Elementary Proofs of Set Influence Monotonicity and Sub-Additivity

Xin Lyu Orr Paradise

April 4, 2022

For a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, the influence of a set of variables $S \subseteq[n]$ on f is defined as

$$
I_{S}(f):=\operatorname{Pr}_{x_{[n] \backslash S}=y_{[n] \backslash S}}[f(x) \neq f(y)]
$$

In this note, we prove that influence is monotonic and sub-additive in the set S, using only elementary math.

1 Monotonicity

Claim 1 (Monotonicity). Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. For any $S \subseteq T \subseteq[n]$, it holds that

$$
I_{S}(f) \leq I_{T}(f)
$$

Proof. We will first prove the claim for the simpler case when T is a singleton and $S \cup T$ cover all indices. That is, we prove that for any $g:\{0,1\}^{k} \rightarrow\{0,1\}$,

$$
\begin{equation*}
I_{[k-1]}(g) \leq I_{[k]}(g) \tag{1}
\end{equation*}
$$

First, observe that

$$
\begin{aligned}
I_{[k]}(g) & =\operatorname{Pr}[g(x) \neq g(y)] \\
& =\frac{1}{2} \cdot \operatorname{Pr}_{x_{k}=y_{k}}[g(x) \neq g(y)]+\frac{1}{2} \cdot \operatorname{Pr}_{x_{k} \neq y_{k}}[g(x) \neq g(y)] \\
& =\frac{1}{2} \cdot I_{[k-1]}(g)+\frac{1}{2} \cdot \operatorname{Pr}_{x_{k} \neq y_{k}}[g(x) \neq g(y)] .
\end{aligned}
$$

Let x^{\prime} and y^{\prime} be distributed uniformly in $\{0,1\}^{k-1}$, and x_{k} and y_{k} be sampled from $\{0,1\}$. We ought to show that

$$
\begin{equation*}
I_{[k-1]}(g) \leq \operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k} \neq y_{k}}\left[g\left(x^{\prime} x_{k}\right) \neq g\left(y^{\prime} y_{k}\right)\right] \tag{2}
\end{equation*}
$$

Denote $p_{0}:=\operatorname{Pr}_{x^{\prime}}\left[g\left(x^{\prime} 0\right)=0\right]$ and $p_{1}:=\operatorname{Pr}_{x^{\prime}}\left[g\left(x^{\prime} 1\right)=0\right]$. Then the left hand side of eq. (2) is

$$
\begin{aligned}
I_{[k-1]}(g) & =\frac{1}{2} \cdot \operatorname{Pr}_{x^{\prime}, y^{\prime}}\left[g\left(x^{\prime} 0\right) \neq g\left(y^{\prime} 0\right)\right]+\frac{1}{2} \cdot \operatorname{Pr}_{x^{\prime}, y^{\prime}}\left[g\left(x^{\prime} 1\right) \neq g\left(y^{\prime} 1\right)\right] \\
& =\frac{1}{2} \cdot\left(p_{0} \cdot\left(1-p_{0}\right)+\left(1-p_{0}\right) \cdot p_{0}\right)+\frac{1}{2} \cdot\left(p_{1} \cdot\left(1-p_{1}\right)+\left(1-p_{1}\right) \cdot p_{1}\right) \\
& =p_{0} \cdot\left(1-p_{0}\right)+p_{1} \cdot\left(1-p_{1}\right) .
\end{aligned}
$$

On the other hand, the right hand side of Equation (2) is

$$
\operatorname{Pr}_{x^{\prime}, y^{\prime}}\left[g\left(x^{\prime} 0\right) \neq g\left(y^{\prime} 1\right)\right]=p_{0} \cdot\left(1-p_{1}\right)+\left(1-p_{0}\right) \cdot p_{1}
$$

Lastly, note that

$$
p_{0} \cdot\left(1-p_{0}\right)+p_{1} \cdot\left(1-p_{1}\right) \leq p_{0} \cdot\left(1-p_{1}\right)+\left(1-p_{0}\right) \cdot p_{1}
$$

because it is equivalent to $0 \leq\left(p_{0}-p_{1}\right)^{2}$. This proves the claim for the simpler case when T is a singleton and $S \cup T$ cover all indices.

Next, we reduce the general case to this simpler case. First, T can be assumed to be a singleton by using induction on $\mid T .{ }^{1}$ We can assume without loss of generality that $S=[k-1]$ and that $T=\{k\}$ for some $k<n$. We want to show that

$$
I_{[k-1]}(f) \leq I_{[k]}(f)
$$

Note that the only difference between this case and the simpler case in Equation (2) is that f is defined over a larger domain $[n] \supset[k]$.

We use the notation $x_{[\ell, n]}:=\left(x_{\ell}, \ldots, x_{n}\right)$. Recall that

$$
\begin{aligned}
I_{[k]}(f) & =\operatorname{Pr}_{x_{[k+1, n]}=y_{[k+1, n]}}[f(x) \neq f(y)] \\
& =\frac{1}{2} \cdot \operatorname{Pr}_{x_{[k, n]}=y_{[k, n]}}[f(x) \neq f(y)]+\frac{1}{2} \cdot \operatorname{Pr}_{\substack{x_{k} \neq y_{k} \\
x_{[k+1, n]}=y_{[k+1, n]}}}[f(x) \neq f(y)] \\
& =\frac{1}{2} \cdot I_{[k-1]}(f)+\frac{1}{2} \cdot \operatorname{Pr}_{\substack{x_{k} \neq y_{k} \\
x_{[k+1, n]}=y_{[k+1, n]}}}[f(x) \neq f(y)] .
\end{aligned}
$$

Therefore, we want to show that

$$
\begin{equation*}
\operatorname{Pr}_{x_{[k, n]}=y_{[k, n]}}[f(x) \neq f(y)] \leq \operatorname{Pr}_{\substack{x_{k} \neq y_{k} \\ x_{[k+1, n]}=y_{[k+1, n]}}}[f(x) \neq f(y)] . \tag{3}
\end{equation*}
$$

Let us be more explicit about how x and y are sampled: to sample a random x and y subject to $x_{[k, n]}=y_{[k, n]}$, one can first sample a shared suffix $x_{k} v=y_{k} v$ where $x_{k}=y_{k} \in\{0,1\}$ and $v \in\{0,1\}^{n-k}$, then sample prefixes $x^{\prime}, y^{\prime} \in\{0,1\}^{k-1}$, and finally let $x:=x^{\prime} x_{k} v$ and $y:=y^{\prime} y_{k} v$. Thus, we can rewrite eq. (3) as

$$
\begin{equation*}
\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k}=y_{k}, v}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right] \leq \operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k} \neq y_{k}, v}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right] \tag{4}
\end{equation*}
$$

We claim that Equation (4) follows from the simpler case, or rather, from Equation (2) that was shown therein. In fact, we will show Equation (4) holds "pointwise" in v, that is, that for any $v \in\{0,1\}^{n-k-1}$,

$$
\begin{equation*}
\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k}=y_{k}}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right] \leq \operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k} \neq y_{k}}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right] \tag{5}
\end{equation*}
$$

Indeed, fix $v \in\{0,1\}^{n-k-1}$, and define $g:\{0,1\}^{k} \rightarrow\{0,1\}$ such that $g\left(x^{\prime} x_{k}\right):=f\left(x^{\prime} x_{k} v\right)$. Then, Equation (5) and Equation (2) are the same, because, on their left hand sides

$$
\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k}=y_{k}}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right]=\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k}=y_{k}}\left[g\left(x^{\prime} x_{k}\right) \neq g\left(y^{\prime} y_{k}\right)\right]=I_{[k-1]}(g)
$$

and on their right hand sides

$$
\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k} \neq y_{k}}\left[f\left(x^{\prime} x_{k} v\right) \neq f\left(y^{\prime} y_{k} v\right)\right]=\operatorname{Pr}_{x^{\prime}, y^{\prime}, x_{k} \neq y_{k}}\left[g\left(x^{\prime} x_{k}\right) \neq g\left(y^{\prime} y_{k}\right)\right]
$$

2 Sub-additivity

Claim 2 (Sub-additivity). Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. For any $S, T \subseteq[n]$, it holds that

$$
\begin{equation*}
I_{S \cup T}(f) \leq I_{S}(f)+I_{T}(f) \tag{6}
\end{equation*}
$$

[^0]Proof. It will be more illustrative to consider an equivalent definition of set influence. For a set $S \subseteq[n]$, let $V_{S} \subseteq\{0,1\}^{n}$ denote the subspace spanned by $\left\{e_{i}\right\}_{i \in S}$. Then,

$$
I_{S}(f)=\operatorname{Pr}_{\substack{x \in\{0,1\}^{n} \\ v \in V_{S}}}[f(x) \neq f(x+v)]
$$

Examining the right hand side of eq. (6),

$$
\begin{aligned}
I_{S}(f)+I_{T}(f) & =\operatorname{Pr}_{\substack{x \in\{0,1\}^{n} \\
v \in V_{S}}}[f(x) \neq f(x+v)]+\operatorname{Pr}_{\substack{x \in\{0,1\}^{n} \\
u \in V_{T}}}[f(x) \neq f(x+u)] \\
& \geq \operatorname{Pr}_{\substack{x \in\{0,1\}^{n} \\
v \in V_{S}, u \in V_{T}}}[f(x) \neq f(x+v) \vee f(x) \neq f(x+u)] \\
& =1-\operatorname{Pr}_{x, v, u}[f(x+v)=f(x)=f(x+u)] \\
& \geq 1-\operatorname{Pr}_{x, v, u}[f(x+v)=f(x+u)]=\operatorname{Pr}_{x, v, u}[f(x+v) \neq f(x+u)]
\end{aligned}
$$

where the first inequality uses the union bound. Substituting $x+v$ with y, we can write

$$
\operatorname{Pr}_{\substack{x \in\{0,1\}^{n} \\ v \in V_{S}, u \in V_{T}}}[f(x+v) \neq f(x+u)]=\operatorname{Pr}_{\substack{y \in\{0,1\}^{n} \\ v \in V_{S}, u \in V_{T}}}[f(y) \neq f(x+v+u)]=I_{S \cup T}(f) .
$$

[^0]: ${ }^{1}$ That is, if $T=\left\{i_{1}, i_{2}, \ldots\right\}$ and the claim was known for singletons, we would have $I_{S}(f) \leq I_{S \cup\left\{i_{1}\right\}}(f) \leq I_{S \cup\left\{i_{2}\right\}}(f), \ldots$

