓ(k)−1 over I, where f is a random irreducible polynomial of degree t and
s = (s0, ..., st−1) ∈ {0, 1}t is uniformly distributed. We consider two cases depending on

whether or not f(z) divides p(z)
def
=
∑

i∈I z
i, which is an event that only depends on the

random choice of f . The crucial observation is that if f does not divide p, then
∑

i∈I ri is
uniformly distributed in {0, 1} (when the distribution is defined based on a random choice
of s). On the other hand, f is unlikely to divide p. Details follow.

• We first claim that, for a fixed f and random s ∈ {0, 1}t, the random variable
∑

i∈I ri
has non-zero bias if and only if f(z) divides the polynomial p(z) =

∑
i∈I z

i.

The claim holds because (by the aforementioned correspondance)
∑

i∈I ri =
∑t−1

j=0

∑
i∈I c

(f,i)
j sj ,

whereas
∑

i∈I z
i =

∑t−1
j=0

∑
i∈I c

(f,i)
j zj. Thus,

∑
i∈I ri is a non-zero combination of

the sj ’s if and only if
∑

i∈I c
(f,i)
j 6= 0 for some j, which means that f(z) does not

divide
∑

i∈I z
i. But whenever

∑
i∈I ri is a non-zero combination of the sj’s, it is the

case that
∑

i∈I ri is uniformly distributed in {0, 1}, which means that it has zero bias.

• Next, we observe that the probability that a random irreducible polynomial of degree t
divides a fixed polynomial of degree at most ℓ(k) is Θ(ℓ(k)/2t).

This holds because a polynomial of degree n can be divided by at most n/d different
irreducible polynomials of degree d. On the other hand, the number of irreducible
polynomials of degree d over GF(2) is Θ(2d/d).

It follows that for random f and s, the sequence r0, ..., rℓ(k)−1 has bias O(ℓ/2t).

A stronger notion of efficient generation. As in Section 3.2.1, we note that the afore-
mentioned constructions satisfy a stronger notion of efficient generation, which is useful in
several applications. That is, there exists a polynomial-time algorithm that given a k-bit long
seed and a bit location i ∈ [ℓ(k)] (in binary), outputs the ith bit of the corresponding output.
Specifically, in case of the LFSR construction, given a seed f0, ..., f(k/2)−1, s0, ..., s(k/2)−1 and

a bit location i ∈ [ℓ(k)] (in binary), the algorithm outputs the ith bit of the corresponding
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output (i.e., ri). The assertion is based on the fact that
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3.3.2 A taste of the applications

An archetypical application of small-bias generators is for producing short and random
“fingerprints” (or “digests”) of strings such that equality and inequality among strings is
(probabilistically) reflected in equality and inequality between their corresponding finger-
prints. The key observation is that checking whether or not x = y is probabilistically
reducible to checking whether the inner product modulo 2 of x and r equals the inner prod-
uct modulo 2 of y and r, where r is produced by a small-bias generator G. Thus, the pair
(s, v), where s is a random seed to G and v equals the inner product modulo 2 of z and
G(s), serves as the randomized fingerprint of the string z. One advantage of this reduction
is that only a few bits (i.e., the seed of the generator and the result of the inner product)
need to be “communicated between x and y” in order to enable the checking (see Exer-
cise 3.7). A related advantage is the low randomness complexity of this reduction, which
uses |s| rather than |G(s)| random bits, where |s| may be O(log |G(s)|). This low (i.e.,
logarithmic) randomness-complexity underlies the application of small-bias generators to
the construction of PCP systems and amplifying reductions of gap problems regarding the
satisfiability of systems of equations (see, e.g., Exercise 3.17).

Small-bias generators have been used in a variety of areas (e.g., inapproximation, struc-
tural complexity, and applied cryptography; see the references in [41, Sec. 3.6.2]). In addi-
tion, as shown next, small-bias generators seem an important tool in the design of various
types of “pseudorandom” objects.

Approximate independence generators. As hinted at the beginning of this section,
small-bias is related to approximate versions of limited independence.12 Actually, as implied
by Exercise 3.8, even a restricted type of ε-bias (in which only subsets of size t(k) are
required to have bias upper-bounded by ε) implies that any t(k) bits in the said sequence
are 2t(k)/2 · ε(k)-close to Ut(k), where here we refer to the variation distance (i.e., L1-Norm
distance) between the two distributions. (The max-norm of the difference is bounded by

12We warn that, unlike in the case of perfect independence, here we refer only to the distribution on fixed
bit locations. See Exercise 3.6 for further discussion.
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ε(k).)13 Combining Theorem 3.3 and the foregoing upper-bound, we obtain generators with
exponential stretch (i.e., ℓ(k) = exp(Ω(k))) that produce sequences that are approximately
Ω(k)-wise independent in the sense that any t(k) = Ω(k) bits in them are 2−Ω(k)-close to
Ut(k). Thus, whenever the analysis of a randomized algorithm can be based on a logarithmic
amount of (almost) independence between feasibly-many binary random choices, a feasible
derandomization is possible (by using an adequate generator of logarithmic seed length).14

Extensions to non-binary choices were considered in various works (see references in [41,
Sec. 3.6.2]). Some of these works also consider the related problem of constructing small
“discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-norm
(of the deviation from uniform of any t locations), any ε-bias generator yields a t-universal
set generator, provided that ε < 2−t. The latter generator outputs sequences such that
in every subsequence of length t all possible 2t patterns occur (i.e., each for at least one
possible seed). Such generators have many applications.

3.3.3 Generalization

In this section, we outline a generalization of the treatment of small-bias generators to
the generation of sequences over an arbitrary finite field. Focusing on the case of a field
of prime cardinality, denoted GF(p), we first define an adequate notion of bias (as done
in Section 1.3.2.5). Generalizing Eq. (3.6), we define the bias of a sequence of n (possi-
bly dependent) random variables ζ1, ..., ζn ∈ GF(p) with respect to the linear combination

(c1, ..., cn) ∈ GF(p)n as
∥∥∥E
[
ω
∑

n

i=1
ciζi

]∥∥∥, where ω denotes the pth (complex) root of unity

(i.e., ω = −1 if p = 2). We mention that upper-bounds on the biases of ζ1, ..., ζn (with re-
spect to any non-zero linear combinations) yield upper-bounds on the distance of

∑n
i=1 ciζi

from the uniform distribution over GF(p).
We say that S ⊆ GF(p)n is an ε-bias probability space if a uniformly selected sequence in

S has bias at most ε with respect to any non-zero linear combination over GF(p). (When-
ever such a space is efficiently constructible, it yields a corresponding ε-biased generator.)
We mention that the LFSR construction, outlined in Section 3.3.1 and analyzed in Propo-
sition 3.4, generalizes to GF(p) and yields an ε-bias probability space of size (at most) p2e,
where e = ⌈logp(n/ε)⌉. Such constructions can be used in applications that generalize those
in Section 3.3.2.

A different generalization. Recalling that small-bias generators fool all linear tests, we
consider generators that fool any test that can be represented by a polynomial of degree d.

13Both bounds are derived from the L2-Norm bound on the difference vector (i.e., the difference between
the two probability vectors). For details, see Exercise 3.8.

14Furthermore, as shown in Exercise 3.14, relying on the linearity of the construction presented in
Theorem 3.1, we can obtain generators with double-exponential stretch (i.e., ℓ(k) = exp(2Ω(k))) that

are approximately t(k)-independent (in the foregoing sense). That is, we may obtain generators with

stretch ℓ(k) = 22Ω(k)
producing bit sequences in which any t(k) = Ω(k) positions have variation dis-

tance at most ε(k) = 2−Ω(k) from uniform; in other words, such generators may have seed-length
k = O(t(k) + log(1/ε(k)) + log log ℓ(k)). In the corresponding result for the max-norm distance, it suf-
fices to have k = O(log(t(k)/ε(k)) + log log ℓ(k)).
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It was recently proved that taking the sum of d independently distributed outputs produced
by a small-bias generator (on d independently chosen seeds) yields a sequence that fools
all degree d tests [112]. (Interestingly, this sequence may not fool all polynomials of degree
d+ 1; see [105].)

3.4 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a random
walk on a large graph that has a small degree but an adequate “mixing” property (in the
sense that a random walk of logarithmic length that starts at any fixed vertex reaches an
almost uniformly distributed vertex). Such a graph is called an expander, and by taking a
random walk (of length ℓ′) on it we generate a sequence of ℓ′ values over its vertex set, while
using a random seed of length b+(ℓ′−1) · log2 d, where 2b denotes the number of vertices in
the graph and d denotes its degree. This seed length should be compared against the ℓ′ · b
random bits required for generating a sequence of ℓ′ independent samples from {0, 1}b (or
taking a random walk on a clique of size 2b). Interestingly, as we shall see, the pseudorandom
sequence (generated by the said random walk on an expander) behaves similarly to a truly
random sequence with respect to hitting any dense subset of {0, 1}b. Let us start by defining
this property (or rather by defining the corresponding hitting problem).

Definition 3.5 (the hitting problem): A sequence of (possibly dependent) random vari-
ables, denoted (X1, ..., Xℓ′), over {0, 1}b is (ε, δ)-hitting if for any (target) set T ⊆ {0, 1}b
of cardinality at least ε · 2b, with probability at least 1− δ, at least one of these variables hits
T ; that is, Pr[∃i s.t. Xi∈T ] ≥ 1− δ.

Clearly, a truly random sequence of length ℓ′ over {0, 1}b is (ε, δ)-hitting for δ = (1 − ε)ℓ′ .
The aforementioned “expander random walk generator” (to be described next) achieves
similar behavior.15 Specifically, for arbitrary small c > 0 (which depends on the degree
and the mixing property of the expander), the generator’s output is (ε, δ)-hitting for δ =
(1− (1 − c) · ε)ℓ′ . To describe this generator, we need to discuss expanders.

3.4.1 Background: expanders and random walks on them

The current subsection is quite minimal; a more elaborate discussion of expander graphs,
their properties and their constructions appears in Lecture 5.

By expander graphs (or expanders) of degree d and eigenvalue bound λ < d, we actually
mean an infinite family of d-regular16, graphs, {GN}N∈S (S ⊆ N), such that GN is a d-
regular graph over N vertices and the absolute value of all eigenvalues, save the biggest one,
of the adjacency matrix of GN is upper-bounded by λ. For simplicity, we shall assume that
the vertex set of GN is [N ] (although in some constructions a somewhat more redundant
representation is more convenient). We will refer to such a family as a (d, λ)-expander (for S).
This technical definition is related to the aforementioned notion of “mixing” (which refers

15We comment that other pseudorandom generators that were considered in this text also exhibit hitting
properties; see Exercise 3.16.

16A graph is called d-regular if each of its vertices has exactly d neighbors.
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to the rate at which a random walk starting at a fixed vertex reaches uniform distribution
over the graph’s vertices).

We are interested in explicit constructions of such graphs, by which we mean that there
exists a polynomial-time algorithm that on input N (in binary), a vertex v in GN and an
index i ∈ {1, ..., d}, returns the ith neighbor of v. (We also require that the set S for which
GN ’s exist is sufficiently “tractable” – say, that given any n ∈ N one may efficiently find
an s∈S such that n ≤ s < 2n.) Several explicit constructions of expanders are known (cf.,
e.g., [81, 79, 91]). Below, we rely on the fact that for every λ > 0, there exist d and an
explicit construction of a (d, λ · d)-expander over {2b : b ∈ N}.17 The relevant (to us) fact
about expanders is stated next.

Theorem 3.6 (Expander Random Walk Theorem): Let G = (V,E) be an expander graph
of degree d and eigenvalue bound λ. Consider taking a random walk on G by uniformly
selecting a start vertex and taking ℓ′ − 1 additional random steps such that at each step the
walk uniformly selects an edge incident at the current vertex and traverses it. Then, for any

W ⊆ V and ρ
def
= |W |/|V |, the probability that such a random walk stays in W is at most

ρ ·
(
ρ+ (1− ρ) · λ

d

)ℓ′−1

. (3.8)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting property
(i.e., when we consider hitting the set V \W and use ε = 1−ρ); that is, a set of density ε is hit
with probability at least 1−δ, where δ = (1−ε) ·(1−ε+(λ/d) ·ε)ℓ′−1 < (1−(1−(λ/d)) ·ε)ℓ′.
A proof of Theorem 3.6 is given in [65], while a proof of an upper-bound that is weaker than
Eq. (3.8) is outlined next.

A version of the Expander Random Walk Theorem: Using notation as in Theo-
rem 3.6, we claim that the probability that a random walk of length ℓ′ stays in W is at most
(ρ + (λ/d)2)ℓ′/2. In fact, we make a more general claim that refers to the probability that
a random walk of length ℓ′ intersects W0 ×W1 × · · · ×Wℓ′−1. The claimed upper-bound is

√
ρ0 ·

ℓ′−1∏

i=1

√
ρi + (λ/d)

2
, (3.9)

where ρi
def
= |Wi|/|V |. In order to prove Eq. (3.9), we view the random walk as the evolution

of a corresponding probability vector under suitable transformations. The transformations
correspond to taking a random step in the graph and to passing through a “sieve” that
keeps only the entries that correspond to the current set Wi. The key observation is that the
first transformation shrinks the component that is orthogonal to the uniform distribution,
whereas the second transformation shrinks the component that is in the direction of the
uniform distribution. For further details, see Exercise 3.18.

17This can be obtained with d = poly(1/λ). In fact, d = O(1/λ
2
), which is optimal, can be obtained too,

albeit with graphs of sizes that are only approximately powers of two.
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3.4.2 The generator

Using Theorem 3.6 and an explicit (2t, λ ·2t)-expander, we obtain a generator that produces
sequences that are (ε, δ)-hitting for δ that is almost optimal.

Proposition 3.7 (The Expander Random Walk Generator):18 For every constant λ > 0,
consider an explicit construction of (2t, λ · 2t)-expanders for {2n : n ∈N}, where t ∈N is
a sufficiently large constant. For v ∈ [2n] ≡ {0, 1}n and i ∈ [2t] ≡ {0, 1}t, denote by Γi(v)
the vertex of the corresponding 2n-vertex graph that is reached from vertex v when following
its ith edge. For b, ℓ′ : N→N such that k = b(k) + (ℓ′(k) − 1) · t < ℓ′(k) · b(k), and for
v0 ∈ {0, 1}b(k) and i1, ..., iℓ′(k)−1 ∈ [2t], let

G(v0, i1, ...., iℓ′(k)−1)
def
= (v0, v1, ...., vℓ′(k)−1), (3.10)

where vj = Γij
(vj−1). Then, G has stretch ℓ(k) = ℓ′(k) · b(k), and G(Uk) is (ε, δ)-hitting for

any ε > 0 and δ = (1− (1− λ) · ε)ℓ′(k).

The stretch of G is maximized at b(k) ≈ k/2 (and ℓ′(k) = k/2t), but maximizing the stretch
is not necessarily the goal in all applications. In many applications, the parameters n, ε and
δ are given, and the goal is to derive a generator that produces (ε, δ)-hitting sequences over
{0, 1}n while minimizing both the length of the sequence and the amount of randomness used
by the generator (i.e., the seed length). Indeed, Proposition 3.7 suggests using sequences of
length ℓ′ ≈ ε−1 log2(1/δ) that are generated based on a random seed of length n+O(ℓ′).

Expander random-walk generators have been used in a variety of areas (e.g., PCP and
inapproximability (see [19, Sec. 11.1]), cryptography (see [42, Sec. 2.6]), and the design of
various types of “pseudorandom” objects.

Notes

The various generators presented in Lecture 3 were not inspired by any of the other types of
pseudorandom generator (nor even by the generic notion of pseudorandomness). Pairwise
independence generators were explicitly suggested in [30] (and are implicit in [28]). The
generalization to t-wise independence (for t ≥ 2) is due to [6]. Small-bias generators were
first defined and constructed by Naor and Naor [85], and three simple constructions were
subsequently given in [8]. The Expander Random Walk Generator was suggested by Ajtai,
Komlos, and Szemerédi [3], who discovered that random walks on expander graphs provide
a good approximation to repeated independent attempts to hit any fixed subset of sufficient
density (within the vertex set). The analysis of the hitting property of such walks was
subsequently improved, culminating in the bound cited in Theorem 3.6, which is taken from
[65, Cor. 6.1].

Exercises

18In the common presentation of this generator, the length of the seed is determined as a function of the
desired block-length and stretch. That is, given the parameters b and ℓ′, the seed length is set to b+(ℓ′−1)·t.
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Exercise 3.1 Show that the output of any pseudorandom generator is “statistically distin-
guishable” from the corresponding uniform distribution; that is, show that, for any stretch
function ℓ and any generator G of stretch ℓ, the statistical difference between G(Uk) and
Uℓ(k) is at least 1− 2−(ℓ(k)−k).

Exercise 3.2 Show that placing no computational requirements on the generator enables
unconditional results regarding “generators” that fool any family of subexponential-size
circuits. That is, making no computational assumptions, prove that there exist functions
G : {0, 1}∗ → {0, 1}∗ such that {G(Uk)}k∈N is (strongly) pseudorandom, while |G(s)| = 2|s|
for every s ∈ {0, 1}∗. Furthermore, show that G can be computed in double-exponential
time.

Guideline: Use the Probabilistic Method (cf. Lecture 2). First, for any fixed circuit C : {0, 1}n →
{0, 1}, upper-bound the probability that for a random set S ⊂ {0, 1}n of size 2n/2 the absolute

value of Pr[C(Un) = 1] − (|{x ∈ S : C(x) = 1}|/|S|) is larger than 2−n/8. Next, using a union

bound, prove the existence of a set S ⊂ {0, 1}n of size 2n/2 such that no circuit of size 2n/5 can

distinguish a uniformly distributed element of S from a uniformly distributed element of {0, 1}n,

where distinguishing means with a probability gap of at least 2−n/8.

Exercise 3.3 (adaptive t-wise independence tests) Recall that a generatorG : {0, 1}k →
{0, 1}ℓ′(k)·b(k) is called t-wise independent if for any t fixed block positions, the distribution
G(Uk) restricted to these t blocks is uniform over {0, 1}t·b(k). Prove that the output of a
t-wise independence generator is (perfectly) indistinguishable from the uniform distribution
by any test that examines t of the blocks, even if the examined blocks are selected adaptively
(i.e., the location of the ith block to be examined is determined based on the contents of the
previously inspected blocks).

Guideline: First show that, without loss of generality, it suffices to consider deterministic (adap-

tive) testers. Next, show that the probability that such a tester sees any fixed sequence of t values

at the locations selected adaptively (in the generator’s output) equals 2−t·b(k), where b(k) is the

block-length.

Exercise 3.4 (another pairwise independence generator) Consider a construction anal-
ogous to the one in Theorem 3.2, except that here the seed specifies an arbitrary affine
b(k)-by-m(k) transformation. That is, for s ∈ {0, 1}b(k)·m(k) and r ∈ {0, 1}b(k), where
k = b(k) ·m(k) + b(k), let

G(s, r)
def
= (Asv1 + r , Asv2 + r , ..., Asvℓ′(k) + r) (3.11)

where As is a b(k)-by-m(k) matrix specified by the string s. Show that G as in Eq. (3.11)
is a pairwise independence generator of block-length b and stretch ℓ.

Guideline: First note that for every fixed i ∈ [ℓ′(k)], the ith element in the sequence G(Uk), denoted

G(Uk)i, is uniformly distributed in {0, 1}b(k). Actually, show that for every fixed s ∈ {0, 1}k−b(k), it

holds that G(s, Ub(k))i is uniformly distributed in {0, 1}b(k). Next note that it suffices to show that,

for every j 6= i, conditioned on the value of G(Uk)i, the value of G(Uk)j is uniformly distributed

in {0, 1}b(k). The key technical detail is showing that, for any non-zero vector v ∈ {0, 1}m(k) and

a uniformly selected s ∈ {0, 1}k−b(k), it holds that Asv is uniformly distributed in {0, 1}b(k). Let



EXERCISES 51

i ∈ [m(k)] denote a non-zero coordinate in v (i.e., vi 6= 0). Then, consider any fixing of the columns

of As other than the ith column and note that when the ith column is selected uniformly the value

of Asv is uniformly distributed in {0, 1}b(k).

Exercise 3.5 (yet another pairwise independence generator) In continuation of Ex-
ercise 3.4, consider the following construction (which appears in the proof of [44, Thm. 7.7]).
For t > 1, let b(k) = k/t, and consider the mapping of (s1, ..., st) ∈ {0, 1}t·b(k) to (rJ ) ∈
{0, 1}(2t−1)·b(k) , where the J ’s range over all non-empty subsets of {1, 2, ..., t} and rJ def

=⊕
j∈J s

j . Prove that G is a pairwise independence generator of block-length b and stretch

ℓ(k) = 2t−1
t · k.

Guideline: For J 6= J ′, it holds that rJ ⊕ rJ′

=
⊕

j∈K
sj , where K denotes the symmetric

difference of J and J ′.

Exercise 3.6 (adaptive t-wise independence tests, revisited) Prove that, in contrast
to Exercise 3.3, with respect to non-perfect indistinguishability, there is a discrepancy be-
tween adaptive and non-adaptive tests that inspect t locations.

1. Specifically, present a distribution over 2t−1-bit long strings in which every t fixed bit
positions are t · 2−t-close to uniform, but there exists a test that adaptively inspects t
positions and distinguishes this distribution from the uniform one with gap of 1/2.

Guideline: Modify the uniform distribution over ((t− 1) + 2t−1)-bit long strings such that

the first t − 1 locations indicate a bit position (among the rest) that is set to zero.

2. On the other hand, prove that if every t fixed bit positions in a distribution X are
ε-close to uniform, then every test that adaptively inspects t positions can distinguish
X from the uniform distribution with gap at most 2t · ε.
Guideline: See Exercise 3.3.

Exercise 3.7 Suppose that G is an ε-bias generator with stretch ℓ. Show that equality
between the ℓ(k)-bit strings x and y can be probabilistically checked (with error probability
(1 + ε)/2) by comparing the inner product modulo 2 of x and G(s) to the inner product
modulo 2 of y and G(s), where s ∈ {0, 1}k is selected uniformly. Note that this method is
a randomness-efficient approximation of comparing the inner product modulo 2 of x and r
to the inner product modulo 2 of y and r, where r ∈ {0, 1}ℓ(k) is selected uniformly.
(Hint: Consider the special case in which y = 0ℓ(k).)

Exercise 3.8 (bias vs. statistical difference from uniform) Let X be a random vari-
able assuming values in {0, 1}t. Prove that if X has bias at most ε over any non-empty
set then the statistical difference between X and Ut is at most 2t/2 · ε, and that for every
x ∈ {0, 1}t it holds that Pr[X = x] = 2−t ± ε.
Guideline: See Section 1.3.2.

Exercise 3.9 (a non-trivial example of a small bias probability space) Let S be the
set of all n-bit strings having a number of 1-entries that is divisible by three. Then, the
uniform distribution over S yields a distribution that has bias 2−Ω(n).19

19Note that we do not suggest to present a small-bias generator based on this fact: Implementing such a
generator is non-trivial, and the expansion obtained is quite poor. Still, the claim itself seems interesting,
and was indeed used in [45].
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Guideline: The key observation is that the sum modulo 3 of a uniformly distributed n-bit string

is almost uniformly distributed in {0, 1, 2}, where the error term vanishes exponentially with n.

Now, for any non-empty I ⊆ [n], consider the probability that for uniformly distributed string

σ1 · · ·σn ∈ {0, 1}n both
∑n

i=1
σi ≡ 0 (mod 3) and

∑n

i∈I
σi ≡ 0 (mod 2) hold. Show that this

probability is very close to 1/6, where the error term that vanishes expoinentially in max(|I |, n−|I |).
Indeed, consider the two corresponding cases (i.e., |I | ≤ n/2 and |I | ≥ n/2). For example, for

|I | ≤ n/2, consider the distributions
∑

i∈[n]\I
σi mod 3 and

∑n

i∈I
σi mod 2. The other case (i.e.,

|I | ≥ n/2) is more interesting: Consider the distributions
∑

i∈I
σi mod 3 and

∑n

i∈I
σi mod 2, or

just the distribution
∑

i∈I
σi mod 6. To analyze the latter distribution consider a |I |-step random

walk on a directed k-cycle (where k = 6) such that an edge is traversed with probability 1/2 (and

the walk remain in place otherwise). It can be shown that the probability that an m-step walk ends

at the start vertex is 1
k
± 2−Ω(m/k2). For details, see [45, Apdx. A.1].

Exercise 3.10 (on the existence of (non-explicit) small-bias generators)
Prove that, for k = log2(ℓ(k)/ε(k)

2) +O(1), there exists a function G : {0, 1}k → {0, 1}ℓ(k)

such that G(Uk) has bias at most ε(k) over any non-empty subset of [ℓ(k)].

Guideline: Use the Probabilistic Method as in Exercise 3.2.

Exercise 3.11 (limitations on small-bias generators) Let G be an ε-bias generator
with stretch ℓ, and view G as a mapping from GF(2)k to GF(2)ℓ(k). As such, each bit in
the output of G can be viewed as a polynomial20 in the k input variables (each ranging in
GF(2)). Prove that if ε(k) < 1 and each of these polynomials has total degree at most d,

then ℓ(k) ≤∑d
i=1

(
k
i

)
. Derive the following corollaries:

1. If ε(k) < 1, then ℓ(k) < 2k (regardless of d).21

2. If ε(k) < 1 and ℓ(k) > k, then G cannot be a linear transformation.22

Guideline (for the main claim): Note that, without loss of generality, all the aforementioned

polynomials have a free term equal to zero (and have individual degree at most 1 in each variable).

Next, consider the vector space spanned by all d-monomials over k variables (i.e., monomials having

at most d variables). Since ε(k) < 1, the polynomials representing the output bits of G must

correspond to a sequence of independent vectors in this space.

Exercise 3.12 (advanced topic: a sanity check for space-bounded pseudorandomness)
The following fact is suggested as a sanity check for candidate pseudorandom generators with
respect to space-bounded automata. The fact (to be proven as an exercise) is that, for ev-
ery ε(·) and s(·) such that s(k) ≥ 1 for every k, if G is (s, ε)-pseudorandom (as per [44,
Def. 8.20]), then G is an ε-bias generator.

20Recall that every Boolean function over GF(p) can be expressed as a polynomial of individual degree at
most p− 1.

21This upper-bound is optimal, because (efficient) ε-bias generators of stretch ℓ(k) = poly(ε(k)) · 2k do
exist (see [85]).

22In contrast, bilinear ε-bias generators (i.e., with ℓ(k) > k) do exist; for example, G(s) = (s, b(s)), where

b(s1, ..., sk) =
∑k/2

i=1
sis(k/2)+i mod 2, is an ε-bias generator with ε(k) = exp(−Ω(k)). (Hint: Focusing on

bias over sets that include the last output bit, prove that, without loss of generality, it suffices to analyze
the bias of b(Uk).)
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Exercise 3.13 In contrast to Exercise 3.12, prove that there exist exp(−Ω(n))-bias distri-
butions over {0, 1}n that are not (2, 0.666)-pseudorandom.

Guideline: Show that the uniform distribution over the set
{

σ1 · · ·σn :

n∑

i=1

σi ≡ 0 (mod 3)

}

has bias exp(−Ω(n)). An alternative construction appears in [105, Sec. 3.5].

Exercise 3.14 (approximate t-wise independence generators (cf. [85]))
Combining a small-bias generator as in Theorem 3.3 with the t-wise independence generator
of Eq. (3.3), and relying on the linearity of the latter, construct a generator producing ℓ-
bit long sequences in which any t positions are at most ε-away from uniform (in variation
distance), while using a seed of length O(t+ log(1/ε) + log log ℓ). (For max-norm a seed of
length O(log(t/ε) + log log ℓ) suffices.)

Guideline: First note that, for any t, ℓ′ and b ≥ log2 ℓ′, the transformation of Eq. (3.3) can

be implemented by a fixed linear (over GF(2)) transformation of a t · b-bit seed into an ℓ-bit

long sequence, where ℓ = ℓ′ · b. It follows that, for b = log2 ℓ′, there exists a fixed GF(2)-linear

transformation T of a random seed of length t · b into a t-wise independent bit sequence of the

length ℓ (i.e., T Ut·b is t-wise independent over {0, 1}ℓ). Thus, every t rows of T are linearly

independent. The key observation is that when we replace the aforementioned random seed by an

ε′-bias sequence, every set of i ≤ t positions in the output sequence has bias at most ε′ (because

they define a non-zero linear test on the bits of the ε′-bias sequence). Note that the length of the

new seed (used to produce ε′-bias sequence of length t · b) is O(log tb/ε′). Applying Exercise 3.8,

we conclude that any t positions are at most 2t/2 · ε′-away from uniform (in variation distance).

Recall that this was obtained using a seed of length O(log(t/ε′) + log log ℓ), and the claim follows

by using ε′ = 2−t/2 · ε.

Exercise 3.15 (small-bias generator and error-correcting codes) Show a correspondence
between ε-bias generators of stretch ℓ and binary linear error-correcting codes mapping
ℓ(k)-bit long strings to 2k-bit long strings such that every two codewords are at distance
(1± ε(k)) · 2k−1 apart.

Guideline: Associate {0, 1}k with [2k]. Then, a generator G : [2k] → {0, 1}ℓ(k) corresponds to the

code C : {0, 1}ℓ(k) → {0, 1}2k

such that, for every i ∈ [ℓ(k)] and j ∈ [2k], the ith bit of G(j) equals

the jth bit of C(0i−110ℓ(k)−i).

Exercise 3.16 (advanced topic: other pseudorandom generators and the hitting problem)
Show that various pseudorandom generators yield solutions to the hitting problem (as de-
fined in Definition 3.5). Specifically:

1. Show that a pairwise independence generator of block-length b and stretch ℓ yields a
sequence over {0, 1}b that is (ε, δ)-hitting for δ = O(1/εℓ′), where ℓ′ = ℓ/b.

Advanced exercise: Show that when using t-wise independence. the error bound can
be reduced to δ = O(t2/εℓ′)⌊t/2⌋.

2. Referring to [44, Def. 8.20], show that a (b, δ)-pseudorandom generator of stretch ℓ
yields a sequence over {0, 1}b that is (ε, δ)-hitting for δ = (1− ε)ℓ/b + δ.
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3. Consider modifications of the hitting problem in which the target set T is restricted
to be recognizable within some specified complexity.

(a) Show that a general-purpose pseudorandom generator of stretch ℓ yields a se-
quence over {0, 1}b that is (ε, δ)-hitting for target sets in BPP and δ = (1 −
ε)ℓ/b + 1/p, where p is an arbitrary polynomial.

(b) Referring to [44, Def. 8.14], show that a canonical derandomizer of stretch ℓ yields
a sequence over {0, 1}b that is (ε, δ)-hitting for target sets that are recognized by
circuits of size ℓ2 and δ = (1− ε)ℓ/b + 1/6.

What is the advantage of using the expander random walk generator over each of the
foregoing options?

Exercise 3.17 (natural inapproximability without the PCP Theorem) In contrast
to the inapproximability results that are based on the PCP Theorem (cf., e.g., [44, §10.1.1.2]),
the NP-completeness of the following gap problem can be established (rather easily) with-
out referring to the PCP Theorem. The instances of this problem are systems of quadratic
equations over GF(2) (as in [44, Exer. 2.25]), yes-instances are systems that have a solution,
and no-instances are systems for which any assignment violates at least one third of the
equations.

Guideline: As stated in [44, Exer. 2.25], when given such a quadratic system, it is NP-hard

to determine whether or not there exists an assignment that satisfies all the equations. Using an

adequate small-bias generator (cf. Section 3.3), present an amplifying reduction (cf. [44, Sec. 9.3.3])

of the foregoing problem to itself (i.e., yes-instances are mapped to yes-instances, whereas systems

that have no solution are mapped to systems for which any assignment violates at least one third

of the equations). Specifically, if the input system has m equations, then we use a generator

that defines a sample space of poly(m) many m-bit strings, and consider the corresponding linear

combinations of the input equations. Note that it suffices to bound the bias of the generator by

1/6, whereas using an ε-biased generator yields an analogous result with 1/3 replaced by 0.5 − ε.

Exercise 3.18 (a version of the Expander Random Walk Theorem) LetG = (V,E)
be a graph as in Theorem 3.6. Prove that the probability that a random walk of length ℓ′

intersects W0 ×W1 × · · · ×Wℓ′−1 ⊆ V ℓ′ is upper bounded by Eq. (3.9).

Guideline: Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix

of G divided by d), and let λ̂
def
= λ/d. Note that the uniform distribution, represented by the vector

u = (N−1, ..., N−1)⊤, is the eigenvector of A that is associated with the largest eigenvalue (which

is 1), whereas all other eigenvalues have absolute value at most λ̂. Let Pi be a 0-1 matrix that

has 1-entries only on its diagonal such that entry (j, j) is set to 1 if and only if j ∈ Wi. Then,

the probability that a random walk of length ℓ intersects W0 × W1 × · · · × Wℓ−1 is the sum of the

entries of the vector v
def
= Pℓ−1A · · ·P2AP1AP0u. We are interested in upper-bounding ‖v‖1, and

use ‖v‖1 ≤
√

N · ‖v‖, where ‖z‖1 and ‖z‖ denote the L1-norm and L2-norm of z, respectively (e.g.,

‖u‖1 = 1 and ‖u‖ = N−1/2). The key observation is that the linear transformation PiA shrinks

every vector. For further details, see proof of Lemma 5.5.

Exercise 3.19 Using notation as in Theorem 3.6, prove that the probability that a random

walk of length ℓ′ visits W more than αℓ′ times is smaller than
(

ℓ′

αℓ′

)
· (ρ+ (λ/d)2)αℓ′/2. For



EXERCISES 55

example, for α = 1/2 and λ/d <
√
ρ, we get an upper-bound of (32ρ)ℓ′/4. We comment that

much better bounds can be obtained (cf., e.g., [58]).

Guideline: Use a union bound on all possible sequences of m = αℓ′ visits, and upper-bound the

probability of visiting W in steps j1, ..., jm by applying Eq. (3.9) with Wi = W if i ∈ {j1, ..., jm}
and W = V otherwise.
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Lecture 4

Hashing

Hashing is extensively used in complexity theory in order to map arbitrary (unstructured)
sets “almost uniformly” to a smaller structured set of adequate size. Specifically, hashing
is supposed to map an arbitrary 2m-subset (of {0, 1}n) to {0, 1}m in an “almost uniform”
manner.

For a fixed set S of cardinality 2m, a 1-1 mapping fS : S → {0, 1}m does exist, but it is
not necessarily an efficient one (e.g., it may require “knowing” the entire set S). Clearly, no
fixed function f : {0, 1}n → {0, 1}m can map every 2m subset of {0, 1}n to {0, 1}m in a 1-1
manner (or even approximately so). However, a random function f : {0, 1}n → {0, 1}m has
the property that, for every 2m-subset S ⊂ {0, 1}n, with overwhelmingly high probability f
maps S to {0, 1}m such that no point in the range has many f -preimages in S. The problem
is that a truly random function is unlikely to have a succinct representation (let alone an
efficient evaluation algorithm). We seek families of functions that have a similar property,
but do have a succinct representation as well as an efficient evaluation algorithm.

4.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {Hm
n }m<n such that

the following properties hold:

1. For every S ⊂ {0, 1}n, with high probability, a function h selected uniformly in Hm
n

maps S to {0, 1}m in an “almost uniform” manner. For example, for any |S| = 2m

and each point y, with high probability over the choice of h, it holds that |{x ∈ S :
h(x) = y}| ≤ poly(n).

2. The functions in Hm
n have succinct representation. For example, we may require that

Hm
n ≡ {0, 1}ℓ(n,m), for some polynomial ℓ.

3. The functions in Hm
n can be efficiently evaluated. That is, there exists a polynomial-

time algorithm that, on input a representation of a function, h (in Hm
n ), and a string

x ∈ {0, 1}n, returns h(x). In some cases we make even more stringent requirements
regarding the the algorithm (e.g., that it runs in linear space).

57
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Condition 1 was left vague on purpose. At the very least, we require that (for every y ∈
{0, 1}m) the expected size of {x ∈ S : h(x) = y} equals |S|/2m. We shall see (in Section 4.3)
that different (stronger) interpretations of Condition 1 are satisfied by different types of
hashing functions. We focus on t-wise independent hashing functions, defined next.

Definition 4.1 (t-wise independent hashing functions): A family Hm
n of functions from n-

bit strings to m-bit strings is called t-wise independent if for every t distinct domain elements
x1, ..., xt ∈ {0, 1}n and every y1, ..., yt ∈ {0, 1}m it holds that

Prh∈Hm
n

[∧t
i=1h(xi) = y1] = 2−t·m

That is, every t domain elements are mapped by a uniformly chosen h ∈ Hm
n in a totally

uniform manner. Note that for t ≥ 2, it follows that the probability that a random h ∈
Hm

n maps two distinct domain elements to the same image is 2−m. Such (families of)
functions are called universal (cf. [28]), but we will focus on the stronger condition of t-wise
independence.

4.2 Constructions

The following constructions are merely a re-interpretation of the constructions presented
in the context of (special purpose) pseudorandom generators; specifically, see Section 3.2.1.
(Alternatively, one may view the latter constructions as a re-interpretation of the following
two constructions.)

Construction 4.2 (t-wise independent hashing): For t,m, n ∈ N such that m ≤ n, con-
sider the following family of hashing functions mapping n-bit strings to m-bit strings. Each
t-sequence s = (s0, s1, ..., st−1) ∈ {0, 1}t·n describes a function hs : {0, 1}n → {0, 1}m such

that hs(x) equals the m-bit prefix of the binary representation of
∑t−1

j=0 sjx
j, where the arith-

metic is that of GF(2n), the finite field of 2n elements.

Proposition 3.1 implies that Construction 4.2 constitutes a family of t-wise independent hash
functions. Typically, we will use either t = 2 or t = Θ(n). To make the construction totally
explicit, we need an explicit representation of GF(2n). An alternative construction for the
case of t = 2 may be obtained as follows. Recall that a Toeplitz matrix is a matrix with all
diagonals being homogeneous; that is, T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1, for
all i, j.

Construction 4.3 (Alternative pairwise independent hashing): For m ≤ n, consider the
family of hashing functions in which each n-by-m Toeplitz matrix T and an m-dimensional
vector b describes a function hT,b : {0, 1}n → {0, 1}m such that hT,b(x) = Tx+ b.

Proposition 3.2 implies that Construction 4.3 constitutes a family of pairwise independent
hash functions. Note that a n-by-m Toeplitz matrix can be specified by n + m − 1 bits,
yielding description length n+ 2m− 1. An alternative construction (using m ·n+m bits of
representation) uses arbitrary n-by-m matrices rather than Toeplitz matrices.
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4.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned in
Section 4.1. One concrete interpretation of this condition is implied by the following lemma.

Lemma 4.4 Let m < n be integers, Hm
n be a family of pairwise independent hash functions,

and S ⊆ {0, 1}n. Then, for every y ∈ {0, 1}m and every ε > 0, for all but at most an 2m

ε2|S|
fraction of h ∈ Hm

n it holds that

|{x ∈ S : h(x) = y}| = (1± ε) · |S|
2m .

(4.1)

By pairwise independence (or rather even by “1-wise independence”), the expected size of
{x ∈ S : h(x) = y} is |S|/2m, where the expectation is taken uniformly over all h ∈ Hm

n .
The lemma upper bounds the fraction of h’s that deviate from the expected value. Needless
to say, the bound is meaningful only in case |S| > 2m (or alternatively for ε > 1). Setting
ε = 3

√
2m/|S| (and focusing on the case that |S| > 2m), we infer that for all but at most an

ε fraction of h ∈ Hm
n it holds that |{x ∈ S : h(x) = y}| = (1± ε) · |S|/2m. Thus, each range

element has approximately the right number of h-preimages in the set S under almost all
h ∈ Hm

n .

Proof: Fixing an arbitrary set S ⊆ {0, 1}n and an arbitrary y ∈ {0, 1}m, we estimate the
probability that a uniformly selected h ∈ Hm

n violates Eq. (4.1). We define random variables
ζx, over the aforementioned probability space, such that ζx = ζx(h) equal 1 if h(x) = y and

0 otherwise. The expected value of
∑

x∈S ζx is µ
def
= |S| · 2−m, and we are interested in the

probability that this sum deviates from the expectation. Applying Chebyshev’s Inequality,
we get

Pr

[∣∣∣∣∣µ−
∑

x∈S

ζx

∣∣∣∣∣ > ε · µ
]
<

µ

ε2µ2

because Var(
∑

x∈S ζx) < |S| · 2−m by the pairwise independence of the ζx’s and the fact
that E[ζx] = 2−m. The lemma follows.

A generalization (called mixing). The proof of Lemma 4.4 can be easily extended to
show that for every set T ⊂ {0, 1}m and every ε > 0, for all but at most an 2m

|T |·|S|ε2 fraction

of h ∈ Hm
n it holds that |{x ∈ S : h(x) ∈ T }| = (1± ε) · |T | · |S|/2m; see Exercise 4.1. In the

case that m = n, this is called a mixing property, and is meaningfull provided |T |·|S| > 2m/ε.

An extremely useful corollary. The aforementioned generalization of Lemma 4.4 as-
serts that most functions behave well with respect to any fixed sets of preimages S ⊂ {0, 1}n
and images T ⊂ {0, 1}m. A seemingly stronger statement, which is (non-trivially) implied
by Lemma 4.4, is that for all adequate sets S most functions h ∈ Hm

n map S to {0, 1}m in
an almost uniform manner.1 This is a consequence of the following theorem.

1That is, for X as in Theorem 4.5 and any α > 0, for all but at most an α fraction of the functions
h ∈ Hm

n it holds that h(X) is (2ε/α)-close to Um.
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Theorem 4.5 (a.k.a Leftover Hash Lemma): Let Hm
n and S ⊆ {0, 1}n be as in Lemma 4.4,

and define ε = 3
√

2m/|S|. Consider random variable X and H that are uniformly distributed
on S and Hm

n , respectively. Then, the statistical distance between (H,H(X)) and (H,Um)
is at most 2ε.

Using the terminology of Section 8, we say that Hm
n yields a strong extractor (with param-

eters to be spelled out there).

Proof: Let V denote the set of pairs (h, y) that violate Eq. (4.1), and V
def
= (Hm

n ×{0, 1}m)\
V . Then for every (h, y) ∈ V it holds that

Pr[(H,H(X)) = (h, y)] = Pr[H = h] · Pr[h(X) = y]

= (1± ε) · Pr[(H,Um) = (h, y)].

On the other hand, by Lemma 4.4 (which asserts Pr[(H, y) ∈ V ] ≤ ε for every y ∈ {0, 1}m),
we have Pr[(H,Um) ∈ V ] ≤ ε. Using

Pr[(H,H(X)) ∈ V ] = 1− Pr[(H,H(X)) ∈ V ]

≤ 1− Pr[(H,Un)) ∈ V ] + ε ≤ 2ε

we upper-bounded the statistical difference between (H,H(X)) and (H,Um) by

1

2
·

∑

(h,y)∈Hm
n ×{0,1}m

|Pr[(H,H(X)) = (h, y)]− Pr[(H,Um) = (h, y)]|

≤ ε

2
+

1

2
·
∑

(h,y)∈V

|Pr[(H,H(X)) = (h, y)]− Pr[(H,Um) = (h, y)]|

≤ ε

2
+

1

2
·
∑

(h,y)∈V

(Pr[(H,H(X)) = (h, y)] + Pr[(H,Um) = (h, y)])

≤ ε

2
+

1

2
· (2ε+ ε)

and the claim follows.

An alternative proof of Theorem 4.5. Define the collision probability of a random
variable Z, denote cp(Z), as the probability that two independent samples of Z yield the

same result. Alternatively, cp(Z)
def
=
∑

z Pr[Z = z]2. Theorem 4.5 follows by combining the
following two facts:

1. A general fact: If Z ∈ [N ] and cp(Z) ≤ (1 + 4ǫ2)/N then Z is ǫ-close to the uniform
distribution on [N ].

We prove the contra-positive: Assuming that the statistical distance between Z and
the uniform distribution on [N ] equals δ, we show that cp(Z) ≥ (1 + 4δ2)/N . This is

done by defining L
def
= {z : Pr[Z = z] < 1/N}, and lower-bounding cp(Z) by using the

fact that the collision probability minimizes on uniform distributions. Specifically,

cp(Z) ≥ |L| ·
(

Pr[Z ∈ L]

|L|

)2

+ (N − |L|) ·
(

Pr[Z ∈ [N ] \ L]

N − |L|

)2

,
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which equals 1 + (δ2/(1− ρ)ρ) ≥ 1 + 4δ2, where ρ = |L|/N .

2. The collision probability of (H,H(X)) is at most (1 + (2m/|S|))/(|Hm
n | · 2m). (Fur-

thermore, this holds even if Hm
n is only universal.)

The proof is by a straightforward calculation. Specifically, note that cp(H,H(X)) =
|Hm

n |−1 · Eh∈Hm
n

[cp(h(X))], whereas Eh∈Hm
n

[cp(h(X)] = |S|−2
∑

x1,x2∈S Pr[H(x1) =

H(x2)]. The sum equals |S| + (|S|2 − |S|) · 2−m, and so cp(H,H(X)) < |Hm
n |−1 ·

(2−m + |S|−1).

Note that it follows that (H,H(X)) is
√

2m/4|S|-close to (H,Um), which is a stronger bound
than the one provided in Theorem 4.5.

Stronger uniformity via higher independence. Recall that Lemma 4.4 asserts that
for each point in the range of the hash function, with high probability over the choice of the
hash function, this fixed point has approximately the expected number of preimages in S. A
stronger condition asserts that, with high probability over the choice of the hash function,
every point in its range has approximately the expected number of preimages in S. Such a
guarantee can be obtained when using n-wise independent hashing functions.

Lemma 4.6 Let m < n be integers, Hm
n be a family of n-wise independent hash functions,

and S ⊆ {0, 1}n. Then, for every ε ∈ (0, 1), for all but at most an 2m · (n · 2m/ε2|S|)n/2

fraction of h ∈ Hm
n , it holds that |{x ∈ S : h(x) = y}| = (1±ε)·|S|/2m for every y ∈ {0, 1}m.

Indeed, the lemma should be used with 2m < ε2|S|/4n. In particular, using m = log2 |S| −
log2(5n/ε

2) guarantees that with high probability each range elements has (1 ± ε) · |S|/2m

preimages in S. Under this setting of parameters |S|/2m = 5n/ε2, which is poly(n) when-
ever ε = 1/poly(n). Needless to say, this guarantee is stronger than the conclusion of
Theorem 4.5.

Proof: The proof follows the footsteps of the proof of Lemma 4.4, taking advantage of the
fact that the random variables (i.e., the ζx’s) are now 2t-wise independent, where t = n/2.
This allows for the use of a so-called 2tth moment analysis, which generalizes the analysis of
pairwise independent samplying (presented in Section 1.2). As in the proof of Lemma 4.4,
we fix any S and y, and define ζx = ζx(h) = 1 if and only if h(x) = y. Letting µ =
E[
∑

x∈S ζx] = |S|/2m and ζx = ζx − E(ζx), we start with Markov inequality:

Pr

[∣∣∣∣∣µ−
∑

x∈S

ζx

∣∣∣∣∣ > ε · µ
]

<
E[(
∑

x∈S ζx)2t]

ε2tµ2t

=

∑
x1,...,x2t∈S E[

∏2t
i=1 ζxi

]

ε2t · (|S|/2m)2t
(4.2)

Using 2t-wise independence, we note that only the terms in Eq. (4.2) that do not vanish are
those in which each variable appears with multiplicity. This mean that only terms having
less than t distinct variables contribute to Eq. (4.2). Now, for every j ≤ t, we have less than
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(|S|
j

)
· (2t!) < (2t!/j!) · |S|j terms with j distinct variables, and each contributes less than

(2−m)j to the sum. Thus, Eq. (4.2) is upper-bounded by

2t!

(ε2t|S|/2m)2t
·

t∑

j=1

(|S|/2m)j

j!
<

2t!/t!

(ε2|S|/2m)t
<

(
2t · 2m

ε2|S|

)t

where the first inequality assumes |S| > n2m (since the claim hold vacuously otherwise).
This upper-bounds the probability that a random h ∈ Hm

n violates the mapping condition
regarding a fixed y. Using a union bound on all y ∈ {0, 1}m, the lemma follows.

Notes

Pairwise independent hashing functions were essentially introduced by Carter and Weg-
man [28], who actually considered weaker condition (which they called Universal Hash
Functions): Specifically, in contrast to Definition 4.1, they only required that the colli-
sion probability is as in the case of random mappings; that is, for every two distinct domain
elements x, y ∈ {0, 1}n it holds that Prh∈Hm

n
[h(x) = h(y)] = 2−m.

The Leftover Hash Lemma (i.e., Theorem 4.5) was discovered independently in [23, 61],
yet it is an extension of the ideas underlying [96]. The name Leftover Hash Lemma was
coined in [62]. A generalized statement of the Theorem 4.5 refers to an arbitrary random
variable X over {0, 1}n that satisfies Pr[X=x] ≤ ε3 · 2−m, for every x. This generalization
is supported by essentially the same proof. Alternatively, the generalization can be deduced
from Theorem 4.5 by noting that such X can be represented by a convex combination of
distributions that are each uniform over some set of size 2m/ε3 (see Exercise 8.1).

Exercises

Exercise 4.1 (a mixing lemma or a generalization of Lemma 4.4) Let m < n and
Hm

n be as in Lemma 4.4. Then, for every S ⊆ {0, 1}n and T ⊂ {0, 1}m (and every ε > 0),
for all but at most an 2m

|T |·|S|ε2 fraction of h ∈ Hm
n it holds that |{x ∈ S : h(x) ∈ T }| =

(1± ε) · |T | · |S|/2m.

Guideline: Just follow the proof of Lemma 4.4, when defining ζx = ζ(h) = 1 if h(x) ∈ T and 0

otherwise.



Lecture 5

Expander Graphs

In this lecture we review basic facts regarding expander graphs that are most relevant to
the current book. For a wider perspective, the interested reader is referred to [60].

Loosely speaking, expander graphs are regular graphs of small degree that exhibit various
properties of cliques.1 In particular, we refer to properties such as the relative sizes of cuts
in the graph (i.e., relative to the number of edges), and the rate at which a random walk
converges to the uniform distribution (relative to the logarithm of the graph size to the base
of its degree).

Some technicalities. Typical presentations of expander graphs refer to one of several
variants. For example, in some sources, expanders are presented as bipartite graphs, whereas
in others they are presented as ordinary graphs (and are in fact very far from being bipartite).
We shall follow the latter convention. Furthermore, at times we implicitly consider an
augmentation of these graphs where self-loops are added to each vertex. For simplicity, we
also allow parallel edges.

We often talk of expander graphs while we actually mean an infinite collection of graphs
such that each graph in this collection satisfies the same property (which is informally
attributed to the collection). For example, when talking of a d-regular expander (graph) we
actually refer to an infinite collection of graphs such that each of these graphs is d-regular.
Typically, such a collection (or family) contains a single N -vertex graph for every N ∈ S,
where S is an infinite subset of N. Throughout this section, we denote such a collection by
{GN}N∈S, with the understanding that GN is a graph with N vertices and S is an infinite
set of natural numbers.

5.1 Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit construc-
tions, and two useful properties of expanders.

1Another useful intuition is that expander graphs exhibit various properties of random regular graphs of
the same degree.

63
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5.1.1 Two mathematical definitions

We start with two different definitions of expander graphs. These definitions are qualita-
tively equivalent and even quantitatively related. We start with an algebraic definition,
which seems technical in nature but is actually the definition typically used in complex-
ity theoretic applications, since it directly implies various “mixing properties” (see Sec-
tion 5.1.3). We later present a very natural combinatorial definition (which is the source of
the term “expander”).

The algebraic definition (eigenvalue gap). Identifying graphs with their adjacency
matrix, we consider the eigenvalues (and eigenvectors) of a graph (or rather of its adjacency
matrix). Any d-regular graph G = (V,E) has the uniform vector as an eigenvector cor-
responding to the eigenvalue d, and if G is connected and non-bipartite then the absolute
values of all other eigenvalues are strictly smaller than d. The eigenvalue bound, denoted
λ(G) < d, of such a graph G is defined as a tight upper-bound on the absolute value of all
the other eigenvalues. (In fact, in this case it holds that λ(G) < d − Ω(1/d|V |2).)2 The
algebraic definition of expanders refers to an infinite family of d-regular graphs and requires
the existence of a constant eigenvalue bound that holds for all the graphs in the family.

Definition 5.1 An infinite family of d-regular graphs, {GN}N∈S, where S ⊆ N, satisfies
the eigenvalue bound β if for every N ∈ S it holds that λ(GN ) ≤ β. In such a case, we say
that {GN}N∈S is a family of (d, β)-expanders, and call d− β its eigenvalue gap.

It will be often convenient to consider relative (or normalized) versions of the foregoing
quantities, obtained by division by d.

The combinatorial definition (expansion). Loosely speaking, expansion requires that
any (not too big) set of vertices of the graph has a relatively large set of neighbors. Specifi-
cally, a graph G = (V,E) is c-expanding if, for every set S ⊂ V of cardinality at most |V |/2,
it holds that

ΓG(S)
def
= {v : ∃u∈S s.t. {u, v}∈E} (5.1)

has cardinality at least (1 + c) · |S|. Assuming the existence of self-loops on all vertices,
the foregoing requirement is equivalent to requiring that |ΓG(S) \ S| ≥ c · |S|. In this case,
every connected graph G = (V,E) is (1/|V |)-expanding.3 The combinatorial definition of
expanders refers to an infinite family of d-regular graphs and requires the existence of a
constant expansion bound that holds for all the graphs in the family.

Definition 5.2 An infinite family of d-regular graphs, {GN}N∈S is c-expanding if for every
N ∈ S it holds that GN is c-expanding.

The two definitions of expander graphs are related (see [9, Sec. 9.2] or [60, Sec. 4.5]).
Specifically, the “expansion bound” and the “eigenvalue bound” are related as follows.

2This follows from the connection to the combinatorial definition (see Theorem 5.3). Specifically, the
square of this graph, denoted G2, is |V |−1-expanding and thus it holds that λ(G)2 = λ(G2) < d2−Ω(|V |−2).

3In contrast, a bipartite graph G = (V, E) is not expanding, because it always contains a set S of size at
most |V |/2 such that |ΓG(S)| ≤ |S| (although it may hold that |ΓG(S) \ S| ≥ |S|).
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Theorem 5.3 Let G be a d-regular graph having a self-loop on each vertex.4

1. The graph G is c-expanding for c ≥ (d− λ(G))/2d.

2. If G is c-expanding then d− λ(G) ≥ c2/(4 + 2c2).

Thus, any non-zero bound on the combinatorial expansion of a family of d-regular graphs
yields a non-zero bound on its eigenvalue gap, and vice versa. Note, however, that the back-
and-forth translation between these measures is not tight. We note that most applications in
complexity theory refer to the algebraic definition, and that the loss incurred in Theorem 5.3
is immaterial for them.

Amplification. The “quality of expander graphs improves” by raising these graphs to
any power t > 1 (i.e., raising their adjacency matrix to the tth power), where this operation
corresponds to replacing t-paths (in the original graphs) by edges (in the resulting graphs).
Specifically, when considering the algebraic definition, it holds that λ(Gt) = λ(G)t, but
indeed the degree also gets raised to the power t. Still, the ratio λ(Gt)/dt deceases with t. An
analogous phenomenon occurs also under the combinatorial definition, provided that some
suitable modifications are applied. For example, if for every S ⊆ V it holds that |ΓG(S)| ≥
min((1+c)·|S|, |V |/2), then for every S ⊆ V it holds that |ΓGt(S)| ≥ min((1+c)t·|S|, |V |/2).

The optimal eigenvalue bound. For every d-regular graph G = (V,E), it holds that
λ(G) ≥ 2γG ·

√
d− 1, where γG = 1 − O(1/ logd |V |). Thus, for any infinite family of

(d, λ)-expanders, it must holds that λ ≥ 2
√
d− 1.

5.1.2 Two levels of explicitness

Towards discussing various notions of explicit constructions of graphs, we need to fix a
representation of such graphs. Specifically, throughout this section, when referring to an
infinite family of graphs {GN}N∈S, we shall assume that the vertex set of GN equals [N ].
Indeed, at times, we shall consider vertex sets having a different structure (e.g., [m]× [m] for
some m ∈ N), but in all these cases there exists a simple isomorphism of these sets to the
canonical representation (i.e., there exists an efficiently computable and invertible mapping
of the vertex set of GN to [N ]).

A mild notion of explicit constructiveness refers to the complexity of constructing the
entire object (i.e., the graph).5 Applying this notion to our setting, we say that an infinite
family of graphs {GN}N∈S is explicitly constructible if there exists a polynomial-time algo-
rithm that, on input 1N (where N ∈ S), outputs the list of the edges in the N -vertex graph

4Recall that in such a graph G = (V, E) it holds that ΓG(S) ⊇ S for every S ⊆ V , and thus |ΓG(S)| =
|ΓG(S) \ S| + |S|. Furthermore, in such a graph all eigenvalues are greater than or equal to −d + 1, and
thus if d−λ(G) < 1 then this is due to a positive eigenvalue of G. These facts are used for bridging the gap
between Theorem 5.3 and the more standard versions (see, e.g., [9, Sec. 9.2]) that refer to variants of both
definitions. Specifically, [9, Sec. 9.2] refers to Γ+

G
(S) = ΓG(S) \ S and λ2(G), where λ2(G) is the second

largest eigenvalue of G, rather than referring to ΓG(S) and λ(G). Note that, in general, ΓG(S) may be
attained by the difference between the smallest eigenvalue of G (which may be negative) and −d.

5Compare Section 2.3.1, where mild and strong notions of explicitness (for error-correcting codes) are
discussed.



66 LECTURE 5. EXPANDER GRAPHS

GN . That is, the entire graph is constructed in time that is polynomial in its size (i.e., in
poly(N)-time).

The foregoing (mild) level of explicitness suffices when the application requires holding
the entire graph and/or when the running-time of the application is lower-bounded by
the size of the graph. In contrast, other applications refer to a huge virtual graph (which is
much bigger than their running time), and only require the computation of the neighborhood
relation in such a graph. In this case, the following stronger level of explicitness is relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs {GN}N∈S is a
polynomial-time algorithm that on input N ∈ S (in binary), a vertex v in the N -vertex graph
GN (i.e., v ∈ [N ]), and an index i ∈ [d], returns the ith neighbor of v. That is, the “neighbor
query” is answered in time that is polylogarithmic in the size of the graph. Needless to say,
this strong level of explicitness implies the basic (mild) level.

An additional requirement, which is often forgotten but is very important, refers to the
“tractability” of the set S. Specifically, we require the existence of an efficient algorithm that
given any n ∈ N finds an s∈S such that n ≤ s < 2n. Corresponding to the two foregoing
levels of explicitness, “efficient” may mean either running in time poly(n) or running in time
poly(logn). The requirement that n ≤ s < 2n suffices in most applications, but in some
cases a smaller interval (e.g., n ≤ s < n +

√
n) is required, whereas in other cases a larger

interval (e.g., n ≤ s < poly(n)) suffices.

Greater flexibility. In continuation to the foregoing paragraph, we comment that ex-
panders can be combined in order to obtain expanders for a wider range of graph sizes.
For example, given two d-regular c-expanding graphs, G1 = (V1, E1) and G2 = (V2, E2)
where |V1| ≤ |V2| and c ≤ 1, we can obtain a (d + 1)-regular c/2-expanding graph on
|V1|+ |V2| vertices by connecting the two graphs using a perfect matching of V1 and |V1| of
the vertices of V2 (and adding self-loops to the remaining vertices of V2). More generally,
combining the d-regular c-expanding graphs G1 = (V1, E1) through Gt = (Vt, Et), where

N ′
def
=
∑t−1

i=1 |Vi| ≤ |Vt|, yields a (d + 1)-regular c/2-expanding graph on
∑t

i=1 |Vi| vertices
(by using a perfect matching of ∪t−1

i=1Vi and N ′ of the vertices of Vt).

5.1.3 Two properties

The following two properties provide a quantitative interpretation to the statement that
expanders approximate the complete graph (or behave approximately like a complete graph).
When referring to (d, λ)-expanders, the deviation from the behavior of a complete graph is
represented by an error term that is linear in λ/d.

The mixing lemma. Loosely speaking, the following (folklore) lemma asserts that in
expander graphs (for which λ ≪ d) the fraction of edges connecting two large sets of
vertices approximately equals the product of the densities of these sets. This property is
called mixing.
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Lemma 5.4 (Expander Mixing Lemma): For every d-regular graph G = (V,E) and for
every two subsets A,B ⊆ V it holds that

∣∣∣∣∣
|(A×B) ∩ ~E|

| ~E|
− |A||V | ·

|B|
|V |

∣∣∣∣∣ ≤
λ(G)

√
|A| · |B|

d · |V | ≤ λ(G)

d
(5.2)

where ~E denotes the set of directed edges (i.e., vertex pairs) that correspond to the undirected

edges of G (i.e., ~E = {(u, v) : {u, v}∈E} and | ~E| = d|V |).

In particular, |(A×A) ∩ ~E| = (ρ(A) · d± λ(G)) · |A|, where ρ(A) = |A|/|V |. It follows that

|(A× (V \A)) ∩ ~E| = ((1− ρ(A)) · d± λ(G)) · |A|.

Proof: Let N
def
= |V | and λ

def
= λ(G). For any subset of the vertices S ⊆ V , we denote its

density in V by ρ(S)
def
= |S|/N . Hence, Eq. (5.2) is restated as

∣∣∣∣∣
|(A×B) ∩ ~E|

d ·N − ρ(A) · ρ(B)

∣∣∣∣∣ ≤
λ
√
ρ(A) · ρ(B)

d .

We proceed by providing bounds on the value of |(A×B)∩ ~E|. To this end we let a denote the
N -dimensional Boolean vector having 1 in the ith component if and only if i ∈ A. The vector
b is defined similarly. Denoting the adjacency matrix of the graph G by M = (mi,j), we

note that |(A×B)∩ ~E| equals a⊤Mb (because (i, j) ∈ (A×B)∩ ~E if and only if it holds that
i ∈ A, j ∈ B and mi,j = 1). We consider the orthogonal eigenvector basis, e1, ..., eN , where
e1 = (1, ..., 1)⊤ and ei

⊤ei = N for each i, and write each vector as a linear combination of
the vectors in this basis. Specifically, we denote by ai the coefficient of a in the direction of
ei; that is, ai = (a⊤ei)/N and a =

∑
i aiei. Note that a1 = (a⊤e1)/N = |A|/N = ρ(A) and∑N

i=1 a
2
i = (a⊤a)/N = |A|/N = ρ(A). Similarly for b. It now follows that

|(A×B) ∩ ~E| = a⊤M
N∑

i=1

biei

=
N∑

i=1

biλi · a⊤ei

where λi denotes the ith eigenvalue of M . Note that λ1 = d and for every i ≥ 2 it holds
that |λi| ≤ λ. Thus,

|(A×B) ∩ ~E|
dN

=
N∑

i=1

biλi · ai

d

= ρ(A)ρ(B) +

N∑

i=2

λiaibi
d

∈
[
ρ(A)ρ(B) ± λ

d
·

N∑

i=2

aibi

]
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Using
∑N

i=1 a
2
i = ρ(A) and

∑N
i=1 b

2
i = ρ(B), and applying Cauchy-Schwartz Inequality, we

bound
∑N

i=2 aibi by
√
ρ(A)ρ(B). The lemma follows.

The random walk lemma. Loosely speaking, the first part of the following lemma
asserts that, as far as remaining “trapped” in some subset of the vertex set is concerned, a
random walk on an expander approximates a random walk on the complete graph.

Lemma 5.5 (Expander Random Walk Lemma): Let G = ([N ], E) be a d-regular graph,
and consider walks on G that start from a uniformly chosen vertex and take ℓ−1 additional
random steps, where in each such step we uniformly selects one out of the d edges incident
at the current vertex and traverses it.

Part 1 – Theorem 3.6 (restated): Let W be a subset of [N ] and ρ
def
= |W |/N . Then the prob-

ability that such a random walk stays in W is at most

ρ ·
(
ρ+ (1− ρ) · λ(G)

d

)ℓ−1

.

(5.3)

Part 2 – Exercise 3.18 (restated): For any W0, ...,Wℓ−1 ⊆ [N ], the probability that a random
walk of length ℓ intersects W0 ×W1 × · · · ×Wℓ−1 is at most

√
ρ0 ·

ℓ−1∏

i=1

√
ρi + (λ/d)

2
, (5.4)

where ρi
def
= |Wi|/N .

The basic principle underlying Lemma 5.5 was discovered by Ajtai, Komlos, and Sze-
merédi [3], who proved a bound as in Eq. (5.4). The better analysis yielding Theorem 3.6 is
due to [65, Cor. 6.1]. A more general bound that refer to the probability of visiting W for
a number of times that approximates |W |/N is given in [58], which actually considers an
even more general problem (i.e., obtaining Chernoff-type bounds for random variables that
are generated by a walk on an expander).

Proof of Equation (5.4): The basic idea is viewing events occuring during the random
walk as an evolution of a corresponding probability vector under suitable transformations.
The transformations correspond to taking a random step in G and to passing through
a “sieve” that keeps only the entries that correspond to the current set Wi. The key
observation is that the first transformation shrinks the component that is orthogonal to the
uniform distribution, whereas the second transformation shrinks the component that is in
the direction of the uniform distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix

of G divided by d), and let λ̂
def
= λ(G)/d (i.e., λ̂ upper-bounds the absolute value of every

eigenvalue of A except the first one). Note that the uniform distribution, represented by
the vector u = (N−1, ..., N−1)⊤, is the eigenvector of A that is associated with the largest
eigenvalue (which is 1). Let Pi be a 0-1 matrix that has 1-entries only on its diagonal such
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that entry (j, j) is set to 1 if and only if j ∈Wi. Then, the probability that a random walk
of length ℓ intersects W0 ×W1 × · · · ×Wℓ−1 is the sum of the entries of the vector

v
def
= Pℓ−1A · · ·P2AP1AP0u. (5.5)

We are interested in upper-bounding ‖v‖1, and use ‖v‖1 ≤
√
N · ‖v‖, where ‖z‖1 and ‖z‖

denote the L1-norm and L2-norm of z, respectively (e.g., ‖u‖1 = 1 and ‖u‖ = N−1/2). The
key observation is that the linear transformation PiA shrinks every vector.

Main Claim. For every z, it holds that ‖PiAz‖ ≤ (ρi + λ̂2)1/2 · ‖z‖.
Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pi shrinks
the component of z that is in the direction of u. Specifically, we decompose z = z1 + z2
such that z1 is the projection of z on u and z2 is the component orthogonal to u. Then,
using the triangle inequality and other obvious facts (which imply ‖PiAz1‖ = ‖Piz1‖ and
‖PiAz2‖ ≤ ‖Az2‖), we have

‖PiAz1 + PiAz2‖ ≤ ‖PiAz1‖+ ‖PiAz2‖
≤ ‖Piz1‖+ ‖Az2‖
≤ √

ρi · ‖z1‖+ λ̂ · ‖z2‖

where the last inequality uses the fact that Pi shrinks any uniform vector by eliminating
1− ρi of its elements, whereas A shrinks the length of any eigenvector except u by a factor
of at least λ̂. Using the Cauchy-Schwartz inequality6, we get

‖PiAz‖ ≤
√
ρi + λ̂2 ·

√
‖z1‖2 + ‖z2‖2

=

√
ρi + λ̂2 · ‖z‖

where the equality is due to the fact that z1 is orthogonal to z2.

Recalling Eq. (5.5) and using the Main Claim (and ‖v‖1 ≤
√
N · ‖v‖), we get

‖v‖1 ≤
√
N · ‖Pℓ−1A · · ·P2AP1AP0u‖

≤
√
N ·

(
ℓ−1∏

i=1

√
ρi + λ̂2

)
· ‖P0u‖.

Finally, using ‖P0u‖ =
√
ρ0N · (1/N)2 =

√
ρ0/N , we establish Eq. (5.4).

Rapid mixing. A property related to Lemma 5.5 is that a random walk starting at any
vertex converges to the uniform distribution on the expander vertices after a logarithmic
number of steps. Specifically, we claim that starting at any distribution s (including a
distribution that assigns all weight to a single vertex) after ℓ steps on a (d, λ)-expander

6That is, we get
√
ρi‖z1‖+λ̂‖z2‖ ≤

√
ρi + λ̂2 ·

√
‖z1‖2 + ‖z2‖2, by using

∑n

i=1
ai ·bi ≤

(∑n

i=1
ai

2
)1/2 ·

(∑n

i=1
bi

2
)1/2

, with n = 2, a1 =
√
ρi, b1 = ‖z1‖, etc.
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G = ([N ], E) we reach a distribution that is
√
N ·(λ/d)ℓ-close to the uniform distribution over

[N ]. Using notation as in the proof of Eq. (5.4), the claim asserts that ‖Aℓs−u‖1 ≤
√
N · λ̂ℓ,

which is meaningful only for ℓ > 0.5 · log1/λ̂N . The claim is proved by recalling that

‖Aℓs − u‖1 ≤
√
N · ‖Aℓs − u‖ and using the fact that s − u is orthogonal to u (because

the former is a zero-sum vector). Thus, ‖Aℓs − u‖ = ‖Aℓ(s − u)‖ ≤ λ̂ℓ‖s − u‖ and using
‖s− u‖ < 1 the claim follows.

5.2 Constructions

Many explicit constructions of (d, λ)-expanders are known. The first such construction was
presented in [81] (where λ < d was not explicitly bounded), and an optimal construction
(i.e., an optimal eigenvalue bound of λ = 2

√
d− 1) was first provided in [79]. Most of

these constructions are quite simple (see, e.g., Section 5.2.1), but their analysis is based on
non-elementary results from various branches of mathematics. In contrast, the construction
of Reingold, Vadhan, and Wigderson [91], presented in Section 5.2.2, is based on an iter-
ative process, and its analysis is based on a relatively simple algebraic fact regarding the
eigenvalues of matrices.

Before turning to these explicit constructions we note that it is relatively easy to prove
the existence of 3-regular expanders, by using the Probabilistic Method (see Lecture 2) and
referring to the combinatorial definition of expansion: For details, see Section 2.4.

5.2.1 The Margulis–Gabber–Galil Expander

For every natural number m, consider the graph with vertex set Zm × Zm and the edge
set in which every 〈x, y〉 ∈ Zm×Zm is connected to the vertices 〈x± y, y〉, 〈x± (y + 1), y〉,
〈x, y ± x〉, and 〈x, y ± (x+ 1)〉, where the arithmetic is modulo m. This yields an extremely
simple 8-regular graph with an eigenvalue bound that is a constant λ < 8 (which is inde-
pendent of m). Thus, we get:

Theorem 5.6 There exists a strongly explicit construction of a family of (8, 7.9999)-expanders
for graph sizes {m2 : m∈N}. Furthermore, the neighbors of a vertex in these expanders can
be computed in logarithmic-space.7

An appealing property of Theorem 5.6 is that, for every n ∈ N, it directly yields expanders
with vertex set {0, 1}n. This is obvious in case n is even, but can be easily achieved also
for odd n (e.g., use two copies of the graph for n − 1, and connect the two copies by the
obvious perfect matching).

Theorem 5.6 is due to Gabber and Galil [39], building on the basic approach suggested by
Margulis [81]. We mention again that the (strongly explicit) (d, λ)-expanders of [79] achieve
the optimal eigenvalue bound (i.e., λ = 2

√
d− 1), but there are annoying restrictions on the

7In fact, for m that is a power of two (and under a suitable encoding of the vertices), the neighbors
can be computed by a on-line algorithm that uses a constant amount of space. The same holds also for a
variant in which each vertex 〈x, y〉 is connected to the vertices 〈x± 2y, y〉, 〈x± (2y + 1), y〉, 〈x, y ± 2x〉, and
〈x, y ± (2x+ 1)〉. This variant yields a better known bound on λ, i.e., λ ≤ 5

√
2 ≈ 7.071.
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degree d (i.e., d− 1 should be a prime congruent to 1 modulo 4) and on the graph sizes for
which this construction works.8

5.2.2 The Iterated Zig-Zag Construction

The starting point of the following construction is a very good expander G of constant
size, which may be found by an exhaustive search. The construction of a large expander
graph proceeds in iterations, where in the ith iteration the current graph Gi and the fixed
graph G are combined, resulting in a larger graph Gi+1. The combination step guarantees
that the expansion property of Gi+1 is at least as good as the expansion of Gi, while Gi+1

maintains the degree of Gi and is a constant times larger than Gi. The process is initiated
with G1 = G2 and terminates when we obtain a graph Gt of approximately the desired size
(which requires a logarithmic number of iterations).

1

2

35

6
1

2

35

6

4

4

u v

Figure 5.1: Detail of the Zig-Zag product of G′ and G. In this example G′ is 6-regular and G
is a 3-regular graph having six vertices. In the graph G′ (not shown), the 2nd edge of vertex
u is incident at v, as its 5th edge. The wide 3-segment line shows one of the corresponding
edges of G′©z G, which connects the vertices 〈u, 3〉 and 〈v, 2〉.

The Zig-Zag product. The heart of the combination step is a new type of “graph prod-
uct” called Zig-Zag product. This operation is applicable to any pair of graphs G = ([D], E)
and G′ = ([N ], E′), provided that G′ (which is typically larger than G) is D-regular. For
simplicity, we assume that G is d-regular (where typically d≪ D). The Zig-Zag product of
G′ and G, denoted G′©z G, is defined as a graph with vertex set [N ]× [D] and an edge set
that includes an edge between 〈u, i〉 ∈ [N ] × [D] and 〈v, j〉 if and only if {i, k}, {ℓ, j} ∈ E
and the kth edge incident at u equals the ℓth edge incident at v. That is, 〈u, i〉 and 〈v, j〉 are
connected in G′©z G if there exists a “three step sequence” consisting of a G-step from 〈u, i〉

8The construction in [79] allows graph sizes of the form (p3 − p)/2, where p ≡ 1 (mod 4) is a prime
such that d − 1 is a quadratic residue modulo p. As stated in [7, Sec. 2], the construction can be extended

to graph sizes of the form (p3k − p3k−2)/2, for any k ∈ N and p as in the foregoing.
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to 〈u, k〉 (according to the edge {i, k} of G), followed by a G′-step from 〈u, k〉 to 〈v, ℓ〉 (ac-
cording to the kth edge of u in G′ (which is the ℓth edge of v)), and a final G-step from 〈v, ℓ〉
to 〈v, j〉 (according to the edge {ℓ, j} of G). See Figure 5.1 as well as further formalization
(which follows).

Teaching note: The following paragraph, which provides a formal description of the

zig-zag product, can be ignored in first reading but is useful for more advanced discus-

sion.

It will be convenient to represent graphs like G′ by their edge-rotation function, denoted
R′ : [N ] × [D] → [N ] × [D], such that R′(u, i) = (v, j) if {u, v} is the ith edge incident at
u as well as the jth edge incident at v. That is, R′ rotates the pair (u, i), which represents
one “side” of the edge {u, v} (i.e., the side incident at u as its ith edge), resulting in the
pair (v, j), which represents the other side of the same edge (which is the jth edge incident
at v). For simplicity, we assume that the (constant-size) d-regular graph G = ([D], E)
is edge-colorable with d colors, which in turn yields a natural edge-rotation function (i.e.,
R(i, α) = (j, α) if the edge {i, j} is colored α). We will denote by Eα(i) the vertex reached
from i ∈ [D] by following the edge colored α (i.e., Eα(i) = j iff R(i, α) = (j, α)). The
Zig-Zag product of G′ and G, denoted G′©z G, is then defined as a graph with the vertex set
[N ]× [D] and the edge-rotation function

(〈u, i〉, 〈α, β〉) 7→ (〈v, j〉, 〈β, α〉) if R′(u,Eα(i)) = (v,Eβ(j)). (5.6)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of vertex 〈u, i〉 ∈
[N ] × [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge) if R(u,Eα(i)) = (v,Eβ(j)),
where indeed Eβ(Eβ(j)) = j. Intuitively, based on 〈α, β〉, we first take a G-step from 〈u, i〉
to 〈u,Eα(i)〉, then viewing 〈u,Eα(i)〉 ≡ (u,Eα(i)) as a side of an edge of G′ we rotate it

(i.e., we effectively take a G′-step) reaching (v, j′)
def
= R′(u,Eα(i)), and finally we take a

G-step from 〈v, j′〉 to 〈v,Eβ(j′)〉.
Clearly, the graph G′©z G is d2-regular and has D · N vertices. The key fact, proved

in [91] (using techniques as in Section 5.1.3), is that the relative eigenvalue-value of the
zig-zag product is upper-bounded by the sum of the relative eigenvalue-values of the two
graphs; that is, λ̄(G′©z G) ≤ λ̄(G′)+ λ̄(G), where λ̄(·) denotes the relative eigenvalue-bound
of the relevant graph. The (qualitative) fact that G′©z G is an expander if both G′ and G are
expanders is very intuitive (e.g., consider what happens if G′ or G is a clique). Things are
even more intuitive if one considers the (related) replacement product of G′ and G, denoted
G′©r G, where there is an edge between 〈u, i〉 ∈ [N ]× [D] and 〈v, j〉 if and only if either u = v
and {i, j} ∈ E or the ith edge incident at u equals the jth edge incident at v.

The iterated construction. The iterated expander construction uses the aforementioned
zig-zag product as well as graph squaring. Specifically, the construction starts9 with the
d2-regular graph G1 = G2 = ([D], E2), where D = d4 and λ̄(G) < 1/4, and proceeds in
iterations such that Gi+1 = G2

i©z G for i = 1, 2, ..., t−1, where t is logarithmic in the desired
graph size. That is, in each iteration, the current graph is first squared and then composed

9Recall that, for a sufficiently large constant d, we first find a d-regular graph G = ([d4], E) satisfying
λ̄(G) < 1/4, by exhaustive search.
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with the fixed (d-regular D-vertex) graph G via the zig-zag product. This process maintains
the following two invariants:

1. The graph Gi is d2-regular and has Di vertices.

(The degree bound follows from the fact that a zig-zag product with a d-regular graph
always yields a d2-regular graph.)

2. The relative eigenvalue-bound of Gi is smaller than one half (i.e., λ̄(Gi) < 1/2).

(Here we use the fact that λ̄(G2
i−1©z G) ≤ λ̄(G2

i−1) + λ̄(G), which in turn equals
λ̄(Gi−1)

2 + λ̄(G) < (1/2)2 + (1/4). Note that graph squaring is used to reduce the
relative eigenvalue of Gi before increasing it by zig-zag product with G.)

In order to show that we can actually construct Gi, we show that we can compute the edge-
rotation function that correspond to its edge set. This boils down to showing that, given
the edge-rotation function of Gi−1, we can compute the edge-rotation function of G2

i−1 as
well as of its zig-zag product with G. Note that this entire computation amounts to two
recursive calls to computations regarding Gi−1 (and two computations that correspond to
the constant graph G). But since the recursion depth is logarithmic in the size of the final
graph (i.e., t = logD |vertices(Gt)|), the total number of recursive calls is polynomial in the
size of the final graph (and thus the entire computation is polynomial in the size of the final
graph). This suffices for the minimal (i.e., “mild”) notion of explicitness, but not for the
strong one.

The strongly explicit version. To achieve a strongly explicit construction, we slightly
modify the iterative construction. Rather than letting Gi+1 = G2

i©z G, we let Gi+1 =
(Gi × Gi)

2©z G, where G′ × G′ denotes the tensor product of G′ with itself; that is, if
G′ = (V ′, E′) then G′ ×G′ = (V ′ × V ′, E′′), where

E′′ = {{〈u1, u2〉, 〈v1, v2〉} : {u1, v1}, {u2, v2}∈E′}

(i.e., 〈u1, u2〉 and 〈v1, v2〉 are connected in G′×G′ if for i = 1, 2 it holds that ui is connected
to vi in G′). The corresponding edge-rotation function is

R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈j1, j2〉),

where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2). We still use G1 = G2, where (as before)
G is d-regular and λ̄(G) < 1/4, but here G has D = d8 vertices.10 Using the fact that
tensor product preserves the relative eigenvalue-bound while squaring the degree (and the
number of vertices), we note that the modified iteration Gi+1 = (Gi × Gi)

2©z G yields a

d2-regular graph with (D2i−1)2 · D = D2i+1−1 vertices, and that λ̄(Gi+1) < 1/2 (because
λ̄((Gi×Gi)

2©z G) ≤ λ̄(Gi)
2+ λ̄(G)). Computing the neighbor of a vertex in Gi+1 boils down

to a constant number of such computations regarding Gi, but due to the tensor product
operation the depth of the recursion is only double-logarithmic in the size of the final graph
(and hence logarithmic in the length of the description of vertices in this graph).

10The reason for the change is that (Gi ×Gi)2 will be d8-regular, since Gi will be d2-regular.
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Digest. In the first construction, the zig-zag product was used both in order to increase the
size of the graph and to reduce its degree. However, as indicated by the second construction
(where the tensor product of graphs is the main vehicle for increasing the size of the graph),
the primary effect of the zig-zag product is reducing the graph’s degree, and the increase in
the size of the graph is merely a side-effect.11 In both cases, graph squaring is used in order
to compensate for the modest increase in the relative eigenvalue-bound caused by the zig-zag
product. In retrospect, the second construction is the “correct” one, because it decouples
three different effects, and uses a natural operation to obtain each of them: Increasing
the size of the graph is obtained by tensor product of graphs (which in turn increases the
degree), the desired degree reduction is obtained by the zig-zag product (which in turn
slightly increases the relative eigenvalue-bound), and graph squaring is used in order to
reduce the relative eigenvalue-bound.

Advanced topic: Stronger bound regarding the effect of the zig-zag product. In
the foregoing description we relied on the fact, proved in [91], that the relative eigenvalue-
bound of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-bounds
of the two graphs (i.e., λ̄(G′©z G) ≤ λ̄(G′) + λ̄(G))). Actually, a stronger upper-bound is
proved in [91]: It holds that λ̄(G′©z G) ≤ f(λ̄(G′), λ̄(G))), where

f(x, y)
def
=

(1− y2) · x
2

+

√(
(1− y2) · x

2

)2

+ y2 (5.7)

Indeed, f(x, y) ≤ (1− y2) · x+ y ≤ x+ y. On the other hand, for x ≤ 1, we have f(x, y) ≤
(1−y2)·x

2 + 1+y2

2 = 1− (1−y2)·(1−x)
2 , which implies

λ̄(G′©z G) ≤ 1− (1− λ̄(G)2) · (1− λ̄(G′))

2
. (5.8)

Thus, 1− λ̄(G′©z G) ≥ (1− λ̄(G)2) ·(1− λ̄(G′))/2, and it follows that the zig-zag product has
a positive eigenvalue-gap if both graphs have positive eigenvalue-gaps (i.e., λ(G′©z G) < 1
if both λ(G) < 1 and λ(G′) < 1). Furthermore, if λ̄(G) < 1/

√
3 then 1 − λ̄(G′©z G) >

(1− λ̄(G′))/3. This fact plays an important role in the work of [90] (cf. [44, Sec. 5.2.4]).

11We mention that this side-effect may actually be undesired in some applications. For example, in the
context of [90] (cf. [44, Sec. 5.2.4]) we would rather not have the graph grow in size, but we can tolerate the
constant size blow-up (caused by zig-zag product with a constant-size graph).



Lecture 6

Sampling

We tentatively include two texts: a brief overview (i.e., Section 6.1) and a more detailed
overview (i.e., Sections 6.2–6.9).

6.1 A brief overview

In many settings repeated sampling is used to estimate the average of a huge set of values.
Namely, a “value” function ν :{0, 1}n→R is defined over a huge domain, and one wishes to

approximate ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x) without having to inspect the value of ν at each point

in the domain. The obvious thing to do is to sample the domain at random, and obtain an
approximation to ν̄ by taking the average of the values of ν on the sample points. It turns
out that certain “pseudorandom” sequences of sample points may serve almost as well as
truly random sequences of sample points.

Formal Setting. It is essential to have the range of ν be bounded (or else no reasonable
approximation is possible). For simplicity, we adopt the convention of having [0, 1] be the
range of ν, and the problem for other (predetermined) ranges can be treated analogously.
Our notion of approximation depends on two parameters: accuracy (denoted ε) and error
probability (denoted δ). We wish to have an algorithm that, with probability at least 1− δ,
gets within ε of the correct value. This leads to the following definition.

Definition 6.1 (sampler): A sampler is a randomized algorithm that on input parameters
n (length), ε (accuracy) and δ (error), and oracle access to any function ν : {0, 1}n →
[0, 1], outputs, with probability at least 1 − δ, a value that is at most ε away from ν̄

def
=

1
2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ε, δ)− ν̄| > ε] < δ

where the probability is taken over the internal coin tosses of the sampler, also called its
random seed.
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A non-adaptive sampler is a sampler that consists of two deterministic algorithms: a sample
generating algorithm, G, and a evaluation algorithm, V . On input n, ε, δ and a random seed,
algorithm G generates a sequence of queries, denoted s1, ..., sm ∈ {0, 1}n. Algorithm V is
given the corresponding ν-values (i.e., ν(s1), ..., ν(sm)) and outputs an estimate to ν̄.

We are interested in “the complexity of sampling” quantified as a function of the parameters
n, ε and δ. Specifically, we will consider three complexity measures: The sample complexity
(i.e., the number of oracle queries made by the sampler); the randomness complexity (i.e.,
the length of the random seed used by the sampler); and the computational complexity (i.e.,
the running-time of the sampler). We say that a sampler is efficient if its running-time is
polynomial in the total length of its queries (i.e., polynomial in both its sample complexity
and in n). We will focus on efficient samplers. Furthermore, we will focus on efficient
samplers that have optimal (up-to a constant factor) sample complexity, and will wish the
randomness complexity to be as low as possible.

We note that all positive results to be reviewed refer to non-adaptive samplers, whereas
the lower bound hold also for general samplers. For more details see [41, Sec. 3.6.4].

The naive sampler. The straightforward method (or the naive sampler) consists of uni-
formly and independently selecting sufficiently many sample points (queries), and outputting
the average value of the function on these points. Using Chernoff Bound it follows that

O( log(1/δ)
ε2 ) sample points suffice. The naive sampler is optimal (up-to a constant factor) in

its sample complexity, but is quite wasteful in randomness.

It is known that Ω( log(1/δ)
ε2 ) samples are needed in any sampler, and that that samplers

that make s(n, ε, δ) queries require randomness at least n+log2(1/δ)− log2 s(n, ε, δ)−O(1).
These lower bounds are tight (as demonstrated by non-explicit and inefficient samplers).
These facts guide our quest for improvements, which is aimed at finding more randomness-
efficient ways of efficiently generating sample sequences that can be used in conjunction
with an appropriate evaluation algorithm V . (We stress that V need not necessarily take
the average of the values of the sampled points.)

The pairwise-independent sampler. Using a pairwise-independence generator for gen-
erating sample points, along with the natural evaluation algorithm (which outputs the av-
erage of the values of these points), we obtain a great saving in the randomness complexity:
pairwise-independent sampling uses 2n random bits rather than the Ω((log(1/δ))ε−2 · n)
coins used by the naive sampler. Using Eq. (1.4) it follows that O(1/δε2) samples are suf-
ficient to get accuracy ε with error δ. Thus, for constant δ > 0, the Pairwise-Independent
Sampler is optimal up-to a constant factor in both its sample and randomness complexities.
However, for small δ (i.e., δ = o(1)), this sampler is wasteful in sample complexity.

The Median-of-Averages sampler. A new idea is required for going further, and a
relevant tool – random walks on expander graphs – is needed too. Specifically, we combine
the Pairwise-Independent Sampler with the Expander Random Walk Generator to obtain a
new sampler. The new sampler uses a random walk on an expander with vertex set {0, 1}2n

to generate a sequence of t
def
= O(log(1/δ)) related seeds for t invocations of the Pairwise-

Independent Sampler, where each of these invocations uses the corresponding 2n bits to
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generate a sequence of O(1/ε2) samples in {0, 1}n. Furthermore, each of these invocations
returns a value that, with probability at least 0.9, is ε-close to ν̄. The Expander Random
Walk Theorem is used to show that, with probability at least 1 − exp(−t) = 1 − δ, most
of these t invocations return an ε-close approximation. Hence, the median among these
t values is an (ε, δ)-approximation to the correct value. The resulting sampler, called the

Median-of-Averages Sampler, has sample complexity O( log(1/δ)
ε2 ) and randomness complexity

2n+O(log(1/δ)), which is optimal up-to a constant factor in both complexities.

Further improvements. The randomness complexity of the Median-of-Averages Sam-
pler can be improved from 2n + O(log(1/δ)) to n + O(log(1/δε)), while maintaining its

(optimal) sample complexity (of O( log(1/δ)
ε2 )). This is done by replacing the Pairwise In-

dependent Sampler by a sampler that picks a random vertex in a suitable expander and
samples all its neighbors.

Averaging Samplers. Averaging (a.k.a. Oblivious) samplers are non-adaptive samplers
in which the evaluation algorithm is the natural one: that is, it merely outputs the average of
the values of the sampled points. Indeed, the Pairwise-Independent Sampler is an averaging
sampler, whereas the Median-of-Averages Sampler is not. Interestingly, averaging samplers
have applications for which general samplers (and even general non-adaptive samplers) do
not suffice. Averaging samplers are closely related to randomness extractors, defined and
discussed in Section 8.

An odd perspective. Recall that a non-adaptive sampler consists of a sample generator
G and an evaluator V such that for every ν :{0, 1}n→ [0, 1] it holds that

Pr(s1,...,sm)←G(Uk)[|V (ν(s1), ..., ν(sm))− ν̄| > ε] < δ.

Thus, we may view G as a pseudorandom generator that is subjected to a distinguishability
test that is determined by a fixed algorithm V and an arbitrary function ν :{0, 1}n→ [0, 1],

where we assume that Pr[|V (ν(U
(1)
n ), ..., ν(U

(m)
n ))− ν̄| > ε] < δ. What is a bit odd here is

that, except for the case of averaging samplers, the distinguishability test contains a central
component (i.e., the evaluator V ) that is potentially custom-made to help the generator G
pass the test.1

6.2 Introduction to the more detailed overview

We consider the problem of estimating the average of a huge set of values. That is,
given oracle access to an arbitrary function f : {0, 1}n → [0, 1], we wish to estimate
2−n

∑
x∈{0,1}n f(x) upto an additive error of ǫ. We are allowed to employ a randomized

algorithm that may err with probability at most δ.
We survey known algorithms for this problem and focus on the ideas underlying their

construction. In particular, we present an algorithm that makes O(ǫ−2 · log(1/δ)) queries

1Another aspect in which samplers differ from the various pseudorandom generators is in the aim to
minimize, rather than maximize, the number of blocks (denoted here bym) in the output sequence. However,
also in case of samplers the aim is to maximize the block-length (denoted here by n).
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and uses n + O(log(1/ǫ)) + O(log(1/δ)) coin tosses, both complexities being very close to
the corresponding lower bounds.

6.2.1 Motivation

In many settings repeated sampling is used to estimate the average value of a huge set
of values. Namely, one has access to a value function ν, which is defined over a huge

space (say, ν : {0, 1}n→ [0, 1]), and wishes to approximate ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x) without

having to inspect the value of ν on the entire domain. It is well-known that sampling ν
at sufficiently many (random) points yields such an approximation, but we are interested
in the complexity of the approximation. Specifically, (1) how many samples are required?
(2) how much randomness is required to generate these samples? and (3) is this generation
procedure efficient?

We comment that it is essential to have the range of ν be bounded (or else no reasonable
approximation may be possible). Our convention of having [0, 1] be the range of ν is adopted
for simplicity, and the problem for other (predetermined) ranges can be treated analogously.

6.2.2 Formal Setting

Our notion of approximation depends on two parameters: accuracy (denoted ε) and error
probability (denoted δ). We wish to have an algorithm that, with probability at least 1− δ,
gets within ε of the correct value. This leads to the following definition.

Definition 6.2 (sampler): A sampler is a randomized algorithm that on input parameters
n (length), ε (accuracy) and δ (error), and oracle access to any function ν : {0, 1}n →
[0, 1], outputs, with probability at least 1 − δ, a value that is at most ε away from ν̄

def
=

1
2n

∑
x∈{0,1}n ν(x). Namely,

Pr [|samplerν(n, ε, δ)− ν̄| > ε] < δ, (6.1)

where the probability is taken over the internal coin tosses of the sampler.

We are interested in “the complexity of sampling” quantified as a function of the parameters
n, ε and δ. Specifically, we will consider three complexity measures:

1. Sample Complexity: The number of oracle queries made by the sampler.

2. Randomness Complexity: The number of (unbiased) coin tosses performed by the sam-
pler.

3. Computational Complexity: The running-time of the sampler.

We say that a sample is efficient if its running-time is polynomial in the total length of
its queries (i.e., polynomial in both its sample complexity and in the length parameter,
n).

We will focus on efficient samplers. Furthermore, we will focus on efficient samplers that
have optimal (upto a constant factor) sample complexity, and will be interested in having
the randomness complexity be as low as possible.
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6.2.3 Overview and organization of the rest of this chapter

The straightforward method (or the naive sampler) consists of uniformly and independently
selecting sufficiently many sample points (queries), and outputting the average value of the

function on these points. Using Chernoff Bound one can easily show that O( log(1/δ)
ε2 ) sample

points suffice. The naive sampler is optimal (upto a constant factor) in its sample complexity,
but is quite wasteful in randomness. In Section 6.3, we discuss the naive sampler and present
lower (and upper) bounds on the sample and randomness complexities of samplers. These
bounds will guide our quest for improvements.

Pairwise-independent sampling yields a great saving in the randomness complexity. In
Section 6.4 we present the Pairwise-Independent Sampler, and discuss its advantages and
disadvantages. Specifically, for constant δ > 0, the Pairwise-Independent Sampler is optimal
upto a constant factor in both its sample and randomness complexities. However, for small
δ (i.e., δ = o(1)), its sample complexity is wasteful.

An additional idea is required for going further, and a relevant tool – random walks on
expander graphs (see Lecture 5) – is also used. In Section 6.5, we combine the Pairwise-
Independent Sampler with the Expander Random Walk Technique to obtain a new sam-
pler. Loosely speaking, the new sampler uses a random walk on an expander to generate

a sequence of ℓ
def
= O(log(1/δ)) (related) random pads for ℓ invocations of the Pairwise-

Independent Sampler. Each of these invocations returns an ε-close approximation with
probability at least 0.99. The expander walk technique yields that, with probability at least
1− exp(−ℓ) = 1− δ, most of these ℓ invocations return an ε-close approximation. Thus, the
median value is an (ε, δ)-approximation to the correct value (i.e., an approximation that,
with probability at least 1− δ, is within an additive term of ε of the correct value). The re-

sulting sampler, called the Median-of-Averages Sampler, has sample complexity O( log(1/δ)
ε2 )

and randomness complexity 2n+O(log(1/δ)).

In Section 6.6 we present an alternative sampler that improves over the pairwise-independent
sampler. Maintaining the sample complexity of the latter (i.e., O(1/δε2)), the new sampler
has randomness complexity n+O(log(1/δε)) (rather than 2n). Combining this new sampler

with the Expander Random Walk Technique, we obtain sample complexity O( log(1/δ)
ε2 ) and

randomness complexity n+O(log(1/δ)) +O(log(1/ε)). Better bounds are obtained for the
case of “Boolean samplers” (i.e., algorithms that must only well-approximate Boolean func-
tions). In addition, in Section 6.6 we present two general techniques for improving existing
samplers.

We conclude with some open problems (see Section 6.7). In particular, we discuss the
notion of “oblivious” (or “averaging”) samplers, which is closely related to the notion of
randomness extractors (see Section 6.8.2 and more details in [94]).2 Section 6.8 sketches the
outline of an alternative survey that focuses on the notion of “averaging” samplers and on
their relation to general samplers, on the one hand, and to randomness extractors, on the
other hand.

2Indeed, the current text focuses on general samplers, which are not necessarily of the “averaging” type
(e.g., the aforementioned Median-of-Averages Sampler). Thus, this survey barely mentions the vast body
of work that focuses on randomness extractors, and the interested reader is indeed referred to [94].
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The Hitting Problem. In order to distinguish the all-zero function from a function
having at least an ε fraction of non-zero values, the sampler must query the function at a
non-zero value (or “hit” some non-zero value). Thus, any sampler solves the hitting problem,
as surveyed in Section 6.9. That is, given an oracle to a Boolean function having at least
an ε fraction of 1’s, the “hitter” is required to find an input that evaluates to 1. As noted
above, each sampler can be used for this purpose, but this is an over-kill. Indeed, all results
and techniques regarding samplers (presented in the main text of this survey) have simpler
analogues for the hitting problem. Thus, Section 6.9 can be read as a warm-up towards the
rest of the survey.

6.3 The Information Theoretic Perspective

The Naive Sampler, presented below, corresponds to the information theoretical (or statisti-
cian) perspective of the problem. We augment it by a lower bound on the sample complexity
of samplers, which is in the spirit of these areas. We conclude with lower and upper bounds
on the randomness complexity of samplers. The latter lower bound is also information
theoretic in nature, but it refers to a concern that is more common in computer science.

6.3.1 The Naive Sampler

The straightforward sampling method consists of randomly selecting a small sample set
S and outputting 1

|S|
∑

x∈S ν(x) as an estimate to ν̄. More accurately, we select m in-

dependently and uniformly distributed strings in {0, 1}n, denoted s1, ..., sm, and output
1
m

∑
i=1 ν(si) as our estimate. Setting m = ln(2/δ)

2ε2 , we refer to this procedure as to the
Naive Sampler.

To analyze the performance of the Naive Sampler, we use the Chernoff Bound. Specifi-

cally, we define m independent random variables, denoted ζ1, ..., ζm, such that ζi
def
= ν(si),

where the si’s are independently and uniformly distributed in {0, 1}n. By Chernoff Bound:

Pr

[∣∣∣∣∣ν̄ −
1

m

m∑

i=1

ζi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2m

)
(6.2)

= δ (6.3)

where Eq. (6.3) is due tom = ln(2/δ)/2ε2. Observing that 1
m

∑m
i=1 ζi represents the estimate

output by the Naive Sampler, we have established that the Naive Sampler indeed satisfies
Definition 6.2 (i.e., is indeed a sampler). We now consider the complexity of the Naive
Sampler

• Sample Complexity: m
def
= ln(2/δ)

2ε2 = Θ( log(1/δ)
ε2 ).

• Randomness Complexity: m · n = Θ( log(1/δ)
ε2 · n).

• Computational Complexity: indeed efficient.

In light of Theorem 6.3 (below), the sample complexity of the Naive Sampler is optimal
upto a constant factor. However, as we will shortly see, it is extremely wasteful in its usage
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of randomness. In fact, the rest of this survey is devoted to presenting ways for redeeming
the latter aspect.

6.3.2 A Sample Complexity Lower Bound

We first assert that the Naive Sampler is quite good as far as sample complexity is concerned.
The following theorem is analogous to many results known in statistics, though we are not
aware of a reference prior to [27] where it can be found.

Theorem 6.3 [27]: Any sampler has sample complexity bounded below by

min

{
2(n−4)/2,

ln(1/O(δ))

4ε2

}

provided ε ≤ 1
8 and δ ≤ 1

6 .

Note that a (constant factor) gap remains between the lower bound asserted here and the
upper bound established by the Naive Sampler. We conjecture that the lower bound can
be improved. Motivated by the lower bound, we say that a sampler is sample-optimal if its

sample complexity is O( log(1/δ)
ε2 ).

6.3.3 Randomness Complexity Lower and Upper Bounds

We first assert that the Naive Sampler is quite bad as far as randomness complexity is
concerned. First evidence towards our claim is provided by a non-explicit (and so inefficient)
sampler:

Theorem 6.4 [27]: There exists a (non-efficient) sampler with sample complexity 2 ln(4/δ)
ε2

and randomness complexity n+ 2 log2(2/δ) + log2 log2(1/ε).

The proof is by a probabilistic argument that, given the Naive Sampler, asserts the existence
of a relatively small set of possible coin tosses under which this sampler behaves almost
as under all possible coin tosses (with respect to any possible function ν). Actually, the
randomness bound can be improved to n+ log2(1/δ)− log2 log2(1/δ) while using a constant
factor larger sample complexity and more sophisticated techniques [117]. More generally:

Theorem 6.5 [117]: For every function s : [0, 1]2 → R such that s(ε, δ) ≥ 2 log2(1/δ)
ε2 , there

exists a (non-efficient) sampler with sample complexity s(ε, δ) and randomness complexity

n+ log2(1/δ) + 2 log2(4/ε)− log2 s(ε, δ)

This gets us very close to the following lower bound.

Theorem 6.6 [27]: Let s : N × [0, 1]2 → R. Any sampler that has sample complexity at
most s(n, ε, δ), has randomness complexity at least

n+ log2(1/δ)− log2 s(n, ε, δ)− log2(1− 2ε)−1 − 2,

provided ε, δ < 0.5 and s(n, ε, δ) ≤ 2n−1.
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The dependency of the lower bound on the sample complexity should not come as a surprise.
After all, there exists a deterministic sampler that queries the function on the entire domain.
Furthermore, the upper bound of Theorem 6.5 does express a similar trade-off between
randomness complexity and sample complexity. Similarly, one should not be surprised at the
effect of 1−2ε on the bound: For example, when ε = 0.5, a sample may merely output ν̃ = 1

2
as its estimate and always be within ε of the average of any function ν : {0, 1}n → [0, 1].

Using Theorem 6.6, we obtain a lower bound on the randomness complexity of any
sample-optimal sampler:

Corollary 6.7 [27]: Any sampler that has sample complexity O( log(1/δ)
ε2 ), has randomness

complexity at least3

n+ (1 − o(1)) · log2(1/δ)− 2 log2(1/ε),

provided ε, δ < 0.4 and log(1/δ)
ε2 = o(2n).

6.4 The Pairwise-Independent Sampler

To motivate the Pairwise-Independent Sampler, let us confront two well-known central limit
theorems: Chernoff Bound, which refers to totally independent random variables, and Cheby-
shev’s Inequality, which refers to pairwise-independent random variables

Chernoff Bound: Let ζ1, ..., ζm be totally independent random variables, each ranging in
[0, 1] and having expected value µ. Then,

Pr

[∣∣∣∣∣µ−
1

m

m∑

i=1

ζi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2m

)

Chebyshev’s Inequality: Let ζ1, ..., ζm be pairwise-independent random variables, each rang-
ing in [0, 1] and having expected value µ. Then,

Pr

[∣∣∣∣∣µ−
1

m

m∑

i=1

ζi

∣∣∣∣∣ > ε

]
≤ 1

4ε2m

Our conclusion is that these two bounds essentially agree when m = O(1/ε2). That is, in
both cases Θ(1/ε2) identical random variables are necessary and sufficient to guarantee a
concentration within ε with constant probability. Thus, if this is what we want, then there
is no point in using the more sophisticated Chernoff Bound, which requires more of the
random variables.

In the context of sampling, our conclusion is that for achieving an approximation to
within ε accuracy with constant error probability, using O(1/ε2) pairwise-independent ran-
dom sample points is as good as using O(1/ε2) totally independent random sample points.
Furthermore, in the first case we may be save a lot in terms of randomness.

3The o(1) term is actually
log2 O(log(1/δ))

log2(1/δ)
.
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The Pairwise-Independent Sampler [30]: On input parameters n, ε and δ, set m
def
= 1

4ε2δ and
generate a sequence of m pairwise-independently and uniformly distributed strings in {0, 1}n,
denoted s1, ..., sm. Using the oracle access to ν, output 1

m

∑
i=1 ν(si) as the estimate to ν̄.

Using Chebyshev’s Inequality, one can easily see that the Pairwise-Independent Sampler
indeed satisfies Definition 6.2 (i.e., is indeed a sampler).

There are two differences between the Naive Sampler and the Pairwise-Independent
Sampler. Whereas the former uses independently selected sample points, the latter uses a
sequence of pairwise independent sample points. As we shall see, this allows the latter sam-

pler to use much less randomness. On the other hand, the Naive Sampler uses O( log(1/δ)
ε2 )

samples (which is optimal upto a constant factor), whereas the Pairwise-Independent Sam-
pler uses O( 1

ε2δ ) samples. However, for constant δ, both samplers use essentially the same
number of sample points. Thus, for constant δ, the Pairwise-Independent Sampler offers a
saving in randomness while being sample-optimal.

Generating a Pairwise-Independent sequence: Whereas generating m totally inde-
pendent random points in {0, 1}n requires m · n unbiased coin flips, one can generate m
(m ≤ 2n) pairwise-independent random points using only O(n) unbiased coin flips. We
present two well-known ways of doing this.

1. Linear functions over finite fields: We associate {0, 1}n with the finite field F
def
= GF(2n).

Let α1, ..., αm be m ≤ |F | distinct elements of F . To generate a (pairwise-independent)
sequence of length m, we uniformly and independently select s, r ∈ F , and let the ith

element in the sequence be ei
def
= r+αis (where the arithmetic is that of F ). The fact

that this construction yields a pairwise-independent sequence is proved in Theorem 3.1.
Only 2n random coins are required in this construction, but the drawback is that we
need a representation of the field F (i.e., an irreducible polynomial of degree n over
GF(2)) which may not be easy to find in general.4 Still, for specific values of n a
good representation exists: Specifically, for n = 2 · 3ℓ (with ℓ integer), the polynomial
xn + xn/2 + 1 is irreducible [51, p. 96], and so we obtain a representation of GF(2n)
for such n’s.

2. Toeplitz matrices: To avoid problems with non-trivial representation, one may use the
following construction. We associate {0, 1}n with the n-dimensional vector space over
GF(2). Let v1, ..., vm be m ≤ 2n distinct vectors in this vector space. A Toeplitz
matrix is a matrix with all diagonals being homogeneous; that is, T = (ti,j) is a
Toeplitz matrix if ti,j = ti+1,j+1, for all i, j. Note that a Toeplitz matrix is determined
by its first row and first column (i.e., the values of t1,j ’s and ti,1’s). To generate a
(pairwise-independent) sequence of length m, we uniformly and independently select
an n-by-n Boolean Toeplitz matrix, T , and an n-dimensional Boolean vector u. We

let the ith element in the sequence be ei
def
= Tvi+u (where the arithmetic is that of the

vector space). The fact that this construction yields a pairwise-independent sequence
is proved in Theorem 3.2. Here, we merely note that 3n− 1 random coins suffice for
this construction,

4Things are not better if we wish to work with a large field of prime cardinality; since we need to find
such a prime.
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Plugging-in either of these constructions, we obtain the following complexities for the
Pairwise-Independent Sampler

• Sample Complexity: 1
4δε2 .

• Randomness Complexity: 2n or 3n−1, depending on which of the constructions is used.

• Computational Complexity: Indeed efficient.

We note that for constant δ, the sample and randomness complexities match the lower
bounds upto a constant factor. However, as δ decreases, the sample complexity of the
Pairwise-Independent Sampler increases faster than the corresponding complexity of the
Naive Sampler. Redeeming this state of affairs is our next goal.

6.5 The (Combined) Median-of-Averages Sampler

Our goal here is to decrease the sample complexity of the Pairwise-Independent Sampler
while essentially maintaining its randomness complexity. To motivate the new construction
we first consider an oversimplified version of it.

Median-of-Averages Sampler (oversimplified): On input parameters n, ε and δ, set

m
def
= Θ( 1

ε2 ) and ℓ
def
= Θ(log(1/δ)), generate ℓ independent m-element sequences, each being

a sequence of m pairwise-independently and uniformly distributed strings in {0, 1}n. Denote
the sample points in the ith sequence by si

1, ..., s
i
m. Using the oracle access to ν, compute

ν̃i def
= 1

m

∑m
j=1 ν(s

i
j), for i = 1, ..., ℓ, and output the median value among these ν̃i’s. Using

Chebyshev’s Inequality (as in previous section), for each i, it holds that

Pr[|ν̃i − ν̄| > ε] < 0.1

and so

Pr

[
|{i : |ν̃i − ν̄| > ε}| ≥ ℓ

2

]
<

ℓ∑

j=ℓ/2

(
ℓ

j

)
· 0.1j · 0.9ℓ−j

< 2ℓ · 0.1ℓ/2

≤ δ,

where the last inequality is due to the choice of ℓ. Thus, the oversimplified version described
above is indeed a sampler and has the following complexities

• Sample Complexity: ℓ ·m = O( log(1/δ)
ε2 ).

• Randomness Complexity: ℓ ·O(n) = O(n · log(1/δ)).

• Computational Complexity: Indeed efficient.
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Thus, the sample complexity is optimal (upto a constant factor), but the randomness com-
plexity is higher than what we aim for. To reduce the randomness complexity, we use the
same approach as above, but take dependent sequences rather than independent ones. The
dependency we use is such that essentially preserves the probabilistic behavior of indepen-
dent choices. Specifically, we use random walks on expander graphs (cf. Lecture 5). to
generate a sequence of ℓ “seeds” each of length O(n). Each seed is used to generate a
sequence of m pairwise independent elements in {0, 1}n, as above. Let us generalize this
construction as follows.

Theorem 6.8 (general median-composition [16]): Suppose we are given an efficient sam-
pler of sample complexity s(n, ε, δ) and randomness complexity r(n, ε, δ). Then:

1. There exists an efficient sampler with sample complexity O(s(n, ε, 0.01) · log(1/δ)) and
randomness complexity r(n, ε, 0.01) +O(log(1/δ)).

2. For any c > 4, there exists an α > 0 and an efficient sampler with sample complexity
O(s(n, ε, α) · log(1/δ)) and randomness complexity r(n, ε, α) + c · log2(1/δ).

Proof: For Item 1, let r
def
= r(n, ε, 0.01). We use an explicit construction of expander graphs

with vertex set {0, 1}r, degree d and second eigenvalue λ so that λ/d < 0.1. We consider a
random walk of (edge) length ℓ− 1 = O(log(1/δ)) on this expander, and use each of the ℓ
vertices along the path as random coins for the given sampler. Thus, we obtain ℓ estimates
to ν̄ and output the median value as the estimate of the new sampler. To analyze the
performance of the resulting sampler, we let W denote the set of coin tosses (for the basic
sampler) that make the basic sampler output an estimate that is ε-far from the correct value
(i.e., ν̄). Thus, W denotes the set of coin tosses that are bad for the basic sampler, and by

the hypothesis |W |2r ≤ 0.01. Using (Part 2 of) Lemma 5.5 (with some Wi’s set to W and
the others set to {0, 1}r), we infer that the probability that at least ℓ/2 vertices of the path
reside in W is smaller than

ℓ∑

j=ℓ/2

(
ℓ

j

)
· 0.02j/2 < 2ℓ · 0.02ℓ/4

≤ δ.

Note that we have used ℓ · s(n, ε, 0.01) samples and r+(ℓ−1) · log2 d = r+O(log(1/δ)) coin
tosses. Item 1 follows.

Item 2 is proved using the same argument but using Ramanujan Graphs (and slightly
more care). Specifically, we use Ramanujan graphs (i.e., expanders with λ ≤ 2

√
d− 1) with

vertex set {0, 1}r, where r
def
= r(n, ε, α) and α = (λ

d )2. Repeating the foregoing argument,

with ℓ − 1 = 2 log2(1/δ)
log2(α/8) , we obtain an efficient sampler that uses ℓ · s(n, ε, α) samples and

r + (ℓ− 1) · log2 d = r + (4 + 16
(log2 d)−8) · log2(1/δ) coin tosses. Since this can be done with

a sufficiently large d, Item 2 follows.

Combining the Pairwise-Independent Sampler with Theorem 6.8, we get

Corollary 6.9 (The Median-of-Averages Sampler [16]): There exists an efficient sampler
with
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• Sample Complexity: O( log(1/δ)
ε2 ).

• Randomness Complexity: O(n+ log(1/δ)).

Furthermore, we can obtain randomness complexity 2n+ (4 + o(1)) · log2(1/δ)).

In the next section, we further reduce the randomness complexity of samplers (from 2n+
O(log(1/δ))) to n+O(log(1/ε)+ log(1/δ)), while maintaining the sample complexity (up-to
a multiplicative constant).

Generalizing Theorem 6.8. A close look at the proof of Theorem 6.8 reveals the fact
that the median value obtained via an expander random walk (on the vertex set {0, 1}r)
is used as a sampler of accuracy 0.49 and error probability δ. This suggests the following
generalization of Theorem 6.8: Suppose we are given two efficient samplers such that the ith

sampler has sample complexity si(n, ε, δ) and randomness complexity ri(n, ε, δ). Then, for
every δ0 ∈ (0, 0.5), there exists an efficient sampler of sample complexity s2(r, 0.5 − δ0, δ) ·
s1(n, ε, δ0) and randomness complexity r2(r, 0.5−δ0, δ), where r

def
= r1(n, ε, δ0). Theorem 6.8

is derived as a special case, when using the expander random walk as the second sampler
and setting δ0 = 0.01.

6.6 Advanced Topic: The Expander Sampler and Two

Generic Transformations

The main result of this section is the following:

Theorem 6.10 [16, 50]: There exists an efficient sampler that has

• Sample Complexity: O( log(1/δ)
ε2 ).

• Randomness Complexity: n+ log2(1/ε) +O(log(1/δ)).

The theorem is proved by applying Theorem 6.8 to a new efficient sampler that makes
O( 1

δε2 ) oracle queries and tosses n+ log2(1/ε) coins. We start by presenting a sampler for
the special case of Boolean functions.

Definition 6.11 (Boolean sampler): A Boolean sampler is a randomized algorithm that
on input parameters n, ε and δ, and oracle access to any Boolean function ν : {0, 1}n→
{0, 1}, outputs, with probability at least 1 − δ, a value that is at most ε away from ν̄

def
=

1
2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ε, δ)− ν̄| > ε] < δ

where the probability is taken over the internal coin tosses of the sampler.

That is, unlike (general) samplers, a Boolean sampler is required to work well only when
given access to a Boolean function. The rest of this section is organized as follows:
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In Section 6.6.1 we present the Expander Sampler, which is a Boolean sampler of sam-
ple complexity O(1/δε2) and randomness complexity n. This sample complexity is
obtained by using Ramanujan Graphs (rather than arbitrary expanders).

In Section 6.6.2 we present a (general) transformation of Boolean samplers to general ones.

In Section 6.6.3 we revisit the Expander Sampler, while using an arbitrary expander. More
importantly, we present another generic composition of samplers, and obtain an alter-
native construction by using this composition in conjunction with the aforementioned
sampler. Unlike the composition method that underlies Theorem 6.8, which reduces
the error complexity (in an efficient manner), the current composition reduces the
sample complexity.

Theorem 6.10 is proved by combining the ideas of Sections 6.6.1 and 6.6.2. An alternative
proof of a somewhat weaker result is obtained by combining the ideas of Sections 6.6.1
and 6.6.3.

6.6.1 A Sampler for the Boolean Case

We start by presenting a sampler for the special case of Boolean functions. Our sampling
procedure is exactly the one suggested by Karp, Pippinger and Sipser for hitting a witness
set [68] (cf. Section 6.9), yet the analysis is somewhat more involved. Furthermore, to
get an algorithm that samples the universe only on O(1/δε2) points, it is crucial to use a
Ramanujan graph in role of the expander in the Karp-Pippinger-Sipser method.

The sampler. We use an expander of degree d = 4/δǫ2 second eigenvalue bounded by λ
and associate the vertex set of the expander with {0, 1}n. The sampler consists of uniformly
selecting a vertex, v, (of the expander) and averaging over the values assigned (by ν) to all
the neighbors of v; that is, the algorithm outputs the estimate

ν̃
def
=

1

d

∑

u∈N(v)

ν(u), (6.4)

where N(v) denotes the set of neighbors of vertex v.

This algorithm has

• Sample Complexity: O( 1
δε2 ).

• Randomness Complexity: n.

• Computational Complexity: Indeed efficient; that is, polynomial in n, ε−1 and δ−1.

Lemma 6.12 [50]: The foregoing algorithm constitutes an efficient Boolean sampler.

Proof: We denote by B the set of bad choices for the algorithm; namely, the set of vertices
that once selected by the algorithm yield a wrong estimate. That is, v ∈ B if

∣∣∣∣∣∣
1

d

∑

u∈N(v)

ν(u)− ν̄

∣∣∣∣∣∣
> ε. (6.5)
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Denote by B′ the subset of v ∈ B for which

1

d

∑

u∈N(v)

ν(u) > ν̄ + ε. (6.6)

It follows that each v ∈ B′ has ǫd too many neighbors in the set A
def
= {u : ν(u)=1}; namely,

|{u∈N(v) : u∈A}| > (ρ(A) + ǫ) · d, (6.7)

where ρ(A)
def
= |A|

N and N
def
= 2n. Using the Expander Mixing Lemma (i.e., Lemma 5.4), we

get that

ε · ρ(B′) =

∣∣∣∣
|B′| · (ρ(A) + ε)d

dN
− ρ(B′) · ρ(A)

∣∣∣∣

≤
∣∣∣∣
|(B′ ×A) ∩ E|

|E| − |A||V | ·
|B′|
|V |

∣∣∣∣

≤ λ

d
·
√
ρ(A) · ρ(B′).

Thus,

ρ(B′) ≤
(
λ

dε

)2

· ρ(A). (6.8)

Using λ ≤ 2
√
d and d = 4

δε2 , we get ρ(B′) ≤ δ · ρ(A). Using a similar argument,5 we can
show that ρ(B \B′) ≤ δ · (1− ρ(A)). Thus, ρ(B) ≤ δ, and the claim follows.

Claim 6.13 [50]: Observe that if we were to use an arbitrary d-regular graph with second
eigenvalue λ, then the foregoing proof would hold provided that

λ

d
≤
√
δε2. (6.9)

This yields, for any such d-regular graph, an efficient Boolean sampler with sample com-
plexity d and randomness complexity n.

6.6.2 From Boolean Samplers to General Samplers

The following generic transformation was suggested to us by Luca Trevisan.

Theorem 6.14 (Boolean samplers imply general ones): Suppose we are given an efficient
Boolean sampler of sample complexity s(n, ε, δ) and randomness complexity r(n, ε, δ). Then,
there exists an efficient sampler with sample complexity s(n+log2(1/ε), ε/2, δ) and random-
ness complexity r(n+ log2(1/ε), ε/2, δ).

5That is, we consider the set B′′ def
= B \B′, and observe that every v ∈ B′′ has εd too many neighbours

in A′′ def
= {0, 1}n \A. Hence, we conclude that ρ(B′′) ≤ δ · ρ(A′′).
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Proof: As a mental experiment, given an arbitrary function ν : {0, 1}n→ [0, 1], we define

a Boolean function µ : {0, 1}n+ℓ → {0, 1}, where ℓ
def
= log2(1/ε), as follows: For every

x ∈ {0, 1}n and i = 1, ..., ε−1, we set µ(x, i)
def
= 1 if and only if ν(x) > (i − 0.5) · ε (i.e., iff

i < ε−1ν(x) + 0.5). Then, for every x, it holds that |ν(x)− ε ·∑1/ε
i=1 µ(x, i)| ≤ ε/2. Thus, if

we were to sample µ and obtain an ε/2-approximation of µ̄ then we get an ε-approximation
of ν̄. Now, although we don’t have actual access to µ we can emulate its answers given an
oracle to ν.

Given a Boolean sampler, B, we construct a general sampler, A, as follows. On input
n, ε, δ and access to an arbitrary ν as above, algorithm A sets n′ = n + ℓ, ε′ = ε/2, and
δ′ = δ, and invoke B on input n′, ε′, δ′. When B makes a query (x, i) ∈ {0, 1}n × {0, 1}ℓ,
algorithm A queries for ν(x) and returns 1 if and only if ν(x) > (i− 0.5) · ε. When B halts
with output v, algorithm A does the same. The theorem follows.

Combining the sampler of Section 6.6.1 with Theorem 6.14, we get

Corollary 6.15 (The Expander Sampler, revisited): There exists an efficient sampler that
has

• Sample Complexity: O( 1
δε2 ).

• Randomness Complexity: n+ log2(1/ε).

Theorem 6.10 follows by combining Corollary 6.15 with Theorem 6.8.

6.6.3 An Alternative Construction

Using an arbitrary expander graph (with d = poly(1/εδ) and λ
d <

√
δε2) and invoking

Comment 6.13, we have an efficient Boolean sampler with sample complexity poly(1/εδ)
and randomness complexity n. Using Theorem 6.14, we get

Corollary 6.16 (The Expander Sampler, revisited again): There exists an efficient sampler
with sample complexity poly(1/εδ) and randomness complexity n+ log2(1/ε).

To derive (a weaker form of) Theorem 6.10 via the foregoing sampler, we first need to reduce
its sample complexity. This is done via the following general transformation. We say that
a sampler is of the averaging type if its output is the average value obtained on its queries,
which in turn are determined as a function of its own coin tosses (independently of the
answers obtained on previous queries).

Theorem 6.17 (reducing sample complexity (or “sampling the sample”)): Suppose we are
given two efficient samplers such that the ith sampler has sample complexity si(n, ε, δ) and
randomness complexity ri(n, ε, δ). Further suppose that the first sampler is of the averaging
type. Then, there exists an efficient sampler of sample complexity s2(log2 s1(n, ε/2, δ/2), ε/2, δ/2)
and randomness complexity r1(n, ε/2, δ/2) + r2(log2 s1(n, ε/2, δ/2), ε/2, δ/2). Furthermore,
if also the second sampler is of the averaging type, then so is the resulting sampler.
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Proof: We compose the two samplers as follows. Setting m
def
= s1(n, ε/2, δ/2), we invoke

the first sampler and determine the m queries it would have asked (given a particular choice
of its coins).6 We then use the second sampler to sample these m queries (invoking it
with parameters log2m, ε/2 and δ/2). Specifically, we let the second sampler make virtual

queries into the domain [m]
def
= {1, ...,m} and answer a query q ∈ [m] by the value of

the function at the ith query specified by the first sampler. That is, given access to a
function ν : {0, 1}n → [0, 1], and determining a sequence r of coins for the first sampler,
we consider the function νr : [m] → [0, 1] defined by letting νr(i) = ν(qr,i) where qr,i is the
ith query made by the first sampler on coins r. We run the second sampler providing it
virtual access to the function νr in the obvious manner, and output its output. Thus, the
complexities are as claimed and the combined sampler errs if either |ν̄− 1

m

∑m
i=1 ν(qr,i)| > ε

2
or | 1m

∑m
i=1 ν(qr,i)− ν̃r| > ε/2, where ν̃r is the estimate output by the second sampler when

given virtual access to νr. Observing that the first event means that the first sampler errs
(here we use the hypothesis that this sampler is averaging) and that the second event means
that the second sampler errs (here we use

∑m
i=1 ν(qr,i) = ν̄r), we are done.

It is tempting to try to improve the sample complexity of the sampler asserted in Corol-
lary 6.16 by combining it with the Pairwise-Independent Sampler, via Theorem 6.17. The
problem is that the former sampler, which we wish to use in the role of the outer sampler, is
not of the averaging type. Indeed, the expander sampler (of Comment 6.13) is of the aver-
aging type, but the proof of Theorem 6.14 does not preserve this feature. Instead, as shown
in Theorem 6.19 (below), any Boolean sampler of the averaging type is a general sampler of
the averaging time, except that its accuracy and error probability may increase by a con-
stant factor. Thus, combining the sampler of Comment 6.13 with the Pairwise-Independent
Sampler, via Theorem 6.17, we obtain:

Corollary 6.18 (sampling the Expander Sampler): There exists an efficient sampler that
has

• Sample Complexity: O( 1
δε2 ).

• Randomness Complexity: n+O(log(1/ε)) +O(log(1/δ)).

Indeed, the sampler asserted in Corollary 6.18 operates by selecting a random vertex in an
expander and taking a pairwise-independent sample of its neighbor set. A weaker form of
Theorem 6.10 (i.e., with an O(log(1/ε) term rather than with a log2(1/ε) term) follows by
combining Corollary 6.18 with Theorem 6.8.

It is left to establish the aforementioned claim by which any Boolean sampler of the
averaging type is a general sampler (of the averaging time), except that its accuracy and error
probability may increase by a constant factor. (A similar statement was proved in [117].)

Theorem 6.19 (Boolean vs general samplers of the averaging type): Every Boolean sam-
pler of the averaging type, having sample complexity s(n, ε, δ) and randomness complexity
r(n, ε, δ), is a general sampler (of the averaging type) with sample complexity s(n, ε/4, δ/3)
and randomness complexity r(n, ε/4, δ/3).

6Here we use the hypothesis that the first sampler is non-adaptive; that is, its queries are determined
(only) by its coin tosses (independently of the answers obtained on previous queries).
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sample complexity randomness complexity pointer

lower bound Ω( log(1/δ)
ε2 ) Thm. 6.3

lower bound for O( log(1/δ)
ε2 ) n+ (1− o(1)) · log2(1/δ)− 2 log2(1/ε) Cor. 6.7

upper bound O( log(1/δ)
ε2 ) n+ log2(1/δ) Thm. 6.5

algorithm O( log(1/δ)
ε2 ) n+O(log(1/δ)) + log2(1/ε) Thm. 6.10

algorithm poly(ε−1, log(1/δ)) n+ (1 + α) · log2(1/δ), ∀α > 0 Thm. 6.20

Figure 6.1: Summary of main results.

Proof: For any function ν :{0, 1}n→ [0, 1], we consider a random function ρ :{0, 1}n→{0, 1}
such that, for every x, we set ρ(x) = 1 with probability ν(x), independently of the setting
of all other arguments. Clearly, with probability 1 − exp(−2ε22n) > 1 − δ, it holds that
|ν̄−ρ̄| < ε. Furthermore, fixing any possible outcome of the sampler’s coins, with probability
at least 1−exp(−8ε2s) over the choice of ρ, the average of the ρ-values queried by the sampler
is 2ε-close to the average of the ν-values, where s denotes the number of queries. Since (by
Theorem 6.3) s > ε−2 log(1/δ)/8, with probability at least 1 − δ over the choice of ρ, the
average that the Boolean sampler outputs when given access to ν is 2ε-close to the average
it would have output on a random ρ, which in turn (with probability at least 1− δ over the
sampler’s coins) is ε-close to ρ̄. Thus, with probability at least 1 − 3δ (over the sampler’s
coins), the Boolean sampler outputs a value that is 4ε-close to ν̄,

6.7 Conclusions and Open Problems

The main results surveyed in the text are summarized in Figure 6.1. The first row tabulates
Ω(ε−2 log(1/δ)) as a lower bound on sample complexity and the subsequent three rows refer
to sample-optimal samplers (i.e., samplers of sample complexity O(ε−2 log(1/δ))). The last
row refers to a sampler (cf., Thm. 6.20 below) that has randomness complexity closer to the
lower bound. However, this sampler is not sample-optimal.

The randomness complexity of sample-optimal samplers. A closer look at the
randomness complexity of sample-optimal samplers is provided in Figure 6.2. The first two
rows tabulate lower and upper bounds, which are 2 log2(1/ε) +O(1) apart. Our conjecture
is that the lower bound can be improved to match the upper bound.7 The efficient samplers
use somewhat more than n + 4 · log2(1/δ) coins, where one factor of 2 is due to the use of
expanders and the other to the “median-of-averages paradigm”. As long as we stick to using
expanders in the Median-of-Averages Sampler, there is no hope to reduce the first factor,
which is due to the relation between the expander degree and its second eigenvalue. In fact,
achieving a factor of 4 rather than a bigger factor is due to the use of Ramanujan Graphs
(which have the best possible such relation).

7Partial support for this conjecture was offered to us recently by Ronen Shaltiel (priv. comm., 2010).
He observed that one log2(1/ε) term can be shaved off the lower bound in the special case of averaging
samplers (see below), by using the connection to randomness extractors and a lower bound on entropy loss
due to [88].
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lower bound (even for Boolean) n+ log2(1/δ)− 2 log2(1/ε)− log2 log2(1/δ)−O(1)

upper bound n+ log2(1/δ)− log2 log2(1/δ)

efficient samplers n+ (4 + α) log2(1/δ) + log2(1/ε), for any α > 0
efficient Boolean samplers n+ (4 + α) log2(1/δ), for any α > 0

Figure 6.2: The randomness complexity of samplers that make Θ( log(1/δ)
ε2 ) queries.

Boolean samplers vs general ones. Another fact presented in Figure 6.2 is that we
can currently do better if we are guaranteed that the oracle function is Boolean (rather than
mapping to the interval [0, 1]). We stress that the lower bound holds also with respect to
samplers that need only to work for Boolean functions.

Adaptive vs non-adaptive. All known samplers are non-adaptive; that it, they deter-
mine the sample points (queries) solely as a function of their coin tosses. In contrast, adaptive
samplers may determine the next query depending on the value of the function on previous
queries. Intuitively, adaptivity should not help the sampler. Indeed, all lower bounds refer
also to adaptive samplers, whereas all upper bound only utilizes non-adaptive samplers.
This indicates that the difference between adaptive samplers and non-adaptive ones can
not be significant. In a preliminary version of this survey we advocated providing a direct
and more tight proof of the foregoing intuition. When referring to the sample complexity,
such a simple proof was provided in [15, Lem. 9]: It amounts to observing that adapting
queries made to a random isomorphic copy of a function f are equivalent to uniformly and
independently distributed queries made to f . Thus, adaptivity offers no advantage in this
setting.

Averaging (or oblivious) samplers. A special type of non-adaptive samplers are ones
that output the average value of the function over their sample points. Such samplers were
first defined in [20], where they were called “oblivious”, but we prefer the term averaging.
(Recall that we have already defined and used such samplers in Section 6.6.3.) We mention
that averaging samplers have some applications not offered by arbitrary non-adaptive sam-
plers (cf., [20] and [103]). More importantly, averaging samplers are very appealing, since
averaging over a sample seem the natural thing to do. Furthermore, as pointed out in [117],
averaging samplers are closely related to randomness extractors (see Section 6.8 and more
details in [94]). Note that the Naive Sampler, the Pairwise-Independent Sampler, and the
Expander Sampler are all averaging samplers, although they differ in the way they generate
their sample. However, the Median-of-Averages Sampler, as its name indicates, is not an
averaging sampler. Thus, obtaining an averaging sampler of relatively low sample and ran-
domness complexities requires an alternative approach. The best results are obtained via
the connection to randomness extractors, and are summarized below.

Theorem 6.20 (efficient averaging samplers [91, Cor. 7.3]):8 For every constant α > 0,
there exists an efficient averaging sampler with

8The result builds on [117], and uses [55, Thm. 1.5] in order to remove a mild restriction on the value of
ε.



6.8. ADVANCED TOPIC: A DIFFERENT PERSPECTIVE 93

• Sample Complexity: poly(ε−1, log(1/δ)).

• Randomness Complexity: n+ (1 + α) · log2(1/δ).

We stress that this sampler is not sample-optimal (i.e., the polynomial in ε−1 is not
quadratic). It would be interesting to obtain an efficient sample-optimal averaging sam-
pler of low randomness complexity, say, one that uses O(n + log(1/δ)) coins. We mention
that non-explicit sample-optimal averaging samplers of low randomness complexity do exist;
specifically, Theorems 6.4 and 6.5 holds with averaging-samplers (see [27, 117], resp.).

6.8 Advanced Topic: A Different Perspective

As stated in the introduction, the intention of the current survey was to provide a wide
audience of theoretical computer scientists with a basic tutorial regarding samplers. The
focus of this tutorial was on the complexity of sampling, and our aim was to simultaneously
minimize three complexity measures: (1) the sample complexity, (2) the randomness com-
plexity, and (3) the computational complexity. We actually focused on the minimization of
the first two, while requiring that a minimal level of computational efficiency is maintained
(i.e., that the sampler works in time that is polynomial in the total length of the queries
made).

From our perspective, averaging samplers are of no special interest, except maybe for
their natural appeal. An alternative perspective, strongly advocated by Ronen Shaltiel and
Amnon Ta-Shma, may put averaging samplers and their relation to general samplers at the
main focus. This is likely to yield a very interesting survey, which we outline in the rest of
this section, but it is not the one we set out to write...

6.8.1 Averaging Samplers versus General Samplers

The alternative survey will focus on the question of whether non-averaging samplers can
outperform averaging samplers. As noted by Amnon and Ronen, a good starting point
for such a survey is the observation that the median of averages operation can be used for
improving the performance of samplers, but it yields non-averaging samplers. Specifically,
the median of averages operation can be combined with simple averaging samplers (e.g.,
the pairwise independent ones) to yield very strong and simple non-averaging samplers.
Another interesting observation is that the currently known lower bound on the randomness
complexity of sample-optimal averaging samplers is higher than the currently know bound
for general samplers (see Footnote 7). Finally, when viewing the minimization of sample
complexity as the primary goal and the minimization of the randomness complexity as the
secondary goal, the median of averages operation enables constructing efficient samplers
that are by far better (and also much simpler) than the currently known efficient averaging
samplers.

Another interesting parameter is the Boolean versus general distinction, which was dis-
cussed in prior sections. Recall that in the case of averaging samplers, the two notions
are almost identical (see Theorem 6.19), whereas for general sampler we currently lose a
log2(1/ε) term in the randomness complexity (see Theorem 6.14). Focusing on sample-
optimal samplers, we summarize the currently known results in Figure 6.3, where the three
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lower bound (even for Boolean) n+ log2(1/δ)− 2 log2(1/ε)− ℓ−O(1)
lower bound for averaging samplers n+ log2(1/δ)− log2(1/ε)− ℓ−O(1)

upper bound (by averaging samplers) n+ log2(1/δ)− ℓ
efficient samplers n+ (4 + α) · log2(1/δ) + log2(1/ε), ∀α > 0

efficient averaging samplers n+ (1 + α) · log2(1/δ) + Õ(s), ∀α > 0

Figure 6.3: The randomness complexity of samplers that make s
def
= Θ( log(1/δ)

ε2 ) queries,
where ℓ denotes log2 log2(1/δ).

first rows ignore the question of efficiency (and the last row of Figure 6.3 is justified by
combining Theorems 6.20 and 6.17).9

6.8.2 Averaging Samplers versus Randomness Extractors

We start by recalling the basic definition of randomness extractors, while (slightly) changing
some common conventions to better fit our discussion.10 Loosely speaking, a randomness
extractor is a function Ext : {0, 1}r × [s] → {0, 1}n that uses an (log2 s)-bit long random
seed in order to transform an r-bit long (outcome of a) weak source of randomness into an
n-bit long string that is almost uniformly distributed in {0, 1}n. Specifically, we consider
arbitrary weak sources that are restricted (only) in the sense that, for a parameter k, no
string appears as the source outcome with probability that exceeds 2−k. Such sources are
called (r, k)-sources (and k is called the min-entropy). A special type of (r, k)-sources are
(r, k)-flat sources, which are sources in which each string appears with probability that equals
either 2−k or 0. We say that two distributions are ǫ-close if the statistical difference (a.k.a
variation distance) between them is at most ǫ. Now, Ext is called a (k, ǫ)-extractor if for
any (r, k)-source X it holds that Ext(X,Us) is ǫ-close to the uniform distribution over n-bit
strings, where Us denotes the uniform distribution over [s].

There is a close relationship between extractors and averaging samplers. In order to
discuss this relationship, it will be more convenient to state the performance guarantees of
the sampler (i.e., ε and δ) in terms of its complexities (i.e., s and r), rather than the other
way around (as done in the rest of this survey). Thus, we may say that a certain oracle
machine (which has certain sample and randomness complexities) is an (ε, δ)-sampler if it
satisfies Eq. (6.1) for these particular values of ε and δ.

We shall first show that any averaging sampler gives rise to an extractor. Let G :
{0, 1}r → ({0, 1}n)s be the sample generating algorithm of an averaging (ε, δ)-sampler.
That is, G uses r bits of randomness and generates s sample points in {0, 1}n such that,
for every f : {0, 1}n → [0, 1] with probability at least 1 − δ, the average of the f -values of

these s pseudorandom points resides in the interval [f ± ε], where f
def
=
∑

x∈{0,1}n f(x)/2n.

Define Ext : {0, 1}r× [s]→ {0, 1}n such that Ext(ω, i) is the ith sample generated by G(ω).
We shall prove that Ext is a (k, 2ε)-extractor, for k = r − log2(ε/δ).

9Specifically, we invoke Theorem 6.17 when using the sampler of Theorem 6.20 as the first (i.e., “outer”)
sampler, and the Naive Sampler as the second (i.e., “inner”) sampler.

10Typically, extractors are defined as mapping {0, 1}n × {0, 1}s to {0, 1}m.
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Suppose towards the contradiction that there exists a (r, k)-source X such that for some
S ⊂ {0, 1}n it is the case that Pr[Ext(X,Us) ∈ S] > 2−n · |S| + 2ε. Then, without loss of
generality (see Exercise 8.1), X is (r, k)-flat, and we consider the set

B = {x ∈ {0, 1}r : Pr[Ext(x, Us) ∈ S] > 2−n · |S|+ ε}.

Then, |B| > ε · 2k = δ · 2r, where the inequality holds since Pr[Ext(X,Us) ∈ S] ≤ Pr[X ∈
B] + 2−n · |S| + ε. Defining f(z) = 1 if z ∈ S and f(z) = 0 otherwise, it holds that
f = |S|/2m. But, for every ω ∈ B, the f -average of the sample G(ω) is greater than f + ε,
in contradiction to the hypothesis that the sampler has error probability δ (with respect to
accuracy ε).

We now turn to show that extractors give rise to averaging samplers. Let Ext : {0, 1}r×
[s]→ {0, 1}n be a (k, ǫ)-extractor. Consider the sample generation algorithm G : {0, 1}r →
({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s]. We prove that G corresponds to an averaging

(ε, δ)-sampler, for δ = 2−(r−k−1).
Suppose towards the contradiction that there exists a function f : {0, 1}n → [0, 1] such

that for δ2r = 2k+1 strings ω ∈ {0, 1}r the average f -value of the sample G(ω) deviates
from f by more than ǫ. Suppose, without loss of generality, that for at least half of these
ω’s the average is greater than f + ǫ, and let B denote the set of these ω’s. Then, for X
that is uniformly distributed on B (and is thus a (r, k)-source), we have

E[f(Ext(X,Us))] > E[f(U ′n)] + ε,

where U ′n denotes the uniform distribution on n-bit long strings. But, since |f(z)| ≤ 1
for every z, this contradicts the hypothesis that Ext(X,Us) is ε-close to U ′n, because
|E[f(Y )] − E[f(Z)]| is upper bounded by the statistical difference between Y and Z (times
maxz{|f(z)|}). Summarizing the foregoing discussion, we obtain:

Theorem 6.21 (averaging samplers vs randomness extractors): Let r, s, k ∈ N and ε, δ ∈
[0, 1]. Then:

1. If Ext : {0, 1}r × [s] → {0, 1}n is a (k, ε)-extractor, then the sample generating algo-
rithm G : {0, 1}r → ({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s] yields an averaging

(ε, δ)-sampler for δ = 2−(r−k−1) (i.e., r − k = log2(1/δ) + 1).

2. If G : {0, 1}r → ({0, 1}n)s is the sample generating algorithm of an averaging (ε, δ)-
sampler, then the algorithm Ext : {0, 1}r × [s]→ {0, 1}n defined by Ext(ω, i) = G(ω)i

is a (k, 2ε)-extractor, for k = r − log2(ε/δ) (i.e., r − k = log2(1/δ)− log2(1/ε)).

Note that starting with a (k, 2ε)-extractor and applying both parts of Theorem 6.21, we
obtain a (k′, 2ε)-extractor for k′ = k + 1 + log2(1/ε). Thus, the translation offered by
Theorem 6.21 is not optimal, yet the bounds provided in both directions are (in general)
tight.11

11To see the tightness of Part 1, consider an arbitrary (k, ε)-extractor, Ext : {0, 1}r × [s] → {0, 1}n, and
modify it such that, for every x′ ∈ {0, 1}k and i ∈ [3ε · s], it holds that Ext(0r−kx′, i) = 0n. Then, the
modified extractor is a (k + 2, 2ε)-extractor, but the resulting averaging sampler has error probability at

least 2−r+k with respect to deviation 2ε. (Recall that Part 1 asserts that the resulting averaging sampler
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The connection to averaging samplers and the desire to have averaging samplers of
optimal sample and randomness complexities calls attention to a research direction regarding
extractors that did not receive much attention. We refer to the construction of extractors
with strongly optimal seed length and almost optimal extraction rate. That is, the seed
length, which is log2 s in terms of this section, should be optimal up to a constant additive
term, whereas the extraction rate (i.e., n/k) (or rather the inverse loss rate (i.e., (r−k)/(n−
k))) should be close to 1.

6.9 Perspective: The Hitting problem

The hitting problem is a one-sided version of the Boolean sampling problem. Given param-
eters n (length), ε (density) and δ (error), and oracle access to any function σ : {0, 1}n →
{0, 1} such that |{x : f(x)=1}| ≥ ε2n, the task is to find a string that is mapped to 1. That
is:

Definition 6.22 (hitter): A hitter is a randomized algorithm that on input parameters n, ε
and δ, and oracle access to any function σ :{0, 1}n→{0, 1}, such that |{x : f(x)=1}| ≥ ε2n,
satisfies

Pr[σ(hitterσ(n, ε, δ)) = 1] > 1− δ.

Observe that, on input parameters n, ε and δ, any sampler must be able to distinguish the
all-zero function from any function σ : {0, 1}n→{0, 1} such that |{x : f(x) = 1}| ≥ 2ε2n.
Thus, in the latter case, the sampler must obtain (with probability at least 1−δ) the value 1
for at least one of its queries, and outputting such a query satisfies the requirement for a
hitter (w.r.t parameters n, 2ε and δ).

We note that all results and techniques regarding sampling (presented in the main text),
have simpler analogous with respect to the hitting problem. In fact, this appendix may be
read as a warm-up towards the main text.

6.9.1 The Information Theoretic Perspective

Analogously to the Naive Sampler, we have the Naive Hitter that independently selects

m
def
= ln(1/δ)

ε uniformly distributed sample points and queries the oracle on each. Clearly,
the probability that the hitter fails to sample a point of value 1 is at most (1 − ε)m = δ.
The complexities of this hitter are as follows

• Sample Complexity: m
def
= ln(1/δ)

ε = Θ( log(1/δ)
ε ).

has error probability at most 2−(r−k−3) with respect to deviation 2ε.) To see the tightness of Part 2,
consider an arbitrary avearging (ε, δ)-sampler with a sample generating algorithm G : {0, 1}r → ({0, 1}n)s,
and modify the latter to be identically zero on δ2r seeds; that is, for an arbitrary B ⊂ {0, 1}r of size
δ2r , redefine G such that for every x ∈ B it holds that G(x) = (0n)s. Then, the modified averaging
sampler is an (ε, 2δ)-sampler, but (as shown next) the resulting extractor can be a (k′, cε)-extractor only

if k′ > k + log2(1/ε) − c′, where k
def
= r − log2(1/δ) and c′ = log2(c + 1). The lower bound on k′ holds

because a (k′, r)-source may assign B probability 2k−k′
, whereas 0n should be assigned probability at most

cε+ 2−n. Thus, 2k−k′ ≤ cε+ 2−n, which implies k′ − k > log2(1/ε) − c′. (Recall that Part 2 asserets that
the resulting construct is a (k′, 2ε)-extractor for k′ = k + log2(1/ε) + 1.)
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• Randomness Complexity: m · n = Θ( log(1/δ)
ε · n).

• Computational Complexity: Indeed efficient.

It is easy to prove that the Naive Hitter is sample-optimal. That is:

Theorem 6.23 (sample complexity lower bound): Any hitter has sample complexity bounded
below by

min

{
2n−O(1),

ln(1/2δ)

2ε

}

provided ε ≤ 1
8 .

Proof Sketch: Let A be a hitter with sample complexity m = m(n, ε, δ) and let σ be a
function selected at random by setting its value independently on each argument such that
Pr(σ(x)=1) = 1.5ε. Then,

Prσ[σ(Aσ(n, ε, δ)) 6= 1] = (1 − 1.5ε)m,

where the probability is taken over the choice of σ and the internal coin tosses of A. On the
other hand, using a Multiplicative Chernoff Bound:

Prσ[|{x : σ(x)=1}| < ε2n] = 2 exp(−Ω(ε2n)).

We may assume that Ω(ε2n) > log2(1/δ) and so the probability that σ has at least ε fraction

of 1’s and yet algorithmA fails is at least (1−1.5ε)m−δ > δ, unlessm > ln(1/2δ)
ln(1−1.5ε) >

ln(1/2δ)
2ε .

Theorem 6.24 (randomness complexity lower bound): Let s : N × [0, 1]2 → R. Any
sampler that has sample complexity at most s(n, ε, δ), has randomness complexity at least

r > n− log2 s(n, ε, δ) + log2((1 − ε)/δ).

Proof Sketch: Let A be a hitter with sample complexity s = s(n, ε, δ), and randomness
complexity r = r(n, ε, δ). Consider any subset of δ2r possible sequence of coin tosses for
A and all δ2r · s points that are queried at any of these coin-sequences. We argue that
δ2r · s > (1− ε)2n must hold, or else there exists a function σ that evaluates to 0 on each of
these points and to 1 otherwise (contradicting the requirement that this function be “hit”
with probability at least 1− δ). Thus, r > n+ log2(1− ε)− log2 s+ log2(1/δ).

6.9.2 The Pairwise-Independent Hitter

Using a pairwise-independent sequence of uniformly distributed sample points rather than

a totally independent one, we obtain the pairwise-independent hitter. Here we set m
def
= 1−ε

δε .
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Letting ζi represent the σ-value of the ith sample point, considering only σ’s with an ε-
fraction of 1-values,12 and using Chebyshev’s Inequality we have

Pr

[
m∑

i=1

ζi = 0

]
≤ Pr

[∣∣∣∣∣mε−
m∑

i=1

ζi

∣∣∣∣∣ ≥ εm
]

≤ m · (1− ε)ε
(εm)2

= δ.

Recalling that we can generate 2n − 1 pairwise-independent samples using 2n coins, the
pairwise-independent hitter achieves

• Sample Complexity: 1
δε (reasonable for constant δ).

• Randomness Complexity: 2n

• Computational Complexity: Indeed efficient.

6.9.3 The combined Hitter

Our goal here is to decrease the sample complexity of the Pairwise-Independent Hitter while
essentially maintaining its randomness complexity. To motivate the new construction we
first consider an oversimplified version of it.

Combined Hitter (oversimplified): On input parameters n, ε and δ, set m
def
= 2

ε and

ℓ
def
= log2(1/δ), generate ℓ independent m-element sequences, each being a sequence of

m pairwise-independently and uniformly distributed strings in {0, 1}n. Denote the sample
points in the ith sequence by si

1, ..., s
i
m. We merely try all these ℓ · m samples as hitting

points. Clearly, for each i = 1, ..., ℓ,

Pr[(∀j ∈ {1, ..,m}) σ(si
j)=0] <

1

2

and so the probability that none of these si
j “hits σ” is at most 0.5ℓ = δ. Thus, the

oversimplified version described above is indeed a hitter and has the following complexities:

• Sample Complexity: ℓ ·m = O( log(1/δ)
ε ).

• Randomness Complexity: ℓ ·O(n) = O(n · log(1/δ)).

• Computational Complexity: Indeed efficient.

12Considering only σ’s with exactly an ε-fraction of 1-values implies that Var[ζi] = (1 − ε)ε. Needless to
say, if the hitter works well for all these functions, then it works well for all functions having at least an
ε-fraction of 1-values.
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Thus, the sample complexity is optimal (upto a constant factor), but the randomness com-
plexity is higher than what we aim for. To reduce the randomness complexity, we use
the same approach as above, but take dependent sequences rather than independent ones.
The dependency we use is such that essentially preserves the probabilistic behavior of in-
dependent choices. Specifically, we use random walks on expander graphs (cf. Lecture 5)
to generate a sequence of ℓ “seeds” each of length O(n). Each seed is used to generate a
sequence of m pairwise independent elements in {0, 1}n, as above. Thus, we obtain:

Corollary 6.25 (The Combined Hitter): There exists an efficient hitter with

• Sample Complexity: O( log(1/δ)
ε ).

• Randomness Complexity: 2n+O(log(1/δ)).

Furthermore, we can obtain randomness complexity 2n+ (2 + o(1)) · log2(1/δ)).

Proof Sketch: We use an explicit construction of expander graphs with vertex set {0, 1}2n,
degree d and second eigenvalue λ so that λ/d < 0.1. We consider a random walk of (edge)
length ℓ − 1 = log2(1/δ) on this expander, and use each of the ℓ vertices along the path

as random coins for the Pairwise-Independent Hitter, which in turn makes m
def
= ε/3 trials.

To analyze the performance of the resulting algorithm, we let W denote the set of coin
tosses (for the basic hitter) on which the basic hitter fails to output a point that evaluates

to 1. By the hypothesis, |W |22n ≤ 1/3, and using (Part 1) of Lemma 5.5, the probability
that all vertices of a random path reside in W is bounded above by (0.34 + 0.1)ℓ < δ. The
furthermore clause follows by using a Ramanujan Graph and an argument as in the proof
of Item 2 of Theorem 6.8.

6.9.4 The Expander Hitter

Our goal here is to decrease the randomness complexity of hitters from 2n+O(log(1/δ)) to
n+ O(log(1/δ)), while preserving the sample complexity of O(ε−1 log(1/δ)). The first step
is to get an analogous improvement with respect to the Pairwise-Independent Hitter (which
has sample complexity O(1/δε)).

We use a Ramanujan Graph of degree d = O(1/εδ) and vertex-set {0, 1}n. The hitter
uniformly selects a vertex in the graph and use its neighbors as a sample. Suppose we try

to hit a 1-value of a function σ and let S
def
= {u : σ(u) = 1}. Let B

def
= {v : N(v) ∩ S = ∅}

be the set of bad vertices (i.e., choosing any of these results in not finding a preimage of 1).
Using the Expander Mixing Lemma we have

ρ(B)ρ(S) =

∣∣∣∣
|(B × S) ∩ E|

|E| − ρ(B)ρ(S)

∣∣∣∣

≤ λ

d
·
√
ρ(B)ρ(S)

Hence, ρ(B)ρ(S) ≤ (λ/d)2 = εδ and using ρ(S) ≥ ε we get ρ(B) ≤ δ. The complexities of
this hitter are as follows:
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• Sample Complexity: O( 1
δε)

• Randomness Complexity: n

• Computational Complexity: Indeed efficient.

Adapting the argument in the proof of Corollary 6.25, we obtain

Corollary 6.26 (The Combined Hitter, revisited): There exists an efficient hitter with

• Sample Complexity: O( log(1/δ)
ε ).

• Randomness Complexity: n+ (2 + o(1)) · log2(1/δ)).



Lecture 7

Approximate Counting and
Uniform Generation

This lecture differs from other lectures in this volume in paying more attention to the
application of the randomized method, and actually in starting from the application and
getting to the method later. The methods that we shall introduce and use are (1) the
use of hashing as a “random seiving” procedure, and (2)-the close relationship between
approximate counting and uniform generation. Let us start with a fast overview of these
two methods.

Random sieving refers to a situation in which we wish to pinpoint few elements of a
large set, say S ⊂ {0, 1}n. If we know (or approximately guess) |S|, then we can use hashing
to create a random sieve that allows elements to pass with probability 1/|S|. Thus, we
can expect few elements of S to pass this sieve. This idea is used in Sections 7.2.2, 7.3,
and 7.4.2. In Section 7.4.1 we explore the relationship between approximating the size of
sets and uniformly selecting elements in them. We show that in many settings (i.e., when
the approximations and uniform generation hold also for some natural subsets of these sets),
these tasks are computationally equivalent.

Indeed, when referring to approximation or counting problems, we refer to counting
objects that can be efficiently recognized. The two formulations of NP provide a suitable
definition of such objects and yield corresponding counting problems:

1. Counting the number of solutions for a given instance of a search problem (of a relation)
R ⊆ {0, 1}∗ × {0, 1}∗ having efficiently checkable solutions. That is, on input x, we
are required to output |{y : (x, y)∈R}|.

2. Counting the number of NP-witnesses (with respect to a specific verification procedure
V ) for a given instance of an NP-set S (i.e., S ∈ NP and V is the corresponding
verification procedure). That is, on input x, we are required to output |{y : V (x, y)=
1}|.

We shall consider these counting problems as well as relaxations of them (which refer to
approximating the said quantities), and see connections between these relaxed counting
problems and randomized algorithms.

101
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Indeed, our general context is that of NP-search problems. Specifically, we consider
the class of search problems having efficiently checkable soltions. Formally, we denote this
class by PC (standing for “Polynomial-time Check”)1, and define it as the class of search
problems that correspond to polynomially-bounded binary relations that have efficiently
checkable solutions. That is, R ∈ PC if the following two conditions hold:

1. For some polynomial p, if (x, y) ∈ R then |y| ≤ p(|x|).

2. There exists a polynomial-time algorithm that given (x, y) determines whether or not
(x, y) ∈ R.

Indeed, searching for NP-witnesses (w.r.t some set in NP) is a special case. However, here
we are not interrested in the task of finding solutions for such NP-type search problems or
determining whether such exists but rather in two related computational problems (which
vastly generalized the former): (1) finding a uniformly distributed solution and (2) counting
(or approximating) the number of solutions.

Although our focus is on the problem of approximate counting and its relation to uniform
generation, we start by recalling the basic facts regarding exact counting.

7.1 Background: Exact Counting

In continuation to the foregoing discussion, we define the class of problems concerned with
counting efficiently recognized objects. (Recall that PC denotes the class of search problems
having polynomially long solutions that are efficiently checkable.)

Definition 7.1 (counting efficiently recognized objects – #P): The class #P consists of
all functions that count solutions to a search problem in PC. That is, f : {0, 1}∗ → N is
in #P if there exists R ∈ PC such that, for every x, it holds that f(x) = |R(x)|, where
R(x) = {y : (x, y)∈R}. In this case we say that f is the counting problem associated with
R, and denote the latter by #R (i.e., #R = f).

Every decision problem in NP is Cook-reducible to #P, because every such problem can
be cast as deciding membership in SR = {x : |R(x)| > 0} for some R ∈ PC. It also holds
that BPP is Cook-reducible to #P. The class #P is sometimes defined in terms of decision
problems, as is implicit in the following proposition.

Proposition 7.2 (a decisional version of #P): For any f ∈ #P, deciding membership in

Sf
def
= {(x,N) : f(x)≥N} is computationally equivalent to computing f .

Actually, the claim holds for any function f : {0, 1}∗ → N for which there exists a polynomial
p such that for every x ∈ {0, 1}∗ it holds that f(x) ≤ 2p(|x|).

Proof: Since the relation R vouching for f ∈ #P (i.e., f(x) = |R(x)|) is polynomially
bounded, there exists a polynomial p such that for every x it holds that f(x) ≤ 2p(|x|).
Deciding membership in Sf is easily reduced to computing f (i.e., we accept the input
(x,N) if and only if f(x) ≥ N). Computing f is reducible to deciding Sf by using a binary

1The notation PC was advocated in [44], and is intended to replace the notation FNP used elsewhere.
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search. This relies on the fact that, on input x and oracle access to Sf , we can determine
whether or not f(x) ≥ N by making the query (x,N). Note that we know a priori that
f(x) ∈ [0, 2p(|x|)].

The counting class #P is also related to the problem of enumerating all possible solutions
to a given instance (see Exercise 7.1).

7.1.1 On the power of #P
As indicated, NP∪BPP is (easily) reducible to #P . Furthermore, as stated in Theorem 7.3,
the entire Polynomial-Time Hierarchy is Cook-reducible to #P (i.e., PH ⊆ P#P). On the
other hand, any problem in #P is solvable in polynomial space, and so P#P ⊆ PSPACE .

Theorem 7.3 [102] Every set in PH is Cook-reducible to #P.

We do not present a proof of Theorem 7.3 here, because the known proofs are rather tech-
nical. Furthermore, one main idea underlying these proofs appears in a more clear form in
the proof of Theorem 7.16.

7.1.2 Completeness in #P
The definition of #P-completeness is analogous to the definition of NP-completeness. That
is, a counting problem f is #P-complete if f ∈ #P and every problem in #P is Cook-
reducible to f .

We claim that the counting problems associated with the NP-complete problems pre-
sented in previous lectures are all #P-complete. We warn that this fact is not due to the
mere NP-completeness of these problems, but rather to an additional property of the reduc-
tions establishing their NP-completeness. Specifically, the Karp-reductions that were used
(or variants of them) have the extra property of preserving the number of NP-witnesses (as
captured by the following definition).

Definition 7.4 (parsimonious reductions): Let R,R′ ∈ PC and let g be a Karp-reduction
of SR = {x : R(x) 6= ∅} to SR′ = {x : R′(x) 6= ∅}, where R(x) = {y : (x, y) ∈ R} and
R′(x) = {y : (x, y)∈R′}. We say that g is parsimonious (with respect to R and R′) if for
every x it holds that |R(x)| = |R′(g(x))|. In such a case we say that g is a parsimonious
reduction of R to R′.

We stress that the condition of being parsimonious refers to the two underlying relations R
and R′ (and not merely to the sets SR and SR′). The requirement that g is a Karp-reduction
is partially redundant, because if g is polynomial-time computable and for every x it holds
that |R(x)| = |R′(g(x))|, then g constitutes a Karp-reduction of SR to SR′ . Specifically,
|R(x)| = |R′(g(x))| implies that |R(x)| > 0 (i.e., x ∈ SR) if and only if |R′(g(x))| > 0 (i.e.,
g(x) ∈ SR′). The reader may easily verify that the Karp-reduction underlying the proof of
CSAT (and SAT) as well as many of the reductions used in the theory of NP-completeness
are parsimonious.

Theorem 7.5 Let R ∈ PC and suppose that every search problem in PC is parsimoniously
reducible to R. Then the counting problem associated with R is #P-complete.
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Proof: Clearly, the counting problem associated with R, denoted #R, is in #P . To show
that every f ′ ∈ #P is reducible to f , we consider the relation R′ ∈ PC that is counted by
f ′; that is, #R′ = f ′. Then, by the hypothesis, there exists a parsimonious reduction g of
R′ to R. This reduction also reduces #R′ to #R; specifically, #R′(x) = #R(g(x)) for every
x.

Corollaries. As an immediate corollary of Theorem 7.5, we get that counting the number
of satisfying assignments to a given CNF formula is #P-complete. Similar statement hold
for all the other NP-complete problems mentioned in previous lectures and in fact for all
NP-complete problems listed in [40]. These corollaries follow from the fact that all known
reductions among natural NP-complete problems are either parsimonious or can be easily
modified to be so.

We conclude that many counting problems associated with NP-complete search prob-
lems are #P-complete. It turns out that also counting problems associated with efficiently
solvable search problems may be #P-complete.

Theorem 7.6 There exist #P-complete counting problems that are associated with effi-
ciently solvable search problems. That is, there exists R ∈ PF (i.e., R is solvable in
polynomial-time) such that #R is #P-complete.

Proof: Consider the relation Rdnf consisting of pairs (φ, τ) such that φ is a DNF formula
and τ is an assignment satisfying it. Note that the search problem of Rdnf is easy to solve
(e.g., by picking an arbitrary truth assignment that satisfies the first term in the input
formula). To see that #Rdnf is #P-complete consider the following reduction from #RSAT
(which is #P-complete by Theorem 7.5). Given a CNF formula φ, transform ¬φ into a DNF
formula φ′ by applying de-Morgan’s Law, and return 2n−#Rdnf(φ′), where n denotes the
number of variables in φ (resp., φ′).

Reflections. We note that Theorem 7.6 is not established by a parsimonious reduction.
This fact should not come as a surprise because a parsimonious reduction of #R′ to #R
implies that SR′ = {x : ∃y s.t. (x, y)∈R′} is reducible to SR = {x : ∃y s.t. (x, y)∈R}, where
in our case SR′ is NP-Complete while SR ∈ P (since R ∈ PF). Nevertheless, the proof of
Theorem 7.6 is related to the hardness of some underlying decision problem (i.e., the problem
of deciding whether a given DNF formula is a tautology (i.e., whether #Rdnf(φ′) = 2n)).
But does there exist a #P-complete problem that is “not based on some underlying NP-
complete decision problem”? Amazingly enough, the answer is positive.

Theorem 7.7 [106] Counting the number of perfect matchings in a bipartite graph is #P-
complete.

Equivalently (see Exercise 7.2), the problem of computing the permanent of matrices with
0/1-entries is #P-complete. Recall that the permanent of an n-by-n matrix M = (mi,j),
denoted perm(M), equals the sum over all permutations π of [n] of the products

∏n
i=1mi,π(i).

Theorem 7.7 is proven by composing the following two (many-to-one) reductions (asserted
in Propositions 7.8 and 7.9, respectively) and using the fact that #R3SAT is #P-complete
(see Theorem 7.5). Needless to say, the resulting reduction is not parsimonious.



7.2. APPROXIMATE COUNTING 105

Proposition 7.8 The counting problem of 3SAT (i.e., #R3SAT) is reducible to computing
the permanent of integer matrices. Furthermore, there exists an even integer c > 0 and a
finite set of integers I such that, on input a 3CNF formula φ, the reduction produces an
integer matrix with entries in I and a permanent value that equals cm ·#R3SAT(φ), where
m denotes the number of clauses in φ.

The original proof of Proposition 7.8 uses c = 210 and I = {−1, 0, 1, 2, 3}. It follows that, for
every integer n > 1 that is relatively prime to c, computing the permanent modulo n is NP-
hard (see Exercise 7.3, which also uses Theorem 7.16). Thus, using the case of c = 210, this
means that computing the permanent modulo n is NP-hard for any odd n > 1. In contrast,
computing the permanent modulo 2 (which is equivalent to computing the determinant
modulo 2) is easy (i.e., can be done in polynomial-time and even in NC). Thus, assuming
NP 6⊆ BPP, Proposition 7.8 cannot hold for an odd c (because by Exercise 7.3 it would
follow that computing the permanent modulo 2 is NP-Hard). We also note that, assuming
P 6= NP , Proposition 7.8 cannot possibly hold for a set I containing only non-negative
integers (see Exercise 7.4).

Proposition 7.9 Computing the permanent of integer matrices is reducible to computing
the permanent of 0/1-matrices. Furthermore, the reduction transforms an integer matrix A
into a 0/1-matrix A′′ such that the permanent of A can be easily computed from A and the
permanent of A′′.

The proofs of Propositions 7.8 and 7.9 are omitted.

7.2 Approximate Counting

Let us consider the counting problem associated with an arbitrary R ∈ PC. Without loss
of generality, we assume that all solutions to n-bit instances have the same length ℓ(n),
where indeed ℓ is a polynomial. We first note that, while it may be hard to compute #R,
given x it is easy to approximate #R(x) up to 0.01 · 2ℓ(|x|). Indeed, such an approximation
is very rough, but it is not trivial. More generally, we have the following algorithm that
produces an estimate of #R(x) that deviates from the correct value by an additive term
that is related to the absolute bound on the number of solutions (i.e., 2ℓ(|x|)).

Proposition 7.10 (approximation with additive deviation): Let R ∈ PC and ℓ be a poly-
nomial such that R ⊆ ∪n∈N{0, 1}n × {0, 1}ℓ(n). Then, for every polynomial p, there exists
a probabilistic polynomial-time algorithm A such that for every x ∈ {0, 1}∗ and δ ∈ (0, 1) it
holds that

Pr[|A(x, δ) −#R(x)| > (1/p(|x|)) · 2ℓ(|x|)] < δ. (7.1)

(As usual, δ is presented to A in binary, and hence the running time of A(x, δ) is upper-
bounded by poly(|x| · log(1/δ)).

Proof Sketch: On input x and δ, algorithmA sets t = Θ(p(|x|)2·log(1/δ)), selects uniformly
y1, ..., yt and outputs |{i : (x, yi) ∈ R}|/t.
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Discussion. Proposition 7.10 is meaningful in case #R(x) > (1/p(|x|)) · 2ℓ(|x|) holds for
some x’s. But otherwise, a trivial approximation (i.e., outputting the constant value zero)
meets the bound of Eq. (7.1). In general, an approximation of #R(x) up-to a constant
factor (or some other reasonable factor) is more meaningful.2 In Section 7.2.1, we consider
a non-trivial case where such a relative approximation can be obtained in probabilistic
polynomial-time. For reasons explained in Section 7.2.1, we do not expect this to happen
for every counting problem in #P, but in Section 7.2.2 we show that relative approximation
for any problem in #P can be obtained by a randomized Cook-reduction to NP . But before
turning to these results, let us state the underlying definition (and actually strengthen it by
requiring approximation to within a factor of 1± ε).

Definition 7.11 (approximation with relative deviation): Let f : {0, 1}∗ → N and ε, δ :
N → [0, 1]. A randomized process Π is called an (ε, δ)-approximator of f if for every x it
holds that

Pr [|Π(x) − f(x)| > ε(|x|) · f(x)] < δ(|x|). (7.2)

We say that f is efficiently (1− ε)-approximable (or just (1− ε)-approximable) if there exists
a probabilistic polynomial-time algorithm A that constitute an (ε, 1/3)-approximator of f .

The error probability of the latter algorithm A (which has error probability 1/3) can be
reduced to δ by O(log(1/δ)) repetitions (see Exercise 7.5). Typically, the running time of A
will be polynomial in 1/ε, and ε is called the deviation parameter.

7.2.1 Relative approximation for #Rdnf

Consider the relation Rdnf consisting of pairs (φ, τ) such that φ is a DNF formula and τ is
an assignment satisfying it. Recall that the search problem of Rdnf is easy to solve and that
the proof of Theorem 7.6 establishes that #Rdnf is #P-complete (via a non-parsimonious
reduction). Still there exists a probabilistic polynomial-time algorithm that provides a
constant factor approximation of #Rdnf. We warn that the fact that #Rdnf is #P-
complete via a non-parsimonious reduction means that the constant factor approximation
for #Rdnf does not seem to imply a similar approximation for all problems in #P. In
fact, we should not expect each problem in #P to have a (probabilistic) polynomial-time
constant-factor approximation algorithm because this would imply NP ⊆ BPP (since a
constant factor approximation allows for distinguishing the case in which the instance has
no solution from the case in which the instance has a solution).

The following algorithm is actually a deterministic reduction of the task of (ε, 1/3)-
approximating #Rdnf to the (additive deviation) approximation provided in Proposition 7.10.
Consider a DNF formula φ =

∨m
i=1 Ci, where each Ci : {0, 1}n → {0, 1} is a conjunction.

Actually, we will deal with the more general problem in which we are (implicitly) given m
subsets S1, ..., Sm ⊆ {0, 1}n and wish to approximate |⋃i Si|. In our case, each Si is the

2We refrain from formally defining an F -factor approximation in this section, although we shall refer to
this notion in several informal discussions. There are several ways of defining the aforementioned term (and
they are all equivalent when applied to our informal discussions). For example, an F -factor approximation of
#R may mean that, with high probability, the output A(x) satisfies #R(x)/F (|x|) ≤ A(x) ≤ F (|x|) ·#R(x).
Alternatively, we may require that #R(x) ≤ A(x) ≤ F (|x|) ·#R(x) (or, alternatively, that #R(x)/F (|x|) ≤
A(x) ≤ #R(x).
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set of assignments satisfying the conjunction Ci. In general, we make two computational
assumptions regarding these sets (letting efficient mean implementable in time polynomial
in n ·m):

1. Given i ∈ [m], one can efficiently determine |Si|.

2. Given i ∈ [m] and J ⊆ [m], one can efficiently approximate Prs∈Si

[
s ∈ ⋃j∈J Sj

]
up

to an additive deviation of 1/poly(n+m).

These assumptions are satisfied in our setting (where Si = C−1
i (1), see Exercise 7.6). The

key observation towards approximating |⋃m
i=1 Si| is that

∣∣∣∣∣

m⋃

i=1

Si

∣∣∣∣∣ =

m∑

i=1

∣∣∣∣∣∣
Si \

⋃

j<i

Sj

∣∣∣∣∣∣
=

m∑

i=1

|Si| · Prs∈Si


s 6∈

⋃

j<i

Sj


 (7.3)

and that the probabilities in Eq. (7.3) can be approximated by the second assumption. This
leads to the following algorithm, where ε denotes the desired deviation parameter (i.e., we
wish to obtain (1± ε) · |⋃m

i=1 Si|).

Construction 7.12 Let ε′ = ε/m. For i = 1 to m do:

1. Using the first assumption, compute |Si|.

2. Using the second assumption, obtain p̃i = (1±ε′) ·pi, where pi
def
= Prs∈Si

[s 6∈ ⋃j<i Sj].

Set ai
def
= p̃i · |Si|.

Output the sum of the ai’s.

Let Ni = pi · |Si|. We are interested in the quality of the approximation to
∑

i Ni = |⋃i Si|
provided by

∑
i ai. Using ai = (pi ± ε′) · |Si| = Ni ± ε′ · |Si| (for all i’s), we have

∑
i ai =∑

iNi ± ε′ · ∑i |Si|. Using
∑

i |Si| ≤ m · |⋃i Si| = m ·∑i Ni (and ε = mε′), we get∑
i ai = (1 ± ε) ·∑i Ni. Thus, we obtain the following result (see Exercise 7.6).

Proposition 7.13 For every positive polynomial p, the counting problem of Rdnf is effi-
ciently (1 − (1/p))-approximable.

Using the reduction presented in the proof of Theorem 7.6, we conclude that the number of
unsatisfying assignments to a given CNF formula is efficiently (1−(1/p))-approximable. We
warn, however, that the number of satisfying assignments to such a formula is not efficiently
approximable. This concurs with the general phenomenon by which relative approximation
may be possible for one quantity, but not for the complementary quantity. Needless to say,
such a phenomenon does not occur in the context of additive-deviation approximation.
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7.2.2 Relative approximation for #P
Recall that we cannot expect to efficiently approximate every #P problem. Specifically,
efficiently approximating #R yields an efficient algorithm for deciding membership in SR =
{x : R(x) 6= ∅}. Thus, at best we can hope that approximating #R is not harder than
deciding SR (i.e., that approximating #R is reducible in polynomial-time to SR). This is
indeed the case for every NP-complete problem (i.e., if SR is NP-complete). More generally,
we show that approximating any problem in #P is reducible in probabilistic polynomial-time
to NP .

Theorem 7.14 For every R ∈ PC and positive polynomial p, there exists a probabilistic
polynomial-time oracle machine that when given oracle access to NP constitutes a (1/p, µ)-
approximator of #R, where µ is a negligible function (e.g., µ(n) = 2−n).

Recall that it suffices to provide a (1/p, δ)-approximator of #R, for any constant δ < 0.5,
because error reduction is applicable in this context (see Exercise 7.5). Also, it suffices to
provide a (1/2, δ)-approximator for every problem in #P (see Exercise 7.7).

Proof: Given x, we show how to approximate |R(x)| to within a constant factor. The
desired approximation can be obtained as in Exercise 7.7. We may also assume that R(x) 6=
∅, by starting with the query “is x in SR” and halting (with output 0) if the answer is
negative. Without loss of generality, we assume that R(x) ⊆ {0, 1}ℓ, where ℓ = poly(|x|).
Our task is to find some i ∈ {1, ..., ℓ} such that 2i−4 ≤ |R(x)| ≤ 2i+4. We proceed in
iterations. For i = 1, ..., ℓ + 1, we find out whether or not |R(x)| < 2i. If the answer
is positive then we halt with output 2i, and otherwise we proceed to the next iteration.
(Indeed, if we were able to obtain correct answers to these queries then the output 2i would
satisfy 2i−1 ≤ |R(x)| < 2i.)

Needless to say, the key issue is how to check whether |R(x)| < 2i. The main idea
is to use a “random sieve” on the set R(x) such that each element passes the sieve with
probability 2−i. Thus, we expect |R(x)|/2i elements of R(x) to pass the sieve. Assuming
that the number of elements in R(x) that pass the random sieve is indeed ⌊|R(x)|/2i⌋, it
holds that |R(x)| ≥ 2i if and only if some element of R(x) passes the sieve. Assuming
that the sieve can be implemented efficiently, the question of whether or not some element
in R(x) passed the sieve is of an “NP-type” (and thus can be referred to our NP-oracle).
Combining both assumptions, we may implement the foregoing process by proceeding to
the next iteration as long as some element of R(x) passes the sieve. Furthermore, this
implementation will provide a reasonably good approximation even if the number of elements
in R(x) that pass the random sieve is only approximately equal to |R(x)|/2i. In fact, the
level of approximation that this implementation provides is closely related to the level of
approximation that is provided by the random sieve. Details follow.

Implementing a random sieve. The random sieve is implemented by using a family of hashing
functions (see Appendix). Specifically, in the ith iteration we use a family Hi

ℓ such that
each h ∈ Hi

ℓ has a poly(ℓ)-bit long description and maps ℓ-bit long strings to i-bit long
strings. Furthermore, the family is accompanied with an efficient evaluation algorithm (i.e.,
mapping adequate pairs (h, x) to h(x)) and satisfies (for every S ⊆ {0, 1}ℓ)

Prh∈Hi
ℓ
[|{y ∈ S : h(y) = 0i}| 6∈ (1± ε) · 2−i|S|] < 2i

ε2|S| (7.4)
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(see Lemma 4.4). The random sieve will let y pass if and only if h(y) = 0i. Indeed, this
random sieve is not as perfect as we assumed in the foregoing discussion, but Eq. (7.4) says
that in some sense this sieve is good enough.

Implementing the queries. Recall that for some x, i and h ∈ H i
ℓ, we need to determine

whether {y∈R(x) : h(y)=0i} = ∅. This type of question can be cast as membership in the
set

SR,H
def
= {(x, i, h) : ∃y s.t. (x, y)∈R ∧ h(y)=0i}. (7.5)

Using the hypotheses that R ∈ PC and that the family of hashing functions has an efficient
evaluation algorithm, it follows that SR,H is in NP .

The actual procedure. On input x ∈ SR and oracle access to SR,H , we proceed in iterations,
starting with i = 1 and halting at i = ℓ (if not before), where ℓ denotes the length of the
potential solutions for x. In the ith iteration (where i < ℓ), we uniformly select h ∈ H i

ℓ and
query the oracle on whether or not (x, i, h) ∈ SR,H . If the answer is negative then we halt
with output 2i, and otherwise we proceed to the next iteration (using i← i+ 1). Needless
to say, if we reach the last iteration (i.e., i = ℓ) then we just halt with output 2ℓ.

Indeed, we have ignored the case that x 6∈ SR, which can be easily handled by a minor
modification of the foregoing procedure. Specifically, on input x, we first query SR on x
and halt with output 0 if the answer is negative. Otherwise we proceed as in the foregoing
procedure.

The analysis. We upper-bound separately the probability that the procedure outputs a value
that is too small and the probability that it outputs a value that is too big. In light of the
foregoing discussion, we may assume that |R(x)| > 0, and let ix = ⌊log2 |R(x)|⌋ ≥ 0.

1. The probability that the procedure halts in a specific iteration i < ix equals Prh∈Hi
ℓ
[|{y ∈

R(x) : h(y) = 0i}| = 0], which in turn is upper-bounded by 2i/|R(x)| (using Eq. (7.4)
with ε = 1). Thus, the probability that the procedure halts before iteration ix − 3 is

upper-bounded by
∑ix−4

i=0 2i/|R(x)|, which in turn is less than 1/8 (because ix ≤
log2 |R(x)|). Thus, with probability at least 7/8, the output is at least 2ix−3 >
|R(x)|/16 (because ix > (log2 |R(x)|)− 1).

2. The probability that the procedure does not halt in iteration i > ix equals Prh∈Hi
ℓ
[|{y ∈

R(x) : h(y) = 0i}| ≥ 1], which in turn is upper-bounded by α/(α − 1)2, where
α = 2i/|R(x)| > 1 (using Eq. (7.4) with ε = α − 1).3 Thus, the probability that the
procedure does not halt by iteration ix + 4 is upper-bounded by 8/49 < 1/6 (because
ix > (log2 |R(x)|) − 1). Thus, with probability at least 5/6, the output is at most
2ix+4 ≤ 16 · |R(x)| (because ix ≤ log2 |R(x)|).

Thus, with probability at least (7/8)− (1/6) > 2/3, the foregoing procedure outputs a value
v such that v/16 ≤ |R(x)| < 16v. Reducing the deviation by using the ideas presented in
Exercise 7.7 (and reducing the error probability as in Exercise 7.5), the theorem follows.

3A better bound can be obtained by using the hypothesis that, for every y, when h is uniformly selected
in Hi

ℓ , the value of h(y) is uniformly distributed in {0, 1}i. In this case, Prh∈Hi
ℓ
[|{y ∈ R(x) : h(y) = 0i}| ≥ 1]

is upper-bounded by Eh∈Hi
ℓ
[|{y ∈ R(x) : h(y) = 0i}|] = |R(x)|/2i.
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Perspective. The key observation underlying the proof Theorem 7.14 is that while we
cannot test (even with the help of an NP-oracle) whether the number of solutions is greater
than a given number, we can test (with the help of an NP-oracle) whether the number
of solutions that “survive a random sieve” is greater than zero. If fact, we can also test
whether the number of solutions that “survive a random sieve” is greater than a small
number, where small means polynomial in the length of the input (see Exercise 7.9). In
general, our complexity is linear in the size of the threshold, and not in the length of its
binary description. Indeed, in many settings it is more advantageous to use a threshold that
is polynomial in some efficiency parameter (rather than using the threshold zero); examples
appear in Section 7.4.2 and in [49].

7.3 Searching for unique solutions

A natural computational problem (regarding search problems), which arises when discussing
the number of solutions, is the problem of distinguishing instances having a single solution
from instances having no solution (or finding the unique solution whenever such exists).
We mention that instances having a single solution facilitate numerous arguments (see, for
example, Exercise 7.3 and [21]). Formally, searching for and deciding the existence of unique
solutions are defined within the framework of promise problems.

Definition 7.15 (search and decision problems for unique solution instances): The set of

instances having unique solutions with respect to the binary relation R is defined as USR
def
=

{x : |R(x)| = 1}, where R(x)
def
= {y : (x, y)∈R}. As usual, we denote SR = {x : |R(x)| ≥ 1},

and SR
def
= {0, 1}∗ \ SR = {x : |R(x)| = 0}.

• The problem of finding unique solutions for R is defined as the search problem R with
promise USR ∪ SR.4

In continuation to the notion of candid search problems, the candid searching for unique
solutions for R is defined as the search problem R with promise USR.

4A search problem with a promise consists of a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ and a promise set P .
Such a problem is also referred to as the search problem R with promise P .

– The search problem R with promise P is solved by algorithm A if for every x ∈ P it holds that
(x,A(x)) ∈ R if x ∈ SR = {x : R(x) 6= ∅} and A(x) = ⊥ otherwise, where R(x) = {y : (x, y) ∈ R}.
The time complexity of A on inputs in P is defined as TA|P (n)

def
= maxx∈P∩{0,1}n{tA(x)}, where tA(x)

is the running time of A(x) and TA|P (n) = 0 if P ∩ {0, 1}n = ∅.
– The search problem R with promise P is in the promise problem extension of PF if there exists a

polynomial-time algorithm that solves this problem.

– The search problem R with promise P is in the promise problem extension of PC if there exists a
polynomial T and an algorithm A such that, for every x ∈ P and y ∈ {0, 1}∗, algorithm A makes at
most T (|x|) steps and it holds that A(x, y) = 1 if and only if (x, y) ∈ R.

An algorithm A solves the candid search problem of the binary relation R if for every x ∈ SR
def
= {x :

∃y s.t. (x, y) ∈ R} it holds that (x,A(x)) ∈ R. The time complexity of such an algorithm is defined

as TA|SR
(n)

def
= maxx∈P∩{0,1}n{tA(x)}, where tA(x) is the running time of A(x) and TA|SR

(n) = 0 if

P ∩ {0, 1}n = ∅.
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• The problem of deciding unique solution forR is defined as the promise problem (USR, SR).

Interestingly, in many natural cases, the promise does not make any of these problems any
easier than the original problem. That is, for all known NP-complete problems, the original
problem is reducible in probabilistic polynomial-time to the corresponding unique instances
problem.

Theorem 7.16 Let R ∈ PC and suppose that every search problem in PC is parsimoniously
reducible to R. Then solving the search problem of R (resp., deciding membership in SR)
is reducible in probabilistic polynomial-time to finding unique solutions for R (resp., to
the promise problem (USR, SR)). Furthermore, there exists a probabilistic polynomial-time
computable mapping M such that for every x ∈ SR it holds that M(x) ∈ SR, whereas for
every x ∈ SR it holds that Pr[M(x) ∈ USR] ≥ 1/poly(|x|).

We note that the condition regarding parsimonious reductions is crucial (see Exercise 7.10).

Proof: As in the proof of Theorem 7.14, the idea is to apply a “random sieve” on R(x), this
time with the hope that a single element survives. Specifically, if we let each element passes
the sieve with probability approximately 1/|R(x)| then with constant probability a single
element survives. Sieving will be performed by a random function selected in an adequate
hashing family (see Appendix). A couple of questions arise:

1. How do we get an approximation to |R(x)|? Note that we need such an approx-
imation in order to determine the adequate hashing family. Indeed, we may just
invoke Theorem 7.14, but this will not yield a many-to-one reduction. Instead,
we just select m ∈ {0, ...,poly(|x|)} uniformly and note that (if |R(x)| > 0 then)
Pr[m = ⌈log2 |R(x)|⌉] = 1/poly(|x|).
Thus, we randomly map x to (x,m, h), where h is uniformly selected in an adequate
hashing family.

2. How does the question of whether a single element of R(x) pass the random sieve trans-
late to an instance of the unique-instance problem for R? Recall that in the proof of
Theorem 7.14 the non-emptiness of the set of element of R(x) that pass the sieve
defined by h was determined by checking membership (of (x,m, h)) in SR,H ∈ NP
(defined in Eq. (7.5)). Furthermore, the number of NP-witnesses for (x,m, h) ∈ SR,H

equals the number of elements of R(x) that pass the sieve. Using the parsimonious re-
duction of SR,H to SR (which is guaranteed by the theorem’s hypothesis), we obtained
the desired instance.

Note that in case R(x) = ∅ the aforementioned mapping always generates a no-instance (of
SR,H and thus of SR). Details follow.

Implementation (i.e., the mapping M). As in the proof of Theorem 7.14, we assume, without
loss of generality, that R(x) ⊆ {0, 1}ℓ, where ℓ = poly(|x|). We start by uniformly selecting
m ∈ {0, 1, ..., ℓ} and h ∈ Hm

ℓ , where Hm
ℓ is a family of efficiently computable and pairwise-

independent hashing functions (see Definition 4.1) mapping ℓ-bit long strings to m-bit long
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strings.5 Thus, we obtain an instance (x,m, h) of SR,H ∈ NP such that the set of valid
solutions for (x,m, h) equals {y ∈R(x) : h(y) = 0m}. Using the parsimonious reduction g
of SR,H to SR, we map (x,m, h) to g(x,m, h), and it holds that |{y ∈R(x) : h(y) = 0m}|
equals |R(g(x,m, h))|. To summarize, on input x the randomized mapping M outputs the

instance M(x)
def
= g(x,m, h), where m ∈ {0, 1, ..., ℓ} and h ∈ Hm

ℓ are uniformly selected.

The analysis. Note that for any x ∈ SR it holds that Pr[M(x) ∈ SR] = 1. Assuming that

x ∈ SR, with probability exactly 1/(ℓ+1) it holds that m = mx, where mx
def
= ⌈log2 |R(x)|⌉.

In this case, for a uniformly selected h ∈ Hm
ℓ , we lower-bound the probability that {y ∈

R(x) : h(y)=0m} is a singleton. Using the Inclusion-Exclusion Principle, we have

Prh∈Hmx
ℓ

[|{y∈R(x) : h(y)=0mx}| = 1] (7.6)

≥
∑

y∈R(x)

Prh∈Hmx
ℓ

[h(y)=0mx ]

−
∑

y1<y2∈R(x)

Prh∈Hmx
ℓ

[h(y1)=h(y2)=0mx ]

= |R(x)| · 2−mx −
(|R(x)|

2

)
· 2−2mx

where the equality is due to the pairwise independence property. Using 2mx−1 < |R(x)| ≤
2mx , it follows that Eq. (7.6) is lower-bounded by 1/4. Thus, Pr[M(x) ∈ USR] ≥ 1/4(ℓ+ 1),
and the theorem follows.

Comment. Theorem 7.16 is sometimes stated as referring to the unique solution problem
of SAT. In this case and when using a specific family of pairwise independent hashing func-
tions, the use of the parsimonious reduction can be avoided. For details see Exercise 7.11.

7.4 Uniform generation of solutions

We now turn to a new type of computational problems, which may be viewed as a straining
of search problems. We refer to the task of generating a uniformly distributed solution
for a given instance, rather than merely finding an adequate solution. Needless to say,
by definition, algorithms solving this (“uniform generation”) task must be randomized.
Focusing on relations in PC we consider two versions of the problem, which differ by the
level of approximation provided for the desired (uniform) distribution.6

Definition 7.17 (uniform generation): Let R ∈ PC and SR = {x : |R(x)| ≥ 1}, and let Π
be a probabilistic process.

5For sake of uniformity, we allow also the case of m = 0, which is rather artificial. In this case all hashing
functions in H0

ℓ
map {0, 1}ℓ to the empty string, which is viewed as 00.

6Note that a probabilistic algorithm running in strict polynomial-time is not able to output a perfectly
uniform distribution on sets of certain sizes. Specifically, referring to the standard model that allows only
for uniformly selected binary values, such algorithms cannot output a perfectly uniform distribution on sets
having cardinality that is not a power of two.
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1. We say that Π solves the uniform generation problem of R if, on input x ∈ SR, the
process Π outputs either an element of R(x) or a special symbol, denoted ⊥, such that
Pr[Π(x)∈R(x)] ≥ 1/2 and for every y ∈ R(x) it holds that Pr[Π(x)=y |Π(x)∈R(x)] =
1/|R(x)|.

2. For ε : N → [0, 1], we say that Π solves the (1 − ε)-approximate uniform generation
problem of R if, on input x ∈ SR, the distribution Π(x) is ε(|x|)-close to the uniform
distribution on R(x).

In both cases, without loss of generality, we may require that if x 6∈ SR then Pr[Π(x) = ⊥] =
1. More generally, we may require that Π never outputs a string not in R(x).

Note that the error probability of uniform generation (as in Item 1) can be made exponen-
tially vanishing (in |x|) by employing error-reduction. In contrast, we are not aware of any
general way of reducing the deviation of an approximate uniform generation procedure (as
in Item 2).7

In Section 7.4.1 we show that, for many search problems, approximate uniform generation
is computationally equivalent to approximate counting. In Section 7.4.2 we present a direct
approach for solving the uniform generation problem of any search problem in PC by using
an oracle to NP .

7.4.1 Relation to approximate counting

We show that for every R ∈ PC that is NP-complete under parsimonious reductions, the
approximate counting problem associated with R is computationally equivalent to approxi-
mate uniform generation with respect to R. Recalling that both approximate problems are
parameterized by the level of precision, we obtain the following quantitative form of the
aforementioned equivalence.

Theorem 7.18 Let R ∈ PC and let ℓ be a polynomial such that for every (x, y)∈R it holds
that |y| ≤ ℓ(|x|). Suppose that every search problem in PC is parsimoniously reducible to R.

1. From approximate counting to approximate uniform generation: Let ε(n) = 1/5ℓ(n)
and let µ : N→ (0, 1) be a function satisfying µ(n) ≥ exp(−poly(n)). Then, (1 − µ)-
approximate uniform generation for R is reducible in probabilistic polynomial-time to
(1− ε)-approximating #R.

2. From approximate uniform generation to approximate counting: For every noticeable
ε :N→(0, 1) (i.e., ε(n) ≥ 1/poly(n) for every n), the problem of (1− ε)-approximating
#R is reducible in probabilistic polynomial-time to (1− ε′)-approximate uniform gen-
eration problem of R, where ε′(n) = ε(n)/5ℓ(n).

Note that the quality of the approximate uniform generation asserted in Part 1 (i.e., µ) is
independent of the quality of the approximate counting procedure (i.e., ε) to which the for-
mer is reduced, provided that the approximate counter performs better than some threshold.
On the other hand, the quality of the approximate counting asserted in Part 2 (i.e., ε) does

7We note that in some cases, the deviation of an approximate uniform generation procedure can be
reduced. See discussion following Theorem 7.18.
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depend on the quality of the approximate uniform generation (i.e., ε′). Recall, however, that
the quality of approximate counting procedures for problems that are NP-complete under
parsimonious reductions can be improved (see Exercise 7.8). Thus, for such problems, the
quality of approximate uniform generation procedures can be improved by applying both
parts of Theorem 7.18.

Proof: Throughout the proof, we assume for simplicity (and in fact without loss of gener-
ality) that R(x) 6= ∅ and R(x) ⊆ {0, 1}ℓ(|x|).

Towards Part 1, let use first reduce the uniform generation problem of R to #R (rather
than to approximating #R). On input x ∈ SR, we generate a uniformly distributed y ∈ R(x)
by randomly generating its bits one after the other. We proceed in iterations, entering the

ith iteration with an (i−1)-bit long string y′ such that R′(x; y′)
def
= {y′′ : (x, y′y′′) ∈ R} is not

empty. With probability |R′(x; y′1)|/|R′(x; y′)| we set the ith bit to equal 1, and otherwise
we set it to equal 0. We obtain both |R′(x; y′1)| and |R′(x; y′)| by using a parsimonious
reduction g of R′ = {((x; y′), y′′) : (x, y′y′′) ∈ R} ∈ PC to R. That is, we obtain |R′(x; y′)|
by querying for the value of |R(g(x; y′))|. Ignoring integrality issues, all this works perfectly
(i.e., we generate an ℓ(n)-bit string uniformly distributed in R(x)) as long as we have oracle
access to #R. But we only have oracle access to an approximation of #R, and thus a careful
modification is in place.

Let us denote the approximation oracle by A. Firstly, by adequate error reduction, we
may assume that, for every x, it holds that Pr[A(x) ∈ (1±ε(n)) ·#R(x)] > 1−µ′(|x|), where
µ′(n) = µ(n)/ℓ(n). In the rest of the analysis we ignore the probability that the estimate
deviates from the aforementioned interval, and note that this rare event is the only source
of the possible deviation of the output distribution from the uniform distribution on R(x).8

Let us assume for a moment that A is deterministic and that for every x and y′ it holds
that

A(g(x, y′0)) +A(g(x, y′1)) ≤ A(g(x; y′)). (7.7)

We also assume that the approximation is correct at the “trivial level” (where one may just
check whether or not (x, y) is in R); that is, for every y ∈ {0, 1}ℓ(|x|), it holds that

A(g(x; y)) = 1 if (x, y) ∈ R and A(g(x; y)) = 0 otherwise. (7.8)

We modify the ith iteration of the foregoing procedure such that, when entering with the (i−
1)-bit long prefix y′, we set the ith bit to 1 (resp., to 0) with probabilityA(g(x; y′1))/A(g(x; y′))
(resp., with probability A(g(x; y′0))/A(g(x; y′))) and halt (with output ⊥) with the residual
probability. If we completed the last (i.e., ℓ(|x|)th) iteration, then we output the ℓ(|x|)-bit
long string that was generated. Thus, as long as Eq. (7.7) holds (but regardless of other
aspects of the quality of the approximation), every y = σ1 · · ·σℓ(|x|) ∈ R(x), is output with
probability

A(g(x;σ1))

A(g(x;λ))
· A(g(x;σ1σ2))

A(g(x;σ1))
· · · A(g(x;σ1σ2 · · ·σℓ(|x|)))

A(g(x;σ1σ2 · · ·σℓ(|x|)−1))
(7.9)

which, by Eq. (7.8), equals 1/A(g(x;λ)). Thus, the procedure outputs each element of R(x)
with equal probability, and never outputs a non-⊥ value that is outside R(x). It follows

8The possible deviation is due to the fact that this rare event may occur with different probability in the
different invocations of algorithm A.



7.4. UNIFORM GENERATION OF SOLUTIONS 115

that the quality of approximation only effects the probability that the procedure outputs a
non-⊥ value (which equals |R(x)|/A(g(x;λ))).

We now turn to enforcing Eq. (7.7) and Eq. (7.8). We may enforce Eq. (7.8) by perform-
ing the straightforward check (of whether or not (x, y) ∈ R) rather than invokingA(g(x, y)).9

As for Eq. (7.7), we enforce it artificially by using A′(x, y′)
def
= (1 + ε(|x|))3(ℓ(|x|)−|y′|) ·

A(g(x; y′)) instead of A(g(x; y′)). Recalling that A(g(x; y′)) = (1± ε(|xy′|)) · |R′(x; y′)|, we
have

A′(x, y′) > (1 + ε(|x|))3(ℓ(|x|)−|y′|) · (1− ε(|x|)) · |R′(x; y′)|
A′(x, y′σ) < (1 + ε(|x|))3(ℓ(|x|)−|y′|−1) · (1 + ε(|x|)) · |R′(x; y′σ)|

and the claim follows using (1− ε(|x|)) · (1 + ε(|x|))3 > (1− ε(|x|)). Note that the foregoing
modification only decreases the probability of outputting a non-⊥ value by a factor of
(1 + ε(|x|))3ℓ(|x|) < 2, where the inequality is due to the setting of ε (i.e., ε(n) = 1/5ℓ(n)).
Finally, we refer to our assumption that A is deterministic. This assumption was only used
in order to identify the value of A(g(x, y′)) obtained and used in the (|y′|−1)st iteration with
the value of A(g(x, y′)) obtained and used in the |y′|th iteration, but the same effect can be
obtained by just using the former value (in the |y′|th iteration) rather than re-invoking A
in order to obtain it. Part 1 follows.

Towards Part 2, let use first reduce the task of approximating #R to the task of
(exact) uniform generation for R. On input x ∈ SR, the reduction uses the tree of
possible prefixes of elements of R(x) in a somewhat different manner. Again, we pro-
ceed in iterations, entering the ith iteration with an (i − 1)-bit long string y′ such that

R′(x; y′)
def
= {y′′ : (x, y′y′′) ∈ R} is not empty. At the ith iteration we estimate the big-

ger among the two fractions |R′(x; y′0)|/|R′(x; y′)| and |R′(x; y′1)|/|R′(x; y′)|, by uniformly
sampling the uniform distribution over R′(x; y′). That is, taking poly(|x|/ε′(|x|)) uniformly
distributed samples in R′(x; y′), we obtain with overwhelmingly high probability an approx-
imation of these fractions up to an additive deviation of at most ε′(|x|)/3. This means
that we obtain a relative approximation up-to a factor of 1 ± ε′(|x|) for the fraction (or
fractions) that is (resp., are) bigger than 1/3. Indeed, we may not be able to obtain such
a good relative approximation of the other fraction (in case it is very small), but this does
not matter. It also does not matter that we cannot tell which is the bigger fraction among
the two; it only matter that we use an approximation that indicates a quantity that is,
say, bigger than 1/3. We proceed to the next iteration by augmenting y′ using the bit that
corresponds to such a quantity. Specifically, suppose that we obtained the approximations
a0(y

′) ≈ |R′(x; y′0)|/|R′(x; y′)| and a1(y
′) ≈ |R′(x; y′1)|/|R′(x; y′)|. Then we extend y′ by

the bit 1 if a1(y
′) > a0(y

′) and extend y′ by the bit 0 otherwise. Finally, when we reach
y = σ1 · · ·σℓ(|x|) such that (x, y) ∈ R, we output

aσ1(λ)
−1 · aσ2(σ1)

−1 · · · aσℓ(|x|)
(σ1σ2 · · ·σℓ(|x|)−1)

−1. (7.10)

As in Part 1, actions regarding R′ (in this case uniform generation in R′) are conducted
via the parsimonious reduction g to R. That is, whenever we need to sample uniformly

9Alternatively, we note that since A is a (1 − ε)-approximator for ε < 1 it must hold that #R′(z) = 0
implies A(z) = 0. Also, since ε < 1/3, if #R′(z) = 1 then A(z) ∈ (2/3, 4/3), which may be rounded to 1.
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in the set R′(x; y′), we sample the set R(g(x; y′)) instead. Finally, note that the deviation
from uniform distribution (i.e., the fact that we can only approximately sample R) merely
introduces such a deviation in each of our approximations to the relevant fractions (i.e.,
to a fraction bigger than 1/3). Specifically, on input x, using an oracle that provides a
(1 − ε′)-approximate uniform generation for R, with overwhelmingly high probability, the
output (as defined in Eq. (7.10)) is in

ℓ(|x|)∏

i=1

(
(1± 2ε′(|x|)) · |R

′(x;σ1 · · ·σi−1)|
|R′(x;σ1 · · ·σi)|

)
(7.11)

where the error probability is due to the unlikely case that in one of the iterations our
approximations deviates from the correct value by more than an additive deviation term of
ε′(n)/3. Noting that Eq. (7.11) equals (1±2ε′(|x|))ℓ(|x|) ·|R(x)| and using (1±2ε′(|x|))ℓ(|x|) ⊂
(1± ε(|x|)), Part 2 follows, and so does the theorem.

7.4.2 Direct uniform generation

We conclude the current section by presenting a direct procedure for solving the uniform gen-
eration problem of any R ∈ PC. This procedure uses an oracle to NP , which is unavoidable
because solving the uniform generation problem implies solving the corresponding search
problem. One advantage of this process, over the reduction presented in Section 7.4.1, is that
it solves the uniform generation problem rather than the approximate uniform generation
problem.

We are going to use hashing again, but this time we use a family of hashing functions
having a stronger “uniformity property” (see Section 4.3). Specifically, we will use a family of
ℓ-wise independent hashing functions mapping ℓ-bit strings to m-bit strings, where ℓ bounds
the length of solutions in R, and rely on the fact that such a family satisfies Lemma 4.6.
Intuitively, such functions partition {0, 1}ℓ into 2m cells and Lemma 4.6 asserts that these
partitions “uniformly shatter” all sufficiently large sets. That is, for every set S ⊆ {0, 1}ℓ of
size Ω(ℓ · 2m) the partition induced by almost every function is such that each cell contains
approximately |S|/2m elements of S. In particular, if |S| = Θ(ℓ ·2m) then each cell contains
Θ(ℓ) elements of S.

In the following construction, we assume that on input x we also obtain a good approx-
imation to the size of R(x). This assumption can be enforced by using an approximate
counting procedure as a preprocessing stage. Alternatively, the ideas presented in the fol-
lowing construction yield such an approximate counting procedure.

Construction 7.19 (uniform generation): On input x and m′x ∈ {mx,mx + 1}, where

mx
def
= ⌊log2 |R(x)|⌋ and R(x) ⊆ {0, 1}ℓ, the oracle machine proceeds as follows.

1. Selecting a partition that “uniformly shatters”R(x). The machine sets m = max(0,m′x−
6− log2 ℓ) and selects uniformly h ∈ Hm

ℓ . Such a function defines a partition of {0, 1}ℓ
into 2m cells10, and the hope is that each cell contains approximately the same ele-
ments of R(x). Next, the machine checks that this is indeed the case or rather than

10For sake of uniformity, we allow also the case of m = 0, which is rather artificial. In this case all hashing
functions in H0

ℓ
map {0, 1}ℓ to the empty string, which is viewed as 00, and thus define a trivial partition

of {0, 1}ℓ (i.e., into a single cell).
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no cell contains more that 1000ℓ elements of R(x). This is done by checking whether

or not (x, h, 11000ℓ) is in the set S
(1)
R,H defined as follows

S
(1)
R,H

def
= {(x′, h′, 1t) : ∃v s.t. |{y : (x′, y)∈R ∧ h′(y)=v}| ≥ t} (7.12)

= {(x′, h′, 1t) : ∃v, y1, ..., yt s.t. ψ(1)(x′, h′, v, y1, ..., yt)},

where ψ(1)(x′, h′, v, y1, ..., yt) holds if and only if y1<y2 · · ·<yt and for every j ∈ [t]

it holds that (x′, yj)∈R ∧ h′(yj)=v. Note that S
(1)
R,H ∈ NP.

If the answer is positive (i.e., there exists a cell that contains more that 1000ℓ elements
of R(x)) then the machine halts with output ⊥. Otherwise, the machine continues with
this choice of h. In this case, for every v ∈ {0, 1}m, it holds that no cell contains more
that 1000ℓ elements of R(x) (i.e., |{y : (x, y)∈R ∧ h(y)=v}| < 1000ℓ). We stress that

this is an absolute guarantee that follows from (x, h, 11000ℓ) 6∈ S(1)
R,H .

2. Selecting a cell and determining the number of elements of R(x) that are contained

in it. The machine selects uniformly v ∈ {0, 1}m and determines sv
def
= |{y : (x, y)∈

R ∧ h(y)=v}| by making queries to the following NP-set

S
(2)
R,H

def
= {(x′, h′, v′, 1t) : ∃y1, ..., yt s.t. ψ(1)(x′, h′, v′, y1, ..., yt)}. (7.13)

Specifically, for i = 1, ..., 1000ℓ, it checks whether (x, h, v, 1i) is in S
(2)
R,H , and sets sv

to be the largest value of i for which the answer is positive.

3. Obtaining all the elements of R(x) that are contained in the selected cell, and out-

putting one of them at random. Using sv, the procedure reconstructs the set Sv
def
=

{y : (x, y)∈R ∧ h(y)=v}, by making queries to the following NP-set

S
(3)
R,H

def
= {(x′, h′, v′, 1t, j) : ∃y1, ..., yt s.t. ψ(3)(x′, h′, v′, y1, ..., yt, j)}, (7.14)

where ψ(3)(x′, h′, v′, y1, ..., yt, j) holds if and only if ψ(1)(x′, h′, v′, y1, ..., yt) holds and
the jth bit of y1 · · · yt equals 1. Specifically, for j1 = 1, ..., sv and j2 = 1, ..., ℓ, we make
the query (x, h, v, 1sv , (j1− 1) · ℓ+ j2) in order to determine the jth2 bit of yj1 . Finally,
having recovered Sv, the procedure outputs each y ∈ Sv with probability 1/1000ℓ, and
outputs ⊥ otherwise.

By Lemma 4.6 (and m ≤ mx +1−6− log2 ℓ), with overwhelmingly high probability, each set
{y : (x, y)∈R ∧ h(y)=v} has cardinality (1± 0.5)|R(x)|/2m. Using m′x > (log2 |R(x)|) − 1
(resp., m′x ≤ (log2 |R(x)|) + 1), it follows that |R(x)|/2m < 1000ℓ (resp., |R(x)|/2m > 10ℓ).
Thus, Step 1 can be easily adapted to yield an approximate counting procedure for #R (see
Exercise 7.12). However, our aim is to establish the following fact.

Proposition 7.20 Construction 7.19 solves the uniform generation problem of R.

Proof: By Lemma 4.6 (and the setting of m), with overwhelmingly high probability, a
uniformly selected h ∈ Hm

ℓ partitions R(x) into 2m cells, each containing at most 1000ℓ
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elements. The key observation, stated in Step 1, is that if the procedure does not halt in
Step 1 then it is indeed the case that h induces such a partition. The fact that these cells may
contain a different number of elements is immaterial, because each element is output with
the same probability (i.e., 1/1000ℓ). What matters is that the average number of elements
in the cells is sufficiently large, because this average number determines the probability
that the procedure outputs an element of R(x) (rather than ⊥). Specifically, the latter
probability equals the aforementioned average number (which equals |R(x)|/2m) divided by
1000ℓ. Using m ≤ max(0, log2(2|R(x)|) − 6 − log2 ℓ), we have |R(x)|/2m ≥ max(1, 32ℓ),
which means that the procedure outputs some element of R(x) with probability at least
1/1000ℓ.

Technical comments. We can easily improve the performance of Construction 7.19 by
dealing separately with the casem = 0. In such a case, Step 3 can be simplified and improved
by uniformly selecting and outputting an element of Sλ (which equals R(x)). Under this
modification, the procedure outputs some element of R(x) with probability at least 1/6. In
any case, recall that the probability that a uniform generation procedure outputs ⊥ can be
deceased by repeated invocations.

Digest. Construction 7.19 is the culmination of the “hashing paradigm” that is aimed at
allowing various manipulations of arbitrary sets. In particular, as seen in Construction 7.19,
hashing can be used in order to partition a large set into an adequate number of small
subsets that are of approximately the same size. We stress that hashing is performed by
randomly selecting a function in an adequate family. Indeed, the use of randomization for
such purposes (i.e., allowing manipulation of large sets) seems indispensable.

Notes

The counting class #P was introduced by Valiant [106], who proved that computing the
permanent of 0/1-matrices is #P-complete (i.e., Theorem 7.7).

The approximation procedure for #P is due to Stockmeyer [99], following an idea of
Sipser [96]. Our exposition, however, follows further developments in the area. The ran-
domized reduction of NP to problems of unique solutions was discovered by Valiant and
Vazirani [110]. Again, our exposition is a bit different.

The connection between approximate counting and uniform generation (presented in
Section 7.4.1) was discovered by Jerrum, Valiant, and Vazirani [64], and turned out to be
very useful in the design of algorithms (e.g., in the “Markov Chain approach” (see [83,
Sec. 11.3.1])). The direct procedure for uniform generation (presented in Section 7.4.2) is
taken from [18].

In continuation to Section 7.2.1, which is based on [67], we refer the interested reader
to [63], which presents a probabilistic polynomial-time algorithm for approximating the
permanent of non-negative matrices. This fascinating algorithm is based on the fact that
knowing (approximately) certain parameters of a non-negative matrix M allows to approxi-
mate the same parameters for a matrix M ′, provided that M and M ′ are sufficiently similar.
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Specifically, M and M ′ may differ only on a single entry, and the ratio of the correspond-
ing values must be sufficiently close to one. Needless to say, the actual observation (is not
generic but rather) refers to specific parameters of the matrix, which include its permanent.
Thus, given a matrix M for which we need to approximate the permanent, we consider a
sequence of matrices M0, ...,Mt ≈M such that M0 is the all 1’s matrix (for which it is easy
to evaluate the said parameters), and each Mi+1 is obtained from Mi by reducing some
adequate entry by a factor sufficiently close to one. This process of (polynomially many)
gradual changes, allows to transform the dummy matrix M0 into a matrix Mt that is very
close to M (and hence has a permanent that is very close to the permanent of M). Thus,
approximately obtaining the parameters of Mt allows to approximate the permanent of M .

Exercises

Exercise 7.1 (enumeration problems) For any binary relation R, define the enumera-
tion problem of R as a function fR : {0, 1}∗ ×N → {0, 1}∗ ∪ {⊥} such that fR(x, i) equals
the ith element in |R(x)| if |R(x)| ≥ i and fR(x, i) = ⊥ otherwise. The above definition
refers to the standard lexicographic order on strings, but any other efficient order of strings
will do.11

1. Prove that, for any polynomially bounded R, computing #R is reducible to computing
fR.

2. Prove that, for any R ∈ PC, computing fR is reducible to some problem in #P .

Guideline: Consider the binary relation R′ = {(〈x, b〉, y) : (x, y)∈ R ∧ y ≤ b}, and show

that fR is reducible to #R′. (Extra hint: Note that fR(x, i) = y if and only if |R′(〈x, y〉)| = i

and for every y′ < y it holds that |R′(〈x, y′〉)| < i.)

Exercise 7.2 (computing the permanent of integer matrices) Prove that computing
the permanent of matrices with 0/1-entries is computationally equivalent to computing the
number of perfect matchings in bipartite graphs.

(Hint: Given a bipartite graph G = ((X, Y ), E), consider the matrix M representing the edges between X

and Y (i.e., the (i, j)-entry in M is 1 if the ith vertex of X is connected to the jth entry of Y ), and note

that only perfect matchings in G contribute to the permanent of M .)

Exercise 7.3 (computing the permanent modulo 3) Combining Proposition 7.8 and
Theorem 7.16, prove that for every integer n > 1 that is relatively prime to c, computing
the permanent modulo n is NP-hard under randomized reductions.12 Since Proposition 7.8
holds for c = 210, hardness holds for every odd integer n > 1.

11An order of strings is a 1-1 and onto mapping µ from the natural numbers to the set of all strings. Such
order is called efficient if both µ and its inverse are efficiently computable. The standard lexicographic order
satisfies µ(i) = y if the (compact) binary expansion of i equals 1y; that is µ(1) = λ, µ(2) = 0, µ(3) = 1,
µ(4) = 00, etc.

12Actually, a sufficient condition is that n does not divide any power of c. Thus (referring to c = 210),
hardness holds for every integer n > 1 that is not a power of 2. On the other hand, for any fixed n = 2e,
the permanent modulo n can be computed in polynomial-time [106, Thm. 3].
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Guideline: Applying the reduction of Proposition 7.8 to the promise problem of deciding whether

a 3CNF formula has a unique satisfiable assignment or is unsatisfiable. Use the fact that n does

not divide any power of c.

Exercise 7.4 (negative values in Proposition 7.8) Assuming P 6= NP , prove that
Proposition 7.8 cannot hold for a set I containing only non-negative integers. Note that
the claim holds even if the set I is not finite (and even if I is the set of all non-negative
integers).

Guideline: A reduction as in Proposition 7.8 provides a Karp-reduction of 3SAT to deciding

whether the permanent of a matrix with entries in I is non-zero. Note that the permanent of

a non-negative matrix is non-zero if and only if the corresponding bipartite graph has a perfect

matching.

Exercise 7.5 (error reduction for approximate counting) Show that the error prob-
ability δ in Definition 7.11 can be reduced from 1/3 (or even (1/2) + (1/poly(|x|)) to
exp(−poly(|x|)).
Guideline: Invoke the weaker procedure for an adequate number of times and take the median

value among the values obtained in these invocations.

Exercise 7.6 (relative approximation for DNF satisfaction) Referring to the text of
Section 7.2.1, prove the following claims.

1. Both assumptions regarding the general setting hold in case Si = C−1
i (1), where

C−1
i (1) denotes the set of truth assignments that satisfy the conjunction Ci.

Guideline: In establishing the second assumption note that it reduces to the conjunction
of the following two assumptions:

(a) Given i, one can efficiently generate a uniformly distributed element of Si. Actually,
generating a distribution that is almost uniform over Si suffices.

(b) Given i and x, one can efficiently determine whether x ∈ Si.

2. Prove Proposition 7.13, relating to details such as the error probability in an imple-
mentation of Construction 7.12.

3. Note that Construction 7.12 does not require exact computation of |Si|. Analyze the
output distribution in the case that we can only approximate |Si| up-to a factor of
1± ε′.

Exercise 7.7 (reducing the relative deviation in approximate counting) Prove that,
for any R ∈ PC and every polynomial p and constant δ < 0.5, there exists R′ ∈ PC such
that (1/p, δ)-approximation for #R is reducible to (1/2, δ)-approximation for #R′.

Guideline: For t(n) = Ω(p(n)), let R′ = {(x, (y1, ..., yt(|x|))) : (∀i) (x, yi)∈R}. Note that |R(x)| =

|R′(x)|1/t(|x|), and thus if a = (1 ± (1/2)) · |R′(x)| then a1/t(|x|) = (1 ± (1/2))1/t(|x|) · |R(x)|.
Furthermore, prove that (1/p, δ)-approximation for #R is reducible to approximating #R′′

to within a factor of F (n) = exp(p(n)) with error probability δ, for some R′′ ∈ PC.
(Hint: Same as the main part. Note that the length of the solution for R′′(x) is larger than p(|x|) and so

there is nothing wrong in approximating #R′′(|x|) to within F (|x|).)
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Exercise 7.8 (deviation reduction in approximate counting, cont.) In continuation
to Exercise 7.7, prove that if R is NP-complete via parsimonious reductions then, for every
positive polynomial p and constant δ < 0.5, the problem of (1/p, δ)-approximation for #R
is reducible to (1/2, δ)-approximation for #R.
(Hint: Compose the reduction (to the problem of (1/2, δ)-approximation for #R′) provided in Exercise 7.7

with the parsimonious reduction of #R′ to #R.)

Prove that, for every function F ′ such that F ′(n) = exp(no(1)), we can also reduce the
aforementioned problems to the problem of approximating #R to within a factor of F ′ with
error probability δ.

Guideline: Using R′′ as in Exercise 7.7, we encounter a technical difficulty. The issue is that

the composition of the (“amplifying”) reduction of #R to #R′′ with the parsimonious reduction

of #R′′ to #R may increase the length of the instance. Indeed, the length of the new instance is

polynomial in the length of the original instance, but this polynomial may depend on R′′, which in

turn depends on F ′. Thus, we cannot use F ′(n) = exp(n1/O(1)) but F ′(n) = exp(no(1)) is fine.

Exercise 7.9 Referring to the procedure in the proof Theorem 7.14, show how to use an
NP-oracle in order to determine whether the number of solutions that “pass a random sieve”
is greater than t. You are allowed queries of length polynomial in the length of x, h and in
the size of t.
(Hint: Consider the set S′

R,H

def
= {(x, i, h, 1t) : ∃y1, ..., yt s.t. ψ′(x, h, y1, ..., yt)}, where ψ′(x, h, y1, ..., yt)

holds if and only if the yj are different and for every j it holds that (x, yj)∈R ∧ h(yj)=0i.)

Exercise 7.10 (parsimonious reductions and Theorem 7.16) Demonstrate the impor-
tance of parsimonious reductions in Theorem 7.16 by proving the following:

1. There exists a search problem R ∈ PC such that every problem in PC is reducible to
R (by a non-parsimonious reduction) and still the the promise problem (USR, SR) is
decidable in polynomial-time.

Guideline: Consider the following artificial witness relation R for SAT in which (φ, στ ) ∈ R

if σ ∈ {0, 1} and τ satisfies φ. Note that the standard witness relation of SAT is reducible

to R, but this reduction is not parsimonious. Also note that USR = ∅ and thus (USR, SR) is

trivial.

2. There exists a search problem R ∈ PC such that #R is #P-complete and still the the
promise problem (USR, SR) is decidable in polynomial-time.

Guideline: One easy proof is to use the relation suggested in the guideline to Part 1. A

totally different proof relies on Theorem 7.7 and on the fact that it is easy to decide (USR, SR)

when R is the corresponding perfect matching relation (by computing the determinant).

Exercise 7.11 Prove that SAT is randomly reducible to deciding unique solution for SAT,
without using the fact that SAT is NP-complete via parsimonious reductions.

Guideline: Follow the proof of Theorem 7.16, while using the family of pairwise independent

hashing functions provided in Construction 4.3. Note that, in this case, the condition (τ ∈
RSAT(φ)) ∧ (h(τ ) = 0i) can be directly encoded as a CNF formula. That is, consider the for-

mula φh such that φh(z)
def
= φ(z) ∧ (h(z) = 0i), and note that h(z) = 0i can be written as the

conjunction of i clauses, where each clause is a CNF that is logically equivalent to the parity of

some of the bits of z (where the identity of these bits is determined by h).
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Exercise 7.12 (an alternative procedure for approximate counting) Adapt Step 1
of Construction 7.19 so to obtain an approximate counting procedure for #R.

Guideline: For m = 0, 1, ...ℓ, the procedure invokes Step 1 of Construction 7.19 until a negative

answer is obtained, and outputs 2m for the current value of m. For |R(x)| > 1000ℓ, this yields

a constant factor approximation of |R(x)|. In fact, we can obtain a better estimate by making

additional queries at iteration m (i.e., queries of the form (x, h, 1i) for i = 10ℓ, ..., 1000ℓ). The case

|R(x)| ≤ 1000ℓ can be treated by using Step 2 of Construction 7.19, in which case we obtain an

exact count.



Lecture 8

On Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) randomness is
crucial for the actual use of randomized algorithms, procedures and protocols. The latter are
analyzed assuming that they are given access to a perfect random source, while in reality one
typically has access only to sources of weak (i.e., highly imperfect) randomness. This gap is
bridged by using randomness extractors, which are efficient procedures that (possibly with
the help of little extra randomness) convert any source of weak randomness into an almost-
perfect random source. Thus, randomness extractors are devices that greatly enhance the
quality of random sources. In addition, randomness extractors are related to several other
fundamental problems (see, e.g., Section 6.8.2 and [94]).

One key parameter, which was avoided in the foregoing abstract discussion, is the class
of weak random sources from which we need to extract almost perfect randomness. Needless
to say, it is preferable to make as little assumptions as possible regarding the weak random
source. In other words, we wish to consider a wide class of such sources, and require that
the randomness extractor (often referred to as the extractor) “works well” for any source
in this class. A general class of such sources is defined in Section 8.1, but first we wish to
mention that even for very restricted classes of sources no deterministic extractor can work.1

To overcome this impossibility result, two approaches are used:

Seeded extractors: The first approach consists of considering randomized extractors
that use a relatively small amount of randomness (in addition to the weak random source).
That is, these extractors obtain two inputs: a short truly random seed and a relatively long
sequence generated by an arbitrary source that belongs to the specified class of sources.
This suggestion is motivated in two different ways:

1. The application may actually have access to an almost-perfect random source, but
bits from this high-quality source are much more expensive than bits from the weak
(i.e., low-quality) random source. Thus, it makes sense to obtain a few high-quality
bits from the almost-perfect source and use them to “purify” the cheap bits obtained

1For example, consider the class of sources that output n-bit strings such that no string occurs with
probability greater than 2−(n−1) (i.e., twice its probability weight under the uniform distribution).

123
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from the weak (low-quality) source. Thus, combining many cheap (but low-quality)
bits with few high-quality (but expensive) bits, we obtain many high-quality bits.

2. In some applications (e.g., when using randomized algorithms), it may be possible to
invoke the application multiple times, and use the “typical” outcome of these invoca-
tions (e.g., rule by majority in the case of a decision procedure). For such applications,
we may proceed as follows: First we obtain an outcome r of the weak random source,
then we invoke the application multiple times such that for every possible seed s we
invoke the application feeding it with extract(s, r), and finally we use the “typical”
outcome of these invocations. Indeed, this is analogous to the context of derandom-
ization (see [44, Sec. 8.3]), and likewise this alternative is typically not applicable to
cryptographic and/or distributed settings.

Extraction from a few independent sources: The second approach consists of consid-
ering deterministic extractors that obtain samples from a few (say two) independent sources
of weak randomness. Such extractors are applicable in any setting (including in cryptogra-
phy), provided that the application has access to the required number of independent weak
random sources.

In this chapter we focus on the first type of extractors (i.e., the seeded extractors). This
choice is motivated by the closer connection between seeded extractors and other topics
in the theory of computing. We also mention that our understanding of seeded extractors
seem much more mature than the current state of knowledge regarding extraction from a few
independent sources. Below we only present a definition that corresponds to the foregoing
motivational discussion, and mention that its relation to other topics in complexity theory
is discussed in Section 6.8.2 and in [94].

Author’s Note: The style of the current text is quite laconic and various aspects
of the main text are deferred to exercises. Hence, it is recommended to do all
exercises of this chapter.

8.1 Definitions and various perspectives

We first present a definition that corresponds to the foregoing motivational discussion, and
later discuss its relation to other topics in complexity.

8.1.1 The Main Definition

A very wide class of weak random sources corresponds to sources in which no specific output
is too probable. That is, the class is parameterized by a (probability) bound β and consists
of all sources X such that for every x it holds that Pr[X = x] ≤ β. In such a case, we
say that X has min-entropy2 at least log2(1/β). Indeed, we represent sources as random

2Recall that the entropy of a random variable X is defined as
∑

x
Pr[X = x] · log2(1/Pr[X = x]). Indeed

the min-entropy of X equals minx{log2(1/Pr[X = x])}, and is always upper-bounded by its entropy.
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variables, and assume that they are distributed over strings of a fixed length, denoted n.
An (n, k)-source is a source that is distributed over {0, 1}n and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform over some
subset of 2k strings. Such sources are called (n, k)-flat. A useful observation is that each
(n, k)-source is a convex combination of (n, k)-flat sources; that is, every (n, k)-source is
obtained by picking a (n, k)-flat source with an appropriate probability distribution and
producing a sample according to the picked source (see Exercise 8.1).

Definition 8.1 (extractor for (n, k)-sources):

1. An algorithm Ext :{0, 1}n×{0, 1}d→{0, 1}m is called an extractor with error ε for the
class C if for every source X in C it holds that Ext(X,Ud) is ε-close to Um. If C is the
class of (n, k)-sources, then Ext is called a (k, ε)-extractor.

2. An algorithm Ext is called a strong extractor with error ε for C if for every source X
in C it holds that (Ud,Ext(X,Ud)) is ε-close to (Ud, Um). A strong (k, ε)-extractor is
defined analogously.

Using the aforementioned “decomposition” of (n, k)-sources into (n, k)-flat sources, it follows
that Ext is a (k, ε)-extractor if and only if it is an extractor with error ε for the class of (n, k)-
flat sources. (See Exercise 8.2, and note that a similar claim holds for strong extractors.)
Thus, much of the technical analysis is conducted with respect to the class of (n, k)-flat
sources. For example, by analyzing the case of (n, k)-flat sources it is easy to see that, for
d = log2(n/ε

2)+O(1), there exists a (k, ε)-extractor Ext : {0, 1}n×{0, 1}d→ {0, 1}k. (The
proof employs the Probabilistic Method and uses a union bound on the (finite) set of all
(n, k)-flat sources.)3

We seek, however, explicit extractors; that is, extractors that are implementable by
polynomial-time algorithms. We note that the evaluation algorithm of any family of pairwise
independent hash functions mapping n-bit strings to m-bit strings constitutes a (strong)
(k, ε)-extractor for ε = 2−Ω(k−m) (see Theorem 4.5 (and Exercise 8.4)). However, these
extractors necessarily use a long seed (i.e., d ≥ 2mmust hold (and in fact d = n+2m−1 holds
in Construction 4.3)). In Section 8.2 we survey constructions of efficient (k, ε)-extractors
that obtain logarithmic seed length (i.e., d = O(log(n/ε))).

On the importance of logarithmic seed length. The case of logarithmic seed length
(i.e., d = O(log(n/ε))) is of particular importance for a variety of reasons. First, when
emulating a randomized algorithm using a defected random source (as in Item 2 of the
motivational discussion of seeded extractors), the overhead is exponential in the length of
the seed. Thus, the emulation of a generic probabilistic polynomial-time algorithm can be
done in polynomial time only if the seed length is logarithmic. Similar considerations apply
to other applications of extractors. Last, we note that logarithmic seed length is an absolute

3Indeed, the key fact is that the number of (n, k)-flat sources is N
def
=
(
2n

2k

)
. The probability that a

random function Ext : {0, 1}n × {0, 1}d → {0, 1}k is not an extractor with error ε for a fixed (n, k)-flat

source is upper-bounded by p
def
= 22k · exp(−Ω(2d+kε2)); see Exercise 8.3. Thus, for d = log2(n/ε2) +O(1)

it holds that N · p ≪ 1. In fact, the same analysis applies to the extraction of m = k + log2 n bits (rather
than k bits).



126 LECTURE 8. ON RANDOMNESS EXTRACTORS

lower-bound for (k, ε)-extractors, whenever k < n − nΩ(1) (and the extractor is non-trivial
(i.e., m ≥ 1 and ε < 1/2)).

8.1.2 Extractors as averaging samplers

There is a close relationship between extractors and averaging samplers (which are defined
towards the end of Section 6.7, see also Sections 6.6 and 6.8). We shall first show that any
averaging sampler gives rise to an extractor. Let G : {0, 1}n → ({0, 1}m)t be the sample
generating algorithm of an averaging sampler having accuracy ε and error probability δ.
That is, G uses n bits of randomness and generates t sample points in {0, 1}m such that,
for every f : {0, 1}m → [0, 1] with probability at least 1− δ, the average of the f -values of

these t pseudorandom points resides in the interval [f ± ε], where f
def
= E[f(Um)]. Define

Ext : {0, 1}n × [t] → {0, 1}m such that Ext(r, i) is the ith sample generated by G(r). We
shall prove that Ext is a (k, 2ε)-extractor, for k = n− log2(ε/δ).

Suppose towards the contradiction that there exists a (n, k)-flat source X such that for
some S ⊂ {0, 1}m it is the case that Pr[Ext(X,Ud) ∈ S] > Pr[Um ∈ S]+2ε, where d = log2 t
and [t] ≡ {0, 1}d. Define

B = {x ∈ {0, 1}n : Pr[Ext(x, Ud) ∈ S] > (|S|/2m) + ε}.

Then, |B| > ε · 2k = δ · 2n. Defining f(z) = 1 if z ∈ S and f(z) = 0 otherwise, we have

f
def
= E[f(Um)] = |S|/2m. But, for every r ∈ B the f -average of the sample G(r) is greater

than f + ε, in contradiction to the hypothesis that the sampler has error probability δ (with
respect to accuracy ε).

We now turn to show that extractors give rise to averaging samplers. Let Ext : {0, 1}n×
{0, 1}d → {0, 1}m be a (k, ε)-extractor. Consider the sample generation algorithm G :

{0, 1}n → ({0, 1}m)2
d

define by G(r) = (Ext(r, s))s∈{0,1}d . We prove that G corresponds to

an averaging sampler with accuracy ε and error probability δ = 2−(n−k−1).
Suppose towards the contradiction that there exists a function f : {0, 1}m → [0, 1] such

that for δ2n = 2k+1 strings r ∈ {0, 1}n the average f -value of the sample G(r) deviates from

f
def
= E[f(Um)] by more than ε. Suppose, without loss of generality, that for at least half of

these r’s the average is greater than f + ε, and let B denote the set of these r’s. Then, for
X that is uniformly distributed on B and is thus a (n, k)-source, we have

E[f(Ext(X,Ud))] > E[f(Um)] + ε,

which (using |f(z)| ≤ 1 for every z) contradicts the hypothesis that Ext(X,Ud) is ε-close to
Um.

8.1.3 Extractors as randomness-efficient error-reductions

As may be clear from the foregoing discussion, extractors yield randomness-efficient methods
for error-reduction. This is the case because error-reduction is a special case of the sam-
pling problem, obtained by considering Boolean functions. Specifically, for a two-sided error
decision procedure A, consider the function fx : {0, 1}ρ(|x|) → {0, 1} such that fx(r) = 1 if
A(x, r) = 1 and fx(r) = 0 otherwise. Assuming that the probability that A is correct is at
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least 0.5 + ε (say ε = 1/6), error reduction amounts to providing a sampler with accuracy ε
and any desired error probability δ ≪ ε for the Boolean function fx. Thus, by Section 8.1.2,
any (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}ρ(|x|) with k = n − log(1/δ) − 1 yields
the desired error-reduction, provided that 2d is feasible (e.g., 2d = poly(ρ(|x|)), where ρ(·)
represents the randomness complexity of the original algorithm A). The question of inter-
est here is how does n (which represents the randomness complexity of the corresponding
sampler) grow as a function of ρ(|x|) and δ.

Error-reduction using the extractor Ext:{0, 1}n→{0, 1}ρ(|x|)×[poly(ρ(|x|))]
error probability randomness complexity

original algorithm 1/3 ρ(|x|)
resulting algorithm δ (may depend on |x|) n (function of ρ(|x|) and δ)

Needless to say, the answer to the foregoing question depends on the quality of the extractor
that we use. In particular, using Part 1 of the forthcoming Theorem 8.3, we note that for
every α > 1, one can obtain n = O(ρ(|x|)) + α log2(1/δ), for any δ > 2−poly(ρ(|x|)). Note
that, for δ < 2−O(ρ(|x|)), this bound on the randomness-complexity of error-reduction is
better than the bound of n = ρ(|x|)+O(log(1/δ)) that is provided (for the reduction of one-
sided error) by the Expander Random Walk Generator (of Section 3.4), albeit the number
of samples here is larger (i.e., poly(ρ(|x|)/δ) rather than O(log(1/δ))).

Mentioning the reduction of one-sided error-probability brings us to a corresponding
relaxation of the notion of an extractor, which is called a disperser. Loosely speaking, a
(k, ε)-disperser is only required to hit (with positive probability) any set of density greater
than ε in its image, rather than produce a distribution that is ε-close to uniform.

Definition 8.2 (dispersers): An algorithm Dsp : {0, 1}n × {0, 1}d → {0, 1}m is called a
(k, ε)-disperser if for every (n, k)-sourceX the support of Dsp(X,Ud) covers at least (1−ε)·2m

points. Alternatively, for every set S ⊂ {0, 1}m of size greater than ε2m it holds that
Pr[Dsp(X,Ud) ∈ S] > 0.

Dispersers can be used for the reduction of one-sided error analogously to the use of ex-
tractors for the reduction of two-sided error. Specifically, regarding the aforementioned
function fx (and assuming that Pr[fx(Uℓ(|x|)) = 1] > ε), we may use any (k, ε)-disperser

Dsp : {0, 1}n × {0, 1}d → {0, 1}ℓ(|x|) towards finding a point z such that fx(z) = 1. In-
deed, if Pr[fx(Uℓ(|x|)) = 1] > ε then there are less than 2k points z such that (∀s ∈
{0, 1}d) fx(Dsp(z, s)) = 0, and thus the one-sided error can be reduced from 1 − ε to
2−(n−k) while using n random bits. (Note that dispersers are closely related to hitters
(cf. Section 6.9), analogously to the relation of extractors and averaging samplers.)

8.1.4 Other perspectives

Extractors and dispersers have an appealing interpretation in terms of bipartite graphs.
Starting with dispersers, we view any (k, ε)-disperser Dsp : {0, 1}n×{0, 1}d → {0, 1}m as a
bipartite graph G = (({0, 1}n, {0, 1}m), E) such that E = {(x,Dsp(x, s)) : x ∈ {0, 1}n, s ∈
{0, 1}d}. This graph has the property that any subset of 2k vertices on the left (i.e.,
in {0, 1}n) has a neighborhood that contains at least a 1 − ε fraction of the vertices of
the right, which is remarkable in the typical case where d is small (e.g., d = O(log n/ε))
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and n ≫ k ≥ m whereas m = Ω(k) (or at least m = kΩ(1)). Furthermore, if Dsp is
efficiently computable then this bipartite graph is strongly constructible in the sense that,
given a vertex on the left, one can efficiently find each of its neighbors. Any (k, ε)-extractor
Ext : {0, 1}n×{0, 1}d→ {0, 1}m yields an analogous graph with an even stronger property:
the neighborhood multi-set of any subset of 2k vertices on the left covers the vertices on the
right in an almost uniform manner.

An odd perspective. In addition to viewing extractors as averaging samplers, which
in turn may be viewed within the scope of the pseudorandomness paradigm, we mention
here an even more odd perspective. Specifically, randomness extractors may be viewed
as randomized algorithms (distinguishers) designed on purpose such that to be fooled by
any weak random source (but not by an even worse source). Specifically, for any (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ε ≤ 1/100, m = k = ω(logn/ε) and
d = O(log n/ε), consider the following class of distinguishers (or tests), parameterized by
subsets of {0, 1}m: for S ⊂ {0, 1}m, the test TS satisfies Pr[TS(x)=1] = Pr[Ext(x, Ud) ∈ S]
(i.e., on input x ∈ {0, 1}n, the test uniformly selects s ∈ {0, 1}d and outputs 1 if and only
if Ext(x, s) ∈ S). Then, as shown next, any (n, k)-source is “pseudorandom” with respect
to this class of distinguishers, but sufficiently “non-(n, k)-sources” are not “pseudorandom”
with respect to this class of distinguishers.

1. For every (n, k)-source X and every S ⊂ {0, 1}m, the test TS does not distinguish X
from Un (i.e., Pr[TS(X)=1] = Pr[TS(Un)=1]± 2ε), because Ext(X,Ud) is 2ε-close to
Ext(Un, Ud) (since each is ε-close to Um).

2. On the other hand, for every (n, k− d− 4)-flat source Y there exists a set S such that
TS distinguish Y from Un with gap at least 0.9 (e.g., for S that equals the support of
Ext(Y, Ud), it holds that Pr[TS(Y ) = 1] = 1 but Pr[TS(Un) = 1] ≤ Pr[Um ∈ S] + ε =
2d+(k−d−4)−m + ε < 0.1). Furthermore, any source that has entropy below (k/4)− d
will be detected as defected by this class (with probability at least 2/3).4

Thus, this weird class of tests deems each (n, k)-source as “pseudorandom” while deem-
ing sources of significantly lower entropy (e.g., entropy lower than (k/4) − d) as non-
pseudorandom. Indeed, this perspective stretches the pseudorandomness paradigm quite
far.

8.2 Constructions

Recall that we seek explicit constructions of extractors; that is, functions Ext : {0, 1}n ×
{0, 1}d → {0, 1}m that can be computed in polynomial-time. The question, of course, is of
parameters; that is, having explicit (k, ε)-extractors with m as large as possible and d as
small as possible. We first note that, except for “pathological” cases5, both m ≤ k + d −

4For any such source Y , the distribution Z = Ext(Y, Ud) has entropy at most k/4 = m/4, and thus is
0.7-far from Um (and 2/3-far from Ext(Un, Ud)). The lower-bound on the statistical distance between Z
and Um can be proved by the contrapositive: if Z is δ-close to Um then its entropy is at least (1− δ) ·m− 1
(e.g., by using Fano’s inequality, see [34, Thm. 2.11.1]).

5That is, for ε < 1/2 and m > d.
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(2 log2(1/ε)−O(1)) and d ≥ log2((n−k)/ε2)−O(1) must hold, regardless of the explicitness
requirement. The aforementioned bounds are in fact tight; that is, there exist (non-explicit)
(k, ε)-extractors with m = k+ d− 2 log2(1/ε)−O(1) and d = log2((n− k)/ε2) +O(1). The
obvious goal is meeting these bounds via explicit constructions.

8.2.1 Some known results

Despite tremendous progress on this problem (and occasional claims regarding “optimal”
explicit constructions), the ultimate goal has not yet been reached. Nevertheless, the known
explicit constructions are pretty close to being optimal.

Theorem 8.3 (explicit constructions of extractors): Explicit (k, ε)-extractors of the form
Ext : {0, 1}n×{0, 1}d → {0, 1}m exist for the following cases (i.e., settings of the parameters
d and m):

1. For d = O(log n/ε) and m = (1− α) · (k −O(d)), where α > 0 is an arbitrarily small
constant and provided that ε > exp(−k1−α).

2. For d = (1 + α) · log2 n and m = k/poly(logn), where ε, α > 0 are arbitrarily small
constants.

Proofs of Part 1 and Part 2 can be found in [55] and [95], respectively. We note that,
for the sake of simplicity, we did not quote the best possible bounds. Furthermore, we
did not mention additional incomparable results (which are relevant for different ranges of
parameters).

We refrain from providing an overview of the proof of Theorem 8.3, but rather review
(next) the conceptual insight that underlies many of the results that belong to the current
“generation” of constructions.

8.2.2 Advanced Topic: The pseudorandomness connection

The connection between extractors and certain pseudorandom generators, discovered by
Trevisan [104], is the starting point of the current generation of constructions of extractors.
This connection is surprising because it went in a non-standard direction; that is, trans-
forming certain pseudorandom generators into extractors. We note that computational
objects are typically more complex than the corresponding information theoretical objects
(cf. e.g., [44, Chap. 7]). Thus, if pseudorandom generators and extractors are at all related
(which was not suspected before [104]), then this relation should not be expected to help in
the construction of extractors, which seem to be information theoretic objects. Nevertheless,
the discovery of this relation did yield a breakthrough in the study of extractors.6

But before describing the connection, let us wonder for a moment. Just looking at the
syntax, we note that pseudorandom generators have a single input (i.e., the seed), while
extractors have two inputs (i.e., the n-bit long source and the d-bit long seed). But taking
a second look at the Nisan–Wigderson Generator (i.e., the combination of [44, Const 8.17]
with an amplification of worst-case to average-case hardness), we note that this construction

6We note that once the connection became better understood, influence started going in the “right”
direction: from extractors to pseudorandom generators.
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can be viewed as taking two inputs: a d-bit long seed and a “hard” predicate on d′-bit long
strings (where d′ = Ω(d)).7 Now, an appealing idea is to use the n-bit long source as
a (truth-table) description of a (worst-case) hard predicate (which indeed means setting
n = 2d′

). The key observation is that even if the source is only weakly random, then it is
likely to represent a predicate that is inapproximable (as in the hypothesis of [44, Thm. 8.18]).
Indeed, the following text relies on close familiaity with the Nisan–Wigderson Generator and
its analysis ([44, Const 8.17] and [44, Thm 8.18], respectively).

Recall that the aforementioned construction is supposed to yield a pseudorandom gen-
erator whenever it starts with a hard predicate. In the current context, where there are
no computational restrictions, pseudorandomness is supposed to hold against any (com-
putationally unbounded) distinguisher, and thus here pseudorandomness means being sta-
tistically close to the uniform distribution (on strings of the adequate length, denoted ℓ).
Intuitively, this makes sense only if the observed sequence is shorter than the amount of
randomness in the source (and seed), which is indeed the case (i.e., ℓ < k + d, where k
denotes the min-entropy of the source). Hence, there is hope to obtain a good extractor this
way.

To turn the hope into reality, we need a proof (which is sketched next). Looking again
at the Nisan–Wigderson Generator, we note that the proof of indistinguishability of this
generator provides a black-box procedure for approximating the underlying predicate when
given oracle access to any potential distinguisher. Specifically, in the proofs of [44, Thm 8.18]
(which holds for any ℓ = 2Ω(d′))8, this black-box procedure was implemented by a relatively
small circuit (which depends on the underlying predicate). Hence, this procedure contains
relatively little information (regarding the underlying predicate), on top of the observed
ℓ-bit long output of the extractor/generator. Specifically, for some fixed polynomial p, the
amount of information encoded in the procedure (and thus available to it) is upper-bounded
by p(ℓ), while the procedure is supposed to approximate the underlying predicate in the
sense that this approximation determines a set of at most p(ℓ) predicates that contain the
original predicate. Thus, b = p(ℓ)2 bits of information are supposed to fully determine the
underlying predicate, which in turn is identical to the n-bit long source. However, if the
source has min-entropy exceeding b, then it cannot be fully determined using only b bits of
information.

It follows that the foregoing construction constitutes a (b + O(1), 1/6)-extractor (out-
putting ℓ = bΩ(1) bits), where the constant 1/6 is the one used in the proof of [44, Thm 8.18]
(and the argument holds provided that b = nΩ(1)). Note that this extractor uses a seed
of length d = O(d′) = O(log n). The argument can be extended to obtain (k, poly(1/k))-
extractors that output kΩ(1) bits using seeds of length d = O(log n), provided that k = nΩ(1).

We stress that the foregoing description has only referred to two abstract properties of
the Nisan–Wigderson Generator: (1) the fact that this generator uses any worst-case hard
predicate as a black-box, and (2) the fact that its analysis uses any distinguisher as a black-
box. In particular, we viewed the amplification of worst-case hardness to inapproximability
(performed in [44, Const 7.19]) as part of the construction of the pseudorandom generator.
An alternative presentation, which is more self-contained, replaces the amplification step

7Indeed, to fit the current context, we have modified some notation. In [44, Const 8.17] the length of the
seed is denoted by k and the length of the input for the predicate is denoted by m.

8Recalling that n = 2d′
, the restriction ℓ = 2Ω(d′) implies ℓ = nΩ(1).
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of [44, Const 7.19] by a direct argument in the current (information theoretic) context and
plugs the resulting predicate directly into [44, Const 8.17]. The advantages of this alterna-
tive include using a simpler amplification (since amplification is simpler in the information
theoretic setting than in the computational setting), and deriving transparent construction
and analysis (which mirror [44, Const 8.17] and [44, Thm 8.18], respectively).

The alternative presentation. The foregoing analysis transforms a generic distinguisher
into a procedure that computes the underlying predicate correctly on each input, which
fully determines this predicate. Hence, an upper-bound on the information available to
this procedure yields an upper-bound on the number of possible outcomes of the source
that are bad for the extractor. In the alternative presentation, we transforms a generic
distinguisher into a procedure that only approximates the underlying predicate; that is,
the procedure yields a function that is relatively close to the underlying predicate. If the
potential underlying predicates are far apart, then this yields the desired bound (on the
number of bad source-outcomes that correspond to such predicates). Thus, the idea is
to encode the n-bit long source by an error correcting code of length n′ = poly(n) and
relative distance 0.5− (1/n)2, and use the resulting codeword as a truth-table of a predicate
for [44, Const 8.17].9 Such codes (coupled with efficient encoding algorithms) do exist (see
§2.3.2.5), and the benefit in using them is that each n′-bit long string (determined by the
information available to the aforementioned approximation procedure) may be (0.5−(1/n))-
close to at most O(n2) codewords10 (which correspond to potential predicates). Thus,
each approximation procedure rules out at most O(n2) potential predicates (i.e., source
outcomes). In summary, the resulting extractor converts the n-bit input x into a codeword
x′ ∈ {0, 1}n′

, viewed as a predicate over {0, 1}d′

(where d′ = log2 n
′), and evaluates this

predicate at the ℓ projections of the d-bit long seed, where these projections (to d′ bits) are
determined by the corresponding set system (i.e., the ℓ-long sequence of d′-subsets of [d]
that is used in [44, Const 8.17]). The analysis mirrors the proof of [44, Thm 8.18] and

yields a bound of 2O(ℓ2) ·O(n2) on the number of bad outcomes for the source, where O(ℓ2)
upper-bounds the amount of information encoded in (and available to) the approximation
procedure, and O(n2) upper-bounds the number of source-outcomes that correspond to
codewords that are each (0.5− (1/n))-close to any fixed approximation procedure.

Notes

The interested reader is referred to a survey of Shaltiel [94]. This survey contains a compre-
hensive introduction to the area, including an overview of the ideas that underly the various
constructions. In particular, the survey describes the approaches used before the discovery
of the pseudorandomness connection, the connection itself (and the constructions that arise
from it), and the “third generation” of constructions that followed.

The aforementioned survey predates the most recent constructions (of extractors) that
extract a constant fraction of the min-entropy using a logarithmically long seed (cf. Part 1 of
Theorem 8.3). Such constructions were first presented in [78] and improved (using different

9Indeed, the use of this error correcting code replaces the hardness-amplification step of [44, Const 7.19].
10See Appendix 2.3.4.
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ideas) in [55]. Indeed, we refer to reader to [55], which provides a self-contained description
of the best known extractor (for almost all settings of the relevant parameters).

Extractors for more restricted classes of sources. Recall that a random seed is
essential for extraction even when the class of sources is confined to (n, n − 1)-sources. In
contrast to this fact, deterministic (i.e., seedless) extraction is possible for several restricted
classes of sources; in fact, one may view the problem of (deterministic) extraction from
few independent sources as a special case of extraction from a restricted classes of sources
(i.e., the class of sources that consist of few parts such that the distribution on each part is
independent of the distribution on the other parts).

Exercises

Exercise 8.1 (convex combination of (n, k)-flat sources) Prove that for every natural
number K, each (n, logK)-source X is a convex combination of (n, logK)-flat sources; that
is, there exists a sequence of non-negative numbers, (αS)S⊆{0,1}n:|S|=K , such taht for every
x ∈ {0, 1}n it holds that Pr[X=x] =

∑
S:|S|=K αS ·Pr[XS =x], where XS is uniform over S.

Guideline: Observe first that any convex combination of any (two) (n, log K)-sources yields a

(n, log K)-source. Next view each (n, log K)-source as a 2n-dimentional vector over R (i.e., the

(n, log K)-source X is represented by the vector (Pr[X = x])x∈{0,1}n). Show that the (n, log K)-

sources constitute a convex polytope in R2n

, and that the vertices of this polytope are (n, log K)-flat

sources.

Exercise 8.2 (extraction for (n, k)-flat sources) Prove that Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-extractor if and only if it is an extractor with error ε for the class of
(n, k)-flat sources. Prove the same for strong extractors.

Guideline: Let X and the αS and XS ’s be as in Exercise 8.1. Then, for every s ∈ {0, 1}d and

v ∈ {0, 1}m it holds that Pr[Ext(X, s)=v] =
∑

S
αS · Pr[Ext(XS , s)=v].

Exercise 8.3 (on the existence of extractors) Prove that, for d = log2(n/ε
2) + O(1)

and m = k + log2 n, there exists a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m.

Guideline: By Exercise 8.2, it suffices to show that an extractor with error ε for the class of (n, k)-

flat sources. The proof employs the Probabilistic Method and uses a union bound, while relying

on the fact that the number of (n, k)-flat sources is N
def
=
(
2n

2k

)
. The probability that a random

function Ext : {0, 1}n × {0, 1}d → {0, 1}m is not an extractor with error ε for a fixed (n, k)-flat

source is upper-bounded by p
def
= 22m · exp(−Ω(2d+kε2)), because p bounds the probability that

when selecting 2d+k random k-bit long strings there exists a set T ⊂ {0, 1}m that is hit by more

than ((|T |/2m) + ε) · 2d+k of these strings. Note that for a sufficiently large constant c, letting

d = log2(n/ε2) + c, it holds that N · p < 2n·2k+2m−Ω(2d+kε2) ≪ 1, since 2d+kε2 = 2c · n · 2k whereas

n · 2k + 2m = 2n2k.

Exercise 8.4 (pairwise independent hashing as extractors) Show that the evalua-
tion algorithm of any family of pairwise independent hash functions mapping n-bit strings
to m-bit strings constitutes a strong (k, 2−(k−m−3)/3)-extractor.

Guideline: See Theorem 4.5.



Lecture 9

A Taste of Randomized
Computations

The purpose of this text is to demonstrate the usage of randomization in a variety of
computational settings. Our choice is governed by the desire to focus on the randomization
aspect of the solution and avoid any complicated details that are due to other aspects of
the computational problem. Thus, we avoid any example that requires substantial problem-
specific background. Our examples are grouped in three (subjective) categories:

1. Traditional algorithmic problems. Here we consider randomized algorithms for graph
theoretic problems such as finding a perfect matching, algebraic problems such as
testing polynomial identity, and approximation problems such as approximating the
number of satisfying assignments to a DNF formula.

2. Traditional complexity questions. Here we present results such as the randomized
reductions of Approximate Counting to NP , and of SAT to unique-SAT.

3. Distributed and Parallel Computing. Here we consider randomized procedures for
distributed tasks such as Testing String Equality, Byzantine Agreement, and routing
in networks.

We stress that our presentation is merely aimed at demonstrating the usage of randomiza-
tion, and that no attempt was made to present a coherent theory of randomized computation.
Furthermore, our presentation tends to be laconic (i.e., it lacks some technical details as
well as wider perspective).1

We mention that the interplay between randomness and computation is one of the most
fascinating scientific phenomena uncovered in the last couple of decades. This interplay is
at the heart of modern cryptography and plays a fundamental role in complexity theory at
large. Specifically, the interplay of randomness and computation is pivotal to several intrigu-
ing notions of probabilistic proof systems and is the focal of the computational approach
to randomness. In this text, we have avoided the above areas. For an introduction to to

1We also mention that two of the examples have appeared in other lectures, but the presentation here is
somewhat different.
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these three, somewhat interwoven areas, the interested reader is referred to the text Mod-
ern Cryptography, Probabilistic Proofs and Pseudorandomness [41] (or to the corresponding
chapters in [44]). For a more systematic, detailed and inclusive exposition of Randomized
Algorithms, the interested reader is referred to a textbook by Motwani and Raghavan [83].

9.1 Randomized Algorithms

Conspicuous omissions in this category include some of the most well-known randomized
algorithms (e.g., many in the domain of computational number theory), as well as the
Markov Chain approach to approximate counting. As stated above, the reason for these
omissions is that these algorithms either require specialized (and unrelated to randomness)
background or are quite involved to present and/or analyze.

9.1.1 Approximate Counting of DNF satisfying assignments
or, a twist on naive sampling

The problem considered here is to approximate the number of satisfying assignment to a
DNF formula up-to a constant factor. We note that given ε and oracle access to any function
f : {0, 1}n → {0, 1}, it is easy to approximate the fraction |{x : f(x) = 1}|/2n up-to an ε
additive deviation. Specifically, a sample of O(ε−2 log(1/δ)) points has average value that,
with probability at least 1− δ, is at most ε-away from the correct value. However, our aim
is to provide relative (rather than absolute) approximation of this fraction (i.e., given ε > 0
the task is to approximate the above fraction up-to a 1± ε factor).

Let ϕ =
∨m

i=1 Ci, where Ci : {0, 1}n → {0, 1} is a conjunction, be a DNF formula.
Actually, we will deal with the more general problem in which we are given (implicitly) m
subsets S1, ..., Sm ⊆ {0, 1}n and wish to approximate |⋃i Si|. In our case Si will be the set
of assignments satisfying the conjunction Ci. We make several computational assumptions
regarding these sets (letting efficient mean implementable in time polynomial in n ·m):

1. Given i and x, one can efficiently determine whether or not x ∈ Si.

2. Given i, one can efficiently determine |Si|.
3. Given i, one can efficiently generate a uniformly distributed element of Si.

These assumptions are clearly satisfied in the case Si = C−1
i (1) considered above. The key

observation is that
∣∣∣∣∣

m⋃

i=1

Si

∣∣∣∣∣ =
m∑

i=1

∣∣∣∣∣∣
Si \

⋃

j<i

Sj

∣∣∣∣∣∣
(9.1)

=
m∑

i=1

|Si| · Prs∈Si


s 6∈

⋃

j<i

Sj


 (9.2)

and that the probabilities in Eq. (9.2) can be approximated up-to ε′ (with overwhelming
success probability) by taking poly(n/ε′) many samples. This leads to the following algo-
rithm
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Algorithm: On input parameters ε and δ, set ε′ = ε/m and δ′ = δ/m. For i = 1 to m do

1. Let pi
def
= Prs∈Si

[s 6∈ ⋃j<i Sj ]. Using a sample of size t
def
= O((1/ε′)2 log(1/δ′)),

approximate pi by p̃i so that Pr[|p̃i − pi| > ε′] < δ′. That is, we uniformly select t
samples in Si, and test for each sample whether or not it resides in

⋃
j<i Sj .

2. Compute |Si|, and let ai
def
= p̃i · |Si|.

Output the sum of the ai’s.

Analysis: LetNi = pi·|Si|. We are interested in the quality of the approximation to
∑

i Ni

provided by
∑

i ai. With probability at least 1−m·δ′, we have ai = (pi±ε′)·|Si| = Ni±ε′·|Si|,
for all i’s, and so

∑
i ai =

∑
i Ni ± ε′ ·

∑
i |Si|. However, maxi(|Si|) ≤ |

⋃
i Si| =

∑
iNi, and

so

m∑

i=1

ai =

m∑

i=1

Ni ± m · ε′ · max
1≤i≤m

|Si|

= (1±mε′) ·
m∑

i=1

Ni = (1 ± ε) ·
m∑

i=1

Ni

Note that the above approach does not require exact computation of |Si|, nor exact uniform
selection in Si. Instead, ability to approximate |Si| up-to a factor of 1 ± ε′ within time
related to poly(n/ε′) suffices. Likewise, it suffice to generate in time related to poly(n/ε′) a
distribution that is at most ε′-away from the uniform distribution over Si.

The algorithm presented above is actually a deterministic reduction of the task of ap-
proximating the size of one set (in the relative sense) to the task of providing absolute
approximations to some fractions. It utilizes the hypothesis that the first set can be ex-
pressed as a union of feasibly many sets for which certain natural operations (e.g., deciding
membership, approximating the size) can be performed efficiently. Thus, this approach may
be applicable to some sets, but not to their complement. We stress that, in general, rela-
tive approximation may be feasible for one quantity, but not for its complement (e.g., it is
NP-Hard to approximate the number of unsatisfying assignment to a DNF formula up-to
any factor).

9.1.2 Finding a perfect matching
or, on the loneliness of the extremum

The problem considered here is to find a perfect matching in a graph. The specific goal
is to obtain a fast parallel algorithm, which is the reason we do not follow the standard
combinatorial approach (of iteratively augmenting the current matching using alternating
paths). Instead, we rely on the following Isolation Lemma that asserts that when assigning
each edge a random weight, taken from a sufficiently large domain, there is a unique per-
fect matching of minimum (resp., maximum) weight. The lemma extends to arbitrary set
systems.
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Lemma 9.1 (The Isolation Lemma): Let S1, S2, ..., St ⊆ [m]
def
= {1, 2, ...,m} be distinct

sets, and let w1, w2, ..., wm be independently and uniformly chosen in [2m]. Then, with
probability at least 1/2, there exists a unique j so that

∑
i∈Sj

wi equals mink∈[t](
∑

i∈Sk
wi).

In our application [m] corresponds to the set of edges, and the Si’s to perfect matchings in
the graph.

Proof: For i = 1, ...,m, consider the event Ei defined as the existence of two sets (i.e., Sj ’s)
with minimum weight so that one set contains i and the other set does not contain i. It
suffices to show that the probability that Ei occurs is at most 1/2m. The latter is proven
by considering a random process in which the weight of i (i.e., wi) is selected last.

Suppose that the values of all other wj ’s (with j 6= i) have already been determined.
Let S− be a set of minimum weight among all sets not containing i, and w− be its weight

(i.e., w−
def
= minj:i6∈Sj

(
∑

k∈Sj
wk)). Similarly, let S+ be a set of minimum weight among

all sets obtained by omitting i from sets that contain it, and w+ be its weight (i.e., w+ def
=

minj:i∈Sj
(
∑

k∈Sj\{i} wk)). Then, event Ei occurs if and only if w− = w+ + wi, which

happens with probability 1/2m if (w− − w+) ∈ [2m], and with probability 0 otherwise.

Algorithm: On input a bipartite graph G = (U, V,E), do:

1. For each edge e ∈ E, uniformly and independently select a weight we ∈ [2m], where

m
def
= |E|.

2. Try to compute the value of the minimum-weight perfect-matching. This is done by
computing the determinant of the matrix, denoted A, obtained by setting the (u, v)-
entry to 2we if e = (u, v) and to 0 if (u, v) 6∈ E. In case the determinant is 0, halt
stating that the graph has no perfect matching. Otherwise, the value of the minimum-
weight perfect-matching is set to be the largest i so that the value of the determinant
is divisible by 2i. (The determinant can be computed by a fast parallel algorithm.)

3. For each e ∈ E, try to compute the value of the minimum-weight perfect-matching
among those not containing the edge e. This is done (as above) by computing the
determinant of the matrix, denoted Ae, obtained from A by resetting the e-entry to
0. All these computations can be conducted in parallel.

4. A candidate perfect matching is retrieved by including all edges e for which the value
(of the min-weight perfect matching) found in Step 3 is different than the one found
in Step 2.

The algorithm for general graphs is a variation of the above (and is not described here).
Note that Steps 1 and 2 (by themselves) provide a randomized algorithm for determining
whether a bipartite graph has a perfect matching.
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Analysis: The determinant of A sums (possibly with minus sign) the contributions of all
perfect matchings in the graph G, where the contribution of a perfect matching M equals

±∏e∈M 2we = ±2
∑

e∈M
we . We may assume that the graph has a perfect matching, or else

the determinant computed in Step 2 is 0. Assume that the weights (i.e., we’s) are such that
there exists a unique perfect matching of minimum weight. Denote this (minimum-weight
perfect) matching by M , and denote its weight by W . In such a case, the determinant of A
is of the form 2W + r · 2W+1, where r is an integer (possibly zero). This is so because the
contribution of the unique minimum-weight perfect-matching is ±2W , and the contribution
of each other perfect-matching is ±2W ′

, where W ′ > W (are both integers). Likewise, for
every edge e not in M , the determinant of Ae is of the form 2W + r · 2W+1, where again r is
an integer. On the other hand, for every edge e in M , the determinant of Ae is either zero
or r · 2W+1, with r being a non-zero integer.

Advanced Topic: A Parenthetical Comment2

It is tempting to think that when selecting weights as above, the minimum-weight perfect
matching may be uniformly distributed among all perfect matchings. As shown below, this
is not always the case (which is unfortunate, because otherwise we would have obtained a
simple probabilistic polynomial-time algorithm for uniformly generating a perfect matching
in a graph).

Consider a graph in which the set of perfect matchings consists of two types of matchings.
There are 2n matchings of the first type, a generic one having the form {e2i−σi

: i = 1, ..., n},
where σ1, ..., σn ∈ {0, 1}. In addition, there is a single matching of the second type, denoted
{e2n+i : i = 1, ..., n}. We claim that the probability that the minimum-weight perfect
matching is a specific matching of the first type is exponentially smaller than the probability
that the minimum-weight perfect matching is the matching of the second type. This claim
holds for weights distributed as above, as well as for several other distributions (e.g., the
Normal Distribution). For sake of simplicity, we consider weights uniformly distributed in
the interval [0, 1]. The claim is proven by combining the following two facts.

Fact 9.2 With overwhelmingly high probability, the value of the minimum-weight matching
among all 2n matchings of the first type is at least cn, where c is any constant smaller than
1/3 (e.g., c = 0.32).

Proof Sketch: This follows by observing that

min
σ1,...,σn∈{0,1}

(
n∑

i=1

w2i−σi

)
=

n∑

i=1

min(w2i−1, w2i)

and that the expected value of each min(w2i−1, w2i) equals 1/3.

Fact 9.3 The probability that any specific perfect matching (and in particular the one of the
second type) has weight less than, say, 0.31 · n is greater than 0.6n

2 = exp(Ω(n)) · 2−n.

2 This parenthetical comment is based on discussions with Madhu Sudan (during March 1998).
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Proof Sketch: This follows by observing that

Pr

[
n∑

i=1

wi < 0.31 · n
]

> Pr[∀i (wi ≤ 0.6)] ·
(

1− Pr

[
n∑

i=1

wi ≥ 0.31 · n
∣∣∣∣∣ ∀i (wi ≤ 0.6)

])

> 0.6n · 1
2

where the last inequality uses E[wi |wi ≤ 0.6] = 0.3.

Combining Facts 9.2 and 9.3, we conclude that, with probability exp(Ω(n)) · 1
2n+1 , the

single (second type) matching has weight less than 0.31 · n and every perfect matching of
the first type has weight at least 0.32 · n. In this case, the single (second type) matching is
of minimum-weight among all 2n + 1 perfect matchings, and the claim follows.

9.1.3 Testing whether polynomials are identical
or, on the discrete charm of polynomials

The problem considered here is to determine whether two multi-variant polynomials are
identical. We assume that one is given an oracle for the evaluation of each of the polynomials.
We further assume that the polynomials are defined over a sufficiently large finite field,
denoted F. Finally, let n denote the number of variables in these polynomials.

Algorithm: Given n and black-box access to p, q : Fn → F, uniformly select r1, ..., rn ∈ F,
and accept if and only if p(r1, ..., rn) = q(r1, ..., rn).

Analysis: Clearly, if p ≡ q then the algorithm always accepts. The following lemma
implies that if p and q are different polynomials, each of total degree at most d, then the
algorithm accepts with probability at most d/|F|.

Lemma 9.4 Let p : Fn → F be a non-zero polynomial of total degree d. Then

Prr1,...,rn
[p(r1, ..., rn) = 0] ≤ d

|F|

Proof: The lemma is proven by induction on n. The base case of n = 1 follows immediately
by the Fundamental Theorem of Algebra (i.e., the number of distinct roots of a degree d
univariant polynomial is at most d). In the induction step, we write p as a polynomial in
its first variable. That is,

p(x1, x2, ..., xn) =

d∑

i=0

pi(x2, ..., xn) · xi
1
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where pi is a polynomial of total degree at most d − i. Let t be the biggest integer i for
which pi is not identically zero. (We dismiss the case t = 0.) Then, using the induction
hypothesis, we have

Prr1,r2,...,rn
[p(r1, r2, ..., rn) = 0] ≤ Prr2,...,rn

[pt(r2, ..., rn) = 0]

+ Prr1,r2,...,rn
[p(r1, r2, ..., rn) = 0 | pt(r2, ..., rn) 6= 0]

≤ d− t
|F| +

t

|F|

where the second term is bounded by fixing any sequence r2, ..., rn for which pt(r2, ...., rn) 6=
0 and considering the univariant polynomial p′(x)

def
= p(x, r2, ..., rn), which by hypothesis is

a non-zero polynomial of degree t.

Comment: The lesson is that whenever the situation is such that almost any choice will
do, taking a random choice yields an algorithm with a rigorous performance guarantee. In
a sense any randomized algorithm is based on this paradigm, except that here the space
of choices seems more straightforward than in any other case. That is, most randomized
algorithms are based on introducing a sample space that is not obvious from the problem
at hand; whereas here the sample space is the obvious one.

9.1.4 Randomized Rounding applied to MaxSAT
or, on being fractionally pregnant

We slightly deviate from the above style of exposition by considering a general methodology
for approximating combinatorial optimization problems. The methodology, which relies on
the fact that linear programming is solveable in polynomial-time, consists of two steps.
First, one presents a linear programming relaxation of an integer program (corresponding
to a combinatorial problem). Next, one derives from a solution to the linear program (LP)
a solution to the integer program (IP). This is done by using the former (LP) solution in
order to determine a probability distribution over integer solutions (i.e., solution to the IP),
and picking a solution according to this distribution. We exemplify this methodology by
applying it to Max-SAT. Specifically, we consider the task of approximating the maximum
number of clauses that can be simultaneously satisfied in a given CNF formula.

Let ϕ =
∧m

j=1 Cj be a CNF formula, where Cj = (
∨

i∈S+
j
xi)∨(

∨
i∈S−

j
¬xi) with S+

j , S
−
j ⊆

[n]
def
= {1, ..., n}. Abusing notation, we may express Max-SAT as an integer optimization

problem in which the task is to maximize
∑m

j=1 yj subject to

xi, yj ∈ {0, 1} (∀i, j) (9.3)
∑

i∈S+
j

xi +
∑

i∈S−
j

(1− xi) ≥ yj (∀j) (9.4)

In the Linear Programming (LP) relaxation, one replaces Eq. (9.3) by

0 ≤ xi, yj ≤ 1 (∀i, j) (9.5)
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Clearly, the value of the LP is lower bounded by the value of the integer program. Given an
(optimal) solution, x̂i, ŷj , to the LP, we randomly derive a solution to the original integer
formulation. It will be shown that the expected value of the integer solution is at least
1− e−1 times the value of the LP (and hence at least a 1− e−1 fraction of the optimum of
the integer problem). Specifically, we set xi = 1 with probability x̂i (and xi = 0 otherwise).

Analysis: Suppose that clause Cj has cj literals. Below, we will show that the probability
that Cj is satisfied by the integer assignment (generated by above randomized rounding of
the above LP solution) is at least

(
1−

(
1− 1

cj

)cj
)
· ŷj ≥

(
1− e−1

)
· ŷj

and so the expected number of satisfied clauses is at least (1−e−1)·∑j ŷj (as stated above).
The above is proven by noting that the probability of the complementary event (i.e., Cj is
not satisfied) is 


∏

i∈S+
j

(1 − x̂i)


 ·



∏

i∈S−
j

x̂i


 (9.6)

where, by Eq. (9.4),
∑

i∈S+
j
(1 − x̂i) +

∑
i∈S−

j
x̂i ≤ (cj − ŷj). Eq. (9.6) is maximized when

1− x̂i = (cj − ŷj)/cj for all i ∈ S+
j , and x̂i = (cj − ŷj)/cj for all i ∈ S−j . Thus, Eq. (9.6) is

bounded above by
(
1− ŷj

cj

)cj

, and the above claim follows.

Comments: Combining the above algorithm with the naive algorithm that uniformly
selects a truth assignment, one derives a randomized algorithm of a 3/4-approximation
factor. The key observation is that the performance of the LP-based algorithm improves as
the clause sizes decrease, whereas the performance of the naive algorithm improves when
the sizes increase. In a different vein, we mention that the randomized rounding paradigm
has been extended also to semidefinite (rather than linear programming) relaxations of
combinatorial problems. In fact, improved approximation ratios for various versions of
MaxSAT were obtained that way (cf., [53, 70]).

9.1.5 Primality Testing
or, on hiding information from an algorithm

The problem considered here is to decide whether a given number is a prime. The only
Number Theoretic facts that we use are:

Fact 9.5 For every prime p > 2, each quadratic residue mod p has exactly two square roots
mod p (and they sum-up to p).

Fact 9.6 For every (odd and non-integer-power) composite number N , each quadratic residue
mod N has at least four square roots mod N .
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Our algorithm uses as a black-box an algorithm, denoted R, that given a prime p and a
quadratic residue mod p, returns the smallest among the two square roots. There is no
guarantee as to what is the output in case the input is not of the above form (and in
particular in case p is not a prime).

Algorithm: On input a natural number N > 2 do

1. If N is either even or an integer-power then reject.

2. Uniformly select r ∈ {1, ..., N − 1}, and set s← r2 mod N .

3. Let r′ ← R(N, s). If r′ ≡ ±r (mod N) then accept else reject.

Analysis: By Fact 9.5, on input a prime number N , the above algorithm always accepts
(since in this case R(N, r2 mod N) = ±r for any r ∈ {1, ..., N − 1}). On the other hand,
suppose that N is an odd composite that is not an integer-power. Then, by Fact 9.6, each
quadratic residue s has at least four square roots, and each is equally likely to be chosen
at Step 2 (becuase s yields no information on the specific r). Thus, for every such s, the
probability that ±R(N, s) has been chosen in Step 2 is at most 2/4. It follows that, on
input a composite number, the algorithm rejects with probability at least 1/2.

Comment: The above analysis presupposes that the algorithm R is always correct when
fed with a pair (p, s), where p is prime and s a quadratic residue mod p. In case R has error
probability ε < 1/2, our algorithm still distinguishes primes from composites (since on the
former it accepts with probability at least 1− ε > 1/2). We note that efficient randomized
algorithms for extracting square roots modulo a prime are known (cf., [14, 83]). Thus, the
above establishes that primality can be decided in probabilistic polynomial-time (alas, with
two-sided error).

Later comment: We mention that a deterministic polynomial-time algorithm was found
for this problem a few years ago by Agrawal, Kayal, and Saxena [1].

9.1.6 Testing Graph Connectivity via a random walk
or, the accidental tourist sees it all

The problem considered here is to decide whether a given graph is connected. The aim
is to devise an algorithm that does so while using little space (i.e., essentially, as little as
needed for storing the identity of a single vertex). This task can be reduced (in small space)
to testing connectivity between any given pair of vertices. Thus, we focus on the task of
determining whether or not two given vertices are connected in a given graph.

Algorithm: On input a graph G = (V,E) and two vertices, s and t, we take a random
walk of length O(|V | · |E|), starting at vertex s, and test at each step whether or not vertex
t is encountered. By a random walk we mean that, at each step, we uniformly select one of
the edges incident at the current vertex and traverse this edge to the other endpoint.



142 LECTURE 9. A TASTE OF RANDOMIZED COMPUTATIONS

Analysis: We will show that if s is connected to t in the graph G then, with probability
at least 1/2, vertex t is encountered in a random walk starting at s. In the following, we
consider the connected component of vertex s, denoted G′ = (V ′, E′). For any edge, (u, v)
(in E′), we let Tu,v be a random variable representing the number of steps taken in a random
walk starting at u until v is first encountered. It can be shown that E[Tu,v] ≤ 2|E′|.3 Also,
letting cover(G′) be the expected number of steps in a random walk starting at s and ending
when the last of the vertices of V ′ is encountered, and C be any directed cycle that visits
all vertices in G′, we have

cover(G′) ≤
∑

(u,v)∈C

E[Tu,v]

≤ |C| · 2|E′|

Letting C be a traversal of some spanning tree of G′, we conclude that cover(G′) < 4 · |E′| ·
|V ′|. Thus, with probability at least 1/2, a random walk of length 8 · |E′| · |V ′| starting at
s visits all vertices of G′.

Comment: We mention that a deterministic log-space algorithm was found for this prob-
lem a few years ago by Reingold [90]. The interested reader may also find a description of
it in [44, Sec. 5.2.4].

9.1.7 Finding minimum cuts in graphs

or, random is better than arbitrary

The problem considered here is to find the minimum cut in a graph. The randomized
algorithm that follows is simpler than the traditional flow-based algorithms, and lends itself
to parallel implementation (omitted here).

Algorithm: On input a graph G = (V,E), with n = |V |, the algorithm makes n − 2
random edge contraction steps: In each step one selects uniformly an edge of the current
multi-graph and contracts the two endpoints into one vertex, allowing parallel edges but
dropping self-loops that may be created. That is, if (u, v) is the contracted edge of the
current graph G′ then we replace vertices u and v by a new vertex x, and replace edges of
the form (w, v) (resp., (w, u)), where w 6∈ {u, v}, by a similar number of edges (w, x). When
these n− 2 contraction steps are completed, we are left with a multi-graph on two vertices,
and just output the number of parallel edges.

3 A hand-waving argument follows: Consider a very long walk, starting at u, and returning to u many
times. Note that each directed edge appears on this walk for about the same number of times. Partition
the walks into segments so that each segment ends with a move from vertex v to vertex u. Then, the
number of segments is about a 1/2|E′| fraction of the length of the walk, and so the average length of a
segment is 2|E′|. Note that each segment constitutes a walk starting at u and passing through v (possiblly
several times) before returning to u. Thus, the average length of segments in the big walk upper bounds
the expected length of random walks from u to v.
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Analysis: Suppose that G has a minimum cut C ⊂ E. Then, the probability that no

edge of C is contracted in the first step is |E|−|C||E| ≥ 1− 2
n (where |C| ≤ 2|E|/n because the

minimum cut cannot be bigger than the average degree). The question is what happens in
subsequent steps. A key observation is that |C| is a lower bound on the average degree of any
multi-graph obtained from G by any sequence of edge contractions. Thus, the probability
that the (n− 2)-step contraction process leaves C intact is at least

n−2∏

i=1

(
1− 2

n− (i− 1)

)
=

n−2∏

i=1

n− 1− i
n+ 1− i =

2

n · (n− 1)

Thus, repeating the above algorithm for a quadratic number of times we obtain the minimum
cut, with probability at least, say, 2/3. We comment that it follows that the number of
minimum cuts is at most (n − 1)n/2 (becuase each such cut is generated by the above
algorithm with probability at least 2/(n− 1)n).

Comment: Observe that if the random choices in the above algorithm are replaced by
arbitrary choices then the output gives little indication towards the minimum cut in G.
That is, an algorithm that makes n− 2 arbitrary edge-contraction steps provides no useful
information, whereas the above algorithm that picks these steps at random is useful. In
general, making random choices may be better than making arbitrary choices. This lesson
is important because many algorithms are presented in a non-fully specified manner, allowing
some choices to be made arbitrarily (in which case these choices are typically made in a way
most convenient for implementation). It is important to bear in mind that, in some cases,
replacing an arbitrary choice by a random one may yield improved performance.

9.2 Randomness in Complexity Theory

In this section we demonstrate the power of randomized reductions (rather than randomized
algorithms discussed in the previous section). Again, we focus on simple examples, and avoid
the central role of randomness in the context of proof systems. For a survey of probabilistic
proof systems, the interested reader is referred to [41, Chap. 2].

9.2.1 Reducing (Approximate) Counting to Deciding
or, the Random Sieve

We consider the class #P of functions that count the number of NP-witnesses (w.r.t an NP-
relation). That is, f ∈ #P if for some NP-relation, R, it holds that f(x) = |{y : (x, y)∈R}|,
for every x ∈ {0, 1}∗. We will show that such f can be approximated in probabilistic
polynomial-time given oracle to an NP-complete set. The (randomized Cook) reduction
uses any efficient family of Universal2 Hash functions4, as well as the following lemma.

4 A family of functions mapping {0, 1}m to {0, 1}k is called Universal2 if for a uniformly selected h in
the family, the random variables {h(e)}e∈{0,1}m are pairwise independent and uniformly distributed over

{0, 1}k . An efficient family is required to have algorithms for selecting and evaluating functions. A popular
example is the family of all affine transformations from {0, 1}m to {0, 1}k .
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Lemma 9.7 (Leftover Hash Lemma [96, 23, 61]):5 Let Hm,k be a family of Universal2
Hash functions mapping {0, 1}m to {0, 1}k, and let ε > 0. Let S ⊆ {0, 1}m be arbitrary
provided that |S| ≥ ε−3 · 2k. Then, for all but at most an ε fraction of the h’s in Hm,k, it
holds that

|{e ∈ S : h(e)=0k}| = (1± ε) · |S|
2k

Proof: For a uniformly selected h ∈ Hm,k, the random variables {h(e)}e∈S are pairwise
independent and uniformly distributed over {0, 1}k. On top of these h(e)’s, we define 0-1
random variables, denoted ζe’s, so that ζe = 1 if h(e) = 0k. Then E[ζe] = 2−k and we need
to show that the sum

∑
e∈S ζe is concentrated around |S|/2k. Using Chebyshev’s Inequality

and the fact that the ζe’s are pairwise independent, we get

Pr

[∣∣∣∣∣
∑

e∈S

ζe −
|S|
2k

∣∣∣∣∣ >
ε · |S|

2k

]
<

Var[
∑

e∈S ζe]

(ε|S|/2k)2

<
|S|/2k

ε2 · (|S|/2k)2
≤ ε

(Pairwise independence is used in deriving Var[
∑

e∈S ζe] =
∑

e∈S Var[ζe] < |S| · 2−k.)

Reduction: On input x ∈ {0, 1}n, the probabilistic polynomial-time oracle machine (for
approximating f) sets m to be the length of NP-witness w.r.t the guaranteed R. For every
k = 0, 1, ...,m+ 2 it performs the following experiment n times.

1. Uniformly select h ∈ Hm,k, and construct (via Cook’s reduction) a CNF formula ϕ so
that ϕ is satisfiable if and only if there exists a string y ∈ {0, 1}m so that (x, y) ∈ R
and h(y) = 0k.

2. Query the oracle whether ϕ is satisfiable.

Once all these experiments are completed, the machine determines the smallest non-negative
integer k (possibly zero) so that the oracle has answered no at least n/2 times, and outputs
2k.

Analysis: We analyze the performance of the above machine when it is given oracle access

to SAT. Clearly, if Sx
def
= {y : (x, y) ∈R} has cardinality N then the probability that the

machine outputs a number k ≥ L
def
= ⌈log2(4N)⌉ is exponentially vanishing (because the

probability that a uniformly selected h ∈ Hm,L maps some element of Sx to 0L is at most
1/4, and so in each iteration with value of k ≥ L, with probability at least 3/4, the oracle

says no). On the other hand, using the above lemma, if N
def
= |Sx| ≥ 2k+2 then for a

uniformly selected h ∈ Hm,k with probability at least 3/4 there exists y ∈ Sx so that

5 A stronger statement of the lemma, supported by essentially the same proof, refers to an arbitrary
random variable X over {0, 1}m satisfying Pr[X = x] ≤ ε3 · 2−k , for every x. The lemma was discovered
independently in [23, 61], yet it is an extension of the ideas underlying [96]. The lemma’s name was coined
in [62].
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h(y) = 0k. Thus, with overwhelmingly high probability, the output of the oracle machine
is at least log2(N/4). We conclude that approximating f up-to a factor of 4 is reducible in
probabilistic polynomial-time to NP . Higher accuracy – that is, approximation factor of
1 + 1

p(n) , for any fixed positive polynomial p – can be obtained by considering the “direct

product function” Fp(x)
def
= (f(x))p(|x|) that counts the number of NP-witnesses w.r.t the

NP-relation Rp defined by

Rp
def
= {(x, y1, ..., yp(|x|)) : ∀i (x, yi)∈R}

A related reduction may be used to reduced SAT (or even “approximating #P”) to unique-
SAT. By the latter, we mean the promise problem in which the yes-instances are CNF
formula having a unique satisfying assignment, and the no-instances are CNF formula hav-
ing no satisfying assignment. All that is needed is to notice that in the above reduction,
for k = (log2N) ± 2, the reduction produces CNF formula that are typically (i.e., w.p. at
least 3/4) either not satisfiable or have few (say up-to 8) satisfying assignments. Thus,
we augment Step 1 as follows. Having produced ϕ, as above, we produce 8 new formu-
lae, ψ1, ..., ψ8, so that ψi asserts that ϕ has at least i different satisfying assignments (e.g.,
ψi(y1, ..., yi) =

∧
j ϕ(yj)∧

∧
1≤j<j′≤i(yj < yj′)). We refer each of these ψi to the oracle and

use yes as answer if the oracle has answered yes on any of the ψi (as this may happen only
if ϕ is indeed satisfiable). Thus, whenever ϕ has few satisfying assignments, yes will be
returned.

9.2.2 Two-sided error versus one-sided error

We consider the extension of the classes RP and BPP to promise problems and show that
BPP = RPRP (in the extended sense). It is evident that RPRP ⊆ BPPBPP = BPP
(where the last equality utilizes standard “error reduction”). So we focus on the other
direction, considering an arbitrary BPP-problem with a characteristic function χ (which
may be only partially defined over {0, 1}∗). Let R be an NP-relation and p be a polynomial,
such that for every x on which χ is defined it holds that

|{y ∈ {0, 1}p(|x|) : R(x, y) 6=χ(x)}| < 2p(|x|)

3p(|x|)

where R(x, y) = 1 if (x, y) ∈ R and R(x, y) = 0 otherwise. We show a randomized one-sided
error (Karp) reduction of χ to (the promise problem extension of) coRP .

Reduction: On input x ∈ {0, 1}n, the randomized polynomial-time mapping uniformly
selects s1, ..., sm ∈ {0, 1}m, and outputs the pair (x, s), wherem = p(|x|) and s = (s1, ..., sm).

We define the following coRP promise problem, denoted Π. The yes-instances, denoted
Πyes, are pairs (x, s) so that for every r ∈ {0, 1}m there exists an i so that R(x, r ⊕ si) = 1.
The no-instances, denoted Πno, are pairs (x, s) so that for at least half of the possible
r ∈ {0, 1}m, it holds that R(x, r ⊕ si) = 0 for every i. Clearly, Π is indeed a coRP promise
problem (via an algorithm that uniformly selects r, and computes R(x, r ⊕ si) for all i’s).
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Analysis: We claim that the above randomized mapping reduces χ to Π. Suppose first
that χ(x) = 0. Then, for every possible choice of s1, ..., sm ∈ {0, 1}m, the fraction of r’s
for which R(x, r ⊕ si) = 1 holds for some i is at most m · 1

3m = 1
3 . Thus, the reduction

always maps such an x to a no-instance (i.e., an element of Πno). On the other hand, we
will show shortly that in case χ(x) = 1, with probability at least 1/2 the reduction maps
x to a yes-instance. Thus, the above reduction has one-sided error and indeed reduces χ
to Π (which, as observed above, is in coRP). It is left to analyze the probability that the
reduction fails in case χ(x) = 1. That is,

Prs[(x, s) 6∈ Πyes] = Prs1,...,sm
[∃r ∈ {0, 1}m s.t. (∀i) R(x, r ⊕ si) = 0]

≤
∑

r∈{0,1}m

Prs1,...,sm
[(∀i) R(x, r ⊕ si) = 0]

≤ 2m ·
(

1

3m

)m

≪ 1

2

Comment: The traditional presentation uses the above reduction to show that BPP is

in the Polynomial-Time Hierarchy. One defines the polynomial-time predicate ϕ(x, s, r)
def
=∨m

i=1(R(x, si ⊕ r) = 1), and observes that

χ(x) = 1 ⇒ ∃s ∀r ϕ(x, s, r)

χ(x) = 0 ⇒ ∀s ∃r ¬ϕ(x, s, r)

9.2.3 The permanent: Worst-Case versus Average Case
or, the self-correction paradigm

We consider the problem of computing the permanent of a matrix.6 This problem is known
to be #P-complete even in case the matrix has only 0-1 entries. Here we consider the
problem of computing the permanent over sufficiently large finite fields (i.e., the field size
is larger than the dimension). We show that the (worst-case) problem can be reduced to
solving the problem on random (or typical) instances.

Reduction: On input an n-by-n matrix, M , over F (s.t., |F | > n + 1), the probabilistic
polynomial-time oracle machine (i.e., the reduction) proceeds as follows.

1. Uniformly select an n-by-n matrix, R, over F.

2. For i = 1, ..., n+ 1, obtain from the oracle the value, denoted vi, of the permanent of
the matrix M + iR.

3. Obtain by interpolation, the value of the degree n univariant polynomial, p, satisfying
p(i) = vi (for i = 1, ..., n+ 1).

4. Output p(0).

The key observation, underlying the above reduction, is that, for fixed M and R, the per-
manent of M + iR is a degree n polynomial in the variable i.

6 The permanent of an n-by-n matrix A = (ai,j) is the sum, taken over all permutations π of [n], of the
products

∏n

i=1
ai,π(i).
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Analysis: We consider the performance of the above reduction assuming it is given ac-
cess to an oracle that answers correctly on all but at most an 1/3(n + 1) fraction of the
instances. We will show that in such a case, on any input, the reduction answers correctly
with probability at least 2/3. Observe that, for each fixed M and i 6= 0, the matrix M+iR is
uniformly distributed over the instance space. Thus, the probability that the oracle returns
an incorrect answer on any of the n+ 1 queries is at most 1/3. But otherwise, having the
permanent of M+ iR for every i = 1, .., n+1, we obtain the permanent of the formal matrix
M + xR (which is a polynomial of degree n in x ∈ F), and thus the permanent of M (when
substituting x = 0).

Comments: As seen above, the reduction of a problem to random instances of itself al-
lows to reduce its “worst” instances to its average (or typical) cases, and thus means that
the problem does not really have “worst” (or “pathological”) instances: The problem’s com-
plexity, in case the problem is hard, must stem from typical (or random) instances. Viewed
from the other side (i.e., of feasibility), such a reduction allows to self-correct a (possibly
efficient) procedure that is correct on a large majority of the instances, and obtain a ran-
domized procedure that is correct on every instance. Thus, as any reduction, a reduction to
random instances is open to interpretation: For example, Ajtai’s reduction of approximating
shortest vectors in integer lattices to such random instances [2], is commonly viewed as a
demonstration of average-case hardness based on worst-case hardness, but it may be also
viewed as a self-corrector for (possibly efficient) programs that find short vectors in a certain
class of integer lattices.

9.3 Randomness in Distributed Computing

As much as randomness is a powerful tool in the design of algorithms and reductions, its
power in the distributed context is even more striking. In particular, randomized distributed
protocols are known to beat some impossibility results and lower bound that refer to deter-
ministic protocols. Various examples are given in [29, 77, 13, 72, 83].

As a warm-up consider the problem of electing a leader among a set of n identical
processes. Clearly, there is no deterministic procedure to elect such a leader (even when all
processes are guaranteed to be non-faulty), because there is no way to “deterministically
break the symmetry” among the processors. However, a simple randomized procedure will
do the job: Let each processor toss, independently of all other processors, a coin with bias
1/n towards 1, and announce its coin-flip to all processors. If a single processor sends 1 then
it is elected leader, otherwise the process is repeated. In general, randomness can be used
to “break symmetry” in a variety of distributed settings. Other uses of randomness in such
settings include avoiding “pathological” configurations (see Section 9.3.2), and making the
actions of non-faulty processors unpredictable to malicious ones (i.e., Byzantine faults; see
Section 9.3.3). We start with a much simpler problem.

9.3.1 Testing String Equality
or, randomized fingerprints
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The problem considered here is to decide whether or not two strings, each held by a different
party, are identical. The aim is to devise a protocol for this problem using low communica-
tion complexity. We present three such protocols.

Protocol 1: Party A holds x ∈ {0, 1}n, whereas party B holds y ∈ {0, 1}n. Here we view
x and y as non-negative integers in {0, 1, ..., 2n − 1}. In the protocol, party A uniformly
selects i ∈ {1, ..., n}, finds the ith prime, denoted pi, and sends the pair (i, x mod pi) to B.
Party B recovers pi and accepts if and only if y mod pi equals the value x mod pi (received
from A).

Clearly, if x = y then B always accepts. On the other hand, using the Chinese Reminder
Theorem, we know that if x 6= y, then x 6= y (mod pi) for at least n/2 of the pi’s (since
otherwise x ≡ y (mod

∏
i∈I pi), for |I| ≥ n/2, and x = y follows (because x, y < 2n <∏

i∈I pi)). Thus, B will reject with probability at least 1/2. The number of bits sent is
log2 n+ log2 pn = O(log n).

Protocol 2: Again, party A holds x ∈ {0, 1}n, whereas party B holds y ∈ {0, 1}n. Here
we use a small-bias probability space S ⊂ {0, 1}n, with bias 1/3 and |S| = poly(n) (see
Section 3.3). By definition, for every non-zero string z ∈ {0, 1}n, with probability at least
1/3 a uniformly chosen r ∈ S has inner product mod 2 with z equal to 1. In the protocol,
party A uniformly selects r ∈ S, computes the inner product mod 2 of x and r, and sends
the result along with the index of r (in S) to B. Party B retrieves r, computes the inner
product mod 2 of y and r, and accepts if it matches the bit received.

Clearly, if x = y then B always accepts. On the other hand, by the above, if x 6= y then
the inner products of x and y with a uniformly chosen r ∈ S differ with probability at least
1/3 (hint: consider z = x⊕ y). The number of bits sent is 1 + log2 |S| = O(log n).

Protocol 3: The inputs are as above, but here we use a different tool: An error-correcting
code, denoted E : {0, 1}n → {0, 1}m, with m = O(n) and distance Ω(n) (cf., Section 2.3).
In the protocol, party A computes the codeword E(x), uniformly selects i ∈ {1, ...,m}, and
sends i along with the ith bit of E(x) to Party B. The latter computes the codeword E(y)
and accepts if its ith bit matches the bit received.

Clearly, if x = y then B always accepts. On the other hand, if x 6= y then E(x) and
E(y) differ on a constant fraction of the bit positions, and so B will reject with constant
probability. The number of bits sent is 1 + log2m = O(1) + log2 n.

9.3.2 Routing in networks
or, avoiding pathological configurations

The problem considered here is to allow parallel routing of messages in a network in which
processors have relatively few immediate neighbors (i.e., processors connected to them by
a direct link). In many such networks, routing to random destinations can be done quite
efficiently (i.e., fast even assuming that each processor can only deliver a single message at
a time, and without coordination among the processors). Off course, we are interested in
routing messages to “non-random” destinations; that is, to destinations that are imposed
upon us by some high-level application. Still the above fact (regarding routing to random
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destinations) becomes relevant, via the following two phase randomized routing strategy:
Suppose that processor i wishes to deliver a message to processor di, where the di’s consist

of an arbitrary a permutation of the processor names [n]
def
= {1, ..., n}. Then, processor i

selects a random intermediate processor, ri ∈ [n], and sends its message to processor ri with
a request to forward it to processor di. (The ri’s are not likely to be distinct!) Thus, the
routing is in two phases:

1. The message of processor i, denoted mi, is delivered to ri.

2. Message mi is delivered from ri to di.

By our hypothesis, Phase 1 can be completed fast with high probability. It is appealing to
say that, by symmetry, the same should hold also for Phase 2. This is not known to be
generically true, but has been proved to be so for a wide class of networks (cf., [74, Sec. 3.4]).
Specifically, if one changes the model a little, allowing and measuring edge congestion, then
bounds on congestion in Phase 1 apply also to Phase 2.

9.3.3 Byzantine Agreement
or, take actions the adversary cannot predict

The problem considered here is to allow non-faulty processors to agree on a common value,
in presence of Byzantine (malicious) faulty processors. Specifically, it is required that (1) the
non-faulty processors must terminate with the same output value, and (2) in case their input
values are the same this should also be their output value. We may consider, without loss
of generality, the problem of agreeing on a Boolean value. The primary parameters are the
total number of processors, denoted n, and a bound on the number of faulty processors, t.
We assume a synchronous model of point-to-point communication.

Protocol: We use auxiliary (threshold) parameters L,H,D so that L > n
2 + t, H ≥ L+ t

and H + t ≤ D ≤ n − t (which is feasible for t < n/8). The protocol utilizes a global coin
(which may be implemented in various ways). It is postulated that, for each flipping of this
coin, each of the two possible outcomes occurs with probability at least p > 0 (p = 0.1 will
do, whereas p = 0.5 corresponds to an unbiased coin).

Following is the program to processor i ∈ [n]
def
= {1, ..., n}. On input bi ∈ {0, 1}, the

processor sets its (initial) vote, denoted votei, to bi. The processor repeats the following
steps r + 1 times, where r is the iteration in which it decides (see below):

1. Send votei to each processor.

2. Receive votes from all processors, including itself. (In case no message is received from
processor j, use the value last received from it, and if no value was ever received use
value 0.) Let cnti denote the number of votes in favor of 1. If cnti > n/2 set maji = 1
and tallyi = cnti, otherwise set maji = 0 and tallyi = n− cnti.

3. Let C ∈ {L,H} be the value of the global coin, for the current round (in each round
the global coin is flipped anew).
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4. If tallyi ≥ C then set votei = maji else set votei = 0.

5. If tallyi ≥ D then decide votei, and proceed for a single additional iteration (skipping
this step in the next iteration).

(Actually, as shown below, if the processor were to decide again in the next iteration
its decision would have been identical.)

Analysis: Let G denote the set of non-faulty (or good) processors. The following obser-
vation regarding members of G is extensively used: In each iteration, |cnti − cntj | ≤ t, for
every i, j ∈ G. Thus, if tallyi ≥ L > n/2 + t for some i ∈ G then majj = maji for all
j ∈ G. Similarly, if tallyi ≥ D (resp., tallyi ≥ H) for some i ∈ G then tallyj ≥ H
(resp., tallyj ≥ L) for all j ∈ G. Using these facts it follows that

1. If all good processors enter some round with identical votes then they all decide by the
end of the current round, and their decision equals this vote. This follows since (at
this round) this identical vote would have support of at least |G| ≥ n− t ≥ D. (As a
special case, we conclude that the second requirement of Byzantine Agreement holds.)

2. If at some round a good processor decides v then by the end of the next round all
good processors decide v. Suppose that i ∈ G decides v in the current round. Then,
tallyi ≥ D, and for each j ∈ G it follows that tallyj ≥ H and so at Step 4
votej = majj = v. Using the previous fact, the current one follows. (As a special
case, we conclude that the first requirement of Byzantine Agreement holds.)

3. If at some round tallyi ≥ H holds for some i ∈ G then with constant probability all
good processors enter the next round with vote equal to maji. This follows since with
constant probability the outcome of the global coin is L, in which case for every j ∈ G,
tallyj ≥ L = C and so at Step 4 votej = majj = maji.

4. If at some round tallyi < H holds for all i ∈ G then with constant probability all
good processors enter the next round with vote 0. This follows since with constant
probability the outcome of the global coin is H .

Thus, the above protocol terminates in constant expected number of rounds, and the output
always satisfies the agreement requirements. This remain valid even if we use a global coin
the outcome of which may be viewed differently by different processors, as long as for each
of the two possible values, with probability at least p > 0, all non-faulty processors view
the outcome as equal to that value. We comment that such a global coin can be easily
implemented in case t = O(

√
n), by letting each processor toss a local coin, announce the

outcome, and view the outcome of the global coin to be the majority vote it has received
(which, with constant probability, will be identical at all good processors). We note that
t + 1 is a lower bound on the number of rounds in any correct deterministic protocol.
Furthermore, the above protocol can be adapted to the asynchronous model, whereas there
exist no correct deterministic protocol for the latter model (even for t = 1).

Notes

We briefly list the credits for the various randomized computations described in this section.
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Algorithms. Section 9.1.1 (approximating the number of DNF satisfying assignments) is
based on [67], Section 9.1.2 (finding perfect matching) is based on [84], and Section 9.1.3
(testing polynomial identities) is based on [93, 115]. The Randomized Rounding technique
was introduced in [89], and the MaxSAT application described in Section 9.1.4 is due to [52].
The primality testing algorithm described in Section 9.1.5 is folklore attributed to several
people; I heard it attributed to M. Blum. Section 9.1.6 (random walk algorithm for testing
connectivity) is based on [5], and Section 9.1.7 (the randomized min-cut algorithm) is based
on [66].

Reductions (i.e., Complexity Theory). Section 9.2.1 (reduction of approximate count-
ing to deciding and of SAT to uniqueSAT) is based on [96, 99] and [110], but the presentation
in these sources is quite different. The reduction of Section 9.2.2 is based on [73], where it
was used to show (independently of [96]) that BPP ∈ PH; the current presentation is due
to Fortnow (priv. comm. 1997, see [10]). Section 9.2.3 (self-corrector for the permanent) is
based on [76].

Protocols (i.e., Distributed Computing). Protocol 1 for string equality (in Section 9.3.1)
is commonly attributed to M. Rabin and A. Yao, Protocol 2 is due to [85, Sec. 9], and Pro-
tocol 3 is due to E. Kushilevitz (priv. comm. 1998). Section 9.3.2 (randomized routing)
is based on [107, 109], and Section 9.3.3 (randomized Byzantine Agreement) is based on
[22, 87].

Deterministic alternatives. As mentioned in the main text, deterministic alternatives
to randomized computations were found in two cases: (1) for the randomized primality tester
presented in Section 9.1.5, and (2) for the randomized log-space connectivity tester presented
in Section 9.1.6. Although the deterministic alternatives (of [1] and [90], respectively) are
major breakthroughs, we believe that the original randomized computations are still of great
interest.
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