
On Locally Verifiable Proofs of
Proximity

Tom Gur

Under the Supervision of Professor Oded Goldreich

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science

Submitted for the degree of Doctor of Philosophy

to the Scientific Council of the Weizmann Institute of Science

February 2017

To Eynat and Roy

Le but de cette thèse est de munir
son auteur du titre de Docteur

– Adrien Douady

Abstract

The study of property testing is concerned with algorithms that solve approximate de-
cision problems, while only probing a small fraction of their inputs. More specifically, a
tester for a property Π receives query access to an object x and is required to determine
whether x ∈ Π or x is far from Π, using as few queries to x as possible.

A fundamental question that arises in any computational model is to understand the
power of proof systems within the model. Indeed, the P 6= NP conjecture, which deals
with the power of proofs in polynomial time computation, is arguably the most important
open problem in the theory of computation. The focus of this thesis is on understanding
the power and limitations of proof systems within the framework of property testing.

We study locally verifiable proofs of proximity (LVPP), which are probabilistic proofs
systems wherein the verifier queries a sublinear number of bits of a statement and is
only required to reject statements that are far from valid. In their most basic form, the
verifier receives, in addition to query access to the statement, also free access to a proof of
sublinear length; such proof systems are called Merlin-Arthur proofs of proximity (MAP)
and can be viewed as the MA (i.e., “randomized NP”) analogue of property testing.

Other notable forms of LVPPs include interactive proofs of proximity (IPP), in which
the verifier is allowed to communicate with an omniscient prover (rather than obtain a
static proof), and probabilistically checkable proofs of proximity (PCPP), in which the
verifier is only allowed to make a small number of queries to both statement and proof
(which is typically longer than the statement, in the case of PCPPs). These proofs systems
can be viewed as the IP and PCP analogues of property testing.

In this thesis, we initiate the study of some types of LVPPs and continue the study of
others. Our main contributions include:

• Introducing the notion of non-interactive (Merlin-Arthur) proofs of proximity (MAP)
and initiating its systematic study.

• Exponential separations between the power of property testers, MAPs, and IPPs. In
particular, denoting by PT , MAP , and IPP the classes of properties that admit
testers and verifiers of polylogarithmic query and communication complexity, we
show that PT (MAP (IPP , which can be interpreted as separating BPP ,
MA, and IP in the settings of property testing.

• A hierarchy theorem for IPPs, which shows that the power of IPPs gradually in-
creases with the number of rounds of communication allowed between the prover
and the verifier.

• Constructions of MAPs and IPPs for several complexity classes, including constraint
satisfaction problems (such as 3SAT formulas), properties of graphs, languages ac-
cepted by small branching programs, and context-free languages; as well as a strong
form of PCPPs for affine subspaces.

• Several constructions of error-correcting codes admitting local features (such as a
strong form of local testability, a relaxed form of local decodability, and testability
of numerous subcodes) that are useful for constructing LVPPs.

Acknowledgements

First and foremost, it is my pleasure to thank my advisor, Oded Goldreich, for, simply put,
being the best. Words cannot express how fortunate I feel to have had Oded’s guidance
and friendship these last five years. Working with Oded was a delightful experience,
full of humor and always inspiring. Thank you Oded for teaching me, sharing your vast
knowledge and creativity with me, and always being so kind and generous to me. I am
forever grateful for everything you have done for me, and I am very proud to call you my
mentor and my friend.

I was also fortunate to collaborate with quite a few remarkable scientists throughout
the past few years. I thank my coauthors, Eric Blais, Cleḿent Canonne, Oded Goldreich,
Ilan Komargodski, Govind Ramnarayan, Ran Raz, Ron Rothblum, and Omer Tamuz for
all they taught me and for making the whole scientific process much more enjoyable.

I would like to thank Robi Krauthgamer and Ran Raz for serving as my Ph.D. com-
mittee, and for their advice and insights. I also wish to thank Irit Dinur for enlightening
conversations throughout these years.

During my Ph.D. studies I had the pleasure of visiting Rocco Servedio at Columbia
University and Eric Blais at the University of Waterloo. I have learned so much from
Rocco and Eric, and I am grateful to them for hosting me and creating such a fruitful
and enjoyable working atmosphere. I truly hope that our paths will cross again often and
soon.

Last, but certainly not least, I would like to thank my family. I am grateful to my
parents, Iris and Tzvi, without their unconditional love and support, none of this would
have been possible. I thank my brilliant and beautiful wife Eynat, who has been my best
friend and my love ever since we were both merely kids, and I thank my son Roy, for
being the light of my life, my inspiration, and for making it all worthwhile.

Contents

1 Introduction 1
1.1 Locally Verifiable Proofs of Proximity . 2
1.2 Our Results . 6
1.3 Organization . 10

2 Non-Interactive Proofs of Proximity 11
2.1 Introduction . 11
2.2 Definitions . 22
2.3 Separation Results . 27
2.4 General Transformations . 47
2.5 An Extremely Hard Property for MAPs 52
2.6 MAPs for Parametrized Concatenation Problems 56
2.7 Bipartiteness in Bounded Degree Graphs 68
2.8 Appendices for Chapter 2 . 73

3 Proofs of Proximity for Context-Free Languages and Read-Once Branch-
ing Programs 83
3.1 Introduction . 83
3.2 Preliminaries . 93
3.3 MAPs and IPPs for Read-Once Branching Programs 98
3.4 MAPs and IPPs for Context-Free Languages 105
3.5 Appendices for Chapter 3 . 121

4 A Hierarchy Theorem for Interactive Proofs of Proximity 127
4.1 Introduction . 127
4.2 Preliminaries . 141
4.3 Holographic Interactive Proofs . 144
4.4 The Hierarchy Theorem . 152
4.5 Implications for Classical Interactive Proofs 162
4.6 Appendices for Chapter 4 . 166

5 Strong Locally Testable Codes with Relaxed Local Decoders 173
5.1 Introduction . 173
5.2 Preliminaries . 183

5.3 The Main Construction . 187
5.4 Establishing the Relaxed-LDC Property 189
5.5 Establishing the Strong-LTC Property 197
5.6 Strong Canonical PCPs of Proximity . 203
5.7 Application to Property Testing . 208
5.8 Appendices for Chapter 5 . 211

6 Universal Locally Testable Codes 219
6.1 Introduction . 219
6.2 Preliminaries . 222
6.3 The Definition of Universal Locally Testable Codes 224
6.4 The Canonical Universal-LTC . 225
6.5 General Lower Bounds . 230
6.6 Trading off Length for Locality . 232
6.7 Appendices for Chapter 6 . 236

7 Universal Locally Verifiable Codes and 3-Round Interactive Proofs of
Proximity for CSP 241
7.1 Introduction . 241
7.2 Preliminaries . 246
7.3 The Definition of Universal Locally Verifiable Codes 249
7.4 A Universal Locally Verifiable Code for CSP 250
7.5 Lower Bounds on Verifying Conjugation Properties 256
7.6 Constant-Round IPPs for CSP . 258
7.7 Appendices for Chapter 7 . 265

8 Appendix: Brief Descriptions of Works not included in this Thesis 269
8.1 Relaxed Locally Correctable Codes . 269
8.2 An Adaptivity Hierarchy Theorem for Interactive Proofs of Proximity . . 270
8.3 Distribution Testing Lower Bounds via Reductions from Communication

Complexity . 270
8.4 Testing Booleanity and the Uncertainty Principle 271

Bibliography 273

Chapter 1

Introduction

No, no! The adventures first,
explanations take such a dreadful time.

Lewis Carroll, Alice in Wonderland

The study of property testing, initiated by Rubinfeld and Sudan [RS96] and by Gol-
dreich, Goldwasser and Ron [GGR98], has attracted significant attention in the last
two decades (see, e.g., recent books [Gol10a, Gol17, BY17] and surveys [Ron08, Ron09,
Can15]). Loosely speaking, property testers are highly efficient randomized algorithms,
usually running in sublinear time, that solve approximate decision problems, while only
inspecting a tiny fraction of their inputs. More accurately, a tester T for property Π
with respect to proximity parameter ε > 0 is a randomized algorithm that, given query
access to an object x, decides whether x ∈ Π or x is ε-far (typically, in relative Hamming
distance) from every object in Π. Remarkably, the long line of works in property testing
has shown that a myriad of natural properties can be tested by making relatively few
queries to the object, often independently of the size of the object.

Once a model of computation has been established, a fundamental question that nat-
urally arises is to understand the power of proof systems in this model. Indeed, proof
systems play a key role in the theory of computation and their study led to novel reenvi-
sionings of the notion of mathematical proofs, such as interactive proofs (IP) and zero-
knowledge proofs [GMR89] (ZKP), as well as probabilistically checkable proofs (PCP)
[BGKW88]. Moreover, the famous P 6= NP conjecture, which is concerned with under-
standing the power of proofs in the setting of polynomial time computation, is widely
considered as one of the most important open problem in the theory of computation, and
perhaps in all of mathematics.

The focus of this thesis is concerned with understanding the power and limitations of
proof systems within the framework of property testing. To this end, we study property
testers augmented with various probabilistic proof systems,1 which we call by the collec-
tive name of locally verifiable proofs of proximity (LVPP), or in short, proofs of proximity.

1We remark that proof systems that rely on randomness naturally fit property testers, which are
inherently probabilistic algorithms.

1

1. INTRODUCTION

Loosely speaking, these are probabilistic proofs systems wherein the verifier checks the
proximity of a statement to a correct one (i.e., solves an approximate decision problem,
in the sense of property testing), by querying a sublinear number of bits of the state-
ment. Such proof systems are being captured by the general notion of approximate PCPs,
introduced by Ergün, Kumar and Rubinfeld [EKR04].

In this thesis, we initiate the study of some types of LVPPs and continue the study of
others. From a bird’s eye, our main contributions include:

• Introducing the notion of non-interactive proofs of proximity (MAP) and initiating
its systematic study.

• Showing MAPs can be exponentially stronger than testers and exponentially weaker
than their interactive counterparts, known as interactive proofs of proximity (IPP).

• Proving a hierarchy theorem for IPPs, which shows that the power of IPPs gradually
increases with the number of rounds of communication.

• Constructing MAPs and IPPs for several natural complexity classes.

• Constructing PCPs of proximity that satisfy a strong type of soundness condition.

• Constructing error-correcting codes admitting local features that are useful for ap-
plications to LVPPs.

In Section 1.1 we present the various forms of LVPPs that we study in this thesis
and highlight key results about them, then, in Section 1.2 we briefly describe our own
contributions to the study of LVPPs. Finally, in the following chapters we will present
our results in full detail.

1.1 Locally Verifiable Proofs of Proximity

Recall that property testing deals with approximate decision problems, which are promise
problems of deciding whether an input is a member of a set (property) Π or far from
any element of Π. In this section we describe several types of locally verifiable proofs of
proximity, which are probabilistic proof systems for approximate decision problems, and
discuss some key results regarding each of them. We begin with the arguably simplest
form of LVPPs, known as MA proofs of proximity, which we introduced in [GR15b].

1.1.1 MA Proofs of Proximity

We augment the property testing framework by allowing the tester full and free access
to a purported proof. Such a proof-aided tester (verifier) for a property Π is given query
access to an input x and free access to a proof string w. The verifier is required to
distinguish between the case that x ∈ Π and the case that x is far from Π while using a
sublinear number of queries. We require that for inputs x ∈ Π, there exist a proof that

2

1.1 Locally Verifiable Proofs of Proximity

the tester accepts with high probability, and for inputs x that are far from Π no proof
will make the tester accept, except with some small probability of error.

This type of proof system can be viewed as the property testing analogue of an
NP proof system. However, in contrast to polynomial-time algorithms, sublinear time
algorithms inherently rely on randomization (cf. [GS10b]). Since an NP proof system in
which the verifier is randomized is known as a Merlin-Arthur (MA) proof system, we call
these sublinear non-interactive proof systems MA proofs of proximity, or simply MAPs.

Definition 1.1 (MAP, informally stated). A MAP for a property Π, with respect to
proximity parameter ε > 0, is an oracle machine V that is given query access to an object
x and free access to a proof string w, such that the following conditions are satisfied.

• Completeness: For every input x ∈ Π, there exists a proof w such that

Pr[V x(w, ε) = 1] ≥ 2/3,

• Soundness: For every input x that is ε-far from Π and every w′ it holds that

Pr[V x(w′, ε) = 1] < 1/3.

To facilitate the presentation, throughout this chapter, unless the proximity parameter ε
is specified, we shall refer to MAPs (and other LVPPs) with respect to a small constant
ε > 0. We shall use n to denote the length of the tested object.

Following the property testing literature, it is natural to consider the query complexity
(i.e., the number of queries that the verifier makes) as a primary resource. Moreover, note
that using a proof of length that is linear in the input size, any property can be tested
using O(1) queries.2 Hence, we shall also view the proof length as a central computational
resource that we aim to minimize. This requirement is also quite natural, since property
testing is generally concerned with sublinear complexity.

To illustrate the power of MAPs with short proofs, we present the following simple
example, due to Fischer, Goldhirsh, and Lachish [FGL14]. Consider the property of
strings consisting of two concatenated palindromes (strings that read the same backward
or forward), i.e., Π =

{
xxRyyR : x, y ∈ {0, 1}∗

}
, where xR denotes the string x in

reversed order. Alon et al. [AKNS00] showed that testing Π requires Ω(
√
n) queries.

However, note that a MAP with proof of length log(n) can point to the location wherein
one palindrome ends and the other starts, reducing testing Π to two instances of testing
a palindrome, which can be easily done (via sampling) with O(1) queries.

We conclude this subsection by mentioning a few of the known results about MAPs
(which we will cover in more detail in Sections 1.2.1 and 1.2.2). We know that the gap

2To see this, for every property Π, consider a proof system for the statement x ∈ Π, wherein the
proof w is simply equal to x. To verify the statement, the tester need only verify that indeed w ∈ Π and
that w is close to x (i.e., that the relative Hamming distance between w and x is a small constant). The
former check can be carried out without any queries to x, whereas for the latter a constant number of
queries suffice.

3

1. INTRODUCTION

between the complexity of MAPs and testers can be even larger; in particular, there
exists a property that has a MAP with proof length O(log(n)) and query complexity
O(1), whereas any tester for this property must make Ω(n0.99) queries.3 On the other
hand, we know that in some cases MAPs cannot do better than testers; specifically, there
exists a property for which every MAP must make Ω(n) queries, even given a proof of
length, say, n/100. Finally, we remark that there exist MAPs with sublinear query and
communication complexity for many natural problems, such as languages accepted by
small branching programs, context-free languages, and several properties of graphs.

1.1.2 Interactive Proofs of Proximity

The notion of interactive proofs of proximity (IPP), introduced by Rothblum, Vadhan,
and Wigderson [RVW13], aims to extend the notion of interactive proofs to approximate
decision problems. In an IPP, instead of a static proof (as in a MAP), the verifier is
allowed to interact with an all-powerful, yet untrusted prover who sees the entire tested
object.

Definition 1.2 (IPP, informally stated). An IPP for a property Π is a pair of interactive
strategies that consists of a prover P with free access to an object x and a verifier V with
query access to x. The parties communicate and satisfy the following conditions.

• Completeness: For every input x ∈ Π, there exists a proof strategy P such that

Pr[〈P(x, ε),Vx(ε)〉 = 1] ≥ 2/3,

• Soundness: For every input x that is far from Π and every proof strategy P ′ it holds
that

Pr[〈P ′(x, ε),Vx(ε)〉 = 1] < 1/3.

The main parameters of interest in an IPP are the query complexity, which is the number
of queries to x made by the verifier, the communication complexity, which is the total
number of bits exchanged by both parties, and the round complexity, which is the number
of rounds of communication, where each round consists of a message from one party to
the other and vice-versa.

We remark that the notion of IPP generalizes that of MAP. Indeed, every MAP is an
IPP in which only one message, from the prover to the verifier, is being sent. As we shall
see in Section 1.2.1, this generalization is strict; specifically, there exists properties that
have IPPs with polylogarithmic query and communication complexity, whereas every MAP
for these properties must make at least Ω(

√
n) queries, or use a proof of length Ω(

√
n).

Moreover, in Section 1.2.3 we will discuss a hierarchy theorem for IPPs, which shows
that the power of IPPs gradually increases with the number of rounds of communication
allowed between the prover and the verifier.

3Note that this gap is (nearly) the largest possible, since a MAP of proof length p and query complexity
q yields a tester of query complexity Õ(2p) · q, via a simple transformation (see Section 2.4.1).

4

1.1 Locally Verifiable Proofs of Proximity

While currently there are no known constructions of general purpose MAPs (except
for relatively low complexity classes such as context-free languages and languages that are
accepted by small read-once branching programs), the situation is dramatically different
with IPPs: Rothblum, Vadhan, and Wigderson [RVW13] showed that every language
in NC has an IPP with query and communication complexities Õ(

√
n), albeit this IPP

requires a large (polylog(n)) number of rounds of interaction. Furthermore, Reingold,
Rothblum, and Rothblum [RRR16] showed constant-round IPPs with sublinear query
and communication complexity for languages computed in bounded space and time. In
addition, in Section 1.2.6 we will present a result that shows that even given as little as
three rounds of communication, there exist IPPs with sublinear query and communication
complexity for the set of assignments that satisfy fixed constraint satisfaction problems
(such as 3SAT instances).

1.1.3 Probabilistically Checkable Proofs of Proximity

The next form of LVPP we discuss is called PCPs of proximity (PCPP), and as its name
implies, it can be thought of as the PCP analogue of property testing. The notion of PCPP
was first studied by Ben-Sasson et al. [BSGH+06] and by Dinur and Reingold [DR06]
(wherein they are called assignment testers), motivated by applications to standard PCPs.

Recall that a standard PCP is given explicit access to a statement (i.e., an input that
is supposedly in some NP language) and oracle access to a proof (i.e., a “probabilistically
checkable” NP witness). The PCP verifier is required to probabilistically verify whether
the (explicitly given) statement is correct, while making few queries to the alleged proof.
In contrast, a PCPP is given oracle access both to a statement and to a (potentially long)
proof and is only allowed to make a small number of queries to each of them. As in the
other forms of LVPP, the verifier is only required to accept correct statements and reject
statements that are far from being correct.

Definition 1.3 (PCPP, informally stated). A PCPP for a property Π, with respect to
proximity parameter ε > 0, is an oracle machine V that is given query access to both an
object x and a proof string w, such that the following conditions are satisfied.

• Completeness: For every input x ∈ Π, there exists a proof w such that

Pr[V x,w(ε) = 1] ≥ 2/3,

• Soundness: For every input x that is ε-far from Π and every purported proof w′, it
holds that

Pr[V x,w′(ε) = 1] < 1/3.

The main parameters of interest in a PCPP are its query complexity (i.e., the total number
of queries to the input and to the proof that the verifier makes) and its proof length, which
can be thought as measuring the amount of redundancy of information in the proof.

We stress that in stark contrast to MAPs and IPPs, in which a proof of linear length
trivialize the models, obtaining PCPPs of even polynomial length is extremely non-trivial.

5

1. INTRODUCTION

Nevertheless, Ben Sasson et al. [BSGH+06] showed a PCPP for 3SAT with constant query
complexity and length n1+o(1); furthermore, Dinur [Din07a] (building on [BS05]) showed
that the length of the PCPP can be reduced to n · polylog(n).

We remark that PCPPs were shown to be useful in various applications, including
PCP composition and alphabet reduction [BSGH+06, DR06], as well as construction of
locally testable and locally decodable codes. We further discuss such applications in
Section 1.2.4.

We conclude this section with Table 1.1, which presents a taxonomy of probabilistic
proof systems, according to the type of access given to the input and proof (or prover).

Access to Main Input

Access to Prover Free Access Query Access

No Proof BPP Testers

Non-Interactive, Free MA MAP

Non-Interactive, Query PCP PCPP

Interactive, Free IP IPP

Table 1.1: Taxonomy of probabilistic proof systems.

1.2 Our Results

In this section we provide brief descriptions of our main contributions to the study of
locally verifiable proofs of proximity. Full details will follow in the subsequent chapters.

1.2.1 Non-Interactive Proofs of Proximity

Together with Ron Rothblum [GR15b], we introduced the notion of non-interactive proofs
of proximity, known as Merlin-Arthur proofs of proximity (MAP), and initiated their
study. Recall that MAPs can be viewed as the NP (or more accuratelyMA) analogue of
property testing. We explored both the power and limitations of MAPs, studied the rela-
tion of MAPs to other proofs of proximity, as well as showed MAPs with sublinear query
and communication complexity for several natural properties, including parameterized
concatenation problems and properties of graphs.

Our main results include showing:

• MAPs can be exponentially stronger than testers: There exists a property that has a
MAP with proof length O(log(n)) and query complexity O(1), whereas any tester
for this property must make Ω(n0.99) queries.

6

1.2 Our Results

• MAPs can be exponentially weaker than IPPs: There exists a property that has a
polylog(n)-round IPP with polylog(n) query and communication complexity, whereas
any MAP for this property must make at least Ω(

√
n) queries, or use a proof of

length Ω(
√
n).

• An extremely hard property for MAPs: There exists a property for which every MAP
must make Ω(n) queries, even given a proof of length n/100.

• MAPs with query/proof complexity tradeoff: There exists a property Π such that, for
every p ≥ 1, there is an MAP for Π that uses a proof of length p and makes n0.999

p

queries. Furthermore, for every p, the trade-off is (almost) tight.

• MAPs can cheaply obtain one-sided error: Any MAP can be transformed into a MAP
that accepts valid inputs with probability 1, at the cost of only increasing its proof
and query complexities by at most a polylog(n) factor.

See Chapter 2 for details.

1.2.2 Proofs of Proximity for Context-Free Languages and Read-
Once Branching Programs

To further demonstrate the usefulness of both interactive and non-interactive proofs of
proximity, together with Oded Goldreich and Ron Rothblum [GGR15], we showed how
to construct proofs of proximity for two natural classes of properties: (1) context-free
languages, and (2) languages accepted by small read-once branching programs. Our
main results are:

• MAPs for these two classes, in which, for inputs of length n, both the verifier’s
query complexity and the length of the proof are Õ(

√
n).

• IPPs for the same two classes, with constant query complexity, poly-logarithmic
communication complexity, and logarithmically many rounds of interaction.

See Chapter 3 for details.

1.2.3 A Hierarchy Theorem for Interactive Proofs of Proximity

As we discussed in Section 1.1, the number of rounds, or round complexity, used in any
interactive protocol is a fundamental resource. Together with Ron Rothblum [GR17], we
considered the significance of round complexity in the context of Interactive Proofs of
Proximity (IPPs).

Our main result is a round hierarchy theorem for IPPs, showing that the power of
IPPs grows with the number of rounds. More specifically, we showed that there exists
a gap function g(r) = Θ(r2) such that for every constant r ≥ 1 there exists a language
that (1) has a g(r)-round IPP with verification time t = t(n, r) but (2) does not have an
r-round IPP with verification time t (or even verification time t′ = poly(t)).

7

1. INTRODUCTION

In fact, we proved a stronger result by exhibiting a single language L such that, for
every constant r ≥ 1, there is an O(r2)-round IPP for L with t = nO(1/r) verification time,
whereas the verifier in any r-round IPP for L must run in time at least t100. Moreover, we
showed an IPP for L with a poly-logarithmic number of rounds and only poly-logarithmic
verification time, yielding a sub-exponential separation between the power of constant-
round IPPs versus general (unbounded round) IPPs.

From our hierarchy theorem we also derived implications to standard interactive proofs
(in which the verifier can run in polynomial time). Specifically, we show that the round
reduction technique of Babai and Moran [BM88] is (almost) optimal among all blackbox
transformations, and we showed a connection to the algebrization framework of Aaronson
and Wigderson [AW09]. See Chapter 4 for details.

1.2.4 Strong Locally Testable Codes with Relaxed Local De-
coders

The separation between the power of testers and MAPs, which was discussed in Sec-
tion 1.2.1, heavily relies on error-correcting codes with local features. Motivated to
improve the foregoing separation, together with Oded Goldreich and Ilan Komargodski
[GGK15], we studied the problem of constructing codes that simultaneous exhibit both
a strong form of testability and relaxed form of decodability.

Locally testable codes (LTCs), whose systematic study was initiated by Goldreich
and Sudan [GS06], are error-correcting codes that admit very efficient codeword tests.
An LTC is said to be strong if it has a proximity-oblivious tester; that is, a tester that
makes only a constant number of queries and reject non-codewords with probability that
depends solely on their distance from the code.

Locally decodable codes (LDCs), introduced by Katz and Trevisan [KT00], are com-
plimentary to LTCs. While the latter allow for highly efficient rejection of strings that
are far from being codewords, LDCs allow for highly efficient recovery of individual bits
of the information that is encoded in strings that are close to being codewords.

Constructions of strong-LTCs with nearly-linear length are known, but the existence
of a constant-query LDC with polynomial length is a major open problem. In an attempt
to bypass this barrier, Ben-Sasson et al. [BSGH+06] introduced a natural relaxation of
local decodability, called relaxed-LDCs. This notion requires local recovery of nearly all
individual information-bits, yet allows for recovery-failure (but not error) on the rest.
Ben-Sasson et. al. constructed a constant-query relaxed-LDC with nearly-linear length
(i.e., length k1+α for an arbitrarily small constant α > 0, where k is the dimension of the
code).

We focused on obtaining strong testability and relaxed decodability simultaneously.
We constructed a family of binary linear codes of nearly-linear length that are both
strong-LTCs (with one-sided error) and constant-query relaxed-LDCs. This improved upon
the previously known constructions, which either obtain weak LTCs or require polynomial
length.

Our construction heavily relies on tensor codes and PCPs. In particular, we provided

8

1.2 Our Results

strong canonical PCPs of proximity for membership in any linear code with constant rate
and relative distance. Loosely speaking, these are PCPs of proximity wherein the verifier
is proximity oblivious (similarly to strong-LTCs) and every valid statement has a unique
canonical proof. Furthermore, the verifier is required to reject non-canonical proofs (even
for valid statements).

Using these new codes, we indeed improved the best known separation result between
the power of testers and MAPs. See Chapter 5 for details.

1.2.5 Universal Locally Testable Codes

Motivated by applications to interactive proofs of proximity, together with Oded Goldre-
ich [GG16a], we initiated a study of “universal locally testable codes” (universal-LTCs).
These codes admit local tests for membership in numerous possible subcodes, allowing for
testing properties of the encoded message. More precisely, a universal-LTC C : {0, 1}k →
{0, 1}n for a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

is a code such that for

every i ∈ [M] the subcode {C(x) : fi(x) = 1} is locally testable.

We showed a “canonical” O(1)-local universal-LTC of length Õ(M · s) for any family
F of M functions such that every f ∈ F can be computed by a circuit of size s, and
established a lower bound of the form n = M1/O(k), which can be strengthened to n =
MΩ(1) for any F such that every f, f ′ ∈ F disagree on a constant fraction of their domain.

See Chapter 6 for details.

1.2.6 Universal Locally Verifiable Codes and 3-Round Interac-
tive Proofs of Proximity for CSP

Further investigating the notion of universal-LTCs, together with Oded Goldreich [GG16b],
we initiated a study of the NP analogue of these codes, wherein the testing procedures
are also given free access to a short proof, akin to MAPs. We called such codes “universal
locally verifiable codes” (universal-LVCs). A universal-LVC C : {0, 1}k → {0, 1}η for a
family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

is a code such that for every i ∈ [M],

membership in the subcode {C(x) : fi(x) = 1} can be verified locally given an explicit
access to a short (sublinear length) proof.

We showed universal-LVCs of block length Õ(n2) for the family of all functions express-
ible by t-ary constraint satisfaction problems (t-CSP) over n constraints and k variables,
with proof length and query complexity Õ(n2/3), where t = O(1) and n ≥ k. In addition,
we proved a lower bound of p ·q = Ω̃(k) for every polynomial length universal-LVC, having
proof complexity p and query complexity q, for such CSP functions.

Lastly, we gave an application for interactive proofs of proximity. Specifically, we
showed a 3-round IPP for the set of assignments that satisfy fixed CSP instances, with
sublinear communication and query complexity, which we derived from our universal-LVC
for CSP functions. See Chapter 7 for details.

9

1. INTRODUCTION

1.3 Organization

The rest of the thesis is organized in chapters, where each chapter contains a full version
of a published paper or a paper that is currently in submission. Hence, each chapter
may be read independently of all other chapters. We note that the first section of each
chapter ends with an organization subsection that outlines the structure of that chapter,
and appendices relevant to each chapter appear immediately at the end of the relevant
chapter.

In Chapter 2 we present our results regarding MAPs (based on [GR15b]). In Chap-
ter 3 we show how to construct MAPs and IPPs for context-free languages and languages
accepted by small read-once branching programs (based on [GGR15]). In Chapter 4 we
show a hierarchy theorem for IPPs (based on [GR17]). In Chapter 5 we show a con-
struction of error-correcting code with local features, which is used to prove a stronger
separation between the power of testers and MAPs (based on [GGK15]). In Chapter 6 and
Chapter 7 we present our results regarding universal-LTCs and universal-LVCs, which in
turn enables us to construct our constant-round IPPs for constraint satisfaction problems.

Finally, in Chapter 8 we give high-level overviews of works that were not included
in this thesis but were obtained during our doctoral studies. These works are related to
property testing but not directly to locally verifiable proofs of proximity.

10

Chapter 2

Non-Interactive Proofs of Proximity

2.1 Introduction

Understanding the power and limitations of sublinear algorithms is a central question
in the theory of computation. The study of property testing, initiated by Rubinfeld
and Sudan [RS96] and Goldreich, Goldwasser and Ron [GGR98], aims to address this
question by considering highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such algorithms,
commonly referred to as property testers, are given oracle access to some object, and are
required to determine whether the object has some predetermined property, or is far (say,
in Hamming distance) from every object that has the property. Remarkably, it turns out
that many natural properties can be tested by making relatively few queries to the object.

Once a model of computation has been established, a fundamental question that arises
is to understand the power of proof-systems in this model. Recall that a proof-system
consists of a powerful prover that wishes to convince a weak verifier, which does not
trust the prover, of the validity of some statement. Since verifying is usually easier than
computing, using the power of proofs, it is often possible to overcome limitations of the
basic model of computation. In this paper we study proof-systems in the context of
property testing, with the hope that by augmenting testers with proofs we can indeed
overcome inherent limitations of property testers.

Thus, we are interested in proof-systems in which the verifier reads only a small
fraction of the input. Of course we cannot hope for such a verifier to reject every false
statement. Instead, as is the case in property testing, we relax the soundness condition
and only require that it be impossible to convince the verifier to accept statements that
are far from true statements. Such proof-systems were first introduced by Ergün, Kumar
and Rubinfeld [EKR04] and were recently further studied by Rothblum, Vadhan and
Wigderson [RVW13] who were motivated by applications to delegation of computation
in sublinear time. Rothblum et al. [RVW13] showed that by allowing a property tester
to interact with an untrusted prover (who can read the entire input), sublinear time
verification is indeed possible for a wide class of properties. As in the property testing
framework, the tester is only assured of the proximity of the input to the property and

11

2. NON-INTERACTIVE PROOFS OF PROXIMITY

hence such protocols are called interactive proofs of proximity (IPPs).

2.1.1 The Notion of MAP

In this work, we also consider proofs of proximity, but restrict the verification process
to be non-interactive. In other words, we augment the property testing framework by
allowing the tester full and free access to an (alleged) proof. Such a proof-aided tester
for a property Π, is given oracle access to an input x and free access to a proof string w,
and should distinguish between the case that x ∈ Π and the case that x is far from Π
while using a sublinear number of queries. We require that for inputs x ∈ Π, there exist
a proof that the tester accepts with high probability, and for inputs x that are far from
Π no proof will make the tester accept, except with some small probability of error.

This type of proof-system can be viewed as the property testing analogue of an NP
proof-system (whereas IPP is the property testing analogue of IP). However, in contrast to
polynomial-time algorithms, sublinear time algorithms inherently rely on randomization.1

Since an NP proof-system in which the verifier is randomized is known as a Merlin-Arthur
(MA) proof-system, we call these sublinear non-interactive proof-systems Merlin-Arthur
proofs of proximity or simply MAPs.

Following the property testing literature, we consider the number of queries that the
tester makes as the main computational resource. We ask whether non-interactive proofs
can reduce the number of queries that property testers make, and if so by how much. (We
note that [RVW13] showed that it is possible to significantly reduce the query complexity
of property testers using interactive proofs, but their proof systems rely fundamentally
on two-way interaction.)

Given the (widely believed) power of proofs in the context of polynomial-time com-
putation, one would hope that proofs can help decrease the number of queries that is
needed to test various properties. This is indeed the case. In fact, for every property Π,
consider a proof-system for the statement x ∈ Π, wherein the proof w is simply equal to
x. In order to verify the statement, the tester need only verify that indeed w ∈ Π and
that w is close to x (i.e., that the relative Hamming distance between w and x is a small
constant). The former check can be carried out without any queries to x, whereas for the
latter a constant number of queries suffice. Thus, using a proof of length linear in the
input size, any property can be tested using a constant number of queries (furthermore,
the tester has one-sided error). In contrast, there exist properties for which linear lower
bounds on the query complexity of standard property testers are known (cf. [GGR98]).

The foregoing discussion leads us to view the proof length, in addition to the number
of queries, as a central computational resource, which we should try to minimize. Thus,
we measure the complexity of an MAP by the total amount of information available to
the tester, namely, the sum of the MAPs query complexity (i.e., the number of queries
that the tester makes) and proof complexity (i.e., the length of the proof). In this work

1It is not difficult to see that the sublinear time deterministic computation or even verification is
limited to trivial properties (cf. [GS10b]).

12

2.1 Introduction

we study the complexity of MAPs in comparison to property testers and to the recently
introduced IPPs.

A Concrete Motivation. We note that the non-interactive nature of such proof-
systems may have significant importance to applications such as delegation of computa-
tion. Specifically, consider a scenario wherein a computationally weak client has reliable
query access to a massive dataset x. The client wishes to compute a function f on x,
but its limited power, along with the massive size of the dataset, prevents it from doing
so. In this case, the client can use a powerful server (e.g., a cloud computing provider)
to compute f(x) for it. However, the client may be distrustful of the server’s answer
(as it might cheat or make a mistake). Thus, an MAP for f can be used to verify the
correctness of the computation delegated to the server: Given access to x, the server can
send the value y = f(x), together with a proof of proximity that ascertains that x is close
to a dataset x′ for which f(x′) = y. The latter can be verified using an MAP verifier that
makes only a small number of queries to x.

We emphasize that the advantage in using non-interactive proofs of proximity (rather
than interactive ones) is not only in removing the need for two-way communication, but
also: (1) the proof can be “annotated” to the dataset by the server in a cheap off-line
phase; and (2) the proof can be re-used for multiple clients.

The Computational Complexity of Generating and Verifying the Proof. As
noted above, we view the number of queries and proof length as the main computational
resources. It is natural to also consider the computational complexity of generating and
verifying the proof. However, in this work our main focus is on the query and proof
complexities. Still, we note that unless stated otherwise, our protocols can be imple-
mented efficiently; that is, the proof can be generated in polynomial-time and verified in
sublinear-time.

Comparison with PCPs of Proximity. PCPs of proximity (PCPPs), first studied
by Ben-Sasson et al. [BSGH+06] and by Dinur and Reingold [DR06] (where they are
called assignment testers) are also non-interactive proof-systems in which the verifier has
oracle access to an object, and needs to decide whether the object is close to having a
predetermined property. However, PCPPs differ from MAPs in that the verifier is only
given query (i.e., oracle) access to the proof, whereas in MAPs, the verifier has free
(explicit) access to the proof. Indeed, in contrast to MAPs, the proof string in PCPPs is
typically of super-linear length (but only a small fraction of it is actually read at random).
Thus, PCPPs may be thought of as the PCP analogue of property testing, whereas MAPs
are the NP analogue of property testing.

In fact, considering a variety of non-interactive proof-systems that differ in whether
the main input and the proof are given explicitly or implicitly (i.e., via query access or
free access), leads to the taxonomy depicted in Table 2.1. Interestingly, the three other
variants, corresponding to NP,PCP and PCPP, have all been well studied. Thus, we view
the notion of MAPs as completing this taxonomy of non-interactive proof-systems.

13

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Access to Proof

Access to Main Input No Proof Free Access Oracle Access

Free Access P NP or MA PCP

Oracle Access Property Testers MAP (this work) PCPP

Table 2.1: Taxonomy of non-interactive proof-systems.

2.1.2 The Power of MAP

The first question that one might ask about the model of MAPs is whether proofs give
a significant savings in the query complexity of property testers (indeed, such savings
are the main reason to introduce a proof-system in the first place). Given the above
discussion on the importance of bounding the proof length, we seek savings in the query
complexity while using only a relatively short proof. Our first result shows that indeed
there exists a property for which a dramatic saving is possible:

Informal Theorem 2.1 (see Theorem 2.7). There exists a (natural) property that has
an MAP that uses a logarithmic-length proof and only a constant number of queries, but
requires n0.999 queries for every property tester.

Here and throughout this work, n denotes the length of the object being tested.

Having established an exponential separation between property testers and MAPs,
we continue our study of MAPs by asking how many queries can be saved by slightly
increasing the length of the proof. The following result shows a property for which a
smooth multiplicative trade-off, which is (almost) tight, between the number of queries
and length of the proof holds:

Informal Theorem 2.2 (see Theorem 2.13). There exists a (natural) property Π such
that, for every p ≥ 1, there is an MAP for Π that uses a proof of length p and makes
n0.999

p
queries. Furthermore, for every p, the trade-off is (almost) tight.

Recall that for property testers huge gaps may exist between the query complexity of
testers that have one-sided error and the query complexity of testers that have two-sided
error (where a one-sided tester is one that accepts every object that has the property
with probability 1). Notable examples for properties for which such gaps are known are
Cycle-Freeness in the bounded degree graph model (see [CGR+12]) and ρ-Clique in the
dense graph model (see [GGR98]). In contrast, we observe that such gaps can not exist
in the case of MAPs.

Informal Theorem 2.3 (see Theorem 2.20). Any two-sided error MAP can be converted
to have one-sided error with only a poly-logarithmic overhead to the query and proof
complexities.

14

2.1 Introduction

Since every property tester can be viewed as an MAP that uses an empty proof, as
an immediate corollary, we obtain a transformation from every two-sided error property
tester into a one sided MAP that uses a proof of only poly-logarithmic length (with
only a poly-logarithmic increase in the query complexity). Moreover, since (as noted
above) there are well-known properties for which one-sided error property testing is
exponentially harder than two-sided error property testing, Informal Theorem 2.3 implies
an exponential separation between MAPs (with poly-logarithmically long proofs) and one-
sided error property testing. We note that Informal Theorem 2.1 shows such a separation
for the more general case of two-sided error.

We note that all of the explicit properties that were discussed thus far are properties
“with distance”; that is, properties for which every two objects that have the property
are far apart. In other words, the set of objects forms an error-correcting code. This
distance, along with a form of local self-correction, is a crucial ingredient of the foregoing
MAPs. In contrast, all of the properties described next are properties “without distance”.
Hence, the power of MAPs is not limited to properties with distance.

MAPs for parameterized concatenation problems. We identify a family of natural
properties, for which it is possible to construct efficient MAPs, by using a generic scheme.
Specifically, for every problem that can be expressed as a parameterized concatenation
problem, we show how to construct an efficient MAP that allows a trade-off between the
query and proof complexity. Loosely speaking, a property Π is a parameterized concate-
nation problem if Π = Πα1 × · · · × Παk , for some integer k, where each property Παi is a
property parameterized by αi.

Using this generic scheme, we obtain MAPs for a couple of natural problems, including:
(1) approximating the Hamming weight of a string, and (2) graph orientation problems.
(For more details, see Section 2.6).

MAPs for graph properties. To see that MAPs are also useful for testing graph prop-
erties, we consider the problem of testing bipartiteness in the bounded-degree graph model.
We construct an MAP protocol for verifying bipartiteness of rapidly-mixing graphs, with
proof complexity p and query complexity q, for every p and q such that p · q ≥ N (where
N is the number of vertices in the graph). In particular, we obtain an MAP verifier that
uses a proof of length N2/3 and makes only N1/3 queries. This stands in contrast to the
Ω(
√
N) lower bound on the query complexity of property testers (which do not use a

proof), shown by Goldreich and Ron [GR02], which also holds for rapidly-mixing graphs.
We remark that in [RVW13] a (multi-round) IPP was given for the same problem (see
Section 2.7).

We note that in the dense graph model, testing bipartiteness (or more generally k-
colorability) can be easily done using only O(1/ε) queries (where ε represents the desired
proximity to the object) when given a proof that is simply the k-coloring of the graph
(which can be represented by N log2 k bits where N is the number of vertices and k is the

15

2. NON-INTERACTIVE PROOFS OF PROXIMITY

number of colors).2 In contrast, for standard property testers such query complexity is
impossible (see [BT04]). We note that a similar protocol (described as a PCPP) for testing
bipartiteness in the dense graph model was suggested in [EKR04] and in [BSGH+06].

MAPs for sparse properties. If a property is relatively sparse, in the sense that it
contains only t objects, then a proof of length log2 t (which fully describes the object) can
be used, and only O(1/ε) queries suffice to verify the proof’s consistency with the object.
Using this observation we note that testing k-juntas and k-linearity can be verified using
only O(1/ε) queries and a proof of length O(k log n), whereas a lower bound of Ω(k)
queries is well-known for standard property testers (cf. [Bla10]).

2.1.3 The Limitations of MAP

In the previous section, we described results that exhibit the power of MAPs. But what
are the limitations of MAPs? As discussed above, a proof of linear length suffices to
reduce the query complexity to O(1/ε). Moreover, Informal Theorem 2.1 shows that
even a logarithmically long proof can be extremely useful for a specific property. Thus,
it is natural to ask whether a sublinear proof can reduce the query complexity for every
property. The following result shows that for almost all properties, even a proof of length
n/100 cannot improve the query complexity by more than a constant factor.

Informal Theorem 2.4 (see Theorem 2.22). For almost all properties, every MAP ver-
ifier that uses a proof of length n/100 must make Ω(n) queries.3

Although Theorem 2.22 holds for most properties, finding an explicit property for
which a similar statement holds remains an interesting open question. We note that
Informal Theorem 2.4 improves upon a result of Fischer et al. [FGL14] (see discussion in
Section 2.1.5).

Since Informal Theorem 2.4 shows that even a relatively long proof cannot help in
general for every property, one might ask whether there are specific properties for which
short proofs do suffice. As was shown in Informal Theorem 2.1, this is indeed the case
and a logarithmically long proof allows for an exponential improvement in the query
complexity for a specific property. But can an even shorter, say constant-size proof,
help? Unfortunately, the answer is negative since an MAP with query complexity q and
proof complexity p can be emulated by a property tester that enumerates all possible
proofs and makes a total of Õ(2p · q) queries. Still, are there any further limits to how
proofs can help a tester?

We first note that the ability to query the object in a way that depends on the proof is
essential to the power of MAP. In contrast, consider proof-oblivious queries MAPs, which
are MAPs in which the verifer’s queries are independent of the provided proof. Such

2Note that the size of the tested object is N2, and so N log2 k is sublinear in the input size. In order
to verify this proof, the verifier chooses O(1/ε) edges at random and accepts if all are properly colored.

3In fact, we show a general additive tradeoff between proof and query complexities, that is, every
MAP verifier that uses a proof of length p must make Ω̃(n− p) queries.

16

2.1 Introduction

MAPs can be viewed as a two step process in which the verifier first (adaptively) queries
the object and only then it receives the proof and decides whether to accept or reject
based on both the answers and the proof. We say that such MAPs have proof oblivious
queries. The following result shows that MAPs with proof-oblivious queries can provide
at most a quadratic improvement over standard property testers.

Informal Theorem 2.5 (see Theorem 2.19). If a property Π has an MAP that makes
q proof oblivious queries and uses a proof of length p, then Π has a property tester that
makes O(q · p) queries.

By Informal Theorem 2.1, the restriction to proof oblivious queries is a necessary pre-
condition for Informal Theorem 2.5 (and indeed, the MAP verifier of Informal Theorem 2.1
must make proof-dependent queries).

Having inspected the relationship between MAPs and property testing, we proceed
to consider the relationship between MAPs and IPPs. Recall that MAPs are actually a
special case of IPPs in which the interaction is limited to a single message sent from the
prover to the verifier. When comparing MAPs and IPPs it is natural to compare both the
query complexity and the total amount of communication with the prover (which in the
case of MAPs is simply the length of the proof).

The following theorem shows that IPPs are stronger than MAPs not only syntactically
but also in essence. We show that even 3-message IPPs may have exponentially better
query complexity than MAPs (while using the same amount of communication). More-
over, we show that IPPs with poly-logarithmically many messages of poly-logarithmic
length can also have exponentially better communication complexity.

Informal Theorem 2.6 (see Theorem 2.16 and Theorem 2.17). There exists a property
Π such that on the one hand, any MAP for Π with proof of length n0.499+o(1) has query
complexity n0.499+o(1), and on the other hand, Π has:

1. A 3-message IPP that makes polylog(n) queries while using a total of n0.499+o(1)

communication.

2. An IPP with only polylog(n) query and communication complexities but using a
poly-logarithmic number of messages.

2.1.4 Techniques

Several of our results (in particular Informal Theorems 2.2 and 2.6) are based on a
specific algebraic property, which we call Sub-Tensor Sum and denote by TensorSum (c.f.
[LFKN92]). Let F be a finite field and let H ⊂ F be an arbitrary subset. We consider
m-variate polynomials over F that have individual degree d. The TensorSum property
contains all such polynomials whose sum on Hm equals 0.4 That is, TensorSum contains
all polynomials P : Fm → F of individual degree d such that∑

x∈Hm

P (x) = 0.

4The choice of the constant 0 is arbitrary.

17

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Selecting |F|,m, d and |H| suitably (as poly-logarithmic functions in the input size n =
|F|m), we obtain the following roughly stated upper and lower bounds for TensorSum (for
the formal statements, see the technical sections):

1. PT: The query complexity of testing TensorSum (without a proof) is Θ(n0.999±o(1))
queries.

2. MAP: The MAP complexity of TensorSum is Θ
(
n0.499±o(1)

)
. Moreover, for every

p ≥ 1, the MAP query complexity of TensorSum with respect to proofs of length p

is Θ
(
n0.999±o(1)

p

)
.

3. IPP[3]: TensorSum has a 3-message IPP with query complexity polylog(n) and
communication complexity O

(
n0.499+o(1)

)
.

4. IPP: TensorSum has an IPP with query and communication complexities polylog(n).
However, in contrast to Item 3, this IPP uses poly-logarithmically many messages.

To get a taste of our proofs, consider the (relatively) simple case wherein we restrict
the TensorSum property to dimension m = 2 and a field F of size

√
n (i.e., bivariate

polynomials over a field of size
√
n). Naturally, we call this variant the Sub-Matrix Sum

property and denote it by MatrixSum. Note that MatrixSum contains all polynomials
P : F2 → F of individual degree d = |F|/10 such that∑

x,y∈H

P (x, y) = 0.

As an MAP proof to the claim that the polynomial P is in MatrixSum, consider the

univariate polynomial Q(x)
def
=
∑

y∈H P (x, y). To verify that P is indeed in MatrixSum
the verifier acts as follows:

1. If
∑

x∈H Q(x) 6= 0, then reject.

2. Verify that P is (close to) a low degree polynomial and reject if not. This can be
done with O(d) queries via the classical low degree test (see Theorem 2.30).

3. Verify that Q is consistent with P . Since both are low degree polynomials, it suffices
for the verifier to check that Q(r) =

∑
y∈H P (r, h) for a random r ∈ F.

Actually, a technical difficulty arises from the fact that P can only be verified to
be close to a low degree polynomial. The naive solution of reading every point
via self-correction is too expensive in the case of MatrixSum. While it is possible to
overcome this difficulty using a slightly more sophisticated technique (to appear in a
forthcoming revision), the naive solution suffices for our actual setting of parameters
(for TensorSum) and so we ignore this difficulty here.

18

2.1 Introduction

By setting |H| = O(|F|) we obtain an MAP with proof and query complexity O(
√
n)

(since n = |F|2). Using more sophisticated techniques in the same spirit, we obtain both
MAP and IPP upper bounds for the TensorSum problem.5

Parameterized Concatenation Problems. Our techniques for showing MAPs for
properties that do not have distance (and a structure that allows for self-correction)
differ from the above. One class of problems that we consider is that of parameterized
concatenation problems. Such properties consists of strings that are a concatenation of
substrings, where each substring satisfies a particular parameterized property. The actual
parameterization is not known a priori to the tester, and so an MAP proof that simply
provides this parameterization turns out to be quite useful. Given this parameterization,
the MAP verifier can simply test each substring individually (or a random subset of
these substrings). Actually, in order to solve the problem more efficiently, the different
substrings are tested with respect to different values of the proximity parameter by using
a technique known as precision sampling (see survey [Gol14, Appendix A]).

Verifying Bipartiteness of Well-Mixing Graphs. Our MAP protocol for proving
bipartiteness of a given well-mixing graph G = (V,E) of size N = |V | proceeds as follows.
The proof consists of a subset W ⊆ V of vertices that are allegedly on the same side of
the graph. The verifier selects a random vertex s ∈ V and takes roughly N/|W | random
walks of length Θ(log n), starting at s. The verifier rejects if two of the walks pass through
vertices of the set W , where the lengths of the paths from s to these vertices of W have
opposite parities. Indeed, such walks cannot occur in bipartite graphs, assuming that all
vertices in S are on the same side.

We show that if the graph is rapidly mixing and far from bipartite, then, for a
O(1/ log(N)) fraction of vertices s ∈ W , the probability that a random walk starting
in s will end in W with odd (respectively, even) parity is roughly |W |/N . Since the
verifier takes N/|W | random walks starting in s, with constant probability, it will detect
a violation and reject. The analysis of our protocol is inspired by [GR02]. Interestingly,
in contrast to the analysis of the rapidly-mixing case in [GR02], our analysis crucially
relies on the random selection of the starting vertex.

Lower Bounds via MA Communication Complexity. As for our property test-
ing lower bounds, we base these on the recently introduced technique of Blais, Brody
and Metulef [BBM11]. The [BBM11] methodology enables one to obtain property test-
ing lower bounds from communication complexity lower bounds. To obtain MAP lower
bounds, we extend the [BBM11] framework. We show that lower bounds on the MA
communication complexity of a communication complexity problem related to a property
Π can be used to derive lower bounds on the MAP complexity of Π.

5We use TensorSum rather than MatrixSum because we do not know how to obtain an IPP nor a full
trade-off between proof and query complexities for MatrixSum.

19

2. NON-INTERACTIVE PROOFS OF PROXIMITY

MA communication complexity, introduced by Babai, Frankl and Simon [BFS86], ex-
tends standard communication complexity by adding a third player, Merlin, who sees
both the input x of Alice and y of Bob and attempts to convince them that f(x, y) = 1
where f is the function that they are trying to compute. We require that if f(x, y) indeed
equals 1, then there exist a proof for which Alice and Bob output the correct value (with
high probability), but if f(x, y) = 0, then no proof will cause them to output a wrong
value (except with some small error probability).

In order to show lower bounds for MAP we are thus left with the task of showing
lower bounds for related MA communication complexity problems. Fortunately, Klauck
[Kla03] showed a strong lower bound for the set-disjointness problem, which we use in our
reductions. Additionally, we extend a recent result of Gur and Raz [GR13b] who give an
MA communication complexity lower bound on the classical problem of Gap Hamming
Distance.

We note that nearly all of the lower bounds shown in [BBM11] are proved via reduc-
tions from the communication complexity problems of set-disjointness and gap Hamming
distance. Since these communication complexity problems have known MA communica-
tion complexity lower bounds (cf. [Kla03, GR13b]), these reductions, together with our
extension of the [BBM11] framework to MAPs, gives MAP lower bounds for the problems
studied in [BBM11] (e.g., testing juntas, Fourier degree, sparse polynomials, monotonic-
ity, etc.).

Lower Bounds via the Probabilistic Method. Lastly, to prove Informal Theo-
rem 2.4, which shows a property that requires Ω(n) queries even from an MAP that
has access to a proof of length n/100, we use a technique that is inspired by [GGR98],
and also uses ideas from [RVW13]. In more detail, we note that MAPs can be repre-
sented by a relatively small class of functions. Since this class of functions is small, using
the probabilistic method, we argue that a “random property” (chosen from an adequate
distribution) fools every MAP verifier in the sense that the verifier cannot distinguish
between a random input that has the property and a totally random input (which will
be far from the property).

2.1.5 Related Works

The notion of interactive proofs of proximity was first considered by Ergün, Kumar and
Rubinfeld [EKR04] (where it was called approximate interactive proofs). More recently,
Rothblum, Vadhan and Wigderson [RVW13] initiated a systematic study of the power
of this notion. Their main result is that all languages in NC have interactive proofs
of proximity with query and communication complexities roughly

√
n, and polylog(n)

communication rounds. On the negative side, [RVW13] show that there exists a language
in NC1 for which the sum of queries and communication in any constant-round interactive
proof of proximity must be polynomially related to n.

The study of interactive proofs-systems (in the polynomial-time setting), of which the
class MA is a special case, was initiated in the seminal works of Goldwasser, Micali and

20

2.1 Introduction

Rackoff [GMR89] and Babai [Bab85]. In the last decade, MA proof-systems were intro-
duced for various computational models. There is a rich body of work in the literature
addressing MA communication complexity protocols (e.g., [Kla03, GS10a, Kla11, She12]).
Aaronson and Wigderson [AW09] used MA communication complexity lower bounds to
show that, for many fundamental questions in complexity theory, any solution will re-
quire “non-algebraizing” techniques. In addition, in a recent line of research, the data
stream model was extended to support several interactive and non-interactive proof
systems. The model of streaming algorithms with non-interactive proofs was first in-
troduced in [CCM09] and extended in [CMT13, GR13b, CCGT13]. Moreover, Cor-
mode et al. [CMT12] have made a significant step toward a practical implementation
of the generic interactive proof-system of Goldwasser et al. [GKR08] for delegation of
data stream computation.

Relation to Partial Testing [FGL14]. Independently of this work, Fischer, Gold-
hirsh and Lachish [FGL14] introduced the notion of partial testing, which is closely related
to MAPs. A property Π is a said to be Π′-partially testable, for Π′ ⊆ Π, if inputs in Π′

can be distinguished from inputs that are far from Π by a tester that makes only few
queries. As pointed out by [FGL14], an MAP(p, q) for a property Π is equivalent to the
existence of sub-properties Π1, . . . ,Π2p ⊆ Π such that ∪i∈[2p]Πi = Π and for every i ∈ [2p],
the property Π is Πi-partially testable using q queries.

In our terminology, the main result of [FGL14] is that there exists a (natural) property
Π such that every MAP(p, q) for Π must satisfy that p · q = Ω(n). In contrast, Informal
Theorem 2.2 shows a different property Π′ for which p · q = Ω(n0.999). However, we also
show an (almost) matching upper bound for our property Π′ (see Informal Theorem 2.2).
We also note that Informal Theorem 2.4 (see Theorem 2.22), which was discovered follow-
ing the publication of [FGL14], shows a property for which every MAP(p, q) must satisfy
p + q = Ω(n); that is, if p = n/100, then q = Ω(n). We note that the latter result also
resolves (a natural interpretation of) a question asked by [FGL14, Open Question 1.4].6

Applications of our Work and Follow-Up Works. Our work has also found appli-
cations in unrelated studies. For example, in the study of sample-based testers, Goldreich
and Ron [GR15a] used the separation between the power of MAPs and property testers
(see Theorem 2.7) in order to show that proximity-oblivious testers do not necessarily
imply fair proximity-oblivious testers (where fair proximity-oblivious testers are such in
which every query is almost uniformly distributed). Another example is an application
for testing dynamic environments. Specifically, the separation between the power of stan-
dard MAPs and MAPs with proof-oblivious queries (see Lemma 2.6 and Theorem 2.19)
was used to show that time-conforming testers can be exponentially weaker than their
non-time-conforming counterparts (see [GR14] for details). In addition, following the pub-
lication of this work, Goldreich, Gur, and Komargodski [GGK14] improved on Informal

6Loosely speaking, in the terminology of [FGL14], Theorem 2.22 implies that for every r there exists
a property Π that can be tested with r queries, but every partition of Π into k properties Π1, . . . ,Πk,
such that Π is Pi-partially testable with O(1) queries, must satisfy that k = 2Ω(r).

21

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Theorem 2.1 by tightening the separation between MAPs and testers (see Section 2.3.1
for more details).

Non-Deterministic Testing of Graphs Last, we note that Alon et al. [AFNS06]
discussed the notion of non-deterministic property testing of graphs, which was formally
stated recently by Lovász and Vesztergombi [LV12], and further studied by Gishboliner
and Shapira et al. [GS13]. This model is a form of PCP of proximity in which both the
proof and verification procedure are restricted to be of a particular form.

2.1.6 Organization

This paper’s organization differs from the order in which our results were reviewed in the
introduction, so that technically related results are grouped together. In Section 2.2 we
formally define MAPs and property testers (which are essentially MAPs with an empty
string). In Section 2.3 we formally state and prove all of our separation results, whereas
in Section 2.4 we prove our general transformation results. In Section 2.5 we show a
property that is hard for MAPs even given a (relatively) long proof. In Section 2.6 we
consider MAPs for concatenation problems and in Section 2.7 we show our MAP for
verifying bipartiteness of rapidly-mixing graphs in the bounded degree model. Important
background material is provided in Section 2.8.1.

2.2 Definitions

In this section we formally define Merlin-Arthur proofs of proximity. We start by intro-
ducing some relevant notations and standard definitions.

A property may be defined as a set of strings. However, since we mostly consider
properties that consist of (non-Boolean) functions, it will be useful for us to use the
following (also commonly used) equivalent definition.

For every n ∈ N, let Dn and Rn be sets. For simplicity we use the convention that
Dn = [n] (and Rn will usually be of size much smaller than n). Let Fn be the set of
all functions from Dn to Rn. A property is an ensemble Π = ∪n∈N Πn, where Πn ⊆ Fn.
In the (rare) case that we test properties of strings (rather than functions), we view the
n-bit string x as a function Ix : [n]→ {0, 1} where Ix(i) = xi for all i ∈ [n]. For the rest
of this work, it will sometimes be convenient for us to refer to Π as a problem (rather
than a property), where we actually refer to the testing problems that are associated with
Π (and are defined in the following subsections).

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the

(absolute) distance of x and y as ∆ (x, y)
def
= |{xi 6= yi : i ∈ [n]}|. If ∆ (x, y) ≤ ε ·n, then

we say that x is ε-close to y, and otherwise we say that x is ε-far from y. We define the

distance of x from a set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε · n, then

we say that x is ε-close to S and otherwise we say that x is ε-far from S. We extend these
definitions from strings to functions, while identifying a function with its truth table.

22

2.2 Definitions

Notation. For a finite set S, we denote by x ∈R S a random variable x that is uniformly
distributed in S. We denote by Af (x) the output of algorithm A given an explicit input
x and implicit (i.e., oracle) access to the function f . Last, given a binary string s, we
denote its Hamming weight by wt(x).

Integrality Issues. Throughout this work, for simplicity of notation, we use the con-
vention that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the nearest integer.

2.2.1 Merlin-Arthur Proofs of Proximity

We are now ready to define Merlin-Arthur proofs of proximity.

Definition 2.1. A Merlin-Arthur proof of proximity (MAP) for a property Π = ∪n∈NΠn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in addition,
it is given oracle access to a function f ∈ Fn. The verifier satisfies the following two
conditions:

1. Completeness: For every n ∈ N and f ∈ Πn, there exists a string w (referred to as
a proof or witness) such that for every proximity parameter ε > 0:

Pr
[
V f (n, ε, w) = 1

]
≥ 2/3.

where the probability is over the random coin tosses of the verifier V .

2. Soundness: For every n ∈ N, function f ∈ Fn, string w, and proximity parameter
ε > 0, if f is ε-far from Πn, then:

Pr
[
V f (n, ε, w) = 1

]
≤ 1/3.

where the probability is over the random coin tosses of the verifier V .

If the completeness condition holds with probability 1, then we say that the MAP has
a one-sided error and otherwise we say that it has two-sided error.

We note that MAPs can be viewed as a restricted form of the interactive proofs of
proximity, studied by [RVW13] (see Section 2.2.2 for the definition of IPP).

An MAP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any w ∈ {0, 1}∗, the verifier makes at most q(n, ε) queries to f . The
MAP is said to have proof complexity p : N → N if for every n ∈ N and f ∈ Πn there
exists w ∈ {0, 1}p(n) for which the completeness condition holds.7 If the MAP has query

complexity q and proof complexity p, we say that it has complexity t(n, ε)
def
= q(n, ε)+p(n).

7Without loss of generality, using adequate padding, we assume that there is a fixed proof length p(n)
for objects of size n. The latter can be complemented by restricting the soundness condition to hold
only for strings of length p(n) (rather than strings of arbitrary length), since the verifier can immediately
reject proofs that have length that is not p(n).

23

2. NON-INTERACTIVE PROOFS OF PROXIMITY

For every pair of functions q : N× R+ → N and p : N→ N, we denote by MAP2(p, q)
(resp., MAP1(p, q)) the complexity class of all properties that have an MAP with proof
complexity O(p), query complexity O(q) and two-sided error (resp., one-sided error). We
also use MAP as a shorthand for the class MAP2.

Note that we defined MAPs such that the proofs do not depend on the proximity
parameter ε. Since our focus is on demonstrating the power of MAPs (and our lower
bounds refer to fixed valued of the proximity parameter), this makes our results stronger.
Nevertheless, see Section 2.2.1 for a discussion of the alternate notion, in which the proof
may depend on the proximity parameter.

Proof oblivious queries. An aspect of MAP proof-systems, which turns out to be
very important, is whether the queries that the verifier makes depend on the proof. An
MAP in which the queries do not depend on the proof may be thought of as the following
two step process:

1. The verifier is given oracle access to the object being tested. The verifier’s queries
may be adaptively generated (based on answers to previous queries).

2. After getting answers to all of its queries, the verifier is given explicit and free access
to the proof string (which is chosen obliviously of the verifier’s queries). Based on
the queries, answers and the proof, the verifier decides whether to accept or reject.

The foregoing discussion gives rise to the following definition.

Definition 2.2. An MAP verifier for a property Π ⊆ {Fn}n is said to make proof oblivious
queries if for every n ∈ N, function f ∈ Fn, proximity parameter ε > 0, random string
r and two proof string w,w′ ∈ {0, 1}∗, the MAP verifier, given oracle access to f , the
random string r and explicit access to n, ε, and given either the proof string w or w′,
makes the same sequence of queries.

MA proximity-oblivious testing. We also present an MA version of proximity-oblivious
testing (defined in [GR11]). Loosely speaking, a proximity-oblivious tester (POT) is a test-
ing algorithm that satisfies the following conditions: (1) it is oblivious of the proximity
parameter ε (i.e., it does not get ε as part of its input) and (2) it rejects statements that
are ε-far from true statements with probability that is some increasing function of ε. A
standard property tester can be obtained by repeating the POT sufficiently many times.

We give a definition of one-sided error MA proximity-oblivious testers, and note that
a two-sided error variant of MA proximity-oblivious testers can be defined similarly to
[GS12].

Definition 2.3. Let ρ : (0, 1] → (0, 1] be some increasing function. A (one-sided error)
MA proximity-oblivious tester for a property Π = ∪i∈NΠn with detection probability ρ con-
sists of a probabilistic verifier V that is given as explicit inputs an integer n ∈ N and a
proof string w ∈ {0, 1}∗, and is given oracle access to a function f ∈ Fn. The verifier
satisfies the following two conditions:

24

2.2 Definitions

1. Completeness: For every n ∈ N and f ∈ Πn, there exists a proof w such that:

Pr
[
V f (n,w) = 1

]
= 1.

2. Soundness: For every n ∈ N, function f ∈ Fn, and proof w, if f is ε-far from Πn,
then:

Pr
[
V f (n,w) = 0

]
≥ ρ(ε).

(In both conditions the probability is over the random coin tosses of the verifier V .)

We remark that a few of the MAPs presented in this work are based on corresponding
MA proximity-oblivious testers. The most notable example is the MAP in Theorem 2.9.

MAPs with Proximity-Dependent Proofs We defined the notion of MAPs such
that the proof of proximity is oblivious of the proximity parameter ε. However, it is also
natural to consider a relaxation of MAPs wherein the proof of proximity may depend
on the proximity parameter. In fact, one can consider two levels of relaxation: (1) the
content of the proof but not its length may depend on the proximity parameter, and (2)
both the contents and the length of the proof may depend on the proximity parameter.
We note that the first possibility is almost equivalent to the standard definition of MAP,
since it always suffices to refer to only a logarithmic number of values of ε (i.e., ε = 2i

for all i ∈ [log n]), and concatenate the proofs for these values, thus obtaining a standard
MAP with only a logarithmic overhead to the proof complexity.

Property Testing The standard definition of property testing may be derived from
Definition 2.1 by restricting both the completeness and soundness conditions to hold
when the proof length is fixed to 0. Hence, MAPs are a strict syntactic generalization of
property testers. We will always refer to a tester that uses a proof as an “MAP verifier”
and reserve “tester” solely for (standard) property testers that do not use a proof.

For a property Π and a proximity parameter ε > 0, we denote by PTε(Π) the min-
imum, over all testers T for Π, of the query complexity of T with respect to proximity
ε. For every function q : N × R+ → N, we denote by PT2(q) (resp., PT1(q)) the class
MAP2(0, q) (resp., MAP1(0, q)). We also use PT as a shorthand for the class PT2.

For a detailed introduction to property testing, see the surveys [Ron08, Ron09] and
the collection [Gol10b].

2.2.2 Interactive Proofs of Proximity

In this section we define interactive proofs of proximity, following Rothblum et al. [RVW13].8

For two interactive algorithms A and B, we denote by (Af , Bf)(x) the output of (say)
A when interacting with B when both algorithms are given x as an explicit input and
implicit (i.e., oracle) access to the function f .

8Our definition of IPP slightly differs from that of [RVW13] in that they consider the absolute distance
of objects from the property rather relative distance. (Needless to say, we take this into account when
discussing their results.)

25

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Definition 2.4. An interactive proof of proximity system (IPP) for a property Π is an
interactive protocol with two parties: a (computationally unbounded) prover P and a
verifier V, which is a probabilistic algorithm. The parties send messages to each other,
and at the end of the communication, the following two conditions are satisfied:

1. Completeness: For every ε > 0, n ∈ N, and f ∈ Πn it holds that,

Pr
[
(Vf ,Pf)(n, ε) = 1

]
≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every ε > 0, n ∈ N, f ∈ Fn that is ε-far from Πn and for every
computationally unbounded (cheating) prover P∗ it holds that

Pr
[
(Vf ,P∗)(n, ε) = 1

]
≤ 1/3.

where the probability is over the coin tosses of V.

If the completeness condition holds with probability 1, then we say that the IPP has a
one-sided error and otherwise the IPP is said to have a two-sided error.

An IPP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any prover strategy P∗, the verifier makes at most q(n, ε) queries to f when
interacting with P∗. The IPP is said to have communication complexity c : N × R+ → N
if for every n ∈ N, ε > 0 and f ∈ Πn the communication between V and P consists of
at most c(n, ε) bits. If the IPP has query complexity q and communication complexity c,
we say that it has IPP complexity q + c.

For every pair of functions c, q : N×R+ → N, we denote by IPP2(c, q) (resp., IPP1(c, q))
the complexity class of all properties that have an IPP with communication complexity
O(c), query complexity O(q) and two-sided error (resp., one-sided error). We also use
IPP as a shorthand for the class IPP2.

An important parameter of an IPP is the number of messages m sent between the
two parties. We denote by IPP[m](c, q) the set of properties that have m-message IPP
protocols in which the verifier uses at most O(c) bits of communication, and makes at
most O(q) oracles queries.

2.2.3 Useful Conventions

The proximity parameter. We view the proximity parameter as a function ε = ε(n).
For simplicity we assume that ε(n) is a non-increasing function.

Our definition of MAPs requires that soundness hold with respect to every value of
ε > 0. However, throughout this work we sometimes find it convenient to restrict the
proximity to ε ∈ (0, ε0) for some constant ε0 ∈ (0, 1). We note that latter type of MAPs
can be extended to the more general form by simply running the base tester with respect
to proximity ε′ = min(ε, ε0) (incurring only a constant overhead).

26

2.3 Separation Results

Implicit input length and proximity parameter. Throughout this work, for sim-
plicity of notation, we use the convention that the input length n and proximity parameter
ε are given implicitly to all testers and verifiers (e.g., when we write T f we actually mean
T f (n, ε)).

2.3 Separation Results

In this section we explore the power of MAP verifiers in comparison to other types of
testers, such as property testers and IPP verifiers and present properties that exhibit a
separation between these different types of testers.

In Section 2.3.1 we show an exponential gap between the complexity of PT and MAP.
In Section 2.3.2 we show a problem that has an MAP with an (almost) tight multi-
plicative tradeoff between the proof length and number of queries. In Section 2.3.3 we
consider 3-message IPP verifiers and show that they may have exponentially smaller
query complexity than MAP verifiers (when using a proof of similar length). Finally,
in Section 2.3.4 we also show an exponential gap between the total complexity (i.e.,
query plus proof/communication complexities) of MAP and general IPP (which uses a
poly-logarithmic number of messages).

2.3.1 Exponential Separation between PT and MAP

In this section we show an exponential separation between the power of property testing
and MAP. Roughly speaking, we show a property that requires roughly n0.999 queries
for every property tester but has an MAP that, while using a proof of only logarithmic
length, requires only a constant number of queries. We prove the following incomparable
variants of this result.

Theorem 2.7. For every constant α > 0, there exists a property Πα that has an MAP that
uses a proof of length O(log n) and makes poly(1/ε) queries for every ε > 1/polylog(n),
but for which every property tester must make Ω(n1−α) queries. Furthermore, the MAP
has one-sided error.

A limitation of the foregoing theorem is that the proximity parameter is required to be
larger than 1/polylog(n). We also consider two incomparable variants of Theorem 2.7 that
let us handle general values of ε. In Theorem 2.8 we do so but at the cost of increasing
the MAP query complexity to depend poly-logarithmically on n.

Theorem 2.8. For every constant α > 0, there exists a property Πα that has an MAP
that uses a proof of length O(log n) and makes poly(log n, 1/ε) queries, but for which every
property tester must make Ω(n1−α) queries. Furthermore, the MAP has one-sided error.

The above separation results refer to the general (i.e., two-sided error) classes PT2 and
MAP2. As noted in the introduction, a more restricted separation between the one-sided
error classes (i.e., between PT1 and MAP1) can be obtained by using Theorem 2.20. We

27

2. NON-INTERACTIVE PROOFS OF PROXIMITY

remark that the preliminary technical report [GR13c] also contained a proof of the follow-
ing (incomparable) variant, which can handle all values of the proximity parameter while
using poly(1/ε) query complexity, at the cost of having a smaller (yet still exponential)
gap between the power of property testers and MAPs.

Theorem 2.9 ([GR13c]). There exists a universal constant c ∈ (0, 1) and a property Π
that has an MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without
limitation on ε), but for which every property tester must make nc queries. Furthermore,
the MAP has one-sided error.9

A different proof of Theorem 2.9 is sketched in [FGL14] who, using a result of
Alon et al. [AKNS00], showed a property that requires Ω(

√
n) queries (without a proof)

but can be tested using only O(1/ε) queries and a proof of length O(log n).

Follow-Up Work. Following the publication of this work, Goldreich, Gur, and Komar-
godski [GGK14] improved the separation between MAPs and testers, achieving the best
of Theorems 2.7 to 2.9 simultaneously; that is, they obtain a separation for all values of
the proximity parameter, with constant query complexity for the MAPs, and nearly-linear
query complexity for testers.

Theorem 2.10 ([GGK14]). For every constant α > 0, there a property Πα that has an
MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation
on ε), but for which every property tester must make n1−α queries. Furthermore, the
MAP has one-sided error.

In the next subsections we will show two lemmas (Lemmas 2.5 and 2.6) that allow
us to reduce the problem of separating the power of MAPs and testers to the problem
of designing error-correcting codes that are both locally testable and locally decodable.
Theorems 2.7 to 2.10 are then obtained by instantiating Lemmas 2.5 and 2.6 with such
codes. Since the codes of [GGK14] improve upon the codes that are used to obtain
Theorems 2.7 to 2.9, we omit the more involved proof of Theorem 2.9, which consists of a
construction of a code with the desired properties (see technical report [GR13c] for details
and proof). We provide the proofs of Theorems 2.7 and 2.8, which are instantiations of
Lemmas 2.5 and 2.6 for known codes.

2.3.1.1 Our Approach

The proof of Theorem 2.7 is heavily based on error correcting codes. Recall that a code
is an injective function C : Σk → Σn over an alphabet Σ. The relative distance of the
code is the minimal relative distance between every two (distinct) codewords, and the
stretch of the code is n when viewed as a function of k. Further necessary background is
provided in Section 2.8.1.3.

9We remark that the proof of Theorem 2.9 can be adapted to yield an MA proximity-oblivious tester
(see Definition 2.3) for Π.

28

2.3 Separation Results

As discussed in the introduction, the complexities of property testers and MAP veri-
fiers with proof oblivious queries are polynomially related (see Theorem 2.19). Thus, in
order to show an exponential separation between PT and MAP, one has to use an MAP
for which the queries inherently depend on the proof. That is, the property Π should
satisfy the following:

1. Π can be efficiently verified by an MAP in which the queries are “strongly affected”
by the proof;

2. Π is hard for property testers (and hence for MAPs with proof oblivious queries).

Thus, intuitively, we seek a property that is based on a “hidden structure” that can
be tested locally if one knows where to look but cannot be tested locally otherwise.

As a first (naive) candidate, consider the property containing the set of all non-zero
strings. A short proof for this property could direct us to the exact location of a non-zero
bit, which can then be verified by a single query. However, the aforementioned property
is (almost) trivial — as all strings are close to a string with a non-zero bit. Hence, we
seek a robust version of this property.

This naturally leads us to consider an encoded version of the foregoing naive property.
Fix an error-correcting code C and consider the property that contains all codewords that
encode non-zero strings. Assuming that the code is both locally testable and locally de-
codable (i.e., both an LTC and an LDC, see Section 2.8.1.3), it is easy to test this property
using an MAP that simply specifies a non-zero coordinate of the encoded message. How-
ever, this property may also be easy to test without a proof since all one needs to do is
test that the string is not the (single) encoding of the zero message but is (close to) a
codeword.

To overcome this difficulty, we consider a “twist” of the foregoing property in which
we consider two codewords that must be non-zero on the same coordinate. That is, for
every code C, we define the encoded intersecting messages property, denoted by EIMC as:

EIMC
def
=
{(
C(x), C(y)

)
: x, y ∈ Σk, k ∈ N and ∃i ∈ [k] s.t. xi 6= 0 and yi 6= 0

}
,

where we assume that 0 ∈ Σ. We note that we could have slightly modified our definition
by requiring that xi = yi = 1 (where the choice of 1 is arbitrary) rather than xi, yi 6= 0.
Another notable variant is obtained by requiring that Σ = {0, 1}; then the property EIMC

contains all pairs of codewords whose corresponding encoded messages (viewed as sets)
intersect (i.e., are not disjoint).

For the lower bound, we only require that C have constant relative distance and the
quality of the lower bound is directly related to the stretch of the code. For the upper
bound, in addition to the constant relative distance, we need C to be both an LTC and
an LDC with small query complexities. Indeed, the query complexity of the MAP that
we construct is proportional to the number of queries required by the LTC and LDC
procedures.

It is well-known that (a suitable instantiation of) the Reed-Muller code is both an LTC
and LDC with polylog(n) query complexities, and almost linear stretch. By instantiating

29

2. NON-INTERACTIVE PROOFS OF PROXIMITY

EIM with this code, we can obtain Theorem 2.8; namely, a property that has an MAP
with a proof of length O(log n) and polylog(n) query complexity, but requires an almost
linear number of queries by any (standard) property tester.

In order to obtain a result with constant MAP query complexity (as in Theorem 2.7),
we need a code that is both an LTC and an LDC, with constant query complexities. While
LTCs with constant query complexity (and almost linear stretch) are known, constructing
LDCs with constant query complexity (and polynomial stretch) is a major open problem in
the theory of computation. However, we observe that for our construction it actually suf-
fices that C be a relaxed-LDC. Relaxed-LDCs, introduced by Ben-Sasson et al. [BSGH+06],
are a weaker form of LDCs in which the decoder is allowed to output a special abort symbol
⊥ in case it is unable to decode a corrupt codeword. However, the decoder is not allowed
to abort when given as input a correct codeword. We refer the reader to Definition 2.27
for the formal definition.

Ben-Sasson et al. [BSGH+06] used PCPPs to construct an O(1)-relaxed-LDC with
almost linear stretch. Furthermore, [BSGH+06] argue that their relaxed-LDC is also
a poly(1/ε)-LTC. However, the LTC property only holds for proximity parameter ε >
1/polylog(n). Thus, using the [BSGH+06] code, we (only) obtain Theorem 2.7. In
addition, by combining ideas and results of [BSGH+06] and [GS06] we construct an
O(1)-relaxed-LDC that is also a poly(1/ε)-LTC for general values of ε > 0, albeit with
polynomial (rather than almost linear) stretch. Using the latter result, which may be of
independent interest, we obtain Theorem 2.9.

Organization. In Section 2.3.1.2 we show that for every code C : Σk → Σn that is a
t1-relaxed-LDC and a t2-LTC, it holds that EIMC ∈ MAP

(
log k, t1(n/2)+t2(n/2, ε/2)

)
. In

Section 2.3.1.3 we show an Ω(k/ log |Σ|) lower bound on the query complexity of testing
EIMC (without a proof of proximity). In Section 2.3.1.4 we state the result of [BSGH+06]
and derive Theorem 2.7, and in Section 2.3.1.5 we prove Theorem 2.8 using an appropriate
instantiation of the Reed-Muller code.

2.3.1.2 An MAP Upper Bound for EIM

Lemma 2.5. Let C : Σk → Σn be a code with constant relative distance that is a t1-
relaxed-LDC and also a t2-LTC. Then, EIMC ∈ MAP1

(
log k, t1(n/2) + t2(n/2, ε/2)

)
.

Proof. We prove Lemma 2.5 by showing an MAP proof-system for proving proximity
to EIMC . The proof of proximity for the statement (C(x), C(y)) ∈ EIMC is simply a
coordinate i ∈ [k] such that the messages x and y are non-zero i (i.e., xi, yi 6= 0). Given
the proof i and oracle access to a pair of strings (α, β), it suffices for the verifier to check
that both α and β are close to codewords (using the LTC property) and if so to reconstruct
the ith symbol of the underlying messages (using the relaxed-LDC property). (Lastly, it
verifies that both symbols are non zero.)

The full protocol is described in Fig. 2.1, where δ0 ∈ (0, 1) denotes the relative distance
of C, and δ ∈ (0, δ0/2) denotes the decoding radius of C (i.e., strings that are δ-close to
codewords are correctly decoded by the relaxed-LDC procedure).

30

2.3 Separation Results

MAP for EIMC (where C : Σk → Σn is a t1-relaxed-LDC and a t2-LTC)

Input: a proximity parameter ε ∈ (0, 2δ) (where δ is the decoding radius) and oracle access to
a pair (α, β) ∈ Σn+n.

The Proof:

• Let x, y ∈ Σk be the unique messages encoded in α and β, respectively; that is, C(x) = α
and C(y) = β. Denote the ith symbol of x by xi, and the ith symbol of y by yi.

• The proof consists of a coordinate i ∈ [k] such that xi 6= 0 and yi 6= 0 (which exists, for
(α, β) ∈ EIMC).

The Verifier:

1. Run the local testing algorithm of C on α and on β with respect to proximity parameter
ε/2 and reject if either test rejects.

2. Run the (relaxed) local decoding algorithm of C to obtain the ith message symbol of α,
denoted σ, and the ith message symbol of β, denoted τ .

3. Accept if both σ 6= 0 and τ 6= 0, and reject otherwise.

Figure 2.1: MAP for EIMC

Since the code is a t1-relaxed-LDC and a t2-LTC, the query complexity of the MAP
is 2t1(n/2) + 2t2(n/2, ε/2), and the proof complexity is log2 k. We proceed to show that
both completeness and soundness hold.

Completeness. If (α, β) ∈ EIMc, then there exist x, y ∈ Σk such that α = C(x) and
β = C(y), and therefore the local testing algorithm succeeds. Since the proof consists of
a coordinate i for which xi, yi 6= 0, and the local decoding algorithm always succeeds, the
MAP verifier always accepts.

Soundness. Suppose that (α, β) is ε-far from EIMC and let i ∈ [k] be some alleged proof
to the false statement (α, β) ∈ EIMC . There are two possible scenarios to consider:

1. either α or β are ε/2-far from C; or

2. both α and β are ε/2-close to C.

In the first case, with probability at least 1/2, the local testing algorithm will fail and
therefore the MAP verifier rejects with probability at least 1/2. We proceed to the second
case.

Suppose that both α and β are ε/2-close to the code. Then, there exist unique
x, y ∈ Σk s.t. α is ε/2-close to C(x) and β is ε/2-close to C(y), where uniqueness holds

31

2. NON-INTERACTIVE PROOFS OF PROXIMITY

since ε/2 < δ < δ0/2. However, since (α, β) is ε-far from having the property EIMC ,
this implies that either xi = 0 or yi = 0 (where i is the alleged proof). Thus, when
running the relaxed local decoding algorithm (since ε/2 < δ), with probability at least
2/3, the decoder will output either 0 or ⊥ on one of the two codewords (with respect to
coordinate i), in which case the verifier rejects. We conclude that in both scenarios the
verifier rejects with probability at least 1/2.

2.3.1.3 A PT Lower Bound for EIM

Next, we show a that the query complexity of property testing the EIM property must
be linear in k.

Lemma 2.6. Let C : Σk → Σn be an error-correcting code with relative distance at least
δ0 ∈ (0, 1). Then, for any ε ∈ (0, δ0/2) it holds that:

PTε

(
EIMC

)
= Ω(k/ log |Σ|)

The proof of Lemma 2.6 uses the framework of [BBM11] for showing property testing
lower bounds via communication complexity lower bounds. The necessary background
on communication complexity is provided in Section 2.8.1.1 (for a comprehensive intro-
duction to communication complexity, see [KN97]).

The basic approach of [BBM11] is to reduce a hard communication complexity prob-
lem to the property testing problem for which we want to show a lower bound. We
follow [BBM11] by showing a reduction from the well-known communication complexity
problem of set-disjointness. The aforementioned framework allows us to obtain a lower
bound on the query complexity of testing the encoded intersecting messages property.

For sake of self containment, we state the relevant definitions and lemmas that we
need from [BBM11].

Definition 2.7 (Combining operators). A combining operator is an operator ψ that takes
as input two functions f, g : D → R (where D and R are some finite sets) and returns

a function hf,g. We denote by |ψ| def
= log2 |R|. The combining operator is called simple if

hf,g(x) can be computed from x, f(x) and g(x) (i.e., without requiring access to f and g).

Let Π be a property, and let ψ be a combining operator. For every integer n ∈ N and
proximity parameter ε > 0, we denote by CΠ

ψ,ε the communication complexity problem
wherein Alice gets a function f , and Bob gets a function g,10 and their goal is to decide
whether ψ(f, g) ∈ Π or ψ(f, g) is ε-far from Π.11 Next, we state the main lemma from
[BBM11].

10More formally, the parties get as input strings that represent the truth table of the functions.
11Due to the symmetrical definition of the communication complexity model, it is unimportant which

of these cases (i.e., ψ ∈ Π or ψ that is ε-far from Π) is viewed as a YES-instance of Π. In contrast, see
Footnote 13.

32

2.3 Separation Results

Lemma 2.8. For any simple combining operator ψ, any property Π and any proximity
parameter ε > 0, we have that:

PTε(Π) ≥
CC(CΠ

ψ,ε)

2|ψ|

where PTε(Π) refers to the query complexity of the property Π with respect to proximity
ε and CC(C) refers to the communication complexity of C (see Section 2.8.1.1).

Recall that the set-disjointness problem is the communication complexity problem
wherein Alice gets an n-bit string x, Bob gets an n-bit string y, and their goal is to
decide whether there exists i ∈ [n] such that xi = yi = 1. Equivalently, Alice and Bob’s
inputs can be viewed as indicator vectors of sets A,B ⊆ [n]. In this case, the goal of the
players is to decide if the sets corresponding to their inputs intersect or not. Following
many works in the literature we consider the promise problem (sometimes also called
unique disjointness) in which the intersection is of size at most 1. That is, the two
parties need to distinguish between the case that their intersection is empty, and the case
that it is of size exactly 1. We denote the latter problem by DISJn.

It is well-known (see Section 2.8.1.1) that the randomized communication complexity
of the set-disjointness problem is linear in the size of the inputs, even under the promise
that A and B intersect in at most one element.

Theorem 2.11 ([KS92]). For every n ∈ N,

CC(DISJn) = Ω(n).

Using the aforementioned results, we are ready to prove Lemma 2.6.

Proof of Lemma 2.6. Let C : Σk → Σn be an error-correcting code with relative distance
δ0 ∈ (0, 1) where we assume without loss of generality that {0, 1} ⊆ Σ. Denote by Pair
the operator that takes two strings x, y ∈ Σk and returns a function z : [k] → Σ that
outputs (xi, yi) on input i ∈ [k]. Consider CEIMC

Pair,ε , the communication complexity problem

wherein Alice gets a string x ∈ Σk, Bob gets a string y ∈ Σk, and their goal is to decide
whether (x, y) ∈ EIMC or (x, y) is ε-far from EIMC . Using the results of [BBM11] (see
Lemma 2.8) we have,

PTε(EIMC) ≥ 1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
. (2.1)

Since by Theorem 2.11 we have CC(DISJk) = Ω(k), then it suffices to show that

CC
(
CEIMC
Pair,ε

)
≥ CC(DISJk). (2.2)

Toward this end, we show a reduction from the communication complexity problem
DISJk to the communication complexity problem CEIMC

Pair,ε . We note that, under the natural
association of EIMC with YES-instances and “far from EIMC” with NO-instances, our

33

2. NON-INTERACTIVE PROOFS OF PROXIMITY

reduction maps YES (resp., NO) instances of DISJk to NO (resp., YES) instances of EIMC .
Let π be a protocol for CEIMC

Pair,ε with communication complexity c. Consider the following
protocol for DISJk.

Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively) for DISJk. Alice
computes α = C(x). Bob computes β = C(y). The players then run π on (α, β) and
return the negation of its output.

Indeed, if (x, y) ∈ DISJk (i.e., their intersection is empty), then for every i ∈ [k], either
xi = 0 or yi = 0. Since the relative distance of C is at least δ0, it holds that (α, β) is
(δ0/2)-far from EIMc. On the other hand, if (x, y) 6∈ DISJk (i.e., their intersection is of
size 1), then there exists i ∈ [k] such that xi = yi = 1. Hence,

(
α, β

)
∈ EIMc. Moreover,

note that the total number of bits that were communicated is exactly c.
Using Eq. (2.1) and Eq. (2.2), together with Theorem 2.11, we conclude that for every

ε > 0,

PTε(EIMc) ≥
1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
≥ 1

2 log |Σ|
CC(DISJk) = Ω(k).

2.3.1.4 Proof of Theorem 2.7

In order to obtain an O(1)-relaxed-LDC that is also a poly(1/ε)-LTC, we shall use the
following construction of Ben-Sasson et al. [BSGH+06].

Theorem 2.12 ([BSGH+06, Remark 4.6]). For every α > 0, there exists a binary code
that is an O(1)-relaxed-LDC and a t-LTC with constant relative distance and stretch n =
k1+α, where for ε > 1/polylog(n) it holds that t(n, ε) = poly

(
1
αε

)
.

Theorem 2.7 follows by combining Theorem 2.12 with Lemma 2.5 and Lemma 2.6.

2.3.1.5 Proof of Theorem 2.8

In this section we show that a well-known variant of the Reed-Muller error-correcting code
is an polylog(n)-LDC (and in particular a polylog(n)-relaxed-LDC) and a poly(log n, 1/ε)-
LTC. Combining the latter with Lemma 2.5 and Lemma 2.6, we prove Theorem 2.8.

Lemma 2.9. For every constant α > 0, there exists a polylog(n)-LDC that is also a
poly(log n, 1/ε)-LTC with stretch n = k1+α and relative distance 1− o(1).

Proof. We construct a code C : Σk → Σn as follows. Fix a finite field F and an integer
m such that |F|m = n. The alphabet of the code is Σ = F. Consider an arbitrary subset
H ⊂ F of size k1/m. We view a message x ∈ Fk as a function x : Hm → F by identifying
Hm and [k] in some canonical way. The encoding C(x) is the low degree extension x̂ of
x with respect to the field F. Namely, the (unique) m-variate polynomial of individual
degree |H| − 1 that agrees with x on Hm.

The code stretches k = |H|m symbols to n = |F|m symbols, and by the Schwartz-

Zippel Lemma it has relative distance at least 1 − m|H|
|F| . Furthermore, the code can be

34

2.3 Separation Results

locally tested using O(m|H| · poly(1/ε)) queries (see Theorem 2.31), and locally decoded
using O(m|H|) queries (see Theorem 2.29). Thus, to obtain our result we need to set
our parameters as to maximize the ratio |H|/|F|, while minimizing m · |H| and keeping
|F| > m · |H|.

For every constant α > 0 and every integer n ∈ N, we let F be a finite field of
size (log n)1/α, let m = α · logn

log log(n)
and let H be some fixed (arbitrary) subset of F of

size |F|1−α. Hence, m·|H|
|F| = α · logn

log logn
· |F|−α = o(1). The code has relative distance

1 − (|H|−1)·m
|F| = 1 − o(1), stretch n = |F|m = |H|m/(1−α) = k1/(1−α). In addition, it

can be locally tested using poly(log n, 1/ε) queries, and locally decoded using polylog(n)
queries.

A natural property. We remark that when the encoded intersecting messages property
is instantiated with the foregoing variant of the Reed-Muller code, we obtain a natural
property that consists of pairs (P,Q) of low-degree polynomials, whose product P ·Q is
non-zero on a given subset of its domain. That is, the property is

ΠF,d,m,H =

{
(P,Q) : P,Q : Fm → F have individual degree d and

∑
x∈Hm

(P ·Q)(x) 6= 0

}
.

2.3.2 Trade-off between Query and Proof Complexity

In this section we show a property that has a multiplicative trade-off between proof and
query complexities for MAP testing. We show a property that can be tested with a nearly
smooth tradeoff between the proof and query complexities.

Theorem 2.13. For every constant α > 0, there exists a property Πα such that for every
sublinear function p : N → N, the query complexity of Π for MAP verifiers, which use

proofs of length p, is upper bounded by n1−α+o(1)

p
·poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Our proof is heavily based on multivariate polynomials, and we refer the reader to
Section 2.8.1.4 for the necessary background (e.g., the Schwartz-Zippel lemma and low
degree testing). In fact, the proof of Theorem 2.13 is based on a specific algebraic property
that we call Sub-Tensor Sum. We note that this property will also be used in Section 2.3.3
and Section 2.3.4.

We proceed to describe the sub-tensor sum problem. Let F be a finite field, let
m, d ∈ N such that d ·m < |F|/10 and let H ⊂ F. Consider the following property.

Definition 2.10. The Sub-Tensor Sum property, denoted TensorSumF,m,d,H , is parame-
terized by a field F, a dimension m ∈ N, a degree d ∈ N and a subset H ⊂ F, and contains
all polynomials P : Fm → F of individual degree d, such that∑

x∈Hm

P (x) = 0

where the arithmetic is over F.

35

2. NON-INTERACTIVE PROOFS OF PROXIMITY

To obtain a tight trade-off, we shall be using some d = Θ(|H|). To simplify the
notation, when the parameters are clear from the context, we shorthand TensorSum for
TensorSumF,m,d,H . Next, we proceed to show the (almost) tight multiplicative trade-off
for TensorSum. In Section 2.3.2.1 we prove the upper bound and in Section 2.3.2.2 we
prove the lower bound. Finally, in Section 2.3.2.3 we set the parameters for proving
Theorem 2.13.

2.3.2.1 MAP Upper Bound for TensorSum

We start by proving the following upper bound.

Lemma 2.11. If dm < |F|/10, then, for every ` ∈ {0, . . . ,m}, the TensorSumF,m,d,H
property has an MAP with proof complexity (d+1)` ·log(|F |) and query complexity |H|m−` ·
(dm2 log |H|) · poly(1/ε). Furthermore, the MAP has a one-sided error.

We note that the additional parameter ` essentially controls the proof length (and
will be set as roughly the logarithm of the desired proof length). Moreover, d will be set
such that d = Θ(|H|) and therefore d` · |H|m−` ≈ |H|m and so we can set ` to obtain the
desired trade-off between proof and query complexities.

Proof of Lemma 2.11. We prove the lemma by showing an MAP protocol for the state-
ment P ∈ TensorSum. The main idea is to partition Hm into |H|` sub-tensors of the
form (x1, . . . , x`, ∗, ∗, . . . , ∗) for every x1, . . . , x` ∈ H, and use a low degree `-variate poly-
nomial Q such that Q(x1, . . . , x`) equals the sum of the (x1, . . . , x`)

th tensor over Hm−`.
Specifically, we refer to the polynomial:

Q(x1, . . . , x`) =
∑

x`+1,...,xm∈H

P (x1, . . . , xm).

Thus, the MAP proof for the statement P ∈ TensorSum, consists of the polynomial
Q. The verifier checks that (1) P is (close to) a low degree polynomial, (2) the sum of
Q on H` is 0, and (3) that Q is consistent with P . The last step uses the fact that both
Q and P are low degree polynomials and so it suffices to verify consistency of a random
point in Q by reading the entire corresponding sub-tensor (i.e., |H|m−` points) from P .
Actually, since P can only be verified to be close to a low degree polynomial, the |H|m−`
points are read via self-correction. The detailed protocol is presented in Fig. 2.2 (where
all arithmetic is over F).

Note that the proof of proximity consists of |Q| = O((d + 1)` log |F|) bits and that
the total number of queries to the oracle is dominated by the |H|m−` invocations of
the self-correction algorithm (which requires (m log(|H|) · dm · poly(1/ε) queries for each
invocation to obtain the desired soundness level). We proceed to show that completeness
and soundness hold.

36

2.3 Separation Results

MAP for TensorSum with parameter ` ≤ m

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

The Proof:

• The proof consists of a multivariate polynomial Q̃ : F` → F of individual degree d
(specified by its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

The Verifier:

1. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then reject.

2. Run the low individual d-degree test (see Theorem 2.31) on P with respect to the
proximity parameter ε. If the test fails, then reject.

3. Select uniformly at random r1, . . . , r` ∈R F.

4. For every x`+1, . . . , xm ∈ H, read the value of P (r1, . . . , r`, x`+1, . . . , xm) using self cor-
rection (see Theorem 2.29) repeated O(m log(|H|)) times (to reduce the error probability
to 1

10|H|m for each point). Denote the value read by zr1,...,r`,x`+1,...,xm .

5. Accept if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm and otherwise reject.

Figure 2.2: MAP for TensorSum

Completeness. If P ∈ TensorSum, then
∑

x1,...,x`∈H Q(x1, . . . , x`) = 0 and P has individ-

ual degree d (and so the individual degree test passes). Moreover, in this case Q̃ = Q
and

Q(r1, . . . , r`) =
∑

x`+1,...,xm∈H

P (r1, . . . , r`, x`+1, . . . , xm).

By the zero-error feature of the self-correction procedure, with probability 1,

zr1,...,r`,x`+1,...,xm = P (r1, . . . , r`, x`+1, . . . , xm),

and therefore
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q̃(r1, . . . , r`). Hence, in this case, the veri-
fier accepts with probability 1.

Soundness. Let ε > 0 and let P : Fm → F be a polynomial that is ε-far from TensorSum.
Let Q̃ be an alleged proof (to the false statement P ∈ TensorSum).

37

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Consider first the case that P is ε-far from having individual degree d. In this case,
by the individual degree test (Theorem 2.31), the verifier rejects with probability at least
1/2. Thus, we focus on the case that P is ε-close to a polynomial P ′ of individual degree
d. We may also assume that

∑
x1,...,x`∈H Q̃(x1, . . . , x`) = 0 (since otherwise the verifier

rejects with probability 1). Define

Q′(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P ′(x1, . . . , xm).

Clearly
∑

x1,...,x`
Q′(x1, . . . , x`) 6= 0 (since otherwise P is ε-close to P ′ ∈ TensorSum).

Thus, the individual degree d polynomials Q′ and Q̃ differ, and so, by the Schwartz-
Zippel Lemma they can agree on at most a d`

F fraction of their domain F`.
To complete the argument note that the self-correction algorithm guarantees that

every zr1,...,r`,x`+1,...,xm is equal to P ′(r1, . . . , r`, x`+1, . . . , xm), with probability 1 − 1
10|H|m

(here we use our assumption that, without loss of generality, ε < 1/3). Therefore, by the
union bound, all points are read correctly with probability at least 0.9, and in this case∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q′(r1, . . . , r`). Thus, with probability 0.9·(1− dm
F) ≥ 2/3,

the verifier rejects when testing that Q̃(r1, . . . , r`) equals
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm .

2.3.2.2 MAP Lower Bound for TensorSum

Next, we give an (almost) matching lower bound on the MAP complexity of Sub-Tensor
Sum. Formally, we show

Lemma 2.12. For every ε ∈ (0, 1− dm
|F|), if d ≥ 2(|H|−1), then every MAP for TensorSum

(with respect to proximity parameter ε) that has proof complexity p ≥ 1 must have query

complexity q = Ω
(
|H|m
p·log |F|

)
.

As an immediate corollary of Lemma 2.12 we obtain the following:12

Corollary 2.14. For every ε ∈ (0, 1− dm
|F|), if d ≥ 2(|H| − 1),

PTε(TensorSum) = Ω

(
|H|m

log(|F|)

)
.

In order to prove Lemma 2.12, we first extend the framework of [BBM11] from the
property testing model to the MAP model. More specifically, we show a methodology
for proving lower bounds on MAPs via MA communication complexity lower bounds. We
refer the reader to Section 2.8.1.2 for background on MA communication complexity.

Let Π be a property and let ψ be a simple combining operator (see Definition 2.7). For
every proximity parameter ε > 0, denote by CΠ

ψ,ε the communication complexity problem
in which Alice gets as input a function f and Bob gets as input a function g and they

12The corollary can be derived by setting p = 1, and the fact that any property tester is an MAP.

38

2.3 Separation Results

need to decide between a YES-instance, wherein ψ(f, g) ∈ Π, and a NO-instance, wherein
ψ(f, g) is ε-far from Π.13 We prove the following lemma.

Lemma 2.13 (MAP lower bounds via MA communication complexity). For any sim-
ple combining operator ψ, any property Π and any proximity parameter ε > 0, if Π ∈
MAP(p, q), then CΠ

ψ,ε has an MA communication complexity protocol with a proof of length
p and total communication 2q|ψ|.

Proof. Let V be an MAP verifier for Π with proof complexity p and query complexity q.
We construct an MA communication complexity protocol for CΠ

ψ,ε. Recall that Alice and
Bob get as input function f and g (respectively) and have free access to a proof string
w ∈ {0, 1}p.

The (honest) proof string for the protocol is simply the proof string w of the MAP

with respect to h
def
= ψ(f, g). As their first step, Alice and Bob emulate the execution of

the MAP protocol with respect to the proof string w using their common random string
as the source of randomness (for the emulated verifier). Whenever the MAP verifier V
queries the input at a point x, Alice and Bob compute f(x) and g(x) (respectively) and
send their values to each other. Since ψ is a simple combining operator, each player
can compute h(x) from x, f(x) and g(x), and feed it as an answer to the emulated MAP
verifier. The players accept if V accepts, and reject otherwise.

Observe that both players use the same common random string as the source of
randomness, and forward the same values to the MAP verifier (i.e., both the proof string
and the oracle answers). Therefore, they emulate the verifier identically.

Note that by the definition of the communication complexity problem, if (f, g) ∈ CΠ
ψ,ε,

then h ∈ Π; hence the verifier will accept. On the other hand, if the pair (f, g) /∈ CΠ
ψ,ε,

then h is ε-far from Π, so the verifier will reject.
During the entire reduction, the players communicated 2|ψ| bits for every query of

the verifier. Hence the total number of bits that were communicated is 2|ψ| · q.

We proceed by stating Klauck’s lower bound on the MA communication complexity
of set-disjointness [Kla03], and use Lemma 2.13 to show a lower bound on the MAP
complexity of the Sub-Tensor Sum property.

Theorem 2.15 ([Kla03]). Every MA communication complexity protocol for DISJn with
proof complexity p and communication complexity c satisfies p · c = Ω(n).

Proof of Lemma 2.12. Denote k = |H|m and by f · g the function h(x)
def
= f(x) · g(x).

Let CTensorSum·,ε be the communication complexity problem wherein Alice gets a function

13 When proving property testing lower bounds via standard (i.e., non-MA) communication complexity
lower bounds (using [BBM11] framework) one may also map YES-instances (respectively, NO-instances)
of communication complexity problems to NO-instances (respectively, YES-instances) of property testing
problems. This is possible due to the symmetrical definition of standard communication complexity (in
fact, the above was used in the proof of Lemma 2.6). In contrast, the definition of MA communication
complexity is asymmetrical ; therefore when using our extension of the framework to MA one must map
YES-instances to YES-instances, and NO-instances to NO-instances.

39

2. NON-INTERACTIVE PROOFS OF PROXIMITY

f : Fm → F, Bob gets a function g : Fm → F, and their goal is to decide whether
f · g ∈ TensorSum or f · g is ε-far from TensorSum.

Recall that by Theorem 2.15 we know that every MA communication complexity
protocol for DISJk with proof complexity p and communication complexity c satisfies
p ·c = Ω(k). On the other hand, by Lemma 2.13 we know that if TensorSum ∈ MAP(p, q),
then CC(CTensorSum·,ε) has an MA communication complexity protocol with a proof of length
p and a total of 2q log |F| communication.

Hence, to prove the lemma, it suffices to reduce DISJk to CTensorSum·,ε (this reduction
takes place entirely within the setting of MA communication complexity). Toward this
end, suppose that π is an MA communication complexity protocol for CTensorSum·,ε with proof
complexity p and communication complexity c. We use π to construct an MA protocol
for DISJk.

Let a ∈ {0, 1}k and b ∈ {0, 1}k be the respective inputs of Alice and Bob for the
set-disjointness problem. Recall that F (a finite field), d (the individual degree), m (the
dimension) and H ⊂ F are parameters of the TensorSum problem. The reduction to
TensorSum proceeds as follows. First, Alice and Bob compute the low degree extension
â and b̂ of their respective inputs with respect to F,m, d and H. Namely, they associate
their inputs a and b with indicator functions a, b : Hm → {0, 1} by mapping [k] to Hm

in some canonical way. Then, they compute the (unique) polynomials â, b̂ : Fm → F of
individual degree |H| − 1 that agree with a and b (respectively) on Hm.

Denote by w the proof for the protocol π with respect to the input pair (â, b̂). The
proof for the set disjointness problem is simply w. Alice and Bob proceed by running
π on input (â, b̂), with respect to the proof w and proximity parameter ε and return its
output.

Observe that if (a, b) ∈ DISJk, then
∑

i∈[k] aibi = 0 (where the summation is over the

integers). Hence,∑
x1,...,xm∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 0

(where the first summation is over F, and the second summation is over the integers).
Thus, â · b̂ ∈ TensorSumF,m,d,H (here we use the lemma’s hypothesis that d ≥ 2(|H| − 1)

since â · b̂ is the product of two polynomials of individual degree |H| − 1). We conclude
that there exists a proof w of length p such that the MA communication complexity
protocol for DISJk accepts with high probability.

On the other hand, if (a, b) 6∈ DISJk, then (by the promise of having an intersection of
size at most 1) it holds that

∑
i∈[k] aibi = 1 (where the summation is over the integers).

Hence∑
x1,...,∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 1

(where the first summation is over F, and the second summation is over the integers).
Thus, â · b̂ is an m-variate polynomials of (individual) degree d (≥ 2(|H| − 1)) whose

40

2.3 Separation Results

sum over Hm is non-zero. By the Schwartz-Zippel lemma (see Section 2.8.1.4), and since
ε < 1− dm

|F| , the function â · b̂ is at least ε-far from TensorSum.
We conclude that every MAP verifier for TensorSum with q queries and p proof length

must satisfy q · p ≥ Ω
(

k
log(|F|)

)
.

2.3.2.3 Proof of Theorem 2.13

In this section we complete the proof of Theorem 2.13, which states that for every constant
α > 0, there exists a property Πα such that for every sublinear function p : N → N, the
query complexity of Π for MAP verifiers that use proofs of length p is upper bounded by
n1−α+o(1)

p
· poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Toward this end, we need to set the parameters of the TensorSum problem. Our
parameters are governed by n = |F|m (i.e., the size of the object equals n), dm < |F|/10
(so that we can apply the Schwartz-Zippel lemma) and d = 2(|H|−1) (see Lemma 2.12).
Since p · q = Ω̃(|H|m), and the object size is |F|m, we need to maximize the ratio |H|/|F|
to obtain a better lower bound (while recalling that |H| ≤ d/2− 1).

For every constant α > 0 and every integer n ∈ N, let F be a finite field of size
(log n)1/α, let m = α · logn

log log(n)
, let H be some fixed (arbitrary) subset of F of size |F|1−α

and let d = 2(|H| − 1). Note that |F|m = n and |H|m = n1−α.
Lemma 2.11 guarantees the existence of an MAP for TensorSumF,m,d,H with proof

complexity (d+1)` · log(|F |) and query complexity |H|m−` ·dm2 log(|H|) for every ` ∈ [m].
Thus, for every parameter p ∈ {(d+ 1)i · log(|F|) : i ∈ N} (which corresponds to the
proof length), we set:

` =
log(p)− log log(|F |)

log(d+ 1)
.

and apply Lemma 2.11. We obtain an MAP protocol for computing TensorSumF,m,d,H
with a proof of length

(d+ 1)` · log(|F |) = p

and query complexity:

|H|m−` · dm2 log(|H|) · poly(1/ε) =
n1−α

|H|`
· polylog(n) · poly(1/ε). (2.3)

By our setting of ` we have:

|H|` = |H|
log p−log log |F|

log(d+1) ≥ 2
log |H|

log(2|H|) ·(log p−log log |F|) =

(
p

log |F|

)1− 1
1+logH

≥ p

no(1)
(2.4)

where the first inequality follows from d = 2(|H|−1) ≤ 2|H|−1 and the second inequality
follows from our setting of |H| and |F| (and since p ≤ n). Combining Eq. (2.3) and

Eq. (2.4) we have that the query complexity of the MAP is n1−α+o(1)

p
· poly(1/ε).

On the other hand, by Lemma 2.12, for every MAP for TensorSum with proof com-

plexity p and query complexity q, it holds that p ·q ≥ Ω
(
|H|m
log |F|

)
= Ω̃(n1−α). The theorem

follows.

41

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2.3.3 MAP vs. IPP[O(1)]

In this section and the following one, we consider the power of MAP in comparison to the
more general notion of IPP (for a formal definition of IPP, see Section 2.2.2.) Roughly
speaking, in this section we show a property that requires

√
n queries by an MAP verifier

that uses a proof of length
√
n but requires only polylog(n) queries by an IPP[3] verifier

(i.e., an IPP with only 3-messages) that also uses a proof of length
√
n.

Theorem 2.16. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α); and

2. There is an IPP[3] for Πα with polylog(n) · poly(1/ε) query complexity and commu-
nication complexity Õ(n1/2−α+o(1)).

The property that we use is the TensorSum property (introduced in Section 2.3.2).
Note that the first part of Theorem 2.16 was already shown in Theorem 2.13, and so,
to prove Theorem 2.16, what remains to be shown is that TensorSum can be tested by a
3-message IPP verifier that uses roughly

√
n communication and polylog(n) queries.

Lemma 2.14. If dm < |F|/10, then there is a 3-message IPP for TensorSumF,d,m,H (where
F is a finite field, m is the dimension, d is the degree and H ⊂ F) with communication
complexity O

(
(d+ 1)m/2 log(|F|)

)
and query complexity O (dm · poly(1/ε)).

We note that Theorem 2.16 follows from Lemma 2.14 (and Lemma 2.12) by setting the
parameters F,m, d,H as in Section 2.3.2.3. Namely, fix a finite field F of size (log n)1/α, a
dimension m = α· logn

log log(n)
, an arbitrary subset H ⊂ F of size |F |1−α and set d = 2(|H|−1).

We proceed to prove Lemma 2.14

Proof of Lemma 2.14. The first part of the protocol closely resembles the MAP that was
presented in Lemma 2.11. Indeed, the first message from the prover to the verifier is the
polynomial Q that is (allegedly) the sum of P on H` sub-tensors of Hm, each of dimension
m−`. The verifier checks that P is close to a low degree polynomial and that Q sums to 0,
but the consistency check of P and Q is different. Recall that in Lemma 2.11, the verifier
chose a random sub-tensor and checked the consistency of Q and P by reading all points
in the sub-tensor. Using two additional messages we replace these queries by having the
prover provide them. That is, after the prover “commits” to the sum of all sub-tensors,
the verifier chooses one of them at random and sends its choice to the prover. Then, the
prover provides the value of all points in that sub-tensor via a polynomial W : Fm−` → F
of individual degree |H| − 1. The verifier can readily check the that the two polynomials
Q and W sent by the prover are consistent with each other (using no queries to P), and
that the second polynomial (i.e., W) is consistent with P using only a constant number
of queries.

Similarly to the protocol of Section 2.3.2, the protocol uses a parameter ` except
that in this case, an optimal result is obtained by fixing ` = m/2 (but for simplicity of
notations we keep ` as a parameter). The IPP[3] protocol, in which the prover is denoted

42

2.3 Separation Results

by P and the verifier is denoted by V , is described in Section 2.3.3. It can be readily
verified that by setting ` = m/2, the query and communication complexities are as stated.
We proceed to prove that completeness and soundness hold.

IPP[3] for TensorSum

Parameters: F (field), m (dimension), d (individual degree), H ⊂ F and ` = m/2.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the low individual d-degree test (see Theorem 2.31) on P with respect to the
proximity parameter ε. If the test fails then V rejects.

2. P sends to V an individual degree d multivariate polynomial Q̃ : F` → F of individual
degree d (by specifying its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

3. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then V rejects.

4. V selects uniformly at random r1, . . . , r` ∈R F and sends r1, . . . , r` to P.

5. P sends to V an individual degree d multivariate polynomial W̃ : Fm−` → F of individual
degree d (by specifying its (d+ 1)m−` coefficients), which allegedly equals

W (x`+1, . . . , xm)
def
= P (r1, . . . , r`, x`+1, . . . , xm).

6. V selects at random s`+1, . . . , sm ∈R F, reads the value zr1,...,r`,s`+1,...,sm of the polynomial
P (r1, . . . , r`, s`+1, . . . , sm) using the self-correction algorithm (see Theorem 2.29) with
soundness error 1/10 and rejects if zr1,...,r`,s`+1,...,m 6= W (s`+1, . . . , sm).

7. V accepts if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H W̃ (x`+1, . . . , xm) and rejects otherwise.

Figure 2.3: IPP[3] for TensorSum

Completeness. If P ∈ TensorSum, then P has individual degree d and the low degree
tests passes. In this case Q̃ = Q and W̃ = W and therefore all the verifier’s tests pass
(since

∑
x1,...,x`∈H Q(x1, . . . , x`) = 0 holds as well).

Soundness. Let ε > 0 and let P : Fm → F be ε-far from TensorSum. If P is ε-far
from having individual degree d, then the low degree test rejects with probability at least
1/2 and so we assume that P is ε-close to an individual degree d polynomial P ′. The

43

2. NON-INTERACTIVE PROOFS OF PROXIMITY

(cheating) prover sends two polynomials Q̃ and an W̃ . We proceed to prove two claims
regarding these polynomials.

Claim 2.14.1. If Q̃(x1, . . . , x`) ≡
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) (as formal polynomials

over x1, . . . , x`), then the verifier rejects with probability 1.

Proof. Observe that
∑

x1,...,xm∈H P
′(x1, . . . , xm) 6= 0, as otherwise P is ε-close to TensorSum.

Therefore, if the polynomials Q̃(x1, . . . , x`) and
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) are equal,

then the verifier rejects when testing whether
∑

x1,...,x`∈H Q̃(x1, . . . , x`) = 0.

Claim 2.14.2. For every value of r1, . . . , r` ∈ F, if the prover sends an individual-
degree d polynomial W̃ (x`+1, . . . , xm) (which depends on r1, . . . , r`) that differs from the
polynomial P ′(r1, . . . , r`, x`+1, . . . , xm) (as formal polynomials in x`+1, . . . , xm), then the
verifier rejects with probability at least 2/3.

Proof. Assume that W̃ (x`+1, . . . , xm) 6≡ P ′(r1, . . . , r`, x`+1, . . . , xm). Thus, the polyno-
mials W̃ (x`+1, . . . , xm) and P ′(r1, . . . , r`, x`+1, . . . , xm) are two different (m − `)-variate
polynomials of individual degree d and, by the Schwartz-Zippel Lemma, they can agree
on at most a d(m−`)

|F| < 0.1 fraction of their domain. Therefore, with probability 0.9 over
the verifier’s choice of s`+1, . . . , sm ∈ F, it holds that

W̃ (s`+1, . . . , sm) 6= P ′(r1, . . . , r`, s`+1, . . . , sm).

Using the self-correction procedure, with probability at least 0.9, the verifier cor-
rectly obtains the value zr1,...,r`,s`+1,...,sm = P ′(r1, . . . , r`, s`+1, . . . , sm). Hence, with prob-
ability at least 0.92 > 2/3, the verifier rejects when testing whether zr1,...,r`,s`+1,...,sm =

W̃ (s`+1, . . . , sm).

By Claim 2.14.2, we can assume that

W̃ (x`+1, . . . , xm) ≡ P ′(r1, . . . , r`, x`+1, . . . , xm) (2.5)

(since otherwise the verifier rejects). On the other hand, by Claim 2.14.1 and using the
Schwartz-Zippel Lemma, with probability at least 1− d`

|F| over the choice of r1, . . . , r` ∈R F,
it holds that

Q̃(r1, . . . , r`) 6=
∑

x`+1,...,xm∈H

P ′(r1, . . . , r`, x`+1, . . . , xm) =
∑

x`+1,...,xm∈H

W̃ (x`+1, . . . , xm)

where the last equality is due to Eq. (2.5). Hence, the verifier rejects with probability
1 − d`

|F| > 0.9 when testing whether Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈HW (x`+1, . . . , xm). This
completes the proof of Lemma 2.14.

44

2.3 Separation Results

2.3.4 Exponential Separation between MAP and IPP

In this section we show an exponential separation between MAP and general IPP. Namely,
we show a property that has MAP complexity roughly

√
n but has IPP complexity

polylog(n). In contrast to the IPP of Section 2.3.3 (which used O(1) messages) here
we use an IPP with poly-logarithmically many messages.

Theorem 2.17. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α · poly(1/ε)

)
; and

2. Πα has an IPP with query complexity polylog(n) · poly(1/ε) and communication
complexity polylog(n).

Moreover, the PT complexity of Πα is Θ̃(n1−α).

To prove Theorem 2.17, we yet again use the TensorSum problem. The first part of
the theorem follows directly from Theorem 2.13 and the query complexity of property
testers (without a proof) is implied by Corollary 2.14.14 Thus, to prove the theorem, all
that remains is to show an IPP protocol for TensorSum.

Lemma 2.15. If d ·m < F/10, then there exists an m-round IPP for TensorSumF,m,d,H
with communication complexity O(dm log |F |), and query complexity O(dm · poly(1/ε)).

Proof. The proof of Lemma 2.15 follows by adapting the well-known sum-check protocol
of Lund et al. [LFKN92] to the settings of interactive proofs of proximity. Recall that
the sum-check protocol is an interactive protocol that enables verification of the a claim
of the form: ∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a low-degree polynomial. The difference between our setting and the classical
setting of the sum-check protocol of [LFKN92] is that in the latter the verifier has explicit
and direct access to P .15 In our setting the verifier only has oracle access to a function that
is allegedly a low-degree polynomial. However, we observe that the sum-check protocol
can be extended to this setting by having the verifier (1) test that the function is close
to a low-degree polynomial P , (2) obtain values from P via self-correction, and (3) run
the sum-check protocol as-is with respect to the self-corrected P . The IPP protocol is
described in Fig. 2.4, where the prover is denoted by P , the verifier is denoted by V and
all arithmetic is over the field F. (For a high level description of the sum-check protocol,
see Section 2.8.1.5.)

We note that during the run of the IPP the prover sends m degree d univariate
polynomial, and the verifier sends m elements in F. Thus, the total communication
complexity of the IPP is O(dm log |F |). The only queries that the verifier performs are
for the low degree test and the self-correction, which total in O(dm · poly(1/ε)) queries.

14We note that the property testing upper bound of Õ(n1−α) can be obtained by a verifier that tests
for low degree and reads all points in Hm using self correction.

15An additional minor difference is that in the [LFKN92] protocol the set H is fixed to {0, 1}, but this
is common in the PCP literature (most notably in [BFLS91]).

45

2. NON-INTERACTIVE PROOFS OF PROXIMITY

IPP for TensorSum

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the individual degree d test (see Theorem 2.31) on P with respect to proximity
parameter ε, and rejects if the test fails.

2. Let ν0
def
= 0.

3. For i← 1, . . . ,m:

(a) P sends to V a degree d univariate polynomial P̃i : F→ F (by specifying its d+ 1
coefficients), which allegedly equals:

Pi(z)
def
=

∑
xi+1,...,xm∈H

P (r1, . . . , ri−1, z, xi+1, . . . , xm).

(b) V verifies that
∑

z∈H P̃i(z) = νi−1.

(c) V selects uniformly at random ri ∈R F and sets νi
def
= P̃i(ri).

(d) If i 6= m, then V sends ri to P.

4. V obtains the value of z∗ of P (r1, . . . , rm) via self-correction (see Theorem 2.29) with
soundness error 0.1.

5. V verifies that z∗ = νm.

Figure 2.4: IPP for TensorSumm,d,F,S,c

Completeness. If P ∈ TensorSum, then the low degree test always passes, and since we
have

∑
x∈Hm P (x) = 0, and the prover supplies the correct polynomials (i.e., P̃i = Pi for

every i ∈ [m]), the verifier always accepts.

Soundness. Suppose that P : Fm → F is ε-far from TensorSum. Let P∗ be a cheating
prover that attempts to convince the verifier of the false statement P ∈ TensorSum. If
P is ε-far from having individual degree d, then the verifier rejects with probability 1/2.
Thus, we focus on the case that P is ε-close to a polynomial P ′ of individual degree d.

For every i ∈ [m], let:

P ′i (z)
def
=

∑
xi+1,...,xm∈H

P ′(r1, . . . , ri−1, z, xi+1, . . . , xm)

(where the values ri are those sent from the verifier to the prover). The next two claims

46

2.4 General Transformations

relate the polynomials P ′i to the polynomials P̃i sent by the prover P∗. Recall that both
polynomials depend only on r1, . . . , ri−1.

Claim 2.15.1. If P̃1 ≡ P ′1, then the verifier rejects with probability 1.

Proof. Observe that
∑

x∈Hm P ′(x) 6= 0 must hold, since otherwise P ∈ TensorSum. There-

fore
∑

z∈H P
′
1(z) = 0, and so, if P̃1 ≡ P ′1, then the verifier rejects when testing that∑

z∈H P̃1(z) = 0.

Claim 2.15.2. For every i ∈ [m − 1] and every r1, . . . , ri−1 ∈ F, if P̃i 6≡ P ′i then, with
probability at least 1− d/|F| over the choice of ri, if P̃i+1 ≡ P ′i+1 then the verifier rejects.

Proof. If P̃i+1 ≡ P ′i+1 then
∑

z∈H P̃i+1(z) =
∑

z∈H P
′
i+1(z) = P ′i (ri). Thus, since the

polynomials P̃i and P ′i differ, with probability at least 1−d/|F| over the choice of ri ∈R F
it holds that P̃i(ri) 6= P ′i (ri), and in this case the verifier will reject when testing whether∑

z∈H P̃i+1(z) = νi, since νi = P̃i(ri).

By Claim 2.15.3 and an application of the union bound, with probability 1− dm/|F|,
if there exists an i ∈ [m− 1] such that P̃i 6≡ P ′i but P̃i+1 ≡ P ′i+1 then the verifier rejects.

By Claim 2.15.1, we can assume that P̃1 6≡ P ′1 and so we need only consider the case that
for every i ∈ [m] it holds that P̃i 6≡ P ′i . The following claim shows that also in this case
the verifier rejects with probability at least 2/3. The theorem follows.

Claim 2.15.3. For every r1, . . . , rm−1 ∈ F, if P̃m 6≡ P ′m, then the verifier rejects with
probability at least 2/3 (over the choice of rm and the self-correction procedure).

Proof. If P̃m 6≡ P ′m then these are two distinct degree d polynomials, which can agree on
at most d points. Thus, with probability 1− d/|F|, it holds that P̃m(rm) 6= P ′m(rm) (over
the choice of rm ∈R F). Now, the self-correction algorithm guarantees that the verifier
computes z∗ = P ′(r1, . . . , rm) = P ′m(rm) correctly with probability 0.9. In such case, the
verifier rejects with probability 1− d/|F| when testing that z∗ = P̃m(rm). It follows that
the verifier rejects with probability 0.9 · (1− d/|F|) > 2/3.

This completes the proof of Lemma 2.15.

2.4 General Transformations

In this section we show general transformations on MAP proof-systems. In Section 2.4.1
we show general transformations from MAPs with restricted proofs into PT. In Sec-
tion 2.4.2 we show a general transformation from MAPs that have two-sided error into
MAPs that have one-sided error.

47

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2.4.1 From MAP to PT

In this section we show that MAPs with restricted proofs can be emulated by property
testers. We show two such results. Theorem 2.18 shows that every MAP that uses a
very short proof can be emulated by a property tester, and Theorem 2.19 shows that
even MAPs with long proofs in which the verifier’s queries are proof oblivious (see Defi-
nition 2.2) can also be emulated. We note that in both constructions the tester may be
inefficient in terms of computational complexity (even if the original MAP verifier can be
implemented efficiently).

Theorem 2.18. If the property Π has an MAP verifier that makes q queries and uses a
proof of length p, then Π has a property tester that makes Õ(2p · q) queries. Moreover, if
the MAP tester has one-sided error, then the resulting property tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity p.
We start by running the verifier O(p) times using fresh (independent) randomness, but
the same proof string, and ruling by majority vote. We obtain an MAP verifier V ′ for Π

that has soundness error 2−(p+2), uses q′
def
= O(p · q) queries and a proof of length p.

We use V ′ to construct a property tester T for Π. The tester T , given oracle access to
a function f , simply enumerates over all possible 2p proof strings for V ′. For each proof
string w ∈ {0, 1}p, the tester T emulates V ′ (using fresh randomness) while feeding it the
proof string w, and forwarding its oracle queries to f . If for some string w the verifier
accepts, then T accepts. Otherwise, it rejects. Clearly, T has query complexity 2p · q′.

If f ∈ Π, then there exists a proof string w that will make V ′ accept, with probability
at least 1 − 2−(p+2). Therefore, T accepts in this case with probability at least 2/3. On
the other hand, if f is ε-far from Π, then no string w will make V ′ accept with probability
greater than 2−(p+2). Thus, by the union bound, T will accept with probability at most
2p · 2−(p+2) < 1/3.

The furthermore clause of Theorem 2.18, follows by noting that both the parallel
repetition and proof enumeration steps preserve one-sided error.

The tester of Theorem 2.18 makes O(p · q) queries for every one of the possible 2p

proof strings. However, the fact that these queries were chosen independently (i.e., based
on fresh randomness) is not used in the soundness argument. Indeed, for soundness we
simply applied a union bound, which would have worked just as well if the queries were
not independent (i.e., were determined based on the same randomness). This leads us to
consider using the same sequence of queries for all of the proofs in the emulation step.
The problem that we run into is in the completeness condition. Namely, a sequence of
queries that was generated with respect to a particular proof may not be “good” for
a different proof. More precisely, if the distribution of queries that the MAP verifier
generates (heavily) depends on the proof, then the only guarantee that we have is that
the MAP verifier will be correct when emulated with a distribution of queries that matches
the specific good proof.16 Hence, we may indeed have to generate a different sequence of
queries for every possible proof string.

16For an example of such MAPs, see Theorem 2.7 and Theorem 2.20.

48

2.4 General Transformations

However, as proved in the following theorem, if the tester makes proof oblivious queries
(see Definition 2.2), then the foregoing problem can be avoided and indeed it suffices to
make only one sequence of queries, and reuse this sequence for all the 2p emulations.

Theorem 2.19. If the property Π has an MAP verifier that makes q proof oblivious
queries and uses a proof of length p, then Π has a property tester that makes O(p · q)
queries. Moreover, if the MAP verifier has one-sided error, then the resulting property
tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity p,
and let V ′ be exactly as in the proof of Theorem 2.18 (i.e., an MAP verifier for Π with
soundness error 2−(p+2), using q′ = O(p · q) queries and a proof of length p).

As hinted above, the construction of the property tester T differs from that in Theo-
rem 2.18. The tester T is given oracle access to f . It first emulates V ′ using an arbitrary
(dummy) proof string, denoted w0, a random string r, and by forwarding V ′’s queries to
f . The key observation here is that the distribution of the queries does not depend on
the proof at all, and so an arbitrary proof would suffice for our needs. Thus, T obtains
a sequence āfr = (a1, . . . , aq′) of answers (corresponding to queries specified by r and
the previous answers). Now, T enumerates over all possible 2p proof strings for V ′, and
for each proof string w ∈ {0, 1}p it emulates V ′ while feeding it the proof string w, the
random string r, and the answer sequence āfr . If for some string w the verifier accepts,
then T accepts. Otherwise, it rejects.

If f ∈ Π, then there exists a proof string w that will make V ′ accept with probability
at least 2/3. The key point is that since the distribution of the queries does not depend
on w. Hence, the queries actually made by T (using the dummy proof w0) are identical to
those V ′ would have made using the proof w (and the same randomness as T). Hence, T
accepts in this case with probability at least 2/3 (and in case V ′ has one-sided error, then
T accepts with probability 1). On the other hand, similarly to the proof of Theorem 2.18,
if f is ε-far from Π then no string w will make V ′ accept with probability greater than
2−(p+2). Thus, by the union bound, T will accept in this case with probability at most
2p · 2−(p+2) < 1/3.

2.4.2 From Two-Sided Error MAP to One-Sided Error MAP

In this section we show a general result transforming any MAP (which may have two-sided
error) into an MAP with one-sided error, while incurring only a poly-logarithmic overhead
to the query and proof complexities. The construction is based on the ideas introduced
in Lautemann’s [Lau83] proof that BPP is contained the polynomial hierarchy coupled
with the observation that MAPs may have very low randomness complexity (adapted
from [GS10b], which in turns follows an idea of Newman [New91]). We note that both
the verifier and the proof generation algorithm in this construction may be inefficient in
the computational complexity sense. (This is a consequence of each one of the two parts
of the transformation).

49

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Theorem 2.20. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
.

If Π has a two-sided error MAP with q queries and a proof of length p, then Π has a one-
sided error MAP with O(q · polylog(n)) queries and a proof of length O(p+ polylog(n)).

We note that typically |Rn| ≤ n and that properties for which |Rn| > exp(poly(n))
seem quite pathological. Before proceeding to the proof of Theorem 2.20, we note that
as a direct application of the theorem we obtain the following relation between two-sided
error property testers and one-sided error MAP (denoted MAP1).

Corollary 2.21. For every function q : N× R+ → N it holds that:

PT(q) ⊆ MAP1(polylog(n), q · polylog(n)).

The proof of Theorem 2.20 is based on two lemmas. The first, Lemma 2.16, shows that
a two-sided error MAP verifier that has low randomness complexity, can be transformed
into a one-sided error MAP. The proof of this lemma is based on the technique of
Lautemann [Lau83]. The second lemma (Lemma 2.17) shows that the Goldreich-Sheffet
[GS10b] technique for reducing the randomness of property testers can also be used to
reduce the randomness of MAP verifiers.

Lemma 2.16. If the property Π has a two-sided MAP verifier that makes q queries,
uses a proof of length p, and has randomness complexity r, then Π has a one-sided MAP
verifier that makes O(q · r log r) queries and uses a proof of length O(p+ r2 log r).

Proof. Following [Lau83], the construction involves two main steps. The first step is a
parallel repetition step that significantly reduces both the completeness and soundness
errors of the MAP. At this point, almost the entire set of possible random strings lead
to accepting inputs that have the property and rejecting inputs that are far from the
property. The main observation is that there must exist relatively few “shifts” s1, . . . , st
such that for an input that has the property, for every random string r there exists a
shift si such that r ⊕ si leads to accepting, whereas if the input is far from the property,
then with high probability over the choice of r, no shift will result in accepting. Details
follow.

Let V(2) be a two-sided error MAP verifier for a property Π with query complexity

q
def
= q(n, ε), proof complexity p

def
= p(n) and randomness complexity r

def
= r(n, ε). To

prove the theorem we construct a one-sided error MAP verifier V(1) for Π.
Let V(2)′ be the two-sided error MAP obtained by taking the majority of m = Θ(log r)

repetitions of V(2) using fresh random coins but using the same proof string for all repeti-
tions. By the Chernoff bound, this amplification yields both completeness and soundness

errors that are at most δ
def
= 2−Ω(m), which may be made smaller than 1

c·rm for any desired

constant c > 0. Note that V(2)′ has query complexity q′
def
= qm, proof complexity p′

def
= p,

and randomness complexity r′
def
= rm.

Denote by V f
(2)′(w; s) the (deterministic) output of V f

(2)′(w) when invoked with the
random string s. We construct the one-sided error MAP verifier V(1) as follows. The

50

2.4 General Transformations

proof string for V(1) consists of the original proof string w for V(2) as well as a sequence of
strings (s1, . . . , st) each of length r′, where t = Θ(r) such that δt < 2−r

′
and δt < 1

3
. Given

the proof string (w, s1, . . . , st), the verifier V(1) chooses a random string s ∈R {0, 1}r
′

and

runs V f
(2)′(w; s⊕ si) for each i ∈ [t]. If for some i ∈ [t] the test accepts, then V(1) accepts;

otherwise it rejects. The proof and query complexities can be readily verified, and so we
proceed to prove the completeness and soundness of V(1).

Completeness. Let f ∈ Π of size n and let ε > 0. Then, by the completeness of V(2)′ ,

there exists a proof string w such that Prs∈{0,1}r′ [V
f

(2)′(w; s) = 1] ≥ 1− δ. We show that

there exists a sequence (s1, . . . , st) such that Prs∈{0,1}r′ [V
f

(1)(w, s1, . . . , st; s) = 1] = 1.

To show that such a sequence (s1, . . . , st) exists we use the probabilistic method.
Specifically, we consider a sequence that is chosen uniformly at random, that is, each
si ∈R {0, 1}r

′
. By the union bound,

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤
∑
s

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
,

(2.6)
but since the si’s are independent, for every s ∈ {0, 1}r′ ,

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]

=
t∏
i=1

Pr
si

[
V f

(2)′(w; s⊕ si) = 0
]
≤ δt. (2.7)

Combining Equations (2.6) and (2.7) we obtain that:

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤ 2r

′ · δt < 1.

and (zero-error) completeness follows.

Soundness. Let f of size n be ε-far from having the property Π for ε > 0. Then, by the
soundness of V(2)′ , for every proof string w, the verifier V(2)′ accepts f with probability
at most δ. Hence, by the union bound,

Pr
s

[
∃i ∈ [t] s.t. V f

(2)′(w; s⊕ si) = 1
]
≤
∑
i∈[t]

Pr
s

[
V f

(2)′(w; s⊕ si) = 1
]
≤ t · δ < 1/3

and the lemma follows.

Lemma 2.17. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
.

If Π has an MAP verifier that makes q queries, uses a proof of length p, and has ran-
domness complexity r, then Π has an MAP verifier that makes q queries, uses a proof of
length p and has randomness complexity O(log n).

51

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Proof. The proof follows the proof of [GS10b] with a minor modification to handle the
dependence of the verifier on the proof. Namely, using the probabilistic method, we show
the existence of a small subset of the random strings that behaves similarly to the entire
set.

Let Π be a property of functions fn : Dn → Rn, where |Rn| = exp
(
poly(n)

)
(and

where Dn = [n], cf. Section 2.2), and let V be the MAP verifier of the lemma statement.

Fix an input length n and let D
def
= Dn, R

def
= Rn and p

def
= p(n). Consider a 2r×|R||D| · 2p

matrix where the rows correspond to all possible random strings γ used by the verifier
and the columns correspond to pairs (f, w) of functions f : Dn → Rn and possible proofs
w ∈ {0, 1}p. The entry (γ, (f, w)) of the matrix corresponds to the output of V f (w; γ),
that is, the output of the verifier when given oracle access to f , the proof string w and
random coins γ.

Note that for every function f ∈ Π, by the completeness of V , there exists a proof
string w such that the average of the (f, w) column is at least 2/3. Similarly, by the
soundness of V , for functions that are ε-far from Π and every proof string w the average
of the (f, w) column is at most 1/3.

We show that there exists a multi-set, S, of size poly(n) of the rows such that the
average of every column when taken over the rows of S is at most 1/7-far from the
average taken over all rows. Thus, we obtain an MAP verifier that uses only log2 |S| =
O(log n) random coins, by simply running the original tester V but with respect to
random coins selected uniformly from S (rather than from {0, 1}r). To obtain soundness
and completeness error 1/3 we use O(1) parallel repetitions.

We use the probabilistic method to show the existence of a small multi-set S as above.
Consider a multi-set S of the rows, of size t, chosen uniformly at random and fix some
function f and proof string w. By the Chernoff bound, with probability 2−Ω(t) over
the choice of S, the average over the rows in S of the (f, w)-column is 1/7-close to the
average over all rows. Thus, by setting t = log(|R||D| · 2p) and applying the union bound,
we obtain that there exists a multi-set S as desired.

Since the new verifier selects at random from S, it can be implemented using log2 t
random coins. We complete the proof by noting that the proof length p can always
be made to satisfy p ≤ n (since a proof of length n suffices to test any property using
only O(1/ε) queries, see discussion in Section 2.1.2), that the domain size is n and that
|R| ≤ exp(poly(n)) (by the hypothesis).

Theorem 2.20 follows by applying the randomness reducing transformation of Lemma 2.17,
and then applying Lemma 2.16 to the resulting MAP verifier.

2.5 An Extremely Hard Property for MAPs

As noted in the introduction, every property has an MAP that uses a proof of length n
and makes only O(1/ε) queries (where the proof is simply the object itself). In contrast,
in this section we show that for “almost all” properties Π, every MAP for Π that uses a
proof that is even n/100 bits long, requires Ω(n) queries.

52

2.5 An Extremely Hard Property for MAPs

Our result is actually slightly stronger. Roughly speaking, we show that for every t,
a random property of size 2t can be tested (without a proof) using O(t) queries, but any
MAP that uses a proof of length even t/100 must make Ω(t) queries in order test this
property.

In the following we consider properties that are sets of strings rather than functions.
We note that a function formulation (as in Definition 2.1) can be easily obtained by
mapping every string x ∈ {0, 1}n to the function fx : [n]→ {0, 1}, defined as fx(i) = xi.

Theorem 2.22. Let t = t(n) < n/10. Every property Π = ∪n∈NΠn (where Πn ⊆ {0, 1}n)
of size 2t can be tested with O

(
t/ε
)

queries (without using a proof), but for every n ∈ N,
for 99% of sets Πn ⊆ {0, 1}n of size 2t, it holds that every MAP for testing ε < 1/4
proximity to Πn that uses a proof of length p must make at least t− p−O(log n) queries.

The rest of this section is devoted to the proof of Theorem 2.22, which is inspired
by [GGR98, Section 4.1] and uses also ideas from [RVW13, Section 4]. We remark that
while Theorem 2.22 holds for almost all properties, finding an explicit property for which
a similar statement holds is an interesting open question.

The key idea in the proof of Theorem 2.22 is to show that MAPs that use a rela-
tively short proof and make relatively few queries can be represented by a small class
of functions. Since this class of functions is small, we argue that a (small) random set
S ⊆ {0, 1}n, viewed as a property, will fool every MAP, in the sense that no MAP verifier
can distinguish between a random element in S and a random element in {0, 1}n.

The foregoing intuition is formalized by the following lemma shows that exists a set
of randomized decision trees (see definition below) such that for every MAP, there exists
a subset of the decision trees such that the MAP accepts an input x (with probability
at least 2/3) if and only if at least one of the randomized decision trees accepts x (with
probability at least 2/3).

Lemma 2.18. Let ε ∈ (0, 1/4). For every n ∈ N and for every p, q ≤ n, there exists a

class of functions F (n)
p,q of size 2(poly(n)·2p+q) of functions from {0, 1}n to {0, 1}, such that

the following holds. For every MAP verifier V for testing ε-proximity to Πn ⊆ {0, 1}n
that uses a proof of length p and q queries, it holds that IV ∈ F (n)

p,q , where IV (x) is
defined as the indicator function for the event that there exists some π ∈ {0, 1}p such that
Pr[V x(n, ε, π) = 1] ≥ 2/3.

Note that the order of quantifiers in Lemma 2.18 is such that the class of functions is
the same for every MAP verifier (and depends only on p and q). This will be crucial in
showing that a random set fools every MAP verifier. Also note that if p+q � n, then the
size of F is quite small relative to the class of all functions from {0, 1}n to {0, 1} (which
has size 22n).

Proof of Lemma 2.18. To facilitate the proof of Lemma 2.18, it will be useful to describe
standard testers (which do not use a proof) as randomized decision trees. Our main
observation is that, roughly speaking, an MAP can be expressed as an OR of randomized
decision trees.

53

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Recall that a randomized decision tree is a model of computation for computing a ran-
domized function f : {0, 1}n → {0, 1}. The randomized decision tree is a rooted ordered
binary tree. Each internal vertex of the tree is labeled with a value i ∈ {1, . . . , n, ∗} and
the leaves of the tree are labeled with 0 or 1. (We think of a node that is labeled with
i ∈ [n] as representing the reading of the ith bit, and of a node that is labeled with ∗
as representing a random coin toss.) Given an input x ∈ {0, 1}n, the decision tree is
recursively evaluated as follows. If the root’s label is ∗, then one of its two children is
selected uniformly at random, and we recurse on that child. Otherwise (i.e., i ∈ [n]),
if xi = 0, then we recurse on the left subtree, and if xi = 1, then we recurse on the
right subtree. Once a leaf is reached, we output the label of that leaf and halt. If T is a
randomized decision tree, we denote by T (x) the (random variable that corresponds to)
the output of T on input x.

The size of the decision tree is defined as the number of vertices in the tree, and the
depth of the tree is defined as the longest path between the root of the tree and one of
its leaves. (See [BdW02] for an extensive survey of decision tree complexity.) Let RDTs

be the set of all randomized decision trees of size s. For every T1, . . . , Tt ∈ RDTs let
fT1,...,Tt : {0, 1}n → {0, 1} be the function defined as fT1,...,Tt(x) = 1 if and only if there
exists i ∈ [t] such that Pr[Ti(x) = 1] ≥ 2/3. Consider the class of functions

Fs,t =
{
fT1,...,Tt : T1, . . . , Tt ∈ RDTs

}
.

We show that Fpoly(n)·2q ,2p satisfies the conditions of the lemma.
Let V be an MAP verifier of ε-proximity for Πn that uses a proof of length p bits,

q queries, and r random bits. The main observation is that for every fixed proof string
π ∈ {0, 1}p, the (randomized) decision V x(n, ε, π) can be expressed as a randomized
decision tree TV,π of depth r + q (and size 2r+q), which is defined as follows. The first r
vertices in every path from the root to a leaf in the tree are labeled by ∗ (these vertices
correspond to the random coin tosses of V). Every other internal vertex is labeled by
some i ∈ [n], corresponding to a query to xi made by V . The two edges leaving every
vertex, labeled by 0 and 1, correspond to the actual value of xi, and these edges lead
to a vertex that is labeled by the next query made by V , given the answer xi to the
query i. Given an input x and a random string ρ ∈ {0, 1}r, the leaf that is reached
by evaluating the decision tree on input x and the random string ρ is labeled with the
value V x(n, ε, π; ρ). (Recall that V x(n, ε, π; ρ) denotes the output of the verifier V given
oracle access to x, direct access to n, ε, π and the random string ρ.) We are interested
in Pr [V x(n, ε, π) = 1].

Let IV : {0, 1}n → {0, 1} be defined as IV (x) = 1 if and only if there exists π ∈ {0, 1}p
such that Pr[V x(n, ε, π) = 1] ≥ 2/3. Since the randomized functions V x(n, ε, π) and
TV,π(x) are identically distributed, it holds that IV ∈ F2r+q ,2p .

By Lemma 2.17, we may assume without loss of generality that V has randomness
complexity r = O(log n). The lemma follows by noting that |RDTs| ≤ (n + 1)s and
therefore |Fs,t| ≤ |RDTs|t ≤ (n+ 1)s·t.

Before proceeding to the proof of Theorem 2.22, we state a few standard propositions

54

2.5 An Extremely Hard Property for MAPs

(Propositions 2.19, 2.20 and 2.22) whose proofs are deferred to Section 2.8.2. We start
by noting that sparse properties can be efficiently tested.

Proposition 2.19 (folklore). Every property Π = ∪n∈NΠn (where Πn ⊆ {0, 1}n) can be
tested by making O(log |Πn|/ε) queries (without a proof).

We note that Proposition 2.19 has standard proofs via learning theory techniques.17 In
Section 2.8.2 we provide an alternative proof that uses the notion of MAPs in a somewhat
surprising, but very natural way.

The following (standard) proposition shows that, with high probability, a random
n-bit string will be far from any small subset of {0, 1}n.

Proposition 2.20 (folklore). For every constant ε ∈ (0, 1/4] and set S ⊆ {0, 1}n, it
holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| · 2−n/8.

For the last claim that we need, recall the definition of a PRG.

Definition 2.21. A set S ⊆ {0, 1}n is called a pseudorandom generator (PRG) for fooling
a class F of functions from {0, 1}n to {0, 1} if for every f ∈ F it holds that∣∣∣∣ Pr

x∈RS
[f(x) = 1]− Pr

x∈R{0,1}n
[f(x) = 1]

∣∣∣∣ < 1/10.

(note that the choice of the constant 1/10 is arbitrary.)
The following (well-known) lemma shows that for every class of functions F , a random

set of size O(log |F|) is a PRG that fools F .

Proposition 2.22 (implicit in [GK92], see also [Gol08, Exercise 8.1]). Let F be a class

of functions from {0, 1}n to {0, 1}, of size at most 22n/4. Then, 99% of subsets of {0, 1}n
of size s = O(log |F|) are PRGs that fool F .

We are now ready to prove Theorem 2.22.

Proof of Theorem 2.22. Fix ε ∈ (0, 1/4). Let t, p, q : N → N be functions such that
t = t(n) < n/10, p = p(n) ≤ n, q = q(n) ≤ n and t = p+ q +O(log n).

Let S
def
= ∪n∈NSn where for every n ∈ N, the set Sn ⊆ {0, 1}n is a random subset of

{0, 1}n of size 2t(n). By Proposition 2.19, (for any choice of S) the property S can be
tested using O(log(|Sn|)/ε) = O(t/ε) queries (without a proof).

Fix n ∈ N and let F (n)
p,q be the class of functions of size 2(poly(n)·2p+q) guaranteed by

Lemma 2.18, with respect to p and q. Since O(log |F (n)
p,q |) = O(2p+q · poly(n)) = 2t, by

Proposition 2.22 (applied to the class F (n)
p,q), with probability 0.99 over the choice of Sn,

it holds that for every f ∈ F (n)
p,q :∣∣∣∣ Pr

x∈RSn
[f(x) = 1]− Pr

x∈R{0,1}n
[f(x) = 1]

∣∣∣∣ < 1/10. (2.8)

17Either by an explicit reduction of property testing to learning (see [GGR98, Section 3]), or by
applying Occam’s razor directly to the testing problem.

55

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Let Sn be a set for which Eq. (2.8) holds and assume toward a contradiction that
there exists an MAP verifier V that uses a proof of length p and q queries, and tests
ε-proximity to Sn.

By Lemma 2.18, it holds that IV ∈ F (n)
p,q , where the function IV is defined as IV (x) = 1

if and only if there exists π ∈ {0, 1}p such that Pr[V x(n, ε, π)] ≥ 2/3. We proceed to
show that IV is a distinguisher for the PRG Sn, in contradiction to Eq. (2.8).

By the completeness of the MAP, for every x ∈ Sn it holds that IV (x) = 1 and
therefore

E
x∈RSn

[IV (x)] = 1.

On the other hand, by the soundness of the MAP, for every x that is ε-far from Sn it
holds that IV (x) = 0 and so

E
x∈R{0,1}n

[IV (x)] ≤ E
x that is

ε-far from Sn

[IV (x)] + Pr
x∈R{0,1}n

[
x is ε-close to Sn

]
≤ |Sn| · 2−n/8 ≤ 2−Ω(n),

where the second inequality follows from Proposition 2.20 (and the fact that IV (x) = 0
for every x that is ε-far from Sn), and the last inequality follows from our setting of
t ≤ n/10. Therefore,

E
x∈RSn

[IV (x)]− E
x∈R{0,1}n

[IV (x)] ≥ 1− 2−Ω(n),

in contradiction to Eq. (2.8).

2.6 MAPs for Parametrized Concatenation Problems

In this section we give a scheme for constructing efficient MAPs for parameterized con-
catenation problems. For starters, we review the notion of (non-parameterized) concate-
nation problems: The k-concatenation problem of a property Π is defined as the property

Π×k
def
=
{

(x1, . . . , xk) : ∀i ∈ [k], xi ∈ Π and |xi| = |x1|
}

. For every i ∈ [k], we will refer
to xi as the ith block or sub-input.

Concatenation problems (in the context of property testing) were recently studied by
Goldreich [Gol14], who showed that the query complexity of the concatenation problem
Π×k (of a property Π) is roughly the same as the query complexity of the problem of
testing a single instance of Π, regardless of the number of concatenations. More precisely,
the query complexity of testing proximity of an input of length n ·k (for Π×k) is the same,
up to a polylogarithmic factor, as the query complexity of testing proximity of an input
of length n (for Π), provided that the query complexity of Π increases at least linearly
with 1/ε (which is typically the case).

We consider a generalization of the notion of a concatenation problem by allowing
the underlying property to depend on some parameter, which may differ between the
different blocks. Consider a family of properties {Πα }α∈A, where α is the parameter
and A is some domain. As we shall show, some natural properties can be expressed as

56

2.6 MAPs for Parametrized Concatenation Problems

a concatenation Πα1 × . . . ,Παk of a property Πα, with respect to different values of the
parameter. For example, testing whether a given string x has Hamming weight w can
be expressed as the question of testing whether x can be partitioned into k blocks such
that the ith block has Hamming weight wi and

∑
i∈[k] wi = w. (Other natural examples

are reviewed below.)
In this section it will be convenient for us to view the input length n ∈ N , the

proximity parameter ε ∈ (0, 1), and the number of concatenations k as fixed. We note
that although we fix n, ε, and k, these parameters should be viewed as generic, and
so we allow ourselves to write asymptotic expressions such as poly(n), poly(ε), etc. If
Π ⊆ {0, 1}n, then we say that a verifier V is an MAP(p, q) for Π with respect to proximity
ε if V can distinguish between inputs that are in Π and inputs that are ε-far from Π using
a proof of length p and q queries. (See the end of Section 2.6.1 for a discussion of the issues
involved in providing a uniform treatment of parameterized concatenation problems.)

Additionally, throughout this section we study properties that are more naturally
expressed as sets of strings (rather than functions), therefore we present them as such.
Note that a function formulation (as in Definition 2.1) can be easily obtained by the
(trivial) mapping that maps the string x ∈ Σn to the function fx : [n] → Σ defined as
fx(i) = xi. We proceed to define parameterized concatenation problems.

Definition 2.23. Let A be a finite set, and n, k, n/k ∈ N. For every α ∈ A, let Πα
n/k ⊆

{0, 1}n/k be a property of n/k-bit strings that is parameterized by α. For every subset
Ā ⊆ Ak, we say that the property ΠĀ

n is a parameterized k-concatenation property (of
n-bit strings), where ΠĀ

n is defined as

ΠĀ
n

def
=

⋃
(α1,...,αk)∈Ā

Πα1

n/k × . . .× Παk
n/k.

If we consider the task of testing ΠĀ
n , it is not a priori clear (for the tester) what value

of the parameter αi to use for each block. This is where MAPs can help us. That is, the
proof of proximity will simply tell the MAP verifier the correct value of the parameter for
each block. Using this idea, in Section 2.6.1 we construct an MAP for any parameterized
concatenation problem. In Sections 2.6.2 to 2.6.3, we demonstrate the applicability of
this technique by using it to construct efficient MAPs (which manage to bypass some
lower bounds for testers that do not use a proof) for a couple of natural properties:

1. Approximate Hamming weight: The first application of our scheme is an effi-
cient MAP for the problem of approximating the Hamming weight of a given string.
In this problem, which is parameterized by w ∈ [n], the tester needs to distinguish
between inputs that have Hamming weight exactly w and those that have Hamming
weight /∈ [w − εn, w + εn].

We complement this MAP with a (non-tight) lower bound on the MAP complexity
of the approximate Hamming weight property. We leave the question of resolving
the gap between the upper and lower bounds to future work. See Section 2.6.2.

57

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2. Graph orientation problems: In addition, we show an MAP in the graph ori-
entation model (see Section 2.6.3 for details on this model). Specifically, our MAP
distinguishes between orientations (of a specific undirected graph) that are Eulerian
and those that are far from Eulerian. Our MAP has lower query complexity than
the best possible property tester for this problem, and the gap in query complexity
increases with the size of the proof. See Section 2.6.3.

Properties with/without distance. Note that all of the explicit properties studied
in Section 2.3 are properties of low-degree polynomials and error-correcting codes. The
MAPs that we have shown for these properties crucially relied on the fact that these
properties have distance (i.e., properties wherein every two objects that have the property
are far from each other), and moreover, they allow for a local form of self-correction.18

We note that in contrast, all of the properties that we study in this section are without
distance (as is the property of bipartiteness studied in Section 2.7). For example, the
Hamming weight property is without distance since there are pairs of strings at distance
2 that have the same Hamming weight.

2.6.1 The Generic Scheme

In this section we show a generic scheme for parameterized concatenation problems.

Theorem 2.23. Ler c1, c2 ≥ 0 be constants. Let ΠĀ
n be a parameterized k-concatenation

property (of n-bit strings) with respect to A, Ā, and {Πα
n/k}α∈A, as in Definition 2.23.

Suppose that for every α ∈ A, the property Πα
n/k can be tested with respect to any proxim-

ity parameter ε′ > 0 (without using a proof) with query complexity O ((n/k)c1 · (ε′)−c2).
Then, the property Π has an MAP, with respect to proximity parameter ε, that uses a
proof of length k · log |A| and has query complexity:{

Õ
(
(n/k)c1 · ε−max(1,c2)

)
if c1 > 0 and c2 ≥ 0

Õ
(

(n/k)1−1/c2 · ε−1
)

if c1 = 0 and c2 ≥ 1.

Furthermore, if the testers for {Πα
n/k}α∈A have a one-sided error, then the resulting MAP

has a one-sided error.

Proof. The key idea is to use the proof in order to “break” the problem of testing property
Π into the concatenation problem of testing several sub-properties with smaller inputs.
Then, instead of solving each sub-problem independently, we efficiently verify that the
(smaller) sub-inputs together are not too far from their corresponding sub-properties.

More specifically, we partition the input x (of length n) into k blocks x1, . . . , xk of
length n/k each. If x ∈ ΠĀ

n , then there must exist (α1, . . . , αk) ∈ Ā such that xi ∈ Παi
n/k

for each i ∈ [k]. The proof is simply (α1, . . . , αk); that is, the “hidden” parameter for each

18An important natural subset of this type of properties with distance is the set of properties of
algebraic objects; see [KS08] for an extensive study of algebraic properties.

58

2.6 MAPs for Parametrized Concatenation Problems

sub-property. The verifier, given this alleged proof, checks that indeed (α1, . . . , αk) ∈ Ā
(i.e., the parameterization of the sub-properties is valid), and is then left with the task
of ascertaining that the k blocks are not “far” from Πα1

n/k × · · · × Παk
n/k.

Toward this end, similarly to the approach in [Gol14, Section 5], we note that given
an input that is far from Πα1

n/k × · · · ×Παk
n/k, the distance from the property can be either

“spread” between all of the sub-inputs, or “concentrated” on a few sub-inputs — or
anything in between. The main idea is that if the distance is “concentrated”, then the
deviation in these sub-inputs must be large, and so, we can detect that such particular
sub-inputs do not have their corresponding sub-property by using a test with low query
complexity. Since we only read a few bits for this test, we can afford to run it on many
sub-inputs (thereby increasing our chance of catching a sub-input that is far from its
corresponding sub-property). On the other hand, if the distance is “spread” among the
sub-inputs, then it suffices to examine only a few sub-inputs, but for each such sub-input,
we need to run a test with high query complexity. Interestingly, in the latter case it is
sometimes beneficial for the verifier to simply read the entire block rather than to run
the “expensive” tester.

Since the verifier does not know whether it is in one of the extreme situations or any-
where in between, naively we might want to consider the “worst of all worlds” (i.e., small
spread and high query complexity per block). We improve upon the performance of the
forgoing approach by using the precision sampling technique (originating in Levin [Lev85,
last paragraph of Section 9], see also [Gol14, Appendix A.2]), which allows us to deal with
all of the possible distributions of the distance economically (specifically, by considering
only a logarithmic number of representative distributions). The resulting MAP protocol
for parameterized concatenation problems is presented in Fig. 2.5.

Note that the length of the proof, which is (α1, . . . , αk), is bounded by k · log |A|. As
for the query complexity, first recall that for any α and ε′ > 0, the property Πα

n/k has

a tester with query complexity T (n/k, ε′) = (n/k)c1 · (ε′)−c2 . Thus, the total number of
queries is at most:

O

 ∑
j∈[dlog2 2/εe]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

) = Õ

(n/k)c1

ε

∑
j∈[dlog2(2/ε)e]

2j(c2−1)

= Õ

(
(n/k)c1 ε−max(1,c2)

)
.

For the special case in which c1 = 0, we tighten the analysis. Observe that, without
loss of generality, for any proximity parameter ε, it holds that T (n, ε) ≤ n (simply since
the tester can always just read the entire input). Therefore, the query complexity is

59

2. NON-INTERACTIVE PROOFS OF PROXIMITY

MAP for the parameterized k-concatenation problem ΠĀ
n

Input: a proximity parameter ε > 0 and oracle access to a string x ∈ {0, 1}n.

The Proof:

• The string x is interpreted as a k sub-inputs x = (x1, . . . , xk) ∈ ({0, 1}n/k)k.

• The proof consists of the parameters for the concatenated problems; namely, the values
(α1, . . . , αk) such that xi ∈ Παi

n/k, for every i ∈ [k] (such values must exist for x ∈ ΠĀ
n).

The Verifier:

1. If (α1, . . . , αk) /∈ Ā, then reject.

2. For every j ∈ [dlog2(2/ε)e], perform the following test:

(a) Select uniformly at random O
(

log(1/ε)
2jε

)
indices in [k]. Denote the chosen indices

by I.

(b) For every i ∈ I: Run the Παi
n/k tester O(log(1/ε)) times on input xi, with respect

to proximity parameter 2−j . Reject if the majority of the tests failed.

3. If all of the previous tests passed, then accept.

Figure 2.5: MAP for Π

bounded in this case by:

O

 ∑
j∈[dlog2 2/εe]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

) = Õ

1

ε

∑
j∈[dlog2 2/εe]

min

(
n/k

2j
, 2j(c2−1)

)
≤ Õ

1

ε

∑
j∈[dlog2 2/εe]

(n/k)1−1/c2

 ,

where the last inequality follows from the fact that c2 ≥ 1 (by our assumption) and thus
min

(
n/k · 2−j, 2(c2−1)j

)
≤ (n/k)1−1/c2 . Therefore, the total query complexity in this case

is Õ
(
(n/k)1−1/c2 · ε−1

)
.

We proceed to prove the completeness and soundness of the protocol.

Completeness. Suppose that x ∈ ΠĀ
n and that (x1, . . . , xk) ∈ Πα1

n/k × . . . × Παk
n/k. The

tester for each sub-property is invoked O(log(1/ε)) times in Step (2b) on some xi ∈ Παi
n/k.

Therefore, with probability 1−poly(ε) the majority of these invocations will accept. The
total number of times that this step is run is at most O(1/ε · log2(1/ε)) and therefore, by
the union bound, the MAP verifier accepts with probability at least 2/3.

60

2.6 MAPs for Parametrized Concatenation Problems

Soundness. Suppose that x ∈ {0, 1}n is ε-far from ΠĀ
n . Let (α1, . . . , αk) ∈ Ā be an

alleged proof for the false statement x ∈ ΠĀ
n (notice that if (α1, . . . , αk) /∈ Ā, then

the tester immediately rejects). Thus, x = (x1, . . . , xk) ∈ ({0, 1}n/k)k is ε-far from
Πα1

n/k × . . .× Παk
n/k (since otherwise x is ε-close to ΠĀ

n).

The following claim shows that it suffices to consider O (log(1/ε)) different distribu-
tions of the distance between the sub-inputs. Since the proof of the claim is similar to
results of [Gol14, Section 5], we defer it to Section 2.8.2.1).

Claim 2.23.1 (Precision Sampling (cf. [Lev85, last paragraph of Section 9] or [Gol14,

Appendix A.2])). There exists j ∈ [dlog2 2/εe] such that a 2jε
4·dlog2(2/ε)e fraction of x1, . . . , xk

are 2−j-far from their corresponding sub-properties Πα1

n/k, . . . ,Π
αk
n/k.

Consider the execution of iteration j, where j is the index guaranteed by Claim 2.23.1.

In this iteration, since the verifier selects uniformly at random O
(

log(1/ε)
2jε

)
indices in [k],

with probability at least 0.9, it selects at least one i ∈ [k] such that xi is 2−j-far from
Παi .

Suppose that such an i is indeed selected. Since the base tester for Παi
i is run with

respect to proximity 2−j, it will reject xi with probability 2/3. Since the test is repeated
O(log(1/ε)) times, the majority of these tests will reject with probability at least 0.9.
Thus, the MAP verifier rejects x with probability at least 0.9 · 0.9 ≥ 2/3.

On providing a uniform treatment. Recall that throughout this section we have
fixed n, ε and k. Before proceeding to describe the applications of Theorem 2.23, we
shortly discuss issues that arise when considering a uniform (asymptotic) treatment. In
some cases, in order to optimize the total complexity (i.e., the sum of the proof complexity
and the query complexity) of the MAP in Theorem 2.23, it is beneficial to allow the
number k of concatenations to depend on the proximity parameter ε. However, if k
depends on ε, then the following two issues arise.

First, notice that if k depends on ε, then the proof string in Theorem 2.23 becomes
dependent on ε too, and therefore this protocol does not fall in our definition of MAP
(Definition 2.1), which requires a single proof of proximity that works for every value of
ε > 0. Hence, one can consider a slight relaxation of Definition 2.1 in which we allow
the proof of proximity to depend on ε. Since formally such a protocol is not an MAP, we
call it an MAPPDP (where PDP stands for proximity dependent proofs). Note that in an
MAPPDP both the contents of the proof of proximity, and its length may depend on the
proximity parameter. See Section 2.2.1 for further discussion of MAPPDP.

An additional issue that arises when the number of concatenations k depends on ε is
that it is unclear how to define a k-concatenation property, as the naive definition that
follows Definition 2.23 would make the property itself depend on k, and therefore also
on the proximity parameter. While this issue can be overcome for the specific properties
that are studied below, doing so in general would be extremely cumbersome, which is the
main reason for our non-uniform treatment.

61

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2.6.2 Approximate Hamming Weight

In this section we consider the problem of deciding whether a given string x ∈ {0, 1}n has
Hamming weight approximately w. More specifically, we would like a tester that accepts
every string x ∈ {0, 1}n that has Hamming weight w ∈ [n], and rejects strings that have
Hamming weight that is ε-far from having weight w. Namely, the tester should reject
every string x ∈ {0, 1}n for which wt(x) /∈ [w − εn, w + εn], where wt(x) denotes the
Hamming weight of x.

More formally, we consider a family of properties {Hammingwn}w, indexed by a weight
w ∈ {0, . . . , n}. The property Hammingwn is defined as the set that consists of all strings
x ∈ {0, 1}n that have Hamming weight exactly w.

By well-known sampling lower bounds (see, e.g., [BYKS01, Theorem 15], improv-
ing upon [CEG95]), the query complexity of any property tester (which does not use a
proof) is Ω

(
min (n, ε−2)

)
. Our goal is to use MAPs in order to bypass this lower bound.

We remark that Hammingw was already studied by [RVW13] who showed a multiple-
message IPP for Hammingw with complexity Õ (ε−1) and a 2-message IPP with complexity

Õ
(
n

1
3 · ε− 2

3

)
. (Note that for ε = 1/

√
n, the 2-message protocol of [RVW13] has sublinear

complexity of Õ
(
n2/3

)
, whereas testing without a proof requires Ω(n) queries.)

Using Theorem 2.23, we show that the performance of the [RVW13] 2-message IPP
can be matched by an MAP (i.e., a 1-message IPP), while essentially preserving its com-
plexity.19 Thus, we show that even a non-interactive proof suffices to bypass the property
testing lower bound.

More generally, for every constant parameter α ∈ (0, 1), we show that there exists
an explicit MAP for Hamming that uses a proof of length Õ(nα), and makes at most

Õ
(√

n1−α · ε−1
)

queries to the input string. For every value of α ∈ (0, 1), there is a

range of ε for which the MAP is more efficient than the best possible property tester
(which does not use a proof) for Hamming. A comparison of the efficiency of our MAP
versus standard property testers, for different values of α, is provided in Table 2.2.

Before we proceed, we note that we actually prove a slightly stronger result. Namely,
that for every k ∈ [n] there is an MAP for Hamming that uses a proof of length k · log n,

and makes at most Õ
(√

n/k · ε−1
)

queries (where the more restricted statement above

is obtained by setting k = nα). In order to minimize the total complexity (i.e., the sum
of the proof complexity and the query complexity) of the MAP, we also consider MAPPDP

verifiers (recall that MAPPDP is a slight relaxation of our definition of MAP that allows
the proof of proximity to depend on the proximity parameter, see the discussion at the
end of Section 2.6.1. With this relaxation, we can set k = n

1
3 · ε− 2

3 to obtain an MAPPDP

with (total) complexity Õ
(
n

1
3 · ε− 2

3

)
. See further discussion in Section 2.2.1.

We complement the foregoing upper bound by showing a lower bound on the MAP
complexity of Hamming. Specifically, we show that every MAP for Hamming that uses

19We note that an MAP for approximating the Hamming distance with similar performance was also
discovered independently by (Guy) Rothblum et al. following the initial publication of [RVW13].

62

2.6 MAPs for Parametrized Concatenation Problems

MAP

Parameters Property Testing Proof Complexity Query Complexity

General

α ∈ (0, 1)
Θ (min (n, ε−2)) Õ(nα)

Õ
(√

n1−α · ε−1
)

Improves for n−
1
2−

α
2 < ε < n−

1
2 +α

2

α = 0.02 Θ (min (n, ε−2)) Õ (n0.02)
Õ (n0.49 · ε−1)

Improves for n−0.51 < ε < n−0.49

α = 2/3 Θ (min (n, ε−2)) Õ
(
n2/3

) Õ
(
n1/6 · ε−1

)
Improves for n−5/6 < ε < n−1/6

α = 0.98 Θ (min (n, ε−2)) Õ (n0.98)
Õ (n0.01 · ε−1)

Improves for n−0.99 < ε < n−0.01

Table 2.2: The complexity of testing Hamming for different values of α.

a proof of length p ≥ 1 must use Ω
(

min(n,ε−2)
p

)
queries. Note that the two bounds do

not match (e.g., for ε = 1/
√
n and p = n2/3, the upper bound is Õ

(
n2/3

)
and the lower

bound is Ω(n1/3)). We leave the question of resolving this gap for future work.

Theorem 2.24. For every w ∈ {0, . . . , n}, the property Hammingwn has a (two-sided
error) MAP, with respect to proximity parameter ε, that uses a proof of length k · log n

and Õ
(√

n/k · ε−1
)

queries.

We remark that by applying Theorem 2.20 to the MAP of Theorem 2.24, we can (some-
what surprisingly) construct a one-sided error MAP with proof complexity O(k log n +

polylogn) and query complexity Õ
(√

n/k · ε−1
)

. In contrast, the query complexity of

every one-sided error property tester for Hammingwn (without a proof) is linear in the
input size.

Proof of Theorem 2.24. Fix w ∈ [n]. It is well-known (and easy to show, e.g., via the
Chernoff bound) that ε-proximity to Hammingwn can be tested, without a proof, using
O(ε−2) queries (with a two-sided error). Let

Ā
def
=
{

(w1, . . . , wk) ∈ {0, . . . , n/k}k :
k∑
i=1

wi = w
}
.

Observe that a string x = (x1, . . . , xk) ∈ ({0, 1}n/k)k has Hamming weight w if and only
if, for every i ∈ [k] the string xi has Hamming weight wi and

∑k
i=1wi = w. Hence,

Hammingwn =
⋃

(w1,...,wk)∈Ā

Hammingw1

n/k × . . .× Hammingwkn/k.

63

2. NON-INTERACTIVE PROOFS OF PROXIMITY

The theorem follows from Theorem 2.23 (where c1 = 0 and c2 = 2).

Relation to TensorSum. The Hamming problem is loosely related to the Sub-Tensor
Sum problem (see Section 2.3.2), since in both problems we want to compute the sum of
the entries of a given input string. In the Sub-Tensor Problem we want an exact answer
but are given the string in an error-corrected format (where we think of the input as
f : Hm → F which is encoded by a low degree polynomial f̂ : Fm → F that agrees with f
on Hm). In the Hamming problem we do not have the benefit of an error-correcting code
but allow an approximate answer.

Next, we show a lower bound on the MAP complexity of the property Hammingn/2n

(the set of all strings of Hamming weight exactly n/2, where n is the length of the string).
We note that the lower bound can be extended to Hammingwn for more general values of w
by reducing to Hammingn/2n using adequate padding (while taking care of the integrality
issues that arise). We also note that the lower bound only holds for reasonable complexity
measures (which are specified formally below).

The lower bound is proved using our extension of the [BBM11] framework to the
MAP model that was established in Section 2.3.2.2. Recall that this extension allows us
to prove lower bounds on the complexity of MAPs via MA communication complexity
lower bounds. We note that since an MAP lower bound refers to a particular value of ε,
it immediately implies a lower bound also on MAPPDP.

One natural candidate for a communication complexity problem on which we can base
our Hamming lower bound is the Hamming Distance communication problem, wherein
Alice and Bob need to decide whether the Hamming distance of their input strings is
equal to a predetermined number. However, as opposed to the MAP lower bounds that
we have shown before (e.g., for TensorSum, and EIM), Hamming is a property of non-
robust objects; i.e., there is no significant distance between every pair of valid objects.
In order to overcome the lack of distance between valid objects in Hamming, we wish
to reduce Hamming to an MA communication complexity gap-problem wherein the YES-
instances and NO-instances are far apart. Indeed, the Gap Hamming Distance problem,
described next, serves this purpose.

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem, denoted by GHDn,t,g,
is the promise problem wherein Alice gets as input an n-bit string x, Bob gets as input
an n-bit string y, and the players need to decide whether the Hamming distance of their
strings is greater than t+g (considered a YES-instance), or smaller than t−g (considered
a NO-instance). See Section 2.8.2.2 for formal definitions and background. By extending
a recent result of Gur and Raz [GR13b], we show

Lemma 2.24. Let g, n ∈ N such that g ≤ n and t = α · n for some constant α ∈ (0, 1).
Then, every MA communication complexity protocol for GHDn,t,g, with proof complexity

p ≥ 1, has communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.

The proof of Lemma 2.24, which is by a reduction to the result of [GR13b], is presented
in Section 2.8.2.2 (see Corollary 2.33). Equipped with Lemma 2.24, we proceed to prove

64

2.6 MAPs for Parametrized Concatenation Problems

the lower bound for Hammingwn .

Theorem 2.25. For every n ∈ N and ε
def
= ε(n) ∈ (0, 1/2), if Hammingn/2n has an

MAP with respect to proximity parameter ε, with proof complexity p = Ω(log n) and
query complexity q such that p(O(n)) = O(p(n)) and q(O(n)) = O(q(n)), then p · q =
Ω (min (n, ε−2)).

We note that our restriction on the form of p and q is satisfied by reasonable functions
such as f(n) = a · nb for any a, b ≥ 0 as well as for f(n) = a · polylog(n).

Proof of Theorem 2.25. Throughout the proof we fix the function w as w(m)
def
= m/2. By

Lemma 2.13, if Hammingwn ∈ MAP(p, q), then the communication complexity (promise)

problem CHammingw
⊕,ε has an MA communication complexity protocol with a proof of length

p and total communication 2q, where (following [BBM11]) CHammingw
⊕,ε refers to the commu-

nication complexity (promise) problem, in which Alice and Bob need to decide whether
their inputs have Hamming distance exactly n/2 or are ε-far from having such distance.

Thus, by Lemma 2.24, the theorem follows by reducing GHDn,n/2−εn,εn to CHammingw
⊕,ε , which

is done next. (We stress that this reduction takes place entirely in the context of MA
communication complexity.)

We note that both GHDn,n/2−εn,εn and CHammingw
⊕,ε are communication complexity (promise)

problems that refer to the Hamming distance ∆ (x, y) between the inputs x and y
(of Alice and Bob, respectively). In GHDn,n/2−εn,εn the YES-instances correspond to
∆ (x, y) ≥ n/2 and the NO-instances correspond to ∆ (x, y) ≤ n/2 − 2εn, whereas in

CHammingw
⊕,ε the YES-instances correspond to ∆ (x, y) = n/2 and the NO-instances corre-

spond to ∆ (x, y) /∈ [n/2− εn, n/2 + εn].

We proceed to show a reduction from GHDn,n/2−εn,εn to CHammingw
⊕,ε . Since the reduction

is between two MA communication complexity problems, we may allow the reduction to
make use of a proof string. Specifically, the reduction is given as a proof string an integer
d̃ ∈ {0, . . . , n} that allegedly equals ∆ (x, y), and maps a pair (x, y) ∈ {0, 1}n+n to a pair
(x′, y′) ∈ {0, 1}2n+2n such that a YES (resp., NO) instance of GHDn,n/2−εn,εn is mapped

to a YES (resp., NO) instance of CHammingw
⊕,ε .

The reduction, given input d̃ and (x, y), first checks that d̃ ≥ n/2 and rejects otherwise
(since ∆ (x, y) < n/2 does not correspond to a YES instance of GHDn,n/2−ε,εn). Then,
the reduction maps the pair (x, y) ∈ {0, 1}n+n to the pair (x′, y′) ∈ {0, 1}2n+2n by setting

x′ = x ◦ 0n and y′ = y ◦ 0d̃1n−d̃. That is, Alice (resp., Bob), given input x (resp., y)
and the alleged proof d̃, first checks that d̃ ≥ n/2 and then computes x′ (resp., y′). The

parties then run the CHammingw
⊕,ε MA communication complexity protocol on input (x′, y′).

If (x, y) is a YES-instance of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≥ n/2) and d̃ = ∆ (x, y)
(i.e., the provided proof is correct), then

∆ (x′, y′) = ∆ (x, y) + n− d̃ = n,

65

2. NON-INTERACTIVE PROOFS OF PROXIMITY

and so (x′, y′) is a YES-instance of CHammingw
⊕,ε . On the other hand, if (x, y) is a NO-instance

of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≤ n/2− 2εn), then for every d̃ ≥ n/2

∆ (x′, y′) = ∆ (x, y) + n− d̃ ≤ n− 2εn

and so (x′, y′) is a NO-instance of CHammingw
⊕,ε .

Let us spell out how the reduction is used to prove the theorem. Suppose that
Hammingw is in the class MAP(p, q), where p and q are as in the hypothesis. Then,

by Lemma 2.13, the CHammingw
⊕,ε problem has an MA communication complexity protocol

with proof complexity p and communication complexity 2q. Our reduction maps in-
puts of length n (of GHDn,n/2−εn,εn) to inputs of length 2n (of CHammingw

⊕,ε), while using
an additional proof of length log2 n. Thus, the reduction implies an MA communication
complexity protocol for GHDn,n/2−εn,εn with proof complexity p(2n) + log2 n = O(p(n))
and communication complexity 2q(2n) = O(q(n)). Hence, by Lemma 2.24, it holds that
p · q = Ω (min(n, ε−2)).

2.6.3 Graph Orientation Problems

In this section we apply Theorem 2.23 to the problem of testing graph orientations for
being Eulerian in the graph orientation model. In the graph orientation model, introduced
by Halevy et al. [HLNT05], an underlying directed graph G = (V,E) with a canonical
orientation (i.e., wherein each edge is directed from the vertex with the smaller lexico-
graphical order to the vertex with the larger lexicographical order) is given as an explicit
input to the tester, and the actual input, to which the tester only has oracle access, is an

orientation
−→
G = { d(e) ∈ {0, 1} : e ∈ E } of G, wherein d(e) represents the direction of

the edge e.
Given a property ΠG (parameterized by the fixed directed graph G) of graph orienta-

tions, a tester for ΠG is given query access to an orientation of G; that is, every query is
an edge e ∈ E, and the answer to the query is the direction of e in G (i.e., d(e) ∈ {0, 1}).
An orientation

−→
G of G is ε-close to ΠG if it can be modified to be in ΠG by inverting the

direction of at most an ε-fraction of the edges of G. Note that the distance function in the
orientation model naturally depends on the size of the underlying graph. Moreover, the
testing algorithm may strongly depend on the structure of the underlying graph. We note
that the graph orientation model falls within the standard property testing framework,
as a special case of property testing of massively parameterized problems (see [New10]
for a survey on massively parameterized properties).

We consider the graph orientation property of being Eulerian, which was first pointed
out by Halevy et al. [HLNT07] as a natural property for the graph orientation model.
Recall that a directed graph is Eulerian if for every vertex v in the graph, the in-degree of v
is equal to its out-degree. If G is a directed graph (with canonical orientation), we denote
by EulerG the property that contains all orientations of G to (directed) Eulerian graphs.
While no (non-trivial) upper bound is known for this property, Fischer et al. [FLM+12]
showed that for general graphs, testing proximity to being Eulerian with 1-sided error is

66

2.6 MAPs for Parametrized Concatenation Problems

hard. Specifically, They showed that for G = K2,n−2 (i.e., the full bipartite graph with
2 vertices on one side, and n − 2 vertices on the other side), a one-sided error tester for
EulerG must use Ω(n) queries.

Using Theorem 2.23 we show, for every α ∈ (0, 1], an MAP with 1-sided error for
EulerK2,n−2 , which uses a proof of length Õ(nα) and Õ(n1−αε−1) queries. Hence, we have
a smooth (up to poly-logarithmic factors) multiplicative trade-off between the query and
proof complexities of the MAP. We note that it seems that using similar techniques, it is
possible to obtain, using Theorem 2.23, efficient MAPs for several problems in the graph
orientation model.

Formally, let K2,n−2 be the graph with a set of vertices V = { v1, ..., vn } and a set of
edges E = { (vi, vj) : i ∈ {1, 2}, j ∈ { 3, ..., n } }.

Theorem 2.26. The property EulerK2,n−2 has a one-sided error MAP, with respect to
proximity parameter ε, that uses a proof of length O(k · log n) and has query complexity
Õ
(
n
k
· ε−1

)
.

Proof. The main idea is to divide K2,n−2 into sub-graphs of equal size, wherein v1 and v2

are the only vertices that appear in all sub-graphs. We require that for all j ∈ { 3, . . . , n },
the in-degree of vj is equal to its out-degree. However, since v1 and v2 appear in all of
the sub-graphs, we can allow their in-degree in each subgraph to be different than their
out-degree in this subgraph, as long as the sum of their in-degrees is equal to the sum of
their out-degrees.

We denote the in-degree of a vertex v ∈ K2,n−2 by din(v) and the out-degree of v ∈
K2,n−2 by dout(v). We start by considering the following generalization of the EulerK2,n−2

property. For every a, b ∈ Z, let Euler
(a,b)
K2,n−2

be the set of all orientations of K2,n−2 such
that:

1. din(v1)− dout(v1) = a.

2. din(v2)− dout(v2) = b

3. din(vj) = dout(vj), for all j ∈ { 3, . . . , n }.

(note that a and bmay be negative). Let Ā be the set of all sequences
(
(a1, b1), . . . , (ak, bk)

)
,

where ai, bi ∈ {−(n−2), . . . , n−2} for every i ∈ [k] and for which it holds that
∑k

i=1 ai = 0

and
∑k

i=1 bi = 0. Consider the property:

Π
def
=

⋃
(a1,b1),...,(ak,bk)∈Ā

Euler
(a1,b1)
K2,n/k−2

× . . .× Euler
(ak,bk)
K2,n/k−2

.

This property contains all sequences of k orientations of the graphs K2,n/k−2 such that
(1) the vertices on the “large” side have in degree that is equal to their out degree and (2)
for the vertices on the “small” sides, the sum, over all graphs, of their in-degree equals
the sum of their out-degrees. We note that there is a trivial mapping between Π and
EulerK2,n−2 which simply identifies the pair of vertices on the smaller side of graphs in Π
as a singe pair of vertices.

67

2. NON-INTERACTIVE PROOFS OF PROXIMITY

By applying Theorem 2.23 with c1 = 1, c2 = 0, and using the trivial tester (that
queries the entire orientation) for every subgraph, the property Π has an MAP with proof
of length O(k · log n), and query complexity Õ

(
n
k
· ε−1

)
. By the foregoing discussion, this

MAP can be easily modified to work also for the property EulerK2,n−2 .

2.7 Bipartiteness in Bounded Degree Graphs

In this section we consider the problem of testing bipartiteness for “rapidly-mixing”
graphs in the bounded-degree graph model. In a classical result, Goldreich and Ron [GR99]
showed that any graph can be tested for bipartiteness in the bounded-degree model, using
a tester with query complexity Õ(

√
N/ε), where N is the number of vertices in the tested

graph. Goldreich and Ron first consider the (far simpler) case in which there is a promise
that the graph is “rapidly-mixing” (see definition below). More recently, Rothblum, Vad-
han and Wigderson [RVW13] showed a 2-message IPP for bipartiteness, in the rapidly-
mixing case, with communication and query complexities that are poly(logN, ε−1).

Roughly speaking, using similar techniques to (the rapidly-mixing case in) [GR99],
we construct an MAP protocol for testing bipartiteness of rapidly-mixing graphs, with
proof complexity p and query complexity q for every p and q such that p · q ≥ N . Thus,
the query complexity of our MAP improves upon that of the [GR99] bipartiteness tester
(which does not use a proof) only if the proof is of length ω(

√
N). In particular, we

obtain an MAP verifier that uses a proof of length N2/3 and makes only N1/3 queries. In
contrast, a lower bound of Ω(

√
N) for testers (which do not use a proof) was shown by

Goldreich and Ron [GR02] (and this lower bound holds also in the rapidly-mixing case).
We leave the questions of (1) extending our result to graphs that are not rapidly-

mixing, and (2) obtaining an MAP for bipartiteness with query and proof complexities
that are both o(

√
N), for future research.

The Bounded Degree Graph Model. In the bounded degree graph model, intro-
duced by Goldreich and Ron [GR02] (see also [Gol11a]), the object that is being tested is
a graph G = (V,E) with degree bounded by some constant d. The graph is represented
by a function g : V × [d] → V ∪ {⊥} such that g(u, i) = v if v is the ith vertex incident
at u, and g(u, i) = ⊥ if u has less than i neighbors. The distance between two graphs,
represented by functions g, g′ : V × [d]→ V ∪ {⊥} is measured (as usual) as the fraction
of pairs (u, i) such that g(u, i) 6= g′(u, i). For further details, see [Gol11a].

Rapidly-Mixing Graphs. Let G = (V,E) be graph with degree bounded by d and

let N
def
= |V |. A (lazy) random walk of length ` starting at a vertex s ∈ V is a random

walk that involves ` steps. At each step, if the walk is currently at vertex v with degree
dv ≤ d, then the walk continues to each neighbor of v with probability 1/2d and stays at
v with probability 1− dv

2d
≥ 1/2 (a so-called “lazy” step). We say that G is rapidly-mixing

if for every s, t ∈ V , the probability that a (lazy) random walk of length Ω(logN) that
starts in s ends in t, is at least 1/(2N) and at most 2/N . We will use the fact that

68

2.7 Bipartiteness in Bounded Degree Graphs

in a rapidly-mixing graph G = (V,E), for every vertex s ∈ V and subset T ⊆ V , the
probability that a random walk of length Ω(logN) that starts at s ends in T , is at least
|T |/(2N) and at most 2|T |/N . We mention the well-known fact that expander graphs
are rapidly-mixing.

We proceed to describe our MAP. Actually since we require a promise that the graph
is rapidly-mixing, we will need a “promise-problem” variant of the notion of MAP. For
sake of brevity we only define this notion implicitly (in the next theorem).

Theorem 2.27. There exists a probabilistic verifier V that given oracle access to a graph
G of size N (in the bounded degree model), and explicit access to N , the degree bound d,
a proximity parameter ε ∈ (0, 1), and a proof string w of length k · logN , makes at most
Õ(N

k
· ε−2) oracle queries, and satisfies the following two conditions:

1. (Completeness:) if G is bipartite, then there exists a proof string w ∈ {0, 1}k logN

such that V G(N, d, ε, w) = 1, with probability 1.

2. (Soundness:) if G is rapidly-mixing and ε-far from every bipartite graph, then for
every proof string w, with probability at least 1/2, it holds that V G(N, d, ε, w) = 0.

Note that our tester has a one-sided error.

Proof. We define the parity of a (lazy) random walk as the parity of the number of actual
(i.e., non-lazy) steps that take place in it. Loosely speaking, the proof that the graph G is
bipartite is a subset S ⊆ V of k vertices that are allegedly on the same side of G. To verify
the proof, the verifier selects roughly O(logN) starting vertices, and takes approximately
N/k random walks of length O(logN) from each starting vertex s. If there exist two
random walks that start in s and end in S with different parities, then two corresponding
vertices in S must be on different sides and the verifier rejects. Otherwise, the verifier
accepts.

Since the graph is rapidly-mixing, the probability that a random walk that starts in
s ends in S is roughly |S|/N . The key point (which is proved formally below) is that if
the graph is far from bipartite, then for many starting vertices, the probability that the
random walk ends in S with parity 0 (or equivalently, with parity 1) is Ω (|S|/N). That
is, the probability of reaching S with either parity is significant enough. The protocol is
presented in Fig. 2.6.

Note that the proof and query complexities are as stated. We proceed to show that
completeness and soundness hold.

Completeness. If G = ((L,R), E) is a bipartite graph such that |L| ≥ |R|, and S ⊆ L is
the proof string, then there is no path between two vertices in S that has an odd length.
Therefore, for every vertex s ∈ V , there are no two paths with different parities that end
in S.

69

2. NON-INTERACTIVE PROOFS OF PROXIMITY

MAP for Bipartiteness of rapidly-mixing graphs (in the bounded degree graph model)

Input: oracle access to a graph G = (V,E), the size N
def
= |V | of the graph, a bound d on the

maximal degree in G, a proximity parameter ε ∈ (0, 1), and a parameter k ∈ [N].

The Proof:
Let V = (L,R) such that L,R are disjoint independent sets and |L| ≥ |R| (such a partition is
guaranteed if the graph is bipartite). The proof is an (arbitrary) subset S ⊆ L of size k.

The Verifier:

1. Repeat O
(

logN
ε

)
times:

(a) Select uniformly at random s ∈ V .

(b) Take O
(
N
k ·

logN
ε

)
(lazy) random walks starting at s, each of length `

def
= O(logN).

(c) Reject if there are two walks that end in S, having different parities.

2. If all of the previous tests passed, then accept.

Figure 2.6: MAP for Bipartiteness of rapidly-mixing graphs

Soundness. Suppose that G = (V,E) is a rapidly-mixing graph of size N = |V | that is
ε-far from every bipartite graph and let S ⊆ V . For every v ∈ V and σ ∈ {0, 1}, let pσv be
the probability that a (lazy) random walk of length ` = O(logN) that starts at v, ends

in S with parity σ. Since the graph is rapidly-mixing, p0
v + p1

v ≥
|S|
2N

for every v ∈ V .
The following claim shows that, for an average vertex v, the probability that one

random walk that starts at v ends in S with parity 0 and a second random walk that
starts at v ends in S with parity 1, is roughly Ω((|S|/N)2) (i.e., roughly the same as the
probability for two random walks that start at v to end in S without any restriction on
the parities of the walks).

Claim 2.24.1.
∑

v∈V p
0
vp

1
v >

ε|S|2
64`N

.

Proof. Suppose otherwise. Consider the following partition of the graph into (V0, V1)
where V0 = {v ∈ V : p0

v ≥ p1
v} and V1 = {v ∈ V : p1

v > p0
v}. Let E ′ = E(V0, V0) ∪

E(V1, V1) be the set of all internal edges within V0 and within V1. We will obtain a
contradiction by showing that G is ε-close to the bipartite graph ((V0, V1), E\E ′) that is
obtained from G by removing all edges in E ′.

For every v ∈ V and σ ∈ {0, 1}, let Aσv,m denote the event that a (lazy) random
walk of length m (where m is a parameter) that starts at v, ends in S with parity σ. In
particular, Pr[Aσv,`] = pσv . Then, for every σ ∈ {0, 1} and v ∈ Vσ, it holds that

p1−σ
v ≥

∑
u∈Vσ s.t. (v,u)∈E′

1

2d
· Pr[Aσu,`−1], (2.9)

70

2.7 Bipartiteness in Bounded Degree Graphs

since a walk from v to S with parity 1 − σ can be obtained by a step to one of the
neighbors of v in Vσ (which happens with probability 1/2d for each neighbor), and a walk
of length `− 1 from this neighbor u to S with parity σ (i.e., the event Aσu,`−1).

Intuitively, since we expect the number of lazy steps in a lazy random walk to be rather
large (at least `/2 in expectation), the probability that the event Aσu,`−1 occurs is closely
related to the probability that the event Aσu,` occurs (indeed, we expect the discrepancy
in the number of steps to be “hidden” by the (deviation of the number of) lazy steps).
The foregoing intuition is formalized by observing that with very high probability at least
one lazy step occurs and the probability that Aσu,` occurs, conditioned on a specific step
being lazy, is equal to the probability that Aσu,`−1 occurs. Indeed, by the union bound,

pσu = Pr[Aσu,`]

≤ Pr[Aσu,` ∧ no lazy steps in the walk] +
∑
i∈[`]

Pr[Aσu,` ∧ the ith step in the walk is lazy]

≤ Pr[no lazy steps in the walk] +
∑
i∈[`]

Pr[Aσu,` | the ith step in the walk is lazy]

We can bound the first term by 2−`, which by setting ` = log(4n), is at most 1/(4N).
As for the second term, the probability that a random walk of length ` from u ends in
S with parity σ conditioned on the ith step being lazy is equal to the probability that a
random walk of length `− 1 from u ends in S with parity σ. Hence

pσu ≤
1

4N
+ ` · Pr[Aσu,`−1] (2.10)

Using Eq. (2.9) and Eq. (2.10), we obtain that:∑
v∈V

p0
vp

1
v =

∑
σ∈{0,1}

∑
v∈Vσ

pσvp
1−σ
v

≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσv ·
Pr[Aσu,`−1]

2d

≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσv ·
1

2`d
·
(
pσu −

1

4N

)

≥ |E ′| · 1

2`d
· |S|

4N
· |S|

8N

where the last inequality follows from the fact that for every w ∈ Vσ it holds that
pσw ≥ (pσw + p1−σ

w)/2 ≥ |S|/4n.

Hence, by our hypothesis, |E ′| ≤ ε|S|2
64`N

·
(

1
2`d
· |S|

4N
· |S|

8N

)−1

= εdN . Therefore, by

removing an ε fraction of the edges of G we obtain a bipartite graph, in contradiction to
our assumption that G is ε-far from bipartite. This concludes the proof of Claim 2.24.1.

71

2. NON-INTERACTIVE PROOFS OF PROXIMITY

We say that a vertex v is good if p0
vp

1
v ≥

ε|S|2
128`N2 . (Intuitively, a vertex v is good if two

random walks that start at v are likely to end in S with different parities.) Let α ∈ [0, 1]
be the fraction of good vertices in V . By Claim 2.24.1,

ε|S|2

64`N
<
∑
v∈V

p0
vp

1
v =

∑
v is good

p0
vp

1
v +

∑
v is not good

p0
vp

1
v ≤ αN ·

(
2|S|
N

)2

+N · ε|S|2

128`N2
,

where the last inequality uses the fact that for every vertex v ∈ V it holds that p0
v · p1

v ≤
(p0
v + p1

v)
2 ≤ (2|S|/N)2. Hence, the fraction of good vertices is at least α = Ω(ε/ logN).

Hence, with probability at least 0.9, at least one of the starting vertices s (which
were selected in one of the O(logN/ε) iterations) is good. Assume that indeed, in one

of the iterations a good vertex s is selected. Hence, p0
sp

1
s ≥

ε|S|2
128`N2 and p0

s + p1
s ≤

2|S|
N

,

which implies that p0
s, p

1
s = Ω

(
|S|ε

N logN

)
. Therefore, since we take O

(
N
|S| ·

logN
ε

)
random

walks starting in s, with probability 0.9, there will be at least one walk thats ends in S
with parity 0 and one walk that ends in S with parity 1. Hence, the tester rejects with
probability at least 0.92 ≥ 1/2.

72

2.8 Appendices for Chapter 2

2.8 Appendices for Chapter 2

2.8.1 Background

2.8.1.1 Communication Complexity

Let X and Y be finite sets, and let f : X × Y → {0, 1} be a function. In the two-party
probabilistic communication complexity model we have two computationally unbounded
players, traditionally referred to as Alice and Bob. Both players share a random string.
Alice gets as an input x ∈ X. Bob gets as an input y ∈ Y . At the beginning, neither
one of the players has any information regarding the input of the other player. Their
common goal is to compute the value of f(x, y), while minimizing the communication
between them. In each step of the protocol, one of the players sends one bit to the other
player. This bit may depend on the player’s input, the common random string, as well as
on all previous bits communicated between the two players. At the end of the protocol,
both players output f(x, y) with high probability.

We say that a given protocol π computes a (possibly partial) function f : X × Y →
{0, 1} if for every x ∈ X and y ∈ Y with probability at least 2/3 Alice outputs f(x, y)
after interacting with Bob.20 We define the communication complexity of the protocol
CC(π) to be the maximum number of communicated bits in the protocol π when Alice
and Bob are given inputs from X and Y respectively. The communication complexity of
a function f is defined as:

CC(f) = min
π that compute f

CC(π).

For a family of functions F = {fn : Xn → Yn}n∈N we define the communication
complexity of F as CCn(F) = CC(fn).

Set-Disjointness. The (unique) set-disjointness problem is the classical communica-
tion complexity problem wherein Alice gets an n-bit string x, Bob gets an n-bit string y,
and their goal is to decide whether there exists i ∈ [n] such that xi = yi = 1. Formally,

Definition 2.25. For every n ∈ N, DISJn : {0, 1}n×{0, 1}n → {0, 1} is the communica-
tion complexity predicate given by the partial function

DISJn(x, y) =

{
1 if

∑
i∈[n] xiyi = 0

0 if
∑

i∈[n] xiyi = 1

(where the arithmetic is over the integers).

It is well-known (see [KS92]) that the communication complexity of the set-disjointness
problem is linear in the size of the inputs.

20In the case of a partial function, we consider only relevant x and y’s.

73

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2.8.1.2 MA Communication Complexity

In MA communication complexity protocols, we have a function f : X × Y → {0, 1} (for
some finite sets X, Y), and three computationally unbounded parties: Merlin, Alice, and
Bob. The function f is known to all parties. Alice gets as an input x ∈ X. Bob gets as
an input y ∈ Y . Merlin sees both x, y but Alice and Bob share a private random string
that Merlin cannot see.

At the beginning of an MA communication complexity protocol, Merlin, who sees both
inputs x and y, sends a proof string w = w(x, y) that asserts that f(x, y) = 1 to Alice
and Bob. The two players exchanges messages and at the end of the protocol, (say) Alice
outputs an answer z ∈ {0, 1}. Note that the answer may depend on the proof w as well as
the input (x, y). For a protocol π, denote by π

(
(x, y), w

)
the probabilistically generated

answer z ∈ {0, 1} given by Alice on input (x, y) and proof w.

We define MA communication complexity protocol as follows.

Definition 2.26. An MA(c, p)-communication complexity protocol for f is probabilistic
communication complexity protocol π between Alice and Bob in which they both get as
input a p-bit proof, they can communicate at most c bits, and the protocol satisfies the
following two conditions:

1. Completeness: for all (x, y) ∈ f−1(1), there exists a string w ∈ {0, 1}p such that

Pr
[
π
(
(x, y), w

)
= 1
]
≥ 2/3

(where the probability is over the common random string).

2. Soundness: for all (x, y) ∈ f−1(0) and for any string w ∈ {0, 1}p we have

Pr
[
π
(
(x, y), w

)
= 1
]
≤ 1/3

(where the probability is over the common random string).

The MA Communication Complexity of Set-Disjointness. Recall that there is a
well-known linear lower bound on the communication complexity of the the set-disjointness
problem (DISJ) (see Section 2.3.1.3 for formal definitions and statement of the lower
bound). A decade after the communication complexity of DISJ was settled, Klauck
[Kla03, Kla11] showed the following lower bound on the MA communication complex-
ity of set-disjointness (later proved to be tight, by Aaronson and Wigderson [AW09]).

Theorem 2.28. Every MA communication complexity protocol for DISJn with proof com-
plexity p and communication complexity c satisfies p · c = Ω(n).

74

2.8 Appendices for Chapter 2

2.8.1.3 Error Correcting Codes

We first introduce codes as objects of fixed length and then give asymptotic variants
of the definitions. Let Σ be a finite alphabet. An error-correcting code (over Σ) is an
injective function C : Σk → Σn where k, n ∈ N and k < n. Every element in the range of
C is called a codeword. The stretch of the code is n (viewed as a function of k) and the
relative distance is defined as d/n, where d is the minimal distance between two (distinct)
codewords.

We say that the code C is a t-locally testable code (LTC), where t : [0, 1]→ N, if there
exists a probabilistic algorithm T that given oracle access to w ∈ Σn and a proximity
parameter ε > 0 makes at most t(ε) queries. The algorithm accepts every codeword with
probability 1, and rejects every string that is ε-far from the code with probability at least
1/2. For further details on LTCs, see [GS06, Gol10c].

We say that the code C, with relative distance δ0, is a t-locally decodable code (t-
LDC), where t ∈ N, if there exists a constant δ ∈ (0, δ0/2) called the decoding radius, and
a probabilistic algorithm D that given i ∈ [k] and oracle access to a string w ∈ {0, 1}n
that is δ-close to a codeword w′ = C(m) for some m ∈ {0, 1}k, makes at most t queries to
the oracle and outputs mi (i.e., the ith bit of m) with probability at least 2/3. Moreover,
if w is a codeword, then the algorithm outputs mi with probability 1. For further details
on LDCs, see [KT00].

An important parameter of both LTCs and LDCs are their query complexities; that
is, the number of queries t made to the string w. In both cases we are interested in codes
for which the number of queries t is significantly smaller than n. While there are known
LTCs with (almost) linear stretch and constant query complexity (i.e., t does not depend
on n), obtaining an LDC with constant query complexity and polynomial stretch is a
major open problem in coding theory.

We will also consider a relaxation of LDCs, introduced by Ben-Sasson et al. [BSGH+06],
known as relaxed-LDC. In this variant, the decoder is allowed to abort on corrupted code-
words. Indeed, the main advantage of relaxed-LDCs over standard LDCs is that there are
known constructions (see [BSGH+06]) of relaxed-LDCs with constant query complexity
and almost linear stretch.

Definition 2.27 (relaxed-LDC, adapted from [BSGH+06, Definition 4.5]). We say that
the code C : Σk → Σn with relative distance δ0 is a t-relaxed-LDC if there exists a
constant δ ∈ (0, δ0/2) and a probabilistic algorithm D that, given an integer i ∈ [k] and
oracle access to a string w ∈ Σn, makes at most t queries and satisfies the following two
conditions:

1. If w = C(m) is a codeword that encodes the message m ∈ {0, 1}k, then D outputs
mi with probability 1.

2. If w is δ-close to a codeword w′ = C(m), then, with probability at least 2/3, the
decoder D outputs a value σ ∈ {mi,⊥}; that is, Pr[Dw(i) ∈ {mi,⊥}] ≥ 2/3.

We note that our definition differs from the original definition in [BSGH+06] in two ways.
The first difference is that [BSGH+06] require an additional, third, condition that we

75

2. NON-INTERACTIVE PROOFS OF PROXIMITY

do not need. (However, [BSGH+06] show that a code that satisfies conditions 1 and 2
above can be converted into an “equally good” code that satisfies also the additional
third condition.) The second difference is that [BSGH+06] only require that the decoder
succeed in decoding valid codewords with probability 2/3 whereas we require successful
decoding with probability 1. Fortunately, the constructions of [BSGH+06] actually satisfy
the stronger requirement.

The asymptotic variants of the foregoing definitions are obtained in the natural way
by considering families of codes, one for each input length. Let k : N → N be some
(sublinear) function an let {Σn}n∈N be an ensemble of alphabets. A family of codes is an
ensemble {Cn}n∈N such that Cn : (Σn)k(n) → (Σn)n is a code for every n ∈ N.

We say that the family of codes is a t-LTC for a function t : N × [0, 1] → N if for
every n ∈ N, the code Cn is a t(n, ·)-LTC. Similarly we say that a family of codes is a
t-LDC (resp., relaxed-LDC) for a function t : N→ N if for every n ∈ N, the code Cn is a
t(n)-LDC (resp., t(n)-relaxed-LDC). We sometimes abuse notation and refer to a family
of codes as a single code.

2.8.1.4 Multivariate Polynomials and Low Degree Testing

In this section we recall some important facts on multivariate polynomials (see [Sud95] for
a far more detailed introduction). In the following we fix a finite field F and a dimension
m and consider m-variate polynomials over F.

Lemma 2.28 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of
total degree d. Let S ⊂ F and let r1, . . . , rm be selected uniformly at random in S. Then,

Pr
r1,...,rm∈RS

[P (r1, . . . , rm) = 0] ≤ d

|S|
.

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomi-
als P,Q : Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain

(i.e., Fm).

Theorem 2.29 (Self-Correction Procedure (cf. [GS92, Sud95]). Let δ < 1/3, and d,m ∈
N. There exists an algorithm that, given x ∈ Fm and oracle access to an m-variate
function P : Fm → F that is δ-close to a polynomial P ′ of individual degree d, makes
O(d · m) oracle queries and outputs P ′(x) with probability 2/3. Furthermore, if P has
total degree t, then given x ∈ Fm, the algorithm outputs P (x) with probability 1.

In Theorem 2.29, as well as in the two following theorems, the error probability can
be decreased to be an arbitrarily small constant using standard error reduction (while
increasing the number of queries by a constant factor).

Theorem 2.30 (Total Degree Test (a.k.a. Low Degree Test) (see [RS96, Sud95, AS03]).
Let ε ∈ (0, 1/2), t,m ∈ N. There exists an algorithm that, given oracle access to an
m-variate function P : Fm → F, makes O(t · poly(1/ε)) queries and:

76

2.8 Appendices for Chapter 2

1. Accepts every function that is a polynomial of total degree t with probability 1; and

2. Rejects functions that are ε-far from every polynomial of total degree t with proba-
bility at least 1/2.

We will also need a more refined version of the test that tests the individual degree
of the polynomial. Such a test is implicit in [GS06, Section 5.4.2] but for sake of self-
containment we provide a full proof via a reduction to the total degree test.

Theorem 2.31 (Individual Degree Test). Let d,m ∈ N such that dm < |F|/10 and
ε ∈ (0, 1 − dm

|F|). There exists an algorithm that, given oracle access to an m-variate

polynomial P : Fm → F, makes O(dm · poly(1/ε)) queries, and:

1. Accepts every function that is a polynomial of individual degree d with probability
1; and

2. Rejects functions that are ε-far from every polynomial of individual degree d with
probability at least 1/2.

Proof. Given oracle access to the function P , the verifier T first runs the total degree test
on P with respect to proximity ε and total degree dm. If the total degree verifier rejects,
then T rejects.

If the test succeeds, then for every axis i ∈ [m], the verifier T chooses at random
r1, . . . , ri−1, ri+1, . . . , rm ∈R F, and runs a univariate degree d test on the polynomial

Qi(z)
def
= P (r1, . . . , ri−1, z, ri+1, . . . , rm) with soundness error 1/10. If for some axis i the

univariate test rejects, then T rejects, otherwise it accepts.

Completeness. Completeness follow from the completeness of the total degree test to-
gether with the fact that the restriction of an individual degree d polynomial to any of
its axes is a degree d univariate polynomial.

Soundness. Suppose that P is ε-far from every polynomial of individual degree d. If P
is ε-far from every total degree dm polynomial, then the total degree test rejects with
probability 1/2. Thus, we focus on the case that P is ε-close to a total degree dm
polynomial P ′. In this case the polynomials P and P ′ are polynomials of total degree dm
and since ε < 1− dm

F , by the Schwartz-Zippel lemma, they must be identical. Thus, P is
a polynomial of total degree dm.

By the hypothesis, P cannot have individual degree d and therefore, there exists
i ∈ [m] such that P (x1, . . . , xm), as a formal polynomial, has degree d′ > d in xi. Thus,
there exist polynomials P0, . . . , Pd′ each of total degree at most dm such that

P (x1, . . . , xm) =
∑

j∈{0,...,d′}

Pj(x1, . . . , xi−1, xi+1, . . . , xm) · xji

and Pd′ 6≡ 0.

77

2. NON-INTERACTIVE PROOFS OF PROXIMITY

Since Pd′ is a non-zero polynomial of total degree dm, by the Schwartz-Zippel lemma,
it can vanish on only a dm

|F| fraction of its domain. Thus, when testing the ith axis, with

probability 1− dm
|F| , the verifier selects r1, . . . , ri−1, ri+1, . . . , rm ∈ F such that it guaranties

that Pd′(r1, . . . , ri−1, ri+1, . . . , rm) does not vanish. In this case, the polynomial Q(z)
def
=

P (r1, . . . , ri−1, z, ri+1, . . . , rm) is a degree d′ univariate polynomial and the verifier rejects
it with probability 0.9. Thus, the verifier rejects with probability at least 0.92 > 1/2.

2.8.1.5 The Sum-Check Protocol

In this appendix we provide some background on the sum-check protocol that was first
introduced by Lund et al. [LFKN92]. Recall that the sum-check protocol is an interactive
proof for a statement of the form∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a (relatively) low-degree polynomial over a finite field F.

In order to verify that the polynomial P sums to 0 over Hm it suffices to verify that
for every h ∈ H, the sum of the sub-tensor (h, ∗, . . . , ∗) equals some value ah ∈ F and
that

∑
h∈H ah = 0. However, the straightforward recursion (which computes the sum of

every sub-tensor) will yield a total query complexity of Ω(Hm).

The sum-check protocol takes a different approach by having the prover convince
the verifier of the sum of just a single randomly selected sub-tensor (thus, yielding the
desired efficiency). More specifically, the verifier asks the prover to specify the sum of all
sum-tensors of the form (z, ∗ . . . , ∗) for every z ∈ F (rather than z ∈ H). A key point is
that these sums can be specified by the low-degree polynomial:

P1(z)
def
=

∑
x2,...,xm∈H

P (z, x2, . . . , xm).

Since P1 has low-degree, if the prover provides a different (low-degree) polynomial P̃1,
then these two polynomials must differ on almost all points in F. Thus, it suffices for the
verifier to select at random a point r ∈R F and to have the prover recursively prove that∑

x2,...,xm∈H P (r1, x2, . . . , xm) = P̃1(r1). Hence, we reduced the m-dimensional TensorSum
problem to an (m− 1)-dimensional TensorSum problem using 2 messages and no queries.
The recursion terminates when m = 1 in which case the verifier can verify the claim
directly.

We note that when extending the sum-check protocol to be an IPP, we need to take
into account the possibility that P is not low degree but this is handled by using the low
degree test (Theorem 2.30) and self-correction (Theorem 2.29).

subsectionProofs and Adaptations of Known Results In this section we provide proofs
and adaptations of known results, which are included here for completeness.

78

2.8 Appendices for Chapter 2

2.8.2 Proofs of Standard Claims from Section 2.5

In this section we provide the missing proofs of the standard claims used in Section 2.5.

Proof of Proposition 2.19. We show that every property Π = ∪n∈NΠn (where Πn ⊆
{0, 1}n) can be tested by making O(log |Πn|/ε) queries. Recall that the lemma can be
proved via learning theory techniques, but we provide an alternative proof that makes
use of the notion of MAPs.

Consider an MAP for Π in which the proof, of length log2 |Πn|, is an explicit and con-
cise description of the object x ∈ Πn (e.g., its index with respect to the lexicographical
ordering of the strings in Πn). The verifier can verify the proof by querying the object
x at O(1/ε) locations uniformly at random (and compare the answers to the string re-
constructed based on the proof). The lemma follows by noting that this MAP makes
proof-oblivious queries and applying Theorem 2.19, which guarantees that if Π has an
MAP verifier that makes q proof oblivious queries and uses a proof of length p, then Π
has a tester that makes O(p · q) queries without using a proof.

Proof of Proposition 2.20. We show that for every constant ε ∈ (0, 1/4] and set S ⊆
{0, 1}n it holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| · 2−n/8. Observe that

Pr
x∈R{0,1}n

[∃s ∈ S such that x is ε-close to s] ≤
∑
s∈S

Pr
x∈R{0,1}n

[x is ε-close to s]

= |S| · Pr
x∈R{0,1}n

[x has at most εn 1’s]

≤ |S| · exp(−2 · (1/4)2 · n).

where the first inequality follows from the union bound, and the last inequality follows
from the Chernoff bound and the fact that ε < 1/4.

Proof of Proposition 2.22. Let F be a class of functions of size at most 22n/4 . We show
that 99% of sets of size O(log |F|) are PRGs that fool F .

For every set S ⊆ {0, 1}n and function f ∈ F , let δf (S) = |Prx∈RS[f(x) = 1]− µf |
where µf

def
= Prx∈R{0,1}n [f(x) = 1]. Let s ∈ [2n/4] be an integer and let S be a random set

of size s. Then, for every f ∈ F it holds that

Pr
S

[δf (S) ≥ 1/10] = Pr
S

[∣∣∣∣ Pr
x∈RS

[f(x) = 1]− µf
∣∣∣∣ ≥ 1/10

]
≤ 2−Ω(t),

where the last inequality follows from the Chernoff bound.21 Thus, by the union bound,
the probability that for every f ∈ F it holds that δf (S) < 1/10, is at least |F| · 2−Ω(s)

(where the probability is over the choice of S). The lemma follows by setting s =
Θ(log |F|).

21We note that since the set S is chosen with repetitions one cannot directly apply the Chernoff bound.
Still, since s ≤ 2n/4 the probability for a repetition is at most s2/2n ≤ 2−Ω(n). Conditioning on an event
(i.e., that there are no repetitions) that occurs with probability 1− δ can increase the probability by at
most a 1/(1− δ) factor.

79

2. NON-INTERACTIVE PROOFS OF PROXIMITY

2.8.2.1 Precision Sampling

Proof of Claim 2.23.1. We show that there exists j ∈ [dlog2 2/εe] such that a 2jε
4·dlog2(2/ε)e

fraction of x1, . . . , xk are 2−j-far from their corresponding sub-properties Πα1

n/k, . . . ,Π
αk
n/k.

Let d
def
= dlog2(2/ε)e. Let ∆REL (z,W) be defined as the minimal relative Hamming

distance of z from the set W . For every j ∈ [d], let

Sj
def
=
{
i ∈ [k] : ∆REL

(
xi,Π

αi
n/k

)
∈
(
2−j, 2−(j−1)

]}
,

and let T = [k]\(∪i∈[d]Sj). Notice that the sets T, S1, S2, . . . , Sd form a partition of the k
inputs. Also note that, by our setting of d, for every i ∈ T , it holds that xi is ε/2-close
to Παi

n/k.

Suppose towards a contradiction that for every j ∈ [d] it holds that |Sj| < 2jε
4d
· k.

Using the fact that for every i ∈ Sj it holds that xi is 2−(j−1)-close to Παi , we get

∆REL

(
x,Πα1

n/k × . . .× Παk
n/k

)
≤ 1

k

k∑
i=1

∆REL (xi,Π
αi)

=
1

k

∑
i∈T

∆REL (xi,Π
αi) +

1

k

∑
j∈[d]

∑
i∈Sj

∆REL

(
xi,Π

αi
n/k

)
≤ |T |

k
· ε

2
+

1

k

∑
j∈[d]

2−(j−1) · |Sj|

<
ε

2
+
∑
j∈[d]

ε

2d

= ε,

contradicting our assumption that x is ε-far from ΠĀ.

2.8.2.2 Lower Bound on the MA Communication Complexity of GHD

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem is the promise problem
wherein Alice gets as input an n-bit string x, Bob gets as input an n-bit string y, and
the players need to decide whether the Hamming distance of their strings is greater than
t+ g (a YES instance), or smaller than t− g (a NO instance). Formally,

Definition 2.29. The Gap Hamming Distance problem is the communication complexity
problem of computing the (partial) Boolean function GHDn,t,g : {0, 1}n × {0, 1}n → {0, 1}
given by

GHDn,t,g(x, y) =

{
1 if ∆ (x, y) ≥ t+ g

0 if ∆ (x, y) ≤ t− g
.

We denote GHD
def
= GHDn,n

2
,
√
n.

80

2.8 Appendices for Chapter 2

The (standard) communication complexity of GHD has been studied extensively, and
after a long line of work, Chakrabarti and Regev [CR11] have shown the seminal linear
lower bound on the communication complexity of GHD (later, the proof was significantly
simplified by [Vid11, She11]).

In a subsequent work, Gur and Raz [GR13b] showed the following tight lower bound
on the MA communication complexity of GHD.

Theorem 2.32 ([GR13b]). Every MA communication complexity protocol for GHD, with
proof complexity p ≥ 1, has communication complexity at least Ω(n/p).

We note that the aforementioned lower bound can be extended for general settings of
the parameters of the Gap Hamming Distance problem. Specifically, we use the fact that
the simple reductions in [CR11, Section 4]) are based solely on padding arguments (and
thus are robust to MA) to obtain the following corollary.

Corollary 2.33. Let g, n ∈ N such that g ≤ n, let α ∈ (0, 1) and t = αn. Then, every
MA communication complexity protocol for GHDn,t,g, with proof complexity p ≥ 1, has

communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.

81

82

Chapter 3

Proofs of Proximity for Context-Free
Languages and Read-Once
Branching Programs

3.1 Introduction

The field of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich,
Goldwasser and Ron [GGR98], studies a computational model that consists of probabilis-
tic algorithms, called testers, that need to decide whether a given object has a certain
global property or is far (say, in Hamming distance) from all objects that have the prop-
erty, based only on a local view of the object.

A line of work [EKR04, BSGH+06, DR06, RVW13, GR13b, FGL14, KR14] has con-
sidered the question of designing proof systems within the property testing model. The
minimal type of such a proof system, which was recently studied by Gur and Rothblum
[GR13b], augments the property testing framework by replacing the tester with a verifier
that receives, in addition to oracle access to the input, also free access to an explicitly
given short (i.e., sub-linear length) proof. The guarantee is that for inputs that have
the property there exists a proof that makes the verifier accept with high probability,
whereas, for inputs that are far from the property, the verifier will reject every alleged
proof with high probability. These proof systems can be thought of as the NP (or more
accurately MA) analogue of property testing, and are called Merlin-Arthur proofs of prox-
imity (MAP).1

A more general notion was considered by Rothblum, Vadhan and Wigderson [RVW13]
(prior to [GR13b]). Their proof system, which can be thought of as the IP analogue of
property testing, consists of an all powerful (but untrusted) prover who interacts with a
verifier that only has oracle access to the input x. The prover tries to convince the verifier

1A related notion is that of a probabilistically checkable proof of proximity (PCPP) [BSGH+06, DR06].
PCPPs differ from MAPs in that the verifier is only given query (i.e., oracle) access to the proof, whereas
in MAPs, the verifier has free (explicit) access to the proof. Hence, PCPPs are a PCP analogue of property
testing.

83

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

that x has a particular property Π. Here, the guarantee is that for inputs in Π, there
exists a prover strategy that will make the verifier accept with high probability, whereas
for inputs that are far from Π, the verifier will reject with high probability no matter
what prover strategy is employed. The latter proof systems are known as interactive
proofs of proximity (IPPs).2

The focus of this paper is identifying natural classes of properties that are known to
be hard to test, but become easy to verify using the power of a proof (MAP) or interaction
with a prover (IPP).

3.1.1 Our Results

One well-known class of properties that is hard to test is the class of context-free languages.
Alon et al. [AKNS00] showed that there exists a context-free language that requires
Ω (
√
n) queries to test (where here and throughout this work, n denotes the size of the

input) and a context-free language that requires Ω(n) queries to test with one-sided error.
Furthermore, there are no known (non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small read-
once branching programs (ROBPs). Newman [New02] showed that the set of strings
accepted by any small width ROBP can be efficiently tested.3 More specifically, Newman
showed that width w ROBPs can be tested using (2w/ε)O(w) queries, where ε is the
proximity parameter. Bollig [Bol05] showed that Newman’s result cannot be extended
to polynomial-sized ROBPs, by exhibiting an O(n2)-sized ROBP that requires Ω(

√
n)

queries to test. No (non-trivial) testers for general ROBPs are known for width Ω(
√

log n).

In this work we consider the question of constructing efficient MAPs and IPPs for
these two classes.4 Here, by “efficient”, we mean that both the query complexity (i.e.,
the number of queries performed by the verifier to the input) and the proof complexity
(i.e., the length of the MAP proof) or communication complexity (i.e., the amount of
communication with the IPP prover) are small and, in particular, sub-linear5.

Our first pair of results are efficient MAPs for context-free languages and for ROBPs.
These MAPs offer a multiplicative trade-off between the query and proof complexities.
Here and throughout this work, n ∈ N specifies the length of the main input and ε ∈ (0, 1)
denotes the proximity parameter.

2Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a
single message sent from the prover to the verifier.

3The result in [New02] is stated only for oblivious ROBPs but in [Bol05, Section 1.3] it is stated that
Newman’s result holds also for general non-oblivious ROBPs.

4To see that these two classes do not contain each other, observe that the language {0i1j2i3j : i, j ≥
1}, which is not a context-free language [HMU06, Example 7.20], has a poly(n)-width ROBP (which
simply counts the number of repeated occurrences of 0, 1, 2 and 3). On the other hand, Kriegal and
Waack [KW88] showed that every ROBP for the Dyck2 language, which is a context-free language, has
size 2Ω(n).

5As pointed out in [GR13b], if we do not restrict the length of the proof, then every property Π can
be verified trivially using only a constant amount of queries, by considering an MAP proof that contains
a full description of the input.

84

3.1 Introduction

Theorem 3.1. For every context-free language L and every k = k(n) such that 2 ≤
k ≤ n, there exists an MAP for L that uses a proof of length O(k · log n) and has query
complexity O

(
n
k
· ε−1

)
. Furthermore, the MAP has one-sided error.

Theorem 3.2. If a language L is recognized by a size s = s(n) ROBP, then for every
k = k(n) such that 2 ≤ k ≤ n, there exists an MAP for L that uses a proof of length
O(k · log s) and has query complexity O

(
n
k
· ε−1

)
. Furthermore, the MAP has one-sided

error.

Hence, by setting k =
√
n, every context-free language and every language accepted

by an ROBP of size at most 2polylog(n), has an MAP in which both the proof and query
complexity are Õ (

√
n) (w.r.t. constant proximity parameter).

Next, we ask whether the query and proof complexity in Theorems 3.1 and 3.2 can be
significantly reduced by allowing more extensive interaction between the verifier and the
prover (i.e., arbitrary interactive communication rather than just a fixed non-interactive
proof). Very relevant to this question is a recent result of [RVW13] by which, loosely
speaking, every language in NC (which contains all context-free languages [Ruz81] and
languages accepted by small ROBPs6) has an IPP with Õ(

√
n) query and communication

complexities. While the [RVW13] result is more general, for context-free languages and
ROBPs it achieves roughly the same query and communication complexities as the MAPs
in Theorems 3.1 and 3.2, but uses much more interaction (i.e., at least logarithmically
many rounds of interaction compared to just a single message in our MAPs).

Using cryptographic assumptions7, Kalai and Rothblum [KR14] recently showed that
there exists a language in NC1 for which every IPP requires that either the query or
communication complexity be Ω(

√
n). Hence, we cannot hope to improve the [RVW13]

result in general. Still, for the special case of context-free languages and ROBPs, we
show that we can actually extend the MAP protocols in Theorems 3.1 and 3.2 into highly
efficient IPPs with only poly-logarithmic complexity (using a sub-logarithmic number of
rounds). More generally, our IPPs offer a trade-off between the number of rounds of
interaction and the query and communication complexities.

Theorem 3.3. For every context-free language L, every k = k(n) ≥ 2 and r = r(n) ≥ 1
such that kr ≤ n, there exists an r-round IPP for L with communication complexity
O
(
(rk log n) · ε−1

)
and query complexity O

(
n
kr
· ε−1

)
. Furthermore, the IPP is public-coin

and has one-sided error.

Theorem 3.4. If a language L is recognized by a size s = s(n) ROBP, then for every
k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round IPP for
L with communication complexity O

(
(rk log s) · ε−1

)
and query complexity O

(
n
kr
· ε−1

)
.

Furthermore, the IPP is public-coin and has one-sided error.

6See Section 3.5.2 for a discussion on why languages accepted by ROBPs can be computed in small
depth.

7A sufficient assumption for [KR14] is the existence of (length-doubling) PRGs that can be computed
in NC1 and whose output cannot be distinguished from random by circuits of size 2o(n).

85

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

(Interestingly, and in contrast to Theorems 3.1 and 3.2, here the communication complex-
ity also depends on the proximity parameter ε.) In particular, by setting k = log n and
r = logn

log logn
, we obtain IPPs for context-free languages and size 2polylog(n) ROBPs, with

a sub-logarithmic number of rounds, constant query complexity, and poly-logarithmic
communication complexity (w.r.t. constant proximity parameter).

A Remark on Computational Complexity. Following the property testing liter-
ature, we view the query complexity and the proof complexity (resp., communication
complexity) as the primary resources of an MAP (resp., IPP). Still, the running time of
the verifier and of the prover are also important resources. The proofs/provers in our
MAPs and IPPs are indeed efficient; that is, polynomial in the main input x (and in the
case of ROBPs also in the size of the ROBP).

As for our verifiers, those in Theorems 3.1 and 3.3 run in polynomial time (i.e.,
poly(|x|) time) rather than in sub-linear time as one might hope. However, by increasing
the round complexity in Theorem 3.3 by a poly-logarithmic factor, we can obtain an
IPP with sub-linear time verification. Constructing an MAP for context-free languages
with sub-linear time verification remains an interesting open question. The verifiers
in Theorems 3.2 and 3.4 run in sub-linear time if they are given a suitable (natural)
representation of the ROBP.8 See the technical sections (specifically Remark 3.7 and
Remark 3.16) for further details.

Improved Results for Specific Languages. The paradigm used for the general re-
sults in Theorems 3.1-3.4 can be extended to yield better results for specific languages.
A notable class of languages for which we obtain such an improvement is the class of
languages of balanced parentheses expressions (a.k.a the Dyck languages), which are

context-free languages, for which Parnas et al. [PRR01] showed a lower bound of Ω̃(n1/11)
for ordinary testers. Using special properties of the Dyck languages, we can improve on
the general result in Theorem 3.1 in this special case and obtain a somewhat more efficient
MAP for the Dyck languages. See details in Section 3.4.3.

3.1.2 Proof Overview

The proofs of Theorems 3.1 and 3.2 (i.e., the MAP results) will follow (roughly) as special
cases of the proofs of Theorems 3.3 and 3.4 (i.e., the IPP results), respectively. Hence, in
this overview we focus on the proofs of Theorems 3.3 and 3.4, while explaining how to
derive Theorems 3.1 and 3.2 as special cases.

The proofs of Theorems 3.3 and 3.4 share a common theme: For L that is either a
context-free language or is accepted by a ROBP, we show that every input x ∈ L can be
broken-down into k sub-problems (related to L) such that the following holds:

8Indeed, the running time of the verifier crucially relies on the specific representation of the ROBP.
We remark that there are other natural representations of ROBPs than the one we use, and for some of
these representations obtaining sub-linear running time may not be feasible.

86

3.1 Introduction

1. On the one hand, if x ∈ L, then there exists (1) a partition of [n] into sets S1, . . . , Sk
(each of size roughly n/k); and (2) languages L1, . . . ,Lk such that both (1) and (2)
have a concise representation, and, for every i ∈ [k], the projection of x on Si,
denoted x[Si], is in the language Li. Furthermore, if L is a context-free language
(resp., accepted by an ROBP), then the languages L1, . . . ,Lk are all “variants” of
context-free languages9 (resp., accepted by ROBPs).

2. On the other hand, if x is “far” from L, then for every concise representation of a
partition S1, . . . , Sk of [n] and languages L1, . . . ,Lk (of the type used in 1), for an
average i ∈ [k], it holds that x[Si] is proportionally “far” from Li.

By design, the partition S1, . . . , Sk as well as the corresponding languages L1, . . . ,Lk
depend on the entire input x, and so the verifier (who only has query access to x) cannot
generate them by itself. Instead, the concise representation of S1, . . . , Sk and L1, . . . ,Lk
will be specified by the prover (as a single message in the case of an IPP, or as the entire
proof string in the case of an MAP).

Given the latter, we construct an MAP as follows. The MAP verifier selects at random
a small subset I ⊆ [k] and, for every i ∈ I, reads all of x[Si] (which is of length roughly
n/k) and checks that x[Si] ∈ Li. Indeed, by the two foregoing conditions, if x ∈ L, then
x[Si] ∈ Li for every i ∈ [k], whereas if x is “far” from L, then, by an averaging argument,
for many i ∈ [k], it holds that x[Si] is proportionally “far” from Li (and in particular
x[Si] 6∈ Li), and the verifier will reject.

A natural approach for extending the foregoing MAP to an IPP is to have the verifier
send the set I (where I is chosen at random as in the MAP) to the prover, and then
recursively run |I| IPP protocols to check that x[Si] is close to Li, for every i ∈ I. In each
recursive call the input shrinks by (roughly) a factor of k. After the recursion reaches
depth r, where r is a predetermined bound on the number of rounds, the verifier can
simply read its entire current input (of length O(n/kr)) and decide whether to accept or
reject.

The foregoing approach indeed works, but because there is more than one recursive
call in each round, the complexity of the resulting IPP depends exponentially on the
number of rounds r. Instead, we use a more economical approach, which avoids the
exponential dependence on r, based on the notion of a proximity oblivious tester [GR11].
Recall that a proximity oblivious tester for a property Π is a tester that does not receive the
proximity parameter ε as input and is only required to reject inputs that are ε-far from
Π with probability proportional to ε (rather than probability 2/3). To present a more
economical recursion, the IPP that we design is similarly “proximity oblivious”. The idea
is to have the verifier select at random only a single index i ∈ [k], send i to the prover,
and then have the two parties recursively run an IPP protocol for verifying that x[Si] is
close to Li. Indeed, if x ∈ L then x[Si] ∈ Li, whereas if x is ε-far from L, then, since i
was chosen at random, on the average x[Si] is ε-far from Li, and therefore, by inductive

9If L is a context-free language, then the languages L1, . . . ,Lk will be variants of context-free lan-
guages, which we call “partial derivation languages”. However, if L is accepted by an ROBP, then the
languages L1, . . . ,Lk are also accepted by (different) ROBPs.

87

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

reasoning, the verifier will reject with probability ε. To obtain constant soundness we
can just repeat10 the entire proximity oblivious protocol O(1/ε) times in parallel.

This concludes the high-level description of our MAPs and IPPs. Of course, the way in
which the partition is generated is quite different in the case of context-free languages and
in the case of ROBP, and different technical problems arise in each case. In the following
subsections we discuss the specific details. In Section 3.1.2.1 we give an overview of how
to partition read-once branching programs. Partitioning context-free languages is more
involved, and so, in Section 3.1.2.2, as a warm-up, we first consider partitioning into two
parts (i.e., k = 2). Then, in Section 3.1.2.3 we show how to extend the technique to
multiple parts (i.e., general k ≥ 2).

3.1.2.1 Partitioning ROBPs

Recall that a branching program on n variables is a directed acyclic graph with a unique
source vertex with in-degree 0 and (possibly) multiple sink vertices with out-degree 0.
Each sink vertex is labeled with either 0 (i.e., reject) or 1 (i.e., accept). Each non-sink
vertex is labeled by an index i ∈ [n] and has exactly 2 outgoing edges, which are labeled
by 0 and 1. The output of the branching program B on input x ∈ {0, 1}n, denoted B(x),
is computed in a natural way by starting at the source vertex and taking a walk such that
at a vertex labeled by i ∈ [n], we traverse the outgoing edge labeled by xi. Once a sink
is reached, we output its label. The branching program is read-once (ROBP for short) if
along every path from source to sink, every index (i ∈ [n]) appears at most once. The
size of a branching program B, denoted |B|, is the number of vertices in it.

For any fixed ROBP B, we construct an IPP (and an MAP, which is a special case

of the IPP) for the language accepted by B, denoted LB
def
= {x ∈ {0, 1}n : B(x) = 1}.

In this overview, we make a simplifying assumption that B is both layered and ordered
(a.k.a., an ordered binary decision diagram or OBDD). That is, we assume that the
vertices of B are partitioned into n + 1 layers such that, for every i ∈ [n], edges only
go from layer i to layer i + 1; and vertices in layer i are labeled by the index i (i.e., the
ROBP reads its input “in order”).

The key idea, which enables the IPP verifier to generate the aforementioned partition
S1, . . . , Sk (together with the corresponding languages), is to have the prover specify k
evenly-spaced vertices along the accepting path corresponding to the input x ∈ LB. More
specifically, observe that x induces a path ϕ0 ϕ1 · · · ϕn from the start vertex ϕ0

to some accepting sink ϕn. The prover sends to the verifier a subsequence of this walk,
specifically the subsequence ϕn/k, . . . , ϕi·n/k, . . . , ϕn.

Given the subsequence, we can reduce the problem of verifying that there exists a path
of length n from ϕ0 to ϕn to verifying that there exists a path of length n/k between each
pair of consecutive vertices in the sequence ϕ0, ϕn/k, . . . , ϕi·n/k, . . . , ϕn. In other words, for
every i ∈ [k] we consider the ROBP Bi that consists only of layers (i−1) ·n/k up to i ·n/k
of B, with the starting state ϕ(i−1)·n/k and the (only) accepting state ϕi·n/k. Verifying

10As expected, parallel repetition reduces the soundness error of IPPs at an exponential rate. See
Section 3.5.1 for details.

88

3.1 Introduction

that x ∈ LB can be reduced to verifying that x[Si] ∈ LBi , for every i ∈ [k], where Si ⊆ [n]

is the set of coordinates of x that are read by Bi and LBi
def
= {z ∈ {0, 1}n/k : Bi(z) = 1}.

Moreover, since S1, . . . , Sk is a partition of [n], if x is ε-far from LB, then x[Si] is ε-far
from LBi , for an average i ∈ [k]. Hence, we can follow the high-level outline that was
suggested in Section 3.1.2; that is, the IPP verifier selects i ∈ [k] at random, sends i to
the prover, and then the two parties recursively run an IPP protocol to verify that x[Si]
is close to the LBi .

The foregoing intuition almost works but there is a subtle problem: What if the
message sent by a cheating prover is such that LBi∗ is empty, for some i∗ ∈ [k]. This
corresponds to a situation in which the branching program B contains no path from
ϕ(i∗−1)·n/k to ϕi∗·n/k. In such case, with high probability (i.e., if the verifier chooses i such
that i 6= i∗) the verifier, as described so far, will not notice this fact and may accept
inputs that are far from LB.

We overcome this difficulty by observing that when the verifier interacts with the
honest prover, it holds that x[Si] ∈ LBi for every i ∈ [k], and therefore LBi 6= ∅. Hence,
we can have the verifier explicitly check that LBi 6= ∅ for every i ∈ [k] (i.e., that there
exists some input that leads from ϕ(i−1)·n/k to ϕi·n/k in B). This check requires direct and
full access to the branching program B (which is fixed) but does not require any queries
to the input x, and so we can perform it for every11 i ∈ [k].

Given this additional check, we can show that the foregoing IPP works. To do so, we
argue by induction on the number of rounds that if the input x is ε-far from L then the
verifier rejects with probability at least ε. Indeed, if x is ε-far from LB, then in the first
round we have that:

Pr
[
Verifier for LB rejects x

]
= E

i

[
Pr
[
Verifier for LBi rejects x[Si]

]]
≥ E

i

[
εi
]

≥ ε,

where εi denotes the relative distance of x[Si] from LBi , for every i ∈ [k], and the first
inequality follows from the induction hypothesis.

We remark that when dealing with general ROBPs, rather than OBDDs, there are
several additional technical difficulties. In particular, since B is not layered, we have to
modify our definition of Bi (which previously consisted of layers (i − 1) · n/k to i · n/k
of B). A natural approach is to define Bi to consist of all paths (in B) of length n/k
starting at ϕ(i−1)·n/k.

12 The difficulty is that Bi may depend on many, possibly even all,
of the bits of x (since different paths may look at different bits), rather than just n/k
bits (as was the case for OBDDs). Hence, the input does not necessarily shrink in the
recursive step. Nevertheless, we resolve this issue by showing that the effective length of

11However, this check does increase the running time of the verifier (which we view as a secondary
resource) to poly(|B|). This computation can be minimized by using a pre-processing step in which we
compute a |B| × |B|-sized table whose (v, u)th entry says whether the vertices v and u are connected in
B.

12The actual definition of Bi that we use is different. See Section 3.3 (in particular Footnote 18).

89

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

the input, which is the number of bits that need to be read in order to determine whether
the ROBP accepts, does shrink, and this suffices to make progress in the recursion. For
further details, see Section 3.3.

3.1.2.2 Partitioning Context-Free Languages into Two Parts

Recall that a context-free grammar is a tupleG = (V,Σ, R,Astart), where V = {A1, A2, . . . }
denotes a (finite) set of variables, Σ = {σ1, σ2, . . . } denotes a (finite) set of terminal
symbols (i.e., the alphabet), R is a set of production rules (e.g., rules of the form
A7 → σ5A3A9σ8A2) and Astart ∈ V denotes a special “start” variable. We say that a

string α ∈ (Σ ∪ V)∗ is derived from a variable Aj, denoted by Aj
∗⇒ α, if α can be

obtained from Aj by iteratively applying production rules in R. Each such derivation
can be described by a derivation tree, which is a rooted, directed, ordered, and labeled
tree (with edges oriented away from the root), where the root is labeled by Aj, the leaves
are labeled by the sybmols of α (in order), and the children of each vertex in the tree
correspond to an application of a production rule in G. The language L ⊆ Σ∗ generated
by G consists of all strings that can be derived from Astart using the production rules in
R.

Let L be a context-free language and let G = (V,Σ, R,Astart) be the context-free
grammar that generates L. In this section we show how to partition x ∈ L into two
parts. Next, in Section 3.1.2.3, we show how to extend this technique to multiple parts.

For x ∈ L (i.e., Astart
∗⇒ x), there exists a derivation tree T corresponding to the

derivation Astart
∗⇒ x. For simplicity, let us assume that T is a binary tree. The root of

T is labeled by Astart and the leaves are labeled, in order, by x1, . . . , xn, where n
def
= |x|.

Recall that the Lewis-Stearns-Harmanis Lemma [LSH65] states that every binary tree on
n leaves has a subtree13 with a number of leaves between n/3 and 2n/3. Applying this
lemma to T , we can find such a subtree T ′ of T . Observe that T ′ induces a partition of
[n] into two parts S1, S2 ⊆ [n], where S1 (which is actually an interval) contains all the

leaves of T that belong to T ′ and S2
def
= [n]\S1 contains all other leaves. The IPP prover

finds T ′ and sends S1 and A1 to the verifier, where A1 is the label of the root of T ′. Since
S1 is an interval, the latter requires only O(log n) communication.

Given (S1, A1), the verifier can construct the partition and the corresponding lan-
guages, where the partition is simply (S1, S2) and the languages are

L1
def
=
{
w ∈ Σ|S1| : A1

∗⇒ w
}

and

L2
def
=
{
w ∈ Σ|S2| : A2

∗⇒ w[1, . . . , s− 1] ◦ A1 ◦ w[s, . . . , |S2|]
}
,

where A2
def
= Astart and s ∈ [n] is the starting position of the interval S1 in [n].

13Here and throughout this work, by a subtree, we mean a node of the tree together with all of its
descendants, see also Section 3.2.3.

90

3.1 Introduction

Note that L2 is not quite a context-free language (although L1 is). Rather, L2 consists
of strings that correspond to partial derivations (i.e., derivation processes that end before
all symbols are terminals) starting from Astart that produce strings that have the variable
A1 in their sth coordinate. We refer to such languages, which we view as generalization
of context-free languages, as partial derivation languages, and for the recursion to go
through, we actually design the original protocol to handle not only context-free languages
but also partial derivation languages.

Observe that if x ∈ L, then clearly x[S1] ∈ L1 and x[S2] ∈ L2. On the other hand,
suppose that x[S1] is ε1-close to a string z1 ∈ L1 and x[S2] is ε2-close to a string z2 ∈ L2.
If we choose i ∈ {1, 2} at random, such that Pr[i = 1] = |S1|/n and Pr[i = 2] = |S2|/n,

then x is Ei[εi]-close to the string z = z2[1, . . . , s− 1] ◦ z1 ◦ z2[s, |S2|]. Since A1
∗⇒ z1 and

Astart
∗⇒ z2[1, . . . , s − 1] ◦ A1 ◦ z2[s, . . . , |S2|] (because z1 ∈ L1 and z2 ∈ L2), we deduce

that Astart
∗⇒ z, and therefore z ∈ L. Hence, x is Ei[εi]-close to L.

Given the above, we can design an IPP for L similarly to the IPP for ROBP that was
described in Section 3.1.2.1. Specifically, given (S1, A1), the verifier chooses at random
i ∈ {1, 2} according to the distribution above, sends i to the prover, and both parties run
the protocol recursively, with respect to the language Li and the input x[Si].

3.1.2.3 Partitioning Context-Free Languages into Multiple Parts

The first step in partitioning context-free languages into multiple parts is a generalization
of the Lewis-Stearns-Hartmanis lemma that shows that, for every desired parameter
t ∈ [n], every (constant degree) tree T with n leaves has a subtree with roughly t leaves.
The precise statement of the lemma and its proof are given in Lemma 3.5 below.

Using Lemma 3.5, we can partition an input x ∈ L into k parts of (roughly) the same
size in the following way. As before, we construct a derivation tree T corresponding to
the derivation Astart

∗⇒ x. However, this time we use Lemma 3.5 to find a subtree T1

with roughly n/k leaves. The coordinates of the leaves of T1 constitute the first part of
the partition (denoted by S1). To find the second subtree, we remove the entire subtree
T1 from T , except for its root. We obtain a new tree T ′ with (roughly) n − n

k
leaves,

where one of the leaves of T ′ is labeled by a variable rather than a terminal. By applying
Lemma 3.5 again on the new tree T ′, we can find a subtree T2 of T ′ with roughly n/k
leaves. The second part (denoted by S2) of our partition will consist of the coordinates
of all the leaves of T2 that are labeled by terminals (i.e., are also leaves of the original
tree T). We stress that S2 may not be an interval (but rather two intervals separated by
S1).

We proceed similarly, where in each iteration we remove the subtree that was found in
the previous iteration (except for its root) and find a new subtree Ti of T with roughly n/k
leaves. The subtrees T1, T2, . . . , Tk induce a partition of [n] where the ith part, denoted
Si (of size roughly n/k), consists of all leaves of Ti that are labeled by terminals (i.e., are
leaves of the original tree T) but do not belong to S1 ∪ · · · ∪ Si−1.

While the representation of a general partition of [n] into k parts requires n · log2(k)
bits, we show that the partition S1, . . . , S` actually has a concise representation. Indeed,

91

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

each subtree Ti induces an interval Ii ⊆ [n], which contains all of its leaves (but potentially
also coordinates of other parts in the partition). Given I1, . . . , I`, the partition S1, . . . , S`
is uniquely determined (by setting Si = Ii\(I1 ∪ · · · ∪ Ii−1)). We remark that each pair
of intervals can be either disjoint or nested (i.e., either Ii ∩ Ij = ∅ or Ii (Ij).

In light of the foregoing discussion, the prover can send to the verifier the intervals
I1, . . . , Ik and the variables A1, . . . , A` of the roots of the subtrees T1, . . . , Tk (respectively).
Note that the root of the last subtree Tk is in fact the root of the original derivation tree
T (and thus Ak = Astart) and that its corresponding interval Ik is [n].

Let Ii1 , . . . , Iik be the ordered (from left to right) maximal intervals of Ik = [n]. That
is, the (disjoint) intervals that are contained in Ik but are not contained in any of the
other intervals. Observe that if the intervals were generated as prescribed, then Astart

yields a string x′ (composed of terminals and variables) that results from x by replacing
the substring x[Iij] with the variable Aij , for every j ∈ [k]. Denote the language that
contains all such strings by Lk. Similarly, for any interval Iij ∈ {Ii1 , . . . , Iik}, observe
that Aij yields the string that results from x[Iij] by replacing coordinates in the maximal
intervals that Iij contains with the corresponding variables. Denote the language of all
such strings by Lij . We show that by applying this idea iteratively we obtain languages
L1, . . . ,Lk such that (1) if x ∈ L, then x[Si] ∈ Li for every i ∈ [k]; and (2) if x is ε-far
from L, then x[Si] is ε-far from Li, for an average i ∈ [k], where the average is weighted
proportionally to the sizes of S1, . . . , Sk.

Given the partition above, verifying that x ∈ L is reduced to testing that the sub-
input x[Si] is close to Li, for i ∈ [k] distributed as above. Hence, as before, the verifier
chooses i at random, sends i to the prover and the two parties recursively run an IPP for
verifying that x[Si] is ε-close to Li.

We emphasize that, as was the case for k = 2, the languages L1, . . . ,Lk are not
necessarily context-free languages but are rather “partial derivation languages”. Indeed,
for the recursion to go through, we design the IPP to work for such languages (rather
than just context-free languages).

3.1.2.4 Digest and Relation to Concatenation Problems

The proofs of Theorems 3.1-3.4 are based on a natural paradigm for designing proofs of
proximity. This paradigm consists of two steps: (1) partition the problem into smaller
related sub-problems, and (2) verifying a small random sample of the sub-problems.
This basic approach was taken by [RVW13] in their construction of an IPP for the Ham-
ming weight problem (i.e., approximating whether a given string has Hamming weight
n/2). The partitioning in this case is into several intervals of equal length and the IPP
prover specifies the Hamming weight of each substring. A more general instantiation of
this paradigm was used in [GR13b] to construct MAPs for parameterized concatenation
problems. Loosely speaking, a language L is a parameterized concatenation problem if
L = Lα1 × · · · × Lαk , for some integer k, where each language Lαi is a language parame-
terized by αi; thus, the partitioning is done by providing the parameters α1, . . . , αk.

In this work we significantly extend the foregoing framework in several aspects: The

92

3.2 Preliminaries

partition is not restricted to contiguous intervals, but is rather more involved and depends
more dramatically on the structure of the specific language and, moreover, also on the
specific input. Furthermore, whereas for concatenation problems the parameterization of
each problem is “light” (typically having a logarithmic description length), in our settings
the parameterization can be quite extensive, as in massively parameterized problems (see
survey by Newman [New10]).

3.1.3 Organization

In Section 3.2 we provide the necessarily preliminaries regarding proofs of proximity,
context-free languages, and branching programs. In Section 3.3 we construct MAPs and
IPPs for languages accepted by ROBPs (with additional discussion on testing affine sub-
spaces in Section 3.3.3). In Section 3.4 we construct MAPs and IPPs for context-free lan-
guages (with additional discussion on the Dyck languages in Section 3.4.3). Sections 3.3
and 3.4 can be read independently of each other. We note that the implementation of the
outline provided in Section 3.1.2 is far more involved in the case of context-free languages.

3.2 Preliminaries

We begin with some standard notations:

• We denote the concatenation of two strings x ∈ Σn and y ∈ Σm (over a common
alphabet Σ) by x ◦ y ∈ Σn+m.

• We denote the absolute distance between two (equal length) strings x ∈ Σn and y ∈
Σn by ∆ (x, y)

def
= |{xi 6= yi : i ∈ [n]}|, and their relative distance by ∆REL (x, y)

def
=

∆(x,y)
n

. If ∆REL (x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say that
x is ε-far from y. Similarly, we denote the absolute distance of x from a non-empty

set S ⊆ Σn by ∆ (x, S)
def
= miny∈S ∆ (x, y) and the relative distance of x from S by

∆REL (x, S)
def
= miny∈S ∆REL (x, y). If ∆REL (x, S) ≤ ε, we say that x is ε-close to S,

and otherwise we say that x is ε-far from S.

• We denote the projection of a string x ∈ Σn to a subset of coordinates S ⊆ [n] by
x[S]. For every i, j ∈ [n], we denote by x[i, j] the projection of x to the interval
[i, j] (if i > j then the interval is empty).

• We denote by Ax(y) the output of algorithm A, given direct access to input y and
query (i.e., oracle) access to the string x. Given two interactive machines A and
B, we denote by (Ax, B(y))(z) the output of A when interacting with B, where A
(resp., B) is given oracle access to x (resp., direct access to y) and both parties
have direct access to z.

93

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Integrality. Throughout this work, for simplicity of notation, we use the convention
that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the closest integer.

3.2.1 Property Testing, MAPs and IPPs

In this section we define testers, MAPs and IPPs. Actually, testers and MAPs will be
defined as restrictions of IPPs.

3.2.1.1 IPP

We define a language, over an alphabet Σ, as an ensemble L def
= ∪n∈NLn, where Ln ⊆ Σn

for every n ∈ N. The definition of an IPP is a natural extension of the standard definition
of IP (interactive proof) where the main distinction is that the verifier only has oracle
access to the input. Also, since our focus is on the query and communication complexities,
we do not restrict the computational complexity of the verifier (see discussion at the end
of Section 3.1).

Definition 3.1 (Interactive Proof of Proximity (IPP) [EKR04, RVW13]). An interactive
proof of proximity (IPP) for the language L = ∪n∈NLn is an interactive protocol with
two parties: a (computationally unbounded) prover P, which has free access to input
x, and a verifier V, which is a probabilistic computationally unbounded algorithm which
has oracle access to x. The parties send messages to each other, and at the end of the
communication, the following two conditions are satisfied:

1. Completeness: For every n ∈ N, proximity parameter ε > 0 and x ∈ Ln it holds
that

Pr [(Vx,P(x))(n, ε) = 1] ≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every n ∈ N, ε > 0, and x ∈ {0, 1}n that is ε-far from Ln and for
every computationally unbounded (cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n, ε) = 0] ≥ 2/3.

where the probability is over the coin tosses of V.

If the completeness condition holds with probability 1, then we say that the IPP has a one-
sided error and otherwise the IPP is said to have a two-sided error. If all of the verifier’s
messages are uniformly distributed and independent random strings then the IPP is said
to be public-coin.

An IPP for L = ∪n∈NLn is said to have query complexity q : N × R+ → N if, for
every14 n ∈ N, ε > 0 and x ∈ Ln, the verifier V makes at most q(n, ε) queries to x when

14We measure the resources used in the protocol only when the verifier interacts with the honest
prover. However, in the general case, the verifier can simply halt once one of its resources exceeds the
corresponding bound (since it knows that it must be interacting with a cheating prover).

94

3.2 Preliminaries

interacting with P . The IPP is said to have communication complexity c : N×R+ → N if,
for every n ∈ N, ε > 0 and x ∈ Ln, the communication between V and P consists of at
most c(|x|, ε) bits. A round of communication consists of a single message sent from the
verifier to the prover followed by a single message sent from the prover to the verifier.
The IPP is said to have r rounds (sometimes called an r-round IPP), for r : N×R+ → N
if, for every n ∈ N, ε > 0 and x ∈ Ln, if the number of rounds in the interaction between
V and P on input x is at most r(|x|, ε).

The standard definition of a property tester may be derived from Definition 3.1 by
restricting the communication complexity to 0. The definition of an MAP can be derived
by restricting the communication to be only from the prover to the verifier (see [GR13b]
for further details on MAPs).

Non-uniform IPPs. While Definition 3.1 refers to a uniform definition of IPP, through-
out this work it will be convenient for us to use a non-uniform definition. That is, we fix
an integer n ∈ N, which we think of as a variable parameter, and restrict Definition 3.1
to inputs of length n. Hence, unless stated otherwise, by an IPP we actually mean the
non-uniform variant. Despite the fact that the integer n is fixed, we view it as a generic
parameter and allow ourselves to write asymptotic expressions such as O(n). We also
note that while our results are proved in terms of non-uniform IPP, they can be extended
to the uniform setting in a straightforward manner.

3.2.1.2 Proximity Oblivious IPP

Extending the notion of proximity oblivious testers [GR11], we define a proximity oblivious
IPP, as a variant of an IPP in which neither party receives the proximity parameter as
input and for every ε > 0, the verifier is required to reject inputs that are ε-far from the
language with some probability ρ(ε).

Definition 3.2 (Proximity Oblivious IPP). Let ρ : (0, 1]→ (0, 1] be a monotone function.
A proximity oblivious IPP with detection probability ρ, for the language L = ∪n∈NLn is
similar to Definition 3.1, except that the neither the verifier nor the prover15 receive
the proximity parameter as input, and the completeness and soundness conditions are
modified as follows:

1. Completeness: For every n ∈ N, and x ∈ Ln it holds that16

Pr [(Vx,P(x))(n) = 1] = 1.

15Since we do not bound the computational resources of the prover, it can simply deduce the proximity
parameter from the input.

16Note that we require the verifier to accept inputs x ∈ L with probability 1. A more general definition
could allow this probability to be some smaller constant or even a function of ε (see [GS12]). For simplicity
(and since it suffices for our purposes), in this work we only consider proximity oblivious IPPs with perfect
completeness.

95

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

2. Soundness: For every n ∈ N, every x ∈ Σn, and for every computationally un-
bounded (cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρ
(
∆(x,Ln)

)
In both condiditons the probability is over the coin tosses of V.

Note that any proximity oblivious IPP with detection probability ρ(·), can be trans-
formed into a standard IPP (as in Definition 3.1) by repeating the proximity oblivious IPP
O(1/ρ(ε)) times in parallel (see Section 3.5.1 for details on parallel repetition for IPPs).

3.2.2 Read-Once Branching Programs (ROBPs)

In this section we provide the necessary background on ROBPs (needed only for Sec-
tion 3.3). An ROBP is defined as follows

Definition 3.3 (ROBP). A branching program on n variables is a directed acyclic graph
that has a unique source vertex with in-degree 0 and (possibly) multiple sink vertices with
out-degree 0. Each sink vertex is labeled either with 0 (i.e., reject) or 1 (i.e., accept).
Each non-sink vertex is labeled by an index i ∈ [n] and has exactly 2 outgoing edges,
which are labeled by 0 and 1.

The output of the branching program B on input x ∈ {0, 1}n, denoted B(x), is the
label of the sink vertex reached by taking a walk, starting at the source vertex such that
at every vertex labeled by i ∈ [n], the step taken is on the edge labeled by xi.

The branching program is said to be read-once (or ROBP for short) if along every path
from source to sink, every index i ∈ [n] appears at most once. The size of a branching
program B, denoted |B|, is the number of vertices in its graph.

Let ϕ and ψ be vertices in the branching program B on n variables and let x ∈ {0, 1}n.

Loosely speaking, we write ϕ
x,k

ψ if the walk of length k corresponding to x that starts
at ϕ ends at ψ. Note that only k coordinates of x are read (adaptively) in this walk and

that ϕ itself only determines the first variable read. Formally, we write ϕ
x,1

ψ if the edge
(ϕ, ψ) appears in B and is labeled by xi, where i is the label of ϕ, and we (inductively)

write ϕ
x,k

ψ if there exists a vertex ζ in B such that ϕ
x,1

ζ and ζ
x,k−1

ψ.

3.2.3 Context-Free Languages

In this section we provide the necessary background on context-free languages (needed
only for Section 3.4). To define context-free languages, we first define context-free gram-
mars (see [HMU06] for more details).

Definition 3.4 (Context-free grammar). A context-free grammar is a tuple G = (V,Σ, R,Astart)
such that V is a (finite) set of symbols, referred to as variables; Σ is a (finite) set of sym-
bols, referred to as terminals; R ⊆ V ×(V ∪Σ)∗ is a (finite) relation, where each (A,α) ∈ R
is referred to as a production rule and is denoted by A→ α; Astart ∈ V is a variable that
is referred to as the start variable.

96

3.2 Preliminaries

Let G = (V,Σ, R,Astart) be a context-free grammar, and let α, β ∈ (V ∪Σ)∗ be strings
of terminals and variables. We say that α directly yields β, denoted by α ⇒ β, if there
exists a production rule A→ γ in R such that β is obtained from α by replacing exactly
one occurrence of the variable A in α with the string γ ∈ (V ∪Σ)∗. We say that α yields β,

denoted α
∗⇒ β if there exists a finite sequence of strings α0, . . . , αk ∈ (V ∪Σ)∗ such that

α0 = α, αk = β, and α0 ⇒ . . . ⇒ αk. The language Ln ⊆ Σn is a context-free language
if there exists a grammar G = (V,Σ, R,Astart) such that Ln = {x ∈ Σn : Astart

∗⇒ x},
where the derivation is with respect to the rules in R.

Derivation Tree. Let G = (V,Σ, R,Astart) be a context-free grammar. For A ∈ V and

x ∈ Σ∗, a derivation tree, corresponding to the derivation A
∗⇒ x, is a rooted, directed,

ordered, and labeled tree T (with edges oriented away from the root) that satisfies the
following properties:

• Each internal vertex is labeled by some variable, and the root is labeled by the
variable A.

• Each leaf is labeled by a terminal symbol, where the ith leaf is labeled by the ith

symbol of x.

• For every internal vertex v, if v is labeled by the variable A′ ∈ V and for every
i ∈ [k] (where k is the number of children of v) the ith child of v is labeled by
αi ∈ V ∪ Σ, then the production rule A′ → α0 ◦ · · · ◦ αk must belong to R.

For every derivation A
∗⇒ x there exists a corresponding derivation tree.

Trees and the Lewis-Stearns-Hartmanis Lemma. In this work we only consider
trees that are rooted, directed, and ordered (e.g., derivation trees as above). Thus,
throughout this work, whenever we say tree we mean a rooted, directed, and ordered tree
(with edges oriented away from the root). Note that the fact that the tree is ordered
induces an ordering of its leaves. We define the arity of a tree to be the maximal number
of children of any vertex in the tree. We follow the data-structure literature and define a
subtree of a tree T as a tree consisting of a node in T and all of its descendants in T .17

For a tree T , we denote by L(T) the number of leaves of T . We will use the following
straightforward generalization of the Lewis-Stearns-Hartmanis Lemma [LSH65]:

Lemma 3.5. Let T be a tree with arity d and let t ∈ [L(T)]. Then, there exists a subtree
T ′ of T with L(T ′) ∈ [t/d, t] leaves.

The Lewis-Stearns-Hartmanis lemma corresponds to the special case of Lemma 3.5 in
which d = 2 (i.e., a binary tree) and t = 2n/3.

17This definition differs from the graph-theoretic definition that defines a subtree as any connected
subgraph of a tree. For example, the root of a tree is a subtree in the graph theoretic sense but not
according to our definition (unless the tree has exactly one vertex).

97

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Proof of Lemma 3.5. We prove by induction on the size of the tree (not on the number
of leaves), noting that the base case holds trivially. Suppose that the lemma holds for all
trees of size less than n. Let T be a tree of size n and let t ∈ [L(T)].

If t = L(T), then we are done (since L(T) ∈ [t/d, t] and so T itself has the desired
property). Otherwise, if t < L(T), then T has a subtree T ′ (rooted at one of its children)
such that L(T ′) ≥ t/d (since otherwise T has a total of less than d · t/d = t < L(T)
leaves). If L(T ′) ≤ t, then we are also done (since L(T ′) ∈ [t/d, t] and so T ′ satisfies
the desired property). Otherwise, t ∈ [L(T ′)] and the lemma follows by applying the
induction hypothesis on T ′.

3.3 MAPs and IPPs for Read-Once Branching Pro-

grams

In this section we prove Theorem 3.4 (and Theorem 3.2 will follow as a special case of
the proof) by constructing an IPP for every language that is accepted by an ROBP.

3.3.1 IPPs for ROBPs

Before presenting the IPP formally, we provide a short overview of the protocol (for
a more detailed overview, see Section 3.1.2.1). Let B be an ROBP on n variables. We
construct an r-round public-coin IPP for the language that is accepted by B. The IPP runs
recursively, where each round of communication is as follows. Given an input x that is
accepted by B within n′ ≤ n steps, the prover finds the accepting path ϕ0 ϕ1 · · · ϕn′
and sends to the verifier the subsequence ϕn′/k, . . . , ϕi·n′/k, . . . , ϕn′ that contains every
(n′/k)th vertex along this path. The verifier checks that every two consecutive vertices
in the prover’s message are connected (this can be done without making queries to the
input x), then selects uniformly at random i ∈ [k], sends i to the prover, and defines a
new ROBP Bi that has the same graph as B, but its source vertex is ϕ(i−1)·n′/k and its
unique accepting sink is ϕi·n′/k.

18 Subsequently, both parties (recursively) invoke the IPP
protocol on input x and the ROBP Bi.

A crucial point is that although the input x does not not shrink in each recursive call,
the effective length of the input, n′, which is the alleged number of bits of x that need to
be read in order to get from the source to the accepting sink, does shrink (by a factor
of k). Hence, after r such rounds, the verifier can read all bits of x that are required to
verify the current statement (which refers to a path of length n/kr). Interestingly, and in
contrast to the simpler case of OBDDs, in this last step the verifier reads the n/kr bits
of the input adaptively, based on the steps taken by the ROBP.

18 One could alternatively define Bi to consist only of vertices at distance at most n′/k from ϕ(i−1)·n′/k.
We refrain from taking this approach due to technical reasons. Note that also when using this alternate
definition, when considering general ROBPs (rather than OBDDs), Bi could potentially look at all of
the n bits of the input (see discussion at the end of Section 3.1.2.1).

98

3.3 MAPs and IPPs for Read-Once Branching Programs

In the IPP that we construct, we assume for simplicity that the verifier is given an
integer n′ ≤ n, and the claim (which the verifier is trying to validate) is that B(x) = 1
after reading exactly n′ bits of the input x. Furthermore, we assume that the ROBP B
is such that there exists some accepting path (i.e., from the source to some accepting
sink) of length n′. We can reduce the general case to this restricted setting by having
the prover send n′ as part of its first message and having the verifier explicitly check that
there is some accepting path of length n′ (this check requires no queries to the main input
x).

Recall that, as noted in Section 3.1.2, to facilitate the recursion we use the notion of a
proximity oblivious IPP (see Section 3.2.1.2). When handling general ROBPs (rather than
OBDDs), we follow this approach in spirit but, due to technical reasons, the construction
will not exactly fit Definition 3.2. More specifically, since in each step of the recursion
only the effective length of the input shrinks (but the actual length of the input stays the
same), throughout the proof it will be more convenient for us to use absolute distances,
denoted by ∆ (see Section 3.2) rather than with distances that are relative to n. Hence,
the detection probability ρ of the verifier will be a function of the absolute distance (rather
than of the relative distance) of the input from the language. That is, we will construct
an absolute proximity oblivious IPP with detection probability

{
ρn : {0, . . . , n} → (0, 1]

}
n∈N,

which is the same as Definition 3.2 except that we modify the soundness condition as
follows:

• Soundness: For every n ∈ N, x ∈ Σn, and for every computationally unbounded
(cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρn
(
∆ (x,Ln)

)
(3.1)

Again, we can transform an absolute proximity oblivious IPP with detection probabil-
ity
{
ρn : {0, . . . , n} → (0, 1]

}
n∈N into a standard IPP (as in Definition 3.1) by repeating

the base protocol O(1/ρn(ε · n)) times in parallel.
The absolute proximity oblivious IPP for ROBPs, denoted ROBP-IPP, is presented in

Fig. 3.1 (recall that the notation ϕ
x,m

ψ, which is used in Fig. 3.1 means that, given
input x, the ROBP walks from ϕ to ψ in m steps, see Section 3.2.2 for details).

It can be easily verified that the round complexity is r, the communication complex-
ity is O(rk · log(|B|)) and the query complexity is O(n/kr). We proceed to show that
completeness and soundness hold.

Completeness. Let B be a ROBP on n variables, let r ≥ 0, n′ ∈ [n], and let x ∈ {0, 1}n
such that B(x) = 1 after reading exactly n′ bits of the input. (Perfect) completeness
follows by induction on r as follows.

For r = 0, the verifier just reads the appropriate n′ bits of the input and accepts with
probability 1. For r ≥ 1, let (ϕ0, ϕ1, . . . , ϕn′) be the accepting path corresponding to x.
The checks that the verifier performs in the current round pass, since ϕn′ is indeed an

accepting sink and ϕ(i−1)·n′/kr
x,n′/kr

ϕi·n′/kr , for every i ∈ [pr]. Furthermore, since for

99

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

The Protocol ROBP-IPPBn,n′,r:

Common Input: Integers n, n′ ∈ N, a ROBP B on n variables such that there exists some
accepting path of length n′ in B, and a parameter r ∈ N.

Prover’s Input: Direct access to x ∈ {0, 1}n such that B(x) = 1 in exactly n′ steps.

Verifier’s Input: Oracle access to the same x.

1. If r = 0, the verifier V checks whether B(x) = 1 after exactly n′ steps by (adaptively)
reading the appropriate n′ bits of x. If B(x) = 1, then V accepts, otherwise it rejects,
and in either case both parties terminate the protocol.

2. The Prover P:

(a) Let ϕ = (ϕ0, . . . , ϕn′) ∈ [|B|]n′ be the sequence of vertices in the accepting path
(of length n′ ≤ n) in B that corresponds to the evaluation of B on input x.

(b) Send (ϕn′/k, ϕ2n′/k, . . . , ϕn′) to V.a

3. The Verifier V:

(a) Check that ϕn′ is an accepting sink of B.

(b) Let ϕ0 be the source of B.

(c) For every i ∈ [k], check that there exists some input x(i) ∈ {0, 1}n such that

ϕ(i−1)·n′/k
x(i),n′/k

ϕi·n′/k.
b

(d) Select uniformly at random an index i in [k], and send i to P.

4. Denote by Bi the ROBP that has the same graph as B, except that its source is
ϕ(i−1)·n′/k, and its unique accepting vertex is ϕi·n′/k.

5. Both parties (recursively) invoke ROBP-IPPBin,n′′,r−1, where n′′ = n′/k, on input x.

aThe accepting sink ϕn′ is also sent since (in the first step of the recursion) there could be multiple
accepting sinks.

bThis check is performed without making any queries to the main input x. Although our focus is
not on computational complexity, we note that this can be done in poly(s) time.

Figure 3.1: IPP for ROBPs

100

3.3 MAPs and IPPs for Read-Once Branching Programs

every choice of i ∈ [k] (made by the verifier) it holds that ϕ(i−1)·n′/k
x,n′/k

ϕi·n′/k, the two
parties recursively run the r − 1 round protocol on a branching program Bi such that
Bi(x) = 1 after reading exactly n′/k bits of x. Hence, by the inductive hypothesis the
verifier accepts with probability 1.

Soundness. Soundness follows directly from the following lemma, which is proved by
induction on the number of rounds r. We suggest to the reader to first consider the case
that n′ = n in both the lemma statement and its proof. Nevertheless, we stress that in
lower levels of the recursion, the parameter n′ becomes much smaller than n.

Lemma 3.6. Let n ∈ N, n′ ∈ [n] and r ≥ 0. For every ROBP B of size s on n variables
that has an accepting path of length n′, every x that is in absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1}, and for every cheating prover strategy P∗ it holds that:

Pr[(Vx,P∗)(n, n′, B, r) = 0] ≥ ε,

where V is the r-round verifier of ROBP-IPP (of Fig. 3.1).

Proof. We prove Lemma 3.6 by induction on the number of rounds r ≥ 0. In the base case,
corresponding to r = 0, the verifier simply ignores the prover and reads the appropriate
n′ bits of x. Hence, if B(x) 6= 1, then the verifier rejects with probability 1.19

In the inductive step, for r ≥ 1, let x ∈ {0, 1}n that is at absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1} and let P ∗ be a (deterministic) cheating prover strategy for the
protocol ROBP-IPP of Fig. 3.1 (with r rounds). Let (ϕn′/k, ϕ2n′/k, . . . , ϕn′) be the first
message sent by P ∗ to V and let ϕ0 be the source. Since the verifier explicitly checks these
conditions, it must be the case that ϕn′ is an accepting sink, and that for every i ∈ [k],

there exists some x(i) ∈ {0, 1}n such that ϕ(i−1)·n′/k
x(i),n′/k

ϕi·n′/k. Furthermore, for
every i ∈ [k], we assume without loss of generality that x(i) is the string z that minimizes

the distance of x to the set

{
z ∈ {0, 1}n : ϕ(i−1)·n′/k

z,n′/k
ϕi·n′/k

}
.

Recall that ∆ denotes absolute distance (see Section 3.2) and let εi
def
=

∆(x,x(i))
n′/k

. The
following claim, which crucially uses the fact that B is read-once, shows that the average
of the εi’s (which will later be shown to lower bound the rejection probability of V) is at
least ε.

Claim 3.6.1. Ei[εi] ≥ ε.

Proof. For every i ∈ [k], let Ji ⊆ [n] be the set of n′/k variables that are read when
going from ϕ(i−1)·n′/k to ϕi·n′/k on input x(i). We first prove that the sets Ji’s are disjoint.
Assume otherwise; that is, that there exists j ∈ Ji1 ∩ Ji2 for some i1, i2 ∈ [k]. For every
i ∈ [k], denote the path from ϕ(i−1)·n′/k to ϕi·n′/k (in B) on input x(i) by Pi. Consider

19In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it
rejects with probability at least 0 = ε. It may also be worth mentioning that it always holds that ε ≤ 1,
since B has an accepting path of length n′.

101

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

the concatenated path P1 ◦ · · · ◦ Pk. This is a path in B in which the label j appears
twice (both in Pi1 and in Pi2) in contradiction to our assumption that B is a read-once
branching program.

Define x′ ∈ {0, 1}n as follows. For every j ∈ [n], if j ∈ Ji for some i ∈ [k] (which must

be unique as just shown), then x′[j]
def
= x(i)[j], and otherwise (i.e., if j /∈ J1 ∪ · · · ∪ Jp) we

set x′[j]
def
= x[j]. Note that

ϕ0

x′,n′/k
ϕn′/k

x′,n′/k
. . .

x′,n′/k
ϕn′

and therefore B(x′) = 1. The claim follows by noting that

ε·n′ ≤ ∆ (x, x′) =
∑
i∈[k]

∆ (x[Ji], x
′[Ji]) =

∑
i∈[k]

∆
(
x[Ji], x

(i)[Ji]
)
≤
∑
i∈[k]

∆
(
x, x(i)

)
=
∑
i∈[k]

εi·n′/k,

where the first inequality follows from the fact that x is in absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1} combined with the fact that B(x′) = 1, and the first and
second equality follow from the definition of x′ (the first equality also uses the fact that
the Ji’s are disjoint). The claim follows.

For every i ∈ [k], let Bi be the ROBP that has the same graph as B, but its source is
ϕ(i−1)·n′/k, and its unique accepting vertex is ϕi·n′/k. Let P ∗i be the residual r − 1 round
strategy of P ∗ after receiving the message i from V in the first round, and let Vi be
the residual strategy of V after fixing its first message to i. Note that Vi is exactly the
strategy of the verifier in ROBP-IPPBin,n′,r−1.

Claim 3.6.2. For every i ∈ [k], it holds that

Pr[(Vxi , P ∗i)(n, n′′, Bi, r − 1) = 0] ≥ εi,

where n′′ = n′/k.

Proof. Let i ∈ [k]. Recall that x(i) was chosen as z ∈ {0, 1}n that minimizes the distance

of x to the set Si
def
=
{
z ∈ {0, 1}n : Bi(z) = 1 using exactly n′/k steps

}
. Hence,

∆ (x, Si) = ∆
(
x, x(i)

)
= εi · n′/k.

Hence, (Vxi , P ∗i)(n, n′′, Bi, r−1) corresponds to an invocation of the r−1 round version
of the protocol on an input x that is in absolute distance εi · n′/k from Si. Therefore, by
the inductive hypothesis, the verifier Vi rejects with probability at least εi.

Using Claim 3.6.1 and Claim 3.6.2 we obtain that

Pr[(Vx, P ∗)(n, n′, B, r) = 0] = E
i∈[k]

[
Pr[(Vxi , P ∗i)(n, n′/k,Bi, r − 1) = 0]

]
≥ E

i∈[k]
[εi] ≥ ε,

(3.2)
and the lemma follows.

102

3.3 MAPs and IPPs for Read-Once Branching Programs

This concludes the proof of Theorem 3.4.

Remark 3.7 (Computational Complexity). The running time of the IPP prover in
Fig. 3.1 is polynomial in its input (i.e., poly(|B|, n, k, r, 1/ε)). As for the IPP verifier, if
the representation of the ROBP B allows one to check if two vertices in the graph of B are
connected in polylog(|B|) time, then the verifier runs in time poly(log n, k, r, log(|B|), 1/ε).
If such a representation is not available, then it can be generated in a relatively expensive
(i.e., poly(|B|) time) pre-processing step, which does not depend on the input x and can
be re-used for multiple inputs.

Alternatively, for some other natural representations, the verifier can employ the
prover to efficiently check if two vertices in B are connected. Consider for example a
natural representation in which there exists a polynomial (i.e., poly(log(|B|))) size circuit
C that on input a vertex v (in the graph of B) and a bit σ ∈ {0, 1} outputs the neigh-
bor u of v that σ leads to (i.e., the edge (v, u) is labeled by σ). Suppose further that C
is O(log(|B|)-space uniform (i.e., can be generated by an O(log(|B|))-space Turing ma-
chine). In such case we can use the prover to check connectivity, as described next, and
so we obtain sub-linear verification.

In order to verify connectivity efficiently, we first observe that there exists an (O(log(|B|))-
space uniform) circuit, of polylog(|B|)-depth and poly(|B|)-size, that on input two vertices
v and u outputs 1 if and only if they are connected (possibly via a long path).20 Now we
can apply the efficient interactive proof-system for low-depth computation21 of Goldwasser
et al. [GKR08, Theorem 1] to obtain an interactive proof-system that verifies that two
given vertices are connected, where the verifier runs in time polylog(|B|) and the prover
runs in time poly(|B|).22 We note that employing this proof-system inside our IPP in-
creases the round complexity of the IPP by a polylog(|B|) factor.

Remark 3.8 (IPPs for Ordered Binary Decision Diagrams). Recall that an ordered bi-
nary decision diagram (OBDD) is an ROBP that is both layered and ordered (see Sec-
tion 3.1.2.1). We observe that the communication complexity in Theorem 3.4 can be
slightly improved for OBDDs of width w and size s = O(nw) from O

(
(pr log s) · ε−1

)
to

O
(
(pr logw) · ε−1

)
, by noting that the ith vertex specified by the prover (say, in the first

round) must be in layer i · n/p and therefore it can be specified using only log2w bits.

20The circuit first uses C to generate the entire adjacency matrix of B and then checks whether v and
u are connected by repeated squaring of the adjacency matrix. Note that all actions can be implemented
in polylog(|B|)-depth and poly(|B|)-size.

21Goldwasser et al. show that any language that is accepted by a (O(log(S(n)))-space uniform)
circuit of depth D(n) and size S(n), has an interactive proof-system, where the verifier runs in time
(n+D(n)) · polylog(S(n)) and the prover runs in time poly(S(n)).

22We stress that the interactive proof-system for verifying connectivity is a standard interactive proof-
system and not a “proof of proximity” (i.e., not an IPP). Indeed, this is crucial for our application since
we use the interactive proof-system for connectivity as a subroutine within our IPP, and the IPP verifier
should reject if at any point it encounters a pair of vertices that are disconnected (even if the pair is
“close” to being connected).

103

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

3.3.2 MAPs for ROBPs

We observe that Theorem 3.2 follows almost directly from the proof of Theorem 3.4,
when restricted to the case r = 1. Indeed, the only two gaps (which are easily resolved)
are:

1. Interaction: Theorem 3.4 (restricted to r = 1) guarantees a 1-round IPP for lan-
guages recoginzed by ROBPs. In general, a 1-round IPP is not necessarily an MAP,
since it may include a message sent from the verifier to the prover. Nevertheless,
the order of the messages in our protocol is such that first the prover sends a mes-
sage to the verifier and then the verifier responds. The last message can clearly be
avoided and so we obtain an MAP.

2. Dependence on the Proximity Parameter in the Proof Length: Recall that there
is a linear dependence on 1/ε in the communication complexity in Theorem 3.4,
due to the O(1/ε) parallel repetitions that were used. However, for MAPs, parallel
repetition can be performed without increasing the proof length, since the proof is
a deterministic function of the input. Hence, we can save the additional O(1/ε)
factor that is used for general IPPs.

3.3.3 MAPs and IPPs for Affine Spaces

In this section, as an example, we show how Theorems 3.2 and 3.4 can yield MAPs and
IPPs for any affine space.

Before proceeding to the proof, we remark that Rothblum et al. [RVW13] identified
a specific affine space, called PVAL, as being “complete” for the construction of IPPs for
the class NC.23 They constructed an IPP for PVAL and thereby obtain IPPs for all of NC.
Interestingly, PVAL is an affine space and so the results of this section yield an alternative
IPP for it. Unfortunately though, the parameters obtained by our IPP are inferior24 to
those of [RVW13] and do not yield an alternative IPP for NC.

Definition 3.9. Let F be a finite field, n ∈ N and t ∈ [n]. An affine subspace of the
vector space Fn, denoted AffineSpaceA,b, is parametrized by a matrix A ∈ Ft×n and a
vector b ∈ Ft and consists of all strings x ∈ Fn such that Ax = b.

Our construction of an IPP for every affine space follows directly from Theorem 3.4
by showing that membership in an affine subspaces can be recognized by a small-width
OBDD.

Proposition 3.10. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n and
b ∈ Ft, there exists a width |F|O(t) OBDD that accepts AffineSpaceA,b.

23The language PVAL is parameterized by a sequence of points in a finite vector space and a sequence
of values, and consists of all strings x whose low degree extension LDE(x) is equal to the given sequence
of values at the corresponding sequence of points

24More specifically, for a PVAL instance parameterized by t points, the communication complexity in
our protocol is O(t · 1/ε · polylog(n)), whereas in [RVW13] it is O(t · (1/ε)o(1) · polylog(n)). Our result is
insufficient since in the context of the proof of IPPs for NC, t =

√
n and ε = 1/

√
n.

104

3.4 MAPs and IPPs for Context-Free Languages

Proof. We describe a deterministic streaming algorithm for deciding membership in AffineSpaceA,b.
The algorithm gets access to a stream of n fields elements, reads the input element-by-
element (in order) and stores a total of t field elements at any given time. Transforming
the latter into an OBDD, as required, is straightforward.25

Denote the columns of A by a1, . . . , an ∈ Ft. The algorithm maintains a vector c ∈ Ft
which is initialized to 0. The streaming algorithm reads the input x ∈ Fn element-by-
element and after reading the ith element, the algorithm sets c ← c + xiai (where the
addition is over F). In the end, it holds that

c =
n∑
i=1

xiai = Ax

and therefore it suffices for the algorithm to accept if c = b and reject otherwise.

By applying Theorem 3.4, we obtain the following corollary.

Corollary 3.5. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n, b ∈ Ft
and for every k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round
IPP for AffineSpaceA,b with communication complexity O

(
(rk · t log |F|) · ε−1

)
and query

complexity O
(
n
kr
· ε−1

)
. Furthermore, the IPP is public-coin and has one-sided error.

3.4 MAPs and IPPs for Context-Free Languages

In this section we prove Theorem 3.3 by constructing an IPP for any context-free language.
As noted in the introduction, the proof of Theorem 3.1 will follow as a special case of
this IPP.

The proof of Theorem 3.3 extensively uses the notions of a partial derivation and a
partial derivation language. Recall that a partial derivation of a grammar G is a derivation,
according to the production rules of G, in which not all variables are expanded. Our
notion of a partial derivation language is more complex. In particular, it does not refer
to the language that consist of all possible partial derivations of the grammar (i.e., {x ∈
(Σ∪V)∗ : Astart

∗⇒ x}). Rather, we define a partial derivation language as a language that
consists of the subsequence of terminal symbols that correspond to partial derivations
that start at some fixed variable. Furthermore, we consider only partial derivations in
which the subsequence of variables in the partial derivation occur in specific locations.
More concretely, a partial derivation language is parameterized by (1) a start variable
A0; (2) the number of terminals m; (3) a sequence of ` locations i1, . . . , i`; and (4) a
corresponding sequence of variables A1, . . . , A`. The language consists of strings z of
length m such that the string z′ = z[1, i1− 1] ◦A1 ◦ z[i1, i2− 1] ◦ · · · ◦A` ◦ z[i`,m] can be
derived from A0. More formally,

25Loosely speaking, each layer of the OBDD will consist of the 2O(t log |F|) possible configurations of the
streaming algorithm (which include both its current state and possibly some of the bits of the element
that is currently being read).

105

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Definition 3.11 (Partial Derivation Language). A partial derivation language of the gram-
mar G = (V,Σ, R,Astart) is a language L ⊆ Σm, parameterized by indices 1 ≤ i1 ≤ . . . ≤
i` ≤ m and variables A0, . . . , A` ∈ V such that

L def
=
{
z ∈ Σm : A0

∗⇒ z[1, i1 − 1] ◦ A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`,m]
}
.

The concise description of a partial derivation language L ⊆ Σm, parameterized by i =

(i1, . . . , i`) and A = (A0, . . . , A`), is denoted by 〈L〉 def
=
(
m, i, A

)
.

We stress that z ∈ L, where L is a partial derivation language such that 〈L〉 =(
m, (i1, . . . , i`), (A0, . . . , A`)

)
, means that z is a string of terminal symbols such that

A0
∗⇒ z′, where z′ is an interleaving of z and A1, . . . , A`, in which Aj appears in coordinate

ij + j − 1. Indeed, there is a natural 1-1 correspondence between the indices ij ∈ [m]
that are the locations in z in which the variables should be inserted, and the indices

i′j ∈ [m+ `], where i′j
def
= ij + j − 1, that are the locations in the string z′ = z[1, i1 − 1] ◦

A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`,m] in which the fixed variables appear.
Our construction of an IPP is recursive, and to facilitate the recursion, as discussed in

Section 3.1.2.2, it will be useful for us to construct an IPP for partial derivation languages
rather than just context-free languages. Additionally, as discussed in Section 3.1.2, the
IPP will be proximity oblivious26 (see Section 3.2.1.2). That is, we prove the following
(more general) lemma:

Lemma 3.12. Let G be a context-free grammar, let L be a partial derivation language
corresponding to G, parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
. For every in-

tegers k ≥ 2 and r ≥ 1 such that kr ≤ n, there exists an r-round proximity oblivious IPP
for L with detection probability ρ(ε) = ε, communication complexity O(rk log(n+ `)) and
query complexity O

(
n+`
kr

)
. Furthermore, the proximity oblivious IPP is public-coin.

Theorem 3.3 follows directly from Lemma 3.12 by observing that (1) every context-free
language is a partial derivation language, without any fixed variables (i.e., ` = 0), and
(2) we can transform any proximity oblivious IPP into a standard IPP (by repeating the
former O(1/ε) times in parallel).

Lemma 3.12 is proved in Sections 3.4.1 and 3.4.2. Specifically, in Section 3.4.1, which
contains the more involved (and interesting) part of the proof, we show a scheme for
partitioning partial derivation languages into several smaller partial derivation languages.
Then, in Section 3.4.2 we use this partition to construct an IPP for partial derivation
languages (which is a fairly straightforward implementation of the outline presented in
Sections 3.1.2.2 and 3.1.2.3), as well as describe the steps required to derive an MAP
(thereby proving Theorem 3.1). Finally, in Section 3.4.3 we show how to improve the
efficiency of the foregoing MAP for the Dyck languages (i.e., the languages of balanced
parentheses expressions).

26In contrast to the case of ROBPS (see Section 3.3), here we can directly use Definition 3.2 without
any modifications.

106

3.4 MAPs and IPPs for Context-Free Languages

3.4.1 Partitioning Partial Derivation Languages

Let L ⊆ Σn be a partial derivation language27 of a context-free grammarG = (V,Σ, R,Astart),
parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, and let d = O(1) be the length of

the longest production rule in R (so that every x ∈ L has a derivation tree with arity at
most d).

In this section we describe a technique for partitioning L into several partial derivation
languages L1, . . . ,Lk (of shorter strings), while preserving distances. That is, inputs x
that belongs to L will be partitioned into k parts such that for every j ∈ [k], the jth part
of x belongs to Lj, whereas, for inputs x that are far from L, the jth part of x will be far
from Lj, for an average j. Later, in Section 3.4.2, we use this partition to construct an
IPP for L. (See Sections 3.1.2.2 and 3.1.2.3 for a high-level overview.)

The partition, which will be constructed jointly by the IPP prover and verifier, has
two different representations. The first representation, which we call the interval rep-
resentation, is a concise representation that is generated by the prover and sent to the
verifier. The advantage of this representation is has a simple syntactic structure. The
second representation, which is the actual partition, will be derived by the verifier from
the interval representation. The main advantage of the latter representation is that it
facilitates the verification of the semantic relation of the partition to the main input x.

We begin by describing the procedure that is used to generate the interval repre-
sentation of the partition. The procedure, called Generate-Intervals(x, t), is given
as input x ∈ L (recall that L is parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
)

and a parameter t ∈ [n′], where n′
def
= n + ` and t specifies the desired size of each

part in the partition. We assume for simplicity that t ≥ 2d, and the case that t <
2d = O(1) will be handled separately (and trivially) in Section 3.4.2. First, the proce-

dure constructs28 a derivation tree T corresponding to the derivation A0
∗⇒ x′, where

x′
def
= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] (A0

∗⇒ x′ follows from the fact
that x ∈ L). Next, using Lemma 3.5, the procedure finds k = O(n′/t) rooted subtrees29

T1, . . . , Tk of T such that (1) every vertex of T belongs to at least one of the subtrees,
and (2) for each i < j either Ti and Tj are disjoint or Ti is a subtree of Tj. The procedure
outputs I = (I1, . . . , Ik) ∈ ([n′]2)k and B = (B1, . . . , Bk) ∈ V k where Bj is the label of
the root of Tj and Ij ⊆ [n′] is the minimal interval that contains all the leaves of Tj, for
every j ∈ [k]. Each pair of intervals is either disjoint or contained in one other. The
Generate-Intervals procedure is detailed in Fig. 3.2.

To see that Generate-Intervals halts with k ≤ n′

t/d−1
≤ 2d · n′

t
intervals, observe

that in each iteration the number of leaves of the tree T ′ (defined in Step 3a) decreases

27We suggest to the reader to consider the case that L is a context-free language (i.e., no variables are
fixed) at first reading, since it is somewhat simpler. However, we stress that we have to handle general
partial derivation languages for the recursion to go through.

28Although our focus is not on computational complexity, we remark that such a derivation tree can
be constructed in time poly(n′), see [HMU06] for details.

29Recall that we define a subtree of a tree T as a tree consisting of a node in T together with all of its
descendants, see Section 3.2.3.

107

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Generate-Intervals(x, t)

Input: x ∈ L (where L is a partial derivation language parameterized by(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and t ∈ [2d, n′], where n′ = n+ `.

1. Construct a derivation tree T of arity d, with n′ leaves, corresponding to the derivation
A0

∗⇒ x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n] (according to the grammar G).

2. Set j = 1.

3. Repeat: (prior to the jth iteration, we have already constructed subtrees T1, . . . , Tj−1 of
T).

(a) Construct a tree T ′ from T by removing all the vertices of Tj′ except for the root
of Tj′ , for every j′ ∈ [j − 1]. Note that there is a natural correspondence between
the vertices of T ′ and the vertices of T from which they were copied.

(b) If the number of leaves of T ′ is less than t, then exit the loop.

(c) Applying Lemma 3.5 to T ′, with size parameter t, find a subtree of T ′ with t′ leaves
such that t′ ∈ [t/d, t]. Denote the root of this subtree by v′. Let v be the vertex in
T that corresponds to v′, and define Ti as the subtree of T rooted at v.

(d) Increment j by 1.

4. Set k = j and Tk = T .

5. For every j ∈ [k], let Bj be the label of (i.e., the variable associated with) the root of
Tj , and let Ij ⊆ [n′] be the minimal interval that contains all the leaves of Tj in T .

6. Output (I,B), where I = (I1, . . . , Ik) and B = (B1, . . . , Bk).

Figure 3.2: The Generate-Intervals Procedure for the Partial Derivation Language L.

additively by at least t/d− 1 and that we assumed that t ≥ 2d.
As noted above, the output (I, B) of Generate-Intervals is in the first represen-

tation of the partition, which we called the interval representation. Next, we show a
transformation T (which will be applied by the IPP verifier) that transforms the interval
representation of the partition into an actual partition of the main input x.

Actually, instead of partitioning the input x into parts S1, . . . , Sk ⊆ [n], it will be
more convenient to view the partition as a partition of the terminal coordinates of x′ =
x[1, i1− 1] ◦A1 ◦ x[i1, i2− 1] ◦ · · · ◦A` ◦ x[i`, n].30 That is, instead of a partition of [n], we

will find a partition of [n′]\{i′1, . . . , i′`}, where i′j
def
= ij + j − 1, for every j ∈ [`] (indeed,

the non-terminal coordinates of x′ are precisely {i′1, . . . , i′`}).
Our aim is to design a transformation T that maps (I, B) into a partition S1, . . . , Sk

of [n′]\{i′1, . . . , i′`}, where the parts have roughly the same length, together with (con-
cise descriptions of) partial derivation languages L1, . . . ,Lk that satisfy the following

30Of course, the distinction disappears in the simpler case that L is a context-free language (i.e., ` = 0).

108

3.4 MAPs and IPPs for Context-Free Languages

conditions:

• Completeness: If x ∈ L and (I, B) is the output of Generate-Intervals(x, t),
then x′[Sj] ∈ Lj, for every j ∈ [k].

• Soundness: If x is ε-far from L, then for every (I, B) ∈ ([n′]2)k×V k it holds that
x′[Sj] is ε-far from Lj, for an average j ∈ [k] (where the average is weighted based
on the lengths of the parts).

We begin with a high-level overview of the transformation T in the special and slightly
simpler case that L is a context-free language (i.e., ` = 0). In this case, given input
(I, B), where I = (I1, . . . , Ik) and B = (B1, . . . , Bk), the transformation first constructs
a partition of [n] into k parts S1, . . . , Sk by setting Sj = Ij\(I1 ∪ · · · ∪ Ij−1), for every
j ∈ [k]. The transformation outputs S1, . . . , Sk as well as (concise) descriptions of k
partial derivation languages L1, . . . ,Lk such that for every j ∈ [k], the language Lj is a
partial derivation language corresponding to a partial derivation starting from Bj into
strings that have variables Bji at fixed coordinates corresponding to the relative position
of all subintervals Iji of Ij. The transformation also checks that the languages L1, . . . ,Lk
are non-empty so that the distance of x′[Sj] from the corresponding language Lj is well
defined (this check is indeed necessary — see discussion in Section 3.1.2).

The case that L is a partial derivation language (rather than a context-free language)
is quite similar, where a fairly minor complication that arises is that we need to remove
the non-terminal coordinates from the partition, and so we set Sj = Ij\(I1 ∪ · · · ∪ Ij−1 ∪
{i′1, . . . , i′`}). For technical reasons, it is more convenient for us to view each one of
the non-terminal coordinates i′1, . . . , i

′
` as an additional artificial singleton interval. The

transformation T is detailed in Fig. 3.3, and the completeness and soundness require-
ments (which were stated loosely above) are stated formally in the following two lemmas
(Lemmas 3.13 and 3.14).

Lemma 3.13 (Completeness of T). For every x ∈ L (where L is a partial derivation
language parameterized by

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and parameter t ∈ [2d, n′], if

(I, B) ∈ ([n′]2)k×V k is the output of Generate-Intervals(x, t), then the transformation
T (I, B) does not reject, but rather outputs

(
(S1, 〈L1〉) . . . , (Sk, 〈Lk〉)

)
such that for every

j ∈ [k]:

1. Lj ⊆ Σ|Sj | is a partial derivation language on strings of length nj = |Sj| with `j
fixed variables such that nj + `j ≤ t; and,

2. x′[Sj] ∈ Lj, where x′ = x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n].

Proof. Let x ∈ L and let (I, B) be the output of Generate-Intervals(x, t), where
I = (I1, . . . , Ik) and B = (B1, . . . , Bk). Since Ik = [n′] and Bk = A0, the transformation
T (I, B) does not reject, but rather outputs

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I

′
`+k

be as defined in T (see Fig. 3.3).
The fact that, for every j ∈ [k], it holds that Lj ⊆ Σ|Sj | is a partial derivation language

on strings of length nj with `j fixed variables such that nj + `j ≤ t follows from the fact

109

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

The Transformation T
(
I,B

)
Input: I = (I1, . . . , Ik) ∈ ([n′]2)k and B = (B1, . . . , Bk) ∈ V k (recall that n′ = n+ ` and that
〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
).

1. Check that (I,B) is well formed: for every j < i either Ij (Ii or Ij ∩ Ii = ∅, and
Ik = [n′] and Bk = A0 (recall that A0 ∈ V is a variable such that all partial derivations
in L start from A0). If any test fails, then rejecta and halt.

2. For j ∈ [`], let I ′j = {ij}.

3. For j ∈ [k], let I ′`+j = Ij .

4. For every j ∈ [k]:

(a) Let I ′j,1, . . . , I
′
j,`j

be the ordered sequence (from left to right) of all maximal (strict)

sub-intervals of Ij = I ′`+j from the set of intervals {I ′1, . . . , I ′`+k}. That is, all in-
tervals (in order) from the set of intervals {I ′1, . . . , I ′`+k} that are strictly contained

in Ij but are not contained in any other interval that is strictly contained in I ′j .
b

(b) Let Sj = Ij\(I ′j,1 ∪ · · · ∪ I ′j,`j).
c

(c) For every s ∈ [`j], let ij,s ∈ [|Ij |] be the relative starting position of the sub-interval
I ′j,s inside Ij , let i′j,s = ij,s−

∑
s′<s |I ′j,s′ |, and let B′j,s be the label of the root of the

subtree that corresponds to the interval I ′j,s. Define the following partial derivation
language of G:

Lj
def
=
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1−1]◦B′j,1◦w[i′j,1, i
′
j,2−1]◦· · ·◦B′j,`j ◦w[i′j,`j , |S

′
j |]
}

(see also Fig. 3.4). That is, 〈Lj〉 =
(
|Sj |, (i′j,1, . . . , i′j,`j), (B

′
j,1, . . . , B

′
j,`j

)
)
.

(d) If Lj = ∅, then reject and halt.d

5. Output
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

aIn case the reader is bothered by the fact that the transformation may “reject”, we can easily
avoid rejecting by outputting instead some canonical representation of a “partition” that will always
be rejected by the IPP verifier.

bIn other words, an interval I ′ ∈ {I ′1, . . . , I ′`+k} is contained in the sequence if and only if I ′ (Ij
and I ′ ∩ I ′′ 6= I ′, for every I ′′ ∈ {I ′1, . . . , I ′`+k}\{I ′} such that I ′′ (Ij .

cEquivalently, Sj = Ij \ (I ′1 ∪ · · · ∪ I ′`+j−1). We use the slightly more complicated definition to
facilitate the proof.

dThis check, which only requires access to 〈Lj〉 and the grammar G, can be done in poly(n′) time.

Figure 3.3: The Transformation T .

110

3.4 MAPs and IPPs for Context-Free Languages

Figure 3.4: The partial derivation tree that describes the partial derivation Bj
∗⇒

w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i
′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |S

′
j |].

that the quantity nj + `j corresponds to the number of leaves of the subtree that was
constructed in Item 3c in the Generate-Intervals procedure (recall that this subtree
had at most t leaves).

To complete the proof of Lemma 3.13, we need to show that x′[Sj] ∈ Lj, where

x′
def
= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n], for every j ∈ [k]. Let j ∈ [k], and

let `j, i
′
j,1, . . . , i

′
j,`j
, B′j,1, . . . , B

′
j,`j

be as in Fig. 3.3. Let w = x′[Sj], and observe that by
construction,

Bj
∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i

′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Si|].

Hence, w ∈ Lj and completeness follows.

Lemma 3.14 (Soundness of T). For every ε ∈ [0, 1], every x ∈ Σn that is ε-far from L
(parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and every (I, B) ∈ ([n′]2)k × V k,

it holds that T (I, B) either rejects or outputs a sequence
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such

that:

1. The sets S1, . . . , Sk ⊆ [n′]\{i′1, . . . , i′`} form a partition of [n′]\{i′1, . . . , i′`}.

2. It holds that
E
j∼D

[
∆REL (x′[Sj],Lj)

]
≥ ε,

where x′ = x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] and D is a distribution
over [k] such that Prj∼D[j = j′] = |Sj′|/n for every j′ ∈ [k].

111

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Proof. Let x ∈ Σn and let I = (I1, . . . , Ik) ∈ ([n′]2)k be a sequence of intervals and
B = (B1, . . . , Bk) ∈ V k a sequence of variables such that the transformation T

(
I, B

)
does not reject and outputs

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I

′
`+k be as defined in

T (see Fig. 3.3).
To see that S1, . . . , Sk form a partition of [n′]\{i′1, . . . , i′`}, observe that for each j ∈ [k],

it holds that Sj = Ij\(I ′j,1∪ · · · ∪ I ′j,`j), where I ′j,1, . . . , I
′
j,`j

are the ordered sequence (from

left to right) of all maximal sub-intervals of I ′j out of I ′1, . . . , I
′
`+k (i.e., all intervals that

are contained in Ij but are not contained in any other interval that is strictly contained
in Ij). Thus, the Sj’s are disjoint. Furthermore, since I ′`+k = [n′], for every index i ∈ [n′]
there exists j ∈ [`+ k] such that i ∈ I ′j. Hence, either i ∈ {i′1, . . . , i′`} (in case j ∈ [`]) or
i ∈ Sj′ for some j′ ∈ [k], and so S1, . . . , Sk form a partition of [n′]\{i′1, . . . , i′`}.

For every j ∈ [k], let εj = ∆REL (x′[Sj],Lj). Let D be the distribution as in the
lemma’s statement (i.e., Prj∼D[j = j′] = |Sj′ |/n, for every j′ ∈ [k]). Suppose that
Ej∼D[εj] < ε, for some ε ∈ [0, 1], where x′ = x[1, i1−1]◦A1 ◦x[i1, i2−1]◦ · · ·◦A` ◦x[i`, n].
We will show that x is ε-close to L.

For every j ∈ [k], since the transformation explicitly checks31 (in Step 4d) that Lj 6= ∅,
there exists a string zj ∈ Σ|Sj | such that zj ∈ Lj and ∆REL (x′[Sj], zj) = εj (i.e., zj ∈ Lj
minimizes the distance of x′[Sj] to Lj).

Using z1, . . . , zk, we construct a string z ∈ L that is ε-close to x as follows. Let z ∈ Σn

such that the string z′ = z[1, i1−1]◦A1 ◦z[i1, i2−1]◦ · · · ◦A` ◦z[i`, n] satisfies z′[Sj] = zj,
for every j ∈ [k]. (The fact that such a string z exists follows from the fact that S1, . . . , Sk
are a partition of n′\{i′1, . . . , i′`}.)

Observe that ∆REL (x, z) = ∆REL (x′, z′) ≤ Ej∼D
[
∆REL (x′[Sj], z

′[Sj])
]

= Ej∼D[εj] < ε
and so x is ε-close to z. By applying the following claim, with respect to j = k, and using
the fact that the transformation explicitly checks that Ik = [n′] and Bk = A0, we obtain

that A0
∗⇒ z′, and therefore z ∈ L. Hence x is ε-close to a string z ∈ L, and soundness

follows.

Claim 3.14.1. For every j ∈ [k], it holds that Bj
∗⇒ z′[Ij].

Proof. We prove the claim by induction on j. Let j ∈ [k], and suppose that the claim

holds for every j′ < j. Let y = z′[Sj]. Note that y ∈ Lj. We show that Bj
∗⇒ z′[Ij].

Recall that I ′1, . . . , I
′
`+k were fixed above as in Fig. 3.3. That is, for j ∈ [`], it holds

that I ′j = {ij}, and for j ∈ [`+ 1, `+ k] it holds that I ′j = Ij−`.
Let I ′j,1, . . . , I

′
j,`j

be the ordered maximal sub-intervals (in the set {I ′1, . . . , I ′`+k}) of Ij.
By the construction of T it holds that

Lj =
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i
′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Sj|]

}
,

where ij,s is the relative starting position of the interval I ′j,1 inside Ij, i
′
j,s

def
= ij,s −∑

s′<s |I ′j,s′ | and B′j,s is the label of the subtree that corresponds to the interval I ′j,s, for

31Indeed, this was the reason that we added this additional check, and without it soundness would not
hold. See further discussion in Section 3.1.2.

112

3.4 MAPs and IPPs for Context-Free Languages

every s ∈ [`j]. Therefore, since y ∈ Lj, it holds that

Bj
∗⇒ y[1, i′j,1 − 1] ◦B′j,1 ◦ y[i′j,1, i

′
j,2 − 1] ◦ · · · ◦B′j,`j ◦ y[i′j,`j , |Si|]. (3.3)

On the other hand, for every i ∈ [`j], it holds that

B′j,s
∗⇒ z′[I ′j,s], (3.4)

where Eq. (3.4) follows from the inductive hypothesis and from the fact that B′j,s = Aj,s
and z′[I ′j,s] = z′j,s = Aj,s. for s ∈ [`j].

By combining Eq. (3.3), Eq. (3.4), and the definition of i′j,s we obtain that

Bj
∗⇒ y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i

′
j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|].

The claim follows by observing that

z′[Ij] = y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i
′
j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|],

and therefore Bj
∗⇒ z′[Ij].

This completes the proof of Lemma 3.14

3.4.2 IPP for Partial Derivation Languages

Using Lemmas 3.13 and 3.14, we complete the proof of Lemma 3.12 (which is a relatively
straightforward implementation of the ideas outlined in Section 3.1.2).

Proof of Lemma 3.12. Let G = (V,Σ, R,Astart) be a context-free grammar. We construct
a proximity oblivious IPP for every partial derivation language L ⊆ Σn of the grammar
G.

The proximity oblivious IPP has two parameters: r which is the round complexity, and
k which roughly corresponds to the amount of communication in each round. The IPP
runs recursively, where each round of communication proceeds as follows. The (honest)
prover uses the Generate-Intervals procedure on its input x and parameter t = n′/k
(where n′ = n+`), to obtain

(
I, B) and sends

(
I, B) to the verifier. The verifier applies the

transformation T (I, B) to derive the partition S1, . . . , Sk and the corresponding partial
derivation languages L1, . . . ,Lk. Then, the verifier selects at random j ∈ [k] and sends
j to the prover (where j is distributed according to D as above). The two parties then

recurse on input x′[Sj], where x′
def
= x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n], with

respect to the partial derivation language Lj. The recursion stops once either:

1. n′ ≤ O(k) (i.e., the input is very short), in which case the prover can send x∗ = x
to the verifier.32 Then, the verifier checks that x∗ ∈ L and that x∗ is consistent
with x at a randomly selected coordinate; or,

32This check is to ensure that the parameter t = n′/k is larger than 2d.

113

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

2. r rounds have passed, in which case the verifier reads its entire input x (which has
shortened by a multiplicative factor of roughly k in each step of the recursion) and
verifies that x ∈ L.

The IPP for L, denoted CFL-IPP, is detailed in Fig. 3.5.
Without loss of generality, we can measure the complexity of the protocol only when

the verifier interacts with the honest prover (see discussion in Section 3.2.1). It can
be easily verified that the round complexity is at most r rounds. By Lemma 3.13, the
protocol recurses on a partial derivation language Lj on strings of length nj with `j
fixed variables such that nj + `j ≤ n′/k. Hence, after at most r rounds, the current
input length has length at most n′/kr, where n′ = n+ `, and so the query complexity of
the IPP is O(n′/kr). Since in each round the communication is at most O(k log n′), the
communication complexity of the IPP is O(rk log n′).

Completeness. Let L be a partial derivation language, with 〈L〉 def
=
(
n, i, A

)
, and let

x ∈ L. We show that perfect completeness hold by induction on r. For r = 0 or n′ = O(p),
perfect completeness follows from the fact that V just checks that x ∈ L. For r > 1 (with
n′/k ≥ 2d), by Lemma 3.13, the verifier produces

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj

is a partial derivation language and x′[Sj] ∈ Lj, for every j ∈ [k] (in particular, Lj 6= ∅).
Hence, by the inductive hypothesis, the verifier in the r − 1 round protocol for Lj will
accept on input x′[Sj] with probability 1.

Soundness. Soundness follows from the following lemma, which is proved by induction
on the number of rounds r.

Lemma 3.15. Let L be a partial derivation language, and let k ≥ 1 and r ≥ 0. For
every ε ∈ [0, 1] and every x that is ε-far from L, and for every cheating prover strategy
P ∗ it holds that:

Pr
[(
V, P ∗

)
(x) = 0

]
≥ ε,

where V is the verifier in CFL-IPPLr,p (see Fig. 3.5).

Proof. We first consider the trivial case that n′ = O(k). In this case, if x∗ is ε-close to
x, then x∗ 6∈ L (since x is ε-far from L) and the verifier rejects with probability 1 ≥ ε.
Otherwise, x∗ is ε-far from L and the verifier rejects with probability at least ε when
checking the consistency of x∗ and x.

We proceed to the more interesting case, in which n′/k > 2d, and prove by induction
on r. For r = 0, the verifier ignores the prover and reads all of x. Hence, if B(x) 6= 1,
then the verifier rejects with probability 1.33

For r ≥ 1, let ε ∈ [0, 1], let x ∈ Σn be ε-far from L, and let P ∗ be a deterministic
cheating prover strategy for the protocol CFL-IPPLr,k of Fig. 3.5 (with r rounds). Let (I, B)
be the first message sent by P ∗ to V . Assume that the invocation of the transformation

33In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it
rejects with probability at least 0 = ε.

114

3.4 MAPs and IPPs for Context-Free Languages

The Protocol CFL-IPPLk,r

Parameters: L ⊆ Σn is a partial derivation language, with 〈L〉 =(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, the parameters k, r ∈ N correspond (roughly) to the amount of

communication in each round and to the number of rounds, respectively. Let n′ = n+ `.

Prover’s Input: Direct access to x ∈ L, with n
def
= |x|.

Verifier’s Input: Oracle access to x, and direct access to 〈L〉.

1. If r = 0, then the verifier V checks whether x ∈ L by explicitly reading all of x. If
x ∈ L, then V accepts, otherwise it rejects, and in either case both parties terminate
the protocol.

2. If n′ = O(k), the prover sends x∗ = x to V. The verifier V accepts if x∗ ∈ L and x∗

agrees with x at a randomly chosen coordinate. Otherwise V rejects, and in either case
both parties terminate the protocol.

3. The Prover P:

(a) Invoke Generate-Intervals(x, n′/k) to obtain
(
I,B

)
.

(b) Send
(
I,B

)
to V.

4. The Verifier V:

(a) Invoke T
(
I,B

)
. If the transformation rejects, then immediately re-

ject and halt. Otherwise, denote the output of the transformation by(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.a

(b) Select j ∼ D, where D is the distribution in the statement of Lemma 3.14 (i.e.,
Prj∼D[j = j′] = |Sj′ |/n, for every j′ ∈ [k]).

(c) Send j to P.

5. Both parties (recursively) invoke CFL-IPP
Lj
r−1,k on input x′[Sj].

aThe reader may note that, in contrast to Fig. 3.1, the verifier does not check that Lj 6= ∅, for every
j ∈ [k]. This check is actually performed within the transformation T (see Step 4d in Fig. 3.3).

Figure 3.5: IPP for Context-Free Languages

115

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

T
(
I, B

)
does not reject (otherwise the verifier rejects with probability 1, and we are

done), and denote its output by
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

For every j ∈ [k], let εj = ∆REL (x′[Sj],Lj) denote the relative distance of x′[Sj] from
Lj, and let D be the distribution as in CFL-IPPLr,k. By Lemma 3.14, it holds that

E
j∼D

[εj] ≥ ε. (3.5)

For every j ∈ [k], let P ∗j be the residual r − 1 round strategy of P ∗ after receiving
the message j from V in the first round, and let Vj be the residual strategy of V after
fixing its first message to j. Observe that, by construction, Vj is simply the strategy of

the verifier in the protocol CFL-IPP
Lj
k,r−1. Hence, by the inductive hypothesis, for every

j ∈ [k] it holds that
Pr
[(
Vj,P∗j

)
(x′[Sj]) = 0

]
≥ εj. (3.6)

Using Eqs. (3.5) and (3.6) we obtain that:

Pr[
(
V, P ∗

)
(x) = 0] = E

j∼D

[
Pr[
(
Vj,P∗j

)
(x′[Sj]) = 0]

]
≥ E

j∼D
[εj] ≥ ε, (3.7)

and the lemma follows.

This concludes the proof of Lemma 3.12 and Theorem 3.3.

Remark 3.16 (Computational Complexity). The IPP prover in Fig. 3.5 can be imple-
mented in time poly(n, k, r). As for the IPP verifier, Step 4d in Fig. 3.3 can be imple-
mented in time poly(n), and so we obtain a total running-time of poly(n, k, r), which
is super-linear. We remark that for context-free languages whose partial derivation lan-
guages are themselves context-free languages, we can actually do better and obtain run-
ning time poly(log n, k, r) (an example for such a context-free language is the language of
balanced parentheses expressions, see Section 3.4.3). See Section 3.5.4 for details.

Alternatively, by increasing the round complexity of our IPP, we can also obtain sub-
linear time verification. The technique is similar to that described in Remark 3.7. More
specifically, we can implement Step 4d in Fig. 3.3 (i.e., checking that a given partial
derivation language is non-empty (which is the main bottleneck in our IPP)) via an inter-
active proof-system. To do so, we first construct a (logspace) uniform low-depth circuit
that, given the description of a partial derivation language, outputs 1 if and only if the
language is non-empty. An efficient interactive proof-system follows from the efficient in-
teractive proof-system for low-depth computation of Goldwasser et al. [GKR08, Theorem
1]. Details follow.

Fix the grammar G = (V,Σ, R,Astart) and consider a description (m, i, A) of a partial
derivation language, where i = (i1, . . . , i`) and A = (A0, . . . , A`). Given (m, i, A), the
circuit first constructs a string z ∈ (V ∪ {∗})m+`, where ′∗′ is some character that does

not belong to V ∪Σ and z
def
= ∗i1−1 ◦A1 ◦∗i2−i1 ◦ · · · ◦A` ◦∗m−i`+1. The circuit then checks

whether z can be derived from A0, according to an auxiliary (unary) grammar G′, which
is identical to G except that all the terminals are replaced by the unique terminal ′∗′. By

116

3.4 MAPs and IPPs for Context-Free Languages

a result of Ruzzo [Ruz81], membership in context-free languages can be computed by a
(logspace uniform) NC2 circuit, and so we obtain a (O(log(m) + log(|`|))-space uniform)
circuit that checks if the partial derivation language is non-empty, in depth polylog(m+`)
and size poly(m, `).

Given the above circuit, we can use [GKR08, Theorem 1] to obtain an interactive
proof-system in which the verifier runs in ` ·poly(log(`), log(m)) time and the prover runs
in time poly(m, `). We note that using this proof-system inside our IPP increases the
round complexity of our IPP by a poly-logarithmic factor.

Remark 3.17 (MAPs for Context-Free Languages). Theorem 3.2 follows directly from
the proof of Lemma 3.12, while noting that the two issues the arise in the case of MAPs
for ROBPs (see Section 3.3.2) apply also here and can be resolved similarly.

3.4.3 Improved MAPs for Specific Context-Free Languages

In this section we show that the efficiency of the MAPs for general context-free languages
(i.e., Theorem 3.1) can be improved for context-free languages whose corresponding par-
tial derivation languages have efficient testers (which do not use a proof). Most notably,
we obtain such an improvement for the Dyck languages (i.e., languages of balanced paren-
theses expressions).

Recall that in the proof of Theorem 3.1, given the MAP proof, the MAP verifier (implic-
itly) constructs a partition S1, . . . , Sk of [n] and partial derivation languages L1, . . . ,Lk.
Then, the verifier chooses an index j ∈ [k] at random and checks whether x[Sj] ∈ Lj
by explicitly reading all of x[Sj]. However, by Lemma 3.14, the MAP verifier does not
really have to check that x[Sj] ∈ Lj exactly, but rather it suffices to check that x[Sj] is
close to Lj. Since no non-trivial tester is known for general context-free languages (let
alone for their corresponding partial derivation languages), we could not use this fact
to our advantage in the general case. However, for some specific languages, such as the
Dyck languages, more efficient testers are known and we can utilize them to improve the
efficiency of our MAPs.

A technical difficulty that we encounter when taking this approach is that when testing
whether x[Sj] is close to Lj it is not a priori clear which value of the proximity parameter
the verifier should use (recall that Lemma 3.14 only guarantees that x[Sj] is ε-far for an
average j ∈ [k] but not necessarily for every j ∈ [k]). Of course, if Lj has a proximity-
oblivious tester, then the issue is mute and we can just run the tester directly. In the
more general case, we can simply apply an averaging argument. The naive averaging
argument shows that for an ε/2 fraction of j ∈ [k], it holds that x[Sj] is ε/2 far from
Lj. However, by applying a more refined averaging argument, due to Levin [Lev85] (see
[Gol14, Appendix A.2]), we obtain an additional improvement.

Lemma 3.18. Let G be a context-free grammar and α ≥ 0 and β ≥ 1 be constants.
Suppose that every partial derivation language of G (as in Definition 3.11) has a property
tester with query complexity O

(
mα · δ−β

)
for inputs of length m and proximity parameter

δ > 0. Then, for every k ≥ 1 the language L has an MAP with proof complexity O(k log n)

117

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

and query complexity O
(
(n/k)α · ε−β · log2(1/ε)

)
. Furthermore, if α = 0, then the query

complexity is at most O
(
(n/k)1−1/β · ε−1 · log3(1/ε)

)
.

The MAP in Lemma 3.18 has one-sided error if and only if the testers for the partial
derivation languages have one-sided errors. However, even if the resulting MAP has
two-sided error, a one-sided error MAP (with only a poly-logarithmic overhead) can be
obtained by applying a generic transformation from two-sided error MAPs into one-sided
error MAPs (see of [GR13b, Theorem 4.3]).

Note that the alternative bound for α = 0 improves over the general case only for
sub-constant values of the proximity parameter (i.e., ε < (n/k)−1/β · polylog(n)). The
bound is obtained by observing that, for very small values of the proximity parameter, it
is advantageous to read the entire input rather than apply the tester. We defer the proof
of Lemma 3.18, which is relatively straightforward, to Section 3.5.3.

Using Lemma 3.18 we now show how to construct an improved MAP for the Dyck
languages. Loosely speaking, the κth-order Dyck language consists of all of strings that
form a balanced parenthesis expression with κ distinct types of parentheses. The Dyck
languages can be defined via a context-free grammar as follows.

Definition 3.19. Let κ ∈ N be a constant. The κth-order Dyck language, denoted Dyckκ,
is the language generated by the context-free grammar GDyckκ = (V,Σκ, R,Astart), where
V = {A}, Astart = A, Σκ = {‘[1’, ‘]1’, ‘[2’, ‘]2’, . . . , ‘[κ’, ‘]κ’}, and the production rules R
consist of: (1) A ⇒ [iA]i for every i ∈ [κ], (2) A ⇒ AA, (3) A ⇒ λ, where λ denotes
the empty string.

Alon et al. [AKNS00] showed a tester (with two-sided error) for the first order Dyck
language (i.e., Dyck1) with query complexity Õ(1/ε2). As for higher order Dyck lan-
guages, Parnas et al. [PRR01] showed that any Dyck language (of any fixed order) can be
tested (with two-sided error) by making O(n2/3 · ε−3) queries.34 Furthermore, by the fol-
lowing proposition, the foregoing results can be extended to the case of partial derivation
languages of the Dyck languages (with respect to the foregoing grammars).

Proposition 3.20. Let m,κ ∈ N. If L ⊆ (Σκ)
m is a partial derivation language of the

grammar GDyckκ, then L is equal to Dyckκ ∩ (Σκ)
m.

Proof. Let L ⊆ (Σκ)
m be a partial derivation language of GDyckκ such that 〈L〉 =(

m, (i1, . . . , iκ), (A, . . . , A)
)

(here we used the fact that the grammar GDyckκ uses only
a single variable – A).

On one hand, if x ∈ L, then A
∗⇒ x[1, i1− 1] ◦A ◦x[i1, i2− 1] ◦ · · · ◦A ◦x[i`,m]. Using

the production rule A⇒ λ we have that A
∗⇒ x[1, i1 − 1] ◦ x[i1, i2 − 1] ◦ · · · ◦ x[i`,m] = x

and therefore x ∈ Dyckκ ∩ (Σκ)
m.

On the other hand, if x ∈ Dyckκ∩(Σκ)
m, then A

∗⇒ x. The following claim shows that,
for the Dyck grammars, we can generate a partial derivation in which A is inserted in any
desired sequence of positions. Therefore, A

∗⇒ x[1, i1−1]◦A◦x[i1, i2−1]◦· · ·◦A◦x[i`,m],
which implies that x ∈ L.

34For perspective, recall that Parnas et al. [PRR01] also showed that, for κ ≥ 2, any tester (which

does not use a proof) for Dyckκ must make at least Ω̃(n1/11) queries.

118

3.4 MAPs and IPPs for Context-Free Languages

Claim 3.20.1. Let α ∈ (Σκ ∪{A})m
′
, for some m′ ∈ N, and let i ∈ [m′]. If A

∗⇒ α, then

A
∗⇒ α[1, i− 1] ◦ A ◦ α[i,m′].

Proof. Since A
∗⇒ α (according to the grammar GDyckκ), there exists a corresponding

partial derivation tree T , in which all internal vertices are labeled by the variable A and
each leaf is labeled by either ’A’, ’[j’, ’]j’, for some j ∈ [κ]. We prove the claim by
extending T into a partial derivation tree T ′ that corresponds to the partial derivation
A
∗⇒ α[1, i− 1] ◦ A ◦ α[i,m′].

Denote the ith leaf of T by v and denote v’s parent by u. The specific way in which
T ′ is constructed from T depends on whether the label of v is ’A’, ’[j’ or ’]j’ (for some
j ∈ [κ]), and is detailed in Fig. 3.6.

Figure 3.6: Construction of T ′ from T . The original tree T is on the left, and the new
tree T ′ is on the right. In each case the ith leaf of the tree has a shaded background, both
in T and in T ′ (note that in all cases the ith leaf of T is v and the ith leaf of T ′ is labeled
by A, the newly inserted symbol).

This concludes the proof of Proposition 3.20.

119

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Thus, the property testers of [PRR01] for the Dyck languages are also testers for the
partial derivation languages (of the Dyck languages), and we obtain the following result.

Theorem 3.6. Let κ ≥ 2. For every p such that 2 ≤ p ≤ n, there exists an MAP for
Dyckκ that uses a proof of length O(p log n) and has query complexity O

(
(n/p)2/3 · ε−3 ·

log2(1/ε)
)
. Furthermore, there exists an MAP with one-sided error for Dyckκ that uses a

proof of length O(p log n+ polylog(n)) and has query complexity (n/p)2/3 · ε−3 ·polylog(n).

The furthermore clause is obtained by applying the generic transformation from one-sided
error MAP into two-sided error MAP (see [GR13b, Theorem 4.3]) and using the fact that
without loss of generality we may assume that ε ≥ 1/n (and so log2(1/ε) ≤ polylog(n)).
We conclude this section with some second order remarks.

Improvement for Dyck1 and ε� 1/
√
n. For Dyck1 (i.e., κ = 1), and for small values

of the proximity parameter (i.e., ε < 1√
n·polylog(n)

) we can improve Theorem 3.6, by using

the tester of Alon et al. [AKNS00] (which has query complexity Õ(1/ε2)). Using the
special case of Lemma 3.18, we obtain query complexity O

(√
n/p · ε−1 · log3(1/ε)

)
with

a proof of length O(p log n).

Extension to IPPs. The idea of applying non-trivial testers can also be used to obtain
improved IPPs, by applying the tester after the last round of interaction (instead of
running the trivial tester that reads the entire (current) input). The savings in this
case are less significant since the query and communication complexities of our IPPs are
already fairly small. Hence, we only elaborate briefly on these IPPs below.

If the partial derivation languages of the grammar have proximity-oblivious testers,
then the latter can simply be employed in the last step of the recursion in Fig. 3.5.
However, if only standard testers (which are not proximity oblivious) are available, then
we can generalize the strategy in the proof of Lemma 3.18 by applying an averaging
argument in each step of the recursion, while incurring an Õ(1/ε) multiplicative overhead
in each round. Unfortunately, the latter strategy results in an exponential dependence
on the round complexity of the protocol.

Computational Complexity for Dyck Languages. In general, as noted in Re-
mark 3.16, the running time of the verifier in Fig. 3.5 is poly(n) (because it verifies that
each of the languages L1, . . . ,Lk is non-empty). However, as shown in Proposition 3.20,
for the Dyck languages, the partial derivation languages L1, . . . ,Lk are themselves Dyck
languages. Since the Dyck language on m-bit strings is non-empty if and only if m is even,
the running time of the verifier can be reduced to poly(log n, k, r) (see also Section 3.5.4).

The MAP proof in Theorem 3.6 is generated efficiently (i.e., in time poly(n)) for
every context-free language, and in particular for the Dyck language. However, for the
furthermore clause of Theorem 3.6, we apply the transformation of [GR13b, Theorem
4.3], which in general does not preserve computational efficiency of the proof generating
procedure. Hence, we do not obtain an MAP for the Dyck languages that simultaneously
has both one-sided error and an efficient procedure of generating the MAP proof.

120

3.5 Appendices for Chapter 3

3.5 Appendices for Chapter 3

3.5.1 Parallel Repetition of IPPs

The k-fold parallel repetition of an IPP (V1,P1) is an IPP (Vk,Pk) in which the two
parties perform k parallel repetitions of (V1,P1), using independent random coins for
each invocation. Note that the query and communication complexities of (Vk,Pk) are k
times the query and communication complexities of (V1,P1), respectively. The verifier Vk
accepts if V1 accepts in a majority of the k invocations. For our applications it suffices
to focus on the case that (V1,P1) has a one-sided error, in which case Vk can just check
that V1 accepts in all the k invocations.

It is clear that if (V1,P1) has perfect completeness, then so does (Vk,Pk). The main
challenge is in proving that the soundness error decreases exponentially with k since if
P ∗ is the optimal cheating strategy against V , it is not a priori clear that the optimal
cheating strategy against Vk is k independent copies of P∗.

Nevertheless, the following lemma, taken verbatim from [Gol99, Lemma C.1] shows
that the soundness error for any interactive machine Vk does decrease exponentially.

Lemma 3.21 ([Gol99, Lemma C.1]). Let V1 be an interactive machine, and Vk be an
interactive machine obtained from V1 by playing k versions of V1 in parallel. Let

p1(x)
def
= max

P∗
{Pr[(P∗,V1)(x) = 1]} , and

pk(x)
def
= max

P∗
{Pr[(P∗,Vk)(x) = 1]} .

Then,
pk(x) = (p1(x))k.

We stress that Lemma 3.21 holds for any x and is independent of the operation of V1.
It holds as long as Vk executes k independent copies of V1 and accepts if all copies accept.
Hence, it holds also when V1 is an IPP verifier; in that case Vk has query complexity that
is k times that of V1.

3.5.2 Computing ROBPs in Low-Depth

For any branching program B (including branching programs that are not read-once),
we show that the language LB = {x ∈ {0, 1}∗ : B(x) = 1} can be recognized by
a poly(|B|, n)-size circuit of depth O((log(|B|))2) (with fan-in 2). We stress that the
branching program B is fixed and the circuit only gets x as input. For simplicity, we
assume without loss of generality that B has a unique accepting sink (otherwise we can
add a new unique accepting sink t and have all former accepting sinks direct to t).

The idea (which is in essence the folklore proof that (non-deterministic) log-space
is contained in NC2) proceeds as follows. First, based on the input x (and the fixed
branching program B), compute a |B| × |B| matrix Mx whose (u, v)th entry is 1 if the
branching program traverses from the vertex u ∈ B to v ∈ B on input x in a single step.

121

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

In addition, for every sink t ∈ B we set the (t, t)th-entry of Mx to 1 (these correspond to
self loops). All other entries of Mx are set to 0. Given input x, the matrix Mx (which
is a permutation matrix) can be computed by a constant-depth circuit of size poly(|B|)
(in fact, every entry in Mx is either a fixed constant, or equal to some variable or its
negation).

Observe that for every k ≥ 1, the (u, v)th-th entry of (Mx)
k is equal to 1 if and only if

the branching program traverses from u to v, on input x, in k steps (or at most k steps if
v is a sink). Hence, to check whether the source s leads to the (unique) accepting sink t
on input x, it suffices to check whether the (s, t)th-th entry of (Mx)

|B| is equal to 1. Using
repeated squaring we can compute (Mx)

|B| in O(log2(|B|)) depth and we obtain a circuit
as required.

3.5.3 Proof of Lemma 3.18

We proceed to describe the MAP, which is similar to the MAP of Theorem 3.1 except
that we use the guaranteed property testers for the partial derivation languages. Given
x ∈ L, the MAP proof is the output (I, B) of Generate-Intervals(x, t) (see Fig. 3.2),
where t = n/k and as in the proof of Theorem 3.1 we assume that t ≥ 2d. The MAP
verifier, given direct access to (I, B) and oracle access to x ∈ Σn, first runs T (I, B) to
obtain (S1, 〈L1〉), . . . , (S`, 〈L`〉) and rejects if T rejects. Otherwise, the verifier runs the
following procedure for every j ∈

[
dlog2(2/ε)e

]
:

1. Select uniformly at random O
(

log(1/ε)
2jε

)
indices in [`]. Denote the chosen indices by

I.

2. For every index i ∈ I, run the property tester for Li on input x[Si] (while simulating
its oracle queries with queries to x), with respect to proximity parameter 2−j and
with completeness and soundness errors poly(ε) (as usual, the latter can be obtained
by taking the majority of O(log(1/ε)) independent tests). If the tester rejects then
reject and halt.

If none of the above test fails then the verifier accepts.
We first show that completeness and soundness hold and later show that the query

complexity is as stated.

Completeness. If x ∈ L, by Lemma 3.13, the transformation T produces as output(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj is a partial derivation language and x[Sj] ∈ Lj,

for every j ∈ [k]. Since the tester for each partial derivation language Lj has completeness
error poly(ε) and we perform Step 2 O(ε−1 ·log2(1/ε)) times in total, the verifier accepts in
all tests with probability at least 2/3. Furthermore, if the testers for the partial derivation
languages have a one-sided error, then the MAP verifier accepts with probability 1 and
otherwise we can apply a generic transformation (as discussed in the beginning of the
proof) to obtain a one-sided error.

122

3.5 Appendices for Chapter 3

Soundness. Let x ∈ Σn that is ε-far from L, and let (I, B) be an alleged proof. By
Lemma 3.14, the transformation T either rejects (in which case the verifier rejects and
we are done), or produces

(
(S1, 〈L1〉), . . . , (Sk, 〈L`〉

)
, where S1, . . . , S` form a partition of

[n] and Lj is a partial derivation language, such that x is ε-far from
{
z ∈ Σn : ∀j ∈

[k], z[Sj] ∈ Lj
}

. The following claim, which is a refined averaging argument, shows that
either there are many indexes i ∈ [k] such x[Si] is mildly far from Li or there are few
indexes i ∈ [`] such that x[Si] is extremely far from Li (or anything in between).

Lemma 3.22 (Precision Sampling). There exists j∗ ∈ [dlog2 2/εe] such that for a 2j
∗
ε

4·dlog2(2/ε)e
fraction of the indexes i ∈ [`] it holds that x[Si] is 2−j

∗
-far from Li.

For completeness, we provide the proof of Lemma 3.22, which is standard.

Proof. Let d
def
= dlog2(2/ε)e. Recall that ∆REL (z,W) is the minimal relative Hamming

distance of z from the set W . For every k ∈ [d], let

Bk
def
=
{
i ∈ [`] : ∆REL (x[Si],Li) ∈

(
2−k, 2−(k−1)

]}
,

and let Bd+1 = [`]\(∪i∈[d]Bk). Note that the sets B0, . . . , Bd, Bd+1 form a partition [`].
Also note that by our setting of d, for every i ∈ Bd+1 it holds that x[Si] is ε/2-close to
Li.

Suppose towards a contradiction that for every k ∈ [d] it holds that |Bk| < 2kε
4d
· `.

Using the fact that for every i ∈ Bk it holds that x[Si] is 2−(k−1)-close to Li, we obtain
that

∆REL (x,L) ≤ 1

`

∑̀
i=1

∆REL (x[Si],Li)

=
1

`

∑
i∈Bd+1

∆REL (x[Si],Li) +
1

`

∑
k∈[d]

∑
i∈Bk

∆REL (x[Si],Li)

≤ |Bd+1|
`
· ε

2
+

1

`

∑
k∈[d]

2−(k−1) · |Bk|

<
ε

2
+
∑
k∈[d]

ε

2d

= ε,

in contradiction to our assumption that x is ε-far from L.

Next, consider the execution of iteration j∗ of the verifier, where j∗ is as guaranteed

by Lemma 3.22. Since the verifier selects uniformly at random O
(

log(1/ε)

2j∗ε

)
indices in

[k], with probability at least 9/10 it selects at least one index i ∈ [k] such that x[Si] is
2−j

∗
-far from Li. In this case, the tester for Li, with respect to proximity parameter 2−j

∗

will reject x[Si] with probability 1− poly(ε). Thus, the verifier rejects x with probability
at least (1− poly(ε)) · 9/10 ≥ 2/3.

123

3. PROOFS OF PROXIMITY FOR CONTEXT-FREE LANGUAGES AND
READ-ONCE BRANCHING PROGRAMS

Query Complexity. Recall that we assumed that every partial derivation language
has a tester with query complexity Q(m, δ) = O(mα · δ−β), for inputs of length m with
respect to proximity parameter δ > 0. By definition, it holds that |Si| ≤ t = n/p, for
every i ∈ [`]. Thus, the query complexity is at most

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]

2jβ · log(1/ε)

2j · ε
· (n/k)α

= O

(n/k)α · (log(1/ε))2

ε
·

∑
j∈[dlog2 2/εe]

2(β−1)j

= O

(
(n/k)α · ε−β · log2(1/ε)

)
.

For the particular case in which α = 0, we tighten the analysis for small values of ε
by noting that the query complexity for any language is upper bounded by the size of
the object:

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]

log(1/ε)

2j · ε
·min

(
n/k, 2jβ

)
= O

(
(n/k)1−1/β · ε−1 · log3(1/ε)

)
,

where the last equality follows since min
(
n/k, 2jβ

)
≤ (n/k)1−1/β ·

(
2jβ
)1/β

, for every j ≥ 1

(while using the fact that β ≥ 1). Note that log3(1/ε) ≤ polylog(n) since without loss of
generality we may assume that ε ≥ 1/n.

3.5.4 Efficient Verification for Special Context-Free Languages

As stated in Remark 3.16, in this section we show that for special context-free lan-
guages we can improve the running time of the verifier in Fig. 3.5 from poly(n, k, r) to
poly(log n, k, r). Specifically, we refer to context-free languages whose partial derivation
languages are themselves context-free languages (e.g., the Dyck language, see Proposi-
tion 3.20).

The crucial step in improving the verifier’s running-time is an efficient implementation
of Item 4d in Fig. 3.3. In the general case, this step can be implemented in time poly(n),
but we show that if the partial derivation languages are context-free languages, then we
obtain running time polylog(n).

Lemma 3.23. For every context-free language L over an alphabet Σ, there exist an
algorithm that given an integer n ∈ N, runs in time polylog(n) and accepts if and only if
L ∩ Σn 6= ∅.

Proof. Let G be a context-free grammar that accepts L, and let G′ be the context-free
grammar that is obtained from G by replacing all the terminal symbols in G by a single
terminal symbol, denoted 0. Note that L ∩ Σn 6= ∅ if and only if G′ accepts 0n.

124

3.5 Appendices for Chapter 3

Observe that the language L′ accepted by G′ is a unary context-free language. Gins-
burg and Rice [GR62] showed that such a language must be regular.

Proposition 3.24 ([GR62]). Every unary context-free language is regular.

Hence, there exists a finite-state automaton over the unary alphabet that accepts L′.
Such an automaton can be viewed as a directed graph with a single outgoing edge from
each node. Hence, the graph is a directed path (from the start node) of length a feeding
into a directed cycle of length b, and some of the nodes are accepting. Hence, the accepted
lengths have the form j + i · b, where j ∈ [a+ b− 1] and i ≥ 0.

The lemma follows by observing that an algorithm can easily check in polylog(n) time
if the given input n has the desired form, by checking if n − j is divisible by b, for the
specific set of j ∈ [a+ b− 1] that correspond to accepting nodes of the automaton.

125

126

Chapter 4

A Hierarchy Theorem for Interactive
Proofs of Proximity

4.1 Introduction

Interactive Proofs, introduced by Goldwasser at el. [GMR89] (and in their public-coin
form, by Babai and Moran [BM88]), are protocols in which a computationally unbounded
prover tries to convince a verifier that an input x belongs to a language L. A recent line of
work, initiated by Ergün, Kumar and Rubinfeld [EKR04] and more recently by Rothblum,
Vadhan and Wigderson [RVW13], considers a variant of interactive proofs in which the
verifier is required to run in sublinear time. Since the verifier does not have enough time
to even read its entire input, we cannot expect it to reject every false statement. Rather,
following the property testing literature [RS96, GGR98] (see also [Gol16]), we relax the
soundness condition and only require that the verifier reject inputs that are far from
the language (no matter what cheating strategy the prover uses). Since the verifier is
only assured that the input is close to the language, such interactive proofs are called
interactive proofs of proximity (IPPs). Indeed, IPPs may be thought of as the property
testing analogue of interactive proofs.

From an information theoretic perspective, the key parameters of an IPP are its query
complexity, communication complexity and round complexity. The query complexity is the
number of bits of the input string that the verifier reads. The communication complexity
is the number of bits exchanged between the prover and the verifier, and the round
complexity is the number of rounds of interaction. We think of all of these parameters as
being sublinear in the input length. Additional computational parameters that we aim to
minimize are the verifier’s running time (which should also be sublinear) and the prover’s
running time (which, ideally, should be proportional to the complexity of deciding the
language).

In this chapter we focus on the round complexity of IPPs, and on the relation between
the number of rounds and the other parameters. Specifically, we ask the following ques-
tion:

127

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Does the power of Interactive Proofs of Proximity grow with the number of rounds?

Understanding the round complexity of protocols is a central problem in the theory of
computation (most notably in complexity theory and cryptography). Some of the main
motivations for reducing round complexity are considerations such as network latency,
the need to stay online or to synchronize messages between the parties, and the overhead
involved in sending and receiving messages.

4.1.1 Our Results

Our main result answers the foregoing question by showing a hierarchy of IPPs: we show
that for a gap function g(r) = Θ(r2), and for every constant r ≥ 1, it holds that r-round
IPPs can be outperformed by g(r)-round IPPs, in the sense that the verifier in the latter
system is significantly more efficient. We prove our hierarchy theorem by constructing a
single explicit language for which the power of IPPs grows with the number of rounds.

Theorem 1 (Hierarchy theorem, informally stated (see Theorem 4.1)). There exists an
explicit language L such that for every constant r ≥ 1 and for inputs of length n:

1. There is an O(r2)-round IPP for L in which the verifier runs in time t = nO(1/r);
and

2. The verifier in any r-round IPP for L must run in time at least t′ = t100 (where
the constant 100 is arbitrary). Furthermore, either the communication complexity
or query complexity of the verifier must be at least t′.

Thus, we obtain a characterization (which is exact, up to the specific polynomial of the
gap function g) of the complexity of constant-round IPPs for the language L.

For simplicity, the statement in Theorem 1 is restricted to constant-round protocols.
However, the complexity of the IPP protocol in Theorem 1 actually reduces further as the
round complexity grows to be super-constant. In particular, we obtain a poly-logarithmic
round IPP for L with poly-logarithmic communication and query complexities, and an
ω(1)-round IPP with no(1) communication and query complexities. Together with the
lower bound in Theorem 1, these yield a separation between the power of constant-round
IPPs and super-constant round IPPs, and a sub-exponential separation with respect to
poly-logarithmic round IPPs.

Theorem 2 (Constant Round versus General IPPs). There exists a language L that has
a polylog(n)-round IPP with a polylog(n) time verifier and an ω(1)-round IPP with no(1)

time verifier, but for every constant r ≥ 1, the verifier in any r-round IPP for L must
run in time at least nΩ(1/r).

Prior to this work, only a separation between the power of MAPs (which are non-
interactive IPPs, i.e., the entire “interaction” consists of a single message) and IPPs was
known [GR13b].

128

4.1 Introduction

We remark that Theorems 1 and 2, and their proofs, shed new light also on standard
interactive proofs (in which the verifier is given direct access to the input and can run in
polynomial time). We proceed to discuss such implications.

Optimality of the Babai-Moran Round Reduction. Following Vadhan [Vad00],
we consider black-box transformations on interactive proofs, which are transformations
that take prover and verifier strategies (P ,V), for an interactive-proof for some language
L, and output new strategies (P ′,V ′), for the same language L, such that new prover
and verifier strategies can only make oracle calls to the original strategies (P ,V). More
specifically, the new verifier V ′ is only allowed to make oracle calls to V (and in particular
does not have direct access to the input) and P ′ may make oracle calls to both V and P .1

As pointed out by Vadhan, many (but not all) of the known transformations on inter-
active proofs from the literature are in fact black-box. We focus on such a transformation,
due to Babai and Moran [BM88], for reducing the number of rounds of interaction in
public-coin interactive proofs. Using our hierarchy theorem, we show that the overhead
incurred by the round reduction transformation of [BM88] is close to optimal among all
black-box transformations.

Algebrization of Interactive Proofs. As our second application, we show a connec-
tion between our hierarchy theorem and the algebrization framework of Aaronson and
Wigderson [AW09]. This framework, which is an extension of the relatization framework
of Baker, Gill, and Solovay [BGS75], is viewed as a barrier to proving complexity-theoretic
lower bounds using currently known proof techniques. Loosely speaking, [AW09] show
that almost all known complexity theoretic results “algebrize” (i.e., fall within their
framework), whereas making progress on some of our most fundamental questions (such
as P 6= NP) requires non-algebrizing techniques.

Using our hierarchy theorem for IPPs, we show that any proof of the complexity class
inclusion #P ⊆ AM (which is widely disbelieved, and in particular implies the collapse
of the polynomial hierarchy) must make use of non-algebrizing techniques, and therefore
must introduce a fundamentally different proof technique. A conceptual connection be-
tween our results and interactive proofs in the algebrization framework is further discussed
in Section 4.1.3 and elaborated on in Section 4.5.

4.1.2 Technical Overview

Loosely speaking, the language for which we prove the round hierarchy theorem consists

of error-correcting encodings of strings x ∈ {0, 1}k whose Hamming weight wt(x)
def
=∑

i∈[k] xi, is divisible by 3 (i.e., wt(x) = 0 (mod 3)).

The specific encoding that we use is the low degree extension code LDE : Fk → Fn, over

1One could also restrict P ′ to make only oracle calls to P (and not to V as we do). However, giving P ′
more freedom only makes our results stronger (since we rule out the broader class of transformations).

129

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

a field F that is an extension field of GF(2).2 Indeed, it is crucial that the characteristic of
F is different than the modulus 3. The parameter k (which specifies the message length) is
the same as in the preceding paragraph, where we view {0, 1}k as a subset of the message
space Fk.

Before proceeding, we note that throughout this chapter we use the standard conven-
tion that codes map messages of length k to codewords of length n = poly(k). In partic-
ular, this will mean that inputs to IPPs, which will typically refer to (possibly corrupt)
codewords, have length n, whereas inputs to other types of protocols and sub-routines,
may refer to the underlying messages, which have length k.

Recall that the LDE code is parameterized by a finite field F, a subset of the field
H ⊆ F and a dimension m. To encode a message x ∈ {0, 1}k, where k = |H|m, we view
the message as a function x : Hm → {0, 1} (by associating [k] with Hm) and consider
the unique individual degree |H| − 1 polynomial P : Fm → F that agrees with x on Hm.
We denote this polynomial by P = LDEF,H,m(x). For the time being, the sizes of |F|, |H|
and m should all be thought of as at most poly-logarithmic in n. (See Section 4.2.3 for
additional details about the LDE encoding.)

Thus, the language for which we prove our round hierarchy, which we denote by
Enc-MOD3, consists of all polynomials P : Fm → F of individual degree |H| − 1 that
obtain Boolean values in the subcube Hm, such that these Boolean values sum up to 0
(mod 3). That is, all polynomials P such that P |Hm : Hm → {0, 1} and

∑
z∈Hm P (z) ≡ 0

(mod 3).
We prove our hierarchy theorem by showing that for every constant r ≥ 1, the lan-

guage Enc-MOD3 has an O(r2)-round IPP in which the verifier runs in time roughly
nO(1/r), and that the verifier in any r-round IPP for Enc-MOD3 must run in time at least
nΩ(1/r), where the constant in the Ω-notation can be made arbitrarily larger than the
constant in the O-notation. In Section 4.1.2.1 we give an overview of the upper bound,
which is technically more involved, and then, in Section 4.1.2.2 we give an overview of
the lower bound.

4.1.2.1 Upper Bound

Our goal is to construct an IPP in which the verifier is given oracle access to a function
f : Fm → F and needs to verify that f is close to a polynomial of individual degree |H|−1
that obtains only Boolean values in Hm such that their sum modulo 3, over the subcube
Hm, is 0. The verifier may interact with the prover for O(r2) rounds.

As its initial step, our verifier checks that the given input f is close to some low
degree polynomial by invoking the low degree test. This test, introduced by Rubinfeld
and Sudan [RS96], ensures that if f is far from every low degree polynomial, then the
verifier will reject with high probability. Thus, we can assume that f is close to some
low degree polynomial. Moreover, using the self-correction property of polynomials, this
means that with a small overhead, we can treat f as though it were itself a low degree

2We remark that a similar result could be obtained if we replaced the modulus 3 and the field’s
characteristic by any two distinct and constant-sized primes.

130

4.1 Introduction

polynomial (rather than just being close).3

Given this initial step, we can now assume without loss of generality that the function
f : Fm → F is in fact a low degree polynomial. However, the verifier still needs to
check that

∑
z∈Hm f(z) = 0 (mod 3) and that f |Hm : Hm → {0, 1}. For now though,

let us focus on the former task, which is the main step in our proof: checking that∑
z∈Hm f(z) = 0 (mod 3) (and we just assume that f |Hm : Hm → {0, 1}).
Viewing f |Hm as a string x ∈ {0, 1}k, we need to construct an interactive proof in

which the verifier uses oracle access to LDE(x) to verify that wt(x) = 0 (mod 3) in
sublinear time. We refer to this type of proof-system, in which the verifier is given oracle
access to an encoding of the input and runs in sublinear time, as a holographic4 interactive
proof (HIP).

More precisely, we say that a language has an HIP, with respect to some error-
correcting code C, if it has an interactive proof in which the verifier has oracle access
to an encoding under C of the input and verifies membership in the language using few
queries to this encoding. The redundant representation of the input often allows the
verifier to run in sub-linear time. We remark that HIPs play a central role in this chapter
and we discuss them more in Section 4.1.3.

Thus, our task is now to construct an HIP (with respect to the LDE code) for the
language

LMOD3
def
=
{
x ∈ {0, 1}k : wt(x) = 0 (mod 3)

}
.

Before describing the construction of an HIP for LMOD3, it will be instructive to consider
as a warm-up, the construction of an HIP for the related language LMOD2 = {x ∈ {0, 1}k :
wt(x) = 0 (mod 2)}, where the important distinction is that the modulus 2 is also the
characteristic of the field F under which x is encoded.

In this warmup case, we assume that the verifier is given oracle access to a polynomial
f : Fm → F that obtains Boolean values in Hm (i.e. f |Hm : Hm → {0, 1}), and needs to
check that

∑
z∈Hm f(z) = 0, where the sum is over GF(2). Importantly, since we assumed

that f |Hm is Boolean valued, and that the field F has characteristic 2, we can instead
take the sum over the field F (rather than taking the integer sum mod 2).

The latter problem, of checking whether the sum of a given input polynomial is 0
over a subcube of its domain (i.e., over Hm), has a well-known interactive proof due to
Lund et al. [LFKN92], which is often referred to as the sumcheck protocol. In this protocol
the verifier only needs to query the polynomial f at a single point and so it can be viewed
as an HIP. Furthermore, there are known variants of the sumcheck protocol that offer a
suitable tradeoff between the number of rounds and verifier’s complexity, which suffice
for our purposes (i.e., an r-round IPP with verification time roughly n1/r).

3Loosely speaking, the self-correction property of polynomials says that if f is guaranteed to be close
to a low degree polynomial P , then one can read values from P by only making few queries to f . See
Lemma 4.23 for the precise statement.

4The terminology of “holographic” interactive proofs originates from the “holographic proofs” of
Babai et al. [BFLS91], which refers to probabilistic proof systems for encoded inputs. The notion of HIP,
and its relation to other notions, is further discussed in Section 4.1.3.

131

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

The aforementioned variants of the sumcheck protocol suffice for an upper bound for
the warmup case. However, we do not know how to prove a corresponding lower bound,
which is the reason that we set the modulus in our construction to be different from the
field’s characteristic.5 While the original language LMOD3 allows us to prove the desired
lower bound, unfortunately it makes obtaining an upper bound more challenging. We
proceed to the actual problem at hand: constructing an HIP (with respect to the LDE
code over a field of characteristic 2) for checking LMOD3.

Since the modulus and characteristic are different, our task can no longer be expressed
as a linear constraint (over F) on the bits of x. Since we do not know how to solve this
problem directly using the sumcheck protocol, we turn to more complex interactive proofs
from the literature. Specifically, our starting point will be the interactive proof-system
of Goldwasser, Kalai and Rothblum [GKR08].6

The [GKR08] Protocol. Goldwasser et al. give an interactive proof for any language
computable by a logspace-uniform circuit of size S and depth D such that the number
of rounds in their protocol is D · polylog(S), the communication is also D · polylog(S),
and the verifier runs in time (n + D) · polylog(S). Their protocol is based on algebraic
techniques and, in particular, uses ideas originating from the interactive proof and PCP
literature (cf., [Sud92]). Our HIP for MOD3 will be based on a variant of their proof
system.

Observe that one can check whether a given string x’s Hamming weight is divisible
by 3 using a highly uniform logarithmic-depth formula.7 Thus, applying the [GKR08]
result gives us an interactive proof for LMOD3. Most importantly for our purposes, if the
[GKR08] verifier is given oracle access to the LDE encoding of the input, then it only
needs to check a single (random) element from the encoding (and in particular runs in
sublinear time). In other words, the [GKR08] protocol can be thought of as an HIP with
sublinear time verification.8 While the [GKR08] protocol does yield an HIP for LMOD3, its
round complexity is poly-logarithmic and therefore too large for our purposes (recall that
we are aiming for constant round protocols). The large round complexity is due to the
fact that the high-level strategy in the [GKR08] protocol is to process the circuit layer
by layer, where the transition between each two consecutive layers uses an interactive
protocol, which itself is based on the sumcheck protocol.

Even if we were to use a constant-round variant of the sumcheck protocol for each
transition, the [GKR08] protocol still uses Ω(D) rounds, where D is the depth of the

5We conjecture that for the warmup case (i.e., when the modulus is 2) a lower bound that (roughly)
corresponds to the upper bound given by the sumcheck protocol does hold.

6In Section 4.6.1.1 we discuss our reason for basing our protocol on the [GKR08] proof-system, rather
than other general purpose interactive proof-systems from the literature.

7E.g., consider the log(k)-depth full binary tree with the input bits at its leaves, in which each internal
vertex computes the sum modulo 3 of its two children, where each such modulo 3 sum can be computed
by a simple constant size gadget composed of AND, OR and NOT gates.

8Note that obtaining an interactive-proof for LMOD3 with a linear-time verifier is trivial, since the
verifier can decide membership by itself in linear-time. The key benefit that we get from using the
[GKR08] protocol is that it allows for sublinear time verification given access to an encoded input.

132

4.1 Introduction

circuit, which in our case is logarithmic and therefore too large. To get around this, we
rely on an unpublished observation, due to Kalai and Rothblum [KR09], which shows that
for every constant r ≥ 1, if the circuit satisfies an extreme (and somewhat unnatural)
uniformity condition9, then log(n)/r layers can be processed at once, using r rounds of
interaction and roughly n1/r communication. Thus, overall, a logarithmic depth circuit
can processed in O(r2) rounds. Using this observation, [KR09] obtain constant-round
interactive-proofs for all languages in NC1 that satisfy the aforementioned uniformity
condition.10

In our actual construction we do not use the [KR09] protocol directly (even though
the language LMOD3 satisfies the desired uniformity), but rather give a special purpose
protocol tailored for LMOD3 (which is inspired by their techniques). Doing so allows us to
avoid stating their somewhat cumbersome uniformity condition and to introduce other
simplifications (due to the simple and regular structure of the formula for LMOD3). We
proceed to describe this HIP.

A Holographic Interactive Proof for LMOD3. Recall that we are given oracle access
to a polynomial X : Fm → F promised to be the low-degree extension of a Boolean
assignment x ∈ {0, 1}k, and our goal is to construct an O(r2)-round HIP for verifying
whether x ∈ LMOD3. Also recall that we have fixed the parameters of the LDE code,
including a field F, a subset H ⊆ F, and a dimension m such that |Hm| = k. However,
for now we think of the sizes of these parameters as being |H| = k1/r, m = r, and
|F| = poly(|H|,m), rather than |H| being poly-logarithmic in k.11

For a given input polynomial X : Fm → F (of individual degree |H| − 1), we define
a sequence of polynomials V0, . . . , Vr, where each Vi : Fi → F has individual degree
|H|−1 (note that these polynomials have gradually increasing domains). The polynomial
Vr : Fr → F is defined as Vr ≡ X. The polynomials V1, . . . , Vr−1 are each defined to be
the (unique) individual degree |H| − 1 polynomial that satisfies the following recursive

9Loosely speaking, the uniformity condition requires that it be possible to compute low degree exten-
sions of gate indicator functions that refer to gates of fan-in t = nO(1/r). That is, we view the formula as
a depth r circuit consisting of gates of fan-in t = nO(1/r) (by grouping together every log(n)/r consecutive
layers). For each of these r layers, and every type of fan-in t gate g : {0, 1}t → {0, 1} that appears in
that layer, we consider a gate indicator function Ig that given as input indices of t+ 1 wires, outputs 1 if
the first wire is the result of an application of g to the other t wires. The [KR09] uniformity requirement
is that it be possible to efficiently compute the low degree extension of Ig.

10Recall that the class NCi consists of languages computable by polynomial-size O
(
(log n)i

)
-depth

circuits with fan-in 2. We emphasize that the [KR09] result gives constant-round protocols only for NC1

circuits (that are sufficiently uniform), whereas the [GKR08] result gives protocol with a poly-logarithmic
round complexity for all (logspace uniform) languages in NC = ∪k∈NNCk. (Furthermore, the [GKR08]
protocol for NC has poly-logarithmic communication complexity whereas the [KR09] protocol has n1/O(1)

communication.)
11We remark that setting |H| = k1/r is actually problematic for us since it induces a dependence

between the language Enc-MOD3 and the desired round complexity r. Nevertheless, it does yield a
weaker hierarchy theorem in which we use a different language for each value of r. At the end of
Section 4.1.2.1 we discuss how we overcome this difficulty.

133

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

relation:

∀i ∈ [r], ∀h ∈ H i−1, Vi−1(h) =
∑
α∈H

Vi(h, α) (mod 3), (4.1)

where the arithmetic is over the integers (modulo 3). Indeed, V0 ∈ F is defined as a single
field element V0 =

∑
α∈H V1(α) (mod 3). Note that we identify the integers {0, 1, 2} with

three distinct elements in F. Indeed, each of the Vi polynomials takes values in the set
{0, 1, 2} ⊆ F over the subcube H i.

Taking the [GKR08, KR09] view, each polynomial Vi : Fi → F can be thought of as
the low degree extension of the ith-layer (counting from the output layer) in a depth r
formula of fan-in k1/r for LMOD3 such that each gate computes the sum modulo 3 of its
k1/r children. In particular,

V0 =
∑
α∈H

V1(α) = · · · =
∑
h∈Hi

Vi(h) = · · · =
∑
h∈Hr

Vr(h) = wt(x) (mod 3).

Our main step is an interactive protocol that reduces a claim about an (arbitrary)
single point in the polynomial Vi−1 to a claim about a single (random) point in Vi. By
applying this interactive reduction r times, we can reduce the initial claim V0 = 0 to
a claim about a single point in Vr, which we can explicitly check (since we have oracle
access to Vr ≡ X). Each interactive reduction will take O(r) rounds so overall we get an
HIP for LMOD3 with O(r2) rounds.

Towards showing such an interactive reduction protocol, we would like to express
Eq. (4.1), which is a modular equation over the integers, as a low degree relation over the

field F. Let t
def
= |H| = k1/r, and let ξ1, . . . , ξt be the enumeration of all elements in H.

Define the polynomial M̃OD3 : Ft → F as the (unique) individual degree two polynomial

such that for every z ∈ {0, 1, 2}t, it holds that M̃OD3(z) =
∑

j∈[t] zi (mod 3), where the

tilde in the notation is meant to remind us that M̃OD3 is not the modulo 3 summation
function but rather its low degree extension over F. Eq. (4.1) can now be re-stated as:

∀i ∈ [r], ∀h ∈ H i−1, Vi−1(h) = M̃OD3
(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
(4.2)

(where we use the fact that the Vi polynomials take values in {0, 1, 2} over H i.)

Observe that Eq. (4.2) is a polynomial relation between Vi−1 and Vi that holds for
inputs in H i−1. We would like to obtain a similar relation for general inputs (i.e., in
Fi−1). To do so, we observe that, for every z ∈ Fi−1, we can express Vi−1(z) as an
F-linear combination of the values {Vi−1(h)}h∈Hi−1 (this follows directly from the fact
that the low degree extension is a linear code). We denote the coefficients in this linear
combination by {βz(h)}h∈Hi−1 (these coefficients arise from Lagrange interpolation, but
we ignore the specifics for this overview). Combining this observation together with

134

4.1 Introduction

Eq. (4.2) we obtain:

∀i ∈ [r], ∀z ∈ Fi−1, Vi−1(z) =
∑

h∈Hi−1

βz(h) · Vi−1(h)

=
∑

h∈Hi−1

βz(h) · M̃OD3
(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
. (4.3)

Using Eq. (4.3) we will describe an interactive reduction from a claim about Vi−1

to a claim about Vi. Suppose that our interactive reduction starts with a claim that
Vi−1(zi−1) = νi−1 for some zi−1 ∈ Fi−1 and νi−1 ∈ F. By Eq. (4.3) this translates into the
claim:

νi−1 =
∑

h∈Hi−1

βzi−1
(h) · M̃OD3

(
Vi(h, ξ1), . . . , Vi(h, ξt)

)
. (4.4)

We now observe that Qi(w)
def
= βzi−1

(w) · M̃OD3
(
Vi(w, ξ1), . . . , Vi(w, ξt)

)
is a low degree

polynomial over F (since βzi−1
, M̃OD3, and Vi have low degree). Thus, the claim in

Eq. (4.4) refers to the sum of a low degree polynomial over a subcube, which is precisely
the problem that the sumcheck protocol solves.

It seems that we are done, except that a problem arises. In the sumcheck protocol
the verifier is given oracle access to the polynomial whose sum over a subcube we wish
to check. Although the polynomial Qi on which we wish to run the sumcheck protocol is
well-defined, our verifier does not have oracle access to it. Therefore it is not immediately
clear how we can hope to run the sumcheck protocol with respect to Qi.

We resolve this problem by noting that the sumcheck protocol can be used in an
input-oblivious manner. In this variant, the verifier does not need to have oracle access
to Qi, but rather than accepting or rejecting, the verifier outputs a claim of the form
Qi(wi−1) = γi−1, for some point wi−1 ∈ Fi−1 and value γi−1 ∈ F. Completeness means
that if the original claim is true (i.e.,

∑
h∈Hi−1 Qi(h) = νi−1), then the verifier always

outputs (wi−1, γi−1) such that Qi(wi−1) = γi−1, and soundness means that if the original
claim is false (i.e.,

∑
h∈Hi−1 Qi(h) 6= νi−1), then for any cheating prover strategy, with

high probability Qi(wi−1) 6= γi−1 (or the verifier rejects during the interaction). We stress
that in this variant the verifier makes no queries to Qi.

12 As for the number of rounds,
recall that in the sumcheck protocol in each iteration one of the variables is “stripped”
from the summation, which leads to a total of i− 1 ≤ r rounds.

Having run the input-oblivious variant of the sumcheck protocool, our verifier is now
left with the claim Qi(wi−1) = γi−1. However, to obtain our interactive reduction, we still
need to reduce the foregoing claim to a claim about a (single) point in the polynomial
Vi. To do so, the first idea that comes to mind is to have the prover provide the values
µj = Vi(wi−1, ξj), for every j ∈ [t]. Given these values, the verifier can explicitly check

12To see that this variant is possible, observe that in the classical sumcheck protocol [LFKN92], the
verifier only queries the polynomial at a single point and (at the end of the interaction) checks that it is
equal to a particular value.

135

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

that indeed γi−1 = βzi−1
(wi−1) · M̃OD3(µ1, . . . , µt).

13 If the prover indeed sent the correct
values, then this last check assures us that indeed Qi(wi−1) = γi−1. However, since we
cannot assume that the prover sent the correct values, we are left with t claim of the
form Vi(wi−1, ξj) = µj, which the verifier needs to check.

Notice that we have actually reduced a single claim about Vi−1 to t claims about Vi.
This still falls short of our goal which was to reduce to only a single claim about Vi.
(Indeed, we cannot afford to increase the number of claims by a t factor in each iteration,
since this would yield a protocol with complexity tr = k, which is trivial).

The final observation is that the points {(wi−1, α)}α∈H lie on the (axis parallel) line
(wi−1, ∗). Note that the restriction of a low degree polynomial to an axis parallel line is
a low degree (univariate) polynomial. Thus, we will have the prover specify the entire
polynomial Pi : F→ F defined as Pi(α) = Vi(wi−1, α), for every α ∈ F. The verifier checks

that γi−1 = βzi−1
(wi−1) · M̃OD3 (Pi(ξ1), . . . , Pi(ξt)). The point is that now if the prover

supplies an incorrect values for some Pi(α) (i.e., Pi(α) 6= Vi(wi−1, α)), since both Pi and
Vi(wi−1, ∗) are low degree polynomials, for most ρ ∈ F it holds that Pi(ρ) 6= Vi(w, ρ).
Thus, the verifier chooses at random ρi ∈ F and sets the claim for the next iteration to
be Vi(zi) = νi, where zi = (wi−1, ρi) and νi = Pi(ρi).

14

To summarize, our HIP for LMOD3 works in r phases. In the ith phase we reduce a claim
of the form Vi−1(zi−1) = νi−1, for some point zi−1 ∈ Fi−1 and value νi−1 ∈ F, into a claim
Vi(zi) = νi, for zi ∈ Fi and νi ∈ F (which are generated during the interactive reduction).
In particular, the first iteration begins with the claim V0 = 0 (i.e., z0 is the empty string
and ν0 = 0), which corresponds to the claim that x ∈ LMOD3 (i.e., wt(x) = 0 (mod 3)).
Thus, the ith phase in our HIP begins with the claim Vi−1(zi−1) = νi−1. In the ith phase,
first the prover and verifier engage in the sumcheck protocol that arises from Eq. (4.4).
This yields the claim Qi(wi−1) = γi−1, for a point wi−1 ∈ Fi−1 and value γi−1 ∈ F
(generated by the sumcheck protocol). Since the verifier has no access to Qi, it asks the
prover to send the polynomial Pi : F → F defined as Pi(α) = Vi(wi−1, α). The verifier
checks that the values of this polynomial are consistent with the claim Qi(wi−1) = γi−1,
and then selects a random point ρi ∈ F. The claim for the following phase is that
Vi(zi) = νi, where zi = (wi−1, ρi) and νi = Pi(ρi). After r such phases we are left with the
claim Vr(zr) = νr, for zr ∈ Fr and νr ∈ F, which the verifier can explicitly check (since it
has oracle access to Vr ≡ X).

The total number of rounds per interactive reduction is O(r), and the communication
complexity is roughly poly(t, r) = poly(r, k1/r). Since we invoke r such reductions, overall
we obtain an HIP for LMOD3 with round complexity O(r2) and communication complexity
poly(r, k1/r).

13Note that both βzi−1
and M̃OD3 are explicit functions that the verifier can compute. Moreover they

can even be computed efficiently using standard techniques, see the technical sections for details.
14We remark that this final step is actually very reminiscent of an individual round of the sumcheck

protocol.

136

4.1 Introduction

Obtaining an HIP over a Small Field. The approach outlined above yields an r2-
round HIP for LMOD3, with respect to the code LDEF,H,m, in which the field size |F| is
quite large (i.e., |F| ≥ k1/r) and in particular depends on the value of r. Unfortunately,
when we transform this HIP into an IPP for the language Enc-MOD3, the dependence

of the field size on r in the HIP introduces a dependence of the language Enc-MOD3
def
=

{C(x) : x ∈ {0, 1}k with wt(x) = 0 (mod 3)} on r. This dependence results in a weaker
hierarchy theorem, in which we use a different language for each value of r . Our goal
however is to obtain a single language, for which we can show an r-round IPP for every
value of r (with a corresponding lower bound, which will be discussed in Section 4.1.2.2).

To this end we show a general reduction that transforms any HIP over a large field F
into an HIP over a much smaller field F′, as long as F is an extension field of F′. We do
so by showing that any F-linear claim regarding the input (e.g., a claim about a single
point in the LDEF,H,m encoding) can be broken down (coordinate-wise) into d claims that
are F′-linear, where d = log(|F|/|F′|) is the degree of the field extension (i.e., (F′)d is
isomorphic to F). We can then easily verify each one of these F′-linear claims using the
sumcheck protocol over the smaller field F′. We remark that the ability to switch fields
when using (holographic) interactive proofs seems like a useful tool, and we believe that
it will be useful in other contexts as well.

Checking Booleanity. In the above analysis we assumed for simplicity that the input
x = f |Hm is Boolean valued. In order to actually check this, we follow an idea of Kalai
and Raz [KR08] (which was used in the context of constructing interactive PCPs). We
observe that the polynomial f : Fm → F is Boolean valued in a subcube Hm if and only
if the (slightly higher degree) polynomial g : Fm → F, defined as g(z) = f(z) · (1− f(z))
is identically 0 in Hm. The latter problem (of checking whether a polynomial vanishes
on a particular subcube) can be solved via a relatively simple reduction to the sumcheck
protocol, that has been used in the construction of PCPs.15 We note that we crucially
use fact that the reduction from f to g is local (i.e., the value of g at a point depends on
the value of f at O(1) points), and therefore can be used in our setting.

4.1.2.2 Lower Bound

We need to show a lower bound on the complexity of r-round IPPs for our language
Enc-MOD3 = {C(x) : x ∈ {0, 1}k with wt(x) = 0 (mod 3)}, where C : Fk → Fn is
the low degree extension code. Our lower bound will strongly use the fact that any F-
linear code (and in particular the low degree extension code that we use), for a field F of
characteristic 2, is also a GF(2)-linear code.

Our lower bound relies on a connection between IPPs and low-depth circuits, which

15In a nutshell, to check whether g|Hm ≡ 0 we consider the restriction of g to the domain Hm and
take the low degree extension ĝ of that partial function. We observe that g is identically 0 in Hm if and
only if ĝ is identically 0 in Fm. Thus, it suffices to check whether for a random point z ∈ Fm, which the
verifier chooses, it holds that ĝ(z) = 0. The linearity of the LDE code now means that this check can be
solved by invoking the sumcheck protocol. See Section 4.3.4 for details.

137

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

was discovered by Rothblum, Vadhan and Wigderson [RVW13]. Following their approach,
in Section 4.4.3 we show that to prove an IPP lower bound for Enc-MOD3, it suffices to
construct two distributions D0 and D1 over n-bit strings such that:

1. D0 is distributed over the support of Enc-MOD3 (with high probability);

2. D1 is far from Enc-MOD3 (with high probability); and

3. Every sufficiently small DNF formula cannot distinguish between inputs from D0

and D1 (with more than, say, 0.1 advantage).

The two distributions that we consider are D0 and D1 such that Db is uniform over
the set {C(x) : x ∈ {0, 1}k and wt(x) = b (mod 3)}. Note that D0 is the uniform
distribution over Enc-MOD3, and so satisfies requirement (1), whereas the fact that D1

satisfies requirement (2) follows from the distance of the code C. To show that the third
requirement holds, consider a DNF φ that distinguishes between D0 and D1. We show
that the size of φ must be large. Consider the distributions D′0 and D′1 over k-bit strings
defined as

D′b = {x ∈ {0, 1}k : wt(x) = b (mod 3)}.

We can easily construct from φ a circuit φ′ that distinguishes between D′0 and D′1:
the circuit φ′ first computes the encoding C(x) of its input x ∈ {0, 1}k, and then applies
the DNF φ to the result. Using the fact that C is linear over GF(2), it follows that φ′ is a
DNF of parities (i.e., a depth-3 formula with an OR gate at the top layer, AND gates at
the middle layer, and XOR gates at the bottom layer). Now, we can apply the Razborov-
Smolensky [RS96] lower bound, which shows that any small AC0[2] circuit (i.e., circuits of
constant-depth circuits with AND, OR, and PARITY gates of unbounded fan-in), and in
particular a DNF of parities, cannot even approximate the summation modulo 3 function
(i.e., distinguish between D′0 and D′1).

4.1.3 Holographic Interactive Proofs

The proof of our hierarchy theorem utilizes a special type of interactive proofs, which we
call holographic interactive proofs. A holographic interactive proof (HIP) is an interactive
proof in which, instead of getting its input x explicitly, the verifier is given oracle access
to C(x), an error-corrected encoding of the input x, for a bounded number of queries.
Hence, HIPs may be thought of as interactive proofs for promise problems of the form
(ΠYES,ΠNO) with ΠYES = {C(x) : x ∈ L} and ΠNO = {C(x) : x 6∈ L}.

The notion of HIP was used, either implicitly or explicitly as a technical tool that un-
derlies many probabilistic proof systems (e.g., [LFKN92, BFL91, BFLS91, KR08, GKR08,
KRR13, RVW13, GR13b, KRR14, RRR16, GG16a]).16 These works demonstrate that,
by using the redundant encoding of the input, we can often achieve sublinear verification
time. (As a matter of fact, in most of these works, it suffices for the verifier to read just
a single point in the encoding.) We remark that throughout this chapter (as well as in

16The first explicit use is in [BFLS91].

138

4.1 Introduction

most previous works17), the specific code that is used is the low-degree extension code
(LDE).

Some of the techniques that were outlined in Section 4.1.2.1, can be viewed as generic
transformations on HIPs (with respect to the LDE code), and we present them as such in
the technical parts of this chapter. These techniques include the ability to switch fields,
or check Booleanity, and the connection to IPPs. We wish to highlight the conceptual
importance of HIPs, and advocate a continued systematic study of these proof systems.

We also remark that HIPs with respect to the LDE code are closely related to in-
teractive proofs in the algebrization framework [AW09]. In both models the verifier is
given oracle access to a low degree polynomial and may interact with the prover to de-
cide on some property of the “message” or “oracle” encoded within the polynomial. See
Section 4.5 for further discussion of this connection.

4.1.4 Related Works

In this section, we discuss several lines of works that are related to our work.

Interactive Proofs of Proximity. The notion of interactive proofs of proximity (IPP)
was first considered by Ergün, Kumar and Rubinfeld [EKR04]. Its study was re-initiated
by Rothblum, Vadhan and Wigderson [RVW13], who showed that every language com-
putable by a low-depth circuit has an IPP with a sublinear time verifier. IPPs were
further studied by [GGR15, GG16a] who showed more efficient IPPs for certain restricted
complexity classes. Other works have focusing on variants such as non-interactive (MA)
proofs of proximity [GR13b, FGL14, GGK15] and interactive arguments of proximity
[KR15]. Proofs of proximity have also found applications to property testing and related
models [GR13a, GR14, FLV15].

Hierarchy Theorems for Standard Interactive Proofs. Aiello, Goldwasser and
H̊astad [AGH90] showed a round hierarchy theorem in a relativized world (i.e., with re-
spect to an oracle). However, the later results of [LFKN92, Sha92], which are based
on non-relativizing techniques, demonstrate that relativization is not an actual barrier,
especially in the context of interactive proofs.18 We note that although they are techni-
cally quite different, both our lower bound and the lower bound of [AGH90] are based on
circuit lower bounds for low depth circuits.

Goldreich, Vadhan and Wigderson [GVW02] showed a conditional round hierarchy
result for standard interactive proofs, based on the assumption that co-SAT does not

17A notable exception is the work of Meir [Mei13], which is based on general tensor codes. We remark
that using Meir’s techniques it may be possible to extend our results to other tensor codes. We leave
exploring this possibility to future work.

18Indeed, Fortnow and Sipser [FS88] show that the proof of IP = PSPACE cannot be relativized (in
fact, IP does not even contain coNP relative to a random oracle [CCG+94]). In fact, the algebrization
framework of Aaronson and Wigderson [AW09] was proposed precisely to address this issue. Connections
between our results and algebrization are further discussed in Section 4.5.

139

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

have a 1-round AM proof-system with complexity 2o(n).19 We emphasize that the result
of [GVW02] is based on an unproven and arguably strong (yet believable) assumption,
whereas our result is unconditional.

We also note that for computationally sound proofs, also known as arguments, un-
der reasonable cryptographic assumptions there are extremely efficient 2-round protocols
[Kil92] and even 1-round protocols [KRR14]. In particular, these results show that the
power of arguments does not scale with additional rounds (since a fixed constant number
of rounds suffice). A similar statement holds for arguments of proximity that are the
computationally sound variant of IPPs (see [RVW13, KR15]).

Interactive PCPs. Holographic interactive proofs (HIPs) are closely related to the
notion of interactive PCPs, introduced by Kalai and Raz [KR08]. Roughly speaking,
interactive-PCPs are encodings of NP-witnesses that, like PCPs can be verified using few
queries, but here the verification procedure may use interaction with an unbounded (and
untrusted) prover. Thus, using our terminology, an interactive PCP can be thought of as
an HIP for checking the NP witness relation.

Arthur-Merlin Query Complexity. Every IPP for a language L can be viewed as
a protocol, for a promise problem related to L, in the Arthur Merlin query complexity
model, previously studied by Raz et al. [RTVV98]. This model, similarly to IPPs, con-
siders a sub-linear time verifier, that is given oracle access to an input and may interact
with an (untrusted) prover. Indeed, one may view IPPs as Arthur Merlin query com-
plexity protocols which focus on promise problems in which the goal of the verifier is to
distinguish between inputs having a certain property from those that are far from having
the property.

Thus, our main result directly yields a round hierarchy theorem (for a promise prob-
lem) in the Arthur-Merlin Query Complexity model and a sub-exponential separation
between the complexity of constant-round vs. general (i.e., unbounded round) Arthur-
Merlin Query Complexity protocols.

Interactive Proofs in Other Models. Interactive proof systems were studied also in
the communication complexity setting (e.g., [BFS86, Kla11, She12, GPW15b, GPW15a]).
Here Alice and Bob may interact with an untrusted Merlin, who sees both of their inputs.
We remark that showing any non-trivial explicit lower bound in the AM variant of this
model, much less a hierarchy of separations, is a notorious open problem.

A recent line of works has studied interactive proofs in the data streaming model (e.g.,
[CCM09, CMT12, CMT13, GR15b, CCGT14, Tha16, DTV15]). Most relevant is a result
of Chakrabarti et al. [CCM+15], who show a hierarchy theorem for the first four levels in
the model of online interactive proofs (with exponential separations between these four
levels).

19Related assumptions have recently been studied also by Carmosino et al. [CGI+16] and
Williams [Wil16].

140

4.2 Preliminaries

Universal Locally Verifiable Codes. In a recent work, Goldreich and Gur [GG16b]
introduced the notion of universal locally verifiable codes (universal-LVC), which is closely
related to holographic interactive proofs. A universal-LVC C : {0, 1}k → {0, 1}n for a
family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

is a code such that for every i ∈ [M],

membership in the subcode {C(x) : fi(x) = 1} can be verified locally given an explicit
access to a short (sublinear length) proof; put differently, for every i ∈ [M] there exists a
1-message IPP for the property {C(x) : fi(x) = 1}, with sublinear communication and
query complexity.

Organization

In Section 7.2 we define IPPs and introduce some notations and definitions that we use
throughout this chapter. In Section 4.3 we define holographic interactive proofs (HIPs)
and prove some general results on them. In Section 4.4, using some of the results of Sec-
tion 4.3, we prove the hierarchy theorem. Lastly, in Section 4.5 we discuss the implications
to classical complexity theory.

Some of the discussion and proofs are deferred to the appendix. In Section 4.6.1.2 we
discuss an alternative language for the round hierarchy theorem and our choice of basing
our protocol on [GKR08] rather than, say a recent protocol of Reingold et al. [RRR16].
Sections 4.6.2 to 4.6.4 contain some standard proofs that are included for completeness.

4.2 Preliminaries

We begin with some standard notations:

• We denote the relative distance, over alphabet Σ, between two strings x ∈ Σn and y ∈
Σn by ∆REL (()x, y)

def
= |{xi 6=yi : i∈[n]}|

n
. If ∆REL (()x, y) ≤ ε, we say that x is ε-close

to y, and otherwise we say that x is ε-far from y. Similarly, we denote the relative

distance of x from a non-empty set S ⊆ Σn by ∆REL (()x, S)
def
= miny∈S ∆REL (()x, y).

If ∆REL (()x, S) ≤ ε, we say that x is ε-close to S, and otherwise we say that x is
ε-far from S.

• We denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n] by x|I and,
for i ∈ [n], write xi = x|{I} to denote the projection to a singleton.

An additional notation that we will use is that if S = (Sk)k∈N and T = (Tk)k∈N are
ensembles of sets, we denote by S ⊆ T the fact that Sk ⊆ Tk for every k ∈ N.

Integrality. Throughout this chapter, for simplicity of notation, we use the conven-
tion that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the closest integer.

141

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

4.2.1 Interactive Proofs of Proximity

A language is an ensemble L = (Ln)n∈N, where Ln ⊆ (Σn)n for every n ∈ N and where
Σ = (Σn)n∈N is the alphabet.

Definition 4.1 (Interactive Proofs of Proximity (IPP)). Let Σ = (Σn)n∈N be an alphabet
ensemble. An r-round interactive proof of proximity, with respect to proximity parameter
ε > 0, (in short, ε-IPP) for the language L is an interactive protocol between a prover P,
which gets free access to ε and to an input x ∈ Σn, and a verifier V, which gets free access
only to ε and n, as well as oracle access to x. At the end of the protocol, the following
conditions are satisfied:

• Completeness: If x ∈ L, then, when V interacts with P, with probability 2/3 it
accepts.

• Soundness: If x is ε-far from L, then for every prover strategy P∗, when V inter-
acts with P∗, with probability 2/3 it rejects.

If the completeness condition in Definition 7.1 holds with probability 1, then we say
that the IPP has perfect completeness. A public-coin IPP is an IPP in which every message
from the verifier to the prover consists only of fresh random coin tosses.

An IPP is said to have query complexity q : N × [0, 1] → N if for every n ∈ N,
ε > 0, x ∈ {0, 1}n, and any prover strategy P∗, the verifier makes at most q(n, ε)
queries to x when interacting with P∗. The IPP is said to have communication complexity
c : N × [0, 1] → N if for every n ∈ N, ε > 0, and x ∈ Ln the communication between V
and P consists of at most c(n, ε) bits.

4.2.2 Constructible Error Correcting Codes and Finite Fields

An error correcting code over an alphabet Σ is an injective function C : Σk → Σn. The code
C is said to have relative distance δ if for any x 6= x′ ∈ Σk it holds that ∆REL (()x, x′) ≥ δ.

Throughout this chapter we deal with (uniform) polynomial-time algorithms, and so
we will need (families of) codes that are efficiently computable. Formally, for a parameter
n = n(k) ≥ 1 that is called the blocklength, and ensemble of alphabets Σ = (Σk)k∈N, we
define a constructible error correcting code over Σ as an ensemble C =

(
Ck : Σk

k → Σn
k

)
k∈N

of error correcting codes, such that the function f(x) = C|x|(x) is computable by a
polynomial-time Turing machine (in particular this implies that n = poly(k, log(Σ))). An
ensemble of error correcting codes C = (Ck)k∈N is said to have relative distance δ if for all
sufficiently large k, each code Ck in the ensemble has relative distance δ.

Throughout this chapter, we mostly consider codes defined over finite fields (i.e., the
alphabets Σk are all finite fields). Such codes are called linear if they are linear functions
over the field.

142

4.2 Preliminaries

4.2.2.1 Finite Fields and Polynomials

Many of our algorithms and interactive proofs deal with finite fields. We consider ensem-
bles of finite fields F = (Fk)k∈N, where |Fk| and say that such ensembles are constructible
if the field operations can be done in poly log(|Fk|) time. Namely, there exist a Turing
machine that given as input k and an appropriate number of elements in Fk (represented
as strings of length O(log(|Fk|)) bits) can compute the field operations (i.e., addition,
subtraction, multiplication, inversion, and sampling random elements) in polylog(|Fk|)
time.

The following fact shows that there exist constructible finite fields of characteristic 2.

Fact 4.2. For every time-constructible function f = f(k) ≥ 1, there exists a constructible
field ensemble F = (Fk)k∈N such that |F| = O(f) and Fk has characteristic 2 (i.e., is an
extension field of GF(2)) for every k ∈ N.

For details see [Gol08, Appendix G.3] and references therein. We will also use the
well-known Schwartz-Zippel Lemma.

Lemma 4.3 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of
total degree d over the field F. Then,

Pr
x∈RFm

[P (x) = 0] ≤ d

|F|
.

4.2.3 Low-Degree Extension

Let F = (Fk)k∈N be an ensemble of fields, and let H = (Hk)k∈N ⊆ F (the notation H ⊆ F
means that Hk ⊆ Fk, for every k ∈ N). Let m = m(k) ≥ 1 be a parameter, which we
often call the dimension.

A basic fact is that for every function f : Hm → F there exists a unique function
f̃ : Fm → F such that f̃ is a polynomial with individual degree |H|−1 that agrees with f
on Hm. Moreover, there exists an individual degree |H|− 1 polynomial β : Fm×Fm → F
such that for every function f : Hm → F it holds that

f̃(z) =
∑
x∈Hm

β(x, z) · f(x).

The function f̃ is called the low degree extension of F (with respect to the field F, subset
H and dimension m).

The following two propositions show that the low degree extension encoding can be
computed efficiently.

Proposition 4.4. Let F = (Fk)k∈N be a constructible field ensemble, let H = (Hk)k∈N ⊆ F
be an ensemble of subsets and let m = m(k) be the dimension.

There exists a Turing machine that on input k runs in time poly(|H|,m, log |F|) and
space O(log(|F|) + log(m)), and outputs the polynomial β : Fm × Fm → F defined above,
represented as an arithmetic circuit over F.

143

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Moreover, the arithmetic circuit β can be evaluated in time poly(|H|,m, log(|F|)) and
space O(log(|F|) + log(m)). Namely, there exists a Turing machine with the above time
and space bounds that given an input pair (x, z) ∈ Fm × Fm outputs β(x, z).

See, e.g., [Rot09, Proposition 3.2.1] for a proof of Proposition 4.4.

Proposition 4.5. Let F = (Fk)k∈N be a constructible field ensemble, let H = (Hk)k∈N ⊆ F
be an ensemble of subsets and let m = m(k) be the dimension.

Let φ : Hm → F and suppose that φ can be evaluated by a Turing Machine in time t
and space s. Then, there exists a Turing machine that, given as an input a point z ∈ Fm,
runs in time |H|m · (poly(|H|,m, log(|F|)) +O(t)) and space O(m · log(|H|) +s+ log(|F|))
and outputs the value φ̂(z) where φ̂ is the unique low degree extension of φ (with respect
to H,F,m).

Proof. The Turing machine computes

φ̂(z) =
∑
x∈Hm

β(x, z) · φ(x)

by generating and evaluating β as in Proposition 4.4.

4.2.3.1 Low Degree Extension as an Error-Correcting Code

The low degree extension can also be viewed as an error-correcting code in the following
way. Suppose that H and m are such that |H|m = k. Then, we can associate a string
x ∈ Fk with a function x : Hm → F by identifying Hm with [k] in some canonical way.

We define the low degree extension of a string x as LDEF,H,m(x) = x̃. That is, the
function LDEF,H,m is given as input the string x ∈ Fk, views it as a function x : Hm →
F and outputs its low degree extension x̃. By Proposition 4.5 the code LDEF,H,m is
constructible, and by the Schwartz-Zippel Lemma (Lemma 4.3), the code LDEF,H,m has

relative distance 1− m·|H|
|F| .

4.3 Holographic Interactive Proofs

In this section we define holographic interactive proofs and show several transformations
and generic results (which will be used in Section 4.4 for the proof of the hierarchy
theorem). In Section 4.3.1 we give a formal definition and some basic facts. Having
read Section 4.3.1, the reader may freely skip the rest of Section 4.3 and proceed directly
to Section 4.4, which is the main technical section, and return to read the results of
Sections 4.3.2 to 4.3.4 when they are used in Section 4.4.

Sections 4.3.2 to 4.3.4 focus on HIPs with respect to the low degree extension encoding.
In Section 4.3.2 we show that such HIPs imply interactive proofs of proximity (for a
related language). In Section 4.3.3 we show that one can switch the field under which
the HIPs input is encoded (at a moderate cost) to any other field that shares the same
characteristic. Finally, in Section 4.3.4 we show that HIPs can efficiently verify that the

144

4.3 Holographic Interactive Proofs

input (which can presumably be an arbitrary vector over the field) is actually Boolean
valued (i.e., in {0, 1}k).

4.3.1 Definition and Basic Facts

A holographic interactive proof is similar to a standard interactive proof, except that
rather than getting the input explicitly, the verifier gets oracle access to an encoding of
the input (via an error correcting code). Using this redundant representation, we could
potentially hope to have protocols in which the verifier runs in sublinear time and, in
particular, does not even read its entire input. This hope is indeed materialized in several
protocols from the literature (e.g., [LFKN92, GKR08, RRR16]).

As a matter of fact, it turns out that for some codes (specifically the low degree
extension), reading just a single point p from the encoded input suffices for the verifier.20

Thus, we restrict our attention to such protocols. Furthermore, in order to facilitate
composition, rather than having the verifier actually read the (encoded) input at the
point p, the verifier outputs a claim about the point (i.e., it outputs p together with a
symbol that it would have expected to see, had it actually queried the (encoded) input
at p).

Formally, holographic interactive proofs are parametrized by a (constructible) error
correcting code C, under which the input is encoded, and are defined as follows.

Definition 4.6 (Holographic Interactive Proofs (HIP)). Let Σ = (Σk)k∈N and Λ =
(Λk)k∈N be alphabet ensembles such that Λ ⊆ Σ. Let L ⊆ Λ, and let C : Σk → Σn

be a constructible error correcting code.
An r-round public-coin holographic interactive proof (HIP) for the language L, with

respect to the code C, is an interactive protocol between a prover P, which gets as input
x ∈ Σk, and a verifier V, which gets as input only k. At the end of the protocol either the
verifier rejects or it outputs a coordinate i ∈ [n] and a symbol σ ∈ Σ such that:

• Completeness: If x ∈ L, then, when V interacts with P, with probability 1 it
outputs (i, σ) such that C(x)|i = σ.

• Soundness: If x 6∈ L, then for every prover strategy P∗, when V interacts with
P∗, with probability 1− ε either V rejects or it outputs (i, σ) such that C(x)|i 6= σ,
where ε = ε(k) ∈ [0, 1] is called the soundness error.

In this chapter, all the holographic proofs that we consider are with respect to the
low degree extension code (using a variety of different parameters), which was defined in
Section 4.2.3 above.

20For the low degree extension this can be shown to hold generically. The high level idea is to consider
a low degree curve passing through all the points that the verifier wishes to read. The prover specifies
the values for all the points on the curve and the verifier checks the provided answer on a random point
on the curve. Soundness follows from the fact that composing a low-degree curve with a low-degree
polynomial results in a low degree univariate polynomial. See, e.g., [KR08, Section 6] for details.

145

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Remark 4.7 (Different Alphabets for the Language and the Code). Typically, when
using HIPs the alphabet Λ over which the language is defined will be the same as the
alphabet Σ over which the code is defined. Still, in some cases it will be convenient for
us to present HIPs that only work for particular sub-alphabets of the code (e.g., when the
input is binary but the code is more naturally defined over some large alphabet) and so
we give this more flexible definition.

Our definition of HIPs tries to capture many of the known interactive proof-systems
in the literature, while being flexible and easy to compose. Indeed, the fact that HIPs
can be transformed into standard interactive proofs which is immediate, is captured by
the following proposition.

Proposition 4.8. Let Σ = (Σk)k∈N and Λ = (Λk)k∈N be alphabets such that Λ ⊆ Σ.
Let L be a language over the alphabet Λ and let C : Σk → Σn be a constructible error
correcting code.

Any HIP for L can be converted into a standard interactive proof with only a poly(n)
additive overhead to the verifier’s running time (and all other parameters remain un-
changed). Moreover, the precise overhead is equal to the time that it takes to compute the
ith character of C(x), given x ∈ Λk and the index i ∈ [n].

Proof. The prover and verifier run the HIP. If the HIP verifier rejects, then we immediately
reject. Otherwise, the HIP verifier outputs a pair (i, σ) ∈ [n]×Σ with the associated claim
C(x)|i = σ. We can now check this claim directly by computing C(x)|i and comparing
with σ.

4.3.1.1 The Sumcheck Protocol (as an HIP)

We will make extensive use of the classical sumcheck protocol of Lund et al. [LFKN92].
Recall that the sumcheck protocol is an interactive proof for verifying that the sum, over
a subcube, of a low degree polynomial is zero. Our protocol differs slightly from the
“textbook” sumcheck protocol in two ways:

1. The verifier does not actually read any points from the input polynomial. Rather,
at the end of the protocol it outputs a claim about a single point of the polynomial
(i.e., the protocol is an HIP).

2. Following other works in the literature, our protocol allows a trade-off between
the number of rounds and the communication complexity (rather than having the
number of rounds correspond exactly to the dimension of the polynomial).

Lemma 4.9 (Sumcheck as an HIP). Let F be a constructible field ensemble and let H ⊆ F
be an ensemble of subsets of F. Let m = m(k) be an ensemble of integers such that
m = log|H|(k).

Let L = ∪k∈NLk, where Lk = {x ∈ Fk :
∑

i∈[k] xi = 0} and where the summation

is over the field F. Then, for every r ∈ [m], there exists an r-round (public-coin) HIP

146

4.3 Holographic Interactive Proofs

for L, with respect to the code LDEF,H,m, with soundness error m·|H|
|F| and communication

complexity |H|dm/re · r · log |F|. The verifier runs in time |H|dm/re · r · polylog(|F|) and the
prover runs in time poly(|F|m, r).

The proof of Lemma 4.9, which is standard, is included for completeness in Sec-
tion 4.6.3.

4.3.2 From HIP to IPPs

Proposition 4.8 above, shows that an HIP can be easily transformed into a standard
interactive proof. We now show that HIPs, with respect to the low degree extension
encoding, can be easily transformed into highly efficient (and in particular sublinear)
interactive proof of proximity (IPP) for a related language. More specifically, we transform
an HIP for the language L with respect to the LDEF,H,m code, into an IPP for the language

LDEF,H,m(L)
def
= {LDEF,H,m(x) : x ∈ L}.21

Lemma 4.10. Let F = (Fk)k∈N be an ensemble of finite fields, let H = (Hk)k∈N be an
ensemble of subsets (i.e. H ⊆ F) and let m = m(k) be such that |H|m = k.

Suppose that the language L has an r-round HIP, with respect to the code LDEF,H,m,
with communication complexity c. Then, the language LDEF,H,m(L) has an r-round ε-IPP
with query complexity O(|H| ·m · 1/ε) and communication complexity c.

The key observations that we use to prove Lemma 4.10 are that (1) the IPP verifier
can first check that its input is close to a low degree polynomial using low degree test.
If the test passes, then, using the self-correctability of polynomials, the IPP verifier can
emulate access to the encoded input of the HIP. Given these two observations the proof
of Lemma 4.10 is standard and so we defer it to Section 4.6.2.

4.3.3 Field Switching

In this subsection we show that HIPs can evaluate points in a LDE over an extension field
of the base field under which the input is actually encoded. This fact is used in the proof
Lemma 4.15 and allows us to first construct an HIP over a large field, and later convert
it into an HIP over the smaller field.

The key observation for our field switching, is that verifying a linear claim involving
the LDE over an extension field K/F can be reduced to verifying several linear claims
over the base field F. Each of these linear claims can be verified via a sumcheck protocol
(in fact, it suffices to verify a random linear combination of these claims), and so an HIP
can emulate access to the LDE over the extension field K by making queries to the LDE
over field F. We proceed to the formal statement and proof.

21More generally, for any code C that is locally testable and decodable (such as the LDE code), one
can transform an HIP for the language L into an IPP for the language C(L) = {C(x) : x ∈ L}. Moreover,
if the query location produced by the HIP verifier is uniformly distributed (which is typically the case),
then local testability by itself suffices.

147

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Let F = (Fk)k∈N and K = (Kk)k∈N be constructible field ensembles such that K is a

degree s = s(k) ≤ log(k) field extension of F (i.e., Kk
∼= Fs(k)

k , for every k ∈ N). Let
H = (Hk)k∈N ⊆ F and G = (Gk)k∈N ⊆ K be ensembles of subsets of F and K, respectively.
Let m = m(k) and ` = `(k) be ensembles of integers such that |H|m = |G|` = k.

Recall that for a given string x ∈ {0, 1}k, we define LDEF,H,m as the unique individual
degree |H| − 1 polynomial P : Fm → F such that P (z) = xz, for every z ∈ Hm (where we
identify the sets Hm and [k] in some, computationally efficient, canonical way). Similarly,
we define LDEK

G,` as the unique individual degree |G| − 1 polynomial P : K` → K such
that P (z) = xz, for every z ∈ G` (where now we identify G` and [k]).

Lemma 4.11. Let Let Let F and K be finite field ensembles as defined above. Let L =
∪k∈NLk be a language such that Lk ⊆ {0, 1}k for every k ∈ N. Suppose that L has a
ρ-round HIP, with respect to the code LDEK,G,r, with soundness error δ = δ(k) ∈ [0, 1]
and communication complexity c = c(k). Then, for every parameter r = r(k) ≥ 1, the
language L also has a (ρ + r + 1)-round HIP, with respect to the code LDEF,H,m, with

soundness error
(
δ +O

(
|H|·m
|F|

))
and communication

(
c+ poly(k1/r, |H|, r, log |F|)

)
.

Furthermore, the computational overhead for the verifier is poly(k1/r, |H|, r, log |F|)
and the computational overhead for the prover is poly(k).

We remark that for the furthermore part, we make use of the [KR09] constant-round
variant of the [GKR08] protocol.

Proof of Lemma 4.11. Before presenting the desired HIP, we start with some algebraic
notation and basic facts. Throughout this proof we use 〈·, ·〉K and 〈·, ·〉F to denote inner
products over the fields K and F, respectively.

Recall that elements in K are represented as vectors in Fs. Let b1, . . . , bs : K∗ → F∗
be functions defined as follows. For every α ∈ K∗ it holds that α = (b1(α), . . . , bs(α)).
That is, the functions b1, . . . , bs decompose a vector w ∈ Kt into its s components over
Ft.

Proposition 4.12. For every w ∈ Kk and x ∈ {0, 1}k it holds that

〈w, x〉K = (〈b1(w), x〉F, . . . , 〈bs(w), x〉F).

Proof. We denote by ∗ multiplication in K and by · multiplication in F. For k = 1
the proposition simply states that, for w ∈ K and x ∈ {0, 1} it holds that w ∗ x =
(b1(w)·x, . . . , bs(w)·x). The latter can be easily verified to hold for x ∈ {0, 1} by observing
that, in both K and F, multiplication by x = 0 always returns 0 and multiplication by
x = 1 is identity. The proposition follows by induction on k.

We proceed to describe the HIP (P ′,V ′). Let (P ,V) be an HIP for L, with respect to
the code LDEK,G,r, with soundness error δ. To prove the lemma, we need to construct an
HIP (P ′,V ′) for L, with respect to the code LDEF,H,m.

First, P ′ and V ′ emulate the HIP (P , V). If V rejects, then V ′ immediately re-
jects. Otherwise, V outputs a pair (z, ν) ∈ K` × K with the associated claim that

148

4.3 Holographic Interactive Proofs

(
LDEK

G,`(x)
)
|z = ν. Since LDEK

G,` is a K-linear code, there exists a vector w ∈ Kk (that

depends only on the code LDEK
G,` and the point z) such that

(
LDEK

G,`(x)
)
|z = 〈w, x〉, for

every x ∈ {0, 1}k. Thus, V ′ only needs to verify that 〈w, x〉K = ν.

For every i ∈ [s], let wi
def
= bi(w) ∈ Fk and let νi

def
= bi(ν) ∈ F. By Proposition 4.12 the

K-linear equation 〈w, x〉 = ν is equivalent to the following s F-linear equations:

∀i ∈ [s], 〈wi, x〉F = νi. (4.5)

The verifier V ′ chooses at random an F-linear combination of these s linear equations.
Namely, it selects at random γ1, . . . , γs ∈ F and sends these coefficients to the prover.

Let w′
def
=
∑

i∈[s] γi · wi and ν ′
def
=
∑

i∈[s] γi · νi (where the summations are over F). Note

that if Eq. (4.5) holds then (with probability 1) 〈w′, x〉F = ν ′, whereas if Eq. (4.5) does
not hold then 〈w′, x〉F 6= ν ′ with probability 1− 1

|F| over the choice of γ1, . . . , γs ∈ F. We
next observe that the latter is an F-linear claim about the input x and such claims can
be directly solved using the sumcheck protocol.

Let x̃ : Fm → F (resp., w̃′) be the low degree extension of the input x (resp., the
vector w′ ∈ Fk) with respect to the field F, set H and dimension m. That is, x̃ and w̃′ are
the unique individual degree |H| − 1 polynomial that agree with x and w′, respectively,
on Hm. Let P : Fm → F be defined as the individual degree 2(|H| − 1) polynomial
P (z) = w̃′(z) · x̃(z). Note that

∑
z∈Hm P (z) = 〈w′, x〉F. Thus, checking that 〈w′, x〉F = ν ′

is equivalent to
∑

z∈Hm P (z) = ν ′ which we can solve by having the prover and verifier
run the sumcheck protocol with respect to the polynomial P .22

In case the sumcheck verifier rejects then V ′ immediately rejects. Otherwise, the result
is a pair (z′′, ν ′′) ∈ Fm × F. The prover sends to the verifier the value µ = x̃(z′′). The
verifier V ′ checks that µ · w̃′(z′′) = ν ′′ and if so it outputs (z′′, µ), otherwise it rejects.
This completes the description of the protocol.

Actually, one point about this protocol remains unclear - how can the verifier efficiently
compute w̃′(z′′). If we were to ignore the computational resources of the verifier, then we
could do this by brute force (e.g., in time roughly |H|m), since w̃′ is independent of the
input x. Nevertheless, we do aim for efficient verification and so we need to be able to
compute w̃′(z′′) efficiently. We will do so by using additional interaction with the prover,
based on the [KR09] variant of the [GKR08] protocol. We give a sketch in the following
paragraph.

Computing w̃′(z′′). We start by taking a closer look at the vector w defined above.
By the definition of the low degree extension (see Section 4.2.3), the vector w ∈ KG` is
defined as wh = β(h, z), for every h ∈ G`, where β is as defined in Section 4.2.3. Thus,

22We remark that while we defined sumcheck as a protocol for the language L = {x ∈ Fk :
∑
i∈[k] xi =

0}, a trivial, standard modification of the sumcheck protocol yields a protocol for Lν = {x ∈ Fk :∑
i∈[k] xi = ν}, for every ν ∈ F.

149

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

we have that:

w̃′(z′′) =
∑
i∈[s]

γi · bi

(∑
h∈Hm

β(h, z′′) · β(h, z)

)
. (4.6)

We observe that Eq. (4.6) can be represented as a (highly uniform) depth O(log(s) +m ·
log(H) + log(|G|) + log(`)) = O(log(k)) Boolean circuit (on input z, z′′) of size s · Hm ·
poly(|G|, `, log(|K)) = poly(k). Applying the [KR09] variant of the [GKR08] protocol, we
obtain an r-round interactive proof for verifying Eq. (4.6) in which the verifier runs in
time kO(1/r) · polylog(|F|) and with similar communication complexity.

Completeness. Fix x ∈ L. By the completeness of (P ,V), the verifier outputs (z, ν) ∈
K` × K such that

(
LDEK

G,`(x))
∣∣
z

= ν, or equivalently, 〈w, x〉K = ν. By Proposition 4.12
this implies that 〈wi, x〉F = νi, for every i ∈ [s]. Therefore, for every γ1, . . . , γs ∈ F it
holds that:

〈w′, x〉F =
∑
i∈[s]

γi · 〈wi, x〉F =
∑
i∈[s]

γi · νi = ν ′.

By definition of P , this means that
∑

z∈Hm P (z) = 〈w′, x〉F−ν ′ = 0 and the completeness
of the sumcheck protocol implies that ν ′′ = P (z′′) = x̃(z′′)·w̃(z′′). Thus the verifier accepts
when checking that µ · w̃(z′′) = ν ′′.

Soundness. Fix x 6∈ L and a cheating prover strategy P∗. By the soundness of (P, V),
with probability 1− ε, the verifier either rejects (in which case V ′ also rejects) or outputs
(z, ν) ∈ K`×K such that 〈w, x〉K 6= ν. Assuming that the latter holds, by Proposition 4.12
there exists some i∗ ∈ [s] such that 〈wi∗ , x〉F 6= νi∗ . Therefore,

Pr [〈w′, x〉F = ν ′] = Pr

∑
i∈[s]

γi · 〈wi, x〉F =
∑
i∈[s]

γi · νi

= Pr

[
γi∗ · (〈wi∗ , x〉F − νi∗) =

∑
i 6=i∗

γi · (νi − 〈wi, x〉F)

]
= 1/|F|.

Thus, with probability 1− 1
|F| it holds that 〈w′, x〉F 6= ν ′, and in particular

∑
z∈Hm P (z) 6= 0

(where P is the polynomial as defined above).

Hence, by the soundness of the sumcheck protocol, with probability |H|·m
|F| either the

sumcheck verifier rejects (in which case we also reject) or it outputs a pair (z′′, ν ′′) ∈ Fm×F
such that P (z′′) 6= ν ′′, or in other words x̃(z′′) · w̃(z′′) 6= ν ′′. Now, the prover sends over
a value µ. If x̃(z′′) = µ then, conditioned on the above event, the verifier rejects when
checking that µ · w̃(z′′) = ν ′. If x̃(z′′) 6= µ, then the verifier outputs a pair (z′′, µ) such
that

(
LDEF,H,m(x)

)
z′′
6= µ as desired. By a union bound, the overall soundness error is

ε+ 1
|F| + |H|·m

|F| .

150

4.3 Holographic Interactive Proofs

Complexity. On top of the ρ rounds that (P ,V) takes, the verifier also sends the
message (γ1, . . . , γs), but this message can be appended to the last message from V to P .
In addition, the two parties run an r-round sumcheck protocol and an r round variant of
the [GKR08] protocol. There is one additional message from the prover with the value
µ, so the overall number of rounds is ρ+O(r).

The communication in the first part of the protocol (i.e., the emulation of (P, V))
is c. In addition, the verifier sends the linear combination (γ1, . . . , γs) which takes s ·
log |F| bits. Lastly, both the sumcheck and the [GKR08] protocol add communication
poly(k1/r, |H|, r, log |F|) and the additional prover message is just log2 |F| bits.

As for the verifier’s complexity, beyond running the original (P ,V) protocol, it runs
the sumcheck and [GKR08] protocols which takes time poly(k1/r, |H|, r, log |F|). The
prover’s additional time in running these two protocols is poly(|H|m) = poly(k).

4.3.4 Booleanity Testing

In this subsection we show that HIPs can efficiently check that their input is the low-
degree extension of a Boolean assignment. To do so, we follow an idea of Kalai and Raz
[KR08], which was introduced in the context of constructing interactive PCPs.

We show a simple reduction from checking whether a polynomial P : Fm → F is
Boolean valued in a subcube Hm (i.e., P |HmHm → {0, 1}) to checking whether a related
(slightly higher degree) polynomial Q vanishes on Hm. Specifically, consider the polyno-
mial Q(x) = P (x) · (1 − P (x)), and observe that P is Boolean-valued in Hm if only if
Q is identically zero in Hm. Checking whether a given polynomial is identically 0 (i.e.,
vanishes) on a subcube of its domain can be solved via a fairly well-known reduction to
the sumcheck protocol. We also note that the reduction from P to Q is local (i.e., each
query to Q can be computed by a single query to P) and therefore can be used in our
setting.

We start by showing an HIP for inputs that vanish on a subcube. We first note that
checking whether an individual degree |H| − 1 polynomial vanishes on the subcube Hm

is trivial, since such a polynomial vanishes on Hm if and only if it vanishes on Fm. The
actual challenge is checking whether a higher degree polynomial (e.g., with individual
degree |G| − 1 for some G such that |G| > |H|) vanishes on Hm.

Formally, for a given field ensemble F, ensembles of subsets H,G ⊆ F and dimension
m, let Vanishing-SubcubeF,H,m,G be the set of all functions f : Gm → F that vanish on
Hm (i.e., f |Hm ≡ 0).

The following proposition, which gives an HIP for Vanishing-SubcubeF,H,m,G, is im-
plicit in many classical constructions of PCPs (e.g., [BFLS91]). We include a proof in
Section 4.6.4 for completeness.

Proposition 4.13. Let F be a constructible field ensemble, let H ⊆ G ⊆ F be ensembles
of subsets, and let m = m(k). For every r = r(k) ≤ log(k)

log log(k)
, there exists an (r+2)-round

(public-coin) HIP for Vanishing-SubcubeF,H,m,G, with respect to the code LDEF,G,m, with

soundness error O
(
m·|G|
|F|

)
and communication complexity m · log(|F|)+ |G|dm/re ·r · log |F|.

151

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

The verifier runs in time |G|dm/re · r · polylog(|F|) and the prover runs in time poly(|F|m).

Denote by BoolF the set of all Boolean strings, viewed as a subset of F∗. We show
an HIP for Bool, which given access to a polynomial P = LDEF,H,m(x) for some x ∈ Fk,
checks that x ∈ {0, 1}k.

Proposition 4.14. Let F be a constructible field ensemble, let H ⊆ F, and let m ∈ N.
For every r ∈ [m], there exists an (r + 2)-round (public-coin) HIP for BoolF,H,m, with
respect to the code LDEF,H,m, with communication complexity O(r · (2d + |H| − 1)m/r ·
log |F|+m · log(|F|)) and soundness error O

(
m·|H|
|F|

)
.

Proof. Given a degree d polynomial P : Fm → F such that P = LDEF,H,m(x) for some

x ∈ F|H|m , define the degree 2d polynomial Q : Fm → F as Q(x)
def
= P (x)·(1−P (x)). Note

that we can write Q = LDEF,G,m(y) for H ⊆ G ⊆ F and y ∈ F|G|m , where |G| = O(|H|).
Observe that P is Boolean-valued in Hm if and only if Q is identically 0 in Hm

(this follows from the fact that the univariate polynomial z · (1 − z) has exactly two
roots: 0 and 1). Thus, to verify that P is Boolean-valued in Hm, we run the HIP for
Vanishing-SubcubeF,H,m,G in Proposition 4.13, with respect to the polynomial Q. Note
that each query Q(x) can be answered by a single query to P (specifically, by re-
turning P (x) · (1 − P (x))). Correctness follows from the correctness of the HIP for
Vanishing-SubcubeF,H,m,G. Communication complexity and soundness error follow from
Proposition 4.13.

4.4 The Hierarchy Theorem

In this section we prove our main theorem: a round hierarchy for IPPs.

Theorem 4.1 (IPP Hierarchy Theorem). There exists a language L and a gap function
g(r) = Θ(r2) such that for every constant r ≥ 1 it holds that:

1. Upper Bound: There exists a g(r)-round (public-coin) ε-IPP, for L with commu-
nication complexity nO(1/r) and query complexity poly(log n, ε). The verifier runs in
time nO(1/r) + poly(log(n), ε) and the prover runs in time poly(n).

2. Lower Bound: For every r-round IPP for L, with respect to proximity parameter
ε = 1/10, that has query complexity q and communication complexity c, it holds
that max(c, q) = nΩ(1/r).

Furthermore, L also has a polylog(n)-round (public-coin) ε-IPP with communication
polylog(n) and query complexity poly(log n, 1/ε), and with a poly(log n, ε)-verifier and
poly(n)-time prover.

The O and Ω notation in the theorem statement hide universal constants that do not
depend on r. Note that any constant gap between the exponents in the upper and lower
bounds can be obtained by increasing g by a suitable constant factor.

152

4.4 The Hierarchy Theorem

The rest of this section is devoted to the proof of Theorem 4.1. In Section 4.4.1 we
present the language for which we show the IPP round hierarchy, in Section 4.4.3 we prove
the lower bound (see Lemma 4.18), and in Section 4.4.2 we prove the upper bound (see
Lemma 4.15). Combining Lemma 4.18 and Lemma 4.15 yields Theorem 4.1.

4.4.1 The Language: Encoded MOD3

Let F = (Fk)k∈N be a (constructible) field ensemble of characteristic 2 (i.e., each Fk is an
extension field of GF(2)). Let H = (Hk)k∈N be an ensemble of subsets H ⊆ F and let

m = m(k) be the dimension such that |H| = log(k), m = log(k)
log log(k)

and |F| = Θ(|H|2m).

Denote n
def
= |Fm|, and note that |H|m = k and that k2 ≤ n ≤ k3.

We first define an (auxiliary) language LMOD3, where:

LMOD3
def
= {x ∈ {0, 1}∗ : wt(x) = 0 (mod 3)} .

That is, LMOD3 simply consists of strings whose Hamming weight is divisible by 3. The ac-
tual language for which we prove the IPP lower bound is Enc-MOD3 = LDEF,H,m(LMOD3).
That is,

Enc-MOD3 =
{

LDEF,H,m(x) : x ∈ LMOD3

}
.

Or in words, Enc-MOD3 consists of all m-variate polynomials over F, of individual degree
|H| − 1, that take Boolean values in Hm such that the integer sum over all elements in
Hm is divisible by 3.

4.4.2 The Upper Bound

In this section, we construct an IPP for Enc-MOD3. This IPP suffices both for the results
in the constant-round regime and poly-logarithmic round regime of Theorem 4.1.

Lemma 4.15. For every r = r(n) ≤ log(n)
log log(n)

, there exists an O(r2)-round public-coin

ε-IPP for Enc-MOD3 with perfect completeness and soundness error 1/2. The communi-
cation complexity is nO(1/r) and the query complexity is poly(log(n), 1/ε). Furthermore,
the verifier runs in time

(
nO(1/r) + poly(log(n), 1/ε)

)
and the prover runs in time poly(n).

The main step in the proof of Lemma 4.15 is the construction of an HIP for the related
language LMOD3 (defined above), with respect to the LDE code (with the parameters
that were specified in Section 4.4.1). Given this HIP, Lemma 4.15 follows by using a
generic transformation from HIPs (with respect to the LDE encoding) into IPPs, which
we establish in Lemma 4.10.

Before constructing this HIP, as an intermediate goal, we first construct an HIP for
LMOD3, with respect to the low-degree extension with different parameters than those
that were set in Section 4.4.1. Specifically, we shall use a larger field K, whose size is
polynomially related to k (rather than poly-logarithmic). In particular, there will be a
dependence between the size of K and the number of rounds in the HIP. Later we will use

153

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

a generic transformation to convert this HIP into one in which the low degree extension
can be over a much smaller field (e.g., of poly-logarithmic size), which in particular does
not depend on the number of rounds.

The following lemma, which is the main lemma proved in this section, gives an HIP
for LMOD3 over the relatively large field K.

Lemma 4.16. Let r = r(k) ≥ 1, let K = (Kk)k∈N be a constructible field ensemble of size
|K| = Ω(r2 ·k2/r), let G = (Gk)k∈N ⊆ K be an ensemble of subsets of K of size |G| = k1/r.

Then, there exists an r2-round public-coin HIP for LMOD3, with perfect completeness

and soundness error O
(
r2·k2/r

|K|

)
. The communication complexity is O(r2 · k2/r · log |K|).

The verifier runs in time kO(1/r) · poly(r, log(k)) and the prover runs in time poly(|K|r).

(See Section 4.1.2 for a high-level overview of the proof.)

Proof. Let r = r(k) ≥ 1. Recall that K = (Kk)k∈N is a constructible field ensemble field
of size |K| = Ω(r2 ·k1/r) and that G = (Gk)k∈N is an ensemble of subsets of size |G| = k1/r.
Since we only deal with a single input length k (which we think of as varying), in the
following we omit the subscripts and use K (resp., G) when we actually mean Kk (resp.,
Gk).

Denote by t
def
= |G| = k1/r and fix a canonical ordering α1, . . . , αt of the set of ele-

ments in G (i.e., G = {α1, . . . , αt}). Let MOD3t : {0, 1, 2}t → {0, 1, 2} be defined as

MOD3t(σ1, . . . , σt)
def
=
∑

j∈[t] σj (mod 3).

Fix an input x ∈ {0, 1}k. As described in Section 4.1.2, we define polynomials
V0, . . . , Vr that contain sums, modulo 3, of certain intervals in x. Taking the [GKR08]
view, one can consider a depth r formula, with fan-in t = k1/r, composed of MOD3t
gates, that computes the sum mod 3 of its input (see Fig. 4.1). Viewed this way, each
polynomial Vi corresponds to the low degree extension of the ith layer of this formula
(counting from output to input).

Since |Gr| = k, we can associate elements in Gr with the integers in the set {1, . . . , k}
in the natural way. Thus, we can view the input x ∈ {0, 1}k as a function, which we
denote by Vr : Gr → {0, 1}, that is defined as Vr(p) = xp, for every p ∈ Gr. We
define functions V0, . . . , Vr−1 via backward recursion as follows. For every i ∈ [r], let
Vi−1 : Gi−1 → {0, 1, 2} be defined as:

∀p ∈ Gi−1, Vi−1(p) = MOD3t
(
Vi((p, α1)), . . . , Vi((p, αt))

)
, (4.7)

where (p, α) denotes the element in Gi which is obtained by concatenating p ∈ Gi−1

with α ∈ G. For the case i = 0, we define G0 = {⊥}, where ⊥ is defined as the empty
string (in particular (⊥, p) = (p,⊥) = p), and note that, for i = 1, Eq. (4.7) reduces to
V0(⊥) = MOD3t

(
V1(α1)

)
, . . . , V1(αt)

)
.

As noted above, intuitively, each Vi should be thought of as specifying a sum of certain
intervals in the input, according to a partition (which depends on i). For example, Vr
contains the value of each of the individual coordinate of x (i.e., the most fine grained par-
tition) whereas V0 contains the overall sum (i.e., the coarsest partition). More generally,
we have the following immediate fact:

154

4.4 The Hierarchy Theorem

Figure 4.1: The recursive depth r formula of fan-in k1/r that computes the sum mod 3 of
its input x ∈ {0, 1}k, and the low-degree extension of each one of the formula’s layers when
evaluated on x.

Fact 4.17. For every i ∈ {0, . . . , r} and p ∈ Gi it holds that Vi(p) =
∑

q∈Gr−i x(p,q)

(mod 3) (where (p, q) denotes the concatenation of the two vectors p and q).

In particular, by setting i = 0, we have that V0(⊥) =
∑

q∈Gr xq (mod 3) =
∑

i∈[k] xi
(mod 3).

For the rest of the proof we use f̃ to denote the low degree extension of a function
f (see Section 4.2.3 for details on the low degree extension encoding) and associate the
integers 0, 1 and 2 with three distinct elements in K in some canonical way (so that

we can view {0, 1, 2} ⊆ K). Let M̃OD3t : Kt → K be the unique individual degree
2 extension of the function MOD3 : {0, 1, 2}t → {0, 1, 2} with respect to the field K,
the subset {0, 1, 2} ⊆ K, and dimension t. For every i ∈ [r], let Ṽi : Ki → K be the
unique individual degree |G| − 1 extension of Vi with respect to the field K, the set G
and dimension i. Let Ṽ0 ≡ V0 (recall that V0 : {⊥} → {0, 1, 2} is just a singleton value
V0(⊥) ∈ K). Observe that the polynomial Ṽr is the low degree extension of the input x
with respect to the field K, the set G and dimension r.

A crucial fact that we will use is that, for every i ∈ [r], each point in Ṽi−1 can be
expressed as a certain type of composition of the low degree polynomial Ṽi with the

low degree polynomial M̃OD3. More specifically, using the properties of the low degree

155

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

extension (see Section 4.2.3), it holds that for every i ∈ [r] and z ∈ Ki−1:

Ṽi−1(z) =
∑

p∈Gi−1

β(z, p) · Vi−1(p)

=
∑

p∈Gi−1

β(z, p) ·MOD3t
(
Vi((p, α1)), . . . , Vi((p, αt))

)
=
∑

p∈Gi−1

β(z, p) · M̃OD3t
(
Ṽi((p, α1)), . . . , Ṽi((p, αt))

)
. (4.8)

where the polynomial β is as defined in Section 4.2.3, and the last equality uses the fact

that Ṽi|Gi ≡ Vi|Gi and M̃OD3t|{0,1,2}t ≡ MOD3t|{0,1,2}t .
Using the above definition, we proceed to describe our HIP for LMOD3. The protocol

is performed in r phases, each of which takes at most r rounds of interaction (for a total
of at most r2 rounds). We begin the protocol with a claim about the value of a single
point (as a matter of fact, the only point) in Ṽ0 (recall that, by Fact 4.17, the value of
Ṽ0(⊥) corresponds to the desired output - the sum modulo 3 of the input bits). In the
ith phase, we reduce the task of verifying the value of a single (arbitrary) point in Ṽi−1

to verifying the value of a single point in Ṽi. Thus, after r phases, we have reduced the
problem of verifying Ṽ0(⊥) =

∑
j∈[k] xj (mod 3) to verifying a single point in Ṽr, which

is the low degree extension of the input x.

Define z0 = ⊥ and ν0 = 0. The original claim is that Ṽr(z0) = ν0. We shall maintain
the invariant that for every phase i ∈ {0, . . . , r}, at the end of the ith phase, the prover
and verifier both know a vector zi ∈ Ki and a scalar νi ∈ K such that the current claim
is that Ṽi(zi) = νi. Thus, the goal of the ith phase is to (interactively) reduce the claim
Ṽi−1(zi−1) = νi−1 to a claim of the form Ṽi(zi) = νi (for some zi and νi that are generated
during the ith phase):

Phase i:

1. Reduce to Claim about t Points in Ṽi: The phase begins with a claim that
νi−1 = Ṽi−1(zi−1). By Eq. (4.8) this is equivalent to:

νi−1 =
∑

p∈Gi−1

β(zi−1, p) · M̃OD3t
(
Ṽi((p, α1)), . . . , Ṽi((p, αt))

)
(4.9)

We now observe that the right-hand side of Eq. (4.9) corresponds to a sum, over an
(i− 1)-dimensional subcube, of the values of a low degree polynomial. Specifically,
denote

fi−1(w) = β(zi−1, w) · M̃OD3t
(
Ṽi((w, α1)), . . . , Ṽi((w, αt))

)
,

and observe that fi−1 has total degree (t−1)·(i−1)+2t·(t−1)·i ≤ 3t2r polynomial.
Eq. (4.9) can be rewritten as νi−1 =

∑
p∈Gi−1 fi−1(p). The prover and verifier run

an i-round sumcheck protocol with respect to this equation.

156

4.4 The Hierarchy Theorem

In case the sumcheck verifier rejects, our verifier immediately rejects. Otherwise,
the output of the sumcheck protocol is a (random) point wi−1 ∈ Ki−1 and value
γi−1 ∈ K with an associated alleged claim that γi−1 = fi−1(wi−1).

2. Query Reduction: At this point the verifier has a claim regarding the values
of t points of Ṽi (specifically, the claim γi−1 = fi−1(wi−1) refers to the points
(wi, α1), . . . , (wi, αt)). The goal of this step is to reduce this more elaborate claim
to a claim about a single point in Ṽi:

(a) The prover sends to the verifier the univariate degree t − 1 polynomial Pi :
K→ K defined as Pi(η) = Ṽi(wi, η) (given by its t coefficients).

(b) The verifier receives a degree t− 1 polynomial Qi (which is allegedly equal to

Pi). The verifier checks that γi = β(zi−1, wi−1) · M̃OD3t
(
Qi(α1), . . . , Qi(αt)

)
.

If the check fails then the verifier immediately rejects and halts. Otherwise,
the verifier chooses a random field element ηi ∈ K and sends ηi to the prover.

(c) The claim for the next round is that Ṽi(zi) = νi, where νi = Pi(ηi) and
zi = (wi, ηi).

After all of the r phases are complete, the verifier outputs (zr, νr) and the associated
claim is that Ṽr(zr) = νr. Since Ṽr is simply the low degree extension of the input x, the
latter is a claim about a single point in the low degree extension of the input as required
by the definition of an HIP verifier.

Complexity. Since the communication complexity of each sumcheck is O(r · k1/r ·
log |K|), the total communication complexity is O(r2 · k1/r · log |K|). As for the round
complexity, the ith phase uses a sumcheck of i ≤ r rounds of interaction. Moreover, each
sumcheck concludes with a message from the prover to the verifier so we can “piggy-
back”and attach the polynomial Qi to that last message from the prover and send back
the value ηi as our response (which is still part of the last round of the sumcheck protocol)
so each phase just takes ≤ r rounds and overall we have ≤ r2 rounds.

As for computational complexity, in the first step of each phase, the parties invoke a
sumcheck protocol in which, by Lemma 4.9, the verifier runs in time kO(1/r) ·r ·polylog|K|,
and the prover runs in time poly(|K|r). In the second step of each phase, the prover
computes and sends Pi, which clearly can be done in time poly(|K|r), and the verifier

computes γi, which boils down to evaluating the functions β and M̃OD3t at a single point,
which can be done in time poly(t, log k) = kO(1/r) · poly(log |K|) (see Proposition 4.4 and

Section 4.6.5 for the time complexity of computing β and M̃OD3t, respectively). The
obtain the total running times (for the entire r phases), we multiply the time per phase
by r.

Completeness. Perfect completeness follows readily from the construction (and the
prefect completeness of the sumcheck protocol).

157

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Soundness. To conclude the proof of Lemma 4.16 we only need to show that soundness
holds. Our analysis follows the soundness analysis in [GKR08, Theorem 3.1].

Fix an input x ∈ {0, 1}k such that
∑

i∈[k] xi 6≡ 0 (mod 3) (i.e. x 6∈ LMOD3) and a
cheating strategy P∗. Denote by A the event that the verifier does not reject in the
interaction with the prover P∗. For every i ∈ {0, 1, . . . , r}, denote by Ti the event that
Ṽi(zi) = νi. Note that since

∑
i∈[k] xi 6= 0 (mod 3) it holds that the event ¬T0 occurs

with probability 1. For every i ∈ [r], let Ei denote the event that the polynomial Qi that
the prover sent is indeed identical to Pi(η) = Ṽi(wi, η).

Our analysis will be based on the following two claims.

Claim 4.17.1.

Pr
[
A ∧ Ei | ¬Ti−1

]
≤ 3t2r

|K|
.

Proof. Assume that the event Ti−1 occurs. Then, by the soundness of the sumcheck pro-
tocol, with probability 3t2r

|K| (over the verifier’s coins in the sumcheck protocol) it holds that

fi−1(wi−1) 6= γi−1, or in other words β(zi−1, wi−1)·M̃OD3t
(
Ṽi((wi−1, α1)), . . . , Ṽi((wi−1, αt))

)
6=

γi−1. If the latter happens and then the prover sends the correct polynomial Pi (i.e., the
event Ei occurs) then the verifier immediately rejects in Item 2b. Thus, with probability
1− 3t2r

|K , either the event ¬A or ¬Ei must occur.

On the other hand:

Claim 4.17.2.

Pr
[
Ti | ¬Ei

]
≤ t

|K|
.

Proof. The event ¬Ei implies that the polynomial Qi sent by the prover differs from the
correct polynomial Pi. Since both Qi and Pi are degree t− 1 polynomials, they can agree
on at most t − 1 points, and so, with probability 1 − t−1

|K| over the choice of ηi it holds

that νi = Q(ηi) 6= P (ηi) = Ṽi((wi, ηi)) = Ṽi(zi).

Finally, observe that the probability that the verifier errs is simply Pr[A∧¬Tr], which
we can bound (using Claim 4.17.1, Claim 4.17.2 and elementary probability theory) as

158

4.4 The Hierarchy Theorem

follows:

Pr[A ∧ Tr] = Pr[A ∧ ¬T0 ∧ Tr]
≤ Pr

[
∃i ∈ [r] such that A ∧ ¬Ti−1 ∧ Ti

]
≤

r∑
i=1

Pr [A ∧ ¬Ti−1 ∧ Ti]

=
r∑
i=1

(Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei] + Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei])

≤
r∑
i=1

(
Pr
[
A ∧ Ei | ¬Ti−1

]
+ Pr

[
Ti | ¬Ei

])
≤

r∑
i=1

(
3t2r

|K|
+

t

|K|

)
≤ 4t2r2

|K|
.

This concludes the proof of Lemma 4.16.

Lemma 4.16 provides an r2-round HIP for LMOD3, with respect to the code LDEK,G,r,
where K is a field ensemble of size Θ

(
r2 · k2/r

)
. We now use a general result, which is

stated and proved in Section 4.3, which transforms any such HIP, in which the field K
has small characteristic, into an HIP over the code LDEF,H,m where the size of the field F
is now only poly-logarithmic in k. Specifically, by applying Lemma 4.11 to the protocol
of Lemma 4.16, and using a field K which is an extension field of some field F of size
polylog(k), we obtain the following corollary:

Corollary 4.2. Let F = (Fk)k∈N be a constructible field ensemble, H = (Hk)k∈N ⊆ F be
an ensembles of subsets of F and let m = m(k) be a dimension such that |H| = log(k),

m = log(k)
log log(k)

and |F| = Θ(|H| ·m).

Then, for every parameter r = r(k) ≤ log(k)
log log(k)

, the language LMOD3 has an has an

O(r2)-round (public-coin) HIP with respect to the code LDEF,H,m with soundness error 1/2
and communication complexity kO(1/r). The verifier runs in time kO(1/r) and the prover
runs in time poly(k).

Lemma 4.15 follows from Corollary 4.2 by applying Lemma 4.10, which is a generic
transformation from any HIP, over the low degree extension encoding, into an IPP.

4.4.3 The Lower Bound

Lemma 4.18. Let r = r(k) ≥ 1 be a constant. For every r-round IPP for Enc-MOD3,
with respect to proximity parameter ε = 1/10, with query complexity q and communication
complexity c ≥ Ω(log n), it holds that max(c, q) = nΩ(1/r).

159

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

We remark that our proof of Lemma 4.18 gives a similar result even for super constant

values of r (as long as r = O
(√

log(n)
log log(n)

)
) but for simplicity we restrict ourselves to

constant r. We also remark that the constants in the lemma’s statement can be improved
but we avoid optimizing them for sake of readability.

Proof. Throughout the proof of Lemma 4.18 all proofs of proximity refer to proximity
parameter ε = 1/10.

The following proposition, due to [RVW13] (building on [BM88, GS86, GVW02]),
shows that to prove Lemma 4.18, it suffices to prove a lower bound for AMPs, which are
public-coin IPPs with only a single round of interaction between the verifier and prover.
More precisely, in an AMP for a language L, the verifier first sends a random string r
to the prover, who responds with a proof π, which can depend on both the input x and
the verifier’s message r. Then, given π (and based on its original random coins r), the
verifier needs to decide whether to accept or reject. (Note that the verifier is not allowed
to toss additional coins after receiving the message from the prover.)

Proposition 4.19 (IPP to AMP). If there exists an r-round (public or private coin) IPP
for a language L, with communication complexity c ≥ log(n) and query complexity q,
then there exists an AMP for L with communication complexity cr+2 · (log(c) · r)O(r) and
query complexity cr+1 · q · (log(c) · r)O(r).

The proof of Proposition 4.19, which appears in [RVW13, Section 4], proceeds by ob-
serving that the private-coin to public-coin transformation of [GS86] as well as the round
reduction transformation of [BM88, GVW02], which are transformations on standard
interactive proofs, can be applied to IPPs as well.

Thus, given Proposition 4.19, and using the fact that r is constant, to prove Lemma 4.18
it suffices to show that every AMP for Enc-MOD3 with query complexity q and commu-
nication complexity c satisfies max(c, q) = nΩ(1), or equivalently, since n = O(k3), that
max(c, q) = kΩ(1). The following proposition, which is inspired by the [RVW13] lower
bound, shows that AMPs for properties of linear codes can be viewed as distributions
over (relatively) small DNFs of parities. By DNF of parities, we refer to depth 3 circuits
whose bottom layer consists of parity gates, middle layer consists of AND gates and top
layer is a single OR gate. In the following we denote such circuits by DNF⊕.

Proposition 4.20. Let F be an extension field of GF(2), let C : Fk → Fn be an F-linear

code, and let f : {0, 1}k → {0, 1}. If there exists an AMP for Πf
def
= {C(x) : x ∈

{0, 1}k ∧ f (x) = 1} with communication complexity c ≥ log(n) and query complexity
q, then there exists a distribution D over DNF⊕ circuits of size 2O(c+q·log2(|F|)) such that
Prϕ∼D[ϕ(x) = f(x)] ≥ 0.9, for all x ∈ {0, 1}k.

Proof. Let V be an AMP verifier for Π. We assume without loss of generality that V
has soundness error at most 0.1 (e.g., by repeating the protocol in parallel O(1) times).
Recall that in an AMP protocol, for a given input y ∈ Fn, the verifier first sends a random
string r, then the prover replies with an alleged proof π = π(r, y), and finally the verifier

160

4.4 The Hierarchy Theorem

Figure 4.2: After fixing the randomness, an AMP for Π can be expressed as follows:
(a) a disjunction over O(2c) decision trees of depth q · log(|F|), (b) a DNF formula with
O(2c+q·log(|F|)) clauses of width q · log |F| over the linear code C(w), and (c) a DNF⊕ circuit
of size Õ(2c+q·log(|F|)) over x.

makes queries to y and decides whether to accept or reject. Denote by Vyr,π the output of
the verifier for a fixed string r, given oracle access to y and direct access to π.

For a fixed string r and alleged proof π, the verifier Vyr,π can be represented as an |F|-
ary decision tree of depth q (on input y), which we denote by Dr,π : {0, 1}k → {0, 1}. The
completeness and soundness requirements of an AMP guarantee that for a fixed string r,
the verifier accepts an input C(x) if and only if there exists a string π such that VC(x)

r,π = 1.

Thus, VC(x)
r,π =

∨
π∈{0,1}O(c) Dr,π

(
C(x)

)
(see Fig. 4.2(a)). Observe that by viewing elements

of F in their bit-representation and assigning a clause for each accepting leaf in the decision
tree, each Dr,π can be represented as a binary DNF formula with |F|O(q) clauses of width
O(q · log |F|). Merging the two consecutive layers of disjunctions, we obtain a binary
DNF formula that on input y ∈ Fn computes Vyr,π with 2O(c+q·log2(|F|)) clauses of width
O(q · log2(|F|)) each (see Fig. 4.2(b) for an illustration).

We next observe that every linear combination over the field F, which is an extension
field of GF(2), can be represented by log2(|F|) linear combinations over GF(2).23 Thus,
we can view the function C : Fk → Fn, which is an F-linear function, as a GF(2)-linear
function C : GF(2)k·log2(|F|) → GF(2)n·log2(|F|). Hence, for every random string r, there
exists a DNF⊕ circuit of size:

2O(c+q·log2(|F|)) · q · log2(|F|) + n · log2(|F|) = 2O(c+q·log(|F|))

(which is constructed by composing the code C with the DNF
∨
π∈{0,1}O(c) Dr,π) that on

input x ∈ {0, 1}k outputs 1 if and only if there exists a proof π that V would accept,
given input C(x).

Therefore, there exists a distribution D over DNF⊕s of size 2O(c+q·log(|F|)) such that for
every x ∈ {0, 1}k, it holds that Prϕ∈D [ϕ(x) = f (x)] ≥ 0.9. This concludes the proof of
Proposition 4.20.

Let fMOD3 : {0, 1}k → {0, 1} such that fMOD3 = 1 if and only if
∑

i∈[k] xi ≡ 0 (mod 3).

By Proposition 4.20, choosing Π = Enc-MOD3, C = LDEF
H,m, f = fMOD3, and using

23Fix a linear combination α ∈ Ft over F (the extension field). For every i ∈ [log2(|F|)], the function
`α,i(x) = biti(〈α, x〉) that outputs the tth bit of 〈α, x〉 is a linear function over GF(2).

161

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

the (easy direction of) Yao’s minimax principle, it suffices to show that there exists a
distribution X over inputs in {0, 1}k such that for every DNF⊕ ϕ of size

(
2O(c+q·log2(|F|)))

it holds that Prx∈X [ϕ(x) = fMOD3 (x)] < 0.9 (where recall that |F| = polylog(k)). To that
end, we shall use the celebrated result of Razborov [Raz87] and Smolensky [Smo87].

Theorem 4.3 (Razborov-Smolensky (see also [Vio09, Theorem 2])). Every AC0(⊕) cir-
cuit ϕ of size s and depth d satisfies

Pr
x∈{0,1}k

[ϕ(x) = fMOD3(x)] <
2

3
+O

(
log(s)d√

k

)
.

This concludes the proof of Lemma 4.18.

4.5 Implications for Classical Interactive Proofs

In this section, we derive from our hierarchy theorem implications to standard interac-
tive proofs (in which the verifier can run in polynomial time). Loosely speaking, in Sec-
tion 4.5.1 we show that the celebrated round reduction of public-coin interactive proofs,
due to Babai and Moran [BM88], is (almost) optimal among all blackbox transforma-
tions, and in Section 4.5.2 we show that any proof that #P ⊆ AM will require using
non-algebrizing techniques.

4.5.1 Blackbox Round Reduction Transformations

Babai and Moran [BM88] proved a “speedup” theorem, which loosely speaking, shows
that very r-round public-coin interactive proof protocol can be transformed into an (r−1)-
round protocol at the cost of increasing the communication complexity quadratically
(some quantitative improvements were later obtained by Goldreich, Vadhan and Wigder-
son [GVW02]). Combined with the private-coin to public-coin transformation of Gold-
wasser and Sipser [GS86], one can obtain a similar “speedup” theorem for private-coin
interactive proofs.

Vadhan [Vad00] considered the affect of certain transformations on interactive proofs.
He introduced the notion of a “blackbox transformation” (defined below) and showed
that the aforementioned private-coin to public-coin transformation, and a transformation
from 2-sided error to 1-sided error of Goldreich, Mansour and Sipser [GMS87], are (in a
certain sense) optimal amongst all black-box transformation.

In this section, we use our hierarchy theorem to derive a similar result for the round
reduction theorem of Babai and Moran. Following [Vad00], we define a black-box transfor-
mation on interactive proofs as a procedure that takes as input an interactive proof (P ,V)
for some language L and outputs a new interactive proof (P ′,V ′), for the same language
L, such that:

• The strategy of the verifier V ′ can be implemented by an algorithm given oracle
access to the strategy of V .

162

4.5 Implications for Classical Interactive Proofs

• The strategy of the prover P ′ can be implemented by a algorithm given oracle access
to the strategy of both P and V .

Here, the strategy of a party (i.e., prover or verifier) is the function that takes the
party’s random coins and the history of messages exchanged and outputs its next message.
We stress that the new strategies (P ′,V ′) cannot even explicitly look at the input x; their
only access to the input x is given by queries to the strategies (P ,V).

An r-to-r′ blackbox round reduction transformation, for r′ < r, is a black-box trans-
formation that, given as input an r-round interactive proof, produces an r′-interactive
proof (for the same language). We remark that the [BM88] round-reduction is a blackbox
round reduction transformation, and we show that it is nearly optimal, out of all blackbox
reductions.

Theorem 4.4. There exists a language L such that for every constant r ≥ 1, there exists
an r-round (public-coin) interactive proof (P , V) for L, with communication complexity
c = c(n), such that for every r-to-r′ blackbox round reduction transformation T , in the
resulting interactive proof (P ′,V ′) = T (P ,V) it holds that either the communication is at
least cΩ(

√
r/r′) or V ′ invokes V at least cΩ(

√
r/r′) times.

Proof. Let r ∈ N be a constant, and consider the language

LMOD3 =
{
x ∈ {0, 1}k : wt(x) = 0 (mod 3)

}
k∈N .

Fix input length k ∈ N, field F, subset H ⊂ F, and dimension m = log(k)
log log(k)

such that

|H| = log(k) and |F| = Θ(|H|2m).
By Corollary 4.2, there exists an r-round HIP for LMOD3, with respect to the code

LDEF,H,m, with communication complexity c
def
= kO(1/

√
r). As noted in Proposition 4.8,

this HIP implies an interactive proof (P ,V) for LMOD3, with communication complexity
c. Recall that on input x ∈ {0, 1}k, the parties (P ,V) invoke the HIP for LMOD3, and the
verifier checks the HIP’s output claim by computing a single point of LDEF,H,m(x).

Let T be an r-to-r′ blackbox round reduction transformation on interactive proofs,
and let (P ′,V ′) = T (P ,V) be the resulting r′-round interactive proof for LMOD3. Using
(P ′,V ′), we construct an r′-round ε-IPP for the language

Enc-MOD3 = {LDEF,H,m(x) : x ∈ LMOD3} .

Recall that V only computes LDEF,H,m(x) and queries it at a single point, and so each
oracle call to V that V ′ makes can be emulated by making a single query to LDEF,H,m(x).
Therefore, we can view (P ′,V ′) as an HIP, with respect to LDEF,H,m, for LMOD3, with
communication complexity c.

By applying Lemma 4.10 on (P ′,V ′), we obtain an r′-round IPP for Enc-MOD3; denote
its communication complexity by C and query complexity by Q. Finally, by Lemma 4.18
we have that:

max(C,Q) = kΩ(1/r′) = cΩ(
√
r/r′).

163

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

4.5.2 The Algebrization Barrier

The relatization framework, introduced by Baker, Gill, and Solovay [BGS75], tried to
capture the intuition that we not understand how circuits operate and therefore we may
as well treat them as black-boxes. Later on, the seminal result of [LFKN92, Sha92]
showed that even without understanding how circuits operate, we can still do more than
just evaluate them (i.e., treat them as oracles). Specifically, arithmetizing the circuit,
allows us to evaluate points in a low degree extension of the function computed by the
circuit. The latter cannot be done only via oracle access and has turned out to be
incredibly useful.

The algebrization framework, introduced by Aaronson and Wigderson [AW09], tries
to capture this additional power. Specifically, in this framework, rather than just giving
oracle access to the given function, we give oracle access also to a low degree extension of
the function. Results such as IP = PSPACE can be showed to have “algebrizing” proofs.
Despite the power that we obtain by having access to the low degree extension of the
function, [AW09] also showed that some central questions in complexity theory cannot
be proved within this framework (i.e., by “algebrizing”) techniques.

Loosely speaking, for two complexity classes C1 and C2, the inclusion C1 ⊆ C2 is
said to algebrize if CA1 ⊆ CÃ2 for every oracle A and every low-degree extension Ã of A.
(See [AW09] for the precise definition, discussions and many more details.) We say that
proving the inclusion C1 ⊆ C2 requires non-algebrizing techniques, or cannot be proved
via algebrizing techniques, if the inclusion does not algebrize.

Before stating our results, we point out that there is an intimate connection (or a

high level equivalence) between the class the algebrized class IPÃ (where Ã is the low
degree extension of some oracle A) and the notion of HIPs (with respect to the low degree
extension encoding). Indeed, in both cases the verifier needs to verify a property of some
string, given oracle access to its low degree extension and interaction with the prover.

For an IPÃ the string is the truth table of A and for HIPs the string is simply the input.

Using this relation, we use our hierarchy theorem to show that the inclusion #P ⊆
AM, which is widely believed not to hold24, cannot be proved via algebrizing techniques.
As a matter of fact, the proof of Theorem 4.5 can be easily extended to show that even
the containment of #P in a powerful variant of AM in which, for inputs of length N , the
verifier is allowed to run in time 2o(N) and with 2o(N) communication, cannot be proved
via algebrizing techniques.

Theorem 4.5. There exists an oracle A and a low-degree extension Ã of A such that

#PA 6⊆ AMÃ.

Proof Sketch. Consider the problem #CSAT, which is the problem of counting the number
of satisfying assignments of a given (Boolean) circuit C, and recall that #CSAT is #P-
complete. Let A : {0, 1}N → {0, 1} be an oracle and consider an input circuit C that,
given as input x ∈ {0, 1}N , just outputs A(x). We associate A with its truth table,

24In particular it implies the collapse of the polynomial hierarchy to its second level.

164

4.5 Implications for Classical Interactive Proofs

which is a string of length 2N . Let Ã = LDEF,H,m(A), where F, H,m are defined as in
Section 4.4.1, with respect to the parameter k = 2N .

Observe that if #PA ⊂ AMÃ, then there exists an AM proof system for computing the
number of satisfying assignments of the circuit C, which is exactly the Hamming weight
of A (viewed as an k-bit string), in which the communication complexity is poly(N) and
in which the verifier only makes poly(N) oracle queries to Ã. Thus, following Lemma 4.10,
we can obtain from this AM proof system a 1-round IPP for Enc-MOD3 with communi-
cation and query complexities poly(N) = polylog(k), which violates the lower bound in
Lemma 4.18.

Remark 4.21 (Using Prime Order Fields). We remark that the proof of Theorem 4.5
is strongly based on the fact that we take a low degree extension over a field that has
characteristic 2. Our result can extend to other constant size characteristics but we do
not know how to extend it to arbitrary fields. In fact, it is consistent with our result
(however unlikely) that there is a proof that #P ⊆ AM based (in a crucial way) on taking
the low degree extension of the circuit with respect to a large prime order field.

We remark that we are unaware of any complexity class containments in the literature
that are only known based on algebrization using prime order fields.25

25The original proof of the IP = PSPACE theorem by Shamir [Sha92] does use prime order fields in
an important way, however, the more recent proof of the same result by Goldwasser et al. [GKR08] can
be based on fields of arbitrary characteristic (see also [Mei13] that gives a proof based on general tensor
codes).

165

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

4.6 Appendices for Chapter 4

4.6.1 Miscellaneous Discussions

4.6.1.1 Why [GKR08] and not other Interactive Proofs?

One may wonder whether we could base our upper bound on other interactive proofs
from the literature. Other than the protocols of [GKR08, KR09], two other general
purpose interactive proof-systems that come to mind are Shamir’s26[Sha92] protocol for
IP = PSPACE and a recent protocol of Reingold, Rothblum and Rothblum [RRR16] that
gives constant-round interactive proofs for bounded-space computations.

Shamir’s protocol is not suitable for our needs both because it is not constant-round,
and, perhaps more fundamentally, because the verifier in Shamir’s protocol needs to
access the low-degree extension of the input over a field that is only determined during
the interaction (recall that the verifier in Shamir’s protocol chooses a random prime p,
and the players both work over the field of integers modulo p). For our purposes the field
has to be fixed a priori (since we want the input for the IPP to be encoded under the LDE
code corresponding to that field).

As for the protocol of [RRR16], the latter does actually yield a constant-round HIP for
LMOD3 (which can be modified to yield an IPP for Enc-MOD3 as above) but the tradeoff
that it offers between rounds and the verifier’s complexity is exponentially worse than
what we obtain. More specifically, for every constant r ≥ 1, the [RRR16] protocol yields

a 2Õ(r)-round HIP for LMOD3 with verification time roughly 2Õ(r) · k1/r. In contrast, we
obtain an O(r2)-round HIP with verification time roughly poly(r) · k1/r.

4.6.1.2 An Alternative Candidate Language for the Round Hierarchy Theo-
rem

The language for which we proved our round hierarchy consists of encodings of strings
whose Hamming weight is divisible by 3. As described next, it seems as though a similar
result can be obtained for a related language Enc-Maj that consists of encodings of strings
x ∈ {0, 1}k with wt(x) ≥ k/2, although there are some technical difficulties to overcome.

First note that the lower bound for Enc-Maj follows along the same lines as our lower
bound for Enc-MOD3, where now we use the fact that AC0[2] circuits cannot approximate
the majority function [Raz87, Smo87]. In contrast, showing an upper bound (i.e., an IPP
or HIP) introduces some new difficulties. As explained in Section 7.1 (and formalized in
Section 4.4), our upper bound for Enc-MOD3 is based on the observation that computing
the sum, modulo 3, of the bits of an input string can be done by a (highly uniform)
NC1 circuit. Given this observation, we based our protocol on a variant of the [GKR08]
interactive proof for small-depth computations.

For Enc-Maj, we could similarly hope to base our protocol on an NC1 circuit, but this
time we need a circuit that computes the majority function. Obtaining such a circuit is

26Indeed, here we specifically refer to Shamir’s [Sha92] protocol and not to the [LFKN92] protocol (on
which [Sha92] builds).

166

4.6 Appendices for Chapter 4

less trivial and here we encounter some difficulties:

• Valiant [Val84] (see the presentation of Goldreich [Gol11b]) gave a non-uniform
construction of an NC1 circuit for majority. We could base our protocol on this
result and obtain a non-uniform verifier (and in particular, its running time would
be super-linear, although it would still have the desired query and communication
complexities).

• The aforementioned construction of [Val84] can actually be shown to produce a
(highly-uniform) randomized construction. That is, there exists a randomized
logspace Turing machine that given as input 1n, with all but exponentially van-
ishing probability, produces an NC1 circuit, on n-bit strings, that computes the
majority function correctly (on all inputs). We could have our verifier run this pro-
cedure to obtain the desired NC1 circuit, but this would introduce an (exponentially
small) completeness error, which we would like to avoid.

• Lastly, we mention that the celebrated [AKS83] sorting network of Ajtai, Komlós
and Szemerédi gives rise to a uniform (and deterministic) construction of an NC1

circuit for majority (by sorting the input bits and outputting the median). This
construction is quite complex and in particular we have not verifed whether it
satisfies the uniformity condition that is required for the [KR09] result.27

4.6.2 From HIPs to IPPs (Proof of Lemma 4.10)

The two main ingredients that we shall use to prove Lemma 4.10 are the well-known
low (individual) degree test28 for multivariate polynomials [RS96, Sud95, AS03], and the
self-correction procedure for polynomials [GS92, Sud95].

Lemma 4.22 (Individual Degree Test). Let d,m ∈ N such that dm < |F|/10 and ε ∈
(0, 1/10). Denote by Polyd,m,F the set of all m-variate, individual degree d polynomials
over F. Then, there exists an ε-tester for Polyd,m,F with query complexity dm · poly(1/ε).

Lemma 4.23. Let ε < 1/3 and d,m ∈ N such that d ≤ |F|. There exists an algorithm
(corrector) that, given x ∈ Fm and oracle access to an m-variate function f : Fm → F
that is ε-close to a polynomial p of individual degree d, makes O(d·m) queries and outputs
p(x) with probability 9/10. Furthermore, if f has total degree d, the algorithm outputs
p(x) with probability 1.

Given Lemmas 4.22 to 4.23, we can now describe the IPP (with respect to some
proximity parameter ε) for LDEF,H,m(L). Recall that the verifier is given oracle access to

27We note that other partial, but arguably simpler, de-randomization results of Valiant’s formula have
been obtained by [HMP06] and [CDI+13]. However, these partial derandomizations do not seem to
suffice for our purposes.

28Actually, the cited works provide a test for total degree. A test for individual degree (which is
implicit in [GS06, Section 5.4.2]) can be obtained via a simple reduction (see, e.g., [GR13b, Theorem
A.8]).

167

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

a function f : Fm → F and the prover is given direct access to f . Assume, without loss
of generality, that the HIP for L has soundness error 1/10.29

First, the verifier and prover run the HIP protocol for L with respect to the input
f |Hm . (Recall that an HIP does not even query its input and therefore, so far, no queries
have been made.) If the HIP verifier rejects then we immediately reject. Otherwise,
the verifier outputs a pair (z, ν) ∈ Fm × F (with the associated claim that f(z) = ν).
Then, the verifier runs the individual degree tester of Lemma 4.22 on f , with respect to
proximity parameter ε, individual degree |H| − 1 (and soundness error 1/3). If the low
degree test rejects, the verifier immediately rejects. Lastly, the verifier decodes f at point
z, using the self-correction procedure of Lemma 4.23, again with soundness error 1/10.
The procedure outputs a value ν ′. The verifier accepts if ν = ν ′ and otherwise it rejects.

Completeness follows from the perfect completeness of the HIP, the low degree test
and the local self-correction. For soundness, let f : Fm → F be a function such that f
is ε-far from LDEF,H,m(L) and fix a cheating prover strategy P∗. Consider first the case
that f is ε-far from an individual degree |H| − 1 polynomial. In this case, by the low
degree test, with probability at least 2/3, the verifier rejects and we are done. Thus, we
can assume that f is ε-close to some individual degree |H| − 1 polynomial P : Fm → F.
Observe that since f is ε-far from LDEF,H,m(L) it must be the case that P |Hm 6∈ L.

We view the HIP as being applied to P |Hm . By the soundness of the HIP, when the
verifier interacts with any cheating prover (and in particular P∗) with probability 9/10 it
either rejects (in which case we also reject) or it outputs a pair (z, ν) ∈ Fm×F such that
P (z) 6= ν. The verifier reads the point z with self-correction and so, with probability at
least 9/10 it will obtain the actual value ν ′ = P (z) and reject when comparing ν ′ and ν.
Thus, with probability 0.92 ≥ 2/3 our verifier rejects.

4.6.3 The Sumcheck Protocol (Proof of Lemma 4.9)

In this appendix we prove Lemma 4.9.
We use a variant of the sumcheck protocol that takes r rounds, where for simplicity

we assume that r divides m. We maintain the invariant that before the ith rounds begins,
both the verifier and the prover agree on values w1, . . . , wi−1 ∈ Fm/r and νi−1 ∈ F, where

ν0
def
= 0. For every i ∈ [r], the ith round of the sumcheck protocol is as follows.

1. The prover sends to the verifier the individual degree |H|−1 polynomial Pi : Fm/r →
F (by specifying its coefficients), defined as:

Pi(z)
def
=

∑
xi+1,...,xr∈Hm/r

P (w1, . . . , wi−1, z, xi+1, . . . , xr).

2. The verifier receives a polynomial Qi : Fm/r → F (which is allegedly equal to Pi)
and checks that

∑
z∈Hm/r Qi(z) = νi−1.

29Indeed, parallel repetition of IPPs decreases their soundness error at an exponential rate (see [GGR15,
Appendix A] for details).

168

4.6 Appendices for Chapter 4

3. The verifier select uniformly at random wi ∈ Fm/r and sends wi to the prover.

4. Set νi
def
= Qi(wi).

At the end of the protocol, the verifier outputs ((w1, . . . , wr), νr) ∈ Fm × F.
The running times and communication complexity of the protocol can be readily

verified. We proceed to show that completeness and soundness hold.

Completeness. Let P : Fm → F be an individual degree |H| − 1 polynomial such that∑
x∈Hm P (x) = 0. In this case, at every round i ∈ [ρ], the prover sends the polynomial

Qi ≡ Pi. Hence, for every i ∈ [r]:∑
z∈Hm/r

Qi(z) =
∑

z∈Hm/r

Pi(z)

=
∑

z∈Hm/r

∑
xi+1,...,xr∈Hm/r

P (w1, . . . , wi−1, z, xi+1, . . . , xr)

= Pi−1(wi−1)

= Qi−1(wi−1)

= νi−1

and so all of the verifier’s checks pass. At the end of the protocol the verifier outputs
((w1, . . . , wr), νr) ∈ Fm × F and νr = Pr(wr) = P (w1, . . . , wr)) as required.

Soundness. Let P : Fm → F be an individual degree |H| − 1 polynomial such that∑
x∈Hm P (x) 6= 0 and fix a cheating prover strategy P∗.
The next two claims relate the polynomials Qi sent by the prover to the corresponding

polynomials Pi (recall that Pi was defined as Pi(z) =
∑

xi+1,...,xr∈Hm/r P (w1, . . . , wi−1, z, xi+1, . . . , xr)).
Recall that both polynomials depend only on w1, . . . , wi−1.

Claim 4.23.1. If Q1 ≡ P1, then the verifier rejects with probability 1.

Proof. Observe that
∑

x1∈Hm/r P1(x1) =
∑

z∈Hm P (z) 6= 0, and so, if Q1 ≡ P1, then the
verifier rejects when testing that

∑
z∈Hm/r Q1(z) = ν0 = 0.

Claim 4.23.2. For every i ∈ [r−1] and every w1, . . . , wi−1 ∈ Fm/r, if Qi 6≡ Pi then, with

probability 1− (m/r)·|H|
|F| over the choice of wi, if Qi+1 ≡ Pi+1 then the verifier rejects.

Proof. Since the (total degree (m/r) · (|H| − 1)) polynomials Qi and Pi differ, by the

Shwartz-Zippel lemma (Lemma 4.3), with probability 1 − (m/r)·|H|
|F| over the choice of

wi ∈R Fm/r, it holds that Qi(wi) 6= Pi(wi). If the latter event occurs and the prover sends
Qi+1 ≡ Pi+1, then the verifier rejects when testing whether

∑
z∈Hm/r Qi+1(z) = νi, since

νi = Qi(wi) 6= Pi(wi) =
∑

z∈Hm/r

Pi+1(z) =
∑

z∈Hm/r

Qi+1(z).

169

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

By Claims 4.23.1 and Claim 4.23.2 and an application of the union bound, with
probability 1 − (r − 1) · (m/r)·|H

|F| , if there exists an i ∈ [r − 1] such that Qi 6≡ Pi but
Qi+1 ≡ Pi+1 then the verifier rejects. However, by Claim 4.23.1, we can assume that
Q1 6≡ P1 and so we get that with probability 1− (r−1) · (m/r)·|H

|F| either the verifier rejects
or Qr 6≡ Pr. Note that if Qr 6≡ Pr then by the Shwartz Zippel Lemma with probability
1− (m/r)·|H|

|F| it holds that Qr(wr) 6= Pr(wr) and therefore:

νr = Qr(wr) 6= Pr(wr) = P (w1, . . . , wr)

and so the soundness condition holds, with soundness error (r − 1) · (m/r)·|H
|F| + (m/r)·|H

|F| =
m·|H
|F| .

4.6.4 Interactive Proof for Vanishing-Subcube (Proof of Proposi-
tion 4.13)

Let F be a constructible field ensemble, let H ⊆ G ⊆ F be ensembles of subsets, and let
m ∈ N. Recall that Vanishing-SubcubeF,H,m,G is the set of all functions f : Gm → F that
vanish on Hm (i.e., f |Hm ≡ 0). We show that for every r ∈ [m], there exists an r+2-round
(public-coin) HIP for Vanishing-SubcubeF,H,m,G, with respect to the code LDEF,G,m.

Recall that in an HIP with respect to the code LDEF,G,m, the input should be thought
of as an m-variate polynomial P with individual degree |G| − 1. The prover has direct
access to P and the verifier needs to output a pair (z, ν) ∈ Fm × F, with the associated
claim that P (z) = ν.

For a given function P : Fm → F, we define the polynomial P̃ (x) =
∑

z∈Hm δ(z, x) ·
P (z), where δ : Fm × Fm → F is an individual degree |H| − 1 polynomial such that for
every a, b ∈ Hm, it holds that δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise (and δ is
arbitrary in F2m\H2m).30

To check that P is identically 0 in Hm, the verifier first chooses at random r ∈ Fm
and sends r to the prover. Now, the prover and verifier run an interactive proof to
check that P̃ (r) = 0, by invoking the sumcheck protocol with respect to the summation∑

z∈Hm δ(z, r)·P (z) = 0, where we observe that the polynomial δ(·, r)·P (·) has individual
degree |H|+ |G| − 1. If the sumcheck verifier rejects, then we immediately reject. Other-
wise, the sumcheck verifier outputs a pair (z, ν) ∈ Fm×F, and the prover then sends the
value ν ′ = P (z). Finally, the verifier checks that δ(z, r) · ν ′ = ν and if so outputs (z, ν ′).

For completeness, note that if P is identically 0 in Hm, then P̃ is identically 0 in Fm.
In particular, with probability 1 over the choice of r it holds that P̃ (r) =

∑
z∈Hm δ(z, r) ·

P (h) = 0. Thus, by the completeness of the sumcheck protocol, the sumcheck verifier
outputs a pair (z, ν) such that δ(z, r) · P (z) = 0. The prover now sends the value
ν ′ = P (z), and so the verifier’s check that δ(z, r) · ν ′ = ν passes, and it outputs the claim
(z, ν ′), which is correct since P (z) = ν ′.

30We note that P̃ is in fact the low degree extension of the function P , when the latter is restricted to
Hm.

170

4.6 Appendices for Chapter 4

As for soundness, if P is not identically 0 in Hm, then by definition, P̃ is not identically
0 in Fm, and therefore by the Schwartz-Zippel lemma (see Lemma 4.3), with probability

1 − m·(|H|−1)
|F| over the choice of r, it holds that P̃ (r) 6= 0. Thus, the sumcheck protocol

is invoked on the sum
∑

z∈Hm δ(z, r) · P (z) 6= 0 and so, with probability 1− m·(|H|+|G|−2)
|F|

either the sumcheck verifier rejects, or it outputs a claim (z, ν) such that δ(z, r)·P (z) 6= ν.
Assuming the latter happens, if the prover now sends ν ′ = P (z), then the verifier rejects.
Hence, it must send ν ′ 6= P (z), and so the verifier outputs the incorrect claim (z, ν ′).

4.6.5 Efficiently Computing M̃OD3t

Recall that M̃OD3t : Kt → K was defined as the (unique) individual degree 2 polynomial

such that for every h ∈ {0, 1, 2}t it holds that M̃OD3t(h) =
∑

i∈[t] hi (mod 3). In this

section we show that M̃OD3 is efficiently computable. Namely, that given a point z ∈ Kt,

one can compute M̃OD3t(z) in time poly(t, log(|K|)).

Proposition 4.24. Let K be a constructible field ensemble. There exists a poly(t, log(|K|))-

time algorithm that given a point z ∈ Kt outputs the value M̃OD3t(z).

Proof. To prove Proposition 4.24, we first show that for every σ ∈ {0, 1, 2} and i ∈ [t], we
can construct a size poly(i) uniform arithmetic circuit over K that computes the function

F
(σ)
i : Ki → K, which is defined as the unique individual degree 2 polynomial such that:

∀h ∈ {0, 1, 2}i, F
(σ)
i (h) =

{
1 if

∑
i∈[t] hi = σ (mod 3)

0 otherwise
.

where the summation is over integers modulo 3. Despite their similarity, note that M̃OD3t
is the low degree extension of a function that computes the sum modulo 3 of its input,
whereas F

(σ)
t is the low degree extension of a function that indicates whether the sum

modulo 3 is congruent to σ.

Given arithmetic circuits that compute F(σ)
t , we can now compute M̃OD3t : Kt → K

as:

M̃OD3t(z) =
∑

σ∈{0,1,2}

σ · F (σ)
i (z), (4.10)

where here the arithmetic is over the field K, and the equality follows from the fact that
both sides of the equation are polynomials of individual degree 2 that agree on {0, 1, 2}t
and therefore must agree on Kt. Thus, it remains to prove the following claim.

Claim 4.24.1. For every σ ∈ {0, 1, 2} and i ∈ N, there exists an arithmetic circuit of

size O
(
ilog2(6)

)
over K that computes F

(σ)
i .

171

4. A HIERARCHY THEOREM FOR INTERACTIVE PROOFS OF
PROXIMITY

Proof. We prove the proposition for i’s that are powers of two and note that the general
case follows easily (e.g., by using a circuit of size that is the nearest power of two and
fixing some of its inputs to 0).

The proof is by induction on i, where the base case i = 1, is trivial. Fix i (that is a
power of two) and suppose that we have constructed arithmetic circuits for computing

F
(σ)
i for every σ ∈ {0, 1, 2}.

Fix τ ∈ {0, 1, 2}. The main observation is that for every z1, z2 ∈ Ki it holds that

F
(τ)
2i (z1, z2) =

∑
σ∈{0,1,2}

F
(σ)
i (z1) · F (τ−σ mod 3)

i (z2), (4.11)

where the equality follows from the fact that that both sides of the equation are polyno-
mials of individual degree 2 that agree on {0, 1, 2}i and therefore must agree on K2i.

Denoting by Si the size of the arithmetic circuit that Eq. (4.11) yields for F
(σ)
i , it

holds that:

S2i = 6 · Si + c = · · · = 6log(2i) · S1 + c ·
i−1∑
j=0

6j = O
(

(2i)log2(6)
)
,

where c ≤ 10 is the constant overhead that arises from Eq. (4.11). This concludes the
proof of Claim 4.24.1.

Proposition 4.24 now follows by combining Eq. (4.10) and Claim 4.24.1.

172

Chapter 5

Strong Locally Testable Codes with
Relaxed Local Decoders

5.1 Introduction

Locally testable codes (LTCs) are error-correcting codes that can be tested very efficiently.
Specifically, a code is said to be an LTC if there exists a probabilistic algorithm, called
a tester, that is given a proximity parameter ε > 0 and oracle access to an input string
(an alleged codeword), makes a small number (e.g., poly(1/ε)) of queries to the input
and is required to accept valid codewords, and reject with high probability input strings
that are ε-far from being a codeword (i.e., reject strings that disagree with any codeword
on ε fraction of the bits). The systematic study of LTCs was initiated by Goldreich and
Sudan [GS06], though the notion was mentioned, in passing, a few years earlier by Friedl
and Sudan [FS95] and Rubinfeld and Sudan [RS96].

A natural strengthening of the notion of locally testable codes (LTCs) is known as
strong-LTCs. While LTCs (also referred to as weak-LTCs) allow for a different behavior
of the tester for different values of the proximity parameter, strong-LTCs are required to
satisfy a strong uniformity condition over all values of the proximity parameter. In more
detail, the tester of a strong-LTC does not get a proximity parameter as an input, and
is instead required to make only a constant number of queries and reject non-codewords
with probability that is related to their distance from the code. See [GS06, Gol10c] for a
discussion on both types of local testability. We note that from a property testing point of
view, strong-LTCs can be thought of as codes that can be tested by a proximity-oblivious
tester (see [GR09]).

The two most fundamental parameters of error-correcting codes (and strong-LTCs
in particular) are the distance and the codeword length. Throughout this chapter we
will only consider codes with constant relative distance, and so our main parameter of
interest is the length, which measures the amount of redundancy of information in each
codeword. By this criterion, constructing a strong-LTC with linear length (and constant
relative distance) is the holy grail of designing efficient locally testable codes. Although
recently some progress was made towards showing the impossibility of such linear length

173

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

LTCs [DK11, BV12], there are known constructions of strong-LTCs with relatively good
parameters: Goldreich and Sudan [GS06] constructed a strong-LTC with constant relative
distance and nearly-linear length, where throughout this chapter a code of dimension k
is said to have nearly-linear length if its codewords are of length k1+α for an arbitrarily
small constant α > 0. Furthermore, recently Viderman [Vid13] constructed a strong-LTC
with constant relative distance and quasilinear length (i.e., length k · polylogk).

Another natural local property of codes is local decodability. A code is said to be a
locally decodable code (LDC) if it allows for a highly efficient recovery of any individual
bit of the message encoded in a somewhat corrupted codeword. That is, there exists a
probabilistic algorithm, called a decoder, that is given a location i and oracle access to
an input string w that is promised to be sufficiently close to a codeword. The decoder
is allowed to make a small (usually constant) number of queries to the input w and is
required to decode the ith bit of the information that corresponds to the codeword that w
is closest to. Following the work of Katz and Trevisan [KT00] that formally defined the
notion of LDCs, these codes received much attention and found numerous applications (see
e.g., [Tre04, Yek12] and references therein). They are also related to private information
retrieval protocols [CGKS98] (see [Gas04] for a survey).

Despite much attention that LDCs received in recent years, the best known LDCs are
of super-polynomial length (cf. [Efr12], building on [Yek08]). While the best known lower

bound (cf. [KT00]) only shows that any q-query LDC must be of length Ω
(
k1+ 1

q−1

)
(where

k is the dimension of the code), the existence of a constant-query LDC with polynomial
length remains a major open problem.

In an attempt to bypass this barrier, Ben-Sassonet al.[BSGH+06] introduced a natural
relaxation of the notion of local decodability, known as relaxed-LDCs. This relaxation
requires local recovery of most (or nearly all) individual information-bits, yet allows for
recovery-failure (but not error) on the rest. Specifically, a code is said to be a relaxed-LDC
if there exists an algorithm, called a (relaxed) decoder, that has oracle access to an input
string that is promised to be sufficiently close to a codeword. Similarly to LDCs, the
decoder is allowed to make few queries to the input in attempt to decode a given location
in the message. However, unlike LDCs, the relaxed decoder is allowed to output an abort
symbol on a small fraction of the locations, which indicates that the decoder detected a
corruption in the codeword and is unable to decode this specific information-bit. Note
that the decoder must still avoid errors (with high probability).

Throughout this chapter, unless explicitly stated otherwise, when we say that a code is
a relaxed-LDC, we actually mean that it is a relaxed-LDC with constant query complexity.

Ben-Sassonet al.[BSGH+06] constructed a relaxed-LDC with nearly-linear length. More
generally, they showed that for every constant α > 0 there exists a relaxed-LDC (with
constant relative distance) that maps k-bit messages to k1+α-bit codewords and has query
complexity O (1/α2). While these relaxed-LDCs are dramatically shorter than any known
LDC, they do not break the currently known lower bound on LDCs (cf. [KT00]), and hence
it is it still an open question whether relaxed-LDC are a strict relaxation of LDCs.

174

5.1 Introduction

5.1.1 Obtaining Local Testability and Decodability Simultane-
ously

In this chapter, we are interested in short codes that are both (strongly) locally testable
and (relaxed) locally decodable.1 The motivation behind such codes is very natural, as
the notion of local decodability is complimentary to the notion of local testability: The
success of the decoding procedure of a locally decodable code is pending on the promise
that the input is sufficiently close to a valid codeword. If the locally decodable code is
also locally testable, then this promise can be verified by the testing procedure. However,
recall that there are no known constant-query LDCs with even polynomial length, let
alone such that are also locally testable. Hence, we focus on relaxed-LDCs.2

There are a couple of known constructions of codes that are both locally testable
and relaxed decodable (with constant query complexity). Ben-Sassonet al.[BSGH+06]
observed that their relaxed-LDC can be modified to also be a weak-LTC (i.e., an LTC that
is not strong), while keeping its length nearly-linear. However, the local testability of
their code is inherently weak (see Section 5.1.3 for details). In a recent development, Gur
and Rothblum [GR13c] constructed a relaxed-LDC that is also a strong-LTC, albeit with
polynomial length.

In this chapter, we improve upon the aforementioned results of [BSGH+06] and
[GR13c], achieving the best of both worlds. That is, we construct a code that is both a
strong-LTC and a relaxed-LDC with nearly-linear length.

Theorem 5.1 (informal). There exists a binary linear code that is a relaxed-LDC and a
(one-sided error) strong-LTC with constant relative distance and nearly-linear length.

A formal statement of Theorem 5.1 is given in Section 5.3. We remark that we actually
prove a slightly stronger claim; namely, that any good linear code can be augmented (by
appending additional bits to each codeword) into a code that is both a relaxed-LDC and
a strong-LTC, at the cost of increasing the codeword length from linear to nearly-linear.

On Invoking Testers Prior to Decoders. Recall that for a code that is both locally
testable and decodable, the promise (that the input is close to a codeword) required
by the decoder can be eliminated by invoking the tester first. However, doing so can
potentially hamper the decodability, since the tester is allowed to reject codewords that
are only slightly corrupted. Fortunately, our tester is smooth (i.e., it queries each of the
n bits of a codeword with probability Θ(1/n)), and thus invoking the strong-tester a
carefully chosen number of times (rejecting if one of the invocations rejected) will result
in a tolerant tester (see [GR05, PRR06]). Such a tester will reject inputs that do not

1Note that although the notion of local testability and decodability are related, LTCs do not imply
LDCs (i.e., there are LTCs that are not LDCs) and vice-versa. (See [KV10].)

2A different possible approach to solve this problem is to settle for codes with long length. Indeed, there
are codes with exponential length that are both (constant-query) LDCs and LTCs, e.g., the Hadamard
code. Another approach to solve this problem is to settle for codes with large query complexity. In
a recent work, Guo, Kopparty, and Sudan [GKS13] constructed very short length codes that are both
locally testable and locally decodable, albeit with large (yet needless to say, sub-linear) query complexity.

175

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

satisfy the promise of the decoder, yet still accept slightly-corrupted codewords (with
high probability).

5.1.2 Strong Canonical PCPs of Proximity

The notion of PCPs of proximity plays a major role in many constructions of LTCs and
relaxed-LDCs, as well as in our own. Loosely speaking, PCPs of proximity (PCPPs) are a
variant of PCP proof systems, which can be thought of as the PCP analogue of property
testing. Recall that a standard PCP is given explicit access to a statement (i.e., an
input that is supposedly in some NP language) and oracle access to a proof (i.e., a
“probabilistically checkable” NP witness). The PCP verifier is required to probabilistically
verify whether the (explicitly given) statement is correct, by making few queries to the
alleged proof. In contrast, a PCPP is given oracle access to a statement and to a proof,
and is only allowed to make a small number of queries to both the statement and the
proof. Since a PCPP verifier only sees a small part of the statement (typically, only a
constant number of bits), it cannot be expected to verify the statement precisely. Instead,
it is required only to accept correct statements and reject statements that are far from
being correct (i.e., far in Hamming distance from any valid statement).

PCPs of proximity were first studied by Ben-Sassonet al.[BSGH+06] and by Dinur and
Reingold [DR06] (wherein they are called assignment testers). The main parameters of
interest in a PCPP system for some language L are its query complexity (i.e., the total
number of queries to the input and to the proof that the PCPP verifier makes in order to
determine membership in L) and its proof length, which can be thought as measuring the
amount of redundancy of information in the proof. Ben-Sassonet al.[BSGH+06] showed
a PCPP for any language in NP, with constant query complexity and nearly-linear length
(in fact, the length is n1+o(1), where n is the length of the corresponding NP-witness).

As we have already noted, PCPPs have a central theoretical significance as the prop-
erty testing analogue of PCP proof-systems. Moreover, PCPPs were shown to be useful in
various applications, e.g., for PCP composition and alphabet reduction [BSGH+06, DR06],
and for locally testable and locally decodable codes [BSGH+06, GS06, GR13c]. Further
information regarding the latter application follows.

The notion of locally testable codes and PCPs of proximity are tightly connected. Not
only that PCPPs (and PCPs in general) can be thought of as the computational analogue
of the (combinatorial) notion of LTCs, but also any code can be made locally testable
by using an adequate PCPP. Specifically, Ben-Sassonet al.[BSGH+06] showed that any
linear code can be transformed to a (weak) LTC by appending each codeword with a
PCPP proof that ascertains that the codeword is indeed properly encoded.3 However,
since there is no guarantee that every two different proofs for the same statement are
far (in Hamming distance), in order to prevent deterioration of the distance of the code
two additional steps are taken: Firstly, the appended PCPP proof should be uniquely
determined per codeword (i.e., each codeword has a canonical proof), and secondly, each

3Note that membership in any linear code is in P, and so, the efficient PCPP for NP of Ben-
Sassonet al.[BSGH+06] can handle these statements.

176

5.1 Introduction

codeword is repeated many times so that the PCPP part constitutes only a small fraction
of the total length.

The drawback of the foregoing approach is that it results in locally testable codes
that are inherently weak (i.e., codes that do not allow for proximity-oblivious testing).
To see this, note that PCPPs only guarantee that false assertions are rejected (with high
probability), while true assertions can be accepted even if the proof is incorrect. Hence,
corruptions in the PCPP part are not necessarily detectable and the canonicity of the
PCPP proofs may not be verified, ruling out the possibility of a (strong) tester that is
uniform over all possible values of the proximity parameter.4 Moreover, when trying to
build strong-LTCs, an additional problem that arises is that, by definition, PCPPs do
not necessarily provide strong soundness, i.e., reject false proofs with probability that
depends only on their distance from a correct proof.

Motivated by constructing strong locally testable codes, Goldreich and Sudan [GS06,
Section 5.3] considered a natural strengthening of the notion of PCPPs, known as strong
canonical PCPs of proximity (hereafter scPCPP), which addresses the aforementioned is-
sues. Loosely speaking, scPCPP are PCPPs with strong soundness that are required to
reject “wrong” proofs, even for correct statements. Moreover, they require that each
correct statement will only have one acceptable proof. In more detail, scPCPP are PCPP
with two additional requirements: (1) canonicity : for every true statement there exists a
unique proof (called the canonical proof) that the verifier is required to accept, and any
other proof (even for a correct statement) must be rejected, and (2) strong soundness :
the scPCPP verifier is required to be proximity oblivious and reject any pair of state-
ment and proof with probability that is related to its distance from a true statement
and its corresponding canonical proof. A formal definition of scPCPPs can be found in
Section 5.2.4.

Given a construction of adequate scPCPPs, the aforementioned strategy of appending
each codeword with an efficient scPCPP (which ascertains membership in a code) will
allow to transform any code to a strong-LTC. Unfortunately, unlike standard PCPPs,
for which there are efficient constructions for any language in NP, there are no known
constructions of general-purpose scPCPPs. Yet, Goldreich and Sudan constructed a mech-
anism, called linear inner proof systems (LIPS), which is closely related to some special-
purpose scPCPPs. Loosely speaking, the LIPS mechanism allows to transform linear
strong locally testable codes over a large alphabet into strong locally testable codes over
a smaller alphabet (see [GS06, Section 5.2] for further details). By a highly non-trivial
construction and usage of the LIPS mechanism, Goldreich and Sudan showed efficient
constructions of strong-LTCs. Unfourtunately, their constructions do not meet our needs.
Nevertheless, building upon their techniques, we show strong canonical PCPs of proximity

4In contrast, note that for weak LTCs this problem can be ignored by simply making the PCPPs
themselves a sufficiently small part of the codewords. Recall that weak LTCs are allowed to only work
for values of the proximity parameter that are sufficiently large to ensure that the concatenation of a
corrupted codeword and its corresponding PCPP sequence will include (significant) corruption in the
codeword part. Thus, there is no need to verify the canonicity or even validity of the PCPP proof.
However, when we seek to achieve the stronger definition of LTCs (i.e., strong-LTCs), this problem becomes
relevant (and cannot be ignored).

177

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

with polynomial length for any good linear code.

Theorem 5.2 (scPCPP for good codes — informal). Let C be a linear code with constant
relative distance and linear length. Then, there exists a scPCPP with polynomial proof
length for membership in the set of all codewords of C.

In fact, we actually prove a slightly stronger statement. Specifically, our scPCPPs sat-
isfy two additional properties that will be useful for our main construction: The scPCPP
proofs are linear (over GF(2)), and the queries that the verifier makes are roughly uniform.
We remark that not only that the scPCPPs in Theorem 5.2 are crucial to our construction
(see Section 5.1.4 for details), we also view these scPCPPs as interesting on their own. A
formal statement of Theorem 5.2 and its proof are presented in Section 5.6.

5.1.3 Previous Works and Techniques

In this subsection, we survey the previous works and techniques regarding relaxed-LDCs
upon which we build. We start by recalling the construction of the (nearly) quadratic
length relaxed-LDC of Ben-Sassonet al.[BSGH+06, Section 4.2]. The core idea that under-
lies their construction is to partition each codeword into three parts: The first providing
the distance property, the second allowing for “local decodability”, and the third ascer-
taining the consistency of the first two parts. The natural decoder for such a code will
verify the consistency of the first two parts via the third part and decode according to
the second part in case it detects no consistency error. Details follow.

Let C be any good linear code (i.e., a code with constant relative distance and linear
length). Ben-Sassonet al.construct a new code C ′ whose codewords consist of three parts
of equal length: (1) repetitions of a good codeword C(x) that encodes the message x; (2)
repetitions of the explicitly given message x; and (3) PCPPs that ascertain the consistency
of each individual bit in the message x (which is explicitly given in the second part) with
the codeword C(x) (which is explicitly given in the first part). We remark that since the
total length of the PCPPs is significantly longer than the statements they ascertain, the
desired length proportions are obtained by the repetitions in the first two parts. Observe
that the first part grants the new code C ′ good distance (although it may not be locally
decodable), the second part allows for a highly efficient decoding of the message (at the
cost of reducing the distance), and the third part is needed in order to guarantee that the
first two parts refer to the same message. The (relaxed) decoder for C ′ will use the PCPPs
in the third part in order to verify that the first part (the codeword C(x)) is consistent
with the bit we wish to decode in the second part (the message x). If the PCPP verifier
detects no error, the decoder returns the relevant bit in the second part; otherwise, it
returns an abort symbol.

In order to implement the aforementioned relaxed-LDC, an adequate PCPP is needed;
that is, an efficient PCPP for verifying the consistency of each individual bit in a mes-
sage x with the codeword C(x). We note that such statements are in P. Recall that
Ben-Sassonet al.[BSGH+06, Section 3] showed PCPPs with nearly-linear length for any
language in NP. Hence, the consistency of each message bit with a codeword of C can

178

5.1 Introduction

be guarantied by a PCPP of length that is nearly-linear in the length of C. Since C ′

is obtained by augmenting a good linear code C with a single PCPP proof per every
message bit (claiming consistency between that bit and the codeword of C), the length of
C ′ is (nearly) quadratic (i.e., length k2+α for an arbitrarily small constant α > 0, where
k is the dimension of the code). We note that Ben-Sassonet al.showed that the length of
C ′ can be improved to nearly-linear by, roughly speaking, partitioning the message into
blocks of various lengths and decoding based on a chain of consistent blocks.5

Recall that any code can be transformed to a weak locally testable code by appending
adequate PCPPs to it (See [BSGH+06, Section 4.1]). Applying this transformation to the
relaxed-LDC does not hamper the relaxed decodability of the code, and only increase
its length by a moderate amount (since the PCPPs are of nearly-linear length); hence
this transformation yields a (constant query) relaxed-LDC with nearly-linear length that
is also a (weak) LTC. We stress that the aforementioned transformation yields local
testability that is inherently weak due to the fact that it uses standard PCPPs. However,
if the PCPPs in use were actually scPCPPs (of nearly-linear length), then the foregoing
code would have been strongly testable.

In a recent work, Gur and Rothblum [GR13c] constructed scPCPPs with polyno-
mial length for the particular family of linear length statements that are needed for the
[BSGH+06] relaxed-LDC. By using these scPCPPs in the construction of [BSGH+06],
they obtained a relaxed-LDC that is also a strong-LTC, albeit with polynomial length
(due to the length of their scPCPPs). While we conjecture it is feasible to construct
nearly-linear length scPCPPs for P (which contains the family of statements we wish to
have scPCPPs for) and even for unique-NP (also known as the class US),6 we do not
obtain such scPCPPs here. Instead, we take an alternative approach, which circumvents
this challenge, as described in the next subsection.

5.1.4 Our Techniques

In this subsection, we present our main techniques and ideas for constructing a relaxed-LDC
with nearly-linear length that is also a strong-LTC. Our starting point is the (weakly
testable) relaxed-LDC construction of Ben-Sassonet al.[BSGH+06]. However, we wish to
replace the PCPPs that they use with scPCPPs, in order to achieve strong local testability.

Since we do not have general-purpose scPCPPs (let alone of near-linear length), we

5To obtain length k1.5+α, the message is partitioned into
√
k blocks, each of length

√
k. Then, the

original message, as well as each of the smaller blocks is encoded by an error-correcting code. For each of
the encoded smaller blocks, the following PCPPs are added: (1) a PCPP that ascertains the consistency
of the encoded block with the encoded original-message; and (2) PCPPs that ascertains the consistency
of each bit in the encoded block with the entire encoded block. Observe that the total encoding length
decreased, since there are

√
k proofs of statements of length O(k) and k proofs of statements of length

O(
√
k), thus, the total length is nearly-linear in k3/2. By repeating this process, we can reduce the length

of the code to k1+α for an arbitrarily small constant α > 0 (see [BSGH+06, Section 4.2] for details).
6We note that the class unique-NP(i.e., the class of NP problems with unique witnesses) seems more

likely to have scPCPPs than NP. This is because a language in NP may have many witnesses per instance,
and it is not clear how to recognize the “canonical” NP-witness.

179

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

construct special-purpose scPCPPs that allow us to ascertain the particular statements
we are interested in (see Theorem 5.2). It is crucial to note that the scPCPPs we are able
to construct are with polynomial proof length (and not nearly-linear length, as we would
have hoped). Recall that the statements that are needed for the construction of Ben-
Sassonet al.(i.e., ascertaining the consistency of each bit of the message with the entire
codeword for decodability, and ascertaining the validity of the codeword for testability)
are linear in the length of the message. Therefore, applying our scPCPPs in a naive
way (i.e., replacing the PCPPs in the construction of Ben-Sassonet al.with our scPCPPs)
would yield codes with polynomial length, whereas we are aiming for nearly-linear length.
Instead, we use an alternative approach.

The key idea is to provide scPCPPs that only refer to sufficiently short statements
such that even with the polynomial blow-up of the scPCPP, the length of each proof
would still be sub-linear. Specifically, instead of providing proofs for the validity of the
entire codeword and the consistency of each message bit with the entire codeword (as
in [BSGH+06]), we provide proofs for the consistency of each message bit with “small”
parts of the code and for the validity of these small parts. If each part is sufficiently small
(i.e., of length kα for an arbitrarily small constant α > 0, where k is the length of the
message), then we can still obtain a code with nearly-linear length, even when providing
polynomial length proofs for all of the small parts.

The caveat, however, is that proving that each message bit is consistent with a small
part (or local view) of a codeword does not necessary imply that the message bit is
consistent with the entire codeword. Similarly, partitioning a codeword into small parts
and proving the validity of each part does not imply the validity of the entire codeword.
Therefore, we need the base code (to which we append scPCPPs) to be highly structured
so that, loosely speaking, the local consistency and validity we are able to ascertain can
be used to enforce global consistency and validity. Concretely, the strategy we employ
is using tensor codes and proving that this family of codes has features that allow us to
overcome the aforementioned caveat. Details follow.

Given a linear code C : {0, 1}k → {0, 1}n, the tensor code C ⊗C : {0, 1}k2 → {0, 1}n2

consists of all n×n matrices whose rows and columns are codewords of C. Similarly, the
d-dimensional tensor code C⊗d = C ⊗ C ⊗ · · · ⊗ C︸ ︷︷ ︸

d times

: {0, 1}kd → {0, 1}nd is defined in the

natural way. Namely, C⊗d consists of all n× n× · · · × n︸ ︷︷ ︸
d times

-dimensional tensors such that

each (axis-parallel) line in the tensor is a codeword of C.7 (See Section 5.2.3 for the exact
definitions.)

Taking a brief pause, we mention that the use of tensor products towards the con-
struction of local testable codes was suggested by Ben-Sasson and Sudan [BS06] who
initiated the study of tensor codes in the context of local testability. As hinted above
and will become evident next, tensor codes are a key ingredient in our constructions,
and we rely on a recent analysis of the testability of these codes (provided recently by

7Axis-parallel lines in high-dimensional tensors simply generalize the notion of rows and columns in
n× n matrices.

180

5.1 Introduction

Viderman [Vid12], which builds upon Ben-Sasson and Sudan [BS06]).

Towards obtaining relaxed local decodability, we show that tensor codes satisfy a
feature, which we call local propagation, that allows us to verify global consistency state-
ments (such as the ones that are used in the [BSGH+06] relaxed-LDC) by verifying local
consistency statements, which we can afford to prove with polynomial length scPCPPs;
the local propagation feature of tensor codes is discussed in Section 5.4. Hence, we can
ascertain that the value at each point in the tensor is consistent with the entire codeword
by verifying the consistency of a constant number of randomly selected statements re-
garding small parts of the tensor (specifically, statements of consistency between the value
at a point in the tensor and a line that passes through it). We remark that Theorem 5.2
can be used to derive polynomial-length scPCPPs for such statements (see Section 5.6).
Therefore, we can replace the nearly-linear length PCPPs that are used in [BSGH+06]
with our polynomial length scPCPPs, while preserving the functionality of relaxed local
decoding and keeping the total length of the construction nearly-linear. (See Section 5.4
for a more detailed high-level description of our approach, followed by a full proof in
Section 5.4.2.)

Recapping, so far our construction is as follows. Let C be a good linear code and d ∈ N
be a sufficiently large constant. Each codeword of our code consists of the following equal-
length parts: (1) repetitions of the tensor codeword C⊗d(x) that encodes the message x;
(2) repetitions of the explicitly given message x; and (3) scPCPPs for small statements
(specifically, regarding the consistency of each point in the tensor C⊗d(x) with each line
that passes through it), which are used to ascertain the consistency of each individual bit
in the message x with the codeword C⊗d(x).8

Finally, we augment the aforementioned construction with a forth and last part that
allows us to obtain strong local testability. The naive approach is to append a scPCPP
that ascertains the validity of all three parts of our code. However, since the length of our
scPCPPs is polynomial in the length of the statement, this approach would yield codes
with long (polynomial) length. Instead, recall that we can (strongly) test the consistency
of the first two parts via the third part (which is also strongly testable, since it is a
scPCPP). Thus, in order to obtain strong local testability it suffices to ascertain that the
first part is a valid codeword of C⊗d using scPCPPs. Luckily, tensor codes also satisfy
the robustness feature, which allows us to ascertain the validity of an entire codeword of
C⊗d by ascertaining the validity of small parts of the codeword. Detail follows.

Loosely speaking, a code is said to be robust if the corruption in a random “local
view” of a codeword is proportional to the corruption in the entire codeword [BS06]. In
more detail, we use a recent result of Viderman [Vid12] (building on Ben-Sasson and
Sudan [BS06]) that states that the corruption in a random 2-dimensional (axis-parallel)
plane of a corrupted codeword of a binary tensor code C⊗d (where d ≥ 3) is proportional
to the corruption in the entire codeword. This feature allows us to ascertain the validity
of the first part (i.e., the tensor codeword C⊗d(x)) by only providing scPCPPs for short

8We remark that the actual construction differs slightly from the above in that, for convenience, we
use systematic tensor codes that contain the message explicitly in the encoding, instead of providing
repetitions of the message as a part of the code.

181

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

statements that refer to 2-dimensional planes in C⊗d(x). (See Section 5.5 for a more
detailed high-level description, followed by a full proof.)

We remark that, for simplicity, we use the foregoing result in [Vid12] rather than
[BS06], because the latter requires the base code C to have a large relative distance,
which can only be obtained by codes with a sufficiently large alphabet. In contrast, we
rely on the fact that our codes are binary in many places throughout our construction,
most notably in our PCPPs (Theorem 5.6). Thus, it is convenient to use the stronger
result in [Vid12], which allows us to work with binary codes throughout the construction.

5.1.5 Applications to Property Testing

As an application of our main result (Theorem 5.1) we improve on the best known
separation result (due to [GR13c]) between the complexity of decision and verification in
the setting of property testing.

The study of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldre-
ich, Goldwasser and Ron [GGR98], considers highly-efficient randomized algorithms that
solve approximate decision problems, while only inspecting a small fraction of the input.
Recently, Gur and Rothblum [GR13c] initiated the study of MA proofs of proximity (here-
after MAPs), which can be viewed as the NP analogue of property testing. They reduced
the task of separating the power of property testers and MAPs to the design of very local
codes, both in terms of testability and decodability. Furthermore, they noticed that for
such a separation, relaxed decodability would suffice.

Gur and Rothblum used several weaker codes to obtain weaker separation results
than the one we obtain here. Specifically, they either show a smaller gap between the
query complexity of testers and MAPs, or show a separation for a limited range of the
proximity parameter. In contrast, by plugging-in the code of Theorem 5.1, we obtain
the best known (exponential) separation result between the power of MAPs and property
testers.

Theorem 5.3 (Informal). There exists a property that requires n0.999 queries for ev-
ery property tester but has an MAP that uses a proof of logarithmic length and makes
poly(1/ε) queries.

For more information regarding this application, we refer the reader to Section 5.7.

5.1.6 Organization.

In Section 5.2 we provide the preliminaries. In Section 5.3 we describe the construction
of the codes that establish Theorem 5.1. In Section 5.4 and Section 5.5 we establish
the relaxed local decodability and strong local testability (respectively) of the codes.
In Section 5.6 we construct the scPCPPs needed for our construction, and finally, in
Section 5.7 we present an application of our codes for property testing.

182

5.2 Preliminaries

5.2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}.
For i ∈ [n] and for x ∈ {0, 1}n, denote by xi the ith bit of x. For x, y ∈ {0, 1}n, we
denote by ∆(x, y) the Hamming distance between x and y, and denote by δ(x, y) the
relative (Hamming) distance between x and y, i.e., δ(x, y) = ∆(x, y)/n. We say that x is
δ-close to (respectively, δ-far from) y if the relative distance between x and y is at most
δ (respectively, at least δ).

Given a set S, we denote by s∈RS the distribution that is obtained by selecting
uniformly at random s ∈ S. For a randomized algorithm A, we write PrA[·] (or EA[·])
to state that the probability (or expectation) is over the internal randomness of the
algorithm A.

(Non) Uniformity. Throughout this chapter, for the simplification of the presenta-
tion, we formally treat algorithms (testers, decoders, and verifiers) as (non-uniform)
polynomial-size circuits. We note, however, that all of our algorithms can be made uni-
form by making straightforward modifications. Furthermore, it will be convenient for us
to view the length n ∈ N of objects as fixed. We note that although we fix n, it should be
viewed as a generic parameter, and so we allow ourselves to write asymptotic expressions
such as poly(n), O(n), etc. In contrast, when we say that something is a constant, we
mean that it is independent of the length parameter n.

5.2.1 Error Correcting Codes

Let k, n ∈ N. A binary linear code C : {0, 1}k → {0, 1}n of distance d is a linear mapping
over GF(2), which maps messages to codewords, such that the Hamming distance between
any two codewords is at least d = d(n). The relative distance of C, denoted by δ(C), is
given by d/n. The length of a code is n = n(k). By slightly abusing notation, we say
that we can construct a code C with nearly linear length if for any constant α > 0 we can
construct a code C : {0, 1}k → {0, 1}n, where n = k1+α. For any x ∈ {0, 1}n, denote the
relative distance of x to the code C by δC(x) = miny∈C{δ(x, y)}.

We say that C is systematic, if the first k bits of every codeword of C contain the
message; that is, if for every x ∈ {0, 1}k and every i ∈ [k] it holds that C(x)i = xi. Since
C is a linear code, we may assume without loss of generality that it is systematic.

5.2.2 Local Testability and Decodability

Following the discussion in the introduction, strong locally testable codes are defined as
follows.

Definition 5.1 (strong-LTC). A code C : {0, 1}k → {0, 1}n is a strong-LTC, if there
exists a probabilistic algorithm (tester) T that, given oracle access to w ∈ {0, 1}n, makes
O(1) queries to w, and satisfies:

183

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

1. Completeness: For any codeword w of C it holds that Tw = 1.

2. Strong Soundness: For all w ∈ {0, 1}n,

Pr
T

[Tw = 0] ≥ poly
(
δC(w)

)
.

We say that a tester makes nearly-uniform queries if it queries each bit in the (alleged)
codeword input w ∈ {0, 1}n with probability Θ(1/n).

Following the discussion in the introduction, relaxed locally decodable codes are de-
fined as follows.

Definition 5.2 (relaxed-LDC). A code C : {0, 1}k → {0, 1}n is a relaxed-LDC if there
exists a constant δradius ∈ (0, δ(C)/2), a constant ρ > 0 and a probabilistic algorithm
(decoder) D that, given oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes
O(1) queries to w, and satisfies:

1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.

2. Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close to a
codeword C(x),9 it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

3. Success Rate: For every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for
at least a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder
D outputs the ith bit of x. That is, there exists a set Iw ⊆ [l] of size at least ρk such
that for every i ∈ Iw it holds that PrD [Dw(i) = xi] ≥ 2/3.

We remark that our definition is slightly stronger than the one given in [BSGH+06] as
we require prefect completeness (i.e., that the decoder always outputs the correct value
given oracle access to a valid codeword of the code C).

5.2.3 Tensor Codes

Tensor codes are defined as follows.

Definition 5.3. Let C : {0, 1}k → {0, 1}n be a linear code. The tensor code C ⊗ C :
{0, 1}k2 → {0, 1}n2

is the code whose codewords consists of all n × n matrices such that
each axis-parallel line (i.e., a row or a column) in the matrix is a codeword of C. Similarly,
given d ∈ N, the tensor code C⊗d : {0, 1}kd → {0, 1}nd is the code whose codewords
consists of all d-dimensional tensors such that each axis-parallel line in the tensor is a
codeword of C.

9Note that since δradius < δ(C)/2, for every x ∈ {0, 1}n that is δradius-close to C there exists a unique
codeword x′ of C such that x is δC′(x)-close to x′.

184

5.2 Preliminaries

It is well-known that for every d ∈ N the tensor code C⊗d is a linear code with
relative distance δ(C)d (see e.g., [BS06]). Given a message x ∈ {0, 1}kd and coordinate
ı̄ = (̄ı1, . . . , ı̄d) ∈ [n]d, we denote the value of C⊗d(x) at coordinate ı̄ by C⊗d(x)ı̄.

Remark 5.4. By the definition of tensor codes, if a linear code C is systematic, then the
tensor code C⊗d is also a systematic code;10 that is, for every x ∈ {0, 1}kd and ı̄ ∈ [k]d it
holds that C⊗d(x)ı̄ = xı̄.

Next, we provide notations for the restriction of tensors to lines and planes. We start
by defining axis-parallel lines.

Definition 5.5 (Axis-Parallel Lines). For j ∈ [d] and ı̄ = (i1, . . . , id) ∈ [n]d, we denote
by `j,̄ı the jth axis-parallel line passing through ı̄. That is,

`j,̄ı = {(i1, . . . , ij−1, x, ij+1, . . . , id)}x∈[n] .

We denote by Lines(n, d) the multi-set that contains all axis-parallel lines that pass through
each point ı̄ ∈ [n]d.11 That is, Lines(n, d) = {`j,̄ı}ı̄∈[n]d,j∈[d]. Lastly, given a tensor w ∈
{0, 1}nd we denote by w|`i,j ∈ {0, 1}n the restriction of w to the line `i,j, i.e., the jth

axis-parallel line that passes through ı̄.

Next, we define axis-parallel planes.

Definition 5.6 (Axis-Parallel (2-dimensional) Planes). For j1 < j2 ∈ [d] and ı̄ =
(i1, . . . , id) ∈ [n]d, we denote by pj1,j2 ,̄ı the (j1, j2)th axis-parallel plane passing through
the point ı̄. That is

pj1,j2 ,̄ı = {(i1, . . . , ij1−1, x1, ij1+1, . . . , ij2−1, x2, ij2+1, . . . , id)}x1,x2∈[n] .

We denote by Planes(n, d) the set of all (distinct) axis-parallel planes in all directions in
{0, 1}nd.12 Lastly, for a tensor w ∈ {0, 1}nd and a plane p ∈ Planes(n, d) we denote by
w|p ∈ {0, 1}n

2
the restriction of w to the coordinates in the plane p.

Throughout this chapter we deal with axis-parallel lines (respectively, axis-parallel
planes); hence, for brevity, we will sometimes refer to an axis-parallel line (respectively,
axis-parallel plane) simply as a line (respectively, plane). We remark that the multi-set
Lines(n, d) contains d ·nd lines and the set Planes(n, d) contains

(
d
2

)
·nd−2 planes. We omit

the parameters n and d when they are clear from the context.

10We view the restriction of the tensor C⊗d to the coordinates in [k]d as the prefix of C⊗d.
11Note that each axis-parallel line in {0, 1}nd appears n times in Lines(n, d).
12Unlike the multi-set Lines(n, d), which contains n copies of each line, there is no redundancy in the

set Planes(n, d).

185

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Testing Tensor Codes. The next theorem, which is implicit in [Vid12], shows that
for every d ≥ 3 and every linear code C, testing the tensor-code C⊗d can be reduced to
testing whether a random plane in C is a codeword of C⊗2.

Theorem 5.4. Let C be a linear binary code and d ≥ 3 an integer. Then, there exists a
constant crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd it holds that

E
p∈RPlanes

[
δ
(
w|p, C⊗2

)]
> crobust · δC⊗d(w).

Specifically, in [Vid12, Theorem A.5] it is shown that for d ≥ 3, if a codeword w of
a tensor code C⊗d is corrupted, then the corruption in a random (d − 1)-dimensional
subplane of w is proportional to the corruption in the entire tensor w. By applying this
result recursively (a constant number of times), we obtain Theorem 5.4. For completeness,
we provide the proof of Theorem 5.4 in Section 5.8.3.

5.2.4 PCPs of Proximity

Strong canonical PCPs of proximity were defined as follows in [GS06, Section 5.3].

Definition 5.7 (scPCPPs). Let V be a probabilistic algorithm (verifier) that is given
oracle access to an input x ∈ {0, 1}n and oracle access to a proof π ∈ {0, 1}`(n), where
` : N → N satisfies `(n) ≤ exp

(
poly(n)

)
. We say that V is a strong (canonical) PCPP

verifier for language L if it makes O(1) queries and satisfies the following two conditions:

• Canonical Completeness: For all x ∈ L, there exists a unique canonical proof for x,
denoted πcanonical(x), such that the verifier always accepts the pair (x, πcanonical(x));
i.e., V x,πcanonical(x) = 1.

• Strong Canonical Soundness: For any input x′ ∈ {0, 1}n and proof π′ ∈ {0, 1}`(|x|)
the verifier rejects with probability at least poly

(
δPCPP(x′, π′)

)
, where

δPCPP(x′, π′) , min
x∈{0,1}n

{
max

(
∆(x, x′)

n
;

∆(πcanonical(x), π′)

`(n)

)}
, (5.1)

where for any x /∈ L we define πcanonical(x) = λ and say that any π′ is 1-far from λ.

We say that a scPCPP verifier makes nearly-uniform queries if it queries each bit in the
input x with probability Θ(1/|x|) and queries each bit in the proof π(x) with probability
Θ(1/|π|).

We stress that these scPCPPs have one-sided error (i.e., they always accept inputs in
L coupled with their canonical proofs). Note that the canonical aspect is reflected in the
dependence of δPCPP(x′, π′) on ∆(πcanonical(x), π′), whereas the strong-soundness aspect is
reflected in the tight relation between the rejection probability and δPCPP(x′, π′).

186

5.3 The Main Construction

5.3 The Main Construction

In this section we describe our construction of a family of binary linear codes that are
both (constant-query) relaxed-LDCs and strong-LTCs with constant relative distance and
nearly-linear length. Our codes rely heavily on special-purpose strong canonical PCPs of
proximity (with polynomial proof length), which we construct in Section 5.6, and so, we
start by stating these scPCPPs. Our first family of scPCPPs is for good linear codes.

Theorem 5.5 (scPCPPs for good codes). Let C : {0, 1}k → {0, 1}n be a linear code with
constant relative distance and linear length. Then, there exists a scPCPP for codewords
of C (i.e., for the set {C(x) }x∈{0,1}k). Furthermore, the proof length of the scPCPP is
poly(n), the scPCPP verifier makes nearly-uniform queries, and the canonical scPCPP
proofs are linear (over GF(2)).

As a corollary of Theorem 5.5, we obtain a family of scPCPPs for half-spaces of any
good linear code. That is, scPCPPs that ascertain membership in the set of all codewords
wherein one given location is set to a specific value (for example, all codewords that have
1 in their first location).

Theorem 5.6 (scPCPPs for half-spaces of good codes). Let C : {0, 1}k → {0, 1}n be a
linear code with constant relative distance and linear length. Let i ∈ [k] be a location in a
message and b ∈ {0, 1} a bit. Then, there exists a scPCPP for Ci,b, where Ci,b is the set
of all codewords w of C such that the ith-bit of w equals b (i.e., wi = b). Furthermore, the
proof length of the scPCPP is poly(n), the scPCPP verifier makes nearly-uniform queries,
and the scPCPP proofs are linear (over GF(2)).

See Section 5.6 for the full proofs of Theorems 5.5 and 5.6. Equipped with the foregoing
scPCPPs, we describe the construction of our code, which consists of three parts. (See
Section 5.2 for relevant notation.)

Tensor code part. Let C0 : {0, 1}k → {0, 1}n be a systematic linear code with linear
length (i.e., n = Θ(k)) and constant relative distance 0 < δ(C0) < 1. Let d ≥ 3 be a
sufficiently large constant (to be determined later). Let C , (C0)⊗d : {0, 1}kd → {0, 1}nd

be the d-tensor product of C0. By Remark 5.4, since C0 is systematic, then C is also
systematic. Recall that δ(C) = δ(C0)d, hence δ(C) is a constant.

We augment the code C with scPCPPs that ascertain the validity of each plane in C
(using Theorem 5.5) and scPCPPs that ascertain the consistency of each bit in C with
each line that passes through it (using Theorem 5.6). Details follow.

Plane scPCPPs part. Let C(x) be a codeword of the tensor code C. For every plane p
in the tensor C(x) we use our scPCPPs for good codes to prove that the restriction of C(x)
to the plane p (denoted by C(x)|p) is a codeword of C⊗2

0 . Specifically, for a codeword w
of C⊗2

0 we denote by πplane(w) the corresponding canonical proof for the scPCPP verifier

187

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

of Theorem 5.5. Then, for every message x ∈ {0, 1}kd we define πplanes(x) as the sequence
of the canonical proofs for all planes in C(x); that is,

πplanes(x) = {πplane(C(x)|p)}p∈Planes,

where Planes is the set of all (2-dimensional) axis-parallel planes in {0, 1}nd (see Defini-
tion 5.6).

We append πplanes(x) to the codeword C(x). Note that |πplanes(x)| =
(
d
2

)
nd−2·|πplane(C(x)|p)| ≤

nd+O(1). We stress that the constant in the O(1) notation does not depend on d. These
scPCPPs will be used for the local testability of our code (see Section 5.5).

Point-line scPCPPs part. Let C(x) be a codeword of the tensor code C. For every
point ı̄ = (i1, . . . , id) ∈ [n]d and every direction j ∈ [d] we use our scPCPPs for half-spaces
of good codes to prove that the restriction of C(x) to the line that passes through point
ı̄ in direction j (denoted by C(x)|`j,ı̄) is a codeword of C0 that is consistent with value
of C(x) at point ı̄.13 Specifically, for a codeword w of C0 and index s ∈ [n] we denote by
πline(w, s) the canonical proof for the scPCPP verifier of Theorem 5.6 (which corresponds
to codewords of C0 whose sth-bit equals to ws). Then, for every message x ∈ {0, 1}kd we
define πlines(x) as the set of the canonical proofs for all lines passing through each point
in C(x); that is,

πlines(x) = {πline(C(x)|`j,ı̄ , ij)}`j,ı̄∈Lines,

where Lines = {`j,̄ı}ı̄∈[n]d,j∈[d], as in Definition 5.5 (i.e., the set Lines contains all axis-

parallel lines that pass through each point ı̄ ∈ [n]d).
We append πlines(x) to the codeword C(x). Note that |πlines(x)| = d·nd·|πline(C(x)|`)| ≤

nd+O(1), where the constant in the O(1) notation does not depend on d. These scPCPPs
will be used for the relaxed local decodability of our code (see Section 5.4).

Putting it all together. Our construction is obtained by combining the tensor code-
word C(x) with πlines(x) and πplanes(x), while ensuring that the three parts are of equal
length. That is, for k′ = kd define C ′ : {0, 1}k′ → {0, 1}n′ as follows.

C ′(x) ,
(

(C(x))t1 , (πlines(x))t2 , (πplanes(x))t3
)

where t1, t2 and t3 are the minimal integers such that |C(w)|t1 = |πlines(w)|t2 = |πplanes(w)|t3 .14

Length and relative-distance of C ′. For sufficiently large d the length of C ′ is nearly-
linear. To this end, observe that for every x ∈ {0, 1}kd it holds that |C(x)| = nd,

13Note that the ı̄th-bit of C(x) is, in fact, the ij
th-bit of the line C(x)|`j,ı̄ .

14Ignoring integrality issues, we can say that we “blow” the lengths of the two shorter parts to match
the length of the longest part, which (in case of our implementation of the scPCPPs) is the part of the
plane scPCPPs. Hence, actually, t3 = 1.

188

5.4 Establishing the Relaxed-LDC Property

|πlines(x)| ≤ poly(n) and |πplanes(x)| ≤ poly(n2). Hence, for every constant α > 0, there
exists some constant d > 0 so that

n′ = nd+O(1) = (O(1) · k)d+O(1) ≤ (k′)
1+α

.

The code C ′ has constant relative distance since the relative distance of C (denoted
by δ(C)) is constant, and since repetitions of C constitute a third of the length of C ′;

that is, δ(C ′) ≥ δ(C)
3

. In the next sections we prove the following theorem.

Theorem 5.7. thm:code[restated] For every constant α > 0, there exists some constant
d ≥ 0 so that the code C ′ : {0, 1}k′ → {0, 1}n′, as defined above, is a linear binary code
that is a relaxed-LDC and a strong-LTC with constant relative distance.

Specifically, in Section 5.4 we prove the relaxed-LDC feature of C ′, and in Section 5.5 we
prove the strong-LTC feature of C ′.

(Alleged) Codeword Notations. Consider an arbitrary string w ∈ {0, 1}n′ (which
we think of as an alleged codeword). We view w as a string composed of three parts
(analogous to the three parts of the construction above):

1. c̄ = (c1, . . . , ct1) : the t1 alleged repetitions of the tensor code part.

2. p̄lines =
(
p̄lines1 , . . . , p̄linest2

)
: the t2 alleged repetitions of the scPCPP proofs for all the

point-line pairs (i.e., lines passing through all coordinates in all directions). For
every i ∈ [t2], the string p̄linesi consists of scPCPP proofs for every point-line pair,
i.e., p̄linesi = {p`i}`∈Lines.

3. p̄planes =
(
p̄planes1 , . . . , p̄planest3

)
: the t3 alleged repetitions of the scPCPP proofs for all

the (2-dimensional) planes. For every i ∈ [t3], the string p̄planesi consists of scPCPP
proofs for every plane, i.e., p̄planesi = {ppi }p∈Planes.

5.4 Establishing the Relaxed-LDC Property

In this section we prove that the code C ′, which was defined in Section 5.3, is a relaxed
locally decodable code.

Theorem 5.8. The code C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC.

In order to prove Theorem 5.8, it would be convenient to use an alternative definition
of relaxed-LDCs, which implies the standard definition (Definition 6.3) by applying known
transformations. Specifically, in Section 5.8.4 (following [BSGH+06, Section 4.2]) we
show that it suffices to relax the soundness parameter in Definition 6.3 to Ω(1) (instead
of 2/3), and replace the success rate condition with the following average smoothness
condition. Loosely speaking, average smoothness requires that the decoder makes nearly
uniform queries on average (over all indices to be decoded). By the foregoing, to prove
Theorem 5.8 it suffices to show that the code C ′ satisfies the following definition.

189

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Definition 5.8 (Modified relaxed-LDCs). A code C : {0, 1}k → {0, 1}n is a modified
relaxed-LDC if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm
(decoder) D that, given oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes
q = O(1) queries to w, and satisfies:

1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.

2. Modified Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close
to a codeword C(x) it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] = Ω(1).

where δradius ∈ (0, δ(C ′)/2), the decoding radius of C, is a universal constant, to be
determined later.

3. Average Smoothness: for every w ∈ {0, 1}n and v ∈ [n],

Pr
i,j,r

[Dw(i, j, r) = v] <
2

n
,

where Dw(i, j, r) denotes the distribution of the jth query of the decoder Dw on
coordinate i and coin tosses r, where the probability is taken uniformly over all
possible choices of i ∈ [k], j ∈ [q], and coin tosses r.

We remark that in [BSGH+06, Section 4.2], the definition of average smoothness also
requires a matching lower bound, i.e., the decoder should satisfy 1

2n
< Pri,j,r [Dw(i, j, r) = v] <

2
n
. However, for our applications it suffices to only require the upper bound. We note

that the lower bound can be easily obtained by adding (random) dummy queries.
We start by showing a decoder that satisfies the first two aforementioned conditions

(i.e., the completeness condition and the modified relaxed soundness). Next, in Sec-
tion 5.4.3 we show how to obtain a related decoder that also satisfies the average smooth-
ness condition.

The Setting. Consider an arbitrary input w ∈ {0, 1}n′ such that 0 ≤ δC′(w) < δradius.
We view w as a string composed of three parts as in Section 5.3, i.e., w = (c̄, p̄lines, p̄planes).
We stress that any part of w might suffer from corruptions, and so, we have to be able to
decode correctly assuming that not too many corruptions have occurred (i.e., less than
δradius fraction). Denote by x the unique string such that w is δC′(w)-close to C(x) (see
Footnote 9).

High-Level Idea. Recall that a valid codeword of C ′ consists of three (repeated) parts:
(1) a systematic tensor code C, (2) point-line scPCPPs, and (3) plane scPCPPs. Our
general approach is to decode according to the prefix of the first part (which allegedly
contains the message x explicitly (since we use a systematic code), and to use the second
part to ensure that each bit in message x is consistent with the rest of the (tensor)

190

5.4 Establishing the Relaxed-LDC Property

codeword C(x). (The third part is not used here; it is only used for the testability of
the code.) Thus, the task of (relaxed) decoding the ith bit of the message is reduced to
verifying that the explicitly given value of the ith bit of the message is consistent with
the rest of the codeword.

Towards this end, recall that the second part of each codeword contains scPCPPs that
ascertain the consistency of each bit in the tensor with each line that passes through it,
but not consistency with the entire tensor. Therefore, in order to verify the consistency
of each message bit with the entire codeword, our decoder uses a feature of tensor codes,
which we call local propagation. This feature allows us to verify the consistency of a single
message bit with the entire codeword by verifying the consistency of a carefully chosen
sequence of d point-line pairs (using the point-line scPCPP). Details follow.

Loosely speaking, the local propagation feature of tensor codes implies that if one
corrupts a single point in a codeword and attempts to keep most local views (say, lines
in the tensor) consistent with this corruption, then a chain of highly structured modifi-
cations must be made that causes the “corruption” to propagate throughout the entire
tensor. This is best exemplified by our decoder, which is tailored to take advantage of
the foregoing phenomena.

Our decoder is given a coordinate ı̄ = (i1, . . . , id) ∈ [k]d and oracle access to an alleged
codeword w as above. The decoder looks for “inconsistencies” in w and if it finds any,
it outputs ⊥. Otherwise, it simply output wı̄ (which should contain the ı̄th bit of the
message). Since our base code C0 has constant relative distance, in order to “corrupt” the
point ı̄ in the tensor code without causing the lines that pass through ı̄ to be inconsistent
with the corrupted value at ı̄, one has to corrupt a constant fraction of each line on which
ı̄ resides. Thus, our decoder uses the scPCPPs to verify that a line ` that passes through ı̄
is consistent with the value at ı̄, assuring that a constant fraction of many lines on which
ı̄ resides is corrupted.

Similarly, in order to “corrupt” a constant fraction of the line ` in the tensor codeword
without causing inconsistency between the corrupted points in ` and the lines that pass
through these corrupted points, one has to change a constant fraction of each line that
passes through a corrupted point in ` (therefore, corrupting a constant fraction of each
plane wherein the line ` resides). Thus, our decoder uses the scPCPPs to verify that the
line that passes through a random point ı̄′ in ` (which is corrupted with probability Ω(1))
is consistent with the value at ı̄′, assuring that a constant fraction of many planes on
which line ` resides were corrupted.

Thus, if the ı̄th point of the tensor codeword (i.e., the bit we wish to decode) is
corrupted, then by iteratively continuing this procedure d times, and only performing d
point-line consistency tests, the decoder can detect the corruption in ı̄ with high proba-
bility, unless a large fraction of the codeword is corrupted (i.e., the corruption at a single
point, ı̄, propagated to the entire tensor).

We remark that in the proof that C ′ is a relaxed-LDC we do not use the strongness
and canonicity properties of the scPCPPs (they are only used to prove that C ′ is a
strong-LTC). Furthermore, since in the following we only wish to present a decoder
satisfies Condition 1 and 2 of Definition 5.8, we can allow the decoder to output a “don’t-

191

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

know” symbol whenever the codeword is corrupted.15 Thus, we are not concerned with
corruptions in the scPCPP parts, since a corruption in these parts can only increase the
rejection probability for strings that are not codewords. Regarding inputs that are legal
codewords, there are no corruptions and hence, no “inconsistencies”. Thus, for legal
codewords our tester will always output the correct value.

5.4.1 Warm-up: Two-Dimensional Tensors

Before we proceed to prove Theorem 5.8, we sketch a proof for two-dimensional tensor
codes; that is, when we set d = 2 in the construction that appears in Section 5.3. In
this warm-up, towards the end of simplifying the presentation, we make the following
assumptions: We omit the third part of the codeword (i.e., the plane scPCPPs), and we
omit the repetitions of the first and second parts of the code (i.e., the tensor code, and
the point-line scPCPPs) and assume instead that the lengths of the first and the second
parts are equal. We note that both assumptions can be easily removed (see Section 5.4.2
for details).

Let w = (c, p) be an alleged codeword that consists of two parts of equal length: (1)
c, an alleged 2-dimensional tensor code C⊗2

0 : {0, 1}k2 → {0, 1}n2
, and (2) p, a sequence

of alleged scPCPPs for every pair of point ı̄ in [n]2 and line ` in C⊗2
0 that passes through

ı̄; each scPCPP ascertains that the line ` is a codeword of C0 that is consistent with the
value at the point ı̄.

Given a point ı̄ = (i1, i2) ∈ [k]2, the decoder first runs the point-line scPCPP that
corresponds to ı̄ and the line `1,̄ı = {(x, i2)}x∈[n] passing through ı̄ in direction “1” (i.e.,
parallel to the first axis), and outputs ⊥ if the scPCPP verifier rejected. Otherwise, the
decoder picks a random point ı̄′ = (i′1, i

′
2) on the line `1,̄ı, runs the corresponding scPCPP

for ı̄′ and the line `2,̄ı′ = {(i′1, x)}x∈[n] that passes through ı̄′ in direction “2”, and output
⊥ if the scPCPP verifier rejected. If none of the scPCPP verifiers rejected, the verifier
outputs cı̄.

For the completeness condition, assume that the decoder is given a valid codeword.
In this case, the first part is indeed a valid copy of C⊗2

0 (x), and the second part consists
of the canonical proofs for C⊗2

0 (x). Hence, all of the scPCPP verifiers accept, and since
C⊗2

0 (x)ı̄ = xı̄, the decoder succeeds in decoding xı̄.
For the (modified) relaxed soundness condition, assume that the decoder is given a

corrupted codeword w = (c, p) that is δ-close to a valid codeword C⊗2
0 (x), where δ ≤ δradius

for a sufficiently small (constant) decoding radius δradius. Note that if cı̄ = xı̄, then the
decoder satisfies the soundness condition (since it always outputs either xi or ⊥); hence,
we assume that cı̄ 6= xı̄. In this case, when the decoder runs the scPCPP verifier for ı̄
and (the restriction of c to) `1,̄ı it does not reject (with high probability) only if C|`1,ı̄ is
“close” to a codeword of C0 that disagrees with c on ı̄ (since the i2

th bit of this codeword

15Recall that the completeness condition of Definition 5.8 requires the decoder to successfully decode
valid codeword, and the modified relaxed soundness condition requires that the decoder does not make
a mistake in the decoding with probability at least Ω(1). However, the decoder is allowed to output a
“don’t-know” symbol with arbitrary probability on any (even on only slightly) corrupted codeword.

192

5.4 Establishing the Relaxed-LDC Property

of C0 must be different than xı̄). Since C0 is a code with constant relative distance, this
implies that a constant fraction of the line `1,̄ı must be corrupted (i.e., the restriction of
c to the line `1,̄ı is Ω(1)-far from its corresponding line in C(x)) for the scPCPP verifier
to accept. Finally, if the decoder selected ı̄′ that is one of the Ω(n) corrupted points
on `1,̄ı, then by the same argument, a constant fraction points on the restriction of c
to the line `2,̄ı′ (that passes through ı̄′) must be corrupted. We deduce that in order to
both scPCPP verifiers to accept (and hence defy the soundness condition), c must contain
Ω(n2) corrupted points, i.e., c should be β-far from C⊗2

0 (x) for some constant β. By fixing
δradius < β, we prevent this possibility.

5.4.2 The General Case

We proceed with the full proof that C ′ has a decoder that satisfies the first two conditions
in the definition of a relaxed-LDC (i.e., the completeness and (modified) relaxed soundness
conditions of Definition 5.8). We generalize the decoder of Section 5.4.1 to d-dimensional
tensors and ensure it works without the assumptions that were made there for simplicity.
The decoder D is formally described in Figure 5.1.

Let ı̄ ∈ [k]d. The completeness of the decoder is immediate from the construction: If
the input is a codeword, i.e., w = C ′(x) and all of the scPCPPs proofs are the canonical
proofs for C ′(x) (i.e., p̄lines and p̄planes), then all of the executions of the scPCPP verifiers
accept (since the scPCPP verifiers are with one-sided error). Recalling that, by definition,
C(x)ı̄ = C⊗d0 (x)ı̄ = xı̄, the decoding procedure Dw (̄ı) returns xı̄ with probability 1, as
required.

Next, we prove the (modified) relaxed soundness of the decoder. Let w ∈ {0, 1}n
be a corrupted codeword that is δradius-close to a codeword C(x), where δradius is a suffi-
ciently small constant, to be determined later. We partition the analysis into three cases
(Claim 5.8.1, Claim 5.8.2, and Lemma 5.9) that we analyze in the rest of this section.
We begin with the following two simple claims.

The first claim shows that probability Ω(1), the random copy c in (c1, . . . , ct1) that is
chosen in Step 1 cannot be “too far” from the codeword C(x).

Claim 5.8.1. With probability at least 1/4, the random copy c is 4δC′(w)-close to C(x),
where c is chosen uniformly at random from c̄. That is,

Pr
c∈R(c1,...,ct1)

[δC(c) ≤ 4δC′(w)] ≥ 1

4
.

Proof. Since |c̄| =
∣∣p̄lines∣∣ =

∣∣p̄planes∣∣, then c̄ = (c1, . . . , ct1) is 3δC′(w)-close to C(x)t1 . This
means that the expected relative distance of a random c ∈ {c1, . . . , ct1} from C(x) is at
most 3δC′(w). Hence, by Markov’s inequality, c is 4δC′(w)-far from C(x) with probability
at most 3/4.

Therefore, throughout the rest of the proof we fix a random copy c and assume that
it is 4δC′(w)-close to C(x). This only costs us at most a constant factor in the success
probability of the decoder. Having fixed c, recall that for ı̄ ∈ [n]d, the notation cı̄ refers

193

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

The relaxed-LDC Procedure for C ′

Input: a coordinate ı̄ ∈ [k]d and an oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let Vs,b be a scPCPP verifier that refers to an input of the form
z ∈ {0, 1}n, and asserts that there exists y ∈ C0 such that z = y and zs = b.

1. Choose a random copy of a tensor code c in c̄ and a random copy of a set of point-line
proofs p̄ in p̄lines. That is, choose uniformly at random r ∈ [t1] and r′ ∈ [t2], and set
c , cr and p̄ , {pj,̄ı}ı̄∈[n]d, j∈[d] , p̄linesr′ .

2. Initialize a set of points P1 to contain the singleton ı̄; i.e., P1 = {ı̄}.

3. For j = 1 until j = d:

(a) Select uniformly at random a point ū = (u1, . . . , ud) from the set Pj .

(b) Verify that the jth-axis-parallel line passing through ū is a legal codeword of C0

and that it is consistent with the value at cū. That is, run the scPCPP verifier
Vs,cū , where s , uj , with proof oracle pj,ū and input that consists of the jth-axis-
parallel line passing through ū in c. In other words, we run Vs,cū on input c|`j,ū
and proof pj,ū.

(c) If V rejects, output ⊥ and halt.

(d) If j < d, fix Pj+1 to be a set of points in [n]d that reside on the jth-axis-parallel lines
passing through the points in Pj . That is, Pj+1 = {`j,z̄}z̄∈Pj , where `j,z̄ (defined

in Definition 5.5) is the jth axis-parallel line passing through the point z̄.

4. Query cı̄ and return its value.

Figure 5.1: Relaxed local decoder D for C ′

to the value of c at point ı̄. The next claim shows that if the bit we are trying to decode
is not “corrupted” (in the random copy c), then the decoder D never outputs a mistake.

Claim 5.8.2. If cı̄ = xı̄, then PrD[Dw (̄ı) ∈ {xı̄,⊥}] = 1.

Proof. By the definition of the decoder (see Figure 5.1), regardless of the rest of the
values in the input, D always outputs either cı̄ or ⊥.

The main part of the analysis takes place in the next lemma, where we assume that
cı̄ 6= xı̄ and c is close to C(x), and prove that the decoder succeeds with constant
probability, as required. Recall that δC′(w) < δradius, where δradius is a sufficiently small
constant, to be determined later.

194

5.4 Establishing the Relaxed-LDC Property

Lemma 5.9. Suppose that c is 4δC′(w)-close to C(x) and that cı̄ 6= xı̄. Then,

Pr
D

[Dw (̄ı) ∈ {xı̄,⊥}] = Ω(1).

Proof. We say that a point ū ∈ [n]d in the tensor code c is corrupted if cū 6= C(x)ū. Since
we assume that c is corrupted in the point ı̄ (which we wish to decode), by the definition
of the decoder, the probability that D makes a mistake is equal to the probability that
D reaches Step 4 and outputs cı̄.

Recall that Pj is the set of points that we consider in the jth iteration of the decoder.
The set P1 is the singleton that contains ı̄; i.e., P1 = { ı̄ } and for every j ∈ { 2, . . . , d+ 1 }
we recursively define Pj as the set of all points that reside on the (j−1)-axis-parallel lines
that pass through points in Pj−1 (see Step 3d). Note that for every j ∈ [d] the cardinality
of Pj is equal to the number of points in a codeword of C⊗j−1

0 ; that is, |Pj| = nj−1.
Hence, the number of points in all lines that pass through points in Pj (i.e., nj) equals
the number of points in a codeword of C⊗j0 . We will show that in order to corrupt cı̄
without being detected by the scPCPPs, one has to corrupt a constant fraction of a large
portion of the lines that pass through points in Pd, which in turn implies that one has
to corrupt a constant fraction of the tensor code C, in contradiction to our assumption
that δC′(w) < δradius, for a sufficiently small constant δradius.

Consider the first iteration of Step 3 (where j = 1). Denote by s , i1 the index of
the bit that we wish to decode in the line c|`1,ı̄ , and denote by b , cı̄ the value of c at ı̄.

We verify that the line that passes through ı̄ in the 1-direction is a codeword of C0

that is consistent with the value of c at ı̄. This is done by running the verifier Vs,b on input
c|`1,ı̄ and proof p1,̄ı. Recall that the relative distance of C0 (i.e., δ(C0)) is a constant. Since
ı̄ is corrupted (i.e., b = cı̄ 6= C(x)ı̄), if the line c|`1,ı̄ is δ(C0)/2-close to the line C(x)|`1,ı̄
(which is a codeword of C0 that is inconsistent with cı̄), then c|`1,ı̄ is δ(C0)/2-far from
any codeword y ∈ C0 that is consistent with cı̄ (i.e., such that ys 6= C(x)ı̄). In this case,
the verifier Vs,b rejects c|`1,ı̄ with probability at least poly (δ(C0)/2) = Ω(1) (regardless of
the corresponding proof), as required. Hence, in the following we assume that the line
c|`1,ı̄ is δ(C0)/2-far from C(x)|`1,ı̄ , and therefore P2 contains a constant fraction of at least

β1 , δ(C0)/2 corrupted points.

We proceed by induction. Consider the jth iteration, where 2 ≤ j ≤ d. We show that
if the set of points that we consider in the jth iteration (the set Pj) contains a constant
fraction of corrupted points, then either the decoder rejects with constant probability in
the jth iteration, or Pj+1 contains a constant fraction of corrupted points (we denote this
probability by βj+1).

Claim 5.9.1. Let 2 ≤ j ≤ d and let 0 < βj ≤ 1 be a constant. If Pj contains a at least
a βj fraction of corrupted points, then either:

1. The decoder rejects with probability at least Ω(1) in the jth iteration; or,

2. Pj+1 contains at least βj+1 ,
βj ·δ(C0)

4
fraction of corrupted points.

195

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Proof of Claim 5.9.1. Consider the jth iteration of Step 3. The decoder selects uniformly
at random a point ū = (u1, . . . , ud) ∈ Pj. Denote by s = uj the index of the bit that we
wish to decode on the line c|`j,ū (which passes through ū in the jth-direction), and denote

by b , cū the value of c at ū. By the hypothesis, ū is corrupted with probability at least
βj.

Next, the verifier Vs,b is executed on input c|`j,ū and proof pj,ū. Observe that if
a fraction of at most βj/2 of the j-axis-parallel lines that pass through points in Pj
(i.e.,

{
c|`j,z̄

}
z̄∈Pj

) are δ(C0)/2-far (each) from their corresponding lines in C(x), then the

decoder outputs ⊥ with probability at least βj/2·poly (δ(C0)/2) = Ω(1), as required. This
is because in this case, with probability at least βj/2, we hit a line that is δ(C0)/2-close
to its corresponding line in C(x) (but the value of this line in uj differs from C(x)ū). As
in the first iteration, this implies that this line is δ(C0)/2-far from any codeword y ∈ C0

such that ys 6= C(x)ū, and hence the verifier Vs,b rejects c|`j,ū with probability at least
poly (δ(C0)/2) (regardless of the corresponding proof).

Otherwise (i.e., if the above case does not hold), at least βj/2 of the lines in
{
c|`j,z̄

}
z̄∈Pj

are δ(C0)/2-far (each) from their corresponding lines in C(x). Therefore, Pj+1 contains

at least a
βj ·δ(C0)

4
fraction of corrupted points.

Note that Pd+1 is the set of all points in [n]d. By solving the recurrence relation,

we get that βd+1 = δ(C0)d

22d−1 .16 Recall that according to the hypothesis of the lemma, c is
4δradius-close to C(x). Fix the decoding radius δradius to a sufficiently small constant such
that 4δradius < βd+1. Thus, Claim 5.9.1 implies that in one of the iterations the decoder
must reject with probability at least Ω(1), as required.

Remarks. The codewords of C ′ are of the form w = (c̄, p̄lines, p̄planes), where the three
parts are of equal length. The fact that the length of each of the three parts is proportional
to the others is critical. The length of c̄ must be proportional to the length of w in order
for our code to have constant relative distance (recall that there is no guarantee on the
distance of the scPCPPs). Moreover, the length of each of the scPCPP parts, c̄ and p̄lines,
should be proportional to the length of w in order to obtain the average smoothness
requirement (see Section 5.4.3).

We remark that we chose our tensor code to be systematic only for the sake of conve-
nience. Instead, we could have added the message itself (repeated to obtain the proper
length) as a fourth part to the code C ′.17.

Next, we note that for the proof that our code C ′ is a relaxed-LDC we only use the
point-line scPCPPs and ignore the plane scPCPPs (i.e., the third part of w). Furthermore,
we do not use the fact that the point-line scPCPPs are neither strong nor canonical. That
is, to get only a relaxed-LDC with nearly-linear length it is enough to augment a good

16Recall that the fraction of corrupted points in P2 is at least δ(C0)/2, and that for 2 ≤ j ≤ d the

fraction of corrupted points in Pj+1 (which we denote by βj+1) is at least
βj ·δ(C0)

4 .
17Actually, this approach (of adding the message itself to the output of the code) was taken in pre-

vious constructions of relaxed-LDC (see [BSGH+06, GR13c]). By using a systematic tensor code, we
circumvented this unnecessary complication.

196

5.5 Establishing the Strong-LTC Property

systematic tensor code (i.e., a tensor product of a systematic linear code with constant
rate and constant relative distance) with a “regular” PCPP. However, the plane scPCPPs
and the strongness and canonicity of the PCPPs will be heavily used in the proof that
C ′ is also a strong-LTC (see Section 5.5).

5.4.3 Obtaining Average Smoothness

In this subsection, we conclude the proof that C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC.
Recall that in Section 5.4.2 we showed a decoder D for C ′ (described in Figure 5.1) that
satisfies the first two conditions of Definition 5.8, i.e., the completeness and (modified)
relaxed soundness conditions. Next, we show that D can be modified such that it also
satisfies the third and final condition of Definition 5.8, i.e., the average smoothness con-
dition (which, roughly speaking, requires that the decoder makes nearly-uniform queries
on average).

Denote by Dw(i, j, r) the jth query of the decoder D on coordinate i ∈ [k′], coin tosses
r, and input oracle w. Recall that D satisfies the average smoothness condition if for
every w ∈ {0, 1}n′ and v ∈ [n′], it holds that

Pr
i,j,r

[
Dw(i, j, r) = v

]
<

2

n′
, (5.2)

where the probability is taken uniformly over all possible choices of i ∈ [k′], j ∈ [q] (where
q is the number of queries that D makes), and coin tosses r.

Firstly, we can relax the condition in Equation (5.2) and replace it with the condition

Pr
i,j,r

[
Dw(i, j, r) = v

]
= O

(
1

n′

)
. (5.3)

To see this, note that if the decoder D (which makes q = O(1) queries) satisfies Equa-
tion (5.3), then we can obtain a decoder D′ that makes q′ = O(q) queries and satisfy
Equation (5.2) simply by running D and adding O(q) uniformly distributed “dummy”
queries (whose answers the decoder ignores).

Secondly, note that by the construction of D (of Figure 5.1), each of the scPCPPs
verifiers that are being emulated by D makes nearly-uniform queries (see Theorems 5.5
and 5.6) to the statement it refers to and to its corresponding proof. Observe that on
a random index ū ∈ [k]d the decoder D invokes the verifier of the point-line scPCPP
on uniformly selected lines in a uniformly selected copy of the tensor code. Since the
length of the first and second part of each codeword of C ′ (i.e., the tensor code and the
point-line scPCPPs) constitutes a constant fraction of the length of each codeword of C ′,
the decoder D satisfies Equation (5.3). Finally, by the foregoing discussion, D can be
modified to satisfy Equation (5.2).

5.5 Establishing the Strong-LTC Property

In this section we prove that the code C ′, which was defined in Section 5.3, is a strong
locally testable code.

197

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Theorem 5.9. The code C ′ : {0, 1}k′ → {0, 1}n′ as defined in Section 5.3 is a strong-LTC.
Furthermore, it has a tester that makes nearly-uniform queries.

In order to prove Theorem 5.9 we need to present a tester T that is given an oracle
access to w ∈ {0, 1}n′ , makes O(1) queries to w, and satisfies the following: For all w ∈ C
it holds that Tw = 1, and for all w 6∈ C it holds that PrT [Tw = 0] ≥ poly (δC′(w)).

5.5.1 Outline of the Tester and its Analysis

Recall that each codeword of C ′ consists of three parts: (1) an alleged d-dimensional
tensor code C = C⊗d0 : {0, 1}kd → {0, 1}nd , (2) alleged scPCPPs for every 2-dimensional
plane in C; each scPCPP ascertains that the given plane is consistent with C, and (3)
alleged scPCPPs for every pair of point ı̄ in C and line ` in C that passes through ı̄; each
scPCPP ascertains that a line ` is a codeword of C0 that is consistent with the value at
a point ı̄.

For the simplicity of the exposition, we omit the repetitions of the three parts of the
code (i.e., the tensor code, the point-line scPCPPs, and the plane scPCPPs) and assume
instead that the length of the each part is equal. We note that this assumption can be
easily removed by using an additional consistency test. See the full details in Section 5.5.2.

The key idea is that by the robustness property of tensor codes, the corruption rate
of a codeword is proportional to the corruption rate of a random plane in the codeword.
Hence, in order to ensure that the tensor code part of C ′ is valid, our tester use the
plane scPCPPs to ascertain that a random plane is close to being valid. We note that for
the tester, we do not need the point-line scPCPPs (which we only need for the decoder);
however, since we need to ensure that also the point-line scPCPPs part is not corrupted,
our tester also verifies a random point-line scPCPPs.

Clearly, this tester always accepts valid codewords. To analyze what happens with
non-codewords consider a string that is somewhat far from C ′. In this case, one of the
following three cases must hold:

1. The tensor code part is far from a legal codeword of C⊗d.

2. The tensor code part is close to a legal codeword of C⊗d but the plane scPCPP
proofs part is far from the corresponding canonical proofs.

3. The tensor code part is close to a legal codeword of C⊗d but the point-line scPCPP
proofs part is far from the corresponding canonical proofs.

To ensure that in the first case the tester succeeds (i.e., rejects with sufficiently high
probability), it is enough to test that a random plane in c is close to a codeword of C⊗2.
To accomplish this, we choose uniformly at random a (2-dimensional, axis-parallel) plane
and run the corresponding plane scPCPP verifier. This suffices, since Theorem 5.4 asserts
that if a tensor c is far from a legal codeword of C⊗d, then a random (2-dimensional,
axis-parallel) plane in c must also be far from a legal codeword of C⊗2.

198

5.5 Establishing the Strong-LTC Property

The second and third cases are similar, and so, we only sketch how to handle the
second case. Assume that the tensor is close to a codeword but the plane scPCPPs are
far from the corresponding canonical proofs. From this assumption we can deduce that
there are many planes that are close to legal codewords of C⊗2, but whose corresponding
scPCPPs are far from the canonical proofs. Thus, choosing a random plane and running
the corresponding plane scPCPP verifier ensures that the tester rejects with a sufficiently
high probability. This is due to the strongness and canonicity features of our scPCPPs.

To conclude, the tester consists of three parts: (1) a repetition test, wherein we verify
the repetition structure of the tensor, (2) plane scPCPP consistency test, wherein we verify
that a random plane in the tensor is a legal codeword; this test ensures that both the
tensor code part consists of valid codewords and its plane scPCPPs are the corresponding
canonical proofs, and (3) point-line scPCPP consistency test, which we perform only to
verify that the point-line scPCPPs consists of the canonical proofs that corresponds to
the tensor part of the code.

5.5.2 The Full Proof

We proceed with the full proof of Theorem 5.9, which formalizes the intuition given in
the previous section. We show a strong-LTC procedure for C ′. The tester T is formally
described in Figure 5.2. Note that since both the point-line and plane scPCPP verifiers
make nearly-uniform queries (and the three parts of each codeword are of equal length),
then the tester T also makes nearly-uniform queries.

Consider an arbitrary input w ∈ {0, 1}n′ such that δC′(w) ≥ 0. We view w as a string
composed of three parts as in Section 5.3, i.e., w = (c̄, p̄lines, p̄planes). The completeness
of the tester is immediate: Indeed, if the input is a codeword, i.e., w = C ′(x), then
the first part of w consists of identical copies of a tensor code, and hence the codeword
repetition test accepts with probability 1. Similarly, the second and third parts consists
of the canonical point-line and plane scPCPP proofs for the aforementioned tensor code,
respectively; hence the (one-sided error) scPCPP verifiers will accept with probability 1.

Next, we prove the soundness of the tester. We partition the analysis into three cases
(Claim 5.9.2 and Lemmas 5.10 and 5.11), which we analyze in the rest of this section.

Let ĉ ∈ {0, 1}nd be a tensor that is closest on average to the tensors in c̄, i.e., a string
that minimizes ∆(c̄, ĉt1) =

∑t1
i=1 ∆(ci, ĉ). The first (and standard) claim shows that if c̄ is

far from consisting of t1 identical tensors, then the repetition test (of Step 1) rejects with
high probability. Let γ be a constant set to δ(C)/(24d) (for the purpose of Lemma 5.11).

Claim 5.9.2. If δ(c̄, ĉt1) ≥ γ
5
· δC′(w), then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. Suppose that δ(c̄, ĉt1) ≥ γ
5
· δC′(w). The codeword repetition test rejects with

199

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

The strong-LTC Procedure for C ′

Input: oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let V line(s, b) be a scPCPP verifier that refers to an input of the form
z ∈ {0, 1}n and asserts that there exists y ∈ C0 such that z = y and zs = b.

Let V plane be a scPCPP verifier that refers to an input of the form z ∈ {0, 1}n2
and asserts

that there exists y ∈ C⊗2
0 such that z = y.

Choose a random copy of each of the three replicated parts of w. That is, choose uniformly at
random a copy c in c̄, a copy p̄line = {pj,̄ı}{ı̄∈[n]d, j∈[d]} in p̄lines, and a copy p̄plane = {pp}{p∈Planes}
in p̄planes.

Accept if none of the following tests reject:

1. The repetition test: We query two random copies from the tensor part of w and
check if they agree on a random location. More accurately, we select uniformly at
random r, r′ ∈ [t1] and reject if and only if cr and cr′ disagree on a random coordinate.

2. The plane scPCPP consistency test: Choose a uniformly at random a plane p ∈
Planes. Reject if the verifier V plane rejects on the plane p (i.e., input c|p) and the proof
pp.

3. The point-line scPCPP consistency test: Choose uniformly at random a coordinate
ū = (u1, . . . , ud) ∈ [n]d and a direction j ∈ [d] in c. Reject if the verifier V line(uj , cū)
rejects on the line passing through ū in direction j and the proof pj,ū. In other words,
we reject if V line(uj , cū) rejects on input c|`j,ū and proof pj,ū.

Figure 5.2: Strong local tester for C ′

probability at least

E
r,r′∈R[t1]

[
∆(cr, cr′)

nd

]
≥ E

r∈R[t1]

[
∆(cr, ĉ)

nd

]
=

∆(c̄, ĉt1)

t1nd
.

Therefore, PrT [Tw = 0] ≥ γ
5
· δC′(w) ≥ poly

(
δC′(w)

)
.

The following lemma shows that if c̄ consists of t1 nearly identical tensors that are
far from a codeword of C, then due to the robustness feature of tensor codes, a random
plane in a random copy in c̄ will be far from valid, and hence, Step 2 of the tester rejects
with high probability.

Lemma 5.10. Assume δ(c̄, ĉt1) < γ
5
·δC′(w). If c̄ is γ ·δC′(w)-far from Ct1, then PrT [Tw =

0] ≥ poly
(
δC′(w)

)
.

200

5.5 Establishing the Strong-LTC Property

Proof. Observe that a random copy c of a tensor code in c̄ is Ω
(
δC′(w)

)
-far from C

with high probability. This is because δCt1 (c̄) ≤ δCt1 (ĉt1) + δ (ĉt1 , c̄), which implies
δC(ĉ) > 4γ

5
· δC′(w). Since at least 2/3 of the ci’s are 3 · γ

5
· δC′(w)-close to ĉ, these ci’s are

γ
5
· δC′(w)-far from C.

Next, by the robustness feature of tensor codes, we deduce that if the randomly
selected tensor code c is Ω

(
δC′(w)

)
-far from being valid, then a random plane of c is

also Ω
(
δC′(w)

)
-far from being valid. Specifically, by Theorem 5.4, there exists a constant

crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd we have

E
p∈RPlanes

[
δ
(
w|p, C⊗2

)]
> crobust · δC⊗d(w).

Hence, by an averaging argument,

Pr
p∈Planes

[
δC⊗2(c|p) >

crobust
2
· γ

5
· δC′(w)

]
>
crobust

2
· γ

5
· δC′(w). (5.4)

Note that, by Equation (5.4), with probability Ω
(
δC′(w)

)
we select a plane that is

Ω
(
δC′(w)

)
-far from a codeword of C⊗2

0 . Given such plane, the scPCPP verifier V plane re-
jects with probability Ω

(
δC′(w)

)
. Thus, the tester T rejects with probability poly(δC′(w))

over the internal randomness of T .

In the next lemma, we complete the analysis by assuming that c̄ is sufficiently close to
a codeword of Ct1 , and showing that in this case most of the “corruption” takes place in
the parts of the scPCPP proofs, and hence the scPCPP consistency tests will reject with
high probability.

Lemma 5.11. If c̄ is γ · δC′(w)-close to being a codeword of Ct1, then PrT [Tw = 0] ≥
poly

(
δC′(w)

)
.

Proof. Recall that γ = δ(C)
24d

< δ(C)
2

. Therefore, our assumption that c̄ is γ · δC′(w)-
close to being a codeword of Ct1 implies that there exists a unique codeword c′ of C
that minimizes the distance of c̄′ , (c′)t1 from c̄. Let w′ be the codeword of C ′ that
consists of repetitions of the tensor code c′ and its canonical scPCPP proofs; that is, Let
w′ =

(
c̄′, (πlines(c

′))t2 , (πplanes(c
′))t3

)
be a codeword of C ′. Denote by x the inverse of w′

(i.e., , w′ = C ′(x)).
It is convenient to introduce notations for the fraction of corruptions in each part of

C ′. Towards this end, denote the fraction of errors in the first part of the code (the copies
of the tensor code) by δc̄ = δ(c̄, c̄′). Analogously, denote by δp̄lines and δp̄planes the fraction
of errors in the second and third parts of w (point-line scPCPPs and plane scPCPPs),
respectively. Denote by δp̄total =

(
δp̄lines + δp̄planes

)
/2 the total fraction of errors in the second

and third part of w together.
Observe that assuming the hypothesis of Lemma 5.11 (i.e., c̄ is sufficiently close to c̄′),

the scPCPPs part (i.e., p̄lines and p̄planes) must be somewhat far from the corresponding
set of canonical scPCPP proofs; that is, assuming δc̄ < δC′(w), then δp̄total ≥ δC′(w).

201

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Therefore, since δc̄ ≤ γ · δC′(w) < δC′(w), we may assume that either: (1) the plane
scPCPPs are sufficiently corrupted, i.e., δp̄planes > δC′(w), or (2) the point-line scPCPPs
are sufficiently corrupted, i.e., δp̄lines > δC′(w). We claim that in the first case the plane
scPCPP consistency test will reject with high probability, and in the second case the
point-line scPCPP consistency test will reject with high probability. We prove this in the
following two claims, from which Lemma 5.11 follows.

Claim 5.11.1. Assuming c̄ is γ·δC′(w)-close to being a codeword of Ct1, if δp̄planes > δC′(w),
then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Claim 5.11.2. Assuming c̄ is γ ·δC′(w)-close to being a codeword of Ct1, if δp̄lines > δC′(w),
then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Claim 5.11.1 and Claim 5.11.2 follow immediately from the canonicity and strong
soundness features of the scPCPPs (along with averaging arguments). Since the proofs
of Claim 5.11.1 andClaim 5.11.2 are similar, we conclude the proof of Lemma 5.11 by
showing Claim 5.11.1 and defer the proof of Claim 5.11.2 to Section 5.8.5.

Proof of Claim 5.11.1. Loosely speaking, the hypothesis of the claim guarantees that:
(1) c̄ is close to being a unique codeword C(x)t1 , and hence (by averaging arguments),
most restrictions of a random copy c in c̄ = (c1, . . . , ct1) to a plane cannot be significantly
corrupted; (2) the plane scPCPPs are far, on average, from the canonical proofs that
corresponds to C(x), and thus many plane scPCPPs are far from the canonical proofs for
the planes of C(x) they correspond to. By the foregoing, we conclude that there are many
planes in c that are close to planes of C(x) but their alleged plane scPCPP proofs are
far from their canonical proofs. Thus, by the canonicity and strong soundness features
of the scPCPPs, the verifier will reject with high probability. Details follow.

By the claim’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). Hence, by an
averaging argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x).
Assume from now on that this is indeed the case. We say that a point ı̄ ∈ [n]d in c is
corrupted if cı̄ 6= C(x)ı̄, and so, there are at most 3δc̄n

d corrupted points in c. Since there
are

(
d
2

)
nd−2 axis-parallel planes in c, then on average, the number of corrupted points

in a random axis-parallel plane in c is at most 3δc̄nd

(d2)nd−2
< 3δc̄n

2. Thus, by an averaging

argument, we obtain that at most δp̄
4

fraction of the axis-parallel planes in c contain at
least 4

δp̄
· 3δc̄n2 corrupted points.

Secondly, we note that a random copy of the plane scPCPP proofs contains a fraction
of Ω

(
δC′(w)

)
corrupted points with probability Ω

(
δC′(w)

)
. That is, by an averaging

argument, with probability at least δp̄ , δp̄planes/2 the random copy p̄ in p̄planes is δp̄-
far from its corresponding set of canonical proofs, πplanes(x) = {πplane(C(x)|p)}p∈Planes.
Assume from now on that p̄ is δp̄-far from πplanes(x). Then, by an averaging argument,
we obtain that at least δp̄/2 fraction of the proofs in p̄ = {pp}p∈Planes are δp̄/2-far from
their corresponding (canonical) proofs πplanes(x).

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-

fraction of the planes p in c are both δ(C⊗2
0)/2-close to the restriction of the tensor

202

5.6 Strong Canonical PCPs of Proximity

codeword C(x) to p, and their corresponding proofs are Ω
(
δC′(w)

)
-corrupted; that is, a

fraction of at least δp̄
4

of the axis-parallel planes p in c are δ(C⊗2
0)/2-close to C(x)|p (recall

that 4
δp̄
· 3δc̄ < 12γ < δ(C)/2 ≤ δ(C⊗2

0)), and in addition, their corresponding (alleged)

plane scPCPP proofs in {pp}p∈Planes are δp̄/2-far from their (correct) canonical proofs in
πplanes(x). Denote the set of planes that satisfy the foregoing condition by BAD.

Observe that for every plane p ∈ BAD, in order for input c|p and proof pp to be a
valid claim (for the input-proof language that V plane verifies), one must make at least one
of the following changes: (1) change a fraction of at least δp̄

2
of the proof pp such that

it matches πplane (C(x)|p), or (2) change a fraction of at least δ(C⊗2
0)/2 of c|p (since pp

might be a valid proof for input C⊗2
0 (y) 6= c|p). Thus, for every p ∈ BAD, the probability

that V plane rejects input c|p and proof pp is at least polynomial in δC′(w).
Putting it all together, with probability 2/3 we hit a random copy c of the tensor code

that is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random copy
p̄ that is δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a plane scPCPP
proof that is δp̄/2-corrupted. Finally, assuming the foregoing, the scPCPP verifier V plane

rejects with probability poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2

3
· δp̄ ·

δp̄
2
· poly (δC′(w)) ≥ poly

(
δC′(w)

)
.

This concludes the proof of Lemma 5.11.

5.6 Strong Canonical PCPs of Proximity

In this section we construct scPCPPs with polynomial proof length for any good linear
code (see Theorem 5.5) and for any half-space of a any good linear code (see Theorem 5.6).
Our starting point (see Corollary 5.11) is the following result of [GR13c],18 which in turn
builds upon [GS06, Section 5.2]: For any good code C : {0, 1}k → {0, 1}ck, there exists a
strong-LTC C ′ : {0, 1}k → {0, 1}poly(k) such that the first half of C ′(x) consists of c blocks,
each depending only on a k-bit long block of C(x). Using this result, we construct a
scPCPP for any good code C, where this construction applies the above result to several
auxiliary codes that are derived from C.

5.6.1 scPCPPs for Good Codes

The main technical tool upon which we rely (when proving Theorem 5.5) is the linear
inner proof systems (hereafter, LIPS), constructed by Goldreich and Sudan. Loosely
speaking, the LIPS mechanism allows to transform linear strong locally testable codes
over a large alphabet into strong locally testable codes over a smaller alphabet (see [GS06,
Section 5.2]). We encapsulate our usage of the LIPS mechanism in the following theorem,

18Actually, Corollary 5.11 is a straightforward generalization of [GR13c, Corollary B.3].

203

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

which generalizes [GS06, Theorem 5.20] and [GS06, Proposition 5.21]. Throughout this
section, denote F = GF(2).

Theorem 5.10. Let Σ = Fb. For infinitely many k, there exists n = poly(k) and a linear
code E : Σ → Fn with constant relative distance such that the following holds. Suppose
that C : ΣK → ΣN is a strong-LTC that is linear over F and has a (non-adaptive) tester
that uses r random bits and makes nearly-uniform queries. Then, there exists ` = poly(k)
such that ` is a multiple of n, and a linear strong-LTC C ′′ : Fbk → F2r+1·` such that the

2r · `-bit long prefix of C ′′(x) equals
(
E(C(x)1), . . . , E(C(x)N)

)2r`/(Nn)
. Moreover, the

tester of C ′′ makes nearly-uniform queries.

As a corollary of Theorem 5.10, we obtain that any good linear code can be augmented
to a linear strong-LTC with polynomial length, such that the prefix of the new code is
closely related to that of the original code (but is not equal to the original code). This
is done by viewing the good linear code as a trivial strong-LTC over a sufficiently large
alphabet.

Corollary 5.11 (our starting point). Let C : {0, 1}k → {0, 1}ck be a good linear code with
constant relative distance, where c ∈ N is a constant. Then, for some M,m = poly(k),
there exists a linear strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k →
{0, 1}m, which has constant relative distance, such that the M-bit long prefix of C ′(x)

equals
(
E(C(x)[1]), . . . , E(C(x)[c])

)M/(c·m)
, where C(x)[i] is the ith block of length k in

C(x). Furthermore, the (strong) tester of C ′ makes nearly-uniform queries.

We remark that Theorem 5.10 and Corollary 5.11 are straightforward generalization
of [GR13c, Theorem B.2] and [GR13c, Corollary B.3] (respectively), and we defer their
proofs to Section 5.8.1.

The Plan. Let C : {0, 1}k → {0, 1}ck be a good linear code, where c ∈ N is a constant.
We construct a strong-LTC C ′ such that a constant fraction of each codeword C ′(x)
contains copies of C(x). This, in turn, implies a scPCPP for C (see Proposition 5.14).
Note that by applying Corollary 5.11 to C we obtain a strong-LTC C ′ such that a constant
fraction of each codeword C ′(x) contains copies of

(
E(C(x)[1]), . . . , E(C(x)[c])

)
, but not

of C(x). This does not seem to suffice for obtaining a scPCPP, and so we use a different
approach.

We start by using Corollary 5.11 to obtain a family of linear strong-LTCs
{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

,

where n = poly(k), with constant relative distance such that the prefix of each codeword
Ci(x) contains a linear number of copies of the ith-bit of C(x) (as well as other struc-
tural features that will be useful for us). This is done via the next lemma, which uses
techniques from [GR13c].

Lemma 5.12 (obtaining auxiliary codes Ci). Let C : {0, 1}k → {0, 1}ck be a good linear
code, where c ∈ N is a constant. There exist a constant α ∈ (0, 1), a polynomial value n =
poly(k), and a linear code Ĉ : {0, 1}k → {0, 1}cn with constant relative distance, which

204

5.6 Strong Canonical PCPs of Proximity

satisfy the following: For every i ∈ [ck], there exists a function πi : {0, 1}k → {0, 1}(c+1)n

such that the code Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n, given by

Ci(x) =
(
(C(x)i)

αn, Ĉ(x), πi(x)
)
,

is a linear strong-LTC with constant relative distance. Moreover, for every i ∈ [ck] the
(strong) tester of Ci makes nearly-uniform queries.

We stress that the code Ĉ (which is common to all Ci’s) is independent of i and constitutes
a constant fraction of the length of each Ci.

Proof of Lemma 5.12. For every j ∈ [c], we denote by C(x)[j] the jth block of length k
of C(x). For every i ∈ [ck], consider the code C ′i : {0, 1}k → {0, 1}(c+1)k given by

C ′i(x) ,
(
(C(x)i)

k, C(x)
)

=
(
(C(x)i)

k, C(x)[1], . . . , C(x)[c]
)
.

Note that C ′i is a good linear code.
For every i ∈ [ck], we apply Corollary 5.11 to C ′i and obtain a linear strong-LTC

C ′′i : {0, 1}k → {0, 1}2(c+1)·n with constant relative distance, which is (up to a permutation
of its bit locations) of the form

C ′′i (x) =

((
E
(
(C(x)i

)k)t
,
(
E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t
, πi(x)

)
where m,n = poly(k), the function E : {0, 1}k → {0, 1}m is a linear code with constant
relative distance, t = n/m, and πi(x) ∈ {0, 1}(c+1)n is some string. Moreover, the (strong)
tester of C ′′i makes nearly-uniform queries.

Denote by Ĉ : {0, 1}k → {0, 1}cn the linear code (with constant relative distance) that

is given by Ĉ(x) =

((
E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t)
. Since E is a linear code with

constant relative distance, then E(0k) = 0m and ∆
(
E
(
1k
)
, 0m

)
≥ αm for some constant

α ∈ (0, 1). Now, for every i ∈ [ck], consider the code Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n,
given by Ci(x) =

(
(C(x)i)

αn , Ĉ(x), πi(x)
)
, which is obtained from C ′′i by simply removing

coordinates on which E(0k) and E(1k) agree, in each of the t copies in the first part (i.e.,

E
(
C(x)i

)k
).

Note that Ci has constant relative distance. Furthermore, since C ′′i is linear and since
we only removed coordinates on which the value is 0, the code Ci is also a linear code.
Finally, by emulating the execution of the tester of C ′′i on an (alleged) codeword of Ci
(which can be done by returning 0 whenever a coordinate that was omitted is being
queried), we obtain that Ci(x), which is of the required form of the hypothesis, is a
strong-LTC with a (strong) tester that makes nearly-uniform queries.

In the actual proof of Theorem 5.5, we will construct a code C ′ that encodes a message
x by concatenating the encodings of x by all of the strong-LTCs in

{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

(i.e., C ′(x) ,
(
C1(x), . . . , Cck(x)

)
). Thus, we will obtain a strong-LTC that (up to a per-

mutation of the bit locations) contains copies of the entire codeword C(x) in its prefix. We

205

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

remark that, in general, the concatenation of strong-LTCs is not a strong-LTC. However,
the structure of the aforementioned family of codes (specifically, the fact that all codes
in the family contains a common sub-code) implies that the concatenation of codes in{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

yields a strong-LTC. The next proposition shows a sufficient

condition for obtaining strong-LTCs via concatenation of strong-LTCs.

Proposition 5.13 (concatenating multiple encodings of strong-LTCs with a common sub-
-code). Let C1, . . . , Ct : {0, 1}k → {0, 1}n be strong-LTCs with constant relative distance.

Let I ⊆ [n] such that |I| = Ω(n), and let Ĉ : {0, 1}k → {0, 1}|I| be a code with constant rel-

ative distance. If Ĉ(x) = C1(x)|I = C2(x)|I = . . . = Ct(x)|I for every x ∈ {0, 1}k, where
Ci(x)|I denotes the restriction of Ci(x) to I, then the code C ′(x) ,

(
C1(x), . . . , Ct(x)

)
is a

strong-LTC with constant relative distance. Moreover, if the (strong) testers of C1, . . . , Ct
make nearly-uniform queries, then the (strong) tester of C ′ also makes nearly-uniform
queries

Proposition 5.13 follows by using a tester that (1) emulates the strong-LTC tester of a
randomly selected concatenated code Ci (to ascertain that each concatenated codeword
is valid), and (2) tests the consistency of the common code Ĉ in two randomly selected
concatenated codes (to assure that all of the concatenated codewords encode the same
message). The analysis is quite straightforward and is deferred to Section 5.8.2.

The last tool we shall need in order to prove Theorem 5.5 is the following proposition,
which allows us to transform strong-LTCs to scPCPPs for prefixes of the strong-LTCs’
codewords.

Proposition 5.14 (from strong-LTCs to scPCPPs for related codewords). Let C : {0, 1}k →
{0, 1}n be a linear code, and let C ′ : {0, 1}k → {0, 1}n′ be a linear strong-LTC. If there

exists I ⊆ [n′] where |I| = Ω(n′) and n′ − |I| = Ω(n′) such that C ′(x)|I =
(
C(x)

)|I|/n
,

then there exists a scPCPP for C (i.e., for the set of codewords {C(x)}x∈{0,1}k) with proof
length O(n′). Moreover, the canonical scPCPP proofs are linear, and if the (strong) tester
of C ′ makes nearly-uniform queries, then the verifier of the scPCPP for C also makes
nearly-uniform queries.

Proof. Let C, C ′, and I be as in the hypothesis. Assume, without loss of generality, that
I = {1, . . . , |I|}. Denote the (strong) tester of C ′ by T . We use T in a black-box manner
in order to construct a scPCPP for the set {C(x)}x∈{0,1}k .

Given a codeword C(x), the canonical scPCPP proof for C(x) is given by π(x) ,
C ′(x)|[n′]\I , where C ′(x)|[n′]\I is the restriction of C(x) to the coordinates outside of I.
Let V be the scPCPP verifier that gets oracle access to an alleged codeword w ∈ {0, 1}n
and oracle access to a proof oracle p of length n′ − |I|. Let t = |I| /n. The verifier V
emulates the execution of T on (wt, p) as follows: Each query that T makes to the first
part (which are allegedly C(x)t) is simulated by a corresponding query to the input oracle
w,19 and each query that T makes to the other coordinates (which is allegedly π(x)) is

19Note that the tester expects t copies of C(x), while the input oracle consists of a single copy. Hence,
the emulation is done simply by directing the query of the ith bit of the jth copy to the ith bit of the
input oracle, for every i, j.

206

5.6 Strong Canonical PCPs of Proximity

simulated by a corresponding query to the proof oracle. The verifier V accepts if and
only if the emulated run of T on (wt, p) accepted. Note that if T makes nearly-uniform
queries, then V also makes nearly-uniform queries.

The completeness of V is immediate: If w is a codeword C(x) and p = π(x), then(
wt, p

)
is a codeword of C ′. We conclude the proof by showing the soundness of V . Note

that V gets as input a pair of an alleged codeword w and an alleged canonical proof p.
Suppose that δPCPP(w, p) , minx∈{0,1}n

{
max

(
δ(x,w) ; δ(πcanonical(x), p)

)}
> 0.

For every x ∈ {0, 1}n, either the alleged proof p is δPCPP(w, p)-far from πcanonical(x),
or the alleged codeword is δPCPP(w, p)-far from C(x). In the former case, since |p| =
n′ − |I| = Ω(n′), it holds that δ

(
(wt, p), (xt, πcanonical(x))

)
= Ω

(
δPCPP(w, p)

)
. In the latter

case, since δCt(w
t) = δC(w) and |wt| = Ω(n′), it holds that δ

(
(wt, p), (xt, πcanonical(x))

)
=

Ω
(
δPCPP(w, p)

)
. Therefore δC′

(
(wt, p)

)
= Ω

(
δPCPP(w, p)

)
, and thus the tester of C ′, and

subsequently the verifier V , will reject with probability poly(δPCPP(w, p)) as required.

Using Lemma 5.12 and Propositions 5.13 and 5.14, we proceed with the proof of
Theorem 5.5.

Proof of Theorem 5.5. Let c ∈ N be a constant and C : {0, 1}k → {0, 1}ck be a linear
code with constant relative distance. We show a scPCPP, with polynomial proof length,
for the language of all codewords of C.

First, we apply Lemma 5.12 on C and get that there exists a linear code Ĉ :
{0, 1}k → {0, 1}cn with constant relative distance and a set of codes

{
Ci : {0, 1}k →

{0, 1}αn+cn+(c+1)n
}
{i∈[ck]} such that each Ci is a linear code with constant relative dis-

tance that is given by
Ci(x) =

(
(C(x)i)

αn, Ĉ(x), πi(x)
)
,

where α ∈ (0, 1), n = poly(k) and πi : {0, 1}k → {0, 1}(c+1)n. Moreover, each Ci makes
nearly-uniform queries.

Next, we consider the code C ′(x) ,
(
C1(x), . . . , Cck(x)

)
. Observe that, up to a

permutation of the indices, C ′ has the form

C ′(x) =
(
C(x)αn, Ĉ(x)ck, π(x)

)
,

where π(x) = π1(x), . . . , πck(x). Note that
∣∣∣Ĉ(x)ck

∣∣∣ = ck · cn, which is a constant fraction

of |C ′(x)|. By Proposition 5.13, the code C ′ is a strong-LTC with constant relative distance
that makes nearly-uniform queries.

Finally, the theorem follows by applying Proposition 5.14 to the code C ′ with I =
[αn · ck], where the code C is repeated αn = |I|/(ck) times. (Indeed, we use the fact
that |I| is a constant fraction of |C ′(x)|.) Note that the scPCPP proof we obtain (namely,(
Ĉ(x)ck, π(x)

)
) is of length poly(k).

5.6.2 scPCPPs for Half-Spaces of Good Codes

Theorem 5.6 is obtained by using Theorem 5.5 in a black-box manner. Specifically, note
that in case b = 0, the code Ci,0 is linear, and thus we can apply Theorem 5.5 directly.

207

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

On the other hand, in case b = 1, the code Ci,1 is not linear, but we can “shift” it (by a
fixed codeword of Ci,1) and apply Theorem 5.5.

Proof of Theorem 5.6. In light of the above, we focus on the case in which b = 1. Assume,
without loss of generality, that there exists a codeword c(i) of C such that that the ith-bit
of c(i) is 1 (otherwise, we can always reject). Consider a verifier, Vi,1, that gets oracle
access to an input string w and a proof π, and proceeds as follows. The verifier Vi,1
emulates the execution of Vi,0 (obtained via Theorem 5.5) on input oracle w+ c(i) (where
the summation is point-wise over GF(2)) and its proof oracle π (which should be the
canonical proof for w + c(i) ∈ Ci,0). Note that the verifier Vi,0 makes nearly-uniform
queries, and so Vi,1 also makes nearly-uniform queries. We show that Vi,1 is a scPCPP for
Ci,1

The completeness is immediate: Recall that if w is a codeword of Ci,1, then w = C(x)
such that wi = 1. By the linearity of C, w + c(i) is a codeword of C such that its ith bit
is 0 (i.e.,

(
w + c(i)

)
i

= 0). Therefore, we actually invoke Vi,0 on a codeword of Ci,0. For
the soundness condition, assume that δCi,1(w) > 0. Observe that

δCi,0
(
w + c(i)

)
= min

w′∈Ci,0
δ
(
w′, w + c(i)

)
= min

w′∈Ci,0
δ
(
w′ + c(i), w

)
= δCi,1(w).

Therefore, the verifier Vi,1 will reject the input w+c(i) (given the corresponding canonical
proof) with probability at least poly

(
δCi,1(w)

)
, as required.

5.7 Application to Property Testing

In this section we give an application of our main result (Theorem 5.1) to the area of
property testing. Specifically, we improve on the best known separation result, due to
Gur and Rothblum [GR13c], between the complexity of decision versus verification in
the property testing model. Details follow.

The study of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich,
Goldwasser and Ron [GGR98], considers highly-efficient randomized algorithms that solve
approximate decision problems, while only inspecting a small fraction of the input. Such
algorithms, commonly referred to as testers, are given oracle access to some object, and
are required to determine whether the object has some predetermined property or is far
(say, in Hamming distance) from every object that has the property.

Remarkably, it turns out that many natural properties can be tested by making rel-
atively few queries to the object. However, there are also many natural properties that
no tester can test efficiently. In fact, “almost all” properties require a very large query
complexity to be tested. Motivated by this limitation, Gur and Rothblum [GR13c] initi-
ated the study of MA proofs of proximity (hereafter MAPs), which can be viewed as the
NP proof-system analogue of property testing.

Loosely speaking, an MAP is a probabilistic proof system that augments the property
testing framework by allowing the tester full and free access to an (alleged) proof. That
is, such a proof-aided tester for a property Π is given oracle access to an input x and

208

5.7 Application to Property Testing

free access to a proof string w, and should distinguish between the case that x ∈ Π and
the case that x is far from Π, while only making a sublinear number of queries. More
precisely, given a proximity parameter ε > 0, we require that for inputs x ∈ Π, there exist
a proof that the tester accepts with high probability, and for inputs x that are ε-far from
Π no proof will make the tester accept, except with some small probability of error. For
formal definitions we refer to [GR13c, Section 2].

As observed by [GR13c], given an MAP proof of length that is linear in the size of the
object (specifically, a proof that fully describes the object), every property can be tested
by only making O(1/ε) queries to the object, simply by verifying the proof’s consistency
with the object. Hence, it is natural to measure the complexity of an MAP by both the
length of the proof and the number of queries made in order to decide whether x ∈ Π or
ε-far from it. We note that a property tester can be viewed as an MAP that uses a proof
of length 0.

Gur and Rothblum [GR13c] showed that the task of separating the power of property
testers and MAPs can be reduced to the task of designing a code that is both locally
testable and locally decodable. Furthermore, they noticed that for such a separation, re-
laxed decodability suffices. Unable to construct a code as in Theorem 5.1, Gur and Roth-
blum used several weaker codes to obtain partial separation results. Specifically, they
proved the following theorem.

Theorem 5.12 (Theorems 3.1, 3.2 and 3.3 in [GR13c]). In all items, n denotes the length
of the main input being tested.

1. For every constant α > 0, there exists a property Πα that has an MAP that uses
a proof of length O(log n) and makes poly(1/ε) queries for every ε > 1/polylog(n),
but for which every property tester must make Ω(n1−α) queries.

2. For every constant α > 0, there exists a property Πα that has an MAP that uses
a proof of length O(log n) and makes poly(log n, 1/ε) queries, but for which every
property tester must make Ω(n1−α) queries.

3. There exists a universal constant c ∈ (0, 1) and a property Π that has an MAP that
uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation on
ε), but for which every property tester must make nc queries.

Furthermore, each of the above MAPs has one-sided error.

Note that each of these separation results has a drawback: The first separation works
only for sufficiently large values of the proximity parameter, the second separation has
non-constant query complexity for the MAPs, and the third separation does not require
property testers to make nearly-linear number of queries.

Plugging in the code C ′ from Theorem 5.1 into the framework developed by [GR13c,
Lemmas 3.4 and 3.5], we achieve the best of all the aforementioned results; that is, a
separation for all values of the proximity parameter, with constant query complexity
for the MAPs, and nearly-linear query complexity for testers. Formally, we obtain the
following separation result between MAPs and property testers.

209

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Theorem 5.13 (Restated). For every constant α > 0, there a property Πα that has an
MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation
on ε), but for which every property tester must make n1−α queries. Furthermore, the
MAP has one-sided error.

Acknowledgments

We would like to thank Or Meir and Madhu Sudan for helpful discussions regarding the
robustness of tensor codes and its relation to local testability, and Michael Ben-Or for
raising the issue of tolerant testing. The third author would like to thank his advisor
Moni Naor for his support and encouragement.

210

5.8 Appendices for Chapter 5

5.8 Appendices for Chapter 5

5.8.1 Obtaining Strong LTCs from LIPS

In this appendix, we provide tools that allow us to use the linear inner proof systems (here-
after, LIPS), constructed by Goldreich and Sudan [GS06], to obtain families of strong-LTCs
with several features that we take advantage of in Section 5.6. Specifically, we prove The-
orem 5.10 and Corollary 5.11. Throughout this section, denote F = GF(2). Recall the
statement of Theorem 5.10.

Theorem 5.14 (restated). Let Σ = Fb. For infinitely many k, there exists n = poly(k)
and a linear code E : Σ→ Fn such that the following holds. Suppose that C : ΣK → ΣN

is a strong-LTC that is linear over F and has a (non-adaptive) tester that uses r random
bits and makes nearly-uniform queries. Then, there exists ` = poly(k) such that ` is
a multiple of n, and a linear strong-LTC C ′′ : Fbk → F2r+1·` such that the 2r · `-bit long

prefix of C ′′(x) equals
(
E(C(x)1), . . . , E(C(x)N)

)2r`/Nn
. Moreover, the tester of C ′′ makes

nearly-uniform queries.

Proof. We follow the proof of [GS06, Theorem 5.20], while using the code C of the
theorem’s hypothesis instead of the third ingredient in that proof. In addition, following
[GS06, Proposition 5.21], we use composition theorems (i.e., [GS06, Theorem 5.15] and
[GS06, Theorem 5.17]) that preserve the nearly-uniform distribution of the queries the
verifiers (or tester) make, thus ascertaining that C ′′(x) has a tester that queries each
location with probability Θ(1/N). We note that in our settings, the overhead of replacing
the “vanilla” composition theorems (which are used in [GS06, Theorem 5.20]) with the
composition theorems that preserve the nearly-uniform queries is insignificant. Details
follow.

In the following description, all references refer to [GS06]. Recall some basics regarding
the terminology used in [GS06]. By Definitions 5.8 and 5.9, a

(
F, (q, b)→ (p, a), δ, γ

)
-LIPS

refers to input oracles X1, ..., Xq : [n] → Fa and a proof oracle Xq+1 : [`] → Fa, where
the input oracles provide an n-long encoding (over Fa) of a single symbol in the (much)
bigger alphabet Fb (i.e., this encoding is denoted E : Fb → (Fa)n). (In addition δ is the
relative distance of the encoding used, and γ is the detection ratio in strong soundness.
In the following, both parameters will be small constants.)

The proof of Theorem 5.20 starts with an overview (page 79), and then lists three
ingredients (page 80) that will be used: (1) The Hadamard based

(
F, (pH , kH) → (pH +

5, 1), 1/2, 1/8
)
-LIPS (for any choice of pH and kH) of Proposition 5.18, (2) The Reed-

Muller based
(
F, (pRM , kRM) → (pRM + 4, poly(log pRMkRM)), 1/2,Ω(1)

)
-LIPS (for any

choice of pRM and kRM) of Proposition 5.18, and (3) a specific strong-LTC (namely,
the strong-LTC in Part 1 of Theorem 2.4). We shall use the very same first two in-
gredients,20 but use the code C in place of the third. Assume, without loss of gener-
ality, that the randomness complexity r of the strong (tester) of C satisfies that 2r is

20We remark that while these two LIPSs are presented in [GS06] as if they are non-uniform, it can be
verified that they can be presented in uniform terms (i.e., computable by Turing machines rather than
by circuits).

211

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

a multiple of N . (We remark that all three ingredients have verifiers or testers that
make nearly-uniform queries, and that we compose these ingredients via the composition
theorems that preserve this distribution of queries.) Specifically, the second paragraph
following the ingredients-list asserts that for any desired p′′ and k′′, an

(
F, (p′′, k′′) →

(p′′ + 13, 1),Ω(1),Ω(1/p′′)2
)
-LIPS with randomness O(p′′ log k′′), input length poly(p′′k′′),

and proof length that are poly(p′′k′′). We shall use p′′ = O(1) and k′′ = b, where the O(1)
stands for the query complexity of the codeword tester for C. Thus the above simplifies
to asserting an

(
F, (O(1), b)→ (O(1), 1),Ω(1),Ω(1)

)
-LIPS with randomness O(log b) and

input/proof lengths (i.e., n and `) that are poly(b). Without loss of generality, we may
assume that ` is a multiple of n.

Next, we wish to compose C with the above LIPS via Theorem 5.15 (instead of via
Theorem 5.13, which does not preserve the nearly-uniform distribution of the queries). It
follows that in Item 1 of Theorem 5.15 we use K,N and r as provided by the hypothesis
and q = O(1). For Item 2, we use b as provided by the hypothesis, (q = O(1) as
above), p = O(1) and a = 1, and n, ` = poly(b) (all fitting the LIPS above). So we
have Γ = F , and get a strong-LTC mapping FbK to F2r+1·`, which makes nearly-uniform
queries. In particular, for t = 2r`/Nn (i.e., tNn = 2r`), as shown on top of page 56
(see Equation (32)), the first half of the codewords of the resulting code have the form(
E(C(x)1)), ..., E(C(x)N)

)t
, where x ∈ FbK is viewed as an element of ΣK . The theorem

follows.

Next, recall the statement of Corollary 5.11.

Corollary 5.15 (restated). Let C : {0, 1}k → {0, 1}ck be a good linear code with constant
relative distance, where c ∈ N is a constant. Then, for some M,m = poly(k), there
exists a linear strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k →
{0, 1}m, which has constant relative distance, such that the M-bit long prefix of C ′(x)

equals
(
E(C(x)[1]), ..., E(C(x)[c])

)M/cm
, where C(x)[i] is the ith block of length k in C(x).

Furthermore, the (strong) tester of C ′ makes nearly-uniform queries.

Proof. Let C : Fk → Fck be a good linear code. Viewing C as a mapping from Σ = Fk
to Σc, note that C is a strong-LTC, which is (trivially) checked by reading all c symbols
(and hence, by definition, it makes uniform queries). The claim follows by instantiating
Theorem 5.10 using the code C and taking b = k, K = 1, N = c = O(1), and r = 0.

5.8.2 Concatenating Multiple Encodings of Strong LTCs

In this appendix, we show a sufficient condition for obtaining strong-LTCs via concatena-
tion of strong-LTCs. We prove Proposition 5.13.

Proof. Let |I| = α · n for constant 0 ≤ α ≤ 1. Assume, without loss of generality, that
I = {1, . . . , α · n}. For every i ∈ [t], we refer to an alleged (n-bit) codeword Ci(x) as the

pair of strings (yi, zi) ∈ {0, 1}α·n×{0, 1}(1−α)·n, so that yi is the common codeword Ĉ(x)
and zi is the rest of the codeword.

212

5.8 Appendices for Chapter 5

We show a (strong) tester that, given oracle access to a binary string w =
(
(y1, z1), . . . , (yt, zt)

)
,

where (yi, zi) ∈ {0, 1}n for every i ∈ [t], accepts every codeword of C ′ and rejects non-
codewords of C ′ with probability that is polynomial in their relative distance from C ′.
The strong-LTC procedure for C ′ is described in Figure 5.3.

The strong-LTC Procedure for C ′

Input: a string
(
(y1, z1), . . . , (yt, zt)

)
∈ {0, 1}n·t.

1. The inner strong-LTC test: Select at random i ∈ [t], and run the strong-LTC tester of
Ci on (yi, zi).

2. The common codeword consistency test: Select at random i1, i2 ∈ [t] and j ∈ [n],
and reject if the jth bit of yi1 and yi2 differs.

Figure 5.3: Strong local tester for C ′

Note that Step 1 of the tester T invokes the tester of a uniformly selected inner code
(Ci), and so, if the testers of C1, . . . , Ct make nearly-uniform queries, then Step 1 of T
also makes nearly-uniform queries. As for Step 2 of T (which queries a uniformly selected
bit in two uniformly selected yi’s), note that by adding two dummy queries to the second
part of each inner code (i.e., query a uniformly selected bit in two uniformly selected zi’s)
we ensure that the first test also makes nearly-uniform queries.

The completeness of the tester is straightforward. If
(
(y1, z1), . . . , (yt, zt)) is equal to

C ′(x) for some x ∈ {0, 1}k, then: (1) for every i1, i2 ∈ [t] it holds that yi1 = yi2 , and (2)
for every i ∈ [t] it holds that (yi, zi) is equal to Ci(x). Thus the tester accepts.

Next, we show the soundness of the tester. Let w =
(
(y1, z1), . . . , (yt, zt)

)
be δC′(w)-far

from the code C ′, let u ∈ {0, 1}n be a string that minimizes the value of ∆
(
(y1, . . . , yt), u

t
)
,

and let γ = δ(Ĉ)/36. Suppose that (y1, . . . , yt) is γ · δC′(w)-far from ut. In this case, the
“common codeword consistency test” rejects with probability

E
i1,i2∈R[t]

[
∆(yi1 , yi2)

n

]
≥ E

i1∈R[t]

[
∆(yi1 , u)

n

]
=

∆
(
(y1, . . . , yt), u

t
)

n · t
= γ · δC′(w).

Thus, in the sequel, we assume that (y1, . . . , yt) is γ · δC′(w)-close to ut.

Suppose that u is 3γ · δC′(w)-far from Ĉ. Since (y1, . . . , yt) is γ · δC′(w)-close to ut, at
least half of the yi’s must be 2γ · δC′(w)-close to u, so these yi’s are γ · δC′(w)-far from
Ĉ. Thus, in the invocation of the strong-LTC test of a random Ci, with probability 1/2,
the test is invoked on a string (yi, zi) such that yi is γ · δC′(w)-far from the codewords of

Ĉ. Since |I| = |yi| the tester will reject with probability Ω(δC′(w)). Hence, in the sequel,

we assume that u is 3γ · δC′(w)-close to a codeword of Ĉ. Since we also assume that
(y1, . . . , yt) is γ · δC′(w)-close to ut, then by the triangle inequality, the string (y1, . . . , yt)

213

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

is 4γ · δC′(w)-close to a (unique, since 4γ < δ(Ĉ)/2) codeword Ĉt(x). Furthermore, by

an averaging argument, at most δC′(w)/8 fraction of the yi’s are δ(Ĉ)/2-far from Ĉ(x).

Since |Ĉ(x)|t = α · |C ′(x)| for a constant α ∈ (0, 1), and since (y1, . . . , yt) is 4γ ·δC′(w)-

close to Ĉt(x), then (z1, . . . , zt) is δC′(w)/2-far from any (ẑ1, . . . , ẑt) ∈ {0, 1}(n−|I|)t such

that
(
Ĉt(x), (ẑ1, . . . , ẑt)

)
is a codeword of C ′. Thus, at least δC′(w)/4 fraction of the zi’s

are δC′(w)/4-far from their corresponding ẑi’s. Hence, at least δC′(w)/8 fraction of the

(yi, zi) pairs satisfy (1) yi is δ(Ĉ)/2-close to Ĉ(x), and (2) zi is δC′(w)/4-far from ẑi(x).
Therefore, if we invoke the verifier of Ci on such (yi, zi), it will reject with probability
Ω(δC′(w)). Therefore, the tester T rejects with probability poly

(
δC′(w)

)
, as required.

5.8.3 Robustness of Tensor Codes

In this section we prove Theorem 5.4, which is implicit in [Vid12]. Specifically, in
[Vid12, Theorem A.5] it is shown that for d ≥ 3, if a codeword w of a d-dimensional
tensor code C⊗d is corrupted, then the corruption in a random hyperplane (i.e., a d− 1-
dimensional subplane) of w is proportional to the corruption in the entire (d-dimensional)
tensor w. By applying this theorem recursively we obtain that for constant values of
d ≥ 3, the corruption in a random 2-dimensional plane of a corrupted codeword of C⊗d

is proportional to the corruption in the entire codeword.

We start by recalling the definition of robustness. Informally, we say that a tester is
robust if for every word that is far from the code, the tester’s view is far in expectation
from any consistent view. This notion was defined for LTCs following an analogous
definition for PCPs [BSGH+06].

Definition 5.15 (Robustness). Given a tester T for a code C : {0, 1}k → {0, 1}n, for
every word w ∈ {0, 1}k we define

ρT (w) = E
I

[
δ(w|I , C|I)

]
,

where w|I denotes the local view of the tester after querying on coordinates given by I.
We say that the tester T has robustness ρTC on the code C if for every w ∈ {0, 1}k it holds
that ρT (w) ≥ ρTC · δC(w).

Next, we consider the “hyperplane tester for tensor codes” of Ben-Sasson and Su-
dan [BS06]. Towards this end, we first provide a notation for hyperplanes. For every
j ∈ [d], and b ∈ [n], we say that τ is a (j, b)-hyperplane in {0, 1}nd if

τ = {(i1, . . . , ij−1, b, ij+1, . . . , id) : for all t ∈ [d] \ { j } we have it ∈ [n]} .

We denote by Hyperplanes = {(j, b)-hyperplane}{j∈[d],b∈[n]} the set of all hyperplanes in

{0, 1}nd , and denote the restriction of a tensor w ∈ {0, 1}nd to a hyperplane τ ∈
Hyperplanes by w|τ ∈ {0, 1}n

d−1
.

214

5.8 Appendices for Chapter 5

Definition 5.16 (Hyperplane Tester for Tensor Codes). Let C be a linear code, d ≥ 3
an integer, and w ∈ {0, 1}nd. The hyperplane tester for C⊗d selects uniformly at random
τ ∈ Hyperplanes, obtains w|τ by querying all points on τ , and accepts if and only if
w|τ ∈ C⊗d−1.

Theorem 5.16 ([Vid12, Theorem A.5]). Let C be a linear code and d ≥ 3. Let T be the

hyperplane tester for C⊗d. Then, ρT
C⊗d ≥

δ(C)d

2d2 .

We show that Theorem 5.4 follows by iterative applications of Theorem 5.16.

Proof of Theorem 5.4. Let C be a linear code and d ≥ 3 a constant integer. Let w ∈
{0, 1}nd be a tensor. For every 3 ≤ t ≤ d, let Tt be the hyperplane tester for C⊗t. Note
that for every 3 ≤ t ≤ d, the tester Tt queries a hyperplane that is allegedly a codeword
of C⊗t−1; hence Tt−1 can be composed with Tt; that is, we can run Tt on input w, during
which Tt generates a local view w|I to be queried, and so, we can run Tt−1 on the local
view w|I . (Note that the composed tester T3 ◦ . . . ◦ Td queries the restriction of the input
w to a uniformly selected plane p ∈ Planes.) The robustness of the composed tester will
hence be

ρT3◦...◦Td
C⊗d

≥ ρTd
C⊗d
· ρTd−1

C⊗d−1 · . . . · ρT3

C⊗3 .

By Theorem 5.16, for every t ≥ 3 we have ρTtC⊗t ≥
δ(C)t

2t2
. Thus, for constant d ≥ 3 it holds

that crobust , ρT3◦...◦Td
C⊗d

is a positive constant that depends only on δ(C) and d.

5.8.4 Average Smoothness and Error Reduction for Relaxed
LDCs

In this appendix, following [BSGH+06, Section 4.2], we show that the modified definition
of relaxed-LDCs (see Definition 5.8) implies the standard definition of relaxed-LDCs (see
Definition 6.3). Towards this end we need to show the following: (1) The soundness can
be increased from Ω(1) (as in Condition 2 of Definition 5.8) to 2/3 (as in Condition 2 of
Definition 6.3), and (2) the average smoothness (i.e., Condition 3 of Definition 5.8) can
be replaced with the success rate condition (i.e., Condition 3 of Definition 6.3). Both
claims were shown in [BSGH+06]; we provide their proofs (adapted to our settings) for
completeness.

We start by showing how to perform error-reduction for relaxed-LDC with soundness
Ω(1). Recall that the decoder is required to successfully decode each valid codeword,
and in addition, given a somewhat corrupted codeword the decoder is required to either
decode successfully or abort with probability Ω(1). On the face of it, it may seem that
standard error reduction cannot be applied (since we start with a large error probability).
However, the error reduction can be simply performed by repeating the execution of the
decoder, outputting a bit only if all invocations returned this bit, and aborting otherwise.
We remark that the above may cause an increase in the number of indices on which the
decoder aborts (with probability at least 2/3). However, in the modified definition (i.e.,
Definition 5.8) there is no restriction on the success rate.

215

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

Proposition 5.17. Let C : {0, 1}k → {0, 1}n be a modified relaxed-LDC, according to
Definition 5.8. Then, C has a modified relaxed-LDC decoder that also satisfies Condition 2
of Definition 6.3.

Proof. Let C be a modified relaxed-LDC. Denote its decoder by D. There exists a
constant p > 0 such that for every string w that is sufficiently close to a codeword of C
it holds that PrD[Dw(i) = {xi,⊥}] ≥ p. Consider a decoder D′ that operates follows:
D′ executes the original decoder D (with fresh randomness) for r times, where r is a
constant to be determined later. If all of the executions are consistent, i.e., there exists
an a ∈ {0, 1,⊥} such that in every execution Dw(i) = a, then D′ output a; otherwise,
D′ output ⊥. (We remark that the distribution of queries of D′ is identical to that of D,
and thus D′ also satisfies the average smoothness condition.)

Note that the new decoder D′ satisfies Condition 1 of Definition 6.3 (the completeness
condition). Moreover, D′ satisfies Condition 2 of Definition 6.3: Indeed, given w that is
sufficiently close to C(x), the probability that D′ errs is at most p′ = (1− p)r. Hence, by
fixing r = 2/p we get that PrD′ [D

′w(i) = {xi,⊥}] ≥ 1− p′ ≥ 2/3, as needed.

Finally, we show that the average smoothness condition (i.e., Condition 3 of Defini-
tion 5.8) can be replaced by the success rate condition (i.e., Condition 3 of Definition 6.3,
which limits the number of indices upon which the decoder aborts (with probability at
least 2/3)). The key idea is that a decoder that satisfies the completeness and soundness
conditions (i.e., Conditions 1 and 2 of Definition 6.3) only aborts if the local view of
the codeword that it queries contains a corrupted point. By the average smoothness, on
average the decoder will only query a corrupted point with low probability. Thus, by an
averaging argument, we can deduce that there is a small number of indices upon which
the decoder might abort.

Proposition 5.18. Let C : {0, 1}k → {0, 1}n be a linear code, and let D be a constant-
query decoder for C that satisfies Conditions 1 and 2 of Definition 6.3 as well as Condi-
tion 3 of Definition 5.8 (i.e., average smoothness). Then, C satisfies all three conditions
of Definition 6.3.

Proof. Let the code C and the decoder D be as in the hypothesis of the proposition.
Denote the (constant) query complexity of D by q. According to Condition 1, for any
x ∈ {0, 1}k and every i ∈ [k], it holds that Pr

[
DC(x)(i) = xi

]
= 1. Considering any w that

is δ-close to C(x) (where δ ≤ δradius), the probability that given a uniformly distributed
index i ∈ [k] the decoder D queries a location on which w and C(x) disagree is at most
q · (2/n) · δn = 2qδ. This is due to the fact that, for a uniformly distributed i, no position
is queried with probability greater than 2/n.

Let pwi denote the probability that on input i the decoder D queries a location on
which w and C(x) disagree. We have just established that (1/k) ·

∑k
i=1 p

w
i ≤ 2qδ. By

an averaging argument, for Iw , {i ∈ [k] : pwi ≤ 1/3}, it holds that |Iw| ≥ (1 − 6qδ) · k.
Observe that for any i ∈ Iw, it holds that Pr[Dw(i) = xi] ≥ 1−1/3 = 2/3, as required.

216

5.8 Appendices for Chapter 5

5.8.5 Proof of Claim 5.11.2

In this section we provide the proof of Claim 5.11.2. The proof is similar to the proof
of Claim 5.11.1. However, note that Claim 5.11.1 and Claim 5.11.2 deal with different
objects: While Claim 5.11.1 deals with the planes of the tensor code and the plane
scPCPPs, Claim 5.11.2 deals with the lines of the tensor and the point-line scPCPPs. In
particular, every plane in the tensor code is coupled with a unique plane scPCPP proof,
whereas every line in the tensor code is coupled with n different point-line scPCPPs,
one for each point on the line. We begin by restating Claim 5.11.2. Recall that γ =
δ(C)/(24d).

Claim 5.18.1 (restated). Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1, if
δp̄lines > δC′(w), then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. By the lemma’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). By an
averaging argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x).
We say that a point ı̄ ∈ [n]d in c is corrupted if cı̄ 6= C ′(x)ı̄ and so, there are at most 3δc̄n

d

corrupted points in c. Since there are d · nd−1 axis-parallel lines in c, then on average,
the number of corrupted points in a random axis-parallel line is at most 3δc̄nd

d·nd−1 ≤ 3δc̄n.

Thus, by an averaging argument, we obtain that at most δp̄
4

fraction of the axis-parallel
lines in c contain at least 4

δp̄
· 3δc̄n corrupted points.

Recall that every axis-parallel line ` has n corresponding point-line scPCPP proofs
(one for each point on `). For every line ` we view these n proofs as one concatenated
proof for the line `. By an averaging argument, with probability at least δp̄ , δp̄lines/2 the
random copy p̄ in p̄lines is δp̄-far from its corresponding set of canonical proofs, πlines(x).
Assume from now on that p̄ is δp̄-far from πlines(x). By another averaging argument,
at least a δp̄/2 fraction of the concatenated line proofs (i.e., proofs which consists of n
point-line scPCPP proofs) are δp̄/2-far from their corresponding (concatenated) canonical
line proofs.

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-

fraction of the axis-parallel lines ` in c are both δ(C0)/2-close to the restriction of the
tensor codeword C(x) to `, and their corresponding (concatenated) proofs are Ω

(
δC′(w)

)
-

corrupted; that is, there is a subset of lines, denoted BAD, which consists of at least δp̄
4

fraction of all the lines in c that are δ(C0)/2-close to C(x)|` (recall that δc̄ ≤ γ · δC′(w)
and δp̄ > δC′(w), therefore 12·δc̄

δp̄
< δ(C0)/2), and in addition satisfy the following: For

every ` ∈ BAD, the n (alleged) point-line scPCPP proofs that correspond to ` are δp̄/2-far
from their (correct) canonical proofs in πlines(x). By an averaging argument, for every
` ∈ BAD it holds that δp̄/4 fraction of the point-line PCPP proofs that correspond to
the line ` (recall that there are n such proofs) are δp̄/4-far from their canonical proof in
πlines(x).

Recall that the tester chooses a line ` = `j,̄ı by sampling uniformly at random a point
ı̄ ∈ [n]d and a direction j ∈ [d]. Notice that for if ` ∈ BAD, then with probability δp̄/4,
in order for input c|` and the proof p`j,ı̄ (that refers to the same line as `) to be a valid
claim for the input-proof language that V line(ij, cı̄) verifies, one must make at least one

217

5. STRONG LOCALLY TESTABLE CODES WITH RELAXED LOCAL
DECODERS

of the following changes: (1) change a fraction of at least δp̄
4

of the proof p`j,ı̄ such that it
matches πline

(
C(x)|`j,ı̄ , ij

)
, or (2) change a fraction of at least δ(C0)/2 of c|` (since p`j,ı̄

might be a valid proof for input C0(y) 6= c|`). Thus, for every `j,̄ı ∈ BAD, the probability
that V line(ij, cı̄) rejects input c|`j,ı̄ and proof p`j,ı̄ is at least polynomial in δC′(w).

Putting it all together, with probability 2/3 we hit a random copy c of the tensor
code that is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random
copy p̄ that is δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a set of n line
scPCPP proofs that are δp̄/2-corrupted. Moreover, with probability at least δp̄/4 we hit
a point-line scPCPP proof that is δp̄/4 corrupted. Finally, assuming the foregoing, the
corresponding scPCPP verifier rejects with probability poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2

3
· δp̄ ·

δp̄
2
· δp̄

4
· poly (δC′(w)) ≥ poly

(
δC′(w)

)
.

218

Chapter 6

Universal Locally Testable Codes

6.1 Introduction

Locally testable codes [FS95, RS96, GS06] are error-correcting codes that have local
procedures for ascertaining the integrity of purported codewords. More accurately, a
code C is a locally testable code (LTC) if there exists a probabilisitic algorithm (tester)
that gets a proximity parameter ε > 0, makes a small number of queries to a string w,
and with high probability accepts if w is a codeword of C and rejects if w is ε-far from C.
The query complexity of the tester is the number of queries that it makes (also referred
to as the locality of the LTC).

6.1.1 The Notion of Universal-LTC

In this chapter we initialize a study of a generalization of the notion of LTCs, which
we call universal locally testable codes. A universal-LTC is a code that not only admits
a local test for membership in the code C but also a local test for membership in a
family of subcodes of C. More precisely, a binary code C : {0, 1}k → {0, 1}n is a q-
local universal-LTC for a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

if for every

i ∈ [M] the subcode Πi {C(x) : fi(x) = 1} is locally testable with query complexity
q. Viewed in an alternative perspective, such codes allow for testing properties of the
encoded message; that is, testing whether C(x) is an encoding of a message x that satisfies
a function fi ∈ F .

Universal-LTCs implicit in previous works. We note that the notion of universal-LTCs
is implicit in the literature. For instance, the long code [BGS98], which maps a mes-
sage to its evaluations under all Boolean functions, can be thought of as the “ulti-
mate” universal-LTC for all Boolean functions. To see this, recall that the long code
is both locally testable and correctable (i.e., there exists a local algorithm that can
recover any bit of a slightly corrupted codeword). Now, observe that we can test a

subcode {LC(x) : f(x) = 1}, where LC : {0, 1}k → {0, 1}22k

is the long code and
f : {0, 1}k → {0, 1} is some Boolean function, by first running the codeword test (and

219

6. UNIVERSAL LOCALLY TESTABLE CODES

rejecting if it rejects), and then running the local correcting algorithm with respect to
the bit in LC(x) that corresponds to the evaluation of f on x. Note, however, the ability
to test all subcodes comes at the cost of great redundancy, since the length of the long
code is doubly exponential in the length of the message.

By an analogous argument, the Hadamard code, which maps a message to its eval-
uations under all linear Boolean functions, can be thought of as a universal-LTC for all
linear Boolean functions. Note that the length of the Hadamard code is exponential in
the length of the message. Another example is the inner PCP for satisfiability of quadratic
equations [ALM+98], wherein the (exponentially long) PCP oracle is an encoding of an
assignment, independent from the set of quadratic equations it allegedly satisfies. Hence,
this PCP is an ”universal” encoding that admits a local test for the satisfiability of any
function that is given by a set of quadratic equations, and so it can be thought of as a
universal-LTC for quadratic equations.

In this chapter, we ask whether universal-LTCs can be constructed for any family
of functions F , and what are the optimal parameters (i.e., the code’s length, local-
ity, and number of subcodes for which it admits a local test) that can be obtained by
universal-LTCs.

Universal (relaxed) Locally Decodable Codes. Before proceeding to present our
results, we highlight a close connection between universal-LTCs and a universal gener-
alization of the notion of relaxed local decodability. Recall that a code is said to be
a relaxed locally decodable code (relaxed-LDC) [BSGH+06] if for every location i in the
message there exists a local algorithm (decoder) that is given query access to an alleged
codeword, and satisfies the following: If the codeword is valid, the decoder successfully
decodes the i’th symbol, and if the codeword is corrupted, the decoder, with high proba-
bility, either decodes correctly or rejects (indicating it detected a corruption in the code-
word). It turns out that universal-LTCs immediately imply a generalization of the notion
of relaxed-LDCs, which we describe next. (We also note that, under certain conditions,
universal-LTCs imply (non-relaxed) local decodability, see Section 6.7.1.)

We define a universal relaxed locally decodable code (in short, universal-LDC) for a family
of functions F (analogously to universal-LTCs) as a relaxed-LDC wherein, instead of local
procedures for (relaxed) decoding of bits of the message x, we have local procedures for
(relaxed) decoding of the value of f(x) for every f ∈ F .

Now, let F be a family of Boolean functions. Observe that a universal-LTC for F ∪
(1−F) (i.e., a code with a tester Tf,b for each subcode {C(x) : f(x) = b}, where f ∈ F
and b ∈ {0, 1}) implies a universal-LDC for F , which is also locally testable, and vice
versa. To see this, consider the following local decoding procedure for f ∈ F : To decode
f(x), invoke Tf,0 and Tf,1. If one tester accepted and the other rejected, rule according
to the accepting tester, and otherwise reject. The reader may verify that this is indeed a
(relaxed) local decoding procedure (see Section 6.7.1 for discussion and generalizations).
For the other direction, to test the subcode {C(x) : f(x) = 1}, first run the codeword
test, then decode the value of f(x) and accept if and only if it equals 1 (i.e., a decoded
value of 0 and a decoding error both cause rejection). We remark that all universal-LTCs

220

6.1 Introduction

in this chapter can be easily extended to families of the type F ∪ (1 − F), and thus we
also obtain analogous results for universal-LDCs.

On “uniformity” with respect to F . For simplicity, we defined universal LTCs and
LDCs in a “non-uniform” manner with respect to the family of functions F ; that is, we
required that for every function f ∈ F , there exists a testing or decoding procedure. A
stronger, ”F -uniform”, definition would require that there exists a procedure that receives
f ∈ F as a parameter and tests or decodes with respect to f . We remark that all of our
upper bounds can be easily adapted to satisfy the stronger F -uniform condition, while
our lower bounds hold even without this condition.

6.1.2 Our Results

To simplify the presentation of our results, throughout the introduction we fix the prox-
imity parameter ε to a small constant, and when we refer to “codes”, we shall actually
mean error-correcting codes with linear distance. Our first result shows “canonical”
universal-LTCs for any family of functions.

Theorem 3 (informally stated, see Theorem 6.2). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be any family of Boolean functions that can each be computed by a size s = s(k) circuit.

Then, there exists a (one-sided error) universal-LTC C : {0, 1}k → {0, 1}Õ(M ·s) for F with
query complexity O(1).

We complement the foregoing“canonical” universal-LTC with a general lower bound
on the query complexity of universal-LTCs, as a function of the encoding’s length and
number of subcodes for which it admits a local test.

Theorem 4 (informally stated, see Theorem 6.5). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be

a family of distinct Boolean functions. Then, every universal-LTC C : {0, 1}k → {0, 1}n
for F must have query complexity Ω(log logM − log log n − log k). Furthermore, if the
functions in F are pairwise far (i.e., Prx[fi(x) 6= fj(x)] = Ω(1) for every i 6= j), then the
query complexity is Ω(log logM − log log n).

Note that log logM − log log n = O(1) implies a lower bound of n ≥ MΩ(1). In contrast,
recall that Theorem 3 shows an upper bound of n = Õ(M · s), where s bounds the
circuit size for computing each f ∈ F . Thus, for sufficiently large families of pairwise-far
functions, Theorem 4 shows that the length of the canonical universal-LTC (in Theorem 3)
is optimal, up to a constant power. This raises the question of whether the aforementioned
slackness can be removed. We answer this question to the affirmative, albeit for a specific
family of functions.

Specifically, we show a universal-LTC C : {0, 1}k → {0, 1}k1.01
for a family of M =(

k
m

)
· 22m functions, namely the family of m-juntas,1 with query complexity Õ(m); note

that for a large constant m, the number of functions M is an arbitrarily large polynomial

1That is, all Boolean functions that only depend on m of their k variables.

221

6. UNIVERSAL LOCALLY TESTABLE CODES

in the code’s length k1.01 < M1.01/m, whereas for the canonical universal-LTC the length
is linear in M .

In addition, note that the lower bound in Theorem 4 allows for a tradeoff between
the universal-LTC’s length and locality (i.e., query complexity), whereas Theorem 3 only
shows universal-LTCs in the constant locality regime. In Section 6.6 we show that for the
family of m-juntas, there exists a universal-LTC that allows for a tradeoff between locality
and length. (See Proposition 6.8 for a precise statement.)

6.2 Preliminaries

We begin with standard notations:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and

y ∈ Σn by ∆(x, y)
def
= |{xi 6= yi : i ∈ [n]}| and their relative distance by δ(x, y)

def
=

∆(x,y)
n

. If δ(x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say that x
is ε-far from y. Similarly, we denote the absolute distance of x from a non-empty

set S ⊆ Σn by ∆(x, S)
def
= miny∈S ∆(x, y) and the relative distance of x from S by

δ(x, S)
def
= miny∈S δ(x, y). If δ(x, S) ≤ ε, we say that x is ε-close to S, and otherwise

we say that x is ε-far from S. We denote the projection of x ∈ Σn on I ⊆ [n] by
x|I .

• We denote by Ax(y) the output of algorithm A given direct access to input y and
oracle access to string x. Given two interactive machines A and B, we denote by
(Ax, B(y))(z) the output of A when interacting with B, where A (respectively, B)
is given oracle access to x (respectively, direct access to y) and both parties have
direct access to z. Throughout this chapter, probabilistic expressions that involve
a randomized algorithm A are taken over the inner randomness of A (e.g., when we
write Pr[Ax(y) = z], the probability is taken over the coin-tosses of A).

Integrality. Throughout this chapter, for simplicity of notation, we use the conven-
tion that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the closest integer.

Uniformity. To facilitate notation, throughout this chapter we define all algorithms
non-uniformly ; that is, we fix an integer n ∈ N and restrict the algorithms to inputs
of length n. Despite fixing n, we view it as a generic parameter and allow ourselves to
write asymptotic expressions such as O(n). We remark that while our results are proved
in terms of non-uniform algorithms, they can be extended to the uniform setting in a
straightforward manner.

Circuit Size. We define the size s(k) of a Boolean circuit C : {0, 1}k → {0, 1} as the
number of gates C contains. We count the input vertices of C as gates, and so s(k) ≥ k.

222

6.2 Preliminaries

We shall write f ∈ SIZE
(
s(k)

)
to state that a Boolean function f : {0, 1}k → {0, 1} can

be computed by a Boolean circuit of size s(k).

6.2.1 Locally Testable and Decodable Codes

Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that
maps messages to codewords such that the distance between any two codewords is at least
d = d(n). If d = Ω(n), we say that C has linear distance. If Σ = {0, 1}, we say that C is a
binary code. If C is a linear map, we say that it is a linear code. The relative distance of C,
denoted by δ(C), is d/n, and its rate is k/n. When it is clear from the context, we shall
sometime abuse notation and refer to the code C as the set of all codewords {C(x)}x∈Σk .
Following the discussion in the introduction, we define locally testable codes and locally
decodable codes as follows.

Definition 6.1 (Locally Testable Codes). A code C : Σk → Σn is a locally testable
code (LTC) if there exists a probabilistic algorithm (tester) T that, given oracle access to
w ∈ Σn and direct access to proximity parameter ε, satisfies:

1. Completeness: For any codeword w = C(x), it holds that Pr[TC(x)(ε) = 1] ≥ 2/3.

2. Soundness: For any w ∈ {0, 1}n that is ε-far from C, it holds that Pr[Tw(ε) = 0] ≥
2/3.

The query complexity of a LTC is the number of queries made by its tester (as a function
of ε and k). A LTC is said to have one-sided error if its tester satisfy perfect completeness
(i.e., accepts valid codewords with probability 1).

Definition 6.2 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable
code (LDC) if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm
(decoder) D that, given oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies
the following condition: For any i ∈ [k] and w ∈ Σn that is δradius-close to a codeword
C(x) it holds that Pr[Dw(i) = xi] ≥ 2/3. The query complexity of a LDC is the number
of queries made by its decoder.

We shall also need the notion of relaxed-LDCs (introduced in [BSGH+06]). Similarly
to LDCs, these codes have decoders that make few queries to an input in attempt to
decode a given location in the message. However, unlike LDCs, the relaxed decoders are
allowed to output a special symbol that indicates that the decoder detected a corruption
in the codeword and is unable to decode this location. Note that the decoder must still
avoid errors (with high probability).2

2The full definition of relaxed-LDCs, as defined in [BSGH+06] includes an additional condition on the
success rate of the decoder. Namely, for every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and
for at least a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the
ith bit of x. That is, there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds
that Pr [Dw(i) = xi] ≥ 2/3. We omit this condition since it is irrelevant to our application, and remark
that every relaxed-LDC that satisfies the first two conditions can also be modified to satisfy the third
conditions (see [BSGH+06, Lemmas 4.9 and 4.10]).

223

6. UNIVERSAL LOCALLY TESTABLE CODES

Definition 6.3 (relaxed-LDC). A code C : Σk → Σn is a relaxed-LDC if there exists a
constant δradius ∈ (0, δ(C)/2),

1. (Perfect) Completeness: For any i ∈ [k] and x ∈ Σk it holds that DC(x)(i) = xi.

2. Relaxed Soundness: For any i ∈ [k] and any w ∈ Σn that is δradius-close to a (unique)
codeword C(x), it holds that

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

There are a couple of efficient constructions of codes that are both relaxed-LDCs and
LTCs (see [BSGH+06, GGK15]). We shall need the construction in [GGK15], which has
the best parameters for our setting.3

Theorem 6.1 (e.g., [GGK15, Theorem 1.1]). For every k ∈ N and α > 0 there exists a
(linear) code C : {0, 1}k → {0, 1}k1+α

with linear distance, which is both a relaxed-LDC
and a (one-sided error) LTC with query complexity poly(1/ε).

6.3 The Definition of Universal Locally Testable Codes

Following the discussion in the introduction, we define universal locally testable codes as
follows.

Definition 6.4. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of

functions. A universal locally testable code (universal-LTC) for F with query complexity
q = q(k, ε) is a code C : {0, 1}k → {0, 1}n such that for every i ∈ [M] and ε > 0
there exists an ε-tester for the subcode Πi {C(x) : fi(x) = 1} with query complexity q. A
universal-LTC is said to have one-sided error if all of its testers satisfy perfect completeness.

Notation (ε-testing). We shall refer to a universal-LTC with respect to a specific prox-
imity parameter ε > 0 as a universal-LTCε.

Organization. We start, in Section 7.4.1, by showing a canonical universal-LTC for
every family of functions. This construction relies on a PCP-based machinery for asserting
consistency of encodings, which we shall use throughout this chapter. Next, in Section 6.5,
we prove general lower bounds on the query complexity of universal-LTCs as a function of
the code’s length and number of functions it can test. Finally, in Section 6.6, we show a
specific family of functions (namely, the family of m-juntas, i.e., Boolean functions that
only depend on m of their variables) for which we can obtain a smooth tradeoff between
the universal-LTC length and locality.

3Specifically, the codes in [GGK15] are meaningful for every value of the proximity parameter, whereas
the codes in [BSGH+06] require ε > 1/polylog(k).

224

6.4 The Canonical Universal-LTC

6.4 The Canonical Universal-LTC

In this subsection we show a methodology for constructing an O(1)-local universal-LTC
for any family of Boolean functions.

Theorem 6.2. Let t(k) be a proper complexity function, and let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of functions such that for every i ∈ [M], the function fi can be computed
by a size t(k) circuit (i.e., fi ∈ SIZE

(
t(k)

)
). Fix n = M · Õ(t(k)). Then, for every

ε > 1/polylog(n) there exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n)

for F with linear distance and query complexity O(1/ε).

We remark that, loosely speaking, the “canonical” universal-LTC above tightly matches
the lower bound (see Theorem 6.5) in the low query complexity regime, for a reasonable
setting of the parameters; see Section 6.5 for a more accurate statement.

The key idea for proving Theorem 6.2 is to design a universal-LTC that includes, for
every f ∈ F , a PCP encoding of the message x, which asserts the value of f(x); this
way we obtain a local test for each function in F , simply by running its corresponding
PCP verifier. The main problem, however, is that given concatenated PCP oracles we
cannot locally verify that all of these PCPs are consistent with the exact same message.
To overcome this issue, we shall first show a machinery for “bundling” encodings together
in a way that allows for locally testing that all of the encodings are consistent with the
same message. The key components for this construction are PCPs of proximity, which
we discuss below.

6.4.1 Preliminaries: PCP of proximity

PCPs of proximity (PCPPs) [BSGH+06, DR06] are a variant of PCP proof systems, which
can be thought of as the PCP analogue of property testing. Recall that a standard PCP
is given explicit access to a statement and oracle access to a proof. The PCP verifier is
required to probabilistically verify whether the (explicitly given) statement is correct, by
making few queries to proof. In contrast, a PCPP is given oracle access to a statement
and a proof, and is only allowed to make a small number of queries to both the statement
and the proof. Since a PCPP verifier only sees a small part of the statement, it cannot be
expected to verify the statement precisely. Instead, it is required to only accept correct
statements and reject statements that are far from being correct (i.e., far in Hamming
distance from any valid statement). More precisely, PCPs of proximity are defined as
follows.

Definition 6.5. Let V be a probabilistic algorithm (verifier) that is given explicit access
to a proximity parameter ε > 0, oracle access to an input x ∈ {0, 1}k and to a proof
p̄ ∈ {0, 1}n. We say that V is a PCPP verifier for language L if it satisfies the following
conditions:

• Completeness: If x ∈ L, there exists a proof p̄ such that the verifier always accepts
the pair (x, p̄); i.e., V x,p̄(ε) = 1.

225

6. UNIVERSAL LOCALLY TESTABLE CODES

• Soundness: If x is ε-far from L, then for every p̄ the verifier rejects the pair (x, p̄)
with high probability; that is, Pr[V x,p̄(ε) = 0] ≥ 2/3.

The length of the PCPP is n and the query complexity is the number of queries made by
V to both x and p̄.

We shall use the following PCPP due to Ben-Sasson and Sudan [BS05] and Dinur
[Din07b].

Theorem 6.3 (Short PCPPs for NP). For every L ⊆ {0, 1}k that can be computed by
a circuit of size t(k), there exists a PCPP with query complexity q = O(1/ε) and length
t(k) · polylog(t(k)).

6.4.2 Consistency-Testable Bundles

Building on techniques of Ben-Sasson at el. [BSGH+06], we show a way to bundle together
(possibly partial) encodings of the same message such that it possible to locally test
that all these encodings are indeed consistent. That is, we are given some encodings
E1, . . . , Es : {0, 1}k → {0, 1}n, and we wish to encode a single message x ∈ {0, 1}k by
all of these encodings (i.e., to bundle E1(x), . . . , Es(x)) such that we can test that all
of the encodings are valid and consistent with the same message x. We shall need such
bundles twice in this chapter: In Section 6.4.3 each Ei will simply correspond to a Boolean
function fi ∈ F , and in Section 6.6 the Ei’s will correspond to encodings of small chunks
x.

The main idea is to construct a bundle that consists of three parts: (1) the (explicit)
message x, (2) the encodings E1(x), . . . , Es(x), and (3) PCPPs that asset the consistency
of the first part (the message) with each purported encoding Ei(x) in the second part.
However, such PCPPs can only ascertain that each purported pair of message and en-
coding, denoted (y, zi), is close to a valid pair (x,Ei(x)). Thus, in this way we can
only verify that the bundle consists of encodings of pairwise-close messages, rather than
being close to encodings of a single message (e.g., the PCPPs may not reject a bundle
(x,E1(y1), . . . , Es(ys)) wherein each yi is close to x).

To avoid this problem, we also encode the message via an error-correcting code ECC, so
the bundle is of the form

(
ECC(x), (E1(x), . . . , Es(x)), (PCPP1(x), . . . ,PCPPs(x))

)
. Now,

each PCPP ascertains that a purported pair (y, zi) is close to (ECC(x), Ei(x)). Due to
the distance of ECC, this allows to verify that the bundle consists of s (close to valid)
encodings of the same message. Lastly, we repeat ECC(x) such that it constitutes most
of the bundle’s length, and so if an alleged bundle is far from valid, its copies of ECC(x)
must be corrupted, and so the bundle itself constitutes an error-correcting code that is
locally testable (by verifying at random one of the PCPPs in the bundle).

More precisely, consider the following way of bundling several encodings of the same
message.

Construction 6.4 (Consistency-Testable Bundles). Let E1, . . . , Es : {0, 1}k → {0, 1}n
be encodings such that for every i ∈ [s], the problem of (exactly) deciding whether (x, y) ∈

226

6.4 The Canonical Universal-LTC

{0, 1}k+n satisfies y = Ei(x) can be computed by a size t(k) circuit. The consistency-
testable bundle of {Ei(x)}i∈[s] is the code B(x) : {0, 1}k → {0, 1}` that consists of the
following ingredients.

1. An (arbitrary) code ECC : {0, 1}k → {0, 1}n′ with linear distance, which can be
computed by a size Õ(n′) circuit, where n′ = Õ(k).

2. Encodings E1, . . . , Es (given by the application) that we wish to bundle.

3. PCP of proximity oracles p̄1, . . . , p̄s for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb}.

where and ra, rb are set such that |a| ≈ |b| = O(t(k)).

Let ε ≥ 1/polylog(s · t(k)). Consider the bundle

B(x) =
(

ECC(x)r,
(
E1(x), . . . , Es(x)

)
,
(
p̄1(x), . . . , p̄s(x)

))
,

where the length of each PCPP oracle p̄i(x) is Õ(t(k)),4 and where r is the minimal integer
such that the first part of the bundle constitutes (1− ε/2) fraction of the bundle’s length
(i.e., |ECC(x)|r ≥ (1− ε/2) · `).

Note that the length of B is ` = Õ(s · t(k)) and that B has linear distance, because
|ECC(x)|r dominates B’s length.

Notation for (alleged) bundled. For the analysis, when we consider an arbitrary
string w ∈ {0, 1}` (which we think of as an alleged bundle), we view w ∈ {0, 1}`1+`2+`3 as
a string composed of three parts (analogous to the three parts of Construction 6.4):

1. The anchor, ẼCC(x) = (ẼCC(x)1, . . . , ẼCC(x)r) ∈ {0, 1}n
′·r, which consists of r

alleged copies of ECC(x);

2. The bundled encodings (Ẽ1(x), . . . , Ẽs(x)) ∈ {0, 1}n·s, which allegedly equals (E1(x), . . . , Es(x));

3. The PCPPs (˜̄p1(x), . . . , ˜̄ps(x)) ∈ {0, 1}Õ(t(k))·s, which allegedly equals (p̄1(x), . . . , p̄s(x)).

We show that there exists a local test that can ascertains the validity of the bundle as
well as asserts the consistency of any encoding Ei in the bundle with the anchor of the
bundle. Note that since the bundle’s anchor dominates its length, it is possible that the
bundle is very close to valid, and yet all of the Ei’s are heavily corrupted. Thus, we also
need to provide a test for the validity of each Ei and its consistency with the anchor.

4Note that Li ∈ SIZE(m) by the hypothesis regarding ECC and Ei. Thus, by Theorem 7.1, such a
PCPP exists.

227

6. UNIVERSAL LOCALLY TESTABLE CODES

Proposition 6.6. For every bundle B(x), as in Construction 6.4, there exists a consis-
tency test T that for every ε ≥ 1/polylog(`) makes O(1/ε) queries to a string w ∈ {0, 1}`
and satisfies the following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that Pr[Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x)
is ε-far from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Note that Tw(0) is a codeword test for B, whereas for every i ∈ [s], the test Tw(i) asserts

that Ẽi is close to an encoding of the anchor. To verify that w is a bundle wherein
all encodings refer to the same message (the anchor), we have to invoke Tw(i) for all
i ∈ {0} ∪ [s], but typically we will be interested only in the consistency of one encoding
with the anchor, where this encoding is determined by the application.

Proof of Proposition 7.7. We show that for every bundle B(x), as in Construction 6.4,
there exists a consistency test T that, for every ε ≥ 1/polylog(`), makes O(1/ε) queries
to a string w ∈ {0, 1}` and satisfies the following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that PrT [Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi is
ε-far from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Let ε ≥ 1/polylog(`), and assume without loss of generality that ε < δ(ECC)/2.5 For
every i ∈ [s] denote by Vi the PCPP verifier for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb},

with respect to proximity parameter ε/6 and soundness 9/10. Consider the ε-tester T

that is given i ∈ {0} ∪ [s] and oracle access to w = (ẼCC(x), (Ẽi)i∈[s], (˜̄pi)i∈[s]) ∈ {0, 1}`
and accepts if both of the following tests accept.

1. Repetition Test: Query two random copies from the long-code part of w and check
if they agree on a random location. More accurately, select uniformly at random
j, j′ ∈ [r] and reject if and only if ẼCC(x)j and ẼCC(x)j′ disagree on a random
coordinate. Repeat this test O(1/ε) times.

2. Consistency Test: Choose uniformly j ∈ [r]. If i = 0, choose uniformly i′ ∈ [s],

otherwise set i′ = i. Reject if the verifier Vi′ rejects on input (ẼCC(x)j
ra
, Ẽi′(x)rb)

and proof ˜̄pi′(x).

5The relative distance of ECC is constant, so if ε ≥ δ(ECC)/2, we can set the proximity parameter to
δ(ECC)/2, increasing the complexity by only a constant factor.

228

6.4 The Canonical Universal-LTC

The first condition of Proposition 7.7 follows by construction. For the other conditions,
first observe that if ẼCC(x) is far from consisting of r identical copies, then the rep-
etition test rejects with high probability. That is, let ĉ ∈ {0, 1}n′ be a string that is

closest on average to the copies in ẼCC(x), i.e., a string that minimizes ∆(ẼCC(x), ĉr) =∑r
j=1 ∆(ẼCC(x)j, ĉ). Observe that

E
j,j′∈R[r]

[δ(ẼCC(x)j, ẼCC(x)j′)] ≥ E
j∈R[r]

[δ(ẼCC(x)j, ẼCC(x))] = δ(ẼCC(x), ĉr).

If δ(ẼCC(x), ĉr) > ε/60, then by invoking the codeword repetition test O(1/ε) times,
with probability at least 2/3 one of the invocations will reject. Otherwise, note that with

probability at least 9/10 the random copy ẼCC(x)j is ε/6-close to ĉ; assume hereafter
that this is the case.

If w is ε-far from B, then since ẼCC(x) ≥ (1− ε/2)`, it follows that ẼCC(x) is ε/2-far
from ECCr, and thus

δECCr(ĉ
r) ≥ δECCr(ẼCC(x))− δ(ĉr, ẼCC(x)) = ε/2− ε/60 > ε/3.

Recall that we assumed that δ(ẼCC(x)j, ĉ) ≤ ε/6, and so δECC(ẼCC(x)j) > ε/6. Thus,
Pr[V w

i′ = 0] ≥ 9/10 · 9/10.

Finally, If there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far

from Ei(x), then since δ(ẼCC(x), ĉr) ≤ ε/60, it follows that with probability at least 9/10

the random copy ẼCC(x)j is ε/6-close to ECC(x). Hence, (ẼCC(x)j
ra
, Ẽi(x)rb) is at least

5ε/6-far from Li, and so Pr[V w
i = 0] ≥ 9/10 · 9/10.

6.4.3 Proof of Theorem 6.2

Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of functions such that for every i ∈ [M]

it holds that fi ∈ SIZE
(
t(k)

)
). Fix n = M · Õ(t(k)) and ε > 1/polylog(n). We set Ei = fi

for every i ∈ [M], bundle these encodings via Proposition 7.7, and denote the bundle by

C : {0, 1}k → {0, 1}Õ(n). Note that by Proposition 7.7, the code C has linear distance.

Fixing fi ∈ F , we show an O(1/ε)-local ε-tester Ti for the subcode Πi
def
= {C(x) :

fi(x) = 1}. Given input w ∈ {0, 1}Õ(n), the tester Ti simply invokes the bundle consis-
tency test on w (which makes O(1/ε) queries to w), with respect to proximity parameter
ε and the purported copy of fi(x) in the bundle, which is a bit, denoted by zi. The tester
accepts if and only if the consistency test accepts and zi = 1.

The perfect completeness of Ti follows by the one-sided error of the bundle consis-
tency test. For the soundness, assume that w is ε-far from Πi. By Proposition 7.7, we
can assume that there exists y ∈ {0, 1}k such that w is ε-close to C(y) (otherwise the
consistency test fails with probability 2/3), and since w is ε-far from Πi, it holds that
fi(y) = 0; furthermore, the value of w at fi is uncorrupted (i.e., it actually equals 0),6

and so Ti rejects.

6Formally, Proposition 7.7 guaranties that w contains a copy of fi(y) that is ε-close to zi, but since
fi(y) is a single bit, this means that fi(y) is uncorrupted.

229

6. UNIVERSAL LOCALLY TESTABLE CODES

6.5 General Lower Bounds

In this section we prove a general lower bound on the query complexity of universal-LTCs
for any family of functions F , as a function of the universal-LTC’s length and the number
of functions in F . We also prove a stronger lower bound for the case that the functions
in F are “pairwise far”.

Theorem 6.5. Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of distinct functions.

Then, every q-local universal-LTCε C : {0, 1}k → {0, 1}n for F with linear distance and
ε < δ(C)/2 must satisfy

q ≥ log logM − log log n− log(k)−O(1).

Furthermore, if there exists β = Ω(1) such that Prx∈{0,1}k [fi(x) 6= fj(x)] > β for every
i 6= j, then q = Ω(log logM − log log n).

Note that in the constant locality regime (i.e., where q = O(1)), the lower bound for
“pairwise far” functions implies that n ≥ M c for some constant c > 0. On the other
hand, recall that the canonical universal-LTC in Theorem 6.2 has query complexity O(1)
and length Õ(M · t(k)), for any family of functions that can be computed by a circuit
of size t(k) each (recall that t(k) ≥ k, by definition). Thus, for sufficiently large families
of “pairwise far” functions, the lower bound above matches the upper bound of the
canonical universal-LTC up to a constant power, where by “sufficiently large” we mean
that t(k) = poly(M).

Proof. We prove Theorem 6.5 using two different representations of testers: when proving
the main claim we view testers as randomized decision trees, whereas in the proof of the
furthermore claim we view testers as a distribution over deterministic decision trees. We
begin with the main claim, for which we use the following lemma, due to Goldreich and
Sheffet [GS10b], which shows that the amount of randomness that suffices for testing is
roughly doubly logarithmic in the size of the universe of objects it tests.

Lemma 6.7 ([GS10b, Lemma 3.7] restated). Let k ∈ N, U ⊆ {0, 1}k, and let Π ⊆ U
be a property. Assume that Π has a tester with randomness complexity r, which makes q
queries to a string in U . Then, Π has a tester that makes q queries and has randomness
complexity log log |U |+O(1).

Let C : {0, 1}k → {0, 1}n be a universal-LTC for F , and assume that each tester Ti
for the subcode Πi = {C(x) : fi(x) = 1} is given the promise that its input is a valid
codeword of C; that is, we only consider the behavior of Ti given a codeword C(x) out of

the universe U
def
= {C(x) : x ∈ {0, 1}k}, which consists of 2k codewords. We shall prove

a lower bound of the query complexity of the foregoing testers, and this, in particular,
implies a lower bound on standard testers (which are not given a promise regarding their
input).

Here we view a randomized decision tree is a decision tree wherein the vertices are
also allowed to be labeled with a special coin-flip symbol ∗ that indicates that during

230

6.5 General Lower Bounds

computation, one of the children of each ∗-labeled vertex is chosen uniformly at ran-
dom. Note that any tester with query complexity q and randomness complexity r can
be represented by a randomized decision tree of depth q + r in which all vertices in the
first r layers are ∗-labeled. By Lemma 6.7 we can assume without loss of generality that
r = log log |U |+O(1) = log(k) +O(1). Observe that there are at most (n+ 3)2q+log(k)+O(1)

such randomized decision trees (we bound the number of depth d decision trees over n
variables by counting all possible labeling of a depth d binary tree with the names of the
variables, the two terminals, and the coin-flip symbol).

Recall that for every i 6= j the functions fi and fj are different, hence there exist
x ∈ {0, 1}k such that C(x) ∈ Πi4Πj, and so by the distance of C, a tester for Πi cannot

also be a tester for Πj. Therefore M ≤ (n + 3)2q+log(k)+O(1)
, and so q ≥ log logM −

log log n− log k −O(1).
For the furthermore claim of Theorem 6.5, for every i ∈ [M], denote by Ti the q-query

ε-tester for the subcode Πi
def
= {C(x) : fi(x) = 1}, and by amplification, assume that

Ti makes q′ = O(q) queries and obtains completeness and soundness error of at most
δerr = β/2. Note that if x satisfies fi(x) = 1, then C(x) ∈ Πi, thus the tester Ti accepts
(i.e., outputs 1) with high probability, and if x satisfies fi(x) = 0, then C(x) is ε-far from
Πi, and thus the tester Ti rejects (i.e., outputs 0) with high probability; that is,

∀x ∈ {0, 1}k Pr[T
C(x)
i = fi(x)] ≥ 1− δerr. (6.1)

Hence, testing codewords of C for membership in Πi amounts to computing fi(x).
Let D1, . . . , Ds be all (binary, deterministic) depth q′ decision trees over n variables,

and note that s ≤ (n+2)2q
′
. Here we view each Ti is a distribution over {Dj}j∈[s]; that is,

for every i ∈ [M] there exists a distribution µi over [M] such that for every w ∈ {0, 1}n,
the output of Twi is obtained by drawing j ∼ µi and outputting Dw

j . By Eq. (6.1), for
every x and i ∈ [M],

s∑
j=1

µi(j) · Pr
x∈{0,1}k

[D
C(x)
j = fi(x)] ≥ 1− δerr.

In particular, we obtain that for every i ∈ [M] there exists j ∈ [s] such that Prx[D
C(x)
j =

fi(x)] ≥ 1 − δerr. Observe that if M > s (i.e., there are more fi’s than depth-q′ decision
trees), then there exists i1, i2 ∈ [M], where i1 6= i2 and j ∈ [s], such that Prx[fi1(x) =

D
C(x)
j = fi2(x)] ≥ 1 − 2δerr = 1 − β, in contradiction to the hypothesis. Thus M ≤ s ≤

(n+ 1)2q
′
, and since q′ = O(q), then q = Ω(log logM − log log n).

On the gap between “pairwise far” and general families of functions. Recall
that there is an additive difference of Ω(log k) between the lower bound for general families
of functions and the stronger lower bound for families of functions that are “pairwise far”.
We leave open the question of whether the lower bound for general families of functions
can be improved to match the stronger lower bound for ”pairwise far” functions, or

231

6. UNIVERSAL LOCALLY TESTABLE CODES

whether there exists a universal-LTC for a family of functions, which are not ”pairwise
far”, that matches the lower bound for general functions. We point out two observations
regarding the forgoing question:

1. The argument in the furthermore claim of Theorem 6.5 also shows that any universal-LTC
with deterministic testers must satisfy q = Ω(log logM − log log n), even for fam-
ilies of functions that are not ”pairwise far” and when given the proviso that the
input is a valid codeword. Therefore, to construct a universal-LTC that matches
the general lower bound, the testers must use a randomized strategy, not only for
checking the validity of the encoding, but also for computing the function of the
message. (We remark that all of the universal-LTCs in this chapter use randomness
only for codeword testing.)

2. The proof of the furthermore claim of Theorem 6.5 actually yields a stronger state-
ment regarding ”pairwise far” functions. Specifically, it only requires that the
functions should be ”pairwise far” under some distribution (and not necessarily
the uniform distribution); that is, it suffices that there exists a distribution D over
{0, 1}k such that Prx∼D[fi(x) 6= fj(x)] = Ω(1) for every i 6= j.

6.6 Trading off Length for Locality

The general lower bound in Theorem 6.5 allows for a tradeoff between the universal-LTC’s
length and locality. We remark that while the canonical universal-LTC in Theorem 6.2
matches this lower bound, it is limited to the extreme end of the tradeoff, wherein the
locality is minimized (i.e., the query complexity is constant). In this subsection we show
a specific family of functions (namely, the family of m-juntas) for which we can obtain a
smooth tradeoff between the universal-LTC’s length and locality.

6.6.1 Universal-LTCs of Nearly-Linear Length

Let m, k ∈ N such that m ≤ k, and denote by Juntam,k the set of all
(
k
m

)
· 22m k-variate

Boolean functions that only depend on m coordinates. We start by showing that using
super-constant query complexity, we can obtain universal-LTCs that are shorter than the
canonical universal-LTC. More precisely, we prove that there exists a universal-LTC for
Juntam,k with linear distance, nearly-linear length, and query complexity that is quasilin-
ear in m. (We discuss how this matches the lower bound in Theorem 6.5 in Section 6.6.3.)

Observation 6.6. Let k,m ∈ N such m ≤ k, and let α > 0 be a constant. For every
ε > 0 there exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}k1+α

for Juntam,k
with linear distance and query complexity Õ(m) + poly(1/ε).

Sketch of proof. The idea is to use a code C that is both locally testable and decodable,
and obtain a tester for each subcode {C(x) : f(x) = 1} (where f ∈ Juntam,k) by
invoking the tester for membership in C, using the decoder to recover the values of the

232

6.6 Trading off Length for Locality

m influencing variables of f (for which we shall need to reduce the error probability of
the decoder to 1/m), and ruling accordingly. Recall, however, that there are no known
LDCs with constant query complexity and polynomial length (let alone such with nearly-
linear length). Instead, we observe that for the foregoing idea it suffices that C is a
relaxed-LDC,7 and so we can use the code in Theorem 6.1, which is both a (one-sided
error) LTC and a relaxed-LDC, with nearly-linear length. The implementation of the
aforementioned ideas is straightforward, and so, we omit it.

Digression: Universal-LTCs with optimal rate. In Observation 6.6, we are concerned
with minimizing the locality of the universal-LTCs, while settling for nearly-linear length
(and so, we use the code in Theorem 6.1 as the base code). We remark that the argument
underlying Observation 6.6 holds for any base code that is both locally testable and
(possibly relaxed) locally decodable. Thus, different base codes may be used to obtain
universal-LTCs in other regimes. For example, allowing large query complexity (which
depends on k) and focusing on optimizing the rate and the distance, we can obtain the
following corollary by using the recent construction, due to Meir [Mei14, Theorem 1.1,
1.2, and Remark 1.5], of codes that are both locally testable and decodable with constant
rate and optimal distance, and query complexity that is an arbitrary small power of the
input length.

Corollary 6.7. For every 0 < r < 1, α, β > 0 there exists a finite field H of characteristic
2 such that for every m ≤ k, there exists a universal-LTC C : Fk2 → Hn for Juntam,k with
rate at least r, relative distance at least 1− r − α, and query complexity O(kβm logm +
kβ/ε).8

6.6.2 The Actual Tradeoff

Next, we show a universal-LTC for Juntam,k with a smooth tradeoff between length and
query complexity.

Proposition 6.8. Let k,m ∈ N such that m ≤ k. For every τ < m and ε ≥ 1/polylog(n),
where n ≤ km+1

kt
· (22m)1/2t, there exists exists a (one-sided error) universal-LTCε C :

{0, 1}k → {0, 1}Õ(n) for Juntam,k with linear distance and query complexity Õ(τ)+O(1/ε).

We remark that in the Õ(m)-locality regime (the query-heavy extreme of the tradeoff),
Proposition 6.8 only yields a universal-LTC of quadratic length, whereas Observation 6.6
achieves nearly-linear length.9

7Recall that relaxed-LDCs are a relaxation of locally decodable codes that requires local recovery of
individual information-bits, yet allow for recovery-failure, but not error, on the rest (see Definition 6.3).

8Recall that the query complexity measures the number of queries made, rather than the number of
bits that were read, but since p is a constant, the difference is immaterial.

9It is possible to optimize Proposition 6.8 such that in the query-heavy extreme of the tradeoff it will
yield universal-LTCs of linear length, by adapting techniques from [BSGH+06, Section 4] to our setting.
However, this methodology is far more involved than simply using Observation 6.6 in the Õ(m)-locality
regime.

233

6. UNIVERSAL LOCALLY TESTABLE CODES

Sketch of proof. The basic idea is to map x ∈ {0, 1}k to the long code encoding of the
projection of x to each m-subset of [k]; that is, x →

(
LC(x|S1), . . . , LC(x|SN)

)
, where

S1, . . . , SN are all N =
(
m
k

)
distinct m-subsets of [k] and LC : {0, 1}m → {0, 1}22m

is the
corresponding long code.

Next, to ascertain that all the long code encodings are consistent with restrictions of
a single x, we bundle these encodings with PCPs according to the consistency-testable
bundling mechanism presented in Section 7.4.1 (where the encodings {Ei} correspond to
{LC(x|Si}). This yields a universal-LTC for m-juntas with query complexity O(1) and
length

(
k
m

)
· Õ(22m + k): To test that x satisfies the junta f(x) = f ′(x|S), where S ⊆ [k]

such that |S| = m, we first use Proposition 7.7 to ensure the consistency of the bundle
(i.e., the consistency of f with the anchor), then we extract the value of f(x) by locally
correcting the point that corresponds to f ′ in the purported copy of LC(x|S).

Finally, to obtain a smooth tradeoff, we modify the foregoing construction such that
x is mapped to the long code encoding of the projection of x to each (m − τ)-subset
of [k] (instead of m-subset), for the given parameter τ ∈ [m]. The idea is that now, to
test that x satisfies f ′(x|S) = 1, we first arbitrarily choose t bits of x|S and decode them
one-by-one (as in Observation 6.6); this induces a function f ′′ on the remaining m − τ
bits, which we compute by self-correcting the single bit that corresponds to f ′′ in the long
code encoding of x projected to these m − τ bits. The implementation of the foregoing
ideas is straightforward and is presented in Section 6.7.2.

6.6.3 Lower Bounds for Universal-LTCs for Juntas

We conclude this subsection by proving a lower bound on the query complexity of
universal-LTCs for Juntam,k. Observe that the family of all m-juntas do not satisfy
the ”pairwise far” condition, and thus Theorem 6.5 only gives us a lower bound of
q ≥ m − log log n − O(log k). However, we show that while the family Juntam,k is not
”pairwise far”, it contains a dense subset of functions that are ”pairwise far”, and so we
can strengthen the foregoing lower bound as follows.

Proposition 6.9. Let k,m ∈ N such m ≤ k. There exists a universal constant c > 0
such that every universal-LTCε C : {0, 1}k → {0, 1}n for Juntam,k with linear distance and
ε < δ(C)/2 must have query complexity Ω(m− log log(n) + c).

We remark that that for m =
(
1 + Ω(1)

)
· log log(n), the lower bound simplifies to Ω(m)

and matches Observation 6.6 up to a constant power. Furthermore, it is possible to
improve Proposition 6.9 such that it gives a non-trivial lower bound when m < log log(k)
(see discussion at the end of the section).

Proof of Proposition 6.9. We show that Juntam,k contains a dense subset that is “pairwise
far”. Specifically, fix S ⊆ [k] such that |S| = m, and let JuntaSm,k ⊆ Juntam,k denote all
m-juntas that depend only on coordinates in S. We prove that there exists a family
F ⊆ JuntaSm,k of M = 2Ω(2m) distinct functions such that every distinct f and g in F
satisfies Prx∈{0,1}k [f(x) 6= g(x)] = Ω(1).

234

6.6 Trading off Length for Locality

Note that the set of truth tables, restricted to inputs supported on S, of all f ∈
JuntaSm,k is isomorphic to {0, 1}2m , and thus we can choose a subset of it that constitutes

a good code. That is, for every f ∈ JuntaSm,k, note that f(x) = f ′(x|S) for some f ′ :
{0, 1}m → {0, 1}, and denote the truth table of f ′ by 〈f ′〉. Let C0 be a code with linear
distance, constant rate, and codewords of length 2m, and observe that by the rate and
distance of the code C0, the set F = {f ∈ JuntaSm,k : 〈f ′〉 ∈ C0} is a collection of 2Ω(2m)

functions such that every distinct f, g ∈ F satisfy

Pr
x∈{0,1}k

[f(x) 6= g(x)] = Pr
x∈{0,1}k
x|[k]\S=0

[f(x) 6= g(x)] = Ω(1).

The proof of Proposition 6.9 is concluded by applying Theorem 6.5 to F .

Improving the lower bound. We point out a slackness in the proof of Proposition 6.9.
Specifically, we apply Theorem 6.5 to a subset F of m-juntas that depend on a single set
S ⊂ [k] of cardinality m, and so we lose all dependency in k (the dimension of the code).
We sketch below how to tighten this slackness and obtain a slightly stronger lower bound
of Ω(max{m,Ω(log(m)) + log log(k)}− log log(n)), which gives a non-trivial lower bound
also when m < log log(k) and n < km (while noting that Proposition 6.9 trivializes for
this range of parameters).

As a first attempt, we can consider a partition of [k] to sets S1, . . . , Sk/m of car-
dinality m, and (similarly to Proposition 6.9) include in F a subset of functions from
each JuntaSim,k whose truth-tables form a good code. Inspection shows that as long as
the foregoing good code is balanced,10 juntas in such F are pairwise far, and so we can
apply Theorem 6.5. The problem is, however, that such argument only strengthens the
lower bound by a constant factor; that is, it yields q = Ω

(
log log

(
k
m
· 22m

)
− log log n

)
,

which is not asymptotically better than q = Ω(log log(22m) − log log n), established in
Proposition 6.9.

To obtain an asymptotical strengthening, we can choose kΩ(m) distinct subsets of [k]
with small (say, m/100) pairwise intersection (using the Nisan-Wigderson combinatorial
designs [NW94]), and for each such subset S, include in F juntas from JuntaSm,k whose
truth-tables form a random code. On inspection, it turns out that juntas in such F are
pairwise far, and thus we can apply Theorem 6.5 to obtain q = Ω(log log(km · 22m) −
log log n), which yields the aforementioned bound.

10That is, a code wherein each codeword consists of an equal number of 0’s and 1’s.

235

6. UNIVERSAL LOCALLY TESTABLE CODES

6.7 Appendices for Chapter 6

6.7.1 On Obtaining Locally Decodable Codes from Universal-
LTCs

In this appendix we show that universal-LTCs for the family of linear functions (and more
generally, for self-correctable families of functions) imply local decodability in the strong
(non relaxed) sense. More accurately, denote the set of all k-variate linear functions over
GF(2) by Lineark. The following theorem shows that any universal-LTC for Lineark implies
a LDC with roughly the same parameters.

Theorem 6.8. If there exists an universal-LTC C for Lineark with linear distance, rate r,
and query complexity q = q(ε), then there exists a binary LDC with linear distance, rate
Ω(r), and query complexity O(1).

Proof. Fix ε = δ(C)/3. For every linear function f ∈ Lineark and b ∈ {0, 1}, let Tf,b be

the ε-tester for the subcode Πf,b
def
= {C(x) : f(x) = b} guarantied by the universal-LTC

C : {0, 1}k → {0, 1}n. These testers admit a natural candidate for a local decoding
procedure: to decode xi, simply invoke Tf,0 and Tf,1 for the linear function f(x) = xi,
and rule according to the tester that accepted.

The problem is that given a slightly corrupted copy of C(x), the testers Tf,0 and
Tf,1 may both reject, since they are not necessarily tolerant ;11 in this case we cannot
decode. (Indeed, if the aforementioned testers are tolerant, then the foregoing procedure
is a local decoder.12) Nevertheless, since the foregoing case only happens when the input
is not a valid codeword, we obtain a procedure that either decodes correctly or detects
a corruption in the encoding and aborts (similarly to relaxed-LDCs, see Definition 6.3).
Then, by slightly modifying the code, we can bound the number of linear functions on
which we are forced to abort and use the linear functions that we are able to compute to
recover any linear function, including f(x) = xi. Details follow.

Assume without loss of generality that the testers of the universal-LTC have soundness
error of at most 1/10. Consider the algorithm A that, given f ∈ Lineark and oracle access
to w ∈ {0, 1}n, invokes Tf,0 and Tf,1 on w; if one tester accepted and the other rejected, A
rules according to the accepting tester, and otherwise it outputs ⊥. Hence, A has query
complexity O(q(ε)) = O(1). The following claim shows that indeed A succeeds in locally
computing f(x) in the following sense (which is analogous to that of relaxed-LDCs).

Claim 6.9.1. For every f ∈ Lineark, the algorithm A satisfies the following two condi-
tions.

1. If w = C(x) for some x ∈ {0, 1}k, then Pr
[
AC(x)(f) = f(x)

]
≥ 2/3.

11Recall that tolerant testers accept strings that are (say) δ(C)/3-close to being valid and reject strings
that are (say) δ(C)/2-far from being valid (with high probability).

12In fact, the argument above shows that a tolerant universal-LTC for any family of functions F that
contain the dictator functions, i.e., such that {f(x) = xi}i∈[k] ⊆ F , implies a LDC with roughly the same
parameters.

236

6.7 Appendices for Chapter 6

2. If w is δ(C)/3-close to a codeword C(x), then Pr [Aw(f) ∈ {f(x),⊥}] ≥ 2/3.

Proof. Let w = C(x) for x ∈ {0, 1}k such that f(x) = 1 (the case in which f(x) = 0

is symmetrical). Since Tf,1 is a tester for Πf,1
def
= {C(x) : f(x) = 1}, then Pr[Twf,1 =

1] ≥ 9/10, and since Tf,0 is a δ(C)/3-tester for Πf,0
def
= {C(x) : f(x) = 0} and w is

δ(C)-far from Πf,0, then Pr[Twf,0 = 0] ≥ 9/10. Thus, by the definition of A it holds
that Pr [Aw(f) = f(x)] ≥ (9/10)2. Next, assume that w is δ(C)/3-close to a codeword
C(x) such that f(x) = 1 (again, the case in which f(x) = 0 is symmetrical). Then,
Pr[Twf,0 = 1] < 1/10 and Pr [Aw(f) ∈ {f(x),⊥}] ≥ 9/10 follows.

The second condition of Claim 6.9.1 does not bound the number of linear functions
on which the algorithm A is allowed to abort (and so, given a corrupted codeword, A
can potentially output ⊥ on all inputs). However, by adapting of the techniques of Ben-
Sasson et al. [BSGH+06, Lemmas 4.9 and 4.10] to the setting of universal-LTCs, we obtain
the following claim, which shows that C and A can be modified to allow for such bound.

Claim 6.9.2. If there exists a code C : {0, 1}k → {0, 1}n with distance d and rate r, and
an algorithm A with query complexity q, which satisfies the conditions of Claim 6.9.1,
then there exists a constant δradius > 0, a code C ′ : {0, 1}k → {0, 1}n′ with distance Θ(d)
and rate Θ(r), and an algorithm B that for every (explicitly given) f ∈ Lineark makes
O(q) queries to a string w ∈ {0, 1}n′ and satisfies the following condition: If w is δradius-
close to a codeword C ′(x), then there exists a family F of at least (9/10) · 2k functions in
Lineark such that for every f ′ ∈ F it holds that Pr [Bw(f ′) = f ′(x)] ≥ 9/10.

We omit the proof of Claim 6.9.2, since it follows by a trivial adaptation of [BSGH+06,
Lemmas 4.9 and 4.10] to our setting. We mention that the main idea is that by repeating
heavily probed locations in the code, we can modify A such that on an average f it make
queries that are nearly uniformly, and then use this ”average smoothness” to bound the
fraction of functions on which we are forced to abort.

The proof of Theorem 6.8 follows by noting that given a slightly corrupted copy of
C ′(x), for every f ∈ Lineark we can use the algorithm B of Claim 6.9.2 to extract the value
of f(x) using the self correctability of linear functions. In more detail, let w ∈ {0, 1}n′

such that δ(w,C ′(x)) ≤ δradius for some x ∈ {0, 1}k, and let i ∈ [k]. To decode xi, we
uniformly choose g ∈ Lineark, invoke Bw(g) and Bw(g+xi), and output Bw(g)+Bw(g+xi).
By the union bound, with probability at least 1 − 2/10 both g and g + xi are functions
on which B succeeds with probability at least 9/10. Thus, with probability at least
(8/10) · (9/10), both Bw(g) = g(x) and Bw(g + xi) = g(x) + xi, and so their summation
(over GF(2)) is xi.

Generalizing to Self-Correctable Families of Functions. We remark that the only
place in which the proof of Theorem 6.8 relies on F being the family of all linear functions
is that the latter family admits self correction. Therefore, the same proof holds for any
family of functions F =

{
fi + b : {0, 1}k → {0, 1}

}
i∈[M],b∈{0,1} that is self correctable.

237

6. UNIVERSAL LOCALLY TESTABLE CODES

6.7.2 Proof of Proposition 6.8

Let k,m ∈ N such that m ≤ k. We show that for every τ < m and ε ≥ 1/polylog(n),
where n =

(
k

m−τ

)
·max{22m−τ , k}, there exists exists a (one-sided error) universal-LTCε C :

{0, 1}k → {0, 1}Õ(n) for Juntam,k with linear distance and query complexity Õ(τ)+O(1/ε).
Let τ < m and ε ≥ 1/polylog(n). We bundle the long code encoding of each projection

of x to (m − τ) coordinates; that is, denote the (m − τ)-dimensional long code by LC :

{0, 1}m−τ → {0, 1}22m−τ
, denote the set of all subsets of [k] of cardinality m − τ by

S(m−τ) = {S ′ ⊆ [k] : |S ′| = m − τ}. We bundle the encodings {LC(x|S′)}S′∈S(m−τ)

according to Construction 6.4.
Recall that in Construction 6.4 we bundle encodings Ei, . . . , Es with an (arbitrary)

error-correcting code ECC (which can be encoded by a circuit of quasilinear size in k and
has linear distance) and with a PCPP for every Ei, which ascertains that a pair (a, b)
satisfies a = ECC(y) and b = Ei(y) for some y. Here, the encodings will correspond to the
long code encodings of x projected to (m− τ)-subsets in S(m−τ), i.e., {LC(x|S′)}S′∈S(m−τ) .
Note that each LC(x|S′) can be computed by a circuit of size O(22m ·m) = Õ(n). Hence,
by Theorem 7.1, for every S ′ ∈ S(m−τ) there exist a PCPP oracle p̄S′ , as required in
Construction 6.4, of length Õ(n). We obtain the code C : {0, 1}k → {0, 1}Õ(n) given by

C(x) =
(

ECC(x)r,
(
LC(x|S′

)
S′∈S(m−τ) ,

(
p̄S′(x)

)
S′∈S(m−τ)

)
. (6.2)

We show that C is a universal-LTCε for Juntam,k with query complexity Õ(τ) +O(1/ε).
Fix ε > 0, f ∈ Juntam,k, and write f(x) = f ′(x|S), where S denotes the m influencing

coordinates of f . Denote by T the first τ coordinates in S. For every i ∈ T , let S ′i ∈ S(m−τ)

be a (m − τ)-subset that contains i. Denote by D the O(1)-query corrector of the long
code. Using amplification, assume that the corrector D and the bundle consistency-test
(see Proposition 7.7) make at most O(log(τ)) and O(log(τ)/ε) queries (respectively) and
obtain soundness error that is (strictly) less than 1/(10(τ + 1)).

Consider the ε-tester Tf for the subcode Πf = {x ∈ {0, 1}k : f(x) = 1}, which has

oracle access to a purported bundle w ∈ {0, 1}Õ(n) that is supposed to equal Eq. (6.2);

that is, w allegedly consists of three parts: (1) the purported anchor ẼCC(x), (2) the pur-

ported long code encodings
(
L̃C(x|S′

)
S′∈S(m−τ) , and (3) the purported PCPs of proximity(˜̄pS′(x)

)
S′∈S(m−τ) . Note that we use z̃ to denote a string that is allegedly equal to z. The

tester Tf operates as follows:

1. Consistency Test: Invoke the bundle consistency test on w, with respect to proximity
parameter ε and the purported encoding L̃C(x|S\T), as well as L̃C(x|Ti), for every
i ∈ T . Reject if any of the tests fail. (The query complexity of this step is O(τ ·
log(τ)/ε).)

2. Direct recovery of t variables: Decode x|T using the self correction of the long code;

that is, for every i ∈ T decode xi from L̃C(x|S′i) (recall that S ′i is a (m− τ)-subset
that contains i), using the corrector D. Denote the string of recovered values by z.
(The query complexity of this step is O(τ · log(τ)).)

238

6.7 Appendices for Chapter 6

3. Computing the induced (m − τ)-junta: Choose f ′′ : {0, 1}m−τ → {0, 1} such that

f ′′(y) = f ′(z ◦ y), decode f ′′ from the purported long code encoding L̃C(x|S\T)
using the corrector D, and accept if and only if it returns 1. (The query complexity
of this step is O(log(τ)).)

The perfect completeness of Tf follows by the one-sided error of the bundle consistency
test and the long code corrector D. For the soundness, assume that w is ε-far from Πf . By
Proposition 7.7, we can assume that there exists y ∈ {0, 1}k such that w is ε-close to C(y),

and since w is ε-far from Πf , it holds that f(y) = 0; furthermore, L̃C(y|S\T) is ε-close to

LC(y|S\T), and each L̃C(y|S′i) is ε-close to LC(y|S′i), otherwise the bundle consistency test
rejects with probability at most (τ + 1)/(10(τ + 1)). Thus, in Step 2, the corrector D
successfully recovers y|T with probability (1/10)·τ/(10(τ+1)), and so, with probability at
least 2/3, in Step 3 the tester Tf correctly computes f ′′(y|S\T) = f ′(y|T ◦y|S\T) = f(y) = 0
and rejects. This concludes the proof of Proposition 6.8.

239

240

Chapter 7

Universal Locally Verifiable Codes
and 3-Round Interactive Proofs of
Proximity for CSP

7.1 Introduction

Locally testable codes [FS95, RS96, GS06] are codes admitting local procedures for check-
ing the validity of alleged codewords. A code C is a locally testable code (LTC) if there
exists a randomized testing algorithm that receives a proximity parameter ε > 0, makes
a small number of queries to a string w, and with high probability accepts if w is a code-
word of C and rejects if w is ε-far from C. The query complexity (or locality) of the tester
is the number of queries that it makes.

In our companion work [GG16a], we initiated a study of a generalization of the notion
of LTCs, called universal locally testable codes. A universal-LTC is a code that not only
admits a local test for membership in the code C but also a local test for membership
in a family of subcodes of C. More specifically, a binary code C : {0, 1}k → {0, 1}η is a
q-local universal-LTC for a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

if for every

i ∈ [M] the subcode Πi
def
= {C(x) : fi(x) = 1} is locally testable with query complexity

q. Viewed in an alternative perspective, such codes allow for testing properties of the
encoded message; that is, testing whether C(x) is an encoding of a message x that satisfies
a function fi ∈ F .

7.1.1 The Notion of Universal Locally Verifiable Codes

In this chapter, we consider the NP proof system analogue of universal-LTCs, in which the
testing procedures are replaced with verification procedures that are given free access to
a short (sublinear length) proof. We call such codes “universal locally verifiable codes”
(universal-LVCs). One may hope that verification of membership in subcodes can be done
more efficiently than testing, and indeed we will show that universal-LVCs can be much

241

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

more powerful than universal-LTCs.
To define the notion of universal-LVC, we recall the notion of non-interactive proofs of

proximity [GR13b]. A property Π is said to have an MA proof of proximity (MAP) if there
exists a probabilisitic algorithm (verifier) V that gets a proximity parameter ε > 0 and
a short (sublinear)1 proof π as well as oracle access to a string w. The verifier satisfies,
with high probability, the following conditions: If w ∈ Π, there exists proof π such that
V w(π, ε) accepts, and if w is ε-far from Π, then for every alleged proof π, the verifier
V w(π, ε) rejects.

We say that a code C : {0, 1}k → {0, 1}η is a universal locally verifiable code
(universal-LVC), with proof length p and query complexity q, for a family of functions

F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

if for every i ∈ [M] the subcode Πi
def
= {C(x) : fi(x) = 1}

has an MAP with proof length p and query complexity q.

7.1.2 Our Results

To simplify the presentation of our results, throughout the introduction we fix the prox-
imity parameter ε to a small constant, and when we refer to “codes”, we shall actually
mean error-correcting codes with linear distance.

We show quadratic length universal-LVCs of sublinear proof and query complexity for
a large and natural complexity class, for which every polynomial length universal-LTC
must have almost linear query complexity. Specifically, let n ≥ k, and denote by CSPn,k
the set of all instances of constraint satisfaction problems with n constraints of constant
arity over k variables.

Theorem 5 (informally stated, see Theorem 7.2). For all k ≤ n, there exists a universal-LVC

C : {0, 1}k → {0, 1}Õ(n2) for CSPn,k with proof and query complexity Õ(n2/3). More gen-
erally, for every α > 0 it is possible to obtain proof length Õ(n2α) and query complexity
Õ(n1−α).

In contrast, as stated above, every polynomial length universal-LTC for CSPn,k has
query complexity that is roughly linear in k. Actually, we provide a lower bound on the
tradeoff between the two complexity measures of universal-LVCs for CSPn,k.

Theorem 6 (informally stated, see Corollary 7.5). For all k ≤ n and every polynomial
(in k) length universal-LVC for CSPn,k with proof complexity p ≥ 1 and query complexity q

it holds that p · q = Ω̃(k). For p = 0 (i.e., a universal-LTC), the query complexity is Ω̃(k).

Note that for n = Θ̃(k), Theorem 5 gives a universal-LVC of length Õ(k2), with proof and
query complexity Õ(k2/3) each, whereas Theorem 6 shows that such a universal-LVC (of

length poly(k)) must have either query or proof complexity Ω̃(
√
k).

1We remark that if we do not restrict the length of the proof, then every property Π can be verified
trivially using only a constant amount of queries, by considering an MAP proof that contains a full
description of the input and testing identity between the proof and the input.

242

7.1 Introduction

7.1.3 An Application for Interactive Proofs of Proximity

An interactive proof of proximity (IPP), as defined in [RVW13], can be thought of as a
generalization of the notion of MAP in which the verifier is allowed to interact with an
omniscient prover (instead of a “static” proof). Hence, an IPP is an interactive proof
system wherein an all powerful (yet untrusted) prover interacts with a verifier that only
has oracle access to an input x. The prover tries to convince the verifier that x has a
particular property Π. Here, the guarantee is that for inputs in Π, there exists a prover
strategy that will make the verifier accept with high probability, whereas for inputs that
are far from Π the verifier will reject with high probability no matter what prover strategy
is employed.2

Rothblum et al. [RVW13] showed that, loosely speaking, every language in NC has
an IPP with query and communication complexities Õ(

√
n), albeit this IPP requires a

large (polylog(n)) number of rounds of interaction. For IPPs that use a small number
of rounds of interaction (in particular, MAPs) only results for much lower complexity
classes are known (e.g., for context-free languages and languages that are accepted by
small read-once branching programs [GGR15]).

We show that the universal-LVC in Theorem 5 can be, in a sense, “emulated” using a
small (constant) amount of interaction rounds. This yields the following IPP.

Theorem 7 (informally stated, see Theorem 7.7). Let n ≥ k. For every ϕ ∈ CSPn,k there

exists a 3-round IPP for the property Πϕ
def
= {x ∈ {0, 1}k : ϕ(x) = 1} with communication

and query complexity n6/7+o(1). More generally, there exists an O(1)-round IPP for Πϕ

with communication and query complexity n0.501.

We mention that, for some ϕ’s, testing the property Πϕ requires a linear number of queries
to test [BHR05]. We stress that our IPPs are for the set of satisfying assignments of fixed
CSP instances, whereas the IPPs in [RVW13, RRR16] are for sets that are in a (uniform)
complexity class.3

Related Work. Independently of this work, Reingold, Rothblum, and Rothblum [RRR16]

showed that for every sufficiently small constant σ ∈ (0, 1), there exists an 2Õ(1/σ)-round
IPP, with query and communication complexity n0.5+O(σ), for any language that is com-
putable in poly(n)-time and O(nσ)-space.

The notion of universal-LVCs is closely related to that of (1-message) holographic inter-
active proofs (HIP) (which naturally adapts the definition of holographic proofs [BFLS91]
to the setting of interactive proofs). An HIP is an interactive proof in which, instead
of getting its input x explicitly, the verifier is given oracle access to C(x), an error-
corrected encoding of the input x, for a bounded number of queries. Hence, HIPs may

2Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a
single message sent from the prover to the verifier.

3That is, our IPPs are for massively parameterized properties (as surveyed in [New10]): We consider
a family of properties {Πϕ}ϕ∈CSPn,k that are parameterized by CSP formulas of size that is similar
to the input’s size. Likewise, the IPPs for read-only branching programs in [GGR15] are massively
parameterized, but the IPPs for context-free languages are not.

243

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

be thought of as interactive proofs for promise problems of the form (ΠYES,ΠNO) with
ΠYES = {C(x) : x ∈ L} and ΠNO = {C(x) : x 6∈ L}. We stress that an HIP is given
the promise that its input is properly encoded, whereas for universal-LVC, the verifier is
required to test that its input is properly encoded.

7.1.4 Our Techniques

In this section we provide a high-level overview of the key ideas underlying Theorem 5,
which shows a universal-LVC for CSP. For an overview of our application to proofs of
proximity (Theorem 7), we refer the reader to Section 7.6.1. The lower bound in The-
orem 6 follows by a simple application of the “communication complexity method” of
Blais et. al. [BBM11], as extended to MAPs in [GR13b] (see Section 7.5 for details).

In the following, we assume basic familiarity with algebraic PCP systems. Our gen-
eral approach follows the arithmetization paradigm, commonly used in many probabilistic
proof systems. However, for reasons detailed next, we cannot use the standard arithme-
tizations used in the PCP literature. We focus on the first step of arithmetization, which
is over the integers, and assume for simplicity that only one type of t-ary constraint,
denoted c, is used.

The most common arithmetization, which can be traced back to [FGL+91], represents
the t-ary instance ϕ as a generic function φ : [k]t → {0, 1} such that φ(i1, . . . it) = 1 if
and only if the i’th constraint of ϕ involves the variables xi1 . . . , xit . The satisfiability of
ϕ at x is then given by ∑

i1,...it∈[k]

φ(i1, . . . it) · c(xi1 , . . . xit) = n. (7.1)

This leads to a PCP oracle of length at least kt, and at best we can hope to implement
it by a universal-LVC that has proof length p and query complexity q such that p · q ≥ kt.
Our goal is, however, to get both p and q to the sublinear (in k) level.

The large PCP length of Eq. (7.1) lead [BFLS91] to suggest a different representation.
Using a universal circuit φ of size n′ = Õ(n), the satisfiability of ϕ at x is represented by

∃y ∈ {0, 1}n′
∑

i∈[k+n′]

φ(i) · c′
(
(xy)|Si

)
, (7.2)

where c′ is a fixed condition (which depends on c) and each Si ⊆ [k + n′] is a subset
of constant cardinality. The problem with Eq. (7.2) is that y is a sequence of auxiliary
variables and its assignment in Eq. (7.2) depends on the instance ϕ (and not only on the
assignment x).

Our alternative arithmetization composes the assignment x ∈ {0, 1}k viewed as a
function x : [k]→ {0, 1} with functions ϕ1, . . . , ϕt : [n]→ [k] that represent the instance
ϕ. Specifically, ϕj(i) = i′ if xi′ = x(i′) is the j’th variable of the i’th constraint of ϕ.
Hence, ϕ is satisfiable if and only if∑

i∈[n]

c
(
x ◦ ϕ1(i), . . . , x ◦ ϕt(i)

)
= n. (7.3)

244

7.1 Introduction

Next, we consider the algebraic representation of Eq. (7.3) over a sufficiently large
finite field F (discussed below). For simplicity, we assume throughout the rest of this
overview that n = k, m = O(1) and t = O(1). We identify [n] (the number of constraints)
with some set Hm, where H ⊂ F. Throughout this chapter, we shall denote the low-
degree extension of a function f by f̂ . Let ϕ̂j : Fm → Fm and X̂ : Fm → F be the
individual degree n1/m extensions of ϕj : Hm → Hm and the assignment X : Hm → {0, 1}
(respectively), and let ĉ : Ft → F be the degree t multilinear extension of the constraint
c : {0, 1}t → {0, 1}. Note that ϕ(x) = 1 if and only if∑

z1,...,zm∈H

ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
= n.

The straightforward way to implement an MAP for such arithmetization is as follows.
Let ` ∈ [m/2] be a parameter that will be used to control a tradeoff between proof and
query complexity. The purported proof for the MAP is the polynomial

π(z1, . . . , z`) =
∑

z`+1,...,zm∈H

ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
, (7.4)

specified by its coefficients. Observe that the total degree of both X̂ and ϕ̂j is m · |H| =
m · n1/m and that the composition of X̂ with ϕj increases the total degree to m2 · |H|2.
Note this is in contrast to standard arithmetizations, wherein typically the degree of the
proof polynomial is Õ(|H|). In addition, note that ĉ only contributes a factor of t to the
degree of π, since the constraint is Boolean, and so we can take its multilinear extension
(saving an exp(t) factor that would have arisen had we constructed a universal-LVC for
CNF formulas and use reductions to handle general t-ary CSPs.) Observe that the proof
length of such MAP is bounded by deg(π)` · log |F| = t` · (m · |H|)2` · log |F| (where deg(π)
is the total degree of π, which equals tm2 · |H|2).

Given the foregoing alleged proof π, the verifier can check that
∑

z1,...z`∈H π(z1, . . . , z`) =
n. Thus, ascertaining the validity of the proof reduces to computing π at a random point
r ∈ F` and comparing it to the right hand side of Eq. (7.4). Recall that the formula

ϕ is hardcoded in the verifier, and so it remains for the verifier to query X̂ ◦ ϕ̂j(r, z′)
at all z′ ∈ Hm−` (which is actually done via self-correction, preceded by a low-degree

test). Therefore, it suffices to set the universal-LVC to X̂, the low-degree extension of the
assignment (which does not depend on the formula). Observe that the query complexity

of such MAP is t ·n1− `
m · log |F| (which is primarily determined by the number summands

in π).
Unfortunately, a straightforward application of the MAP above requires the order of

the field F (to which we extend) to be greater than the sum we are checking (i.e., n, the
number of constraints), because we cannot afford taking a (pseudo) random linear com-
bination of the constraints, as often done in the PCP literature (since this would increase
the length of the proof π and prevent us from obtaining sublinear complexity). This
causes the length of the universal-LVC (i.e., the Reed-Muller encoding of the assignment
to F) to be roughly nm.

245

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

We overcome this issue by arithmetizing over several (distinct) prime fields {Fq}q∈Q
such that: (1) for every q ∈ Q, the order of Fq is larger (by a constant multiplicative
factor) than the total degree of the proof polynomial, which is tm2 · |H|2 = O(n2/m),4

and (2) it holds that
∏

q∈Q q > n (and so we shall set |Q| ≈ m). We then invoke, in
parallel, the foregoing MAP for each Fq. This gives us the number of satisfied clauses
modulo q, and since

∏
q∈Q q > n, we can use the Chinese remainder theorem to extract

the number of satisfied clauses. Note that each Fq is of size O(n2/m), and so the length
of a universal-LVC that consists of the Reed-Muller encodings of the assignment to each
field in {Fq}q∈Q is Õ(n2).

Finally, recall that we wish the verifier to have access to the low-degree extension of
an assignment over several finite fields, and so the verifier needs to be able to verify that
its input actually consists of several polynomials that are consistent with the low-degree
extension of a single assignment. Towards this end we bundle the foregoing polynomials
using the PCP-based consistency mechanism discussed in Section 7.4.1 (which also allows
us to ascertain that the assignment is binary).

7.2 Preliminaries

We begin with standard notations:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and

y ∈ Σn by ∆(x, y)
def
= |{xi 6= yi : i ∈ [n]}| and their relative distance by δ(x, y)

def
=

∆(x,y)
n

. If δ(x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say that x
is ε-far from y. Similarly, we denote the absolute distance of x from a non-empty

set S ⊆ Σn by ∆(x, S)
def
= miny∈S ∆(x, y) and the relative distance of x from S by

δ(x, S)
def
= miny∈S δ(x, y). If δ(x, S) ≤ ε, we say that x is ε-close to S, and otherwise

we say that x is ε-far from S. We denote the projection of x ∈ Σn on I ⊆ [n] by
x|I .

• We denote by Ax(y) the output of algorithm A given direct access to input y and
oracle access to string x. Given two interactive machines A and B, we denote by
(Ax, B(y))(z) the output of A when interacting with B, where A (respectively, B)
is given oracle access to x (respectively, direct access to y) and both parties have
direct access to z. Throughout this chapter, probabilistic expressions that involve
a randomized algorithm A are taken over the inner randomness of A (e.g., when we
write Pr[Ax(y) = z], the probability is taken over the coin-tosses of A).

Integrality. Throughout this chapter, for simplicity of notation, we use the conven-
tion that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the closest integer.

4This condition is required for the soundness of the MAP.

246

7.2 Preliminaries

Uniformity. To facilitate notation, throughout this chapter we define all algorithms
non-uniformly ; that is, we fix an integer n ∈ N and restrict the algorithms to inputs
of length n. Despite fixing n, we view it as a generic parameter and allow ourselves to
write asymptotic expressions such as O(n). We remark that while our results are proved
in terms of non-uniform algorithms, they can be extended to the uniform setting in a
straightforward manner.

Circuit Size. We define the size s(k) of a Boolean circuit C : {0, 1}k → {0, 1} as the
number of gates C contains. We count the input vertices of C as gates, and so s(k) ≥ k.
We shall write f ∈ SIZE

(
s(k)

)
to state that a Boolean function f : {0, 1}k → {0, 1} can

be computed by a Boolean circuit of size s(k).

7.2.1 Property Testing and Proofs of Proximity

In this section we review the definitions of testers, MAPs and IPPs. We begin with the
definition of IPPs and obtain the definitions of testers and MAPs as special cases of IPPs.

Definition 7.1. Let n ∈ N. An interactive proof of proximity (IPP) for property Π ⊆ Σn is
an interactive protocol with two parties: a prover P that has free access to input x ∈ Σn,
and a probabilistic verifier V that has oracle access to x. The parties exchange messages,
and at the end of the communication the following two conditions are satisfied:

1. Completeness: For every proximity parameter ε > 0 and input x ∈ Π it holds that

Pr [(Vx,P(x))(ε) = 1] ≥ 2/3.

2. Soundness: For every ε > 0, x ∈ Σn that is ε-far from Π, and (cheating) prover P∗
it holds that

Pr [(Vx,P∗)(ε) = 0] ≥ 2/3.

If the completeness condition holds with probability 1, we say that the IPP has a one-sided
error, and otherwise we say that the IPP has a two-sided error.

An IPP for property Π has query complexity (or locality) q = q(n, ε) if for every ε > 0
and x ∈ Σn the verifier V makes at most q queries to x, and communication complexity
c = c(n, ε) if for every ε > 0 and x ∈ Σn the parties V and P exchange at most c bits.
A round of communication consists of a single message sent from V to P followed by a
single message sent from P to V . An r-round IPP, where r = (n, ε), is an IPP in which
for every ε > 0 and x ∈ Σn the number of rounds in the interaction between V and P on
input x is at most r.

The definition of a tester can be derived from Definition 7.1 by allowing no commu-
nication (which effectively eliminates the prover). Similarly, the definition of an MAP
can be derived by restricting the communication to a single message from P to V (see
[GR13b] for further details on MAPs). We shall sometimes refer to a tester with respect
to proximity parameter ε as an ε-tester, and similarly, we refer to an IPP (or MAP) with
respect to proximity parameter ε as an IPPε (or MAPε).

247

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

7.2.2 Locally Testable Codes

Let k, η ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Ση that
maps messages to codewords such that the distance between any two codewords is at least
d = d(η). If d = Ω(η), we say that C has linear distance. If Σ = {0, 1}, we say that C is a
binary code. If C is a linear map, we say that it is a linear code. The relative distance of C,
denoted by δ(C), is d/η, and its rate is k/η. When it is clear from the context, we shall
sometime abuse notation and refer to the code C as the set of all codewords {C(x)}x∈Σk .
Following the discussion in the introduction, we define locally testable codes and locally
decodable codes as follows.

Definition 7.2 (Locally Testable Codes). A code C : Σk → Ση is a locally testable
code (LTC) if there exists a probabilistic algorithm (tester) T that, given oracle access to
w ∈ Ση and direct access to proximity parameter ε, satisfies:

1. Completeness: For any codeword w = C(x), it holds that Pr[TC(x)(ε) = 1] ≥ 2/3.

2. Soundness: For any w ∈ {0, 1}η that is ε-far from C, it holds that Pr[Tw(ε) = 0] ≥
2/3.

The query complexity of a LTC is the number of queries made by its tester (as a function
of ε and k). A LTC is said to have one-sided error if its tester satisfy perfect completeness
(i.e., accepts valid codewords with probability 1).

Definition 7.3 (Locally Decodable Codes). A code C : Σk → Ση is a locally decodable
code (LDC) if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm
(decoder) D that, given oracle access to w ∈ Ση and direct access to index i ∈ [k], satisfies
the following condition: For any i ∈ [k] and w ∈ Ση that is δradius-close to a codeword
C(x) it holds that Pr[Dw(i) = xi] ≥ 2/3. The query complexity of a LDC is the number
of queries made by its decoder.

7.2.3 PCP of Proximity

PCPs of proximity (PCPPs) [BSGH+06, DR06] are a variant of PCP proof systems, which
can be thought of as the PCP analogue of property testing. Recall that a standard PCP
is given explicit access to a statement and oracle access to a proof. The PCP verifier is
required to probabilistically verify whether the (explicitly given) statement is correct, by
making few queries to proof. In contrast, a PCPP is given oracle access to a statement
and a proof, and is only allowed to make a small number of queries to both the statement
and the proof. Since a PCPP verifier only sees a small part of the statement, it cannot be
expected to verify the statement precisely. Instead, it is required to only accept correct
statements and reject statements that are far from being correct (i.e., far in Hamming
distance from any valid statement). More precisely, PCPs of proximity are defined as
follows.

248

7.3 The Definition of Universal Locally Verifiable Codes

Definition 7.4. Let V be a probabilistic algorithm (verifier) that is given explicit access
to a proximity parameter ε > 0, oracle access to an input x ∈ {0, 1}k and to a proof
p̄ ∈ {0, 1}n. We say that V is a PCPP verifier for language L if it satisfies the following
conditions:

• Completeness: If x ∈ L, there exists a proof p̄ such that the verifier always accepts
the pair (x, p̄); i.e., V x,p̄(ε) = 1.

• Soundness: If x is ε-far from L, then for every p̄ the verifier rejects the pair (x, p̄)
with high probability; that is, Pr[V x,p̄(ε) = 0] ≥ 2/3.

The length of the PCPP is n and the query complexity is the number of queries made by
V to both x and p̄.

We shall use the following PCPP due to Ben-Sasson and Sudan [BS05] and Dinur
[Din07b].

Theorem 7.1 (Short PCPPs for NP). For every L ⊆ {0, 1}k that can be computed by
a circuit of size t(k), there exists a PCPP with query complexity q = O(1/ε) and length
t(k) · polylog(t(k)).

7.3 The Definition of Universal Locally Verifiable Codes

Following the discussion in the introduction, we define the MA analogue of universal-LTCs,
i.e., universal-LTCs with MAPs instead of testers. We refer to such codes as “universal
locally verifiable codes”.

Definition 7.5. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of

functions. A universal locally verifiable code (universal-LVC) for F with query complexity
q = q(k, ε) and proof complexity p = p(k, ε) is a code C : {0, 1}k → {0, 1}η such that for
every i ∈ [M] and ε > 0, there exists an MAP, with respect to proximity parameter ε, for

the subcode Πi
def
= {C(x) : fi(x) = 1} with query complexity q and proof complexity p. A

universal-LVC is said to have one-sided error if all of its MAPs satisfy perfect completeness.

Notation. We shall refer to a universal-LVC with respect to a specific proximity param-
eter ε > 0 as a universal-LVCε.

Organization. In the first subsection (Section 7.4) we show an efficient universal-LVC for
constraint satisfaction problems (CSPs). As discussed in the introduction, this universal-LVC
can be viewed as a concise representation (or encoding) of assignments that allows for
efficient MAPs for every CSP instance. We remark that the bundle consistency test (see
Section 7.4.1) is used in the foregoing construction. Next, in Section 7.5 we show a lower
bound on the complexity of universal-LVCs for conjugations (and in particular for CSPs).
Finally, in Section 7.6 we show that using interactive verification procedures we can, in a

249

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

sense, emulate the universal-LVC in Section 7.4 and obtain an interactive proof of proxim-
ity (IPP) for any CSP. Note that this result refers to the standard model of IPPs, where
the verifier is given access to a plain assignment (rather than to its encoding).

7.4 A Universal Locally Verifiable Code for CSP

Throughout this section, let k, n, t ∈ N such that t ≤ k (the reader is encouraged to think
of t as being relatively small with respect to k). A constraint of arity t on k variables is
a predicate c : {0, 1}k → {0, 1} that only depends on t coordinates (i.e., a t-junta). We
denote the set of all such constraints by Constraintt,k.

Definition 7.6. A function ϕ : {0, 1}k → {0, 1} is an instance of a constraint satisfaction
problem with n constraints of arity t, denoted ϕ ∈ CSPn,t,k (or ϕ ∈ CSPn, if t and k are
clear from the context), if ϕ(x) =

∧n
i=1 ci(x1, . . . , xk) = 1, where c1, . . . , cn ∈ Constraintt,k.

For example, in our formulation, a k-variate, n-clause 3SAT instance ϕ : {0, 1}k → {0, 1}
can be expressed as a CSPn,3,k by writing ϕ(x) =

∧n
i=1 ci(x1, . . . , xk), where each ci is

a disjunction of 3 literals from { x1, . . . , xk } ∪ { 1− x1, . . . , 1− xk }. We stress that in
Definition 7.6 we allow the constraints to be arbitrary and different predicates of the
same arity.

The following theorem shows an efficient universal-LVC for constraint satisfaction prob-
lems. For simplicity, we assume without loss of generality that n ≥ k (otherwise, we add
k − n empty clauses).

Theorem 7.2. Let n, k, t,m ∈ N such that t < k ≤ n and ε > 1/polylog(n).5 There

exists a (one-sided error) universal-LVCε C : {0, 1}k → {0, 1}Õ(m2m+1tm·n2) for CSPn,t,k
with linear distance such that for every ` ∈ [m/2], the universal-LVC has proof complexity
Õ(m2` · n2`/m · t`) and query complexity Õ(m · tn1−`/m/ε).

Note that for constant t, m, and ε we obtain code length Õ(n2),6 proof length
Õ(n2`/m), and query complexity Õ(n1−`/m). In particular, for ` = m/3 (e.g., for m = 3),
Theorem 7.2 yields a (nearly) quadratic length universal-LVC with both proof and query
complexity Õ(n2/3). We remark that the proof complexity of our MAP has a factor of
m2` · t` (and ` may be as large as m/2), and so we shall want to choose m = O(1)
and work with individual degree d = n1/m polynomials, rather than the usual setting of
m = log(n)/ log log(n) and d = log(n).

7.4.1 Preliminaries: Consistency-Testable Bundles

We shall need the following bundling mechanism from [GG16a], which in turn builds on
techniques of Ben-Sasson at el. [BSGH+06] to show a way to bundle together (possibly

5We believe that the limitation on the proximity parameter can be eliminated, by adapting the
techniques in [GGK15] to our setting. We leave the verification of this idea as an open problem.

6We remark that the quadratic length of our universal-LVC is inherent in our techniques, and it is an
open question whether it is possible to obtain sub-quadratic length.

250

7.4 A Universal Locally Verifiable Code for CSP

partial) encodings of the same message such that it possible to locally test that all these
encodings are indeed consistent. That is, we are given some encodings E1, . . . , Es :
{0, 1}k → {0, 1}n, and we wish to encode a single message x ∈ {0, 1}k by all of these
encodings (i.e., to bundle E1(x), . . . , Es(x)) such that we can test that all of the encodings
are valid and consistent with the same message x. In this chapter, the Ei’s will correspond
to the encodings of x by different error-correcting codes (i.e., Reed-Muller codes over
different finite fields).

The main idea is to construct a bundle that consists of three parts: (1) the (explicit)
message x, (2) the encodings E1(x), . . . , Es(x), and (3) PCPPs that assert the consis-
tency of the first part (the message) with each purported encoding Ei(x) in the second
part. However, such PCPPs can only ascertain that each purported pair of message and
encoding, denoted (y, zi), is close to a valid pair (x,Ei(x)). Thus, in this way we can
only verify that the bundle consists of encodings of pairwise-close messages, rather than
being close to encodings of a single message (e.g., the PCPPs may not reject a bundle
(x,E1(y1), . . . , Es(ys)) wherein each yi is close to x).

To avoid this problem, we also encode the message via an error-correcting code ECC, so
the bundle is of the form

(
ECC(x), (E1(x), . . . , Es(x)), (PCPP1(x), . . . ,PCPPs(x))

)
. Now,

each PCPP ascertains that a purported pair (y, zi) is close to (ECC(x), Ei(x)). Due to
the distance of ECC, this allows to verify that the bundle consists of s (close to valid)
encodings of the same message. Lastly, we repeat ECC(x) such that it constitutes most
of the bundle’s length, and so if an alleged bundle is far from valid, its copies of ECC(x)
must be corrupted, and so the bundle itself constitutes an error-correcting code that is
locally testable (by verifying at random one of the PCPPs in the bundle).

More precisely, consider the following way of bundling several encodings of the same
message.

Construction 7.3 (Consistency-Testable Bundles). Let E1, . . . , Es : {0, 1}k → {0, 1}n
be encodings such that for every i ∈ [s], the problem of (exactly) deciding whether (x, y) ∈
{0, 1}k+n satisfies y = Ei(x) can be computed by a size t(k) circuit. The consistency-
testable bundle of {Ei(x)}i∈[s] is the code B(x) : {0, 1}k → {0, 1}` that consists of the
following ingredients.

1. An (arbitrary) code ECC : {0, 1}k → {0, 1}n′ with linear distance, which can be
computed by a size Õ(n′) circuit, where n′ = Õ(k).

2. Encodings E1, . . . , Es (given by the application) that we wish to bundle.

3. PCP of proximity oracles p̄1, . . . , p̄s for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb}.

where and ra, rb are set such that |a| ≈ |b| = O(t(k)).

Let ε ≥ 1/polylog(s · t(k)). Consider the bundle

B(x) =
(

ECC(x)r,
(
E1(x), . . . , Es(x)

)
,
(
p̄1(x), . . . , p̄s(x)

))
,

251

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

where the length of each PCPP oracle p̄i(x) is Õ(t(k)),7 and where r is the minimal integer
such that the first part of the bundle constitutes (1− ε/2) fraction of the bundle’s length
(i.e., |ECC(x)|r ≥ (1− ε/2) · `).

Note that the length of B is ` = Õ(s · t(k)) and that B has linear distance, because
|ECC(x)|r dominates B’s length.

In [GG16a], it is shown that there exists a local test that can ascertains the validity
of the bundle as well as asserts the consistency of any encoding Ei in the bundle with
the anchor of the bundle. Note that since the bundle’s anchor dominates its length, it is
possible that the bundle is very close to valid, and yet all of the Ei’s are heavily corrupted.
Thus, we also need to provide a test for the validity of each Ei and its consistency with
the anchor.

Proposition 7.7. For every bundle B(x), as in Construction 7.3, there exists a consis-
tency test T that for every ε ≥ 1/polylog(`) makes O(1/ε) queries to a string w ∈ {0, 1}`
and satisfies the following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that Pr[Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x)
is ε-far from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Note that Tw(0) is a codeword test for B, whereas for every i ∈ [s], the test Tw(i) asserts

that Ẽi is close to an encoding of the anchor. To verify that w is a bundle wherein
all encodings refer to the same message (the anchor), we have to invoke Tw(i) for all
i ∈ {0} ∪ [s], but typically we will be interested only in the consistency of one encoding
with the anchor, where this encoding is determined by the application. For completeness,
we include the proof of Proposition 7.7 in Section 7.7.1.1.

7.4.2 Proof of Theorem 7.2

Following the overview presented in Section 7.1.4, we construct a universal-LVC that maps
each assignment x ∈ {0, 1}k to its low-degree extensions over m distinct finite fields, each
of cardinality roughly n1/m, bundled (via Construction 7.3) in a way that allows for locally
verifying that all codewords encode the same assignment. More precisely, fix d = n1/m−1,
and let Q be the set of the first m/2 primes greater than 10(m2d2t+ d) = O(m2t · n2/m);
note that each q ∈ Q satisfies q = O(m2t · n2/m) and that

∏
q∈Q q > n. For every q ∈ Q,

denote by Fq the finite field with q elements.

7Note that Li ∈ SIZE(m) by the hypothesis regarding ECC and Ei. Thus, by Theorem 7.1, such a
PCPP exists.

252

7.4 A Universal Locally Verifiable Code for CSP

The universal-LVC. Let H = [d], and note that H ⊂ Fq for every q ∈ Q. We fix a
bijection Hm ↔ [n] and use these domains interchangeably. We denote by X : Hm →
{0, 1} the embedding of an assignment x ∈ {0, 1}k in Hm, given by

X(z) =

{
xz if z ∈ [k]

0 otherwise
.

For every q ∈ Q, let X̂ ′q : Fmq → Fq be the unique individual degree d extension of X to
Fq.

To reduce the alphabet to binary, let C0 : Fq → {0, 1}100 log |Fq | be a good linear code,

and consider the concatenation of X̂ ′q with C0 as the inner code, which we denote by

X̂q : Fmq → {0, 1}100 log |Fq |. For convenience, we shall treat X̂q as if it maps to Fq, and so

whenever we query X̂q at a point z ∈ Fmq , we actually query the 100 log |Fq| bits of the

codeword C0(X̂q(z)) and decode (the Fq element) X̂q(z).

Next, we bundle the Reed-Muller encodings {〈X̂q〉}q∈Q (where 〈X̂q〉 denotes the eval-

uation of the function X̂q over its entire domain) according to Construction 7.3, so that
we can locally test that all of these encodings are consistent with the same message
(assignment). Recall that in Construction 7.3 we bundle encodings Ei, . . . , Es with an
(arbitrary) error-correcting code ECC (which can be computed by a circuit of quasilinear
size and has linear distance) and with a PCPP for every Ei, which ascertains that a pair
(a, b) satisfies a = ECC(y) and b = Ei(y) for some y. Here, the encodings will correspond

to the Reed-Muller encodings {〈X̂q〉}q∈Q of the assignment X. Note that (exact) veri-
fication of m-dimensional Reed-Muller codes over Fq can be done using circuits of size
m · |Fq|m · polylog|Fq| = Õ(m2m+1tm · n2), since |Fq| = O(m2t · n2/m).8 Hence, by Theo-
rem 7.1, for every q ∈ Q there exist a PCPP oracle p̄q, as required in Construction 7.3, of
length n′ = Õ(m2m+1tm · n2). We obtain the code C : {0, 1}k → {0, 1}m·n′ given by

C(x) =
(

ECC(x)r,
(
〈X̂q〉

)
q∈Q,

(
p̄q(x)

)
q∈Q

)
. (7.5)

We show that C is a universal-LVC for CSPn. This calls for describing a short (MAP)
proof for each ϕ ∈ CSPn and describing how it is verified.

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk) = 1, where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}.

Recall that each c′i is a t-junta, denote its influencing variables by Ii, and note that there
exists ci : {0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii). We stress that unlike the overview
in Section 7.1.4, each constraint ci may be a different predicate; this will make our arith-
metization slightly more involved. Note that each ci takes binary inputs, and so, for
every q ∈ Q, we denote by ĉi,q : Ftq → Fq the degree t multilinear extension of ci to Fq.
We show an MAP for the subcode Πϕ

def
= {C(x) : ϕ(x) = 1}. We shall first describe the

MAP proof and then describe how it is verified.

8This can be done by checking that each one of the m · |Fq|m−1 axis-parallel lines is a degree d
univariate polynomial, and each such check can be done by a circuit of size |Fq| · polylog|Fq|.

253

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

The MAP proof (for C(x) being in Πϕ). For every q ∈ Q, consider the following
functions.

• Constraint Indicator: For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the
i’th constraint, i.e., for every z ∈ Hm = [n] it holds that χi(z) = 1 if and only if
z = i. Denote by χ̂i,q : Fmq → Fq the unique, individual degree d, extension of χi
to Fq. (This component is necessary now since each constraint may be a different
predicate.)

• Variable Indicator: For every j ∈ [t], let ϕj : Hm → Hm be the function that maps
a constraint index z ∈ Hm to the j’th variable index that appears in the z’th
constraint (e.g., if cz = (x5 ∨ x7 ∨ x11), then ϕ1(z) = 5, ϕ2(z) = 7, and ϕ3(z) = 11).
Denote by ϕ̂j,q : Fmq → Fmq the unique, individual degree d, extension of ϕj to Fq.
(The variable indicator is the same as in the overview.)

• Constraint-Satisfication Indicator: Let ψq : Fmq → Fq be the total degree m2d2t+md
polynomial given by

ψq(z1, . . . , zm) =
n∑
i=1

χ̂i,q(z1, . . . , zm)·̂ci,q
(
X̂q◦ϕ̂1,q(z1, . . . , zm), . . . , X̂q◦ϕ̂t,q(z1, . . . , zm)

)
,

(7.6)
where the summation is over Fq. Note that for every z ∈ Hm, the value of ψq(z)
indicates whether the z’th constraint of ϕ is satisfied by the assignment encoded in
X̂q. Note that the factor of (md)2 in the degree of ψq is due to the composition of

X̂q with ϕ̂j,q.

The prescribed MAP proof for C(x) being in Πϕ) is πϕ = {πϕ,q}q∈Q, where πϕ,q : F`q → Fq
is given by

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H

ψq(z1, . . . , z`, z`+1, . . . , zm), (7.7)

where the summation is over Fq. Note that the length of the MAP proof is bounded by∑
q∈Q(m2d2t+md)`·100 log |Fq| = Õ(m2`·n2`/m·t`), and observe that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`)

counts the number of ϕ’s constraints that are satisfied by the assignment encoded in X̂q

modulo q (due to the field’s characteristic).

The MAP verifier (for ϕ). Hereafter, we shall use z̃ to denote a string that is allegedly
equal to z. Consider the MAPε verifier Vϕ for the subcode {C(x) : ϕ(x) = 1}, which
has free access to a purported proof π̃ϕ = {π̃ϕ,q}q∈Q, which is supposed to equal πϕ =
{πϕ,q}q∈Q (as defined above), and oracle access to a purported bundle w ∈ {0, 1}m·n′

that is supposed to equal Eq. (7.5); that is, w allegedly consists of three parts: (1)

the purported anchor ẼCC(x), (2) the purported Reed-Muller encodings (〈X̃q〉)q∈Q, and
(3) the purported PCPs of proximity (˜̄pq(x))q∈Q. Let T be the bundle consistency test
in Proposition 7.7. Recall that T is given a proximity parameter ε, an encoding-index
parameter q ∈ Q, and oracle access to a purported bundle w. The test T accepts, with

254

7.4 A Universal Locally Verifiable Code for CSP

high probability, if and only if w is ε-close to C(x), and 〈X̃q〉 is ε-close to 〈X̂q〉 (i.e., the
low-degree extension of a binary assignment x).

The verifier Vϕ performs the following checks for every q ∈ Q, in parallel, and accepts
if none of the checks failed.

1. The MAP proof π̃ϕ is consistent with a satisfying assignment: Check that∑
z1,...,z`∈H

π̃ϕ,q(z1, . . . , z`) ≡ n (mod q).

2. The universal-LTC itself is a bundle of Reed-Muller encodings of a binary assignment: In-
voke the bundle consistency test T with respect to proximity parameter ε, encoding-
index parameter q, and purported bundle w. (Hence, we may assume that 〈X̃q〉 is

ε-close to 〈X̂q〉, which is consistent with x; that is, all 〈X̂q〉’s are pairwise consistent
with the same binary assignment x.)

3. The MAP proof π̃ϕ,q is consistent with the universal-LTC w: Compare the evaluation
of π̃ϕ,q and πϕ,q at a random point. That is, recall that the verifier Vϕ has the
formula ϕ hard-coded, and so it can evaluate πϕ,q (without help from the prover)

by self-correcting X̃q, as follows. Select uniformly at random r1, . . . , r` ∈R Fq, and

for every z`+1, . . . , zm ∈ H and j ∈ [t], decode X̃q◦ϕ̂j,q(r1, . . . , r`, z`+1, . . . , zm) using
the Reed-Muller self-corrector, repeated O((m − `) · t · log(|H|)) times so that the
error probability in the self-correction is 1/(10 · t · |H|m−`) for each point. Denoting
the value read by vj,q(r1, . . . , r`, z`+1, . . . , zm), check that

π̃ϕ,q(r1, . . . , r`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(r1, . . . , r`, z`+1, . . . , zm) (7.8)

· ĉi,q
(
v1,q(r1, . . . , r`, z`+1, . . . , zm), . . . , vt,q(r1, . . . , r`, z`+1, . . . , zm)

)
.

(Note that, assuming Test 2 passes (with high probability) and all invocations of the
self-corrector were successful,9 the right-hand side of Eq. (7.8) equals πϕ,q(r1, . . . , r`).)

Recall that for each q ∈ Q, the purported proof π̃ϕ,q is a low-degree polynomial (like πϕ,q).
Hence, if π̃ϕ,q and πϕ,q agree (with high probability) on a random point, as checked in
Test 3, then π̃ϕ,q = πϕ,q. Note that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of con-

straints of ϕ that the binary assignment x satisfies modulo q (where Test 2 asserts that all

9Note that πϕ,q is well defined if the purported bundle w is close to a codeword C(x), which Test 2
asserts. In this case,

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
,

where X̂q is the low-degree extension of x to Fq. Hence, the verifier Vϕ, which has the formula ϕ

hard-coded, can evaluate πϕ,q by self-correcting X̃q.

255

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

πϕ,q’s refer to the same assignment x). By Test 1, it follows that
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`)
is congruent to n modulo q. Since this holds for all q ∈ Q, then by the Chinese remain-
der theorem,

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) ≡ n (mod

∏
q∈Q q), and since

∏
q∈Q q ≥ n, the

assignment x satisfies the formula ϕ.

Note that for each of the O(m) primes in Q, the verifier Vϕ makes O(1/ε) queries

during the bundle consistency test and then queries t · |H|m−` = t · n1−(`/m) points in X̂q

via (amplified) self-correction of X̃q. Thus, the total query complexity is

∑
q∈Q

(
O

(
1

ε

)
+ tn1− `

m ·O(m log(|H|))
)
· log(|Fq|) = Õ

(
mt · n1− `

m · 1

ε

)
.

Perfect completeness follows from the one-sided error of the bundle test and the self-
correction procedure. The following claim establishes the soundness of Vϕ.

Claim 7.7.1. If w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged
MAP proof π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3.

The proof of Claim 7.7.1 is a straightforward analysis of the construction, and so we defer
its proof to Section 7.7.1.2. This concludes the proof of Theorem 7.2.

7.5 Lower Bounds on Verifying Conjugation Proper-

ties

Denote by Conjugation the set of all conjugations (of at most k variables); that is,
Conjugation = { fS(x1, . . . , xk) = ∧i∈Sxi }S⊆[k]. The following theorem shows a lower
bound on the universal-LVC complexity of Conjugation, which in particular, yields a lower
bound on the universal-LVC complexity of CSP.

Theorem 7.4. Suppose C : {0, 1}k → {0, 1}η is a code of constant relative distance δ(C),
and fix ε < δ(C). If C is a universal-LVCε for Conjugation with proof complexity p and
query complexity q, then p · q = Ω(k/ log η).

Note that the foregoing lower bound trivializes for η = 2k, and indeed there exists a
universal-LTC for Conjugation of roughly such length (see [GG16a]). As an immediate
consequence of Theorem 7.4, we obtain the following corollary.

Corollary 7.5. Suppose C : {0, 1}k → {0, 1}η is a code of constant relative distance
δ(C), and fix ε < δ(C). If C is a universal-LVCε for CSPn,k with proof complexity p and
query complexity q, then p · q = Ω(k/ log η).

We prove Theorem 7.4 by a reduction from MA communication complexity protocols,
which we briefly recall next.

256

7.5 Lower Bounds on Verifying Conjugation Properties

7.5.1 Preliminaries: MA Communication Complexity

In MA communication protocols we have a function f : X × Y → {0, 1}, for some finite
sets X and Y , and three computationally unbounded parties: Merlin, Alice, and Bob.
The function f is known to all parties. Alice gets an input x ∈ X, and Bob gets an input
y ∈ Y . Merlin sees both A,B, but Alice and Bob share a random string r that Merlin
does not see. The protocol starts with a message π = π(x, y) sent from Merlin to both
Alice and Bob, which is supposed to be a proof that f(x, y) = 1. Then, the two players
exchange messages to verify that indeed f(x, y) = 1.

Definition 7.8. Let f : X × Y → {0, 1}. An MA communication protocol for f , with
proof complexity p and communication complexity c is a probabilistic protocol between two
parties who share a random string r, and also receive a p-bit string π = π(x, y), which is
a functions of x and y, but independent of r. The parties communicate c bits and output
〈A(x), B(y)〉(r, π) such that:

1. Completeness: for every Yes-input (x, y) ∈ f−1(1), there exists a proof π ∈ {0, 1}p
such that

Pr
r

[〈A(x), B(y)〉(r, π) = 1] ≥ 2/3.

2. Soundness: for every No-input (x, y) ∈ f−1(0) and for any alleged proof π ∈ {0, 1}p,

Pr
r

[〈A(x), B(y)〉(r, π) = 0] ≥ 2/3.

We shall use the following (tight) lower bound on the MA communication complexity of
the set-disjointness problem, in which Alice has input S ⊆ [k], Bob has input T ⊆ [k], and
the parties need to decide whether their sets are disjoint; that is, compute the predicate

DISJk(S, T) =

{
1 if |S ∩ T | = 0

0 if |S ∩ T | ≥ 1
.

It is well-known (see [KS92]) that the randomized communication complexity of the set-
disjointness problem is linear in the length of the inputs. Moreover, Klauck [Kla03]
showed the following (tight) lower bound on the MA communication complexity of set-
disjointness.

Theorem 7.6 ([Kla03]). Every MA communication complexity protocol for DISJk with
proof complexity p and communication complexity c satisfies p · c = Ω(k).

7.5.2 Proof of Theorem 7.4

Consider the communication complexity problem, in which Alice has input A ⊆ [k], Bob
has input B ⊆ [k], and the parties need to decide whether Alice’s set is a subset of Bob’s

set; that is, compute the predicate SUBSETk(A,B) =

{
1 if A ⊆ B

0 otherwise
.

257

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

Claim 7.8.1. Every MA communication complexity protocol for SUBSETk with proof
complexity p and communication complexity c satisfies p · c = Ω(k).

Proof. We reduce from DISJk. Let ProtSUBSET be an MA protocol for SUBSETk with proof
complexity p and communication complexity c, and let S, T ⊆ [k] be the inputs of Alice

and Bob to the DISJk problem. The parties emulate ProtSUBSET on inputs A
def
= S and

B
def
= [k] \ T . Note that if S ∩ T = ∅, then A = S ⊆ [k] \ T = B. Otherwise, there exists

i ∈ S ∩ T such that i 6∈ [k] \ T = B, and A 6⊆ B follows. We stress that the reduction
maps 1-instances to 1-instances, and so it preserves membership in the class MA.

We prove the following claim by adapting the methodology in [BBM11], in which prop-
erty testing lower bounds are obtained via reductions from communication complexity,
to the setting of universal-LTCs.

Claim 7.8.2. If the universal-LVC C has proof complexity p and query complexity q, then
there exists an MA communication complexity protocol for SUBSETk with proof complexity
p and communication complexity q · (1 + log η).

Proof. Let A,B ⊆ [k] be the inputs of Alice and Bob (respectively) to the SUBSETk

problem. Bob computes the codeword C(B), where B is viewed as a k-bit string.10

Then, Alice invokes the MAP verifier for the subcode CA
def
= {C(x) : ∧i∈Axi = 1}, and

answers each of its q queries by communicating with Bob as follows. On query i ∈ [η],
Alice sends i (communicating log η bits) to Bob, who responds with (a single bit) C(B)i,
which Alice provides as answer to the MAP verifier for CA, denoted VA. If A ⊆ B,
then ∧i∈ABi = 1, and so C(B) ∈ CA; thus there exists a proof π ∈ {0, 1}p such that

Pr[V
C(B)
A = 1] ≥ 2/3. Otherwise (i.e., A 6⊆ B), there exists i ∈ A such that i 6∈ B, hence

∧i∈ABi = 0, and so C(B) is δ(C)-far from CA, and for every π ∈ {0, 1}p it holds that

Pr[V
C(B)
A = 0] ≥ 2/3.

Combining Claim 7.8.1 and Claim 7.8.2 concludes the proof of the Theorem 7.4.

7.6 Constant-Round IPPs for CSP

Recall that an interactive proof of proximity (hereafter, IPP) is an interactive proof
system in which the verifier only queries a sublinear number of input bits and soundness
only means that, with high probability, the input is close to an accepting input (see
Definition 7.1). In this section, we show that using O(1) rounds of interaction, an IPP
protocol wherein the verifier has oracle access to an assignment x ∈ {0, 1}k can, in a
sense, emulate the universal-LVC for CSP of Theorem 7.2; thus, we obtain an efficient IPP
for satisfiability of fixed CSPs. We shall make an effort to keep the round complexity of
such IPP to a minimum. We warn that Section 7.4 is a prerequisite for this section.

10Via the standard mapping in which the i’th bit of the string is 1 if i ∈ B and 0 otherwise.

258

7.6 Constant-Round IPPs for CSP

Let k ∈ N. We consider CSPn = CSPn,t,k, where for simplicity of presentation, in this
subsection we fix n = k and t = O(1) (generalizing to general values of n, k, t can handled
similarly as in Section 7.4). Recall that each round of an IPP consists of two messages,
one from the prover and one from the verifier (see Section 7.2.1). We prove the following.

Theorem 7.7. For every ε ≥ 1/n6/7 and ϕ ∈ CSPn there exists a 3-round (one-sided
error) IPP for the property Πϕ =

{
x ∈ {0, 1}k : ϕ(x) = 1

}
with communication and

query complexity O(n6/7+o(1)).

We remark that by allowing additional O(1) rounds of interaction, it is possible to obtain
both query and communication complexity nα for any constant α > 1/2, see Section 7.6.3.

7.6.1 High-Level Overview

We start with a brief overview of the main ideas behind the proof of Theorem 7.7. Fixing
any ϕ ∈ CSPn, let C(x) be the universal-LVC encoding of an assignment x ∈ {0, 1}k, as
used in Theorem 7.2. Recall that C(x) consists of a bundle of Reed-Muller encodings of
x over several prime fields {Fq}q∈Q,11 and let Vϕ be the MAP verifier for Πi = {C(x) :
ϕ(x) = 1}.

Let C(x) be a valid codeword (where ϕ(x) ∈ {0, 1}). Then, by Theorem 7.2: (1) if

ϕ(x) = 1, then there exists a proof π such that Pr[V
C(x)
ϕ (π) = 1] = 1, and (2) if ϕ(x) = 0,

then for every alleged proof π it holds that Pr[V
C(x)
ϕ (π) = 1] < 1/3. A closer inspection

of the proof of Theorem 7.2 shows that, for every q ∈ Q, the verifier Vϕ(π) generates, as a
function of the alleged proof π and its own randomness, a subset of indices Jq ⊆ [|C(x)|]
and a vector of values ~vq ∈ {0, 1}|Jq | such that: (1) if ϕ(x) = 1, then for every q ∈ Q
there exists a proof π such that Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] = 1, and (2) if ϕ(x) = 0,
then for every alleged proof π there exists q ∈ Q such that Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] <
1/3.12 Hence, we view Vϕ as a reduction of verifying that x satisfies ϕ to verifying that
C(x)|Jq = ~vq for every q ∈ Q. Hereafter, we fix q ∈ Q and omit it from subscripts.

Recall, however, that in the setting of Theorem 7.7 the verifier does not have access to
the encoding C(x), but rather only oracle access to the plain assignment x itself. Aiming
at sublinear query complexity, the verifier cannot read all of x. Instead the verifier sends
the set of locations J to the prover and asks it to prove to it that C(x)|J = ~v. To this
end, we use techniques from [RVW13] that allow us to verify claims regarding C(x) by
only making a small number of queries to x. This is performed in two steps, which we
describe next.

11Actually, C consists of the foregoing Reed-Muller encodings, bundled with PCPPs that ascertain the
consistency of the encodings (see Construction 7.3). However, in the context of Theorem 7.7, we shall
not need these PCPPs, and we view C as consisting solely of the low-degree extensions.

12This is because (1) the verifier is non-adaptive, and (2) assuming C(x) is valid, the verifier only
needs to make queries to the Reed-Muller encodings (and do not need to query the PCPP oracles that
are used for consistency testing).

259

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

The first step is to strengthen the soundness condition of Vϕ such that, with high

probability, if x is ε-far from Πi
def
= {z ∈ {0, 1}k : ϕ(z) = 1}, not only C(x)|J 6= ~v, but

also for every x′ that is ε-close to x (simultaneously) it holds that C(x′)|J 6= ~v. That is, if
x is ε-far from Πi, then it is ε-far from {z ∈ {0, 1}k : C(z)|J = ~v}. The second step is to
invoke an IPP (due to [RVW13]) for verifying membership in {z ∈ {0, 1}k : C(z)|J = ~v},
where C consists of Reed-Muller encodings. Details follow.

Denote the query complexity of the verifier Vϕ by `. We start by reducing the sound-
ness error of Vϕ, via S parallel repetitions (at the cost of increasing the the query com-
plexity to S · `). Note that the amplified verifier V ′ϕ generates a pair (J,~v) of O(S · `)
locations and values, such that if ϕ(x) = 0, then Pr(J,~v)[C(x)|J = ~v] = exp(−S). Observe
that if x is ε-far from satisfying ϕ (and in particular ϕ(x′) = 0), then the probability
there exists x′ that is ε-close to x such that C(x′)|J = ~v is at most

(
n
εn

)
· exp(−S).

Therefore, by setting S = Θ(ε · n log n) we obtain that with high probability no x′

that is ε-close to x satisfies C(x′)|J = ~v. Thus, if x is ε-far from {x ∈ {0, 1}k : ϕ(x) = 1},
then with high probability (over the pair (J,~v), chosen by V ′ϕ) the assignment x is ε-far

from the affine subspace AJ,~v
def
= {x ∈ {0, 1}k : C(x)|J = ~v}.

Therefore, the foregoing constitutes a 2-message “reduction”: The prover sends the
MAP proof (constructed as in Theorem 7.2) that x satisfies ϕ, and the verifier sends back
a set of random locations J , asking the prover to provide a vector ~v and prove that it is
equal to C(x)|J . Hence, we performed a randomized reduction of verifying that x satisfies
ϕ to verifying membership in the affine subspace AJ,~v. Fortunately, 3-message IPPs with
sublinear communication and query complexity are known for testing membership in
affine subspaces that are induced by Reed-Muller codes. Furthermore, these IPPs also
have sublinear communication and query complexity for sub-constant values of ε. This
is crucial since we perform S = Θ(ε · n log n) parallel repetitions of Vϕ, which adds a
factor of Θ(ε · n log n) to the communication complexity, and since we aim for sublinear
communication complexity, the proximity parameter must be sub-constant. Finally, we
compose the aforementioned reduction protocol with an IPP for membership in AJ,~v, and
hence obtain an IPP for

{
x ∈ {0, 1}k : ϕ(x) = 1

}
.

To present the actual proof of Theorem 7.7, we shall need to define the following
property of membership in the affine subspace that corresponds to the Reed-Muller code.

Definition 7.9 (PVAL). Let F be a finite field, J ⊆ Fm, and ~v ∈ F|J |. The property
PVALF,d,m

J,~v (or just PVALF
J,~v, when d and m are clear from the context) consists of all strings

x ∈ {0, 1}dm such that their (individual) degree d extension to F, denoted X̂ : Fm → F,
takes the values ~v on the coordinates J ; that is,

PVALF
J,~v = {x ∈ {0, 1}dm : X̂(J) = ~v}.

The following theorem, due to Rothblum et al. [RVW13], shows that PVAL has efficient
IPPs.

Theorem 7.8 ([RVW13, Theorem 3.12]). Let d,m ∈ N , and let F be a finite field. Fix
parameters r and q such that r ≤ min(d, |F |/10) and q > max{(dr)1+o(1), |F|}.

260

7.6 Constant-Round IPPs for CSP

Then, for every J ⊆ Fm, ~v ∈ F|J |, and any ε ≥ 1/q1−o(1) there exists a one-sided
error, (2r+1)-message (where the first message is sent by the prover) IPPε for PVALF,d,m

J,~v

with communication complexity (dm−r + |J | · d) · qo(1) and query complexity q.

We remark that the product of the proof and query complexities in Theorem 7.8 can
be made almost linear in some cases; specifically, for r = log q

log d
we obtain communication

complexity dm

q1−o(1) + |J | ·d ·qo(1) and query complexity q. We shall, however, use r = O(1).

7.6.2 Proof of Theorem 7.7

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk), where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}.

Recall that each c′i is a t-junta, denote its influencing variables by Ii, and note that there
exists ci : {0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii).

We show an IPP for the property Πϕ
def
= {x ∈ {0, 1}k : ϕ(x) = 1}. As discussed in

the overview, we begin by using a similar construction to that of Theorem 7.2, to the
end of performing a randomized reduction of verifying that the assignment x satisfies
ϕ to verifying membership in the affine subspace induced by Reed-Muller encodings of
x. More accurately, we shall use a “bare-bones” version of the foregoing universal-LTC,
which only consists of Reed-Muller encodings of x over several prime fields (note that we
omit both the alphabet reduction, and the PCP-based consistency testing mechanism),
and whose MAP verifiers do not query the universal-LTC, but rather send to the prover
the queries they wish to make. We stress that this construction do not include the anchor
and PCPPs in Construction 7.3.

For the convenience of the reader, we briefly review the following definitions from
Section 7.4, which are needed to describe the foregoing “bare-bones” version of the
universal-LTC in Theorem 7.2.

Review of the arithmetization in Theorem 7.2. Let m = O(1), to be determined
later, and fix d = n1/m − 1. Let Q be the set of the first m/2 primes that are greater
than 2(m2d2t + md) = O(n2/m). Note that

∏
q∈Q q > n. Let q ∈ Q. Denote by Fq the

finite field with q elements. Denote by ĉi,q : Ftq → Fq the multilinear extension of ci to
Fq. Let H = [d] (note that H ⊂ Fq); we fix a bijection Hm ↔ [n] and use these domains
interchangeably. For every x ∈ {0, 1}k consider Xq : Hm → {0, 1} given by Xq(z) = xz.

Let X̂q : Fmq → Fq be the unique individual degree d extension of Xq to Fq.
For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the i’th constraint,

i.e., for every z ∈ Hm = [n] it holds that χi(z) = 1 if and only if z = i. Denote by
χ̂i,q : Fmq → Fq the unique, individual degree d, extension of χi to Fq. For every j ∈ [t],
let ϕj : Hm → Hm be the function that maps a constraint index z ∈ Hm to the j’th
variable index that appears in the z’th constraint. Denote by ϕ̂j,q : Fmq → Fmq the unique,
individual degree d, extension of ϕj to Fq. For every i ∈ [n] and j ∈ [t], denote by χ̂i,q and
ϕ̂j,q the low-degree extension of χi and ϕj to Fq. Finally, let ψq(z1, . . . , zm) : Fmq → Fq,

261

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

given by

ψq(z1, . . . , zm) =
n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
.

Having reviewed the foregoing definitions, we are ready to proceed with the proof of
Theorem 7.7.

The 3-round IPP. Let ε > 0, ` ∈ [m/2], and S ∈ N, to be determined later. Consider

the following 3-round IPPε for the property Πϕ
def
= {x ∈ {0, 1}k : ϕ(x) = 1}. The

protocol starts by emulating a ”bare-bones” version of the MAP verifier of Theorem 7.2,
which differs in the following aspects: (1) the consistency test and alphabet reduction are
omitted, (2) the soundness of the verifier is amplified via S = O(εn log n) parallel repe-
titions, and (3) the verifier does not make queries to its input, but rather communicates
to the prover the queries it wishes to make and asks the prover to assert the values of
these queries. Details follow.

Hereafter, we shall denote by f̃ a function, sent by the prover, which allegedly equals
f . For every q ∈ Q, the prover sends a polynomial π̃q : F`q → Fq, which allegedly equals

πq(z1, . . . , z`)
def
=
∑

z`+1,...,zm∈H ψq(z1, . . . , z`, z`+1, . . . , zm), where the summation is over

Fq. The verifier first checks that all πq’s are consistent with a satisfying assignment (i.e.,
checks that

∑
z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n (mod q), for all q ∈ Q). Then, the verifier

wishes to evaluate each πq on S randomly chosen points and compare it to the value of

π̃q on these points,13 which amounts to evaluating the low-degree extensions {X̂q}q∈Q of
the assignment x at S · |H|m−` points; denote these points by Jq.

Recall, however, that the verifier only has access to the plain assignment x, and not
to its encodings {X̂q}q∈Q (note that evaluating X̂q at any point, without assistance from
the prover, may require reading the assignment x entirely). Instead the verifier asks the

prover to assert the values of {X̂q}q∈Q at the points it wishes to probe. To that end,

the verifier selects uniformly at random r
(s)
q

def
= (r

(s)
1 , . . . , r

(s)
`) ∈ F`q, for every s ∈ [S] and

sends it to the prover, which in turns sends a vector ~vq of the evaluations of X̂q at Jq, for
every q ∈ Q. Finally the parties invoke the IPP in Theorem 7.8 with respect to (Jq, ~vq),
for every q ∈ Q, and accept if and only if all of the invocations accepted. More accurately,
the IPP is described as follows. For every q ∈ Q, in parallel, perform the following steps:

1. The prover sends a (total) degree m2d2t+md polynomial π̃q : F`q → Fq (by specifying
its coefficients), which allegedly equals:

πq(z1, . . . , z`) =
∑

z`+1,...,zm∈H

ψq(z1, . . . , z`, z`+1 . . . , zm).

13Note that by the proof of Theorem 7.2, evaluating each πq on a single randomly chosen point yields
constant soundness, and so, in the setting of Theorem 7.7, as discussed in the overview, we obtain
soundness exp(−S) by evaluating each πq on S randomly chosen points.

262

7.6 Constant-Round IPPs for CSP

2. The verifier checks that
∑

z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n (mod q).

3. The verifier selects uniformly at random and sends r
(s)
q

def
= (r

(s)
1 , . . . , r

(s)
`) ∈ F`q, for

every s ∈ [S].

4. The prover sends ~vq ∈ FS·|H|
m−`·t

q such that allegedly ~vq[s, ~z, i] = X̂q◦ϕ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , ~z

)
,

for every s ∈ [S], ~z ∈ Hm−`, and i ∈ [t].

5. The verifier checks that, for every s ∈ [S],∑
~z∈Hm−`

n∑
i=1

χ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , z

)
· ĉi,q

(
~vq[s, z, 1], . . . , ~vq[s, z, t]

)
≡ n (mod q).

6. Fix Jq =
(
ϕ̂i,q(r

(s)
1 , . . . , r

(s)
` , ~z)

)
s∈[S],~z∈H`−m,i∈[t]

, and invoke the IPP for PVAL (Theo-

rem 7.7) on input x (the assignment), field Fq, location set Jq, and evaluation vector
~vq.

Note that in Step 1 the prover communicates
∑

q∈Q(m2d2t + md)` · log |Fq| bits, in Step
3 the verifier sends

∑
q∈Q S · ` · log |Fq| bits, and in Step 4, the prover sends

∑
q∈Q S ·

|H|m−` · t · log |Fq| bits. Hence, prior to the final step (i.e., Step 6), Õ
(
n2`/m +S ·nm−`/m

)
bits are being communicated and no queries are being made to the assignment x by the
verifier.

Finally, the parties invoke the 3-message (starting with the prover) PVAL IPP (in Step
6), whose communication complexity is(

dm−1 +
∑
q∈Q

|Jq| · d

)
· qo(1) =

(
n
m−1
m + S · n

m−`+1
m

)
· qo(1)

and query complexity is q. (Note that only the PVAL protocol actually makes queries
to the input x). Fixing ε = 1/n6/7, q = n6/7+o(1), S = O(εn log n), m = 7, and ` = 3
yields the claimed complexity. Perfect completeness follows by construction. To show
soundness, we shall first need the following claim

Claim 7.9.1. If x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] <
(1/10)S.

The proof of Claim 7.9.1 is by a straightforward analysis of the construction, and thus
we defer its proof to Section 7.7.1.3. Next, assume that x is ε-far from Πϕ, and observe
that by Claim 7.9.1 there exists q ∈ Q such that

Pr
(Jq ,~vq)

[∀x′ ∈ Nε(x) X̂ ′q|(Jq) 6= ~vq] ≥ 1−
(
n

εn

)
· max
x′ 6∈Πϕ

{
Pr

(Jq ,~vq)
[X̂ ′q(Jq) = ~vq]

}
≥ 1−

(
n

εn

)
· (1/10)S (Claim 7.9.1)

≥ 9/10. (S = O(εn log n))

263

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

(where Nε(x) consists of all strings that are ε-close to x). Thus, there exists q ∈ Q such
that with probability 9/10 over the verifier’s randomness, the assignment x is ε-far from

PVAL
Fq
Jq ,~vq

, and so, by Theorem 7.7, x is rejected with probability at least 9/10 · 9/10 in

the last step of the IPP (the invocation of the PVAL protocol). This concludes the proof
of Theorem 7.7.

7.6.3 Round Complexity versus Communication and Query Com-
plexity Tradeoff

The proof of Theorem 7.7 naturally extends to IPPs with a higher round complexity,
admitting O(1)-round IPPs with proof and query complexity nα for any constant α > 1/2.
We sketch below how such extension is performed.

The idea is to replace the emulation of the “bare-bones” MAP verifier Vϕ (Steps 1-3 of
the IPP in Theorem 7.7) with a sumcheck protocol [LFKN92], in which the summation is
striped down in iterations, coordinate-by-coordinate. That is, the protocols starts with m
rounds (recall that we arithmetize over m-variate polynomials), where in the j’th round,
for every q ∈ Q and s ∈ [S], the prover sends a degree m2d2t+md univariate polynomial

π̃
(s)
j,q : Fq → Fq that allegedly equals:

π
(s)
j,q (z) =

∑
zj+1,...,zm∈H

ψq(r
(s)
1 , . . . , r

(s)
j−1, z, zj+1 . . . , zm).

The verifier then checks the consistency of each π̃
(s)
j,q with π̃

(s)
j−1,q; i.e., verifies that

π̃
(s)
j−1,q

(
r

(s)
j−1

)
=
∑
z∈H

π
(s)
j,q (z),

and the j’th round is concluded by letting the verifier select uniformly at random r
(s)
j ∈ Fq

and send it to the prover.
Standard analysis of the sumcheck protocol shows that the larger m is (which in turn

dictates the round complexity), the smaller the communication and query complexity
of such protocols; in particular for O(1)-rounds, we can obtain both query and proof
complexity nβ, where β = β(m) is an arbitrarily small constant. The bottleneck in
both query and proof complexity is, however, due to the final step of our IPP, which
is an invocation of IPP in Theorem 7.8, wherein both query and proof complexity are
inherently ω(

√
n).

264

7.7 Appendices for Chapter 7

7.7 Appendices for Chapter 7

7.7.1 Deferred Details of Proofs

7.7.1.1 Proof of Proposition 7.7

For the analysis, when we consider an arbitrary string w ∈ {0, 1}` (which we think of
as an alleged bundle), we view w ∈ {0, 1}`1+`2+`3 as a string composed of three parts
(analogous to the three parts of Construction 7.3):

1. The anchor, ẼCC(x) = (ẼCC(x)1, . . . , ẼCC(x)r) ∈ {0, 1}n
′·r, which consists of r

alleged copies of ECC(x);

2. The bundled encodings (Ẽ1(x), . . . , Ẽs(x)) ∈ {0, 1}n·s, which allegedly equals (E1(x), . . . , Es(x));

3. The PCPPs (˜̄p1(x), . . . , ˜̄ps(x)) ∈ {0, 1}Õ(t(k))·s, which allegedly equals (p̄1(x), . . . , p̄s(x)).

We show that for every bundle B(x), as in Construction 7.3, there exists a consistency
test T that, for every ε ≥ 1/polylog(`), makes O(1/ε) queries to a string w ∈ {0, 1}` and
satisfies the following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that PrT [Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi is
ε-far from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Let ε ≥ 1/polylog(`), and assume without loss of generality that ε < δ(ECC)/2.14 For
every i ∈ [s] denote by Vi the PCPP verifier for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb},

with respect to proximity parameter ε/6 and soundness 9/10. Consider the ε-tester T

that is given i ∈ {0} ∪ [s] and oracle access to w = (ẼCC(x), (Ẽi)i∈[s], (˜̄pi)i∈[s]) ∈ {0, 1}`
and accepts if both of the following tests accept.

1. Repetition Test: Query two random copies from the long-code part of w and check
if they agree on a random location. More accurately, select uniformly at random
j, j′ ∈ [r] and reject if and only if ẼCC(x)j and ẼCC(x)j′ disagree on a random
coordinate. Repeat this test O(1/ε) times.

2. Consistency Test: Choose uniformly j ∈ [r]. If i = 0, choose uniformly i′ ∈ [s],

otherwise set i′ = i. Reject if the verifier Vi′ rejects on input (ẼCC(x)j
ra
, Ẽi′(x)rb)

and proof ˜̄pi′(x).

14The relative distance of ECC is constant, so if ε ≥ δ(ECC)/2, we can set the proximity parameter to
δ(ECC)/2, increasing the complexity by only a constant factor.

265

7. UNIVERSAL LOCALLY VERIFIABLE CODES AND 3-ROUND
INTERACTIVE PROOFS OF PROXIMITY FOR CSP

The first condition of Proposition 7.7 follows by construction. For the other conditions,
first observe that if ẼCC(x) is far from consisting of r identical copies, then the rep-
etition test rejects with high probability. That is, let ĉ ∈ {0, 1}n′ be a string that is

closest on average to the copies in ẼCC(x), i.e., a string that minimizes ∆(ẼCC(x), ĉr) =∑r
j=1 ∆(ẼCC(x)j, ĉ). Observe that

E
j,j′∈R[r]

[δ(ẼCC(x)j, ẼCC(x)j′)] ≥ E
j∈R[r]

[δ(ẼCC(x)j, ẼCC(x))] = δ(ẼCC(x), ĉr).

If δ(ẼCC(x), ĉr) > ε/60, then by invoking the codeword repetition test O(1/ε) times,
with probability at least 2/3 one of the invocations will reject. Otherwise, note that with

probability at least 9/10 the random copy ẼCC(x)j is ε/6-close to ĉ; assume hereafter
that this is the case.

If w is ε-far from B, then since ẼCC(x) ≥ (1− ε/2)`, it follows that ẼCC(x) is ε/2-far
from ECCr, and thus

δECCr(ĉ
r) ≥ δECCr(ẼCC(x))− δ(ĉr, ẼCC(x)) = ε/2− ε/60 > ε/3.

Recall that we assumed that δ(ẼCC(x)j, ĉ) ≤ ε/6, and so δECC(ẼCC(x)j) > ε/6. Thus,
Pr[V w

i′ = 0] ≥ 9/10 · 9/10.

Finally, If there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far

from Ei(x), then since δ(ẼCC(x), ĉr) ≤ ε/60, it follows that with probability at least 9/10

the random copy ẼCC(x)j is ε/6-close to ECC(x). Hence, (ẼCC(x)j
ra
, Ẽi(x)rb) is at least

5ε/6-far from Li, and so Pr[V w
i = 0] ≥ 9/10 · 9/10.

7.7.1.2 Proof of Claim 7.7.1

We show that if w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged
MAP proof π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3. Assume, without loss of generality,
that ε < 1/3. By Proposition 7.7, the consistency test (Step 2 of Vϕ) rejects with
probability 2/3 unless there exists x ∈ {0, 1}k such that: (1) the input w is ε-close to

the codeword C(x), and (2) for every q ∈ Q, the purported function X̃q in w is ε-close

to X̂q, the low-degree extension of x to Fq. Note that, in particular, the polynomial X̂q

takes binary values over Hm (i.e., encodes a binary assignment). Since w is ε-far from
the subcode {C(x) : ϕ(x) = 1}, this implies that the assignment x does not satisfy ϕ.
In addition, we may also assume that for every q ∈ Q the purported proof π̃ϕ,q satisfies∑

z1,...,z`∈H

π̃ϕ,q(z1, . . . , z`) ≡ n (mod q),

since otherwise the verifier rejects in Step 1.
On the other hand, observe that there exists q∗ ∈ Q such that∑

z1,...,z`∈H

πϕ,q∗(z1, . . . , z`) 6≡ n (mod q∗).

266

7.7 Appendices for Chapter 7

To see this, first recall that
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of clauses that
the assignment satisfies, modulo q. Note that since the assignment is binary, then∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) ≤ n, where the summation is over the integers, and that∏
q∈Q q > n. Thus, if

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) is congruent to n for all q ∈ Q, then

by the Chinese remainder theorem, the assignment satisfies all n constraints, in contrac-
tion to our assumption.

Therefore, the total degree m2d2t + md polynomials πϕ,q and π̃ϕ,q are not identical,
and so, by the Schwartz-Zippel Lemma, they disagree on a randomly chosen point with

probability at least 1− (m2d2t+md)
Fq ≥ 9/10.

To complete the argument, note that the (amplified) self-correctability of low-degree

polynomials guarantees that every location in X̂q can be reconstructed from X̃q with
probability 1 − 1/10|H|m−`. Therefore, all points are read correctly with probability at
least 9/10, and thus, with probability 9/10 · 9/10, the verifier rejects (in Step 3) when
checking whether πϕ,q(r1, . . . , r`) equals π̃ϕ,q(r1, . . . , r`).

7.7.1.3 Proof of Claim 7.9.1

We show that if x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] ≤
(1/2)S. Fix s ∈ S. For every q ∈ Q, denote Jq,s = {ϕ̂i(r(s)

1 , . . . , r
(s)
` , ~z)}~z∈Hm−`,i∈[t] and

~vq,s ∈ F|H|
m−`·t

q such that ~vq,s[~z, i] = ~vq[s, ~z, i] for all ~z ∈ Hm−` and i ∈ [t] (recall that

~vq[s, z, i] allegedly equals X̂q ◦ ϕ̂i(r(s)
1 , . . . , r

(s)
` , ~z)). We first show that there exists q ∈ Q

such that Pr(Jq,s,~vq,s)[X̂q(Jq,s) = ~vq,s] ≤ 1/2.
Similarly to the case in Theorem 7.2, observe that there exists q ∈ Q such that∑
z∈H` πq(z) 6≡ n (mod q), since otherwise, by the Chinese remainder theorem,

∑
z∈Hm

n∑
i=1

χi(z) · ci
(
X ◦ ϕ1(z), . . . , X ◦ ϕt(z)

)
≡ n (mod

∏
q∈Q

q),

in contradiction to the assumption that ϕ(x) = 0; fix such q ∈ Q. Therefore the total
degree m2d2t+md polynomials πq and πq differ, and so, by the Schwartz-Zippel Lemma,

Pr
r
(s)
1 ,...,r

(s)
` ∈Fq

[πq(r
(s)
1 , . . . , r

(s)
`) 6= πq(r

(s)
1 , . . . , r

(s)
`)] ≥ 1− m2d2t+md

Fq
≥ 9/10.

In other words, it holds that Pr(Jq,s,~vq,s)[X̂q(Jq,s) = ~vq,s] < 1/10. Finally, since {(Jq,s, ~vq,s)}s∈[S]

are independently selected, it holds that

Pr
(Jq ,~vq)

[X̂q(Jq) = ~vq] =

(
Pr

(Jq,s,~vq,s)
[X̂q(Jq,s) = ~vq,s]

)S
≤
(

1

10

)S
.

This concludes the proof of Claim 7.9.1.

267

268

Chapter 8

Appendix: Brief Descriptions of
Works not included in this Thesis

In this section we provide a high-level description of results obtained during our doctoral
studies, which were not included above. See the links provided below for the full versions.

8.1 Relaxed Locally Correctable Codes

In a joint work with Govind Ramnarayan and Ron Rothblum [GRR17], we studied the ex-
tension of the notion of relaxed decodability to locally correctable codes (LCC). Recall that
locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting
codes in which individual bits of the message and codeword, respectively, can be recov-
ered by reading only few bits from a noisy codeword. These codes have found numerous
applications both in theory and in practice.

A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows
the decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt.
They call such a decoder a relaxed decoder and construct a constant-query relaxed LDC
with rate that is sub-exponentially better than what is known for (full-fledged) LDCs in
this regime.

We considered an analogous relaxation for local correction. Thus, a relaxed local
corrector reads only few bits from a (possibly) corrupt codeword and either recovers the
desired bit of the codeword, or rejects in case it detects a corruption.

We gave two constructions of relaxed LCCs in two regimes, where the first optimizes
the query complexity and the second optimizes the rate:

1. Constant Query Complexity: A relaxed LCC with polynomial blocklength
whose corrector only reads a constant number of bits of the codeword. This is
a sub-exponential improvement over the best constant query (full-fledged) LCCs
that are known.

2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with
quasi-polylogarithmic query complexity (i.e., (log n)O(log logn)). This is a nearly

269

8. APPENDIX: BRIEF DESCRIPTIONS OF WORKS NOT INCLUDED
IN THIS THESIS

sub-exponential improvement over the query complexity of a recent (full-fledged)
constant-rate LCC of Kopparty et al. (STOC, 2016).

To this prove these results, we constructed self-correctable, robust strong canonical
PCPs of proximity, which we believe may also be of independent interest.

8.2 An Adaptivity Hierarchy Theorem for Interac-

tive Proofs of Proximity

In a joint work with Clément Canonne [CG17], we studied the role of adaptivity in
property testing. Adaptivity is known to play a crucial role in property testing. In
particular, there exist properties for which there is an exponential gap between the power
of adaptive testing algorithms, wherein each query may be determined by the answers
received to prior queries, and their non-adaptive counterparts, in which all queries are
independent of answers obtained from previous queries.

In this work, we investigated the role of adaptivity in property testing at a finer level.
We first quantified the degree of adaptivity of a testing algorithm by considering the num-
ber of “rounds of adaptivity” it uses. More accurately, we say that a tester is k-(round)
adaptive if it makes queries in k+ 1 rounds, where the queries in the (i+ 1)’st round may
depend on the answers obtained in the previous i rounds. Then, we asked the following
question:

Does the power of testing algorithms smoothly grow with the number of rounds of
adaptivity?

We provided a positive answer to the foregoing question by proving an adaptivity hier-
archy theorem for property testing. Specifically, our main result shows that for every
n ∈ N and 0 ≤ k ≤ n0.99 there exists a property Πn,k of functions for which (1) there
exists a k-adaptive tester for Πn,k with query complexity Õk, yet (2) any (k−1)-adaptive
tester for Πn,k must make Ω(n) queries. In addition, we showed that such a qualitative
adaptivity hierarchy can be witnessed for testing natural properties of graphs.

8.3 Distribution Testing Lower Bounds via Reduc-

tions from Communication Complexity

In a joint work with Eric Blais and Clément Canonne [BCG16], we presented a new
methodology for proving distribution testing lower bounds, establishing a connection
between distribution testing and the simultaneous message passing (SMP) communication
model. Extending the framework of Blais, Brody, and Matulef (CCC 2011), we showed a
simple way to reduce (private-coin) SMP problems to distribution testing problems. This
method allowed us to prove several new distribution testing lower bounds, as well as to
provide simple proofs of known lower bounds.

270

8.4 Testing Booleanity and the Uncertainty Principle

Our main result is concerned with testing identity to a specific distribution p, given
as a parameter. In an influential work, Valiant and Valiant (FOCS 2014) showed that the
sample complexity of the aforementioned problem is closely related to the `2/3-quasinorm
of p. We obtained alternative bounds on the complexity of this problem in terms of an
arguably more intuitive measure and using simpler proofs. More specifically, we proved
that the sample complexity is essentially determined by a fundamental operator in the
theory of interpolation of Banach spaces, known as Peetre’s K-functional. We showed
that this quantity is closely related to the size of the effective support of p (loosely
speaking, the number of supported elements that constitute the vast majority of the
mass of p). This result, in turn, stems from an unexpected connection to functional
analysis and refined concentration of measure inequalities, which arise naturally in our
reduction.

8.4 Testing Booleanity and the Uncertainty Princi-

ple

In a joint work with Omer Tamuz [GT13], we showed a structural result regarding Boolean
functions, which admits efficient testers for Booleanity, in certain settings of parameters.

More specifically, a real function on the hypercube f : {0, 1}n → R is said to be
Boolean if its image is in {0, 1}. We showed that every function on the hypercube with a
sparse Fourier expansion must either be Boolean or far from Boolean. In particular, we
showed that a multilinear polynomial with at most k terms must either be Boolean, or
output values different than 0 or 1 for a fraction of at least 2/(k + 2)2 of its domain.

It follows that given oracle access to f , together with the guarantee that its represen-
tation as a multilinear polynomial has at most k terms, one can test Booleanity using
O(k2) queries. We also showed an Ω(k) queries lower bound for this problem.

Our proof crucially uses Hirschman’s entropic version of Heisenberg’s uncertainty
principle.

271

272

Bibliography

[AFNS06] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial
characterization of the testable graph properties: it’s all about regularity. In
STOC, pages 251–260, 2006.

[AGH90] William Aiello, Shafi Goldwasser, and Johan H̊astad. On the power of inter-
action. Combinatorica, 10(1):3–25, 1990.

[AKNS00] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular
languages are testable with a constant number of queries. SIAM J. Comput.,
30(6):1842–1862, 2000.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting
network. In Proceedings of the 15th Annual ACM Symposium on Theory
of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 1–9,
1983.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, 1998.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its ap-
plications. Combinatorica, 23(3):365–426, 2003.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in com-
plexity theory. ACM Trans. Comput. Theory, 1:2:1–2:54, February 2009.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages 421–
429. ACM, 1985.

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds
via communication complexity. In IEEE Conference on Computational Com-
plexity, pages 210–220, 2011.

[BCG16] Eric Blais, Clément Canonne, and Tom Gur. Alice and bob show distribution
testing lower bounds. 2016. ECCC.

273

8. BIBLIOGRAPHY

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic expo-
nential time has two-prover interactive protocols. Computational Complexity,
1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BFS86] Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in commu-
nication complexity theory. In Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, pages 337–347, Washington, DC, USA,
1986. IEEE Computer Society.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-
prover interactive proofs: How to remove intractability assumptions. In Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing,
pages 113–131. ACM, 1988.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the
P=?NP question. SIAM Journal on computing, 4(4):431–442, 1975.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability—towards tight results. SIAM Journal on Computing,
27(3):804–915, 1998.

[BHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF
properties are hard to test. SIAM J. Comput., 35(1):1–21, 2005.

[Bla10] Eric Blais. Testing juntas: A brief survey. In Goldreich [Gol10b], pages
32–40.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer and
System Sciences, 36(2):254–276, 1988.

[Bol05] Beate Bollig. Property testing and the branching program size of boolean
functions. In Fundamentals of Computation Theory, 15th International Sym-
posium, FCT 2005, Lübeck, Germany, August 17-20, 2005, Proceedings,
pages 258–269, 2005.

[BS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query
complexity. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 266–275. ACM, 2005.

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and prod-
ucts of codes. Random Structures & Algorithms, 28(4):387–402, 2006.

274

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. Robust PCPs of proximity, shorter PCPs, and applications
to coding. SIAM J. Comput., 36(4):889–974, 2006.

[BT04] Andrej Bogdanov and Luca Trevisan. Lower bounds for testing bipartiteness
in dense graphs. In IEEE Conference on Computational Complexity, pages
75–81, 2004.

[BV12] Eli Ben-Sasson and Michael Viderman. Towards lower bounds on locally
testable codes via density arguments. Computational Complexity, 21(2):267–
309, 2012.

[BY17] Arnab Bhattacharyya and Yuichi Yoshida. Property Testing. Forthcoming,
2017.

[BYKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower
bounds and applications. In STOC, pages 266–275, 2001.

[Can15] Clément L. Canonne. A Survey on Distribution Testing: your data is Big.
But is it Blue? 22:63, 2015.

[CCG+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan
H̊astad, Desh Ranjan, and Pankaj Rohatgi. The random oracle hypothe-
sis is false. Journal of Computer and System Sciences, 49(1):24–39, 1994.

[CCGT13] Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. An-
notations for sparse data streams. arXiv preprint arXiv:1304.3816, 2013.

[CCGT14] Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. An-
notations for sparse data streams. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 687–706. SIAM, 2014.

[CCM09] Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. Annotations
in data streams. In Proceedings of the 36th International Colloquium on
Automata, Languages and Programming: Part I, ICALP ’09, pages 222–234,
Berlin, Heidelberg, 2009. Springer-Verlag.

[CCM+15] Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and
Suresh Venkatasubramanian. Verifiable stream computation and Arthur–
Merlin communication. In 30th Conference on Computational Complexity
(CCC 2015), volume 33, pages 217–243. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015.

[CDI+13] Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Mil-
tersen, Ran Raz, and Ron D. Rothblum. Efficient multiparty protocols via
log-depth threshold formulae - (extended abstract). In Advances in Cryptol-
ogy - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, pages 185–202, 2013.

275

8. BIBLIOGRAPHY

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling
algorithms for estimating the average. Inf. Process. Lett., 53(1):17–25, 1995.

[CG17] Clément Canonne and Tom Gur. An adaptivity hierarchy theorem for prop-
erty testing. 2017. Submitted.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ra-
mamohan Paturi, and Stefan Schneider. Nondeterministic extensions of the
strong exponential time hypothesis and consequences for non-reducibility.
In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–
270, 2016.

[CGKS98] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. Journal of the ACM, 45(6):965–981, 1998.

[CGR+12] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and
Christian Sohler. Finding cycles and trees in sublinear time. Random Struc-
tures & Algorithms, 2012.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical ver-
ified computation with streaming interactive proofs. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages 90–112.
ACM, 2012.

[CMT13] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming
graph computations with a helpful advisor. Algorithmica, 65(2):409–442,
2013.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the com-
munication complexity of gap-hamming-distance. In Proceedings of the 43rd
annual ACM symposium on Theory of computing, STOC ’11, pages 51–60,
New York, NY, USA, 2011. ACM.

[Din07a] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM,
54(3):12, 2007.

[Din07b] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM
(JACM), 54(3):12, 2007.

[DK11] Irit Dinur and Tali Kaufman. Dense locally testable codes cannot have
constant rate and distance. In APPROX-RANDOM, pages 507–518, 2011.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[DTV15] Samira Daruki, Justin Thaler, and Suresh Venkatasubramanian. Streaming
verification in data analysis. arXiv preprint arXiv:1509.05514, 2015.

276

[Efr12] Klim Efremenko. 3-query locally decodable codes of subexponential length.
SIAM Journal on Computing, 41(6):1694–1703, 2012.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate prob-
abilistically checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Approximating clique is almost np-complete. 1991.

[FGL14] Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal
tests and decomposability. In Innovations in Theoretical Computer Science,
ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 483–500, 2014.

[FLM+12] Eldar Fischer, Oded Lachish, Arie Matsliah, Ilan Newman, and Orly Ya-
halom. On the query complexity of testing orientations for being eulerian.
ACM Transactions on Algorithms, 8(2):15, 2012.

[FLV15] Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity
for sample-based testing and multi-testing scalability. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
1163–1182. IEEE, 2015.

[FS88] Lance Fortnow and Michael Sipser. Are there interactive protocols for CO-
NP languages? Inf. Process. Lett., 28(5):249–251, 1988.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests.
In Theory of Computing and Systems, 1995. Proceedings., Third Israel Sym-
posium on the, pages 190–198. IEEE, 1995.

[Gas04] William I. Gasarch. A survey on private information retrieval (column: Com-
putational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[GG16a] Oded Goldreich and Tom Gur. Universal locally testable codes. Electronic
Colloquium on Computational Complexity (ECCC), 23:42, 2016.

[GG16b] Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-
round interactive proofs of proximity for CSP. Electronic Colloquium on
Computational Complexity (ECCC), 23:192, 2016.

[GGK14] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable
codes with relaxed local decoders. Electronic Colloquium on Computational
Complexity (ECCC), 21:25, 2014.

[GGK15] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable
codes with relaxed local decoders. In 30th Conference on Computational
Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages
1–41, 2015.

277

8. BIBLIOGRAPHY

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. Journal of the ACM (JACM),
45(4):653–750, 1998.

[GGR15] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity
for context-free languages and read-once branching programs. Electronic
Colloquium on Computational Complexity (ECCC), 22:24, 2015.

[GK92] Oded Goldreich and Hugo Krawczyk. Sparse pseudorandom distributions.
Random Struct. Algorithms, 3(2):163–174, 1992.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes
from lifting. In ITCS, pages 529–540. ACM, 2013.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMS87] Oded Goldreich, Yishay Mansour, and Michael Sipser. Interactive proof
systems: Provers that never fail and random selection (extended abstract). In
28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 449–461, 1987.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudoran-
domness, volume 17 of Algorithms and Combinatorics. Springer-Verlag, 1999.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[Gol10a] Oded Goldreich. On testing computability by small width obdds. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 574–587. Springer, 2010.

[Gol10b] Oded Goldreich, editor. Property Testing - Current Research and Surveys,
volume 6390 of Lecture Notes in Computer Science. Springer, 2010.

[Gol10c] Oded Goldreich. Short locally testable codes and proofs: A survey in two
parts. In Property Testing [Gol10b], pages 65–104.

[Gol11a] Oded Goldreich. Introduction to testing graph properties. In Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 470–506. Springer, 2011.

[Gol11b] Oded Goldreich. Valiant’s polynomial-size monotone formula for majority.
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf, 2011.

278

http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf

[Gol14] Oded Goldreich. On multiple input problems in property testing. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 704–720, 2014.

[Gol16] Oded Goldreich. Introduction to Property Testing. forthcoming (http://
www.wisdom.weizmann.ac.il/~oded/pt-intro.html), 2016.

[Gol17] Oded Goldreich. Introduction to Property Testing. Forthcoming, 2017.

[GPW15a] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of commu-
nication complexity classes. Electronic Colloquium on Computational Com-
plexity (ECCC), 22:49, 2015.

[GPW15b] Mika Göös, Toniann Pitassi, and Thomas Watson. Zero-information proto-
cols and unambiguity in Arthur-Merlin communication. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS
2015, Rehovot, Israel, January 11-13, 2015, pages 113–122, 2015.

[GR62] Seymour Ginsburg and H Gordon Rice. Two families of languages related to
ALGOL. Journal of the ACM (JACM), 9(3):350–371, 1962.

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded
degree graphs. Combinatorica, 19(3):335–373, 1999.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002.

[GR05] Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In
Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pages 306–317. Springer, 2005.

[GR09] Oded Goldreich and Dana Ron. On proximity oblivious testing. In STOC,
pages 141–150, 2009.

[GR11] Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Jour-
nal on Computing, 40(2):534–566, 2011.

[GR13a] Oded Goldreich and Dana Ron. On sample-based testers. Electronic Collo-
quium on Computational Complexity (ECCC), 20:109, 2013.

[GR13b] Tom Gur and Ran Raz. Arthur-Merlin streaming complexity. In Proceedings
of the 40th International Colloquium on Automata, Languages and Program-
ming (ICALP), 2013.

[GR13c] Tom Gur and Ron Rothblum. Non-interactive proofs of proximity. Electronic
Colloquium on Computational Complexity (ECCC), 20:78, 2013.

279

http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html
http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html

8. BIBLIOGRAPHY

[GR14] Oded Goldreich and Dana Ron. On learning and testing dynamic envi-
ronments. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
336–343, 2014.

[GR15a] Oded Goldreich and Dana Ron. On sample-based testers. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS
2015, Rehovot, Israel, January 11-13, 2015, pages 337–345, 2015.

[GR15b] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 133–142.
ACM, 2015.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs
of proximity. 2017. The 8th Innovations in Theoretical Computer Science
(ITCS 2017) conference (to appear).

[GRR17] Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally
correctable codes. 2017. In Submission.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In STOC, pages 59–68, 1986.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomi-
als. Inf. Process. Lett., 43(4):169–174, 1992.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of
almost-linear length. J. ACM, 53(4):558–655, 2006.

[GS10a] Dmitry Gavinsky and Alexander A Sherstov. A separation of NP and coNP
in multiparty communication complexity. arXiv preprint arXiv:1004.0817,
2010.

[GS10b] Oded Goldreich and Or Sheffet. On the randomness complexity of property
testing. Computational Complexity, 19(1):99–133, 2010.

[GS12] Oded Goldreich and Igor Shinkar. Two-sided error proximity oblivious test-
ing - (extended abstract). In APPROX-RANDOM, pages 565–578, 2012.

[GS13] Lior Gishboliner and Asaf Shapira. Deterministic vs non-deterministic
graph property testing. Electronic Colloquium on Computational Complexity
(ECCC), 20:59, 2013.

[GT13] Tom Gur and Omer Tamuz. Testing booleanity and the uncertainty principle.
Chicago Journal of Theoretical Computer Science, Article 14, 2013.

280

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs
with a laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[HLNT05] Shirley Halevy, Oded Lachish, Ilan Newman, and Dekel Tsur. Testing ori-
entation properties. Electronic Colloquium on Computational Complexity
(ECCC), 2005.

[HLNT07] Shirley Halevy, Oded Lachish, Ilan Newman, and Dekel Tsur. Testing proper-
ties of constraint-graphs. In IEEE Conference on Computational Complexity,
pages 264–277, 2007.

[HMP06] Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for
the majority function. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, 9th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Prob-
lems, APPROX 2006 and 10th International Workshop on Randomization
and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006,
Proceedings, pages 410–425, 2006.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In STOC, pages 723–732, 1992.

[Kla03] Hartmut Klauck. Rectangle size bounds and threshold covers in communi-
cation complexity. In Computational Complexity, 2003. Proceedings. 18th
IEEE Annual Conference on, pages 118–134. IEEE, 2003.

[Kla11] Hartmut Klauck. On Arthur Merlin games in communication complexity. In
Computational Complexity (CCC), 2011 IEEE 26th Annual Conference on,
pages 189–199. IEEE, 2011.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
University Press, 1997.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Founda-
tions, pages 536–547, 2008.

[KR09] Yael Kalai and Guy N. Rothblum. Constant-round interactive proofs for
NC1. Unpublished observation, 2009.

281

8. BIBLIOGRAPHY

[KR14] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity.
Manuscript, 2014.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [ex-
tended abstract]. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part II, pages 422–442, 2015.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded
space. In STOC, pages 565–574, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 485–494, 2014.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communica-
tion complexity of set intersection. SIAM Journal on Discrete Mathematics,
5(4):545–557, 1992.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of
invariance. In Proceedings of the 40th annual ACM Symposium on Theory
of Computing (STOC), pages 403–412. ACM, 2008.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-
cedures for error-correcting codes. In STOC, pages 80–86, 2000.

[KV10] Tali Kaufman and Michael Viderman. Locally testable vs. locally decodable
codes. In APPROX-RANDOM, pages 670–682, 2010.

[KW88] Klaus Kriegel and Stephan Waack. Lower bounds on the complexity of real-
time branching programs. ITA, 22(4):447–459, 1988.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett.,
17(4):215–217, 1983.

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In
STOC, pages 363–365, 1985.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LSH65] Philip M. Lewis, Richard Edwin Stearns, and Juris Hartmanis. Memory
bounds for recognition of context-free and context-sensitive languages. In
SWCT (FOCS), pages 191–202, 1965.

[LV12] László Lovász and Katalin Vesztergombi. Nondeterministic graph property
testing. arXiv preprint arXiv:1202.5337, 2012.

282

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput.,
42(1):380–403, 2013.

[Mei14] Or Meir. Locally correctable and testable codes approaching the single-
ton bound. Electronic Colloquium on Computational Complexity (ECCC),
21:107, 2014.

[New91] Ilan Newman. Private vs. common random bits in communication complex-
ity. Information processing letters, 39(2):67–71, 1991.

[New02] Ilan Newman. Testing membership in languages that have small width
branching programs. SIAM Journal on Computing, 31(5):1557–1570, 2002.

[New10] Ilan Newman. Property testing of massively parametrized problems - a sur-
vey. In Property Testing, pages 142–157, 2010.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of com-
puter and System Sciences, 49(2):149–167, 1994.

[PRR01] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing parenthesis lan-
guages. In RANDOM-APPROX, pages 261–272, 2001.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing
and distance approximation. Journal of Computer and System Sciences,
72(6):1012–1042, 2006.

[Raz87] A. Razborov. Lower bounds for the size of circuits of bounded depth with
basis {∧,⊕}. Notes of the Academy of Science of the USSR: 41(4) : 333-338,
1987.

[Ron08] Dana Ron. Property testing: A learning theory perspective. Foundations
and Trends in Machine Learning, 1(3):307–402, 2008.

[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing. Foun-
dations and Trends in Theoretical Computer Science, 5(2):73–205, 2009.

[Rot09] Guy N. Rothblum. Delegating computation reliably: paradigms and construc-
tions. PhD thesis, Massachusetts Institute of Technology, 2009.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round
interactive proofs for delegating computation. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 49–62, 2016.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomi-
als with applications to program testing. SIAM J. Comput., 25(2):252–271,
1996.

283

8. BIBLIOGRAPHY

[RTVV98] Ran Raz, Gábor Tardos, Oleg Verbitsky, and Nikolai Vereshagin. Arthur-
Merlin games in boolean decision trees. In Computational Complexity, 1998.
Proceedings. Thirteenth Annual IEEE Conference on, pages 58–67. IEEE,
1998.

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci.,
22(3):365–383, 1981.

[RVW13] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. Interactive proofs of
proximity: Delegating computation in sublinear time. In Proceedings of the
45th annual ACM Symposium on Theory of Computing (STOC), 2013.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[She11] Alexander A. Sherstov. The communication complexity of gap hamming dis-
tance. Electronic Colloquium on Computational Complexity (ECCC), 18:63,
2011.

[She12] Alexander A Sherstov. The multiparty communication complexity of set
disjointness. In Proceedings of the 44th symposium on Theory of Computing,
pages 525–548. ACM, 2012.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing, STOC ’87, pages 77–82, New York, NY, USA, 1987.
ACM.

[Sud92] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hard-
ness of Approximation Problems. PhD thesis, University of California at
Berkeley, Berkeley, CA, USA, 1992. UMI Order No. GAX93-30747.

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs anf the Hard-
ness of Approximation Problems, volume 1001 of Lecture Notes in Computer
Science. Springer, 1995.

[Tha16] Justin Thaler. Semi-streaming algorithms for annotated graph streams. In
43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 17:1–17:14, 2016.

[Tre04] Luca Trevisan. Some applications of coding theory in computational com-
plexity. Electronic Colloquium on Computational Complexity (ECCC), 2004.

[Vad00] Salil P. Vadhan. On transformation of interactive proofs that preserve the
prover’s complexity. In Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, May 21-23, 2000, Portland, OR, USA,
pages 200–207, 2000.

284

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J.
Algorithms, 5(3):363–366, 1984.

[Vid11] Thomas Vidick. A concentration inequality for the overlap of a vector on
a large set, with application to the communication complexity of the gap-
hamming-distance problem. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:51, 2011.

[Vid12] Michael Viderman. A combination of testability and decodability by tensor
products. In APPROX-RANDOM, pages 651–662, 2012.

[Vid13] Michael Viderman. Strong LTCs with inverse poly-log rate and constant
soundness. Electronic Colloquium on Computational Complexity (ECCC),
20:22, 2013.

[Vio09] Emanuele Viola. The sum of d small-bias generators fools polynomials of
degree d. Computational Complexity, 18(2):209–217, 2009.

[Wil16] Richard Ryan Williams. Strong ETH breaks with Merlin and Arthur: Short
non-interactive proofs of batch evaluation. In 31st Conference on Computa-
tional Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
2:1–2:17, 2016.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential
length. Journal of the ACM, 55(1):1, 2008.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in The-
oretical Computer Science, 6(3):139–255, 2012.

285

	1 Introduction
	1.1 Locally Verifiable Proofs of Proximity
	1.2 Our Results
	1.3 Organization

	2 Non-Interactive Proofs of Proximity
	2.1 Introduction
	2.2 Definitions
	2.3 Separation Results
	2.4 General Transformations
	2.5 An Extremely Hard Property for MAPs
	2.6 MAPs for Parametrized Concatenation Problems
	2.7 Bipartiteness in Bounded Degree Graphs
	2.8 Appendices for Chapter 2

	3 Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs
	3.1 Introduction
	3.2 Preliminaries
	3.3 MAPs and IPPs for Read-Once Branching Programs
	3.4 MAPs and IPPs for Context-Free Languages
	3.5 Appendices for Chapter 3

	4 A Hierarchy Theorem for Interactive Proofs of Proximity
	4.1 Introduction
	4.2 Preliminaries
	4.3 Holographic Interactive Proofs
	4.4 The Hierarchy Theorem
	4.5 Implications for Classical Interactive Proofs
	4.6 Appendices for Chapter 4

	5 Strong Locally Testable Codes with Relaxed Local Decoders
	5.1 Introduction
	5.2 Preliminaries
	5.3 The Main Construction
	5.4 Establishing the Relaxed-LDC Property
	5.5 Establishing the Strong-LTC Property
	5.6 Strong Canonical PCPs of Proximity
	5.7 Application to Property Testing
	5.8 Appendices for Chapter 5

	6 Universal Locally Testable Codes
	6.1 Introduction
	6.2 Preliminaries
	6.3 The Definition of Universal Locally Testable Codes
	6.4 The Canonical Universal-LTC
	6.5 General Lower Bounds
	6.6 Trading off Length for Locality
	6.7 Appendices for Chapter 6

	7 Universal Locally Verifiable Codes and 3-Round Interactive Proofs of Proximity for CSP
	7.1 Introduction
	7.2 Preliminaries
	7.3 The Definition of Universal Locally Verifiable Codes
	7.4 A Universal Locally Verifiable Code for CSP
	7.5 Lower Bounds on Verifying Conjugation Properties
	7.6 Constant-Round IPPs for CSP
	7.7 Appendices for Chapter 7

	8 Appendix: Brief Descriptions of Works not included in this Thesis
	8.1 Relaxed Locally Correctable Codes
	8.2 An Adaptivity Hierarchy Theorem for Interactive Proofs of Proximity
	8.3 Distribution Testing Lower Bounds via Reductions from Communication Complexity
	8.4 Testing Booleanity and the Uncertainty Principle

	Bibliography

