
Hierarchy Theorems for Property Testing

Oded Goldreich∗ Michael Krivelevich† Ilan Newman‡ Eyal Rozenberg§

December 22, 2008

Abstract

Referring to the query complexity of property testing, we prove the existence of a rich hierarchy
of corresponding complexity classes. That is, for any relevant function q, we prove the existence of
properties that have testing complexity Θ(q). Such results are proven in three standard domains
often considered in property testing: generic functions, adjacency predicates describing (dense)
graphs, and incidence functions describing bounded-degree graphs. While in two cases the proofs
are quite straightforward, the techniques employed in the case of the dense graph model seem
significantly more involved. Specifically, problems that arise and are treated in the latter case
include (1) the preservation of distances between graph under a blow-up operation, and (2) the
construction of monotone graph properties that have local structure.

Keywords: Property Testing, Graph Properties, Monotone Graph Properties, Graph Blow-up, One-
Sided vs Two-Sided Error, Adaptivity vs Non-adaptivity,

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/08).

†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: krivelev@post.tau.ac.il.
Partially supported by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation, and by Pazy Memorial
Award.

‡Department of Computer Science, Haifa University, Haifa, Israel. Email: ilan@cs.haifa.ac.il
§Department of Computer Science, Technion, Haifa, Israel. Email: eyalroz@technion.ac.il

i

Contents

1 Introduction 1

2 Properties of Generic Functions 2

3 Testing Graph Properties in the Bounded-Degree Model 3

4 Testing Graph Properties in the Adjacency Matrix Model 5
4.1 The blow-up property Π . 6
4.2 Lower-bounding the query complexity of testing Π . 7
4.3 An optimal tester for property Π . 8

5 Revisiting the Adjacency Matrix Model: Monotone Properties 10
5.1 The monotone property Π . 11
5.2 Lower-bounding the query complexity of testing Π . 12
5.3 An optimal tester for property Π . 13

6 Revisiting the Adjacency Matrix Model: One-Sided Error 17
6.1 The (generalized) blow-up property Π . 17
6.2 Lower-bounding the query complexity of testing Π . 17
6.3 An optimal tester for property Π . 19

7 Summary of Open Problems That Arise 21

Bibliography 22

APPENDICES 24

Appendix A: Hard-to-test Properties in P 24

Appendix B: A General Analysis of the Effect of Graph Blow-Up 27

ii

1 Introduction

In the last decade, the area of property testing has attracted much attention (see the surveys of [F, R],
which are already somewhat out-of-date). Loosely speaking, property testing typically refers to sub-
linear time probabilistic algorithms for deciding whether a given object has a predetermined property
or is far from any object having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and the testers get oracle
access to this function (and thus may be expected to work in time that is sub-linear in the length of
the object).

Following most work in the area, we focus on the query complexity of property testing, where the
query complexity is measured as a function of the size of the object as well as the desired proximity
(parameter). Interestingly, many natural properties can be tested in complexity that only depends on
the proximity parameter; examples include linearity testing [BLR], and testing various graph properties
in two natural models (e.g., [GGR, AFNS] and [GR1, BSS], respectively). On the other hand, properties
for which testing requires essentially maximal query complexity were proved to exist too; see [GGR]
for artificial examples in two models and [BHR, BOT] for natural examples in other models. In
between these two extremes, there exist natural properties for which the query complexity of testing
is logarithmic (e.g., monotonicity [EKK+, GGL+]), a square root (e.g., bipartitness in the bounded-
degree model [GR1, GR2]), and possibly other constant powers (see [FM, PRR]).

One natural problem that arises is whether there exist properties of arbitrary query complexity. We
answer this question affirmative, proving the existence of a rich hierarchy of query complexity classes.
Such hierarchy theorems are easiest to state and prove in the generic case (treated in Section 2): Loosely
speaking, for every sub-linear function q, there exists a property of functions over [n] that is testable
using q(n) queries but is not testable using o(q(n)) queries.

Similar hierarchy theorems are proved also for two standard models of testing graph properties:
the adjacency representation model (of [GGR]) and the incidence representation model (of [GR1]). For
the incidence representation model (a.k.a the bounded-degree graph model), we show (in Section 3)
that, for every sub-linear function q, there exists a property of bounded-degree N -vertex graphs that is
testable using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one such property
corresponds to the set of N -vertex graphs that are 3-colorable and consist of connected components of
size at most q(N).

The bulk of this paper is devoted to hierarchy theorems for the adjacency representation model
(a.k.a the dense graph model), where complexity is measured in terms of the number of vertices rather
than the number of all vertex pairs. Our main results for the adjacency matrix model are:

1. For every sub-quadratic function q, there exists a graph property Π that is testable in q queries,
but is not testable in o(q) queries. Furthermore, for “nice” functions q, it is the case that Π is in
P and the tester can be implemented in poly(q)-time. (See Section 4.)

2. For every sub-quadratic function q, there exists a monotone graph property Π that is testable in
O(q) queries, but is not testable in o(q) queries. (See Section 5.)

The treatment of the adjacency representation model raises several interesting problems, which are
further discussed in Section 7.

Conventions. For sake of simplicity, we state all results while referring to query complexity as a
function of the input size; that is, we consider a fixed (constant) value of the proximity parameter,
denoted ǫ. In such cases, we sometimes use the term ǫ-testing, which refers to testing when the
proximity parameter is fixed to ǫ. All our lower bounds hold for any sufficiently small value of the
proximity parameter, whereas the upper bounds hide a (polynomial) dependence on (the reciprocal of)

1

this parameter. In general, bounds that have no dependence on the proximity parameter refer to some
(sufficiently small but) fixed value of this parameter.

A related prior work. In contrast to the foregoing conventions, we mention here a result that
refers to graph properties that are testable in (query) complexity that only depends on the proximity
parameter. This result, due to [AS], establishes a (very sparse) hierarchy of such properties. Specifically,
[AS, Thm. 4] asserts that for every function q there exists a function Q and a graph property that is
ǫ-testable in Q(ǫ) queries but is not ǫ-testable in q(ǫ) queries. (We note that while Q depends only on
q, the dependence proved in [AS, Thm. 4] is quite weak (i.e., Q is lower bounded by a non-constant
number of compositions of q), and thus the hierarchy obtained by setting qi = Qi−1 for i = 1, 2, ... is
very sparse.)

Organization. Sections 2 and 3 present hierarchy theorems for the generic case and the bounded-
degree graph model, respectively. The bulk of this paper provides hierarchy theorems for graph prop-
erties in the adjacency matrix model. Specifically, the focus of Section 4 is on the (standard) com-
putational complexity of these properties, whereas the focus of Section 5 is on monotone properties.
Combining both features is one of the open problems posed in Section 7. Appendices A and B also
refer to the adjacency matrix model; they contain results that are not central to the main themes of
this work (but are sufficiently related to it). In particular, in Appendix A we prove the existence of
graph properties that are in P and have maximal query complexity (in the adjacency matrix model).

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over [n], and distance
between such functions is defined as the fraction of (the number of) number of arguments on which
these functions differ. In addition to the input oracle, the tester is explicitly given two parameters: a
size parameter, denoted n, and a proximity parameter, denoted ǫ.

Definition 1 Let Π =
⋃

n∈N Πn, where Πn contains functions defined over the domain [n]
def
= {1, ..., n}.

A tester for a property Π is a probabilistic oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and f ∈ Πn

(and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester rejects with probability
at least 2/3; that is, for every ǫ > 0 and n ∈ N, if f : [n] → {0, 1}∗ is ǫ-far from Πn, then
Pr[T f (n, ǫ)=0] ≥ 2/3.

We say that the tester has one-sided error if it accepts each f ∈ Π with probability 1 (i.e., for every
f ∈ Π and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1).

Definition 1 does not specify the query complexity of the tester, and indeed an oracle machine that
queries the entire domain of the function qualifies as a tester (with zero error probability...). Needless
to say, we are interested in testers that have significantly lower query complexity. Recall that [GGR]
asserts that in some cases such testers do not exist; that is, there exist properties that require linear
query complexity. Building on this result, we show:

Theorem 2 For every q : N→ N that is at most linear, there exists a property Π of Boolean functions
that is testable (with one-sided error) in q +O(1) queries, but is not testable in o(q) queries (even when
allowing two-sided error).

2

Proof: We start with an arbitrary property Π′ of Boolean functions for which testing is known
to require a linear number of queries (even when allowing two-sided error). The existence of such
properties was first proved in [GGR]. Given Π′ =

⋃
m∈N Π′

m, we define Π =
⋃

n∈N Πn such that Πn

consists of “duplicated versions” of the functions in Π′
q(n). Specifically, for every f ′ ∈ Π′

q(n), we define

f(i) = f ′(i mod q(n)), where i mod m is (non-standardly) defined as the smallest positive integer that
is congruent to i modulo m, and add f to Πn.

The query complexity lower bound of Π follows from the corresponding bound of Π′. Specifically,
approximate-membership of f ′ in Π′

m can be tested by emulating the testing of an imaginary function
f : [n] → {0, 1} defined such that m = q(n) and f(i) = f ′(i mod m); that is, testing f ′ w.r.t Π′

m is
performed by testing f w.r.t Πn, while emulating oracle access to f by making corresponding queries
to f ′. Clearly, if f ′ ∈ Π′

m then f ∈ Πn, whereas if f ′ is ǫ-far from Π′
m then f is ⌊n/m⌋·m

n · ǫ-far from Πn.
Assuming without loss of generality that q(n) ≤ n/2, we have ⌊n/m⌋ ·m ≥ n/2. Thus, a o(q(n))-query
oracle machine that distinguishes the case that f ∈ Πn from the case that f is (ǫ/2)-far from Πn, yields
a o(m)-query oracle machine that distinguishes the case that f ′ ∈ Π′

m from the case that f ′ is ǫ-far
from Π′

m. We conclude that an Ω(m) lower bound on ǫ-testing Π′
m implies an Ω(q(n)) lower bound on

(ǫ/2)-testing Πn.
The query complexity upper bound of Π follows by using a straightforward tester that essentially

reconstructs the underlying function and checks whether it is in Π′. Specifically, on input n, ǫ and
access to f : [n] → {0, 1}, we test whether f is a repetition of some function f ′ : [q(n)] → {0, 1} in
Π′

q(n). This is done by conducting the following two steps:

1. Repeat the following basic check O(1/ǫ) times: Uniformly select j ∈ [q(n)] and r ∈ {0, 1, ..., (n/q(n))−
1}, and check whether f(r · q(n) + j) = f(j).

2. Using q(n) queries, construct f ′[q(n)] → {0, 1} such that f ′(i)
def
= f(i), and check whether f ′ is

in Π′. Note that checking whether f ′ is in Π′ requires no queries, and that the corresponding
computational complexity is ignored here.

Note that this (non-adaptive) oracle machine has query complexity q(n) + O(1/ǫ), and it accepts any
f ∈ Π. On the other hand, if f is accepted with probability at least 2/3, then the reconstructed f ′ must
be in Π′ (otherwise the Step 2 would have rejected with probability 1) and f must be (ǫ/2)-close to the
repetition of this f ′ (otherwise each iteration of the Step 1 would have rejected with probability at least
ǫ). Thus, in this case f is ǫ-close to Π, which establishes the upper bound on the query complexity of
testing Π. The theorem follows.

Comment. Needless to say, Boolean functions over [n] may be viewed as n-bit long binary strings.
Thus, Theorem 2 means that there are properties of binary strings for which the query complexity
of testing is Θ(q). Given this perspective, it is natural to comment that such properties exist also
in P. (This comment is proved by starting with the hard-to-test property asserted in Theorem 7 (or
alternatively with the one in [LNS], which is in L).)

3 Testing Graph Properties in the Bounded-Degree Model

The bounded-degree model refers to a fixed (constant) degree bound, denoted d ≥ 2. An N -vertex
graph G = ([N], E) (of maximum degree d) is represented in this model by a function g : [N] × [d] →
{0, 1, ..., N} such that g(v, i) = u ∈ [N] if u is the ith neighbor of v and g(v, i) = 0 if v has less than i
neighbors.1 Distance between graphs is measured in terms of their aforementioned representation; that

1For simplicity, we assume here that the neighbors of v appear in arbitrary order in the sequence g(v, 1), ..., g(v,deg(v)),

where deg(v)
def
= |{i : g(v, i) 6= 0}|.

3

is, as the fraction of (the number of) different array entries (over dN). Graph properties are properties
that are invariant under renaming of the vertices (i.e., they are actually properties of the underlying
unlabeled graphs).

Recall that [BOT] proved that, in this model, testing 3-Colorability requires a linear number of
queries (even when allowing two-sided error). Building on this result, we show:

Theorem 3 In the bounded-degree graph model, for every q : N → N that is at most linear, there
exists a graph property Π that is testable (with one-sided error) in O(q) queries, but is not testable in
o(q) queries (even when allowing two-sided error). Furthermore, this property is the set of N -vertex
graphs of maximum degree d that are 3-colorable and consist of connected components of size at most
q(N).

Proof: We start with an arbitrary property Π′ for which testing is known to require a linear number of
queries (even when allowing two-sided error). We further assume that Π′ is downward monotone (i.e.,
if G′ ∈ Π′ then any subgraph of G′ is in Π′). Indeed, by [BOT], 3-Colorability is such a property. Given
Π′ =

⋃
n∈N Π′

n, we define Π =
⋃

N∈N ΠN such that each graph in ΠN consists of connected components
that are each in Π′ and have size at most q(N); that is, each connected component in any G ∈ ΠN is
in Π′

n for some n ≤ q(N) (i.e., n denotes this component’s size).
The query complexity lower bound of Π follows from the corresponding bound of Π′. Specifically,

approximate-membership of the n-vertex graph G′ in Π′
n can be tested by setting N such that q(N) = n

and emulating the testing of the N -vertex graph G obtained by taking t
def
= ⌊N/q(N)⌋ copies of G′ (and

additional N − t · q(N) isolated vertices). Clearly, if G′ ∈ Π′
n then G ∈ ΠN . On the other hand, if G′

is ǫ-far from Π′
n then G is t·n

N · ǫ-far from ΠN (because, by the downward monotonicity of Π′, it suffices
to consider the number of edges that must be omitted from G in order to obtain a graph in ΠN). As
in the proof of Theorem 2, we may assume that t · n ≥ N/2, and conclude that in the latter case G
is (ǫ/2)-far from ΠN . Thus, a o(q(N))-query oracle machine that distinguishes the case that G ∈ ΠN

from the case that G is (ǫ/2)-far from ΠN , yields a o(n)-query oracle machine that distinguishes the
case that G′ ∈ Π′

n from the case that G′ is ǫ-far from Π′
n. The desired Ω(q(N)) lower bound follows.

The query complexity upper bound of Π follows by using a tester that selects at random a start
vertex s in the input N -vertex graph and tests that s resides in a connected component that is in Π′

n

for some n ≤ Q(N). Specifically, on input N, ǫ and access to an N -vertex graph G, we repeat the
following test O(1/ǫ) times.

1. Uniformly select a start vertex s, and explore its connected component while stopping after
q(N) + 1 vertices are encountered.

2. Denoting the number of encountered vertices by n, reject of n > q(N). Similarly reject if the
encountered graph is not in Π′

n.

The query complexity of this oracle machine is O(d · q(N)/ǫ), which is O(q(N)) when both d and ǫ > 0
are constants. Clearly, this oracle machine accepts any G ∈ Π. In analyzing its performance on graphs
not in Π, we call a start vertex bad if it resides in a connected component that is either bigger than
q(N) or not in Π′. Note that if G has more than ǫN bad vertices, then the foregoing tester rejects with
probability at least 2/3. Otherwise (i.e., G has fewer than ǫN bad vertices), G is ǫ-close to Π, because
we can omit all edges incident to bad vertices and obtain a graph in Π. The theorem follows.

Comment. The proof of Theorem 3 is slightly different from the one used in the proof of Theorem 2:
In the proof of Theorem 3 each object in ΠN corresponds to a sequence of (possibly different) objects
in Π′

n, whereas in the the proof of Theorem 2 each object in ΠN corresponds to multiples copies of
a single object in Π′

n. While Theorem 2 can be proved using a construction that is analogous to one
used in the proof of Theorem 3, the current proof of Theorem 2 provides a better starting point for
the proof of the following Theorem 4.

4

4 Testing Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model, an N -vertex graph G = ([N], E) is represented by the Boolean function
g : [N]× [N]→ {0, 1} such that g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).
Distance between graphs is measured in terms of their aforementioned representation; that is, as the
fraction of (the number of) different matrix entries (over N2). In this model, we state complexities in
terms of the number of vertices (i.e., N) rather than in terms of the size of the representation (i.e.,
N2). Again, we focus on graph properties (i.e., properties of labeled graphs that are invariant under
renaming of the vertices).

Recall that [GGR] proved that, in this model, there exist graph properties for which testing requires
a quadratic (in the number of vertices) query complexity (even when allowing two-sided error). It was
further shown that such properties are in NP. Slightly modifying these properties, we show that they
can be placed in P; see Appendix A. Building on this result, we show:

Theorem 4 In the adjacency matrix model, for every q : N→ N that is at most quadratic, there exists
a graph property Π that is testable in q queries, but is not testable in o(q) queries.2 Furthermore, if
N 7→ q(N) is computable in poly(N)-time, then Π is in P and the tester is relatively efficient in the
sense that its running time is polynomial in the total length of its queries.

We stress that, unlike in the previous results, the positive part of Theorem 4 refers to a two-sided error
tester. This is fair enough, since the negative side also refers to two-sided error testers. Still, one may
seek a stronger separation in which the positive side is established via a one-sided error tester. Such a
separation is presented in Theorem 6 (except that the positive side is established via a tester that is
not relatively efficient).

Outline of the proof of Theorem 4. The basic idea of the proof is to implement the strategy
used in the proof of Theorem 2. The problem, of course, is that we need to obtain graph properties
(rather than properties of generic Boolean functions). Thus, the trivial “blow-up” (of Theorem 2)
that took place on the truth-table (or function) level has to be replaced by a blow-up on the vertex
level. Specifically, starting from a graph property Π′ that requires quadratic query complexity, we
consider the graph property Π consisting of N -vertex graphs that are obtained by a N/

√
q(N)-factor

blow-up of
√

q(N)-vertex graphs in Π′, where G is a t-factor blow-up of G′ if the vertex set of G can
be partitioned into (equal size) sets that correspond to the vertices of G′ such that the edges between
these sets represent the edges of G′; that is, if {i, j} is an edge in G′, then there is a complete bipartite
between the ith set and the jth set, and otherwise there are no edges between this pair of sets.3

Note that the notion of “graph blow-up” does not offer an easy identification of the underlying
partition; that is, given a graph G that is as a t-factor blow-up of some graph G′, it is not necessary
easy to determine a t-way partition of the vertex set of G such that the edges between these sets
represent the edges of G′. Things may become even harder if G is merely close to a t-factor blow-up of
some graph G′. We resolve all these difficulties by augmenting the graphs of the starting property Π′.

The proof of Theorem 4 is organized accordingly: In Section 4.1, we construct Π based on Π′ by
first augmenting the graphs and then applying graph blow-up. In Section 4.2 we lower-bound the query
complexity of Π based on the query complexity of Π′, while coping with the non-trivial question of how
does the blow-up operation affect distances between graphs. In Section 4.3 we upper-bound the query
complexity of Π, while using the aforementioned augmentations in order to obtain a tight result (rather
than an upper bound that is off by a polylogarithmic factor).

2Both the upper and lower bounds refer to two-sided error testers.
3In particular, there are no edges inside any set.

5

4.1 The blow-up property Π

Our starting point is any graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, we assume that Π′ is in P. Such a graph property is presented in Theorem 7
(see Appendix A, which builds on [GGR]).

The notion of graphs that have “vastly different vertex neighborhoods” is central to our analysis.
Specifically, for a real number α > 0, we say that a graph G = (V,E) is α-dispersed if the neighbor sets
of any two vertices differ on at least α · |V | elements (i.e., for every u 6= v ∈ V , the symmetric difference
between the sets {w : {u,w} ∈ E} and {w : {v,w} ∈ E} has size at least α · |V |). We say that a set of
graphs is dispersed if there exists a constant α > 0 such that every graph in the set is α-dispersed.4

The augmentation. We first augment the graphs in Π′ such that the vertices in the resulting graphs
are dispersed, while the augmentation amount to adding a linear number of vertices. The fact that
these resulting graphs are dispersed will be useful for establishing both the lower and upper bounds.
The augmentation is performed in two steps. First, setting n′ = 2⌈log2(2n+1)⌉ ∈ [2n+1, 4n], we augment
each graph G′ = ([n], E′) by n′−n isolated vertices, yielding an n′-vertex graph H ′ = ([n′], E′) in which
every vertex has degree at most n − 1. Next, we augment each resulting graph H ′ by a clique of n′

vertices and connect the vertices of H ′ and the clique vertices by a bipartite graph that corresponds
to a Hadamard matrix; that is, the ith vertex of H ′ is connected to the jth vertex of the clique if and
only if the inner product modulo 2 of i − 1 and j − 1 (in (log2 n′)-bit long binary notation) equals 1.
We denote the resulting set of (unlabeled) graphs by Π′′ (and sometimes refer to Π′′ as the set of all
labeled graphs obtained from these unlabeled graphs).

We first note that Π′′ is indeed dispersed (i.e., the resulting 2n′-vertex graphs have vertex neighbor-
hoods that differ on at least n ≥ n′/4 vertices).5 Next note that testing Π′′ requires a quadratic number
of queries, because testing Π′ can be reduced to testing Π′′ (i.e., ǫ-testing membership in Π′

n reduces to
ǫ′-testing membership in Π′′

2n′ , where n′ ≤ 4n and ǫ′ = ǫ/64). Finally, note that Π′′ is also in P, because
it is easy to distinguish the original graph from the vertices added to it, since the clique vertices have
degree at least n′ − 1 whereas the vertices of G′ have degree at most (n − 1) + (n′/2) < n′ − 1 (and
isolated vertices of H ′ have neighbors only in the clique).6

Applying graph blow-up. Next, we apply an (adequate factor) graph blow-up to the augmented set
Π′′. Actually, for simplicity of notation we assume, without loss of generality, that Π′ =

⋃
n∈N Π′

n itself
is dispersed, and apply graph blow-up to Π′ itself (rather than to Π′′). Given the desired complexity
bound q : N→ N, we first set n =

√
q(N), and next apply to each graph in Π′

n an N/n-factor blow-up,
thus obtaining a set of N -vertex graphs denoted ΠN . (Indeed, we assume for simplicity that both
n =

√
q(N) and N/n are integers.) Recall G is a t-factor blow-up of G′ if the vertex set of G can be

partitioned into t (equal size) sets, called clouds, such that the edges between these clouds represent
the edges of G′; that is, if {i, j} is an edge in G′, then there is complete bipartite between the ith cloud
and the jth cloud, and otherwise there are no edges between this pair of clouds). This yields a graph
property Π =

⋃
N∈N ΠN .

Let us first note that Π is in P. This fact follows from the hypothesis that Π′ is dispersed: Specifi-
cally, given any graph N -vertex graph G, we can cluster its vertices according to their neighborhood,

4Our notion of dispersibility has nothing to do with the notion of dispersers, which in turn is a weakening of the notion
of (randomness) extractors.

5Consider the graph obtained by augmenting the n-vertex graph G′, and let H ′ be the intermediate n′-vertex graph
derived from G′. Then, vertices in H ′ neighbor (at most) n′/2 clique vertices, whereas vertices in the clique neighbor all
other n′ − 1 clique vertices. Thus, these types of vertices differ on at least (n′/2) − 1 > n − 1 neighbors. As for any two
vertices in H ′, their neighborhood in the clique disagrees on n′/2 > n vertices. An analogous claim holds with respect to
any two vertices of the clique.

6Once this is done, we can verify that the original graph is in Π (using Π ∈ P), and that the additional edges correspond
to a Hadamard matrix.

6

and check whether the number of clusters equals n =
√

q(N). (Note that if G ∈ ΠN , then we obtain
exactly n (equal sized) clusters, which correspond to the n clouds that are formed in the N/n-factor
blow-up that yields G.) Next, we check that each cluster has size N/n and that the edges between
these clusters correspond to the blow-up of some n-vertex G′. Finally, we check whether G′ is in Π′

n

(relying on the fact that Π′ ∈ P). Proving that the query complexity of testing Π indeed equals Θ(q)
is undertaken in the next two sections.

4.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). The basic idea is reducing
testing Π′ to testing Π; that is, given a graph G′ that we need to test for membership in Π′

n, we test its
N/n-factor blow-up for membership in ΠN , where N is chosen such that n =

√
q(N). This approach

relies on the assumption that the N/n-factor blow-up of any n-vertex graph that is far from Π′
n results

in a graph that is far from ΠN . (Needless to say, the N/n-factor blow-up of any graph in Π′
n results in

a graph that is in ΠN .)
As shown by Arie Matsliah (see Appendix B), the aforementioned assumption does not hold in the

strict sense of the word (i.e., it is not true that the blow-up of any graph that is ǫ-far from Π′ results
in a graph that is ǫ-far from Π). However, for our purposes it suffices to prove a relaxed version of the
aforementioned assumption that only asserts that for any ǫ′ > 0 there exists an ǫ > 0 such that the
blow-up of any graph that is ǫ′-far from Π′ results in a graph that is ǫ-far from Π. Below we prove this
assertion for ǫ = Ω(ǫ′) and rely on the fact that Π′ is dispersed. In Appendix B, we present a more
complicated proof that holds for arbitrary Π′ (which need not be dispersed), but with ǫ = Ω(ǫ′)2.

Claim 4.1 There exists a universal constant c > 0 such that the following holds for every n, ǫ′, α
and (unlabeled) n-vertex graphs G′

1, G
′
2. If G′

1 is α-dispersed and ǫ′-far from G′
2, then for any t the

(unlabeled) t-factor blow-up of G′
1 is cα · ǫ′-far from the (unlabeled) t-factor blow-up of G′

2.

Using Claim 4.1 we infer that if G′ is ǫ′-far from Π′ then its blow-up is Ω(ǫ′)-far from Π. This inference
relies on the fact that Π′ is dispersed (and on Claim 4.1 when applied to G′

2 = G′ and every G′
1 ∈ Π′).

Proof: Let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G′
1 (resp., G′

2), and consider a
bijection π of the vertices of G1 = ([t · n], E1) to the vertices of G2 = ([t · n], E2) that minimizes the
size of the set (of violations)

{(u, v) ∈ [t · n]2 : {u, v} ∈ E1 iff {π(u), π(v)} /∈ E2}. (1)

(Note that Eq. (1) refers to ordered pairs, whereas the distance between graphs refers to unordered
pairs.) Clearly, if π were to map to each cloud of G2 only vertices that belong to a single cloud of G1

(equiv., for every u, v that belong to the same cloud of G1 it holds that π(u), π(v) belong to the same
cloud of G2), then G2 would be ǫ′-far from G1 (since the fraction of violations under such a mapping
equals the fraction of violations in the corresponding mapping of G′

1 to G′
2). The problem, however,

is that it is not clear that π behaves in such a nice manner (and so violations under π do not directly
translate to violations in mappings of G′

1 to G′
2). Still, we show that things cannot be extremely bad.

Specifically, we call a cloud of G2 good if at least (t/2) + 1 of its vertices are mapped to it (by π) from
a single cloud of G1.

Letting 2ǫ denote the fraction of violations in Eq. (1) (i.e., the size of this set divided by (tn)2), we
first show that at least (1−(6ǫ/α)) ·n of the clouds of G2 are good. Assume, towards the contradiction,
that G2 contains more that (6ǫ/α) · n clouds that are not good. Considering any such a (non-good)
cloud, we observe that it must contain at least t/3 disjoint pairs of vertices that originate in different
clouds of G1 (i.e., for each such pair (v, v′) it holds that π−1(v) and π−1(v′) belong to different clouds

7

of G1).
7 Recall that the edges in G2 respect the cloud structure of G2 (which in turn respects the edge

relation of G′
2). But vertices that originate in different clouds of G1 differ on at least α · tn edges in

G1. Thus, every pair (v, v′) (in this cloud) such that π−1(v) and π−1(v′) belong to different clouds of
G1 contributes at least α · tn violations to Eq. (1).8 It follows that the set in Eq. (1) has size greater
than

6ǫn

α
· t

3
· αtn = 2ǫ · (tn)2

in contradiction to our hypothesis regarding π. Having established that at least (1− (6ǫ/α)) · n of the
clouds of G2 are good and recalling that a good cloud of G2 contains a strict majority of vertices that
originates from a single cloud of G1, we consider the following bijection π′ of the vertices of G1 to the
vertices of G2: For each good cloud g of G2 that contains a strict majority of vertices from cloud i
of G1, we map all vertices of the ith cloud of G1 to cloud g of G2, and map all other vertices of G1

arbitrarily. The number of violations under π′ is upper-bounded by four times the number of violations
occuring under π between good clouds of G2 (i.e., at most 4 · 2ǫ · (tn)2) plus at most (6ǫ/α) · tn · tn
violations created with the remaining (6ǫ/α) ·n clouds. This holds, in particular, for a bijection π′ that
maps to each remaining cloud of G2 vertices originating in a single cloud of G1. This π′, which maps
complete clouds of G1 to clouds of G2, yields a mapping of G′

1 to G′
2 that has at most (8ǫ+(6ǫ/α)) ·n2

violations. Recalling that G′
1 is ǫ′-far from G′

2, we conclude that 8ǫ + (6ǫ/α) ≥ 2ǫ′, and the claim
follows (with c = 1/7). 2

Recall that Claim 4.1 implies that if G′ is ǫ′-far from Π′ then its blow-up is Ω(ǫ′)-far from Π. Using
this fact, we conclude that ǫ′-testing of Π′ reduces to Ω(ǫ′)-testing of Π. Thus, a quadratic lower
bound on the query complexity of ǫ′-testing Π′

n yields an Ω(n2) lower bound on the query complexity
of Ω(ǫ′)-testing Π′

N , where n =
√

q(N). Thus, we obtain an Ω(q) lower bound on the query complexity
of testing Π, for some constant value of the proximity parameter.

4.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is at most q (and that this can be met
by a relatively efficient tester). We start by describing this (alleged) tester.

Algorithm 4.2 On input N and proximity parameter ǫ, and when given oracle access to a graph
G = ([N], E), the algorithm proceeds as follows:

1. Setting ǫ′
def
= ǫ/3 and computing n←

√
q(N).

2. Finding n representative vertices; that is, vertices that reside in different alleged clouds, which

corresponds to the n vertices of the original graph. This is done by first selecting s
def
= O(log n)

random vertices, hereafter called the signature vertices, which will be used as a basis for clustering

vertices (according to their neighbors in the set of signature vertices). Next, we select s′
def
=

O(ǫ−2 · n log n) random vertices, probe all edges between these new vertices and the signature
vertices, and cluster these s′ vertices accordingly (i.e., two vertices are placed in the same cluster

7This pairing is obtained by first clustering the vertices of the cloud of G2 according to their origin in G1. By the
hypothesis, each cluster has size at most t/2. Next, observe that taking the union of some of these clusters yields a set
containing between t/3 and 2t/3 vertices. Finally, we pair vertices of this set with the remaining vertices. (A better
bound of ⌊t/2⌋ can be obtained by using the fact that a t-vertex graph of minimum degree t/2 contains a Hamiltonian
cycle.)

8For each such pair (v, v′), there exists at least α · tn vertices u such that exactly one of the (unordered) pairs
{π−1(u), π−1(v)} and {π−1(u), π−1(v′)} is an edge in G1. Recall that for every u, the pair {u, v} is an edge in G2 if and
only if {u, v} is an edge in G2, it follows that for at least α · tn vertices u either (π−1(u), π−1(v)) or (π−1(u), π−1(v′)) is
a violation.

8

if and only if they neighbor the same signature vertices). If the number of clusters is different
from n, then we reject. Furthermore, if the number of vertices that reside in each cluster is not
(1 ± ǫ′) · s′/n, then we also reject. Otherwise, we select (arbitrarily) a vertex from each cluster,
and proceed to the next step.

3. Note that the signature vertices (selected in Step 2), induce a clustering of all the vertices of G.
Referring to this clustering, we check that the edges between the clusters are consistent with the
edges between the representatives. Specifically, we select uniformly O(1/ǫ) vertex pairs, cluster the
vertices in each pair according to the signature vertices, and check that their edge relation agrees
with that of their corresponding representatives. That is, for each pair (u, v), we first find the
cluster to which each vertex belongs (by making s adequate queries per each vertex), determine
the corresponding representatives, denoted (ru, rv), and check (by two queries) whether {u, v} ∈ E
iff {ru, rv} ∈ E. (Needless to say, if one of the newly selected vertices does not reside in any of
the n existing clusters then we reject.)

4. Finally, using
(n
2

)
< q(N)/2 queries, we determine the subgraph of G induced by the n represen-

tatives. We accept if and only if this induced subgraph is in Π′.

Note that, for constant value of ǫ, the query complexity is dominated by Step 4, and is thus upper-
bounded by q(N). Furthermore, in this case, the above algorithm can be implemented in time poly(n ·
log N) = poly(q(N)·log N). We comment that the Algorithm 4.2 is adaptive, and that a straightforward
non-adaptive implementation has query complexity O(n log n)2 = Õ(q(N)). (In fact, a (non-adaptive)
tester of query complexity Õ(q(N)) can be obtained by a simpler algorithm that just selects a random
set of s′ vertices and accepts if and only if the induced subgraph is ǫ′-close to being a (s′/n-factor)
blow-up of some graph in Π′

n.)9

We next verify that any graph in ΠN is accepted with very high probability. Suppose that G ∈ ΠN

is a N/n-factor blow-up of G′ ∈ Π′
n. Relying on the fact that Π′ is dispersed we note that, for every pair

of vertices in G′ ∈ Π′
n, with constant probability a random vertex has a different edge relation to the

members of this pair. Therefore, with very high (constant) probability, a random set of s = O(log n)
vertices yields n different neighborhood patterns for the n vertices of G′. It follows that, with the
same high probability, the s signature vertices selected in Step 2 induced n (equal sized) clusters on
the vertices of G, where each cluster contains the cloud of N/n vertices (of G) that replaces a single
vertex of G′. Thus, with very high (constant) probability, the sample of s′ = O(ǫ−2 ·n log n) additional
vertices selected in Step 2 hits each of these clusters (equiv., clouds) and furthermore has (1± ǫ′) · s′/n
hits in each cluster. We conclude that, with very high (constant) probability, Algorithm 4.2 does not
reject G in Step 2. Finally, assuming that Step 2 does not reject (and we did obtain representatives
from each cloud of G), Algorithm 4.2 never rejects G ∈ Π in Steps 3 and 4.

We now turn to the case that G is ǫ-far from ΠN , where we need to show that G is rejected with
high constant probability (say, with probability 2/3). We will actually prove that if G is accepted with
sufficiently high constant probability (say, with probability 1/3), then it is ǫ-close to ΠN . We call a set
of s vertices good if (when used as the set of signature vertices) it induces a clustering of the vertices of
G such that n of these clusters are each of size (1± 2ǫ′) ·N/n. Note that good s-vertex sets must exist,
because otherwise Algorithm 4.2 rejects in Step 2 with probability at least 1− exp(Ω(ǫ2/n) · s′) > 2/3.
Fixing any good s-vertex set S, we call a sequence of n vertices R = (r1, ..., rn) well-representing if
(1) the subgraph of G induced by R is in Π′

n, and (2) at most ǫ′ fraction of the vertex pairs of G
have edge relation that is inconsistent with the corresponding vertices in R (i.e., at most ǫ′ fraction of
the vertex pairs in G violate the condition by which {u, v} ∈ E if and only if {ri, rj} ∈ E, where u
resides in the ith cluster (w.r.t S) and v resides in the jth cluster). Now, note that there must exist a

9Specifically, we can cluster these s′ vertices by using them also in the role of the signature vertices. Furthermore,
these vertices (or part of them) can also be designated for use in Step 3.

9

good s-vertex set S that has a well-representing n-vertex sequence R = (r1, ..., rn), because otherwise
Algorithm 4.2 rejects with probability at least 2/3 (i.e., if a ρ fraction of the s-vertex sets are good
(but have no corresponding n-sequence that is well-representing), then Step 2 rejects with probability
at least (1− ρ) · 0.9 and either Step 3 or Step 4 reject with probability ρ ·min((1 − (1− ǫ′)Ω(1/ǫ)), 1)).

Fixing any good s-vertex set S and any corresponding R = (r1, ..., rn) that is well-representing, we
consider the clustering induced by S, denoted (C1,, Cn,X), where X denotes the set of (untypical)
vertices that do not belong to the n first clusters. Recall that, for every i ∈ [n], it holds that ri ∈ Ci

and |Ci| = (1 ± 2ǫ′) · N/n. Furthermore, denoting by i(v) the index of the cluster to which vertex
v ∈ [N] \X belongs, it holds that the number of pairs {u, v} (from [N] \X) that violate the condition
{u, v} ∈ E iff {ri(u), ri(v)} ∈ E is at most ǫ′ · (N

2

)
. Now, observe that by modifying at most ǫ′ · (N

2

)
edges

in G we can eliminate all the aforementioned violations, which means that we obtain n sets with edge
relations that fit some graph in Π′

n (indeed the graph obtained as the subgraph of G induced by R,
which was not modified). Recall that these sets are each of size (1± 2ǫ′) ·N/n, and so we may need to
move 2ǫ′N vertices in order to obtain sets of size N/n. This movement may create up to 2ǫ′N · (N − 1)
new violations, which can be eliminated by modifying at most 2ǫ′ · (N

2

)
additional edges in G. Using

ǫ = 3ǫ′, we conclude that G is ǫ-close to ΠN .

5 Revisiting the Adjacency Matrix Model: Monotone Properties

In continuation to Section 4, which provides a hierarchy theorem for generic graph properties (in the
adjacency matrix model), we present here a hierarchy theorem for monotone graph properties (in the
same model). We say that a graph property Π is monotone if adding edges to any graph that resides
in Π yields a graph that also resides in Π. (That is, we actually refer to upward monotonicity, and an
identical result for downward monotonicity follows by considering the complement graphs.)10

Theorem 5 In the adjacency matrix model, for every q : N→ N that is at most quadratic, there exists
a monotone graph property Π that is testable in O(q) queries, but is not testable in o(q) queries.

Note that Theorem 5 refers to two-sided error testing (just like Theorem 4). Theorems 4 and 5 are
incomparable: the former provides graph properties that are in P (and the upper bound is established
via relatively efficient testers), whereas the latter provides graph properties that are monotone.

Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one may want to
apply a monotone closure to the graph property Π (presented in the proof of Theorem 4).11 Under
suitable tuning of parameters, this allows to retain the proof of the lower bound, but the problem is
that the tester presented for the upper bound fails. The point is that this tester relies on the structure
of graphs obtained via blow-up, whereas this structure is not maintained by the monotone closure.
One possible solution, which assumes that all graphs in Π have approximately the same number of
edges, is to augment the monotone closure of Π with all graphs that have significantly more edges,
where the corresponding threshold (on the number of edges) is denoted T . Intuitively, this way, we
can afford accepting any graph that has more than T edges, and handle graphs with fewer edges by
relying on the fact that in this case the blow-up structure is essentially maintained (because only few
edges are added). Unfortunately, implementing this idea is not straightforward: On one hand, we
should set the threshold high enough so that the lower bound proof still holds, whereas on the other
hand such a setting allows to destroy the local structure of a constant fraction of the graph’s vertices.
The solution to this problem is to use an underlying property Π′ that supports “error correction” (i.e.,
allows recovering the original structure even when a constant fraction of it is destroyed as above).

10We stress that these notions of monotonicity are different from the notion of monotonicity considered in [AS], where
a graph property Π is called monotone if any subgraph of a graph in Π is also in Π.

11Indeed, this is the approach used in the proof of [GT, Thm. 1].

10

5.1 The monotone property Π

Our starting point is a graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, we assume that this property satisfies the additional conditions stated in the
following claim.

Claim 5.1 There exists a graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, for every constant δ > 0 and all sufficiently large n, it holds that every graph
G′ = ([n], E′) in Π′

n satisfies the following two local conditions:

1. Every vertex has degree (0.5 ± δ) · n; that is, for every v ∈ [n] it holds that {u : {v, u} ∈ E′} has
size at least (0.5 − δ) · n and at most (0.5 + δ) · n.

2. Every two different vertices neighbor at least (0.75− δ) · n vertices; that is, for every v 6= w ∈ [n]
it holds that {u : {v, u} ∈ E′ ∨ {w, u} ∈ E′} has size at least (0.75 − δ) · n.

Moreover, pairs of graphs in Π′
n are related as follows:

3. Every two non-isomorphic graphs in Π′
n differ on at least 0.4 ·(n

2

)
vertex pairs; that is, if G′

1, G
′
2 ∈

Π′
n are not isomorphic, then G′

1 is 0.4-far from G′
2.

4. Graphs in Π′
n that are isomorphic via a mapping that fixes less than 90% of the vertices differ on

at least 0.01 · (n
2

)
vertex pairs; that is, if G′

1, G
′
2 ∈ Π′

n are isomorphic via π such that |{i ∈ [n] :
π(i) 6= i}| > 0.1n, then G′

1 is 0.01-far from G′
2.

Note that the graphs in Π′ are 2 · (0.25− 2δ)-dispersed, because |Γ(u) \Γ(v)| = |Γ(u)∪Γ(v)| − |Γ(v)| ≥
(0.75 − δ)N − (0.5 + δ)N = (0.25 − 2δ)N .

Proof: The graph property presented in the proof of [GGR, Prop. 10.2.3.1] can be easily modified to

satisfy the foregoing conditions. Recall that this property is obtained by selecting K
def
= exp(Θ(n2))

random graphs and considering the n! isomorphic copies of each of these graphs. Note that each of
the “basic” K graphs satisfies the two local conditions with probability at least 1− n2 · exp(−Ω(δ2n)).
Omitting the few exceptional graphs (which violate either of these two conditions), we obtain a property
that satisfies both local conditions and maintains the query-complexity lower bound.12

Regarding the distance between graphs in Π′
n, we distinguish two cases. In the case that G′

2, G
′
2 ∈ Π′

n

are not isomorphic, they arise from two independently selected graphs, and so with probability at least
1 − exp(−Ω(n2)) > 1 − o(|Π′

n|−2) they are 0.4-far from one another. Applying the union bound, this
establishes Condition 3. Turning to any pair of graphs that are isomorphic (and arise from isomorphic
copies of the same “basic” graph), we consider the sub-case in which the isomorphism π (between G′

1

and G′
2) satisfies |{i ∈ [n] : π(i) 6= i}| > 0.1n (i.e., as in Condition 4). Fixing any such permutation

π, we consider disjoint sets I ⊂ [n] and π(I) = {π(i) : i ∈ I} such that |I| ≥ 0.05n. For a random
n-vertex graph G′ = ([n], E′), with probability at least 1 − exp(−Ω(n2)) > 1 − o(|Π′

n|−1), the sets
{(u, v) ∈ I × ([n] \ (I ∪ π(I)) : {u, v} ∈ E′} and {(u, v) ∈ I × ([n] \ (I ∪ π(I)) : {π(u), π(v)} ∈ E′} differ
on at least 0.01n2 entries. The claim follows. 2

In the following description, we set ∆ > 0 to be a sufficiently small constant (e.g., smaller than
0.00001) such that the lower-bound established in Theorem 4 holds for proximity parameter 100∆ (i.e.,

∆
def
= ǫ4/100, where ǫ4 is a value of the proximity parameter for which Theorem 4 holds). Needless

to say, Π′ satisfies the foregoing three conditions when setting δ = ∆. Given the desired complexity
bound q : N → N, we set n =

√
q(N) and define ΠN such that G = ([N], E) ∈ ΠN if and only if (at

least) one of the following two conditions holds:

12Indeed, the query-complexity lower bound is not harmed, because it is established by considering the uniform distri-
bution over Π′

n (versus the uniform distribution over all n-vertex graphs).

11

(C1) The graph G has at least (0.5 + 2∆) · (N
2

)
edges.

(C2) Each vertex in G has degree at least (0.5 −∆) ·N and G is an “approximate blow-up” of some
graph in Πn; that is, there exists a partition of the vertex set of G (i.e., [N]) into n equal-sized
sets, denoted (V1, ..., Vn), and a graph G′ = ([n], E′) ∈ Π′

n such that for every {i, j} ∈ E′ and
every u ∈ Vi and v ∈ Vj either {u, v} ∈ E or the degree of either u or of v in G exceeds 0.52 ·N .

Note that Condition (C2) mandates that each edge {i, j} ∈ E′ is replaced by a bipartite graph over
Vi × Vj that contains all edges with the possible exception of edges that are incident at vertices of
degree exceeding 0.52 · N . We stress that Condition (C2) does not require that for {i, j} 6∈ E′ the
bipartite graph over Vi×Vj is empty, but in the case that Condition (C1) does not hold these bipartite
graphs will contain few edges (because the edges mandated by Condition (C2) leave room for few
superfluous edges, when taking into account the upper bound on the number of edges that is implied
by the violation of Condition (C1)).

Note that the property Π =
⋃

N∈N ΠN is monotone. Also observe that ΠN contains the N/n-factor
blow-up of any graph in Π′

n, because any such blow-up satisfies Condition (C2). (Indeed, such a blow-up
does not satisfy Condition (C1), since each vertex in the blow-up has degree at most (0.5 + ∆) ·N .)

On the constant ∆. Recall that ∆ was fixed above to be a small positive constant that is related
to the constant hidden in Theorem 4 (i.e., the lower-bound in this theorem should hold when the
proximity parameter is set to any value that does not exceed 100∆). In addition, we will assume that
∆ is smaller than various specific constants (e.g., in the proof of Claim 5.2 we use ∆ < 0.0001). In
general, setting ∆ = 0.00001 satisfies all these conditions. We also note that we will assume that in
our positive result (i.e., the analysis of the optimal tester) the proximity parameter ǫ is significantly
smaller than ∆ (e.g., ǫ < ∆/1000).

5.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). We shall do this by building
on [GGR, Prop. 10.2.3.1] and Section 4.2. Specifically, combining the approach of Section 4.2 with the
analysis of [GGR, Prop. 10.2.3.1], we consider the following two distributions: (D1) the N/n-factor
blow-up of random n-vertex graphs, and (D2) the N/n-factor blow-up of uniformly selected graph in
Π′

n. Combining [GGR, Prop. 10.2.3.1] and Claim 4.1, it holds that, with high probability, a graph
selected according to distribution (D1) is far (i.e., 100∆-far) from the support of distribution (D2),
whereas distinguishing the two distributions requires Ω(q) queries.

Recalling that ΠN contains the support of distribution (D2), it now suffices to show that, with high
probability, a graph selected according to distribution (D1) is far from ΠN . This claim suffices because
it yields a distribution on ΠN (indeed (D2) itself) and a distribution that is typically far from ΠN such
that distinguishing these two distributions requires Ω(q) queries.

The claim that distribution (D1) is typically far from ΠN is proved by first observing that, with
high probability, a graph selected in distribution (D1) has maximum degree smaller than (0.5+∆) ·N .
The proof is concluded by showing that if such a graph (i.e., of the foregoing degree bound) is 100∆-far
from the support of distribution (D2) then it is ∆-far from ΠN .

Claim 5.2 Suppose that G has maximum degree smaller than (0.5 + ∆) ·N and that G is ∆-close to
ΠN . Then G is 64∆-close to the support of distribution (D2).

Proof: Let C (standing for correct) be a graph in ΠN that is closest to G. Then, C has less than
(0.5+2∆)·(N

2

)
edges, and thus C must satisfy Condition (C2) in the definition of ΠN . Let G′ = ([n], E′)

and (V1, ..., Vn) be as required in Condition (C2), and let H denote the set of vertices that have degree
at least 0.52 ·N in C.

12

Consider the distance between G and a blow-up of G′, denoted B (standing for blow-up). Each
vertex in H contributes at most N units to this distance, but its contribution to the distance between
G and C is at least 0.52 · N − (0.5 + ∆) · N > N/60. Thus, the total contribution of vertices in H
(to the distance between G and B) is less than 60∆N2. We stress that this count includes pairs of
vertices that contain at least one element in H, and thus it remains to upper-bound the contribution
of pairs that reside entirely within [N] \H. We upper-bound the contribution of vertices in [N] \H
to the distance between G and B by the sum of (1) their contribution to the distance between G and
C (which is obviously upper-bounded by ∆N2), and (2) their contribution to the distance between C
and B.

In analyzing (2), we note that a pair (u, v) ∈ ([N] \H)2 that is connected in B must be connected
in C, and so (2) counts the number of pairs (u, v) ∈ ([N] \H)2 that are connected in C but not in B.
Furthermore, the value of (2) equals the difference between the number of edges of the subgraph of B
induced by [N] \H and the subgraph of C induced by [N] \H. Recall that the average vertex degree
of vertices in the graph C is at most (0.5 + ∆) ·N + ∆N = (0.5 + 2∆) ·N , whereas in B vertices have
degree at least (0.5−∆) ·N . Note that the number of edges with at least one endpoint in H is larger
in C than it is in B (by an additive term of (0.02 − ∆ − 60∆)|H| · N > 0.001|H| · N , which we do
not use).13 Thus, the difference in the average degree between the subgraphs (of C and B) induced by
[N] \H is at most (0.5 + 2∆) ·N − (0.5−∆) ·N = 3∆N , and so the value of (2) is at most 3∆N2. It
follows that the total contribution (to both (1) and (2)) of vertices in [N]\H is at most 4∆N2. Hence,
G is 64∆-close to B, and the claim follows (because B is in the support of (D2)). 2

5.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is O(q). Before describing the (alleged)
tester, we analyze the structure of graphs that satisfy Condition (C2) but do not satisfy Condition (C1).
Denoting this set by Ξ =

⋃
N∈N ΞN , recall that ΞN contains N -vertex graphs that are in ΠN and have

average degree below (0.5 + 2∆) ·N . Since these graphs have minimum degree at least (0.5 −∆) ·N ,
they may contain relatively few vertices of degree exceeding 0.52 ·N (i.e., the number of such vertices
is at most O(∆N)). We call such vertices (i.e., of degree exceeding 0.52 ·N) heavy. As we show next,
the fact that almost all vertices in G ∈ ΞN are not heavy implies that the edges among these non-
heavy vertices (in any G) essentially determine a unique graph G′ ∈ Π′

n such that G is an approximate
blow-up of G′. Moreover, this determines a unique partition of the non-heavy vertices of G to clouds
that correspond to the vertices of G′. That is:

Claim 5.3 Let G = ([N], E) ∈ ΞN and H denote the set of heavy vertices of G (i.e., vertices having
degree that exceeds 0.52 · N). Then, up to a reordering of the indices in [n], there exists a unique
partition of [N] \H into n sets, denoted V ′

1 , ..., V ′
n, and a unique graph G′′ = ({i ∈ [n] : V ′

i 6= ∅}, E′′)
such that the following conditions hold:

1. G′′ is an induced subgraph of some graph in Π′
n (i.e., there exists G′ = ([n], E′) ∈ Π′

n such that
{i, j} ∈ E′′ if and only if V ′

i 6= ∅, V ′
j 6= ∅ and {i, j} ∈ E′).

2. For every {i, j} ∈ E′′ and every u ∈ V ′
i and v ∈ V ′

j it holds that {u, v} ∈ E.

3. Vertices in the same V ′
i differ on at most 0.05N of their neighborhood, whereas vertices that reside

in different V ′
i differ on at least 0.45N neighbors.

4. Each V ′
i has size at most N/n, and at most 0.01n sets are empty.

13To justify this assertion we note that in C each vertex of H has degree at least 0.52 ·N , whereas in B each vertex has
degree at most (0.5 + ∆) · N . Thus, the difference in the sum of degrees of vertices in H is at least |H | · (0.02 − ∆) · N ,
but edges with both sides in H are counted twice (and thus a corrective term of at most |H |2 < 60∆|H | ·N is due, where
|H | < 60∆N was (implicitly) established above).

13

Proof: The mere existence of a partition (V ′
1 , ..., V ′

n) and of a graph G′′ that satisfies the condition
follows from the fact that G satisfies Condition (C2). Specifically, let (V1, ..., Vn) and G′ be as guaranteed

by Condition (C2), and let V ′
i

def
= Vi \H for every i ∈ [n]. Then, (V ′

1 , ..., V ′
n) and the subgraph of G′

that is induced by {i ∈ [n] : V ′
i 6= ∅} satisfy all the foregoing conditions. In particular, vertices in

the same Vi \ H may differ on at most 2 · (0.52N − (0.5 − ∆)N + |H|) < 0.05N of their neighbors,
whereas vertices that reside in different Vi \H’s must differ on at least (0.5− 4∆) ·N − 2 · |H| > 0.45N
neighbors. Also, noting that each V ′

i has size at most N/n and recalling that |H| < 150∆N (since
|H| · 0.52N + (N − |H|) · (0.5−∆)N < (0.5 + 2∆)N2), we conclude that at most 150∆ · n < 0.01n sets
V ′

i are empty.
Having established the existence of suitable objects, we now turn to establish their uniqueness;

that is, we shall establish the uniqueness of both the partition of [N] \H and the graph G′′, up to a
reordering of the index set [n].

Referring to the foregoing partition (V1, ..., Vn), we claim that two vertices u, v ∈ [N] \ H can be
placed in the same set of an n-wise partition of [N] \H if and only if they reside in the same set Vi.
This follows by the “clustering” condition asserted in Item 3. Thus, the partition of [N]\H is uniquely
determined, up to a reordering of the index set [n]. Let us denote this partition by (V ′

1 , ..., V ′
n); indeed,

the sequence (V ′
1 , ..., V ′

n) is a permutation of the sequence (V1 \H, ..., Vn \H).
Recall that, by Item 2, any unconnected pair of vertices (u, v) ∈ V ′

i × V ′
j mandates that the pair

(i, j) cannot be connected in G′. Since there are at most (0.5+2∆) ·(N
2

)
edges in G and at most |H| ·N

pairs that intersect H, we conclude that the number of unconnected pairs in
⋃

i6=j V ′
i × V ′

j is at least
(0.5− 2∆) ·N2 − |H| ·N ≥ (0.5− 152∆) ·N2. This forces at least (0.5− 152∆) · n2 unconnected pairs
in G′. Recalling that G′ ∈ Π′

n has average degree at most (0.5 + ∆) · n, this leaves us with slackness of
at most 153∆ · n2 pairs. Recalling that non-isomorphic graphs in Π′

n are 0.4-far apart, this determines
G′ up to isomorphism. Actually, referring to the last condition in Claim 5.1, we conclude that G′ is
determined up to an isomorphism that fixes more than 90% of the vertices. We shall show next that
this uniquely determines G′′.

Suppose towards the contradiction that there exist two different graphs G′′
1 and G′′

2 that satisfy the
conditions of the claim, and let i be a vertex in G′′

1 that is mapped by the isomorphism to j 6= i in
G′′

2 . As we show next, this situation induces conflicting requirements on the neighbors of vertices in
V ′

i and V ′
j ; that is, it requires too many shared neighbors (when compared to the shared neighbors

of i and j in G′). Specifically, by applying Item 2 to G′′
1 , the neighbors of each vertex in V ′

i should
contain all vertices in V ′

k such that k is connected to i in G′′
1 . Similarly, by applying Item 2 to G′′

2 , the
neighbors of each vertex in V ′

j should contain all vertices in V ′
k such that k is connected to j in G′′

2 .
However, since the isomorphism fixes more than 90% of the vertices, it must be the case that for 90%
of k ∈ [n] it holds that i is connected to k in G′′

1 iff j is connected to k in G′′
2 . It follows that each

pair of vertices in both V ′
i and V ′

j must share more than (0.5 − O(∆)) ·N − 0.1N > 0.3N neighbors,
which contradicts the postulate (regarding G′ which implies) that each such pair can share at most
(0.25 + 3∆) ·N + |H| < 0.3N neighbors. The claim follows. 2

Having established Claim 5.3, we are now ready to present the (alleged) tester for Π. Intuitively,
the tester first checks whether the input graph satisfies Condition (C1), and if the input is found to be
Ω(ǫ)-far from satisfying Condition (C1) then it is tested for Condition (C2). Indeed, the core of this
tester refers to the latter part (i.e., testing Ξ), and is obtained by suitable adaptations of Algorithm 4.2.
In particular, since we cannot expect to identify representatives from all clouds (i.e., some sets V ′

i in
Claim 5.3 may be too small or even empty), we settle for obtaining representatives from at least a 1−ǫ′

fraction of the identifiable clouds (which leads to using, as a basis, the version of Algorithm 4.2 that is
discussed in Footnote 9).

Algorithm 5.4 On input N and proximity parameter ǫ, and when given oracle access to a graph

G = ([N], E), the algorithm proceeds as follows, after setting ǫ′
def
= ǫ/10 and n

def
=

√
q(N):

14

1. Using a sample of O(ǫ−2) vertex pairs, we first estimate the edge density of G and accept if this
estimate exceeds 0.5 + 2∆ − 2ǫ′. We proceed to the next steps only if the edge density of G is
estimated to be less than 0.5 + 2∆− 2ǫ′, in which case we may assume that the edge density of G
is less than 0.5 + 2∆− ǫ′.

2. Next, using a sample of Õ(ǫ−2) vertices, we estimate the minimum degree in G; that is, we pick
O(ǫ−1) vertices and estimate their degrees using an auxiliary sample of Õ(ǫ−2) vertices. If we
find a vertex that we estimate to have degree less than (0.5 − ∆ − ǫ′) · N , then we reject. We
proceed to the next steps only if we failed to find such a vertex, in which case we may assume that
all but at most ǫ′N vertices have degree exceeding (0.5 −∆− 2ǫ′) ·N .

3. Finding representative vertices. We start by selecting a sample, denoted S, of s
def
= O(ǫ−2n)

random vertices, and estimating their individual degrees in G by their individual degress is the
subgraph induced by S. We let S′ ⊆ S denote the set of vertices for which the estimated degree is
less than (0.52 − ǫ′) ·N . We proceed only if |S′| > 0.99s, and otherwise we halt and reject.

Next, we cluster the vertices in S′ as follows. Probing all
(|S′|

2

)
possible edges between these

vertices, we cluster them such that each cluster contains vertices having neighbor sets that differ
on at most 0.06s vertices in S′. Specifically, we associate to each vertex an |S′|-dimensional
Boolean vector that indicates whether or not it neighbors each of the vertices in S′, and consider
the metric defined by Hamming distance between these vectors. Scanning the vertices of S′, we
put the current vertex in an existing cluster if it is 0.06-close to the center of this cluster, and
open a new cluster with the current vertex as its center otherwise (i.e., if the current vertex cannot
be fit to any existing cluster).

If the number of clusters, denoted n′, is greater than n, then we reject. Otherwise, we select at
random a representative from each cluster, and denote by ri the representative of the ith cluster.

4. Determining an adequate subgraph of a graph in Π′
n. Let R = {ri : i ∈ [n′]} and let GR denote

the subgraph of G induced by R (i.e., by the set of representatives selected above). We try to
determine a graph G′ ∈ Π′

n such that the subgraph of G′ induced by [n′], denoted G′′ = ([n′], E′′),
is consistent with GR in the sense that if {i, j} ∈ E′′ then {ri, rj} ∈ E (equiv., the pair (ri, rj)
is connected by an edge in GR). If either such a graph G′ does not exist or G′′ is not uniquely
determined, then we halt and reject.

5. Note that the set R suggests a clustering of the vertices of G according to their neighbors in the set
R. Referring to this clustering, we check whether it is indeed adequate. Specifically, for any vertex
v ∈ [N] of degree at most 0.52 ·N , we let ι(v) = i if v is 0.06-close to the representative ri and
is 0.4-far from all other representatives. Otherwise (i.e., if no such i exists), then ι(v) = ⊥. In
the following sub-steps we refer to estimates of the degrees of individual vertices that are obtained
by an auxiliary sample of size O(ǫ−2 log t), where t = O(ǫ−2n log(1/ǫ)) denotes the number of
vertices for which we need a degree estimate.

(a) We check that all but at most an ǫ′ fraction of the vertices that have degree at most 0.52 ·N
are uniquely clustered and that each of these vertices resides in a cluster that has size at
most (1 + ǫ′)N/n. That is, using an auxiliary sample of O(ǫ−2n log(1/ǫ)) vertices, we check
that for each such vertex v that is estimated to have degree at most (0.52 − ǫ′) ·N , it holds
that ι(v) ∈ [n′], and that at least a 1 − ǫ′ fraction of these vertices are clustered so that for
every i ∈ [n′] at most (1 + ǫ′)/n fraction of the vertices v satisfy ι(v) = i.

(b) We check that the edges between the clusters are consistent with the edges between the cor-
responding vertices of G′′. Specifically, we select uniformly O(1/ǫ) vertex pairs, cluster the
vertices in each pair according to ι, and check that their edge relation agrees with that of

15

their corresponding representatives in the sense that each vertex pair must be connected if
the corresponding pair of representatives is connected. That is, for each pair (u, v), we first
estimate the degree of each vertex and proceed only if both estimates are below (0.52− ǫ′) ·N .
Next, we find the cluster to which each vertex belongs, and reject if {ι(u), ι(v)} ∈ E′′ holds
but {u, v} 6∈ E.

We accept if and only if none of the foregoing checks led to rejection.

Note that, for constant value of ǫ, the query complexity is dominated by Step 3, which uses
(|S′|

2

)
=

O(ǫ−2n)2 = O(ǫ−4q(N)) queries. (In contrast, the number of queries made in Step 5 is (t + O(1/ǫ)) ·
(ǫ−2 log t + n) = O(ǫ−4n2 log2(1/ǫ)), where a better bound of o(ǫ−4n2) holds when ǫ≫ 1/

√
n).

We next verify that any graph in ΠN is accepted with very high probability. Note first that if
G ∈ ΠN satisfies Condition (C1), then Step 1 accepts with very high probability. The same holds if G
has average degree at least (0.5+2∆− ǫ′)N . Thus, we focus on the case that G ∈ ΞN , and furthermore
that G has average degree less than (0.5 + 2∆ − ǫ′)N . Needless to say, Step 2 is unlikely to reject G
(because G has minimum degree at least (0.5 −∆)N). Regarding the sample S taken in Step 3, with
very high probability, the degree of each sample vertex in G is approximated up-to an relative term of
±ǫ′ by this vertex degree in the subgraph induced by S. The same holds with respect to the number
of neighbors that each such vertex has in n designated sets (i.e., the sets Vi associated with G ∈ ΞN).
Letting H, (V ′

1 , ..., V ′
n) and G′′ be as in Claim 5.3, we note that with high probability the sample S′

taken in Step 3 is clustered accordingly (i.e., the ith cluster consists of V ′
i ∩ S′, where here we consider

a possible reordering of the sequence of clusters and allow also empty clusters to obtain a sequence of
length n). Furthermore, the induced graph GR fits the subgraph G′′ in the sense that it passes the
checks in Step 5b. Thus, Steps 3 and 5 are unlikely to reject G (because, with probability at least 1− ǫ,
the ith cluster is assigned a (N−1 · |V ′

i |± ǫ′)/n fraction of the vertices sampled in Step 3 and in Step 5).
To show that Step 4 is also unlikely to reject G, we need to show that, with high probability, the graph
G′′ is the only adequate graph that fits the set R. The latter is proved by considering an (imaginary)
set I selected at random such that I includes a single uniformly distributed element from each set Vi.
Observe that a N/t-factor blow-up of the subgraph GI is likely to be in ΞN , and so applying Claim 5.3
to this blow-up of GI guarantees the uniqueness of G′′ (with respect to GI). The uniqueness of G′′

with respect to GR follows by observing that, with high probability, the constraints on G′′ imposed by
the subgraph GR are a superset of the constraints on G′′ imposed by the subgraph GI , because R can
be viewed as obtained from I by replacing some vertices of H by vertices not in H (i.e., a vertex in
Vi ∩H is replaced by some vertex in V ′

i = Vi \H).14 We conclude that G is unlikely to be rejected by
any step, and thus it is accepted (with high probability).

We now turn to the case that G is ǫ-far from Π, where we need to show that G is rejected with,
say, probability 2/3. We will actually prove that if G is accepted with probability 1/3, then it is ǫ-close
to ΠN . We may assume that G has average degree below (0.5 + 2∆ − ǫ)N , since otherwise the claim
follows easily. Thus, with high probability, the graph G is not accepted by Step 1, and so we may use
the fact that G is accepted by virtue of not violating the subsequent checks. In particular, by virtue of
Step 2 we may assume that at most ǫ′N vertices of G have degree below (0.5−∆−2ǫ′)N , which means
that we can meet the degree lower bound (of Ξ) by adding at most 3ǫ′N2 edges. Let S′, r1, ..., rn′ and
G′′ be as determined in Steps 3 and 4. Then, by virtue of Step 5, we obtain a clustering of at least
(1 − ǫ′)N vertices that approximately fits the graph G′′ in the sense that they reside in clusters that
have each size at most (1 + 2ǫ′)N/n and the number of missing edges between these clusters is at most

ǫ′N2. By moving m
def
= 3ǫ′N vertices and adding at most mN + ǫ′N2 edges, we obtain a partition of

the vertices into n equal sized sets that perfectly fit G′′, and it follows that G is (3+ 4) · ǫ′-close to ΞN .

14Indeed, the remaining vertices of H are viewed (in R) as non-existing).

16

6 Revisiting the Adjacency Matrix Model: One-Sided Error

In continuation to Section 4, which provides a hierarchy theorem for two-sided error testing of graph
properties (in the adjacency matrix model), we present here a hierarchy theorem that refers to one-
sided error testing. Actually, the lower bounds will hold also with respect to two-sided error, but the
upper bounds will be established using a tester of one-sided error.

Theorem 6 In the adjacency matrix model, for every q : N→ N that is at most quadratic, there exists
a graph property Π that is testable with one-sided error in O(q) queries, but is not testable in o(q)
queries even when allowing two-sided error. Furthermore, Π is in P.

Theorems 4 and 6 are incomparable: in the former the upper bound is established via relatively efficient
testers (of two-sided error), whereas in the latter the upper bound is established via one-sided error
testers (which are not relatively efficient). (Unlike Theorem 5, both Theorems 4 and 6 do not provide
monotone properties.)

Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we observe that the
source of the two-sided error of the tester is in the need to approximate set sizes. This is unavoidable
when we consider graph properties that are blow-ups of some other graph properties, where blow-up
is define by replacing vertices of the original graph by equal-size clouds. The natural solution is to
consider a generalized notion of blow-up in which each vertex is replaced by a (non-empty) cloud of
arbitrary size. That is, G is a (generalized) blow-up of G′ = ([n], E′) if the vertex set of G can be
partitioned into n non-empty sets (of arbitrary sizes) that correspond to the n vertices of G′ such that
the edges between these sets represent the edges of G′; that is, if {i, j} is an edge in G′ (i.e., {i, j} ∈ E′),
then there is a complete bipartite between the ith set and the jth set, and otherwise (i.e., {i, j} 6∈ E′)
there are no edges between this pair of sets.

The proof of Theorem 6, builds on the proof of Theorem 4 (while deviating from it in some places).
In Section 6.1, we construct Π based on Π′ by applying the generalized graph blow-up operation. In
Section 6.2 we lower-bound the query complexity of Π based on the query complexity of Π′, while
coping with the non-trivial question of how does the generalized (rather than the standard) blow-up
operation affect distances between graphs. In Section 6.3 we upper-bound the query complexity of Π
via a one-sided error tester.

6.1 The (generalized) blow-up property Π

Our starting point is any graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, we assume that Π′ is dispersed (as in Section 4.1).
Given the desired complexity bound q : N→ N, we first set n =

√
q(N), and define ΠN as the set

of all N -vertex graphs that are (generalized) blow-ups of graphs in Π′
n; that is, the N -vertex graph G

is in ΠN if and only if G is a (generalized) blow-up of some graph in Π′
n.

We note that, as in Section 4, if Π′ ∈ P then Π ∈ P. We comment that the latter implication relies
on the fact that the definition of (generalized) blow-up requires that each vertex (of the original graph)
is replaced by a non-empty cloud. For further discussion see Remark 6.4.

6.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). As in Section 4.2, the basic
idea is reducing testing Π′ to testing Π; that is, given a graph G′ that we need to test for membership
in Π′

n, we test its N/n-factor blow-up for membership in ΠN , where N is chosen such that n =
√

q(N).
(Needless to say, the N/n-factor blow-up of any graph in Π′

n results in a graph that is in ΠN .) Note that

17

we still use the “balanced” blow-up operation in our reduction, although ΠN contains any generalized
blow-up (of any graph in Π′

n). Indeed, this reduction relies on the assumption that the N/n-factor
blow-up of any n-vertex graph that is far from Π′

n results in a graph that is far from ΠN (and not only
from graphs obtained from Π′

n by a “balanced” blow-up).
Recall that in Section 4.2 we proved that for any ǫ′ > 0 there exists an ǫ > 0 such that the N/n-

factor blow-up of any graph that is ǫ′-far from Π′
n is ǫ-far from the N/n-factor blow-up of any graph in

Π′
n. Here we show that the former graph is ǫ-far from ΠN (i.e., from any generalized blow-up of any

graph in Π′
n).

Claim 6.1 There exists a universal constant c > 0 such that the following holds for every n, ǫ′, α and
(unlabeled) n-vertex graphs G′

1, G
′
2. If G′

1 is α-dispersed and ǫ′-far from G′
2, then for any t the t-factor

blow-up of G′
1 is cα2 · ǫ′-far from any tn-vertex graph that is obtained by a generalized blow-up of G′

2.

Using Claim 6.1 we infer that if G′ is ǫ′-far from Π′ then its generalized blow-up is Ω(ǫ′)-far from Π.
This inference relies on the fact that Π′ is dispersed (and on Claim 6.1 when applied to G′

2 = G′ and
every G′

1 ∈ Π′).

Proof: By Claim 4.1, for a suitable constant c1, it holds that the t-factor blow-up of G′
1, denoted G1,

is c1α · ǫ′-far from any t-factor blow-up of G′
2. Let G2 be an arbitrary (generalized) blow-up of G′

2. We
need to prove that G1 is cα2 · ǫ′-far from G2. We consider two cases regarding the amount of imbalance
in the blow-up underlying G2, where G2 is called a δ-imbalanced blow-up of G′

2 if the variation distance
between the relative densities of the various clouds in G2 and the uniform sequence of densities is at
most δ (i.e.,

∑n
i=1 |ρi − (1/n)| ≤ 2δ, where ρi is the density of the ith cloud in G2).

15

Case 1: G2 is a δ-imbalanced blow-up of G′
2, where δ = c1αǫ′/3. In this case G1 is (c1α · ǫ′ − 2δ)-far

from G2, because G2 is 2δ-close to a t-factor blow-up of G′
2.

Note that c1α · ǫ′ − 2δ = δ.

Case 2: G2 is not a δ-imbalanced blow-up of G′
2. In this case, using the fact that G1 is a t-factor blow-

up of a α-dispersed graph, we prove that G1 is far from G2.

Let ρi denote the density of the ith cloud in G2, and I = {i ∈ [n] : ρi > 1/n} denote the set
of clouds that are larger than in the uniform case. Then,

∑n
i∈I ρi > (|I|/n) + δ. We consider

the most edge-fitting bijection of the vertices of G1 to the vertices of G2, and lowerbound the
number of vertex pairs that do not preserve the edge relation. Observe that, for each i ∈ I, the
ith cloud of G2 must contain at least (ρi− (1/n)) ·N pairs of vertices such that each pair consists
of vertices that reside in different clouds of G1 (because this cloud of G2 contains at most N/n
vertices that reside in the same cloud of G1). Each such pair contributes at least α ·N units to
the (absolute) distance between G1 and G2, and thus we lowerbound this (absolute) distance by

∑

i∈I

(ρi − (1/n))N · αN = δ · α ·N2

and it follows that G1 is δα-far from G2.

The claim follows by setting c = c1/3 and noting that min(δ, δα) = c1α
2ǫ′/3. 2

Recall that Claim 6.1 implies that if G′ is ǫ′-far from Π′ then its blow-up is Ω(ǫ′)-far from Π. Using
this fact, we conclude that ǫ′-testing of Π′ reduces to Ω(ǫ′)-testing of Π. Thus, a quadratic lower
bound on the query complexity of ǫ′-testing Π′

n yields an Ω(n2) lower bound on the query complexity
of Ω(ǫ′)-testing Π′

N , where n =
√

q(N). Thus, we obtain an Ω(q) lower bound on the query complexity
of testing Π, for some constant value of the proximity parameter.

15Indeed, 0-imbalance corresponds to the case of a t-factor blow-up (of G′
2), and any generalized blow-up of G′

2 is
1-imbalanced.

18

6.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is at most O(q) and that this can be
met by a one-sided error tester. In fact, we will use a straightforward tester, which selects uniformly a
sample of O(

√
q) vertices and accepts if and only if the induced subgraph is a (generalized) blow-up of

some graph in Π′. That is:

Algorithm 6.2 On input N and proximity parameter ǫ, and when given oracle access to a graph
G = ([N], E), the algorithm proceeds as follows:

1. The algorithm sets ǫ′
def
= ǫ/3 and computes n←

√
q(N).

2. The algorithm selects uniformly a set of O(n/ǫ) vertices, denoted S, and inspects the subgraph of
G induced by S; that is, for every u, v ∈ S, we check whether {u, v} ∈ E.

3. The algorithm accepts G if and only if the subgraph viewed in Step 2 is a generalized blow-up of
some induced subgraph of some graph in Π′

n.

We stress that Step 3 does not require the subgraph viewed in Step 2 to be a generalized blow-up of
some graph G′ ∈ Π′

n, but rather allows the former graph to be a generalized blow-up of any induced
subgraph of such G′. In other words, Step 3 refers to the following relaxation of the notion of a
generalized blow-up: the graph G is a relaxed blow-up of G′ if the vertex set of G can be partitioned
into sets (of arbitrary sizes) that correspond to vertices of G′ such that the edges between these sets
represent the edges of G′. We stress that some of these sets may be empty (and, needless to say, in
such a case there are no corresponding edges).

The query complexity of Algorithm 6.2 is
(O(n/ǫ)

2

)
= O(q(N)/ǫ2). Note that this algorithm may not

be relatively efficient, since we do not know of an efficient implementation of Step 3 (even if Π′ ∈ P; see
Remark 6.4). Clearly, Algorithm 6.2 accepts with probability 1 any graph in Π, because being a relaxed
blow-up of any graph G′ is hereditary (i.e., if G is a relaxed blow-up of G′ then any induced subgraph
of G is a relaxed blow-up of G′). It is left to show that Algorithm 6.2 rejects with probability 2/3 any
graph that is ǫ-far from Π.

Let G be an arbitrary N -vertex graph that is ǫ-far from ΠN , and let us consider the sample S as
being drawn in 2n iterations such that at each iteration O(1/ǫ) random vertices are selected. We denote

by Si the sample taken in iteration i, and by Gi the subgraph of G that is induced by S(i) def
=

⋃i
j=1 Sj .

We refer to the clustering of the vertices of Gi according to their neighbor sets such that two vertices
are in the same cluster if and only if they have exactly the same set of neighbors. We shall show (see
the following Claim 6.3) that in each iteration, with high constant probability, either the number of
clusters increases or we obtain a subgraph that is not a relaxed blow-up of any graph in Π′

n. It follows
that, with overwhelmingly high probability, after 2n iterations we obtain a subgraph that is not a
relaxed blow-up of any graph in Π′

n.

Claim 6.3 Let G be an arbitrary N -vertex graph that is ǫ-far from ΠN , and GS′ be the subgraph of G
induced by S′. Let m denote the number of clusters in GS′ and suppose that m ≤ n. Further suppose
that GS′ is a relaxed blow-up of some graph in Π′

n. Then, for a randomly selected pair of vertices
u, v ∈ [N], with probability Ω(ǫ), the number of clusters in the subgraph induced by S′∪{u, v} is greater
than m.

Note that if GS′ is not a relaxed blow-up of any graph in Π′
n, then neither is the subgraph induced by

S′ ∪ {u, v}. On the other hand, if GS′ is a relaxed blow-up of some graph in Π′
n and we augment S′

with O(1/ǫ) random vertices, then, with probability at least 2/3, the number of clusters in the resulting
induced subgraph is greater than m. Finally, note that if the number of clusters in a graph (e.g., GS)

19

is greater than n, then this graph cannot be a relaxed blow-up of any n-vertex graph (e.g., any graph
in Π′

n).

Proof: By the hypothesis regarding GS′ , there exists G′ ∈ Π′
n such that GS′ is a relaxed blow-up of

G′. We consider a partition of the vertex set of GS′ to clouds that correspond to vertices of G′ and
denote by Cv the cloud that corresponds to vertex v. Clearly, the vertices in each cloud must belong
to the same cluster, because otherwise the (relaxed) blow-up condition is violated. Thus, the clouds
are a refinement of the partition of the vertex set of GS′ into clusters. On the other hand, without
loss of generality, all the vertices of each cluster may belong to a single cloud, because if Cv and Cw

are clouds of the same cluster then we can move vertices of Cw to Cv while maintaining clouds that
correspond to vertices of G′. We conclude that, without loss of generality, the collection of m clusters
equals the collection of non-empty clouds, which correspond to an induced subgraph of G′, denoted
G′′ = (V ′′, E′′). Without loss of generality, we assume that V ′′ = [m].

We now consider a clustering of the vertices of the entire graph G according to their neighbors
in the set S′; that is, we cluster the vertices of G according to their S′-neighborhood, where the S′-

neighborhood of v equals ΓS′(v)
def
= {w ∈ S′ : {v,w} ∈ E}. Note that some of these clusters extends

the foregoing Cv’s, whereas the other clusters, called new, contain vertices that have S′-neighborhood
that are different from the S′-neighborhoods of all vertices in S′. If the number of vertices that are
placed in new clusters exceed ǫN/4, then such a vertex is selected with probability at least ǫ/4 and
the claim follows immediately. Otherwise, we consider an m-way partition, denoted (V1, ..., Vm), of
the vertices that have the same S′-neighborhood as some vertices of S′ such that Vi = {v : (∀u ∈
Ci) ΓS′(v) = ΓS′(u)}. By the hypothesis that G is ǫ-far from ΠN and

∣∣∣
⋃

i∈[m] Vi

∣∣∣ ≥ (1− (ǫ/4)) ·N (and

n/N < ǫ/4), it must be the case that (ǫ/2) ·N2 vertex pairs in
⋃

i,j∈[m] Vi× Vj have edge relations that

are inconsistent with G′′ (i.e., for such a pair (u, v) ∈ Vi×Vj it holds that {u, v} ∈ E iff {i, j} 6∈ E′′).16

Hence, these pairs have edge relations that are inconsistent with the edges between the corresponding
Ci’s (because the vertices in

⋃
i,j∈[m] Ci × Cj have edge relations that are consistent with G′′). Thus,

with probability at least ǫ/2, for a random pair of vertices {u, v} the edge relation between u and v
does not fit the edge relation between Ci and Cj , where u ∈ Vi and v ∈ Vj . It follows that the {u}∪Ci

(and {v} ∪Cj) must be split when clustering the vertex set S′ ∪ {u, v} according to the neighborhoods
in S′ ∪ {u, v}. Thus, the claim follows also in this case. 2

Remark 6.4 Recall that the propety Π was obtained by a generalized blow-up of Π′, whereas Step 3
in Algorithm 6.2 refers to relaxed blow-ups of Π′. Denoting the set of relaxed blow-ups of Π′ by Π̂, we
note that Π′ ∈ P implies Π̂ ∈ NP, but it is not clear whether Π̂ ∈ P even when Π′ ∈ P. In fact, for
some Π′ ∈ P, deciding membership in the corresponding Π̂ is NP-complete.17

16Otherwise, we can obtain an m-way partition that is consistent with G′′ by changing the edge relation of at most
ǫN2 vertex pairs (i.e., at most (ǫ/2) · N2 vertex pairs in

⋃
i,j∈[m]

Vi × Vj and and at most all pairs with one element not

in
⋃

i∈[m]
Vi). Similarly, we can obtain an n-way partition that is consistent with G′ (by creating n − m new singleton

clusters and using n − m < ǫN/4).
17For any NP witness relation R, we show how to reduce membership in SR

def
= {x : ∃w (x, w)∈R} to testing whether a

constructed graph is an induced subgraph (or a relaxed blow-up) of some graph in an adequate set Π′. We use the graphs
in Π′ to encode pairs in R, and use the constructed graph to encode an input x that we need to check for membership
in SR. Each graph in Π′

n will correspond to a pair (x, w) ∈ {0, 1}n+m such that the graph will consist of (1) a clique
of 2(n + m) vertices, (2) a sequence of n + m pairs of vertices such that the ith pair is connected iff the ith bit in xw
equals 1, and (3) edges connecting the ith vertex in Part (2) to the i first vertices of the clique. On input x ∈ {0, 1}n,
we construct a (2(n + m) + 2n)-vertex graph Gx essentially as above, except that we do not include the m last pairs of
Part (2). (Indeed, given x, we cannot construct the corresponding m pairs, since we don’t know w.) Note that Gx is an
induced subgraph (or a relaxed blow-up) of some graph in Π′

n if and only if x ∈ SR.

20

7 Summary of Open Problems That Arise

Theorems 4, 5 and 6 (and their proofs) raise several natural open problems, listed next. We stress that
all questions refer to the adjacency matrix graph model considered in Sections 4–6.

1. Preservation of distance between graphs under blow-up: Recall that the proof of Theorem 4 relies
on the preservation of distances between graphs under the blow-up operation. The partial results
(regarding this matter) obtained in this work suffice for the proof of Theorem 4, but the problem
seems natural and of independent interest.

Recall that Claim 4.1 asserts that in some cases the distance between two unlabeled graphs is
preserved up to a constant factor by any blow-up (i.e., “linear preservation”), whereas Theorem 8
asserts a quadratic preservation for any pair of graphs. Also recall that it is not true that the
distance between any two unlabeled graphs is perfectly preserved by any blow-up (see beginning
of Appendix B). A natural question that arises is whether the distance between any two unlabeled
graphs is preserved up to a constant factor by any blow-up, and if so then what is the minimal
such constant.

2. Combining the features of all three hierarchy theorems: Theorems 4, 5 and 6 provide incomparable
hierarchy theorems, each having an additional feature that the other lack. Specifically, Theorem 4
refers to properties in P (and testing, in the positive part, is relatively efficient), Theorem 5 refers
to monotone properties, and Theorem 6 provides one-sided testing (in the positive part). Is it
possible to have a single hierarchy theorem that enjoys all three additional feature? Intermediate
goals include the following:

(a) Hierarchy of monotone graph properties in P: Recall that Theorem 4 is proved by using
non-monotone graph properties (which are in P), while Theorem 5 refers to monotone graph
properties that are not likely to be in P. Can one combine the good aspects of both results?

(b) Hard-to-test monotone graph property in P: Indeed, before addressing Problem 2a, one
should ask whether a result analogous to Theorem 7 holds for a monotone graph property?
Recall that [GT, Thm. 1] provides a monotone graph property in NP that is hard-to-test.

(c) One-sided versus two-sided error testers: Recall that the positive part of Theorem 6 refers
to testing with one-sided error, but these testers are not relatively efficient. In contrast,
the positive part of Theorem 4 provides relatively efficient testers, but these testers have
two-sided error. Can one combine the good aspects of both results?

Acknowledgments

We are grateful to Ronitt Rubinfeld for asking about the existence of hierarchy theorems for the
adjacency matrix model. Ronitt raised this question during a discussion that took place at the Dagstuhl
2008 workshop on sub-linear algorithms. We are also grateful to Arie Matsliah and Yoav Tzur for
helpful discussions. In particular, we thank Arie Matsliah for providing us with a proof that the
blow-up operation does not preserve distances in a perfect manner.

21

References

[ABI] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the Maximal
Independent Set Problem. J. of Algorithms, Vol. 7, pages 567–583, 1986.

[AFKS] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large Graphs.
Combinatorica, Vol. 20, pages 451–476, 2000.

[AFNS] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of the
Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260, 2006.

[AGHP] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Journal of Random structures and Algorithms, Vol. 3 (3),
pages 289–304, 1992.

[AS] N. Alon and A. Shapira. Every Monotone Graph Property is Testable. SIAM Journal on
Computing, Vol. 38, pages 505–522, 2008.

[BSS] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse Graphs
is Testable. In 40th STOC, pages 393–402, 2008.

[BLR] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Numerical
Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993.

[BHR] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF Properties Are Hard to Test. SIAM
Journal on Computing, Vol. 35 (1), pages 1–21, 2005.

[BOT] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-
degree graphs. In 43rd FOCS, pages 93–102, 2002.

[EKK+] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. JCSS,
Vol. 60 (3), pages 717–751, 2000.

[F] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the
European Association for Theoretical Computer Science, Vol. 75, pages 97–126, 2001.

[FM] E. Fischer and A. Matsliah. Testing Graph Isomorphism. In 17th SODA, pages 299–308,
2006.

[GGL+] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Monotonic-
ity. Combinatorica, Vol. 20 (3), pages 301–337, 2000.

[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998.

[GR1] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[GR2] O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs.
Combinatorica, Vol. 19 (3), pages 335–373, 1999.

[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random
Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[LNS] O. Lachish, I. Newman, and A. Shapira. Space Complexity vs. Query Complexity. Computa-
tional Complexity, Vol. 17, pages 70–93, 2008.

22

[NN] J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions and Applications.
SIAM J. on Computing, Vol 22, 1993, pages 838–856.

[PRR] M. Parnas, D. Ron and R. Rubinfeld. Testing Membership in Parenthesis Laguages. Random
Structures and Algorithms, Vol. 22 (1), pages 98–138, 2003.

[R] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597–649, 2001.
(Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)

[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

23

APPENDICES

Appendix A: Hard-to-test Properties in P

In this appendix we strengthen the hardness results of [GGR] that refer to the existence of properties
that are hard to test. These properties were shown to be in NP. Here we modify the constructions
in order to obtain such properties in P. The aforementioned results refer both to the model of generic
functions and to the model of testing graph properties in the adjacency matrix model (a.k.a dense
model).

Let us first comment on the reasons that the original properties were only known to be in NP
(rather than in P).18 In the first case (i.e., the case of generic functions), the reason is the complexity
of recognizing possible outputs of an adequate pseudorandom generator (which becomes easy when
given an adequate seed as an NP-witness). In the second case (i.e., the case of graph properties),
an additional reason stems from the fact that “closure under isomorphism” is applied to the basic
construction, and so the problem of recognizing graphs that are isomorphic to graphs in a particular
set arises (and becomes easy when given an adequate isomorphism as an NP-witness). Below, we shall
avoid the use of NP-witnesses by augmenting the basic construction in adequate ways.

We comment that the additional monotone closure used in [GT, Sec. 3] (in order to obtain monotone
graph properties) introduces additional difficulties, which we were not able to resolve (and thus the
graph properties that we obtain in this appendix are not monotone). Furthermore, our techniques seem
incompatible with monotonicity. The result we prove is stated next.

Theorem 7 There exists a graph property in P for which, in the adjacency matrix model, every tester
must query a constant fraction of the representation of the graph (even when invoked with constant
proximity parameter).

Background: the GGR construction and two difficulties. The graph property for which a
quadratic query complexity lower bound is proved in [GGR, Prop. 10.2.3.2] is defined in two steps.

1. First, it is shown that certain sample spaces yield a collection of Boolean functions (i.e., a property
of Boolean functions) that is hard to test (i.e., any tester must inspect at least a constant fraction
of the function’s values).

On one hand, the sample space is relatively sparse (and thus a random function is far from
any function in the resulting collection), but on the other hand it enjoys a strong pseudorandom
feature (and so its projection on any constant fraction of the coordinates looks random). Thus, the
functions in the class (which must be accepted with high probability) look random to any tester
that inspect only a small constant fraction of the function’s values, whereas random functions
are far from the class (and should be rejected with high probability). This yields a contradiction
to the existence of a tester that inspect only a small constant fraction of the function’s values.

2. Next, the domain of the functions is associated with the set of unordered pairs of elements in [N],
and the collection of functions is “closed” under graph isomorphism (i.e., if a certain function on(N

2

)
is in the collection then so is any function obtained from it by a relabeling of the elements of

[N]).

The closure operation makes this collection correspond to a graph property (since it is now
preserved under isomorphism). The parameters are such that the resulting collection (although

18The current description is intended for readers who have some recall of the aforementioned result. A self-contained
description follows.

24

likely to be N ! times bigger than the original one) is still sparse enough (and so a random graph
is far from it). On the other hand, the indistinguishability feature is maintained.

The two difficulties discussed above correspond to these two steps. Firstly, while the (support of the)
sample space used in the proof of [GGR, Prop. 10.2.3.2] is in NP , it is not clear whether it is in P.
Secondly, while NP-witnesses can be provided to prove that a given graph is isomorphic to a graph
obtained in Step 1, it is not clear how to efficiently verify such a claim without an NP-witness.

Resolving the two difficulties (overview). The first difficulty is resolved by using an adequate
pseudorandom generator for which membership in the corresponding sample space can be decided in
polynomial time. Specifically, we shall use an adequate Ω(n)-wise independence generator of n-bit long
sequences rather than using a quite generic small-biased sample space as done in the proof of [GGR,
Prop. 10.2.3.2].19

The second difficulty is resolved by augmenting the graphs (constructed in Step 1) in a way that
makes the original graph easy to recover from any relabeling of the resulting graph. Thus, applying
Step 2 to these augmented graphs yields a class of graphs that is easy to recognize (by first recovering
the original graph and then checking that it corresponds to a string in the sample space).

The actual construction. For every N , we start by considering an efficiently constructible d-wise

independent sample space over n-bit long strings, where n
def
=

(N
2

)
and d

def
= Ω(n). Specifically, for

some constant δ > 0, we use an explicitly constructible linear code mapping 0.01n-bit long strings to
n-bit strings such that every δn positions in a generic codeword are linearly independent (see [ABI]).
Such a code is constructed by constructing a party-check matrix that spans a 0.99n-dimensional vector
space (called the “dual code”) in which each vector has Hamming weight at least δn. We will use the
parity-check matrix of the (primary) code in order to check membership in this code.

For each sequence s = (s1, ..., sn) ∈ {0, 1}n, we define a graph Gs = ([N], Es) by letting {i, j} ∈ Es

if and only if the (i, j)th bit of s equals 1, where we consider any fixed (efficiently computable) order of
the elements in {(i, j) : 1 ≤ i < j ≤ N}. We call the graph Gs good if s is in the aforementioned sample
space and bad otherwise. We refer to each such graph as basic; that is, the set of basic graphs includes
all good and bad graphs (and indeed includes all N -vertex graphs). We highlight the fact that the set
of good graphs is recognizable in polynomial-time, because the support of the aforementioned sample
space is recognizable in polynomial-time (and the set of all N -vertex graphs is in 1-1 correspondence
to the set of all n-bit strings).

Note that the set of good graphs is not likely to be closed under isomorphism, and thus this collection
does not constitute a graph property. Following [GGR], we wish to consider the “closure” of the set of
good graphs under isomorphism, but before applying this operation we augment the graphs in a way
that makes it easy to reconstruct their original labeling. Specifically, for each graph Gs = ([N], Es),
we consider the augmented graph G′

s = ([3N + 1], E′
s) obtained by adding a clique of size 2N + 1 to

Gs and connecting the ith vertex of Gs to the first i vertices in the clique; that is,

E′
s = Es ∪ {{u, v} : u, v ∈ {N + 1, ..., 3N + 1}} ∪ {{i,N + j} : i ∈ [N] ∧ j ∈ [i]}. (2)

Now, we consider the set of final graphs obtained by “closing” the set of augmented graphs under
isomorphism. That is, for every s in the sample space (equiv., an augmented graph G′

s obtained
from a good graph Gs) and every permutation π over [3N + 1], we consider the final graph G′

s,π =
([3N + 1], Es,π) that is defined so that {π(u), π(v)} ∈ Es,π iff {u, v} ∈ E′

s. By construction, the set
of final graphs is closed under isomorphism, and so this collection does constitute a graph property.
Furthermore, as is shown next, the augmentation guarantees that the set of final graphs is in P.

19We mention that an alternative construction may be based on a specific small-biased generator; specifically, on the
first small-biased generator of [AGHP] (i.e., the one based on LFSR sequences).

25

To test whether a graph G = ([3N+1], E) is in the set of final graphs, we first attempt to reconstruct
the corresponding basic graph. We use the fact that given a final graph it is easy to determine which
vertex belongs to the basic graph (since these vertices have degree at most (N − 1) + N = 2N − 1,
whereas each clique vertex has degree at least 2N). Next, we determine the label of each vertex
in the basic graphs by counting the number of its neighbors in the clique. (Needless to say, if this
reconstruction fails, then G is not a final graph and we just reject it.) Finally, we check whether the
resulting basic graph belongs to the set of good graphs (and whether the rest of the graph indeed fits
the augmentation procedure).

Showing that the final graphs are hard to test. Our aim is to show that the property of
being a final (3N +1)-vertex graph cannot be tested using o(N2) queries. We shall prove this claim by
presenting two distributions on (3N +1)-vertex such that a tester of final graphs must distinguish these
two distributions whereas no machine that makes o(N2) queries can distinguish these two distributions.
The first distribution is confined to final graphs, whereas with high probability graphs in the second
distribution are 0.01-far from any final graph. Specifically, the first distribution, denoted GN , is
obtained by uniformly selecting a good N -vertex graph and augmenting it to an (3N + 1)-graph (as
done above). The second distribution, denoted RN , is obtained by uniformly selecting a N -vertex
graph and augmenting it to a (3N + 1)-graph (again, as done above, except that here we apply this
augmentation to all graphs). We shall first show that, with high probability, RN is 0.01-far from the
the set of final graphs.

Claim 7.1 The probability that RN is 0.01-close to some final (3N + 1)-vertex graph is o(1).

Proof: The key observation is that the set of final graphs is very sparse. Specifically, each good graph

gives rise to at most (3N + 1)! final graphs, whereas the number of good graphs is 20.01n = 20.01·(N

2).

Thus, the number of final graphs is at most 2(0.01+o(1))·(N

2). Each such graph is 0.01-close to less than

20.1·(3N+1
2) ≪ 2(0.9+o(1))·(N

2) graphs, and so (for all sufficiently large N) the total number of graphs that

are 0.01-close to the set of final graphs is smaller than 20.92·(N

2). Since RN is uniformly distributed on

a set of 2(
N

2) graphs, the claim follows. 2

Next, we show that o(N2) queries do not allow distinguishing RN from GN .

Claim 7.2 Let M be a probabilistic oracle machine that makes at most d = δn ≈ δN2/2 queries.
Then, Pr[MRN (N) = 1] = Pr[MGN (N) = 1].

Proof: Since both distributions are obtained by applying the same fixed augmentation to some pre-
liminary distributions, it suffices to consider queries to the preliminary distributions. Specifically, let
us denote by G′

N the uniform distribution over good N -vertex graphs, and let R′
N denote the uniform

distribution over all N -vertex graphs. Indeed, GN (resp., RN) is obtained by applying the (fixed)
augmentation of Eq. (2) to G′

N (resp., R′
N), and each query to GN (resp., RN) can be answered either

by using a constant value or by making a single query to the corresponding G′
N (resp., R′

N). Thus, it
suffices to show that a machine that makes at most d queries cannot distinguish R′

N from G′
N .

We identify
(N

2

)
-bit long strings with N -vertex graphs (obtained as in the first stage of the con-

struction). Recall that G′
N denote a graph uniformly selected among all graphs in the sample space;

that is, it corresponds to a d-wise independent sequence of length n =
(N

2

)
. So the claim reduces to

asserting that using d queries one cannot distinguish between a d-wise independent sequence and a
uniformly distributed sequence, which follows easily from the definition of d-wise independent sample
spaces (i.e., in such cases adaptive queries offer no advantage). 2

Theorem 7 follows by combining Claims 7.1 and 7.2 (with the fact that the set of final graphs is in P).

26

Appendix B: A General Analysis of the Effect of Graph Blow-Up

A natural question is whether the distance between any two unlabeled graphs is perfectly preserved
by any blow-up. This question was answered negatively by Arie Matsliah, and we start this appendix
with a presentation of his proof. The proof refers to two 4-vertex graphs and their 2-factor blow-up.
Specifically, let G be a 4-vertex graph that consists of a triangle and an isolated vertex, and H consists
of a matching of size two, denoted {{1, 2}, {3, 4}}. Then, the (absolute) distance between G and H is 3
edges (because at least two edges must be dropped from the triangle and one edge added to be incident
the isolated vertex). On the other hand, it is not hard to see that the 2-factor blow-ups of G and H are
at distance of at most 10 < 4 ·3 edges. For example, consider an mapping of the eight vertices, denoted
{1′, 1′′, 2′, 2′′, 3′, 3′′, 4′, 4′′}, of the 2-factor blow-up of H to 4 clouds such that i′ is mapped to cloud i,
whereas 1′′ is mapped to the 1st cloud, 2′′ is mapped to the 4th cloud, 3′′ is mapped to the 2nd cloud,
and 4′′ is mapped to the 3rd cloud (see Figure 1). Then, dropping the edges {3′, 4′′}, {3′, 4′}, {3′′, 4′′}
and adding 12− 5 = 7 edges among the 1st, 2nd and 4th clouds, we obtain a 2-factor blow-up of G.

1’’

1’ 2’

3’ 4’

3’’

2’’4’’

1 2

3 4

Figure 1: A mapping of the 2-factor blow-up of H to four clouds that fit the 2-factor blow-up of G

Recall that Claim 4.1 has established that for dispersed graphs the blow-up operation maintains
distances up to a constant factor (depending on the dispersing parameter of one of the two graphs).
Here we prove a weaker preservation that refers to all pairs of graphs (i.e., we waive the dispersing
condition).

Theorem 8 There exists a universal constant c > 0 such that the following holds for every n, ǫ′ and
(unlabeled) n-vertex graphs G′

1, G
′
2. If G′

1 is ǫ′-far from G′
2, then for any t the (unlabeled) t-factor

blow-up of G′
1 is c · (ǫ′)2-far from the the (unlabeled) t-factor blow-up of G′

2.

Proof: The current proof builds on the ideas underlying the proof of Claim 4.1. However, in the
current case we have no bound on the dispersing parameter of G′

1, and so the argument is more refined.
Again, we let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G′

1 (resp., G′
2), and consider

a bijection π of the vertices of G1 = ([t · n], E1) to the vertices of G2 = ([t · n], E2) that minimizes the
size of the set of violations (as defined in Eq. (1)). Intuitively, it may be that π maps to each cloud of
G2 vertices that originate in different clouds of G1, but we shall show that on the average these vertices
do not have very different neighborhoods and hence they can be moved to obtain homogeneous clouds
in G2 without creating too many violations.

Letting 2ǫ denote the fraction of violation in Eq. (1), we say that two vertices in G′
1 are similar if

the neighbor sets of these two vertices differ on at most
√

ǫ ·n elements (i.e., vertices u and v are similar
if the symmetric difference between the sets {w : {u,w} ∈ E} and {w : {v,w} ∈ E} has size at most√

ǫ · n). Similarly, we say that two vertices in G1 are similar if the neighbor sets of these two vertices

27

differ on at most
√

ǫ · tn elements. Indeed, a pair of vertices of G1 is similar if and only if these vertices
reside in clouds of G1 that correspond to vertices that are similar in G′

1.
We consider a maximal pairing of vertices of G2 that consists of disjoint pairs of vertices such that

each pair consists of vertices that reside in the same cloud of G2 but are not similar (w.r.t G1). We
first show that this pairing may contain at most 2

√
ǫ · tn pairs. As in the proof of Claim 4.1, this

holds because every pair contributes at least
√

ǫ · tn violations to Eq. (1), whereas the total number of
violations is bounded by 2ǫ · (tn)2.

We call a vertex of G2 free if it does not appear in the aforementioned maximal pairing, and recall
that the number of free vertices is at least (1− 4

√
ǫ) · tn. Note that any two free vertices that reside in

the same cloud of G2 are similar with respect to G1 (i.e., they have similar neighborhoods in G1). A
cloud of G2 is called good if at least t/2 of its vertices are free. We note that at least (1−8

√
ǫ) ·n of the

clouds of G2 are good, and that these clouds contain at least (1− 4
√

ǫ) · tn− 8
√

ǫn · t/2 = (1− 8
√

ǫ) · tn
free vertices, which are called super-free.

Consider an auxiliary t-regular bipartite graph with clouds of G1 on one side, clouds of G2 on the
other side, and edges representing the mapping π (i.e., the ith cloud of G1 is connected to the jth cloud
of G2 if some vertex that resides in the ith cloud of G1 is mapped by π to the jth cloud of G2). Consider
a t-coloring of the edges of this bipartite graph, and note that this t-coloring induces a t-partition of the
pairs {(v, π(v)) : v ∈ [tn]} such that each part contains n pairs that in turn contain a single vertex from
each cloud of G1 and a single vertex from each cloud of G1. Thus, each part induces an injection of the
clouds of G1 to n vertices that belong to different clouds of G2, and the t sets of vertices appearing in
the range of these t injections constitute a partition of the set of vertices of G2. It follows that one of
these injections, denoted φ : [n]→ [tn], contains in its range at least (1 − 8

√
ǫ) · n super-free vertices.

We call the (good) clouds of G2 containing these (super-free) vertices very good.
Using the foregoing injection φ, we define a new bijection π′ of the vertices of G1 to the vertices of

G2. The bijection π′ maps all vertices in each cloud of G1 to some cloud of G2 such that the ith cloud
of G1 is mapped to the φ′(i)th cloud of G1, where φ′(i) denote the cloud of G2 (under π) that contains
the vertex φ(i). The number of violations created by π′ is upper-bounded as follows. The number
of violations between the very good clouds is upper-bounded by 4(ǫ +

√
ǫ) · (tn)2, which represents

four times the number of violations occuring under π between the very good clouds plus the slackness
between similar vertices residing in these clouds (specifically, between the vertex φ(i) and the other
super-free vertices in this cloud). The number of violations involving clouds that are not very good is
upper-bounded by 8

√
ǫ · (tn)2 (since the number of such clouds is 8

√
ǫ ·n). Thus, π′ yields a mapping of

G′
1 to G′

2 that has at most (4ǫ + 12
√

ǫ) ·n2 violations. Recalling that G′
1 is ǫ′-far from G′

2, we conclude
that 4ǫ + 12

√
ǫ ≥ ǫ′, and the claim follows (with c = 1/256).

28

