
Combinatorial Construction of Locally Testable Codes

Or Meir
or@meir-family.com

Advisor: Prof. Oded Goldreich
Submitted Version: October 29rd 2007

29th October 2007

1

Abstract

An error correcting code is said to be locally testable if there is a test that can check
whether a given string is a codeword, or rather far from the code, by reading only a constant
number of symbols of the string. Locally Testable Codes (LTCs) were �rst explicitly studied
by Goldreich and Sudan (J. ACM 53(4)) and since then several constructions of LTCs have
been suggested.

While the best known construction of LTCs by Ben-Sasson and Sudan (STOC 2005) and
Dinur (STOC 2006) achieves very e�cient parameters, it relies on heavy algebraic tools and
on PCP machinery. In this work we present a new and arguably simpler construction of LTCs
that is purely combinatorial, does not rely on PCP machinery and matches the parameters of
the previously known construction. However, unlike the latter construction, our construction
is not entirely explicit.

2

Acknowledgements

I wish to thank my advisor, Prof. Oded Goldreich, for his kind support and advice, for always
being willing to devote his time to me, and for the endless patience that he had shown me during
the development of this work.

I also wish to thank my parents for their everlasting support, care and love.

3

Contents
1 Introduction 7

1.1 A general perspective . 7
1.2 Our result . 8
1.3 Our techniques . 9

1.3.1 The structure of a single iteration . 11
1.4 Organization of this paper . 13

2 Preliminaries 13
2.1 Error Correcting Codes . 13

2.1.1 Linear codes . 14
2.1.2 Concatenation of codes . 14

2.2 Non-standard issues regarding codes . 15
2.3 Probabilistic Circuits . 15
2.4 Locally Testable Codes . 16
2.5 Codes with Proofs . 17

3 High-Level Overview 19
3.1 The Tensor Product operation and a simple construction of LTCs 20
3.2 A simpli�ed construction of CWPs with good parameters 21

3.2.1 Tensor product of CWPs . 22
3.2.2 Random Projection . 23
3.2.3 Distance Ampli�cation . 25
3.2.4 The construction so far . 27

3.3 Removing the simplifying assumption and the Full Construction 27
3.3.1 The Axis Parallel Planes Test . 28
3.3.2 Preserving the Square Form . 29
3.3.3 The full construction . 31

4 Operations on CWPs 32
4.1 Tensor Product . 32

4

4.1.1 The structure of C4 . 32
4.1.2 The proof strings and veri�er of C4 . 33
4.1.3 The parameters of C4 . 34

4.2 Random Projection . 35
4.2.1 The relative distance of C|S . 36
4.2.2 (C|S)2 is a CWP . 36

4.3 Distance Ampli�cation . 37

5 Distance ampli�cation preserves local testability of the square 39
5.1 The structure of

(
DistAmpG,t,I (C)

)2 . 39
5.1.1 Repetitions, Compositions and Permutations of Codes 39
5.1.2 Obtaining

(
DistAmpG,t,I (C)

)2 from C2 . 41
5.2 Composition preserves local testability . 42

5.2.1 Properties su�cient to make composition preserve local testability 43
5.2.2 Composition with repetition codes preserve local testability 47

5.3 Proof of Theorem 4.12 . 48

6 Wrapping everything together 48
6.1 The main construction . 49
6.2 From CWPs to LTCs . 53
6.3 Obtaining CWPs with constant query complexity 56
6.4 Obtaining CWPs with constant rejection ratio . 60

6.4.1 Obtaining CWPs with non-linear proofs and constant rejection ratio 61
6.4.2 Review of additional known techniques . 63
6.4.3 Maintaining linear proofs . 65

6.5 The size of our veri�ers . 70

7 Discussion and Open Problems 72
7.1 Variants of our construction . 72
7.2 The connection to the construction of Ben-Sasson and Sudan 73
7.3 Open Problems . 76

5

A Zybalov Bound 81

B Local Testability of the |F|-ary Hadamard 83

6

1 Introduction
An error correcting code is said to be locally testable if there is a test that can check whether a
given string is a codeword, or far from the code, by reading only a constant number of symbols of
the string. Somewhat more precisely, a code is locally testable if there exists an algorithm, called
the veri�er, that when given oracle access to a given string, makes a constant number of queries
to the oracle, accepts if the string is a codeword and rejects with high probability if it is far from
the code. Codes with related features were implicitly constructed for the �rst time as part of the
e�orts to prove the celebrated PCP theorem, but since then the notion of locally testable codes
was recognized as interesting by its own right.

1.1 A general perspective
The PCP theorem [ALMSS98, AS98] is one of the major achievements of Complexity Theory. A
PCP (Probabilistically Checkable Proof) is a proof that allows checking the validity of a claim by
reading only a constant number of symbols of the proof. The PCP theorem asserts the existence
of PCPs of polynomial length for any claim that can be stated as membership in an NP set. The
theorem has found many applications, most notably in establishing lower bounds for approximation
algorithms.

The discovery of PCPs of polynomial length, being remarkable by its own right, raises the
natural question of how long should a proof be to enjoy local testability. Having shorter locally
testable proofs also a�ects the various applications of PCPs. This consideration motivates the
direct study of local testability, and the amount of redudancy it requires.

One direction of such study is trying to construct simpler PCPs for speci�c claims, in contrast
to the PCP theorem that provides PCP for any NP claim. The reason for taking this direction is
that verifying a PCP usually consists of two parts: First, the veri�er needs to check that the string
it is given is indeed a PCP for some claim, and not some arbitrary string (i.e., that the string
follows the general syntax of PCPs). Next, the veri�er needs to verify the PCP actually proves
the claim it is supposed to prove, and not some other claim. Locally Testable Codes (LTCs) can
be seen as PCPs for the simplest claim possible - a tautology - so the veri�cation procedure only
needs to check that the string is a valid PCP, without the need to check that the PCP actually
proves the claim. This, in turn, may allow a construction with simpler syntax, resulting in smaller

7

redundancy.
Moreover, LTCs can be seen as the �combinatorial counterparts� of PCPs: While PCPs are

�complexity theoretic� objects that are locally testable, LTCs are combinatorial objects that are
locally testable. Since combinatorial objects tend to be simpler than complexity theoretic ones,
we may expect the construction of LTCs to be simpler than the construction of PCPs.

This way or another, LTCs are a natural object for the study of the redundancy required to
achieve local testability.

Previous work LTCs were �rst explicitly studied by Goldreich and Sudan [GS02]. The construc-
tion of LTCs that achieves the smallest amount of redudancy was given by Ben-Sasson and Sudan
[BS05]. Their construction yields a code that encodes k bits of information into k · poly (log k)

bits. However, the veri�er of their construction only rejects strings that are far from the code with
probability of 1/ poly (log k). This limitation was waived later by Dinur [D07] who, by applying
her gap ampli�cation technique to the construction of [BS05], improved the rejection probability
to a constant, while maintaining the block length of k · poly (log k). For a survey of the previous
constructions of LTCs, we refer the reader to [G05].

1.2 Our result
Our work was motivated by two considerations: The �rst consideration is concerned with the
fact that the previous constructions of LTCs either use PCPs as a building block, or directly
imply a construction of PCPs (e.g. [BS05, GS02]). In contrast, when taking the view of Section
1.1 regarding Locally Testable Codes, one might expect to have constructions of LTCs that are
considerably weaker than those of PCPs. Thus, we would have liked to have a construction that
does not rely on PCPs and furthermore does not give rise to constructions of PCPs.

The other consideration is that the previous constructions of LTCs are very algebraic. In
particular, the construction of [BS05] uses very heavy algebraic machinery, even compared to the
algebraic machinery common in the PCP literature, and its analysis is quite complicated. A simpler
construction, of a combinatorial nature, would have been preferred.

In this paper we give a construction that achieves both the above goals: Our construction is
purely combinatorial and does not use PCPs as a building block. We also believe that it does

8

not directly imply a construction of PCPs. Our construction matches the parameters of the best
known construction of [BS05] and [D07]. We mention that our construction was inspired by the
works of [BS05] and [D07], and can be viewed as a combinatorial variant of the construction of
[BS05]. This connection is discussed in detail in Section 7.2.

Explicitness Usually, one wants constructions of codes to be explicit. That is, there should be
an e�cient algorithm that generates the encoding function of the code for every given message
length. The construction of [BS05] and [D07] achieves this notion of explicitness. Our construc-
tion, however, only manages to achieve a weaker notion of explicitness. That is, we only have a
probabilistic algorithm that generates the encoding function of the code (for every given message
length), and this algorithm may err with some probability. In case that the algorithm errs, the
encoding function it generates might not constitute a good code, or might constitute a code that
is not locally testable.

We stress that, while in the case of many combinatorial objects (such as expander graphs and
extractors), one can use a simple counting argument to give a very good non-explicit construction,
this is not the case for LTCs. That is, in the case of LTCs, a simple counting argument does not
show the existence of LTCs, regardless of the parameters. Therefore, even a completely non-explicit
construction of LTCs that achieves good parameters would have been valuable. In this regard we
mention that Kaufman and Sudan [KS07] have recently showed that random linear codes with
very poor rate are locally testable, while using a very sophisticated analysis.

We also mention that the construction of [GS02] achieves exactly the same notion of explicitness
as our construction, though the error probability of their probabilistic algorithm is better than ours.

1.3 Our techniques
Our construction consists of two main steps, which are analogous to the constructions of [BS05]
and [D07]: In the �rst step we give a construction that achieves block length of k · poly (log k),
query complexity of poly (log k) and rejection probability of 1/ poly (log k). In the second step we
reduce the query complexity to a constant and apply the gap ampli�cation technique of [D07] to
amplify the rejection probability to a constant. Below we give a rough sketch of the techniques
used in the �rst step of our construction, while the second step follows [D07] quite closely.

9

Remark 1.1. In this section we make extensive use of coding theory terminology. The reader to
is referred to Section 2.1 for an overview of this terminology.

Codes with Proofs We begin our construction by introducing the notion of �Code with Proof�
(CWP), which was implicit in some previous constructions ([BS05, GS02]). The notion of CWP is
a generalization of the notion of LTC in which, in addition to the tested string, the veri�er is given
oracle access to a �proof string�. The proof string can be thought as given by an untrusted prover
that tries to convince the veri�er to accept the string as a codeword. Intuitively, constructing a
CWP should be easier than constructing a LTC, because we can use the proof string in our favor,
while LTC can be seen as the special case of CWP where the proof string is empty. A construction
of a CWP with short codewords and short proofs can be then transformed to a short LTC with
similar parameters using a known reduction (see, e.g., [GS02, Sec. 5] and [BGHSV04, Sec. 4.1]).
Thus, we can focus on constructing a CWP with good parameters.

We stress that, while the notion of CWP is closely related to PCP, it does not undermine our
goal to construct LTCs without PCP machinery. The crucial di�erence is that while a general PCP
system should be able to prove any NP-claim, a CWP is only expected to prove the membership
of a string in a speci�c code.

An iterative construction Our construction is an iterative one, and is similar in nature to the
Zig-Zag construction of expander graphs [RVW00]. The starting point of our construction is a
code of small message length, which is trivially a CWP. We then increase the message length of
this CWP iteratively. In every iteration, the message length of the CWP is squared, while the ratio
of the proof length to the message length of the CWP increases by a constant factor. The query
complexity of the veri�er also increases by a constant factor, and the rejection probability of the
veri�er decreases by a constant factor. The rate and the relative distance of the CWP remain the
same. After O(log log k) such iterations, we obtain a CWP with message length k, proof length
k · poly (log k), query complexity poly (log k), rejection probability 1/ poly (log k) and constant
rate and relative distance. Such a CWP translates into an LTC with the required parameters. It
remains to describe the way a single iteration works.

10

1.3.1 The structure of a single iteration

A single iteration consists of applying to the CWP three basic operations, each aimed at improving
or maintaing some other parameters of the CWP. We describe those operations below. In order
to describe those operations, we consider their e�ect on a CWP that has message length k, block
length n, rate R = k

n
, relative distance δ and proof length m. Furthermore, we assume that the

code is linear.

Tensor Product In order to square the message length of the code, we use a classical operation
on codes called the tensor product. The tensor product of a code C with itself, denoted C2, is the
code whose codewords are the n× n matrices all of whose rows and columns are codewords of C.
It is well known that if C is a linear code, then C2 is a linear code with message length k2, block
length n2, rate R2 and relative distance δ2.

If C is locally testable, then a natural test for C2 consists of choosing a random row or a
random column of the matrix and testing whether it is a codeword of C. This test extends to the
case that C is a CWP, in which case the proof of a codeword of C2 will consist of the proofs that
prove that each row and column of the matrix is a codeword of C. Note that this implies that C2

has proof length O(mn).
Unfortunately, this �natural test� does not necessarily works in the general case. However, a

variant of this test, which makes an assumption regarding the structure of C, does work, and we
will have to do some work in order to use it. It is important to note that in this variant too, C2

has proof length O(mn).
The tensor product operation squares the message length, as required. We would have liked

to use the tensor product operation to construct CWPs by repeatedly applying tensor product
to a code of small message length (in fact, a similar construction is analyzed in [BS04]), but the
problem is that the tensor product operation squares the rate and the relative distance. Thus, if
one starts with a code of constant message length and applies tensor product to it for log log k

times, then the result will be a code with block length poly (k) and relative distance 1/ poly (k),
which are very poor parameters. The two other operations are aimed at improving the rate and
the relative distance, respectively.

11

Random Projection The �rst problem with the tensor product operation we address is that
it squares the rate. In order to improve the rate, we use the random projection operation. This
operation consists of choosing a random subset of the coordinates of the code and moving them
from the codeword to the proof string. This operation can increase the rate back to R, while
increasing the proof length only by a constant factor. It is not hard to prove that this operation
roughly maintains the relative distance and local testability of the code.

But why does it help? At �rst look, it is not clear why moving coordinates from one place to
another should be bene�cial. The crucial observation is that the tensor product has a better e�ect
on the proof length than on the block length. While the tensor product squares the block length
n, it increases the proof length m only by a factor of O(n), which in our case will be much smaller
than m. In particular, if we keep n linear in k, the ratio m

k
would increase only by a constant

factor in each iteration, which would give us what we wanted.
The idea of using random projection to control the loss of the rate caused by the tensor product

is the main novelty of our work. The random projection is also the only reason that our construction
is not explicit in the usual sense.

Distance Ampli�cation We still need to make up for the decrease of the relative distance
caused by the tensor product. In order to do so, we amplify the relative distance of the code
using known techniques (see, e.g., [ABNNR92]). This operation decreases the rate of the code by
a constant factor, but this decrease can be absorbed by the random projection.

The main di�culty is showing that the distance ampli�cation preserves the local testability of
the CWP and the additional structure that is needed for the tensor product to work. In order
to demonstrate this we show that applying the distance ampli�cation procedure to a code can be
viewed as encoding the code by few simple linear codes that are locally testable and enjoy some
weak form of local decodability. Using those properties, we are able to show that the veri�er of
the original CWP can be emulated by a veri�er for the ampli�ed CWP.

By applying the three operations one after the other, we get an iteration that has the required
e�ect on the parameters of the CWP.

12

1.4 Organization of this paper
In Section 2, we review the relevant background and state the results of this work formally. In
Section 3 we give a high-level overview of the construction. We then provide the full details in
Sections 4, 5 and 6. Finally, in Section 7, we discuss possible variants of our construction, as well
as the connection between our construction and the previous construction of [BS05] and some open
problems that remain.

2 Preliminaries
For any n ∈ N, we denote [n] = {1, . . . , n}. Given any string x over any alphabet, we denote its
i-th symbol by xi and its length by |x|. Furthermore, for any string x of length n and for any
set S ⊆ [n] of indices i1 < i2 < . . . < i|S| we denote by x|S the projection of x to S, that is,
x|S = xi1xi2 . . . xis .

2.1 Error Correcting Codes
Let Σ be a �nite alphabet. A code C is a one-to-one function from Σk to Σn, where k and n are
called the code's message length and block length, respectively. The rate of the code is de�ned to
be RC

def
= k

n
. We will sometimes identify C with its image C(Σk). Speci�cally, we will write c ∈ C

to indicate the fact that there exists x ∈ Σk such that c = C(x). In such case, we also say that c
is a codeword of C.

For any two strings x, y ∈ Σn, the relative Hamming distance between x and y is the fraction of
coordinates on which they di�er, and is denoted by δ(x, y)

def
= |{xi 6= yi : i ∈ [n]}| /n. The relative

distance of a code C is the minimal relative distance between two di�erent codewords of C, and
is denoted by δC def

= minc1 6=c2∈C {δ(c1, c2)}. For a string x ∈ Σn, we denote by δC(x) the minimal
relative distance from x to the nearest codeword of C, that is, δC(x)

def
= minc∈C δ(x, c). If a string

x satis�es δC(x) ≤ τ , we say that it is τ -close to C, otherwise we say that it is τ -far from C.

Codes with di�erent message and codeword alphabets It is also possible to de�ne codes
that encode strings over one alphabet to strings over another alphabet. All of the above de�nitions

13

carry through, except for the rate of the code, which is de�ned as follows: Let Σ and Γ denote �nite
alphabets, and let C : Σk → Γn denote a code. Then the rate of C is de�ned to be RC

def
= k log|Σ|

n log|Γ| .

In�nite families of codes An in�nite family of codes C = {Ck} is a sequence of codes such
that the code Ck has message length k. The block length n(k), rate R(k) and relative distance
δ(k) of such a family are functions of k such that Ck has block length n(k), rate R(k) and relative
distance δ(k). Throughout this paper we will often work with in�nite families of codes, and refer
them simply as �codes�. For example, we will say that a code C has block length k2 and mean
that for every k, the code Ck in the family C has block length k2.

2.1.1 Linear codes

Suppose that Σ = F for some �nite �eld F. In such case we say that C : Fk → Fn is a linear code
if C is a linear function.

Suppose that C : Fk → Fn is a linear code. Then C
(
Fk
)
is a linear subspace of Fn, and

thus for every two codewords c1, c2 ∈ C and scalars a, b ∈ F, the vector a · c1 + b · c2 is also a
codeword. Furthermore, there exists a k × n matrix G, called the generating matrix of C, that
satis�es C(x) = x ·G for every row vector x ∈ Fk.

For any string x ∈ Fn, the weight of x is the fraction of non-zero coordinates of x, and is
denoted by wt(x)

def
= δ(x, 0). Two immediate conclusions of the above facts are that if C is a

linear code, then the zero vector is a codeword of C, and the relative distance of C is equal to
min0 6=c∈C {wt(c)}.

Consider now the case where C is a code over the alphabet Ft for some natural number t. We
say that C is an F-linear code if for every two strings x, y ∈ (Ft)k and scalars a, b ∈ F it holds that
C(a · x+ b · y) = a ·C(x) + b ·C(y), where the scalar multiplication is de�ned by viewing x,y,C(x)

and C(y) as vectors in Fkt and Fnt. Note that a code that is linear over Ft is necessarily F-linear,
but the converse does not necessarily holds.

2.1.2 Concatenation of codes

We turn to describe the code concatenation technique, which is commonly used in Coding Theory
for reducing the alphabet size of codes. Let Σ and Γ denote �nite alphabets, where we think of Γ

14

as being much larger than Σ. Let C1 : Σk → Γn and C2 : Γ→ Σ` denote codes. The concatenation
of C1 and C2, denoted C1 �C2 : Σk → Σn`, is de�ned as follows: To encode a message x ∈ Γk with
C1 �C2, it is �rst encoded by C1, and then every symbol of the result is encoded by C2. Formally,
we de�ne

C1 � C2(x)
def
= C2 (C1 (x)1)C2 (C1 (x)2) . . . C2 (C1 (x)n)

We refer to C1 as the outer code and to C2 as the inner code. It is not hard to see that RC1�C2 =

RC1 · RC2 and that δC1�C2 = δC1 · δC2 . Furthermore, if C1 : Fk → (Ft)n is an F-linear code and
C2 : Ft → Fs is a linear code then their concatenation C1 � C2 is a linear code over F.

2.2 Non-standard issues regarding codes
For the rest of this paper, F will denote some large �nite �eld of some �xed size (say, |F| = 64).
Unless stated explicitly otherwise, all our codes will be over the alphabet F, and will also be linear
codes. The reason for using codes over F is that one of the theorems we use requires the codes to
have very large relative distance (i.e., slightly more than 4

√
7/8 ≈ 0.967), and such large relative

distance can only be achieved using a large enough alphabet.

De�nition 2.1. Let C : Fk → Fn be a code and let S ⊆ [n]. We denote by C|S the function from
Fk to F|S| that is de�ned by

∀x ∈ Fk : C|S(x) = C (x)|S

The function C|S will be called the projection of C to S. Note that C|S is not necessarily a code,
since it is not necessarily one to one.

2.3 Probabilistic Circuits
A probabilistic circuit that tosses r coins is a circuit that is given, in addition to its input, a string
of r bits that is chosen uniformly at random. The additional random string is referred as the coin
tosses of the circuit, and the output of the circuit is a distribution over its coin tosses.

In this paper we will use probabilistic oracle circuits. Note that the use of probabilistic circuits
is not common, since a probabilisitc circuit can usually be transformed into a deterministic circuit.
However, we are interested in probabilistic oracle circuits that make very few queries to their
oracle, and these have no deterministic counterparts.

15

2.4 Locally Testable Codes
A code is locally testable if it is possible to test whether a given string is a codeword, or far from
being a codeword, by reading only a small number of its symbols. We now give a formal and
quantative de�nition of this intuitive notion.

De�nition 2.2. A code C : Fk → Fn is said to be (q, τ, ε)-Locally Testable if there exists a
probabilistic oracle circuit V that satis�es the following requirements:

1. The oracle is a string over F, and queries made to the oracle are answered with elements of
F.

2. V makes at most q non-adaptive queries to its oracle.

3. For every codeword c ∈ C, it holds that Pr [V c accepts] = 1.

4. For every string x that is τ -far from C, it holds that Pr [V x rejects] ≥ ε.

The circuit V is called the veri�er of C, the parameter q is called the query complexity of C,
the parameter τ is called the distance threshold of C and the parameter ε is called the rejection
probability of C.

Remark 2.3. The common de�nition of LTCs uses Turing machines instead of circuits. We chose
to use a more general de�nition that allows circuits in order to handle the case where the code C
is not explicit.

Remark 2.4. Note that we chose to limit the veri�er to non-adaptive queries. It is also possible to
de�ne LTCs with respect to adaptive queries. However, any veri�er that makes q adaptive queries
can be emulated by a veri�er that makes |F|q non-adaptive queries.

Our result can now be stated as follows:

Theorem 2.5. There exists an in�nite family of locally testable codes {Ck}k such that Ck has
block length k ·poly (log k), relative distance Ω(1), query complexity O(1), arbitrarily small constant
distance threshold τ > 0, and rejection probability Ω(1). Furthermore, the codes in the family are
linear and there exists a probabilistic algorithm that on input k, runs in time poly (k) and outputs
with probability 1− exp (− poly (log k)) the generating matrix and veri�er circuit of Ck.

16

We refer the reader to Theorem 6.33 for a more detailed statement of the LTCs that we
construct.

The codes of Theorem 2.5 are over the alphabet F. Using concatenation with any binary code,
one can get binary LTCs with roughly the same parameters. In particular, since F is of constant
size, the concatenation will increase the query complexity of the code only by a constant factor. If
one wants to get linear binary LTCs, he only needs to choose F to be an extension �eld of GF(2).

2.5 Codes with Proofs
We now introduce the non-standard notion of �Code With Proof� (CWP). Intuitively, a CWP is
a generalization of LTC, in which the veri�er is given, in addition to oracle access to the tested
string, an oracle access to a �proof string�, which is supposed to �prove� that the tested string is
indeed a codeword. Formally, a CWP is de�ned as follows.

De�nition 2.6. A code C : Fk → Fn is said to be a (q, ε)-Code With Proof (CWP) if there exists
a probabilsitic oracle circuit V that satis�es the following requirements:

1. The oracle is a string over F, and queries made to the oracle are answered with elements of
F.

2. V makes at most q non-adaptive queries to its oracle.

3. For every codeword c ∈ C there exists a string πc over F such that Pr [V c,πc accepts] = 1.
We refer to πc as a proof string of c with respect to V .

4. For every string w ∈ Fn and every string π over F, we have that Pr [V w,π rejects] ≥ ε · δC(w).
We refer to w as the �tested string� and to π as the �proof string�.

If V tosses at most r coins, then C is said to be a (q, ε, r)-CWP.

The circuit V is called the veri�er of C, the parameter q is called the query complexity of C,
the parameter ε is called the rejection ratio of C, and the parameter r is called the randomness
complexity of C. Another measure that is of interest is the length of the proof strings: We say that
C has proof length m if for every codeword c ∈ C there exists a proof string πc of c whose length

17

is at most m. In such case we de�ne the proof rate of C to be the ratio k/m. Furthermore, we will
sometimes refer to the rate of C as the code rate, in order to distinguish it from the proof rate.

We turn to discuss few important features of De�nition 2.6.

The randomness complexity Note that De�nition 2.6 keeps track of the randomness com-
plexity of the veri�er, instead of the length of the proof strings, which may be seem more natural.
However, knowing the randomness complexity of the CWP will be important at some points of
the construction. Moreover, in some parts of the construction it is more comfortable to track the
randomness complexity of the CWP than tracking its proof length. Note that we can assume
without loss of generality that the proof length of the CWP is bounded by 2r · q.

CWPs imply LTCs Every CWP with block length n and proof length m can be transformed
to a LTC with block length O(n+m) using a known reduction (see Section 6.2 for more details).
Thus, we construct the LTCs of Theorem 2.5 by constructing the following CWPs:

Theorem 2.7. There exists an in�nite family of CWPs {Ck}k such that Ck has block length O(k),
relative distance Ω(1), query complexity O(1), rejection ratio Ω(1) and randomness complexity
log k+O(log log k). Furthermore, the codes in the family are linear and there exists a probabilistic
algorithm that on input k, runs in time poly (k) and outputs with probability 1−exp (− poly (log k))

the generating matrix and veri�er circuit of Ck.

We refer the reader to Theorem 6.33 for a more detailed statement of the CWPs we construct.

A stronger soundness requirement Note that the soundness requirement of CWPs (De�ni-
tion 2.6, Requirement 4) is stronger than the corresponding requirement of LTCs (De�nition 2.2,
Requirement 4). In particular, the de�nition of LTCs requires the veri�er to reject only strings
that are far from the code, while the de�nition of CWPs requires the veri�er to reject any non-
codeword with adequate probability. This di�erence between the soundness requirements is an
artifact of the transformation of CWPs to LTCs, which losses the stronger soundness property.

18

CWPs and PCPPs A reader who is familiar with the PCP literature will note that the notion
of CWP is a special case of the notion of PCP of Proximity (PCPP), introduced in [BGHSV04] and
[DR06]. Speci�cally, CWPs are good codes coupled with PCPPs that are able to prove membership
in those codes. In constrast, in the PCP literature one usually constructs PCPPs for NP-complete
sets. Hence, CWPs are weaker than the PCPPs that are usually constructed, which corresponds
with our goal of constructing LTCs without PCP machinery.

3 High-Level Overview
In this section, we give a high-level overview of our main construction. This construction yields
CWPs that almost achieve the parameters of Theorem 2.5, but have query complexity poly (log k)

and rejection ratio 1/ poly (log k). In order to obtain CWPs with constant query complexity and
constant rejection ratio, as stated in Theorem 2.7, we apply a known query reduction technique
and the gap ampli�cation technique of Dinur [D07] (see Sections 6.3 and 6.4 for details). We then
transform the latter CWPs to LTCs with good parameters using a standard transformation (see
Section 6.2).

For simplicity, in this section we measure the proof length of the CWP instead of its randomness
complexity. Actually, instead of considering the proof length of the CWP, it will be more convinient
to consider its proof rate. Similarly, it will be more convinient to consider the rate of the CWP
than considering its block length. Table 1 summarizes the parameters of the CWP we construct
in this section.

Parameter name Parameter value
Message length k
Rate Ω(1)
Relative distance Ω(1)
Proof rate 1/ poly (log k)
Query complexity poly (log k)
Rejection ratio 1/ poly (log k)

Table 1: The parameters of the main construction of CWPs

19

3.1 The Tensor Product operation and a simple construction of LTCs
We begin by introducing the Tensor Product operation on codes. Given a code C with message
length k and block length n, the tensor product of C with itself, denoted C2, is a code with message
length k2 and block length n2 de�ned as follows. To encode a message x ∈ Fk2 , viewed x as a
k× k matrix, we �rst encode every row of x with C. Let y be the resulting k×n matrix. We then
encode every column of y with C, and de�ne the resulting n× n matrix to be C2(x). Note that if
C has rate R, then C2 has rate R2. It is also easy to prove that if C has relative distance δ then
the relative distance of C2 is δ2 (see [S01, Lecture 6]).

The tensor product is one of the simplest ways to obtain a code with large message length
from a code of small message length. Since a code with constant message length is trivially locally
testable, we can hope to construct locally testable codes with large message length by repeatedly
applying tensor product to a code with constant message length. In order to implement this idea,
we need to show that if C is a locally testable code, then so is C2.

If C is a linear code, then it is easy to prove that the codewords of C2 are exactly the n × n
matrices all of whose rows and columns are codewords of C (see [S01, Lecture 6]). If C is also
locally testable, then this fact suggests the following natural veri�er for C2: Given an n×n matrix
to be tested, the veri�er chooses either a random row or a column of the matrix, and invokes the
veri�er of C to test whether this row/column is a codeword of C.

Does this natural veri�er �work�? It turns out that while in some important cases the answer is
�yes� (see [BS04, DSW06, PS94]), in the general case, the answer is �no� (see [CR05, V05, GM07a]).
However, in order to simplify the presentation we assume for now that that the answer is �yes�
also in the general case. Speci�cally, we assume the following:

Simplifying Assumption for LTCs: There exists a constant 0 < α ≤ 1 such that given
a (q, τ, ε)-locally testable code C, the code C2 is (q, τ, α · ε)-locally testable with respect to the
veri�er that chooses a random row/column and tests it.

In Section 3.3, we describe how the simplifying assumption can be removed by using a result of
Ben-Sasson and Sudan [BS04] and making an assumption regarding the structure of the code C.

Using the simplifying assumption, we can give a simple construction of locally testable codes:
Suppose we wish to construct a locally testable code with message length k. For some constant

20

k0, let C0 be a code with message length k0. The code C0 is trivially locally testable with query
complexity k0, distance threshold 1/k0 and rejection probability 1. We now de�ne a sequence of
codes {Ci}i by setting Ci+1 = C2

i . It is easy to see that Clog logk0
k has message length k, and that

it is locally testable with query complexity k0, distance threshold 1/k0, and rejection probability
1/ poly (log k).

This construction of locally testable codes is very simple, but the codes it yields are very poor:
The rate and relative distance of Clog logk0

k are 1/ poly (k). In the next subsection we show that
additional ideas may improve both parameters.

3.2 A simpli�ed construction of CWPs with good parameters
Recall that our �nal goal is to construct LTCs with rate 1/ poly (log k) and relative distance Ω(1).
The simple construction of Section 3.1 falls short of achieving those parameters, and only achieves
rate and relative distance of 1/ poly (k). Recall that this construction is working in iterations,
where the i-th iteration applies tensor product to the LTC Ci−1 and creates the LTC Ci. Observe
that the reason that this construction has such poor rate and relative distance is that in every
iteration the rate and relative distance are squared. If we can change the way a single iteration
works so that in every iteration the rate will decrease only by a constant factor and the relative
distance will be maintained, we will get LTCs with the parameters we want. We now describe how
this idea can be implemented in the context of CWPs.

We design a transformation that transforms a CWP C into a CWP C ′ with the following e�ect
on the parameters:

Parameter name C C ′

Message length k k2

Rate R R
Relative distance δ δ
Proof rate P γ · P for a constant γ < 1
Query complexity q β · q for a constant β > 1
Rejection ratio ε α · ε for a constant α < 1

Table 2: The e�ect of a single iteration

Having designed a transformation as stated in Table 2, we can construct CWPs with the

21

parameters stated in Table 1 by starting with a trivial CWP with a constant message length and
iteratively applying the transformation for O (log log k) iterations. The transformation consists of
three basic operations:

1. Tensor Product - In order to square the message length, we use the tensor product operation.
We extend the tensor product operation to the setting of CWPs in Section 3.2.1.

2. Random Projection - This operation increases the rate. See Section 3.2.2 for details.

3. Distance Ampli�cation - This operation increases the relative distance See Section 3.2.3 for
details.

By applying the basic operations one after the other, we obtain the transformation stated in Table
2. In the rest of this subsection, we describe each of the operations in detail.

3.2.1 Tensor product of CWPs

Let C : Fk → Fn be a CWP with a veri�er V . We would like the code C2 to be CWP as well, so
we need to de�ne its veri�er and proof strings. We wish to use the natural veri�er that given an
n× n matrix, emulates V on a random row/column. But, in contrast to the case of LTCs, in the
case of CWPs V needs to be given oracle access to a proof string in addition to the row/column
it tests. We therefore de�ne the proof string of a codeword c of C2, that is viewed as an n × n
matrix, to be the collection of the proof strings that correspond to each row and column of c (as
a codeword of C).

We thus de�ne the veri�er V ′ of C2 as follows: Given oracle access to a test string w and a
proof string π, the veri�er V ′ views w as an n×n matrix and interprets π as a collection of strings
π1, . . . , π2n such that every string πi corresponds to some row or column of w. The veri�er V ′ then
chooses a ranom row/column and emulates the veri�er V with oracle access to this row column
and to its corresponding string πi. The veri�er V ′ accepts if and only if the emulation of V accepts.

Clearly, if w is a codeword of C2 and every string πi is a proof string of the corresponding
row/column, then the veri�er V ′ accepts. In order to deal with the rejection ratio, we extend our
simplifying assumption as follows:

22

Simplifying Assumption for CWPs: There exists a constant 0 < α ≤ 1 such that given
a (q, ε)-CWP C, the code C2 is a (q, α · ε)-CWP with respect to the veri�er and proof strings
described above.

As before, if C has rate R and relative distance δ, then C2 has rate R2 and relative distance
δ2. A new feature of the tensor product for CWPs is the proof rate: If C has block length n and
proof length m, then C2 has proof length of 2n ·m . This means that if C has proof rate P , then
C2 has proof rate 1

2
· R · P . A crucial point now becomes visible - the tensor product does not

square P , but rather multiplies it by R.

3.2.2 Random Projection

In this subsection we describe the random projection operation, which we use to improve the rate
of the CWPs. Let C : Fk → Fn be a CWP. The most straightforward way to increase the rate of
C is to project it to a subset S ⊆ [n]. This poses two problems:

1. The function C|S does not necessarily have a good relative distance. Moreover, C|S may not
be one-to-one.

2. The function C|S may not be a CWP. In particular, we can no longer use the veri�er of C,
because this veri�er may query one of the coordinates that were projected out.

The �rst issue is solved by choosing the subset S ⊆ [n] uniformly at random. It can be shown
that if S is a su�ciently large random set, then with high probability the function C|S is a code
that maintains the relative distance of C up to a constant factor. The second issue is solved by
providing the veri�er of C with the �missing coordinates� in the proof string. That is, for every
c ∈ C, we de�ne the proof string of the codeword c|S ∈ C|S to contain c|[n]\S in addition to the proof
string of c. We refer to the operation of choosing a random subset of the coordinates, projecting
the code to this subset, and moving the other coordinates to the proof part as Random Projection.

At �rst look, including the missing coordinates in the proof part seems weird. Our goal in
projecting out those coordinates was reducing the redudancy of C. If we just move those coordi-
nates from the codeword part to the proof part, it seems that we do not gain anything in terms
of redundancy. One of the most important observations of this work is that increasing the code

23

Parameter Name Initial CWP After Tensor Product After Random Projection
Message length k k2 k2

Block Length n n2 k2/R = k · n
Proof Length m ≥ n 2n ·m 2n ·m+ n2 − k · n < 4n ·m
Rate R R2 R

Proof rate P ≤ R 1
2
·R · P k2

2n·m+n2−k·n>1
4
·R · P

Table 3: The e�ect of a singe iteration on the parameters of a CWP whose block length is shorter
than its proof length.

rate at the expense of decreasing the proof rate is bene�cial. The reason is that while the tensor
product operation squares the code rate, it only multiplies the proof rate by a factor that depends
on the code rate. Thus, increasing the code rate of a CWP C improves the proof rate of C2. This
e�ect turns out to be very signi�cant, and therefore moving coordinates from the codeword part
to the proof part, while not giving an �immediate� gain in the redundancy (in C), is bene�cial in
the �long run� (in C2).

To see it, suppose that a single iteration of our construction consisted of applying a tensor
product to the CWP, and then applying random projection to the CWP to increase its rate back
to what it was before the tensor product. Consider the e�ect of applying such iterations to a CWP
with code rate R and proof rate P . Assume that P ≤ R, and note that in such case the random
projection decreases the proof rate by a factor of at most 2. After the �rst iteration, the CWP
will have code rate R and proof rate 1

4
· R · P - since the tensor product multiplies the proof rate

by 1
2
·R and the random projection multiplies the proof rate by 1

2
. After the second iteration, the

CWP will have code rate R and proof rate
(

1
4
·R)2 ·P . In general, after i iterations the CWP has

code rate R and proof rate
(

1
4
·R)i · P . It is now easy to see the bene�t of the random projection

by comparing this construction with the construction of Section 3.1, in which after i iterations the
CWP had code rate of R2i . Table 3 summarizes this example.

We conclude that, by using random projection to maintain the rate the same in all iterations,
we can make the proof rate decrease only by a constant factor in each iteration, as stated in
Table 2.

Remark 3.1. Once we use the operation of Random Projection, our construction ceases to be
explicit in the usual sense, because the set of projected coordinates was selected at random. Note

24

that the only reason we need the set of coordinates to be random is that we need the projection
to preserve the relative distance of the code. Thus, if we could deterministically �nd a set of
coordinates such that if we project the code to this set, the relative distance is preserved up to a
constant factor, then our construction would have been explicit.

3.2.3 Distance Ampli�cation

In this subsection we describe the distance ampli�cation operation, which we use to improve the
relative distance of the CWPs. Speci�cally, we present a distance ampli�cation procedure that
can increase the relative distance of a code from any constant to any constant that is smaller than
|F|−1
|F| , while decreasing the rate only by a constant factor. We comment that similiar distance

ampli�cation procedures are known in coding theory literature for quite some time (see, e.g., Alon
et. al. [ABNNR92]). Our contribution is merely observing that these procedures preserve local
testability.

Let C : Fk → Fn be a code with relative distance δ. We wish to improve the relative distance of
C while not decreasing its rate by too much. In order to do so, we take the following view on the
relative distance of C: Consider the �experiment� that given a non-zero codeword c ∈ C, chooses
a random coordinate i ∈ [n] and �succeeds� if ci is non-zero. Since the relative distance of C is the
minimal weight of a non-zero codeword of C, the probability that the above experiment succeeds
is δ. Furthermore, the experiment needs only log n coins.

Observe that improving the relative distance of C while incuring only a small loss to the rate
of C is analogous to increasing the success probability of the above experiment while not tossing
too many additional coins. One possible way of improving the success probability in a randomness
e�cient manner is taking random walks on expander graph. Let G be a d-regular expander with
n vertices and relative second eigenvalue λ. We identify the vertices of G with the coordinates of
c. The probability that a random walk of length t of G hits a coordinate i such that ci 6= 0 is at
least 1− (1− δ + λ)t. Furthermore, such a random walk uses only log n+ t log d coins.

We adapt the above method to the problem of improving the relative distance of C. De�ne a
code C ′ : Fk → (Ft+1)

dtn as follows (Note that the codewords of C ′ are over the alphabet Ft+1):
Let x ∈ Fk be a message. We identify every coordinate of C(x) with a vertex of G and every
coordinate of C ′(x) with a walk of length t on G. Now, for every walk (i0, . . . , it) ∈ [n]t of length

25

t on G we de�ne the coordinate of C ′(x) that corresponds to (i0, . . . , it) to be

C ′(x)(i0,...,it)

def
=
(
C(x)i0 , . . . , C(x)it

) ∈ Ft+1 (1)

By the discussion above, the relative distance of C ′ is at least 1 − (1− δ + λ)t. We �nish the
distance ampli�cation procedure with reducing the alphabet of C ′ back to F by concatenating
C ′ with some good inner code over the alphabet F. Let DistAmp(C) denote the result of the
concatenation. By choosing t to be a su�ciently large constant and by choosing an inner code
with su�ciently large relative distance, we can amplify the relative distance of C to any constant
less than |F|−1

|F| , while decreasing the rate of C only by a constant factor which depends on t and
on the inner code.

The local testability of DistAmp(C) In order to use the above distance ampli�cation pro-
cedure, we need to show that if C is a CWP then so is DistAmp(C). We sketch the argument
below.

Assume that C is a CWP. We begin by observing that C ′ is a CWP: The reason is that the
transformation from c to c′ described above can be viewed as applying a certain repetition code
to c. Thus, verifying that a string is a codeword of C ′ amounts to testing a repetition code and
emulating the veri�er of C.

Now, to show that DistAmp(C) is a CWP, observe that a veri�er for DistAmp(C) can emulate
the veri�er of C ′ as follows: Whenever the veri�er of C ′ queries a coordinate i, the veri�er of
DistAmp(C) reads the supposed encoding of the coordinate i, checks that it is a legal codeword
of the inner code, and uses it to answer the query of the veri�er of C ′.

Note that the veri�er of DistAmp(C) uses more queries than the veri�er of C. Speci�cally,
every time we apply distance ampli�cation to a CWP, its query complexity increases by a constrant
factor. However, we can a�ord this increase, since it still matches the parameters stated in Table
2.

Remark 3.2. The distance ampli�cation procedure described above is only one way out of many
to improve the relative distance of a code. A similiar way was described in [ABNNR92], who used
neighbourhoods of vertices in a bipartite expander instead of random walks on a non-bipartite
expander. Furthermore, as explained above, the intuition of the distance ampli�cation comes

26

from amplifying hitting probabilities, and therefore any randomness e�cient hitter can be used
for distance ampli�cation. For example, one could take neighbourhoods of vertices in a disperser
instead of a bipartite expander.

3.2.4 The construction so far

Using the ideas described in this subsection, we can now present a simpli�ed construction of CWPs
with good parameters. Suppose we wish to construct a CWP with message length k, rate R and
relative distance δ. For some constant k0, let C0 be a code with message length k0. The code C0

is trivially a CWP with query complexity k0, rejection ratio 1 and proof length 0. We de�ne a
sequence of CWPs {Ci}i, where the CWP Ci+1 is obtained from from Ci as follows:

1. Apply tensor product to Ci and de�ne CTP
i to be C2

i .

2. Apply random projection to CTP
i to improve its rate to R. Let CRP

i denote the result.

3. Apply distance ampli�cation to CRP
i to improve its relative distance back to δ. Set Ci+1 to

be the result.

It is not hard to see that Clog logk0
k has message length k, proof rate and rejection ratio of

1/ poly (log k), query complexity of poly (log k), constant rate and constaant relative distance,
as stated in Table 1.

3.3 Removing the simplifying assumption and the Full Construction
A crucial issue, of course, is removing the simplifying assumption (of Section 3.2.1). Recall that
this assumption is that for every CWP C, the code C2 is also a CWP. This assumption is not true
in general. However, we can use a special case (presented in [BS04]) for which the assumption is
true in order to make our construction work. The result of [BS04] says, roughly, that if a CWP C

is of the form C = C2
s for some code Cs, then that C2 is a CWP (Note that Cs is not necessarily

a CWP). We note that the result of [BS04] uses a slightly more sophisticated veri�er for C2 than
the row/column veri�er we used before. We describe this veri�er in Section 3.3.1.

We say that a code C is of a square form if there exists a code Cs such that C = C2
s . In order to

use the result of [BS04], we need to make sure that every CWP to which we apply tensor product

27

is of a square form. To do so, we will maintain this form as an invariant throughout the iterations
of our construction: We will start with an initial CWP that is of a square form, and then show that
every iteration preserves the square form. In order to show that a single iteration preserves the
square form, we will need to modify the random projection and distance ampli�cation operations
such that they preserve the square form (while the tensor product trivially preserves the square
form). In Section 3.3.2, we describe the required modi�cation of the random projection and the
distance ampli�cation operations.

3.3.1 The Axis Parallel Planes Test

Let Cs be a code with block length ns, and let C = C2
s be a CWP with block length n = n2

s. Recall
that the codewords of C2 are the matrices such that each of their rows and columns is a codeword
of C. We now view the code C2 as follows: C2 has block length n4

s, and we view the strings of
length n4

s as 4-dimensional hypercubes with coordinates in [ns]
4. Taking this view, we can show

that a string w ∈ Fn4
s is a codeword of C2 if and only if every restriction of w to an axis parallel

plane of the hypercube is a codeword of C (see Section 4.1.1 for details).
The latter characterization of the codewords of C2 suggests the following �planes veri�er� for

C2: Given a tested string x, the veri�er views x as a 4-dimensional hypercube, chooses a random
axis parallel plane and veri�es it is a codeword of C (by emulating the veri�er of C). It turns
out that this veri�er works well. Using a result of [BS04], we can show that if C is a CWP with
rejection ratio ε, then C2 with the planes veri�er is a CWP with rejection ratio 2−32 ·ε (see Section
4.1 for details). Note that in order for the �planes veri�er� to work, it needs to be given access
to the proof strings of all the axis parallel planes. Thus, the proof string of a codeword c of C2

will consist of the proof strings that prove that each axis parallel plane of c is a codeword of C.
It can be shown that if C has block length n = n2

s and proof length m, then C2 has proof length(
4
2

) · n ·m = 6 · n ·m, rather than 2 · n ·m as in Section 3.2.1. However, the extra factor of 3 is
immaterial.

Remark 3.3. The result of [BS04] only holds if Cs has a su�ciently large relative distance (i.e.,
greater than 4

√
7
8
). Thus, we will have to make sure that the relative distance of Cs is that large.

Such relative distance can be achieved using the distance ampl�ciation. The need to have codes
of such high relative distance is the reason why we need to work with codes over some su�ciently

28

large �nite �eld F instead of binary codes.

3.3.2 Preserving the Square Form

In this subsection we describe how we modify the random projection and distance ampli�cation
operations such that they preserve the square form of the CWP. Let us focus for now on the
random projection operation. Let C : Fk → Fn be a CWP of a square form, that is, C = C2

s for
some code Cs : Fks → Fns . Suppose we want to improve the rate of C. If we project C to some
random subset of coordinates S ⊆ [n], it is unlikely that that C|S will be of a square form, since
the probability that the subset will have the form of a square is very low.

The solution to the problem is to apply random projection to Cs instead of C. That is, in order
to improve the rate of C, we choose a set T ⊆ [ns] uniformly at random and take

(
Cs|T

)2 to be our
new CWP. Clearly,

(
Cs|T

)2 is of a square form and has a better rate than C = C2
s . Furthermore,(

Cs|T
)2 is indeed a CWP, since

(
Cs|T

)2
= C|T×T .

We use the same solution for the distance ampli�cation operation: In order to improve the
relative distance of C, we take (DistAmp(Cs))

2 to be our new CWP. The code (DistAmp(Cs))
2 is

of a square form and has a better relative distance than C. However, it is not clear why should
(DistAmp(Cs))

2 be a CWP. The way of showing that (DistAmp(Cs))
2 is a CWP is the another

novelty of this paper. Below we give a brief summary of this proof (see Section 5 for details).
We begin by observing that applying distance ampli�cation to a codeword of Cs is a linear

operation - that is, there is a linear function A such that for every message xs ∈ Fks it holds that

A (Cs(xs)) = (DistAmp(Cs)) (xs)

We proceed by viewing (DistAmp(Cs))
2 as follows. In order to encode a message x ∈ Fk with

(DistAmp(Cs))
2, view x as ks × ks matrix and perform the following steps:

1. Encode every row of x with Cs. Denote the result by x1.

2. Apply A to every row of x1. Denote the result by x2.

3. Encode every column of x2 with Cs. Denote the result by x3.

4. Apply A to every column of x3. Set (DistAmp(Cs))
2 (x) to be the result.

29

We claim that using the linearity of Cs and A, we can switch the order of Steps 2 and 3. After
switching the order, the encoding procedure of (DistAmp(Cs))

2 becomes:

1. Encode x with C = C2
s . Denote the result by x1.

2. Apply A to every row of x1. Denote the result by x2.

3. Apply A to every column of x2. Set (DistAmp(Cs))
2 (x) to be the result.

Thus, (DistAmp(Cs))
2 (x) is obtained by applying A many times to parts of C(x). We next show

that a veri�er of (DistAmp(Cs))
2 can test a candidate codeword by emulating the veri�er of C.

While we could prove the latter claim using the same ideas used in Section 3.2.3 for showing that
DistAmp(C) is a CWP, such a proof would have been quite complicated. Instead, we develop a
general framework that allows us to give a cleaner formulation of this argument.

A general framework In order to prove that (DistAmp(Cs))
2 is a CWP, we develop a gen-

eral framework for proving such claims. This framework allows us to give a simple and elegant
proof of the argument sketched in this subsection, and may be of independent interest. We �rst
de�ne the composition of two codes to be the composition of their encoding functions, and de�ne
a non-standard notion of �repetition codes�. We then examine the structure of (DistAmp(Cs))

2

and observe that it can be obtained by composing C2 with repetition codes and permuting its
coordinates. Next, we identify some simple properties such that composing a code having those
properties with a CWP yields a CWP. Finally, we show that repetition codes have the aforemen-
tioned properties and conclude that (DistAmp(Cs))

2 is a CWP.
For a simple example of how a code can be obtained using repetitions and permutations,

consider the code C ′ of Section 3.2.3 (see Equation 1), and view its codewords as strings over the
alphabet F (rather than Ft+1). Observe that the codewords of C ′ can be obtained by duplicating
the symbols of the codewords of C and permuting their coordinates. Although the latter example
may seem trivial, the framework we develop in Section 4.3 allows expressing more complicated
codes (e.g. DistAmp(C) and C2) as results of composing C with repetition codes.

30

3.3.3 The full construction

Suppose we wish to construct a CWP with message length k. As before, we start with a code C0

of message length k0, rate R and relative distance δ, and then de�ne a sequence of codes {Ci}i.
But, this time we do not require that each Ci will be a CWP, but rather that each C2

i will be a
CWP. In other words, we think of the i-t h iteration as starting with the CWP C2

i and producing
the CWP C2

i+1. The code Ci+1 is obtained from Ci as follows:

1. Let CTP
i be C2

i . The code
(
CTP
i

)2

is a CWP with respect to the planes veri�er (of Section
3.3.1).

2. Let CRP
i be the result of applying random projection to CTP

i . The code
(
CRP
i

)2

is a CWP

since
(
CTP
i

)2

is a CWP (see discussion at the begining of Section 3.3.2).

3. Set Ci+1 to be the result of applying distance ampli�cation to CRP
i . The code C2

i+1 is a
CWP since

(
CRP
i

)2

is a CWP (see Section 3.3.2).

We now have that
(
Clog logk0

k−1

)2

is a CWP with message length k and with the parameters stated
in Table 1.

Organization of the rest of this paper In Section 4, we analyze the three basic operations on
CWPs described above, namely, the tensor product, random projection and distance ampli�cation.
In Section 5, we show that if a code C = C2

s is a CWP then (DistAmp(Cs))
2 is a CWP. The full

construction (as outlined above) is then analyzed in Section 6. In addition, in Section 6 we also
show how to improve the construction such that the CWPs have constant query complexity and
constant rejection ratio, and derive LTCs with good parameters from those CWPs.

We stress that in the rest of this paper we measure the randomness complexity of the CWPs
rather than their proof length. Thus, our goal is to construct CWPs with randomness complexity
log k +O(log log k), which corresponds to having proof length k poly (log k).

31

4 Operations on CWPs
In this section we give formal statements and proofs of the properties of the tensor product, random
projection and distance ampli�cation operations.

4.1 Tensor Product
In this subsection we analyze the Tensor Product operation, which we use in order to increase the
message length of our CWPs. Speci�caly, we prove the following result:

Theorem 4.1 (Tensor Product). Let C : Fk → Fn be a code of rate R and relative distance
δ ≥ 4

√
7/8+ 1

n
, such that C2 is a (q, ε, r)-CWP. Then C4 def

= (C2)
2 is a (q, ε′, r′)-CWP for ε′ = 2−32·ε

and
r′ = r + log

[(
4

2

)
n2

]
= r + log

[
6 · k

2

R2

]
= r + log k2 +O(log

1

R
)

Remark 4.2. Note that C2 has message length k2, that C4 has message length k4 and that
(r′ − log k4) = (r − log k2) + log 6

R2 . That is, the tensor product operation increases the di�erence
between the randomness complexity of the CWP and the logarithm of its message length by an
additive term of log 6

R2 . This is analogous to multiplying the proof rate by a factor of R2

6
, as

described in Section 3.3.1.

Let C be as in the theorem. Before we prove Theorem 4.1, we �rst discuss the structure of
C4 def

= (C2)
2. We then de�ne the proof strings and veri�er of C4 and analyze them.

4.1.1 The structure of C4

Note that the code C4 has block length n4. We identify the set of coordinates [n4] with the 4-
dimensional hypercube [n]4. We say that a subset L ⊆ [n]4 is an axis parallel line of the hypercube if
there exist i1 6= i2 6= i3 ∈ [4] and a1, a2, a3 ∈ [n] such that L =

{
x ∈ [n]4 : xi1 = a1, xi2 = a2, xi3 = a3

}
.

If i4 ∈ [4] \ {i1, i2, i3}, we say that L is parallel to the i4-th axis. Similarly, we say that a subset
P ⊆ [n]4 is an axis parallel plane of the hypercube if there exist i1 6= i2 ∈ [4] and a1, a2 ∈ [n] such
that P =

{
x ∈ [n]4 : xi1 = a1, xi2 = a2

}
. If i3 ∈ [4] \ {i1, i2}, we say that P is parallel to the i3-th

axis.

32

Observation Let c be a codeword of C4 = (C2)
2, and recall that when c is viewed as a n2 × n2

matrix, all the rows and columns of c are codewords of C2. Observe that when taking the view of
the 4-dimensional hypercube, every row (respectively, column) of the matrix c corresponds to an
axis parallel plane that is parallel to the third and fourth axis (respectively, the �rst and second
axis).

We can now prove the following facts.

Fact 4.3. Let c ∈ C4. Then for every axis parallel line L ⊆ [n]4 it holds that c|L ∈ C.

Proof We prove the fact only for lines that are parallel to the �rst axis, and the proof for
the other axis is similiar. By the de�nition of L, there exist a2, a3, a4 ∈ [n] such that L ={
x ∈ [n]4 : x2 = a2, x3 = a2, x4 = a4

}
. Let P =

{
x ∈ [n]4 : x3 = a3, x4 = a4

}
and note that P is

an axis parallel plane that contains L and is parallel to the �rst and second axis. Now, observe
that if we view c as an n2×n2 matrix, then the coordinates in P form a column of c, and therefore
c|P ∈ C2. Furthermore, if we view c|P as an n×n matrix, then the coordinates in L form a column
of c|P , and are thus a codeword of C. �

The veri�er of C4 is motivated by the following fact.

Fact 4.4. A string w ∈ Fn4 is a codeword of C4 if and only if for every axis parallel plane P it
holds that w|P ∈ C2.

Proof For one direction, let w ∈ Fn4 be a string such that for every axis parallel plane P it holds
that w|P ∈ C2. View w as an n2 × n2 matrix and note that each row of w can be viewed as a
restriction of w to an axis parallel plane. Therefore, every row of w is a codeword of C2. Similarly,
every column of w is a codeword of C2. It follows that w ∈ C4 = (C2)

2.
For the other direction, let c ∈ C4 and let P ⊆ [n]4 be an arbitrary axis parallel plane. View c|P

as an n×nmatrix. Observe that the rows and columns of c|P are axis parallel lines of the hypercube
and therefore by Fact 4.3 they are codewords of C. It follows that c|P ∈ C2, as required. �

4.1.2 The proof strings and veri�er of C4

The proof strings of C4 Let c ∈ C4. The proof string πc of c consists of a collection of proof
strings of C2: For every axis parallel plane P , the proof string πc includes a proof string πc|P that

33

proves that c|P is a codeword of C2. That is, the proof string for c ∈ C4 consists of
(

4
2

) · n2 proof
strings for codewords of C2.

The veri�er of C4 Let V denote the veri�er of C2. The veri�er V ′ of C4 is de�ned as follows.
Given oracle access to a tested string w and proof string π, the veri�er V ′ �rst partitions π into
parts such that each part corresponds to some axis parallel plane. The part of π that corresponds
to the axis parallel plane P , denoted π|P , is assumed to contain a proof that w|P ∈ C2. The veri�er
V ′ then chooses an axis parallel plane P uniformly at random and invokes V , with oracle access
to w|P and π|P . The veri�er V ′ accepts if and only if V accepts.

Remark 4.5. We stress the di�erence between the planes veri�er used in this section and the
row/column veri�er used in the simpli�ed construction of Section 3.2. The row/column veri�er
views a tested string w ∈ Fn4as a n2×n2 matrix and tests that random row/column is a codeword
of C2. Taking the hypercubes view, every row/column corresponds to some axis parallel plane,
but some axis parallel planes do not correspond to any row or column of the n2×n2 matrix. Thus,
the planes veri�er uses more possible tests than the row/column veri�er, and this fact is crucial to
the proof of Theorem 4.6 due to [BS04] that is stated below.

4.1.3 The parameters of C4

The query complexity of V ′ equals the one of V . As for the randomness complexity of V ′, the veri�er

V ′ tosses log

[(
4

2

)
n2

]
coins in order to select a random axis parallel plane, and then tosses r

coins in order to emulate V . It follows that the randoness complexity of V ′ is r+ log

[(
4

2

)
n2

]
,

as claimed in Theorem 4.1.
We turn to analyze to rejection ratio of V ′. In order to do it, we need a theorem of [BS04]. Let

P denote the set of axis parallel planes in [n]4. For any w ∈ Fn4 , we denote

ρ(w)
def
=

1

|P|
∑
P∈P

δC2(w|P)

That is, ρ(w) is the average relative distance of w|P to C2, taken over all axis parallel planes P ∈ P .

34

We can now state the result we need:

Theorem 4.6 ([BS04, Lemma 4.2]). Let C : Fk → Fn be a code with relative distance δ such that(
δ − 1

n

)4 ≥ 7
8
. Then, for every string w ∈ Fn4, it holds that ρ(w) ≥ 2−32 · δC4(w).

Note that the hypothesis of Theorem 4.1 matches the distance requirement of Theorem 4.6.
Now, for every string w ∈ Fn4 and every proof string π we have that

Pr [V ′ rejects w and π] =
1

|P|
∑
P∈P

Pr
[
V ′ rejects w|P and π|P

]

≥ 1

|P|
∑
P∈P

ε · δC2(w|P)

= ε · ρ(w)

≥ 2−32 · ε · δC4(w)

where the �rst inequality is due to the rejection ratio of V and the second inequality is due to
Theorem 4.6. This proves the rejection ratio of V ′, and Theorem 4.1 follows.

4.2 Random Projection
In this subsection we analyze the Random Projection operation - the projection of a code to a
random subset of its coordinates. Recall that we use this operation in order to increase the rate
of our codes. We prove the following result:

Theorem 4.7 (Random Projection). For every δ > 0 there exists a constant Rδ such that the
following holds. Let C : Fk → Fn be a code with rate R ≤ Rδ and relative distance δ. Then, with
probability at least 1 − exp (−Ω(k)) over the uniform selection of a set S ⊆ [n] of size 1

Rδ
k, the

function C|S is a code with rate Rδ and relative distance 1
2
δ. In such a case, if C2 is a (q, ε, r)-CWP,

then (C|S)2 is a (q, ε′, r)-CWP for ε′ = R2

R2
δ
· ε.

In Section 4.2.1 we show how to choose Rδ and prove that, with probability 1− exp (−Ω(k)),
the function C|S is a code with relative distance 1

2
δ. In Section 4.2.2 we prove that (C|S)2 is a

CWP.

35

Remark 4.8. Theorem 4.7 states that C|S has relative distance 1
2
δ. Actually, we could prove that

C|S has relative distance α · δ for any α < 1. Such a change would have a�ected the way the
constant Rδ is chosen and the constants in the Big-Ω notation of the success probability.

4.2.1 The relative distance of C|S

The proof that C|S has relative distance 1
2
δ uses a standard probabilistic argument. Fix a non-zero

codeword c ∈ C, and let S ⊆ [n] be a uniformly chosen set of size 1
Rδ
k for a constant Rδ that

will be determined later. The relative weight of c is at least δ, and therefore the expected relative
weight of c|S is at least δ. Applying the Cherno� Bound, it follows that the probability that the
relative weight of c|S is less than 1

2
δ is at most 2 exp

(−1
4
· δ2 · |S|). By taking a union bound over

all the codewords of C, the probability that there exists a non-zero codeword c ∈ C such that c|S
has relative weight less than 1

2
· δ is bounded by

|F|k · 2 exp

(
−δ

2

4
· |S|

)
= 2 exp

((
ln |F| − δ2

4Rδ

)
· k
)

Now, by choosing Rδ small enough such that δ2/ (4 ·Rδ) > ln |F|, we get that the probability that
the relative distance of C|S is less than δ/2 is bounded by 2 exp (−Ω (k)), as required.

4.2.2 (C|S)2 is a CWP

Let S ⊆ [n] be such that C|S is one-to-one. Below we give a rigorous and quantative proof of the
fact that if C2 is a CWP then so is (C|S)2. Assume that C2 is a (q, ε, r)-CWP. We de�ne the proof
strings and veri�er of (C|S)2 and analyze them, using the following observation.

Observation Let S2 def
= S × S. Then (C|S)2 = C2

|S2 .

The proof strings of (C|S)2 For every codeword c ∈ C2 with proof string πc, the proof string
of the corresponding codeword c|S2 ∈ (C|S)2 consists of c[n2]\S2 and πc.

The veri�er of (C|S)2 Let V denote the veri�er of C2. The veri�er V ′ of (C|S)2 is almost
identical to V , except that whenever V queries the tested string at a coordinate in [n2]\S2, the

36

veri�er V ′ queries the corresponding coordinate in the proof string.

The parameters of (C|S)2 Clearly, V ′ maintains the query complexity and randomness com-
plexity of V . As for the rejection ratio, suppose we have a string w ∈ F|S|2 that is α-far from (C|S)2.
This means that w must disagree with any codeword of (C|S)2 on at least α ·|S|2 coordinates, which
implies that every string u ∈ Fn2that satis�es u|S2 = w must disagree with any codeword of C2 on
at least α · |S|2 coordinates. Therefore, for every such u it holds that δC2 (u) ≥ |S|2

n2 · α, and thus
V ′ rejects w with probability at least ε · |S|2

n2 · α. Using n = k/R and |S| = k/Rδ, it follows that
the rejection ratio of (C|S)2 is at least ε′ = |S|2

n2 · ε = R2

R2
δ
· ε, as claimed in Theorem 4.7.

4.3 Distance Ampli�cation
In this subsection we de�ne and analyze the Distance Ampli�cation operation, which we use in
order to increase the relative distance of our codes. For motivation to the following de�nitions, we
refer the reader to the high-level discussion in Section 3.2.3. We prove the following theorem:

Theorem 4.9 (Distance Ampli�cation). For all constants δ < δ0 <
|F|−1
|F| there exists a trans-

formation on codes DistAmpδ→δ0 that acts as follows: Given a code C with rate R and relative
distance δ, the code DistAmpδ→δ0(C) has relative distance δ0 and rate Ω(R). Furthermore, if C2

is a (q, ε, r)-CWP then
(
DistAmpδ→δ0(C)

)2 is a (q′, ε′, r′)-CWP for q′ = O(q), ε′ = Ω (ε) and
r′ = max {r, log n2}+O(1). The constants inside all the Big-O/Ω notations depend only on δ and
δ0.

Let C : Fk → Fn be a code with rate R and relative distance δ. Let G be a d-regular expander
on n vertices with normalized second eigenvalue λ < δ. We identify the vertices of G with the
set of coordinates [n]. Let t be an arbitrary natural number. We �rst de�ne the following code
WalkG,t(C) : Fk → (Ft+1)

dtn:

De�nition 4.10. For any message x ∈ Fk, the codeword WalkG,t(C)(x) ∈ (Ft+1)
dtn is de�ned as

follows. We identify the dtn coordinates of WalkG,t(C)(x) with the walks of length t on G. For
every walk i = (i0, . . . , it) on G (where i0, . . . , it ∈ [n] are viewed both as vertices of G and as
coordinates of C(x)) we de�ne

WalkG,t(C)(x)i =
(
C(x)i0 , C(x)i1 , . . . , C(x)it

) ∈ Ft+1

37

WalkG,t(C) maps messages of length k = R · n over F to messages of length dtn over Ft+1, and
therefore has rate of 1

dt(t+1)
·R. Using standard properties of expanders (see, e.g., [HLW06]), it can

be seen that WalkG,t(C) has relative distance 1− (1− δ + λ)t. Note that WalkG,t(C) is a F-linear
code.

Let I be a code over F with message length t + 1, rate RI and relative distance δI . We use
concatenation with the inner code I to decrease the alphabet from Ft+1 back to F.

De�nition 4.11. The code DistAmpG,t,I(C) is de�ned to be the concatenation of WalkG,t(C) with
the inner code I.

Clearly, DistAmpG,t,I(C) has relative distance δI ·
[
1− (1− δ + λ)t

]
and rate RI · 1

dt(t+1)
· R.

Furthermore, DistAmpG,t,I(C) is a linear code. In Section 5 we prove the following theorem:

Theorem 4.12. Let C : Fk → Fn be a code such that C2 is a (q, ε, r)-CWP, let G be a d-
regular graph on n vertices, let t be any constant integer and let I : Ft+1 → FnI be a code. Then(
DistAmpG,t,I (C)

)2 is a (q′, ε′, r′)-CWP where q′ = O(q), ε′ = Ω(ε) and r′ = max {r, log n2} +

O(1), and where the constants in the Big-O/Ω notations depend only on d,t and nI .

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9 Let δ < δ0 <
|F|−1
|F| be two constants. Let λ be some constant strictly

smaller than δ and let G be any explicitly constructible constant degree expader with degree d and
normalized second eigenvalue at most λ. Let I be a code over F with message length t + 1, rate
RI and relative distance δI > δ0 - Note that such a code must exist, since one can set I to be the
|F|-ary Hadamard code (see De�nition 6.19), which has relative distance |F|−1

|F| > δ0, or alternatively
use the Zybalov Bound (see Appendix A, Theorem A.4). Let t be the minimal integer such that
δI ·
[
1− (1− δ + λ)t

] ≥ δ0. Observe that t is a constant, since 1− δ+λ is a positive constant that
is strictly less than 1 and since δI is a constant larger than δ0.

Now, let C be any code with rate R and relative distance δ. De�ne DistAmpδ→δ0(C)
def
=

DistAmpG,t,I(C). Then DistAmpδ→δ0(C) has relative distance δ0 and rate RI · 1
dt(t+1)

· R. In par-
ticular, note that d and t depend only on δ and δ0, so DistAmpδ→δ0(C) has rate Ω(R) where the con-
stants in the Big-Ω notation depend only on δ and δ0, as required. The fact that

(
DistAmpδ→δ0(C)

)2

is a CWP with the required parameters follows immediately from Theorem 4.12. �

38

5 Distance ampli�cation preserves local testability of the
square

In this section we prove Theorem 4.12.

Theorem (Theorem 4.12, restated). Let C : Fk → Fn be a code such that C2 is a (q, ε, r)-CWP,
let G be a d-regular graph on n vertices, let t be any constant integer and let I : Ft+1 → FnI

be a code. Then
(
DistAmpG,t,I (C)

)2 is a (q′, ε′, r′)-CWP where q′ = O(q), ε′ = Ω(ε) and r′ =

max {r, log n2}+O(1), and where the constants in the Big-O/Ω notations depend only on d,t and
nI .

Our proof strategy is based on examining the structure of
(
DistAmpG,t,I (C)

)2 and observing
that it can be obtained from C2 by �composing� it with certain �repetition codes� (see Section 5.1).
We then show that composing a CWP with a repetition code yields a CWP (see Section 5.2) and
conclude that

(
DistAmpG,t,I (C)

)2 is a CWP (see Section 5.3).

5.1 The structure of
(
DistAmpG,t,I (C)

)2

5.1.1 Repetitions, Compositions and Permutations of Codes

In this subsection we de�ne structual properties of codes that will allow us to describe in a more
convinient form the structure of

(
DistAmpG,t,I (C)

)2.

De�nition 5.1. Let C1 : Fk → Fn be a code. We de�ne the `-repetition code C [`]
1 : F`k → F`n as

the code that results from partitioning the message to ` blocks of length k and encoding each of
them by C1. That is, C [`]

1 encodes each message x ∈ F`k by

C
[`]
1 (x) = C1 (x1 . . . xk)C1 (xk+1 . . . x2k) . . . C1

(
x(`−1)k+1 . . . x`k

)

De�nition 5.2. Let C1 : Fk → Fn and C2 : Fn → Fn′ be codes. We de�ne the composition C2 ◦C1

to be the composition of C1 and C2 as functions. That is, C2 ◦ C1 is the code that encodes a
message by encoding it with C1 and then encoding the result with C2.

39

De�nition 5.3. Let σ be a permutation over [k]. We de�ne the permutation code Pσ : Fk → Fk as
the �code� that permutes the coordinates of its message according to σ. That is, for every x ∈ Fk
we have that

Pσ(x) = xσ(1)xσ(2) . . . xσ(k)

We now demonstrate two useful connections between the forgoing notions and the tensor prod-
uct operation. In particular, the following proposition will allow us to simplify the analysis of
tensor products of compositions of codes.

Proposition 5.4. Let C1 : Fk → Fn, C2 : Fn → Fn′ be codes. Then (C2 ◦ C1)2 = C2
2 ◦ C2

1 .

Proof Note that both (C2 ◦ C1)2 and C2
2 ◦ C2

1 have message length k2. We show that for every
message M ∈ Fk2 , viewed as a k × k matrix over F, it holds that C2

2(C2
1(M)) = (C2 ◦ C1)2 (M).

Let G1 and G2 denote the generating matrices of C1 and C2, respectively. Note that C2
1(M) =

GT
1 ·M ·G1, and similarly that

C2
2(C2

1(M)) = GT
2 ·
(
GT

1MG1

) ·G2

Furthermore, the generating matrix of C2◦C1 isG1G2 and so (C2 ◦ C1)2 (M) = (G1G2)T ·M ·(G1G2).
Thus

C2
2(C2

1(M)) = GT
2 ·
(
GT

1 ·M ·G1

) ·G2 = (G1 ·G2)T ·M · (G1 ·G2) = (C2 ◦ C1)2 (M)

as required. �

Recall that the code C2 encodes a k × k matrix by �rst encoding each of its rows with C,
and then encoding each of the resulting columns with C. The next proposition states this fact in
terms of compositions, repetitions, and permutations. The proposition will be used to simplify the
presentation of tensor product codes. For this proposition, we assume that an m× ` matrix over
F is represented as a vector in Fm·` by the concatenation of its rows, that is, the �rst ` elements of
the vector are the matrix �rst row, the next ` elements are the second row, and so on.

Proposition 5.5. Let C1 : Fk → Fn be a code. There exist permutations σ1 and σ2 over [kn] and
[n2] respectively such that C2

1 = Pσ2 ◦ C [n]
1 ◦ Pσ1 ◦ C [k]

1 .

40

Proof Let σ1 be a permutation on [kn] such that given a vector in Fkn, which represents a k × n
matrix M , permutes the coordinates of the vector such that it represents the transpose matrix
MT . Let σ2 be a similiar permutation over [n2] for n × n matrices. Let M be a k × k matrix
represented as a vector in Fk2 . Then C [k]

1 (M) is the result of encoding each of the rows of M with
C1, and

(
Pσ2 ◦ C [n]

1 ◦ Pσ1

)(
C

[k]
1 (M)

)
is the result of encoding the columns of C [k]

1 (M) with C1. It

follows that C2
1(M) =

(
Pσ2 ◦ C [n]

1 ◦ Pσ1 ◦ C [k]
)

(M). �

Remark 5.6. Note that Lemma 5.5 suggest a simple algorithm for computing the generating
matrix of C2

1 . Speci�cally, given the generating matrix of C, we can compute the generating
matrix of C2

1 , by �rst computing the generating matrices of C [k]
1 , Pσ1 , C

[n]
1 and Pσ2 , and then

outputing their product.

5.1.2 Obtaining
(
DistAmpG,t,I (C)

)2 from C2

Let C, G, t and I be as in Theorem 4.12. Let us view the construction of DistAmpG,t,I (C) in a
di�erent way than the way it was de�ned in Section 4.3. Speci�cally, the encoding of a message
x ∈ Fk using DistAmpG,t,I (C) can be done by the following steps:

1. Encode x ∈ Fk with C, resulting in a codeword c1 ∈ Fn.

2. Duplicate each symbol of c1 to create (t+ 1)dt consecutive copies of the symbol, and denote
the result by c2 ∈ F(t+1)dtn. In other words, if we denote by R : F → F(t+1)dt the repetition
code that duplicates a single symbol (t + 1)dt times, then we have that c2 = R[n](c1). The
number (t+1)dt was chosen because it is the number of times a vertex of G appears in walks
of length t over G.

3. Permute the coordinates of c2 such that every t + 1 consecutive non-overlapping symbols
form a walk of length t on G, and denote the result by c3 ∈ F(t+1)dtn.
More speci�cally, de�ne c3 = Pσ(c2), where σ is a permutation over [(t+ 1)dtn] such that for
every walk i = (i0, . . . , it) on G (where i0, . . . , it ∈ [n]) there exists 0 ≤ j < dtn such that

c3
(t+1)·j+1c

3
(t+1)·j+2 . . . c

3
(t+1)·j+(t+1) = c1

i0
c1
i1
. . . c1

it

41

4. Finally, encode every t+1 consecutive symbols of c3 with I : Ft+1 → FnI , and set DistAmpG,t,I (C) (x)

to be the result. That is, DistAmpG,t,I (C) (x) = I[dtn](x) ∈ FnI ·dtn.

Thus, DistAmpG,t,I (C) can be obtained as I[dtn]◦Pσ◦R[n]◦C. We turn to examine
(
DistAmpG,t,I (C)

)2.
By Proposition 5.4, it follows that we can obtain

(
DistAmpG,t,I (C)

)2 from C2 by

(
DistAmpG,t,I (C)

)2
=
(
I[dtn]

)2

◦ P 2
σ ◦
(
R[n]

)2 ◦ C2 (2)

Note that P 2
σ is also a permutation code. Using Proposition 5.5, we can remove the tensor prod-

ucts
(
R[n]

)2 and
(
I[dtn]

)2

from Equality (2), thereby obtaining codes that are easier to analyze.
Speci�cally, applying Proposition 5.5, there exist permutations φ1, φ2, φ3, φ4 such that

(
R[n]

)2
= Pφ2 ◦

(
R[n]

)[(t+1)dtn] ◦ Pφ1 ◦
(
R[n]

)[n]

= Pφ2 ◦R[(t+1)dtn2] ◦ Pφ1 ◦R[n2]

(
I[dtn]

)2

= Pφ4 ◦
(
I[dtn]

)[nI ·dtn] ◦ Pφ3 ◦
(
I[dtn]

)[(t+1)dtn]

= Pφ4 ◦ I
h
nI ·(dtn)

2
i
◦ Pφ3 ◦ I

h
(t+1)(dtn)

2
i

By substituing the above equalities in Equality (2), we obtain the following important characteri-
zation of

(
DistAmpG,t,I (C)

)2:

Proposition 5.7. There exist permutations σ1, σ2, σ3, σ4 such that

(
DistAmpG,t,I (C)

)2
= Pσ4 ◦ I

h
nI(dtn)

2
i
◦ Pσ3 ◦ I

h
(t+1)(dtn)

2
i
◦ Pσ2 ◦R[(t+1)dtn2] ◦ Pσ1 ◦R[n2] ◦ C2

5.2 Composition preserves local testability
Proposition 5.7 implies that in order to prove that

(
DistAmpG,t,I (C)

)2 is a CWP, it su�ces to
study the preservation of local testability under composition with repetition codes. Our goal in
this section is showing that the composition with repetition codes preserves local testability, that
is, the composition of a CWP with a repetition code results in a CWP. In Section 5.2.1 we identify

42

properties of codes that are su�cient for the preservation of local testability under composition.
In Section 5.2.2, we show that repetition codes enjoy the aforementioned properties and conclude
that the compostion with repetition codes preserves local testability.

5.2.1 Properties su�cient to make composition preserve local testability

De�nition 5.8. A code C1 : Fk → Fn is said to be λ-proximity preserving if for every two strings
x, y ∈ Fk we have that

δ (C1(x), C1(y)) ≤ λ · δ (x, y)

The property of �proximity preservation� is non-standard in Coding Theory, since it con�icts with
having good relative distance. In particular, a λ-proximity preserving code can have relative
distance at most λ/n. Nevertheless, proximity preserving codes will be useful in our analysis. For
example, note that permutation codes are 1-proximity preserving.

Recall that in the de�nitions of LTCs and CWPs (De�nitions 2.2 and 2.6), the rejection property
of CWPs was stronger than the one of LTCs. In this section we will make use of LTCs that enjoy
the strong rejection property of CWPs. Such LTCs are usually refered as �strong LTCs� (see, e.g.,
[GS02, Section 2.1]), and are a special case of CWPs in which the proof string is always empty.
We give a more detailed de�nition of strong LTCs below.

De�nition 5.9. A code C1 : Fk → Fn is said to be (q, ε, r)-strong locally testable if there exists a
probabilistic oracle circuit V such that

1. V makes at most q non-adaptive queries to its oracle and tosses at most r coins.

2. For every codeword c ∈ C1, we have that Pr [V c accepts] = 1.

3. For every string w ∈ Fn, we have that Pr [V w rejects] ≥ ε · δC (w).

Recall that in order to argue that if C is a CWP then so is DistAmpG,t,I(C) (in Section 3.2.3),
we claimed that the veri�er of DistAmpG,t,I(C) can emulate the veri�er of C. We now de�ne
the exact property we use in the emulation of veri�ers. We comment that this is a non-standard
notion.

43

De�nition 5.10. A code C1 : Fk → Fn is said to be (q, ε, r)-locally accessible if there exists a
probabilistic oracle circuit A such that

1. A recieves as input an index i ∈ [k]. A either outputs a symbol or rejects.

2. A makes at most q non-adaptive queries to its oracle and tosses at most r coins.

3. For every message x ∈ Fk and every i ∈ [k], we have that Pr
[
AC1(x)(i) = xi

]
= 1.

4. For every string w ∈ Fn, every i ∈ [k] and every message x such that δ (w,C1(x)) = δC(w),
we have that

Pr [Aw(i) 6= xi and Aw(i) has not rejected] ≤ 1− ε

That is, A may reject with any probability, but if it did not reject, then the probability that
it outputs a wrong symbol is small (where �wrong� means di�erent than xi).

We refer to A as the accessor of C1, and to q, ε and r as the query complexity, success probability
and randomness complexity of C1, respectively.

Locally Accessible Codes versus Locally Decodable Codes The notion of Locally Ac-
cessible Codes (LACs) is a very weak variant of the notion of Locally Decodable Codes (LDCs)
formalized in Katz and Trevisan [KT00]. The main di�erence between LACs and LDCs is that
the de�nition of an LAC does not require the code to have a good relative distance, while a good
relative distance is implicit in the de�nition of LDCs. This implies that an LAC may have no
error correction capability - for example, it is easy to see that the identity map is an LAC. This
di�erence makes LACs a seemingly weaker notion than LDCs, and indeed they are much easier to
construct.

We do note, however, that LACs are stronger than LDCs in one sense: The accessor of an LAC
is required to have a low error probability when given access to any oracle, while the decoder of an
LDC is required to have a low error probability only when given access to oracles that are close to
the code. LACs can achieve this stronger property by using their ability to reject whenever they
are given acess to an oracle that is too corrupted. The latter feature is related to the notion of
LTCs, and indeed, it can be shown that a code that is both a strong LTC and a LDC is also a
LAC.

44

We are now ready to prove the following �composition theorem�:

Theorem 5.11. Let C1 : Fk → Fn be a (q1, ε1, r1)-CWP. Let C2 : Fn → Fn′ be a λ-proximity
preserving,

(
qT2 , ε

T
2 , r

T
2

)
-strong locally testable and

(
qA2 , ε

A
2 , r

A
2

)
-locally accessible code. Then C2 ◦C1

is a CWP with the following parameters:

1. Query complexity max
{
q1 · qA2 , qT2

}
.

2. Rejection ratio min
{

1
4λ

(
εA2
)q1 · ε1,

1
4
εT2
}
.

3. Randomness complexity 1 + max
{
r1 + q1 · rA2 , rT2

}
.

Proof We de�ne the proof strings and veri�er of C2 ◦C1 and prove they satisfy the requirements
of Theorem 5.11.

• The proof strings of C2 ◦ C1: The proof strings of C2 ◦ C1 are the same as those of C1.
That is, for every message x ∈ Fk1 , the proof π(C2◦C1)(x) of (C2◦C1)(x) equals the proof πC1(x)

of C1(x).

• The veri�er of C2 ◦ C1: Let V1 and V2 be the veri�ers of C1 and C2, and let A be the
accessor of C2. We de�ne the veri�er V of C2 ◦ C1 as follows. Suppose V is given oracle
access to a tested string w ∈ Fn′ and a proof string π. With probability 1

2
, the veri�er V

invokes V w
2 to verify the membership of w in C2. With probability 1

2
, the veri�er V emulates

V1. Whenever V1 queries a symbol of the tested string (say, the i-th symbol), V invokes
Aw(i). If Aw(i) rejects, then V rejects, and otherwise V answers the query of V1 with the
output of Aw(i). Whenever V1 queries a symbol of the proof, V simply queries this symbol
from π and feed it to V1. Finally, V accepts if and only if V1 accepts.

The query complexity and randomness complexity of C2 ◦ C1 are obvious from the description of
V . We turn to analyze its rejection ratio. The idea of the analysis is that if a string w ∈ Fn′ is
far from C2 ◦ C1, then w is either far from C2, or close to C2. In the �rst case, the invocation of
V2 �catches� w and thus V rejects with high probability. In the second case, we decode w by C2,
thereby obtaining a string x ∈ Fn, and use the fact that C2 is proximity preserving to show that
x is far from C1. We then claim that the emulation of V1 �catches� x and therefore V rejects with
high probability. Details follow.

45

Let w ∈ Fn′ . Suppose that δC2(w) > 1
2
· δC2◦C1(w). In this case, with probability 1

2
, the veri�er

V invokes V w
2 , and then V w

2 rejects with probability at least εT2 · δC2(w) > εT2 · 1
2
· δC2◦C1(w). Thus,

in this case, V rejects with probability at least 1
4
· εT2 · δC2◦C1(w).

On the other hand, suppose that δC2(w) ≤ 1
2
δC2◦C1(w). Let x ∈ Fn be such that δC2(w) =

δ (w,C2(x)). Then, by the triangle inequality, it holds that

δC2◦C1(w) ≤ δ (w,C2(x)) + δC2◦C1 (C2(x)) = δC2(w) + δC2◦C1 (C2(x)) ≤ 1

2
δC2◦C1(w) + δC2◦C1 (C2(x))

and therefore
δC2◦C1 (C2(x)) ≥ 1

2
δC2◦C1(w)

Let c ∈ C1 be the codeword of C1 closest to x. Since C2 is λ-proximity preserving, we have that

δC1(x) = δ (x, c) ≥ 1

λ
· δ (C2(x), C2(c)) ≥ 1

λ
· δC2◦C1 (C2(x)) ≥ 1

2λ
· δC2◦C1 (w)

Recall that with probability 1
2
, the veri�er V emulates V1. In this case, with probability at least(

εA2
)q1 each of the invocations of A either outputs the correct symbol of x or rejects. Recall that

V1 rejects x with probability at least ε1 · δC1(x) ≥ ε1
2λ
· δC2◦C1(w). Therefore, in this case, V rejects

w with probability at least 1
2
· (εA2

)q1 · ε1
2λ
· δC2◦C1(w). We conclude that regardless of which case

holds, the rejection probability of V is as required. �

Remark 5.12. Note that the fact that C2 is proximity preserving is crucial to the analysis of the
second case above. If C2 was not proximity preserving, it could have been the case that a string
x ∈ Fn is very close to C1, but C2(x) is far from C2 ◦C1. In such a case, neither the invocation of
V2 nor the emulation of V1 could �catch� C2(x), and thus the veri�er V would have failed on C2(x).

Remark 5.13. Note that permutations codes trivially match the conditions of Theorem 5.11 with
respect to C2, that is, any permutation code is trivially proximity preserving, locally testable and
locally accessible. In Section 5.2.2 we will see that repetition codes too match the conditions of
Theorem 5.11.

46

5.2.2 Composition with repetition codes preserve local testability

In this subsection we show that repetition codes enjoy the properties de�ned above, and conclude
that composition with repetition codes preserves local testability.

Fact 5.14. Let C1 be a λ-proximity preserving code. Then, for every natural number `, the code
C

[`]
1 is λ-proximity preserving.

Fact 5.15. Let C1 : Fk → Fn be a (q, ε, r)-strong locally testable code. Then, for every natural
number `, the code C [`]

1 is (q, ε, r + log `)-strong locally testable.

Proof We de�ne a veri�er V for the code C [`]
1 . Recall that a string w ∈ F`n is a codeword of C [`]

1 if
and only if consists of ` consecutive blocks of length n such that every block is a codeword of C1.
When given oracle access to a string w, the veri�er V chooses a random block of w and invokes
the veri�er of C1 to test that this block is a legal codeword of C1. The veri�er V accepts if and
only if the veri�er of C1 accepts. Clearly, V has query complexity q and randomness complexity
r + log `. The analysis of the rejection probability of V follows directly from the fact that the
relative distance of a string w ∈ F`n from C

[`]
1 is the average of the relative distances of the blocks

of w from C1. �

Fact 5.16. Let C1 : Fk → Fn be a (q, ε, r)-locally accesible code. Then, for every natural number
`, the code C [`]

1 is (q, ε, r)-locally accessible.

Proof We de�ne the accessor A for the code C [`]
1 . Recall that the encoding function of C [`]

1 receives
a message m ∈ F`k, partitions it to ` blocks of length k and encodes each of those blocks with C1.
When given an input i and oracle access to a string w, the accessor A computes the block of the
message to which the i-th coordinate belongs. Then, A invokes the accessor of C1 to decode the
i-th coordinate from this block. If the accessor of C1 rejects, then A rejects. Otherwise, A outputs
the output of the accessor of C1. �

Corollary 5.17. Let C1 : Fk → Fn be a (q, ε, r)-CWP, let ` be a natural number that divides n
and let C2 : Fn/` → Fn′/` be a code. Then C

[`]
2 ◦ C1 is a CWP with query complexity (n′/`) · q,

rejection ratio 1
4(n′/`) · ε and randomness complexity max {r, log n}+ 1.

47

Proof The code C2 is trivially n′/`-proximity preserving. It is also trivially locally testable using
the veri�er that reads the entire tested string and accepts if and only if it is a codeword of C2, and
is trivially locally accessable using the accessor that reads the entire oracle, rejects if the oracle is
not a codeword of C2, and otherwise decodes the required coordinate and outputs it. The corollary
now follows directly by applying Lemmas 5.14, 5.15 and 5.16 to C [`]

2 , and by applying Theorem 5.11
to C [`]

2 ◦ C1 with λ = n′/` and εT2 = εA2 = 1. �

Remark 5.18. We stress that while the query complexity and rejection ratio of C [`]
2 ◦ C1 depend

on the block lengths of C1 and C2, they do not depend on `.

5.3 Proof of Theorem 4.12
We are now ready to prove Theorem 4.12:

Theorem (Theorem 4.12, restated). Let C : Fk → Fn be a code such that C2 is a (q, ε, r)-CWP,
let G be a d-regular graph on n vertices, let t be any constant integer and let I : Ft+1 → FnI

be a code. Then
(
DistAmpG,t,I (C)

)2 is a (q′, ε′, r′)-CWP where q′ = O(q), ε′ = Ω(ε) and r′ =

max {r, log n2}+O(1), and where the constants in the Big-O/Ω notations depend only on d,t and
nI .

Proof Recall that by Proposition 5.7

(
DistAmpG,t,I (C)

)2
= Pσ4 ◦ I

h
nI(dtn)

2
i
◦ Pσ3 ◦ I

h
(t+1)(dtn)

2
i
◦ Pσ2 ◦R[(t+1)dtn2] ◦ Pσ1 ◦R[n2] ◦ C2

Theorem 4.12 now follows by applying Corollary 5.17 to each of the compositions with R[`] and
I [`], and by observing that composing a CWP with a permutation code results in a CWP with the
same parameters. �

6 Wrapping everything together
In this section we use the theorems proved in Section 4 to obtain constructions of CWPs and
LTCs. In Section 6.1 we give a formal proof of the main construction of CWPs that was outlined
in Section 3. In Section 6.2 we show how LTCs can derived from the aforementioned CWPs. The

48

CWPs of the main construction have super-constant query complexity and sub-constant rejection
ratio, and in Sections 6.3 and 6.4 we show how they can be modi�ed to have constant query
complexity and constant rejection ratio. This modi�cation immediately translates to LTCs with
better query complexity and rejection probability. In Section 6.5 we discuss the size of the veri�er
circuits of our CWPs and LTCs. The strongest results we can prove are stated in Theorems 6.32
and 6.33.

6.1 The main construction
In this subsection we present our main construction of CWPs. Those CWPs have constant rate
and relative distance, randomness complexity log k + O(log log k), query complexity poly (log k)

and rejection ratio 1/ poly (log k). Recall that this construction is an iterative construction, that
is, we start from a CWP with a small message length, and then increase its message length in an
iterative process. We now state and prove the e�ect of a single iteration on a CWP.

Theorem 6.1 (Single Iteration). There exist constants R0 and δ0 <
|F|−1
|F| such that for all constants

R ≤ R0 there exists a randomized polynomial time procedure that works as follows: The procedure
is given as input the generating matrix of a linear code C : Fk → Fn (for any k, n ≥ 1) and a
veri�er circuit V with respect to which C2 is a CWP. The procedure is only guaranteed to work
provided that C has rate R and relative distance δ0. In such a case, the procedure outputs, with
probability at least 1− exp (−Ω(k)), the generating matrix of a code C ′ and a circuit V ′ such that
the following holds:

1. The code C ′ has message length k2, rate R0 and relative distance δ0.

2. If C2 is a (q, ε, r)-CWP with respect to V , then (C ′)2 is a (O(q),Ω(ε), r′)-CWP with respect
to V ′, where r′ def

= max {r, log k2} + log k2 + O(1) and where the constants in the Big-O/Ω

notations depend only on R.

Remark 6.2. Note that C2 and (C ′)2 have message lengths k2 and k4, respectively, and that if
r ≥ log k2 then (r′ − log k4) = (r − log k2)+O(1). In other words, applying the foregoing procedure
increases the di�erence between the randomness complexity of the CWP and the logarithm of its
message length by a constant term. In the terminology of proof lengths, this is analogous to
decreasing the proof rate of the CWP by a constant factor.

49

Proof Let δ0 be any constant strictly greater than 4
√

7/8. The constant R0 will be determined
below. The procedure works as follows:

1. Let CTP = C2. The code CTP has message length k2, rate R2 and relative distance δ2
0.

Without loss of generality, we assume that δ0 ≥ 4
√

7/8 + 1
n
, since otherwise n is bounded

by a constant and it is easy to prove the required result. By the Tensor Product Theorem
(Theorem 4.1), it follows that

(
CTP

)2 is a CWP with query complexity q, rejection ratio
εTP

def
= Ω(ε) (where the constant in the Big-Ω notation is absolute) and randomness complex-

ity rTP def
= r + log k2 + O(1) (where the constant in the Big-O notation depend only on R).

The procedure computes the generating matrix of CTP and the veri�er circuit of
(
CTP

)2,
as de�ned in the proof of Theorem 4.1. Recall that the generating matrix of CTP can be
e�ciently computed using, for example, the algorithm described in Remark 5.6.

2. Let Rδ2
0
be the constant whose existence is guaranteed by the Random Projection Theorem

(Theorem 4.7). The procedure chooses a set S ⊆ [n2] of size k2/Rδ2
0
uniformly at random.

Let CRP =
(
CTP

)
|S. By the Random Projection Theorem (Theorem 4.7), with probability

1 − exp (−Ω(k)), the function CRP is a code with message length k2, rate Rδ2
0
and relative

distance 1
2
δ2

0. In such case, the code
(
CRP

)2 is a CWP with query complexity q, rejection
ratio εRP

def
= Ω(εTP) (where the constant in the Big-Ω notation depends only on R and δ0)

and randomness complexity rTP. The procedure computes the generating matrix of CRP
and the veri�er circuit of

(
CRP

)2, as de�ned in the proof of Theorem 4.7.

3. Set C ′ = DistAmp 1
2
δ2
0→δ0

(
CRP

)
. By the Distance Ampli�cation Theorem (Theorem 4.9),

C ′ has message length k2 and relative distance δ0. Furthermore, C ′ has a rate that depends
only on δ0 and Rδ2

0
- set R0 to be this rate and note that R0 is a constant that depends

only on δ0, since Rδ2
0
is a constant that depends only on δ0. Moreover, (C ′)2 is a CWP

with query complexity q′ = O(q), rejection ratio ε′ = Ω(εRP) and randomness complexity
r′ = max

{
rTP, log |S|2}+O(1) (where the constants in the Big-O/Ω notations depend only

on δ0). The procedure computes the generating matrix of C ′ and the veri�er circuit V ′ of
(C ′)2, as de�ned in the proof of Theorem 4.9.

The procedure outputs the generating matrix of C ′ and the circuit V ′. It is easy to verify that
this procedure satis�es the requirements of the theorem. In particular, note that q′ = O(q), that

50

ε′ = Ω(εRP) = Ω(εTP) = Ω(ε) where the constant in the Big-Ω depends only on R and that

r′ = max
{
rTP, log |S|2}+O(1)

= max
{
rTP, log

(
k4/R2

δ2
0

)}
+O(1)

= max
{
rTP, log k4

}
+O(1)

= max
{
r + log k2, log k4

}
+O(1)

= max
{
r, log k2

}
+ log k2 +O(1)

where the constant in the Big-O notation depends only on R. �

We can now use Theorem 6.1 to give our main construction of CWPs. The construction is
similiar to the construction discussed in Section 3, except for one di�erence: Since the success
probability of the procedure of Theorem 6.1 is 1− exp (−Ω(k)), we wish to apply it to CWPs with
message length as large as possible. Thus, instead of using a code of constant message length as
the starting point of the construction, we use a code with message length poly (log k). The trivial
veri�er for such a code has query complexity poly (log k), but this is not a problem since we are
allowed to have query complexity poly (log k) anyhow.

Theorem 6.3 (Main Construction). For every constant c > 0 the following holds: There ex-
ists an in�nite family of CWPs {Ck}k such that Ck has block length O(k), relative distance
Ω(1), query complexity poly (log k), rejection ratio 1/ poly (log k), and randomness complexity
log k+O(log log k). Furthermore, the codes in the family are linear and there exists a probabilistic
algorithm that on input k, runs in time poly (k) and outputs with probability 1− exp (−Ω (logc k))

the generating matrix and veri�er circuit of Ck.

Proof Let δ0 and R0 be the constants from Theorem 6.1. Let C0 be an arbitrary linear code with
message length k0

def
= logc k, a constant rate of at most R0 and relative distance δ0 (Such a code

can be obtained, for example, from the Zybalov bound, see Appendix A, Theorem A.4). Let V0

be the trivial veri�er for C2
0 that when given oracle access to a tested string and a proof string,

reads the tested string entirely and accepts if and only if it is a legal codeword of C2
0 . Clearly, C2

0

with respect to this veri�er is a CWP with query complexity k0, rejection ratio 1 and randomness
complexity 0.

51

On input k, the probabilistic algorithm acts as follows: The algorithm �rst constructs the
generating matrix of C0 and the veri�er circuit V0 of C2

0 . Then, for every 0 ≤ i ≤ log logk0
k − 1,

the algorithm runs the procedure of Theorem 6.1 on the generating matrix of Ci and the veri�er
Vi, and sets Ci+1 and Vi+1 to be the output of the procedure. Finally, the algorithm outputs
the generating matrix of

(
Clog logk0

k−1

)2

and the veri�er Vlog logk0
k−1. It can be seen that if all

the invocations of the procedure succeed, in the sense that they output the generating matrix
and veri�er circuit stated in Theorem 6.1, then the algorithm outputs the generating matrix and
veri�er circuit stated in Theorem 6.3. In particular:

1. In every iteration, the rejection ratio is multiplied by some constant factor α < 1. Therefore,
after log logk0

k iterations, the CWP will have rejection ratio αlog logk0
k = 1/ poly (log k).

2. In every iteration, the query complexity is multiplied by some constant factor β > 1.
Therefore, after log logk0

k iterations, the CWP will have the query complexity βlog logk0
k ·

poly (log k) = poly (log k).

3. In every iteration, the di�erence between the randomness complexity of the CWP and its
message length increases by a constant term γ > 0. Therefore, after log logk0

k iterations,
the CWP will have randomness complexity log k + γ · log logk0

k = log k +O(log log k).

It remains to analyze the probability that all the invocations of the procedure succeed. By the
union bound, the probability that one of the invocations fails is bounded by

log logk0
k∑

i=0

exp
(
−Ω(k2i

0)
)
≤

∞∑
i=0

exp (−i · Ω(k0)) ≤ exp (−Ω(k0))

The algorithm therefore succeeds with probability 1 − exp (−Ω (k0)) = 1 − exp (−Ω (logc k)), as
required. �

Remark 6.4. The reader should note the importantance of maintaining a constant rate in every
iteration of the algorithm of Theorem 6.3. Let ki denote the message length of Ci for every i. If
we allowed the rate to drop to a sub-constant function, then the procedure of Theorem 6.1 (and in
particular, the tensor product operation) would have increased the randomness complexity of Ci
by more than log k2

i +O(1), and after log log k iterations we would have ended up with randomness

52

complexity of much more than log k + O(log log k). This is the reason why we apply the random
projection operation.

Remark 6.5. The reader should note that, while increasing the constant c in Theorem 6.3 improves
the success probability of the algorithm, this improvement is not �for free�: The higher we set c to
be, the higher the query complexity of C will be.

The density of the message lengths So far we have ignored the possible message lengths
that can be achieved by our construction. Observe that there are values of k for which no CWP
Ck can be constructed using the proof of Theorem 6.3 (e.g., large prime values of k). However,
this construction can clearly achieve every k of the form 22ifor some integer i, so a more precise
statement of the above theorem would be that there exist an in�nite family {Cki}∞i=0 for ki = 22i .
In particular, we have that ki+1 = k2

i . It turns out that we can do better, namely, construct a
family {Cki}∞i=0 for a sequence that satis�es ki+1 = (1 + o(1)) · ki, by choosing the message length
k0 of the initial CWP in a more clever way. Details follow.
The current construction of Theorem 6.3 can be viewed as follows: Given a natural number i, we
construct a CWP with message length 22i by starting from a CWP of initial message length 2ci and
then applying i− log (ci) iterations of Theorem 6.1. Instead, we can consider a construction that
given two natural numbers i and 1 ≤ j ≤ 22ci − 2ci, starts from a CWP of initial message length
2ci + j and then applies i − log (ci) iterations of Theorem 6.1. This yields a CWP with message
length ki,j def

= (2ci + j)
2i/(ci). A straightforward calculation shows that if one sorts the values ki,j in

lexicographical order of (i, j), then the quotient between two succesive values of ki,j is 1 + 2−(c−1)·i.

6.2 From CWPs to LTCs
We now derive LTCs from the CWPs of Theorem 6.3. Since we want our LTCs to be linear, we
�rst need to de�ne another property of CWPs.

De�nition 6.6. A CWP C : Fk → Fn with proof length m and veri�er V is said to have linear
proofs if and only if there exists a k×m matrix P such that for every x ∈ Fk it holds that x · P is
a proof string of C(x). We refer to P as the proof matrix of C.

It is easy to prove that the CWPs of the main construction (Theorem 6.3) have linear proofs,
by noting that the initial CWP of the construction has linear proofs (since it has no proofs) and

53

that the linearity of the proofs is preserved in every iteration. Furtheremore, the algorithm of
Theorem 6.3 can be modi�ed to output the proof matrix of the CWP, in addition to its generating
matrix and veri�er. We can now use the following transformation from CWPs to LTCs, which is
implicit in prior works (see, e.g., [GS02, Sec. 5] and [BGHSV04, Sec. 4.1]).

Theorem 6.7. Let C : Fk → Fn be a (q, ε, r)-CWP with relative distance δ, and let τ > 0 be an
arbitrarily small constant. Then there exists locally testable code C ′ with message length k, block
length O(n+ q · 2r), relative distance Ω (δ), query complexity max {q, 2}, distance threshold τ and
rejection probability Ω (ε), where the constants in the Big-O/Ω notation depend on τ . Furthermore,
if C has linear proofs then C ′ is linear, and there exists a polynomial time algorithm that given
the generaring matrix, veri�er circuit and proof matrix of C, outputs the generating matrix and
veri�er circuit of C ′.

Proof Idea The most straightforward way to construct C ′ from C is de�ning C ′(x) = C(x)πC(x),
for every message x ∈ Fk, where πC(x) is a proof string of C(x). However, if the proof length of C
is much larger than its block length, this construction has two problems:

1. We are not guaranteed that the proof strings have good relative distance. That is, it is
possible that there are distinct codewords c1, c2 ∈ C such that πc1 = πc2 . In such a case,
the codewords c1πc1 and c2πc2 of C ′ may be very close, and so C ′ may have very low relative
distance.

2. We are not guaranteed that errors in the proof string are detected by the veri�er. That is,
consider the case the veri�er of C ′ is given oracle access to a string cπ′, where c ∈ C and π′

is very far from πc. In such a case, cπ′ may be very far from C ′, but the veri�er of C is not
guaranteed to reject cπ′ at all.

The solution to both problems is to use many copies of the codeword such that their length
dominates the length of the resulting codeword. That is, we de�ne

C ′(x) = C(x) . . . C(x)︸ ︷︷ ︸
`

πC(x) (3)

54

such that ` · |C(x)| �
∣∣πC(x)

∣∣. De�ning C ′ this way ensures that any harm caused by the proof
strings is absorbed by the codewords. For example, note that even if πc1 = πc2 for some distinct
codewords c1, c2 ∈ C, the corresponding codewords c1 . . . c1πc1 and c2 . . . c2πc2 of C ′ are guaranteed
to be very far, because those codewords di�er on a lot of coordinates in the c1 . . . c1 and c2 . . . c2

part, and this part dominates the πc1 and πc2 part.

Proof of Theorem 6.7 Without loss of generality, assume that all the proof strings of C are of
lengthm = 2r ·q, and let ` = (d2/τe−1)·dm/ne. For every c ∈ C, �x some speci�c proof string of c
and denote it by πc. For every message x ∈ Fk, we de�ne C ′(x) to be the concatenation of ` copies
of C(x) and one copy of πC(x), as in Equation 3. The code C ′ has block length `n+m = O(n+q ·2r).
Furthermore, C ′ has relative distance of at least (1− τ/2) · δ = Ω(δ), since for every two messages
x 6= y ∈ Fk, each copy of C(x) in C ′(x) di�ers from the corresponding copy of C(y) in C ′(y)

on δ-fraction of their coordinates, and those copies contribute at least (1 − τ/2)-fraction of the
coordinates of C ′(x) and C ′(y). It should also be clear that if C has linear proofs then C ′ is linear,
provided that we �xed πC(x) = x · P where P is the proof matrix of C.

We turn to de�ne the veri�er V ′ of C ′. Let V denote the veri�er of C. When given oracle
access to a tested string w ∈ F`n+m the veri�er V ′ views w as composed of ` strings w1, . . . , w` of
length n and another string π of length m. With probability 1

2
, the veri�er V ′ emulates V w1,π and

accepts if and only if V w1,π accepts. Otherwise, V ′ chooses i ∈ [n] and j ∈ [`] uniformly at random
and accepts if and only if w1

i = wji .
The query complexity of C ′ is clearly max {q, 2}. We show that V ′ rejects strings that are

τ -far from C ′ with probability at least 1
8
· τ · ε. Let w ∈ F`n+m be a string that is τ -far from C ′,

and let w1, . . . , w` and π be as in the previous paragraph. Let c ∈ C be a codeword of C such
that δC(w1) = δ(w1, c). Let c′ be the codeword of C ′ that consists of ` copies of c and of one
copy of πc. We know that w is τ -far from C ′ so in particular δ(w, c′) ≥ τ . Since the coordinates
of π form at most τ/2-fraction of all the coordinates of w, the relative distance between the
concatenation of w1, . . . , w` and the concatenation of ` copies of c must be at least τ

2
. This implies

that Ej∈[`] [δ(wj, c)] ≥ τ/2.
Suppose that V ′ is given oracle access to w. If δC(w1) ≥ 1

4
·τ , then the emulation of V w1,π rejects

with probablity at least 1
4
· τ · ε, and therefore V ′ rejects with probability at least 1

8
· τ · ε = Ω(ε), as

required. On other hand, suppose that δC(w1) = δ(c, w1) < 1
4
· τ . Then, by the triangle inequality,

55

it holds that
Ej∈[`]

[
δ(wj, w1)

] ≥ Ej∈[`]

[
δ(wj, c)

]− Ej∈[`]

[
δ(w1, c)

]
>

1

4
· τ

and therefore
Pr

i∈[n],j∈[`]

[
w1
i 6= wji

]
>

1

4
· τ

Now, with probability 1
2
, the veri�er V ′ chooses i ∈ [n] and j ∈ [`] uniformly at random and checks

that w1
i = wji . It follows that V ′ rejects with probability at least 1

2
· 1

4
· τ = Ω(ε), as required. �

By applying Theorem 6.7 to the CWPs of the main construction (Theorem 6.3), we obtain the
following construction of LTCs:

Theorem 6.8. For every two constants c > 0 and τ > 0 the following holds: There exists an
in�nite family of LTCs {Ck}k such that Ck has block length k · poly (log k), relative distance Ω(1),
query complexity poly (log k), distance threshold τ , and rejection probability 1/poly (log k). Fur-
thermore, the codes in the family are linear and there exists a probabilistic algorithm that on input
k, runs in time poly (k) and outputs with probability 1 − exp (−Ω (logc k)) the generating matrix
and veri�er circuit of Ck.

Remark 6.9. Note that the proof of Theorem 6.7 also works for sub-constant values of τ , in which
case we have block length O ((n+ q · 2r) /τ), relative distance Ω (τ · δ) and rejection probability
Ω (τ · ε).

6.3 Obtaining CWPs with constant query complexity
The CWPs and LTCs we obtained in Theorems 6.3 and 6.8 have query complexity poly (log k).
In this section we show that the query complexity of our CWPs and LTCs can be reduced to a
constant. We begin with proving a general query reduction theorem for CWPs. In order to prove
the theorem, we will need the following de�nition.

De�nition 6.10. Let C be a (q, ε, r)-CWP with a veri�er V . We say that V is a linear veri�er if
when given coin tosses ω ∈ {0, 1}r and oracle access to any oracle, the veri�er V acts as follows:
The veri�er V �rst chooses a sequence of vectors v1, . . . , v` ∈ Fq that depend only on ω. Then, V
queries the tested string and the proof string on q locations that depend only on ω. Let a ∈ Fq

56

be the vector that contains the answers to those queries. The veri�er V accepts if and only if
〈a, vi〉 = 0 for all 1 ≤ i ≤ `.

We can now state and prove the query reduction theorem:

Theorem 6.11 (Query Reduction). Let C be a (q, ε, r)-CWP with a linear veri�er V . Then there
exists a linear veri�er V ′ with respect to which C is a CWP with query complexity 3, rejection
ratio ε/ poly (q), and randomness complexity r + O (log q). Furthermore, V ′ can be computed in
polynomial time from V . Finally, if C has linear proofs with respect to V then it also has linear
proofs with respect to V ′, and the proof matrix of C with respect to V ′ can be computed in polynomial
time from the veri�er V , the generating matrix and proof matrix of C with respect to V .

The proof of Theorem 6.11 is based on a transformation of systems of linear equations to
systems in which every equations contains only three variables. For example, consider the following
equation:

X1 +X2 +X3 +X4 +X5 +X6 = 0

By adding auxiliary variables Y1, Y2, Y3, one can create the following �equivalent� system of linear
equations:

X1 +X2 − Y1 = 0

X3 +X4 − Y2 = 0

X5 +X6 − Y3 = 0

Y1 + Y2 + Y3 = 0

By generalizing this idea, one can prove the following proposition:

Proposition 6.12. Given a system A of at most ` linear equations over variables X1, . . . , X`, we
can construct a new system A′ of linear equations that has the following properties:

• A′ is a system of linear equations over the variables X1, . . . , X` and also over new auxiliary
variables Y1, . . . , Y`′ for `′ = poly (`).

• A′ contains at most poly (`) equations.

57

• Every equation of A′ contains at most three variables.

• (x1, . . . , x`) ∈ F` is a solution to the system A if and only if there exists a (y1, . . . , y`′) ∈ F`′
such that (x1, . . . , x`, y1, . . . , y`′) is a solution the system A′. Furthermore, for every 1 ≤ i ≤
`′, the value yi is a linear combination of the values x1, . . . , x`.

Proof of Theorem 6.11 Let C and V be as in Theorem 6.11. This means that, on every given
sequence of coin tosses, V chooses some system of linear equations and checks that the answers
to its queries form a solution to this system. For every sequence of coin tosses ω ∈ {0, 1}r, let Aω
denote the system that V chooses given ω. Note that without loss of generality, we can assume that
Aω contains at most q equations, since Aω is a system of linear equations over q variables. Let A′ω
denote result of applying Proposition 6.12 to Aω, and let Yω,1, . . . , Yω,q′ (for q′ = poly(q)) denote
the corresponding auxiliary variables. We turn to de�ne the veri�er V ′ and its corresponding proof
strings:

• The proof strings of V ′: Let c ∈ C be a codeword and let πc be the proof string of c
with respect to V . For every ω ∈ {0, 1}r let (xω,1, . . . , xω,q) ∈ Fq denote the answers that
V gets to its queries when given coin tosses ω and oracle access to c and πc. We know that
(xω,1, . . . , xω,q) is a solution to the system Aω, and therefore by Proposition 6.12 there exists
a vector (yω,1, . . . , yω,q′) ∈ Fq′ such that (xω,1, . . . , xω,q, yω,1, . . . , yω,q′) is a solution the system
A′ω. We now de�ne the proof string of c with respect to V ′ to consist of πc and of the tuple
(yω,1, . . . , yω,q′) ∈ Fq′ for every ω ∈ {0, 1}r. Since for every ω ∈ {0, 1}r and every 1 ≤ i ≤ q′

the value yω,i is a linear combination of the values xω,1, . . . , xω,q, it follows that C has linear
proofs with respect to V ′.

• The veri�er V ′: Given oracle access to a tested string w and a proof string π, the veri�er
V ′ �rst tosses a sequence ω ∈ {0, 1}r of coins and emulates V to �nd Aω. The veri�er V ′ then
computes the system A′ω. Finally, V ′ chooses a single equation of A′ω uniformly at random
and checks that it is satis�ed by w and π. Note that since the equation of A′ω contains at most
three variables, the latter check can be done using at most three queries. Furthermore, since
A′ω contains at most poly (q) equations, it follows see that V ′ has rejection ratio ε/ poly (q)

and randomness complexity r +O (log q).

It follows that C with respect to V ′ is a CWP with the parameters as claimed. �

58

We turn to apply Theorem 6.11 to the CWPs of the main construction (Theorem 6.3). We
note that the CWPs of the main construction have linear veri�ers, since the initial CWP of the
construction has a linear veri�er and the linearity of the veri�er is preserved in every iteration. We
obtain the following construction of CWPs with constant query complexity:

Theorem 6.13. For every constant c > 0 the following holds: There exists an in�nite family of
CWPs {Ck}k such that Ck has block length O(k), relative distance Ω(1), query complexity O(1),
rejection ratio 1/ poly (log k) and randomness complexity log k + O(log log k). Furthermore, the
codes in the family are linear and have linear proofs, and there exists a probabilistic algorithm that
on input k, runs in time poly (k) and outputs with probability 1− exp (−Ω (logc k)) the generating
matrix, proof matrix and veri�er circuit of Ck.

Using Theorem 6.7, we obtain LTCs with constant query complexity:

Theorem 6.14. For every two constants c > 0 and τ > 0 the following holds: There exists an
in�nite family of LTCs {Ck}k such that Ck has block length k · poly (log k), relative distance Ω(1),
query complexity O(1), distance threshold τ and rejection probability 1/poly (log k). Furthermore,
the codes in the family are linear and there exists a probabilistic algorithm that on input k, runs in
time poly (k) and outputs with probability 1− exp (−Ω (logc k)) the generating matrix and veri�er
circuit of Ck.

The role of linear veri�ers We note that it is possible to reduce the query complexity of
CWPs without assuming that the veri�er is linear, using roughly the following argument: Suppose
we want to reduce the query complexity of a CWP C that has a veri�er V . Assume �rst that C
is over binary alphabet rather than over the alphabet F. Then, for every sequence of coin tosses
ω ∈ {0, 1}r, we compute a SAT formula Φω whose variables correspond to the queries of V on
coin tosses ω, such that V would have accepted the answers to its queries if and only if those
answers satis�ed Φω. We then transform Φω to a 3-SAT formula Φ′ω by adding auxiliary variables.
Finally, we de�ne a new veri�er V ′ that chooses a random clause of Φ′ω and checks that the clause
is satis�ed. Obviously, C with respect to V ′ has query complexity 3. Now, if C is a CWP over the
alphabet F (and not over a binary alphabet), we can represent every symbol of F by some binary
string and proceed as before.

59

The problem with the this argument is that the CWPs that result from this transformation
may not have linear proofs. Thus, the assumption that the CWP has a linear veri�er, while not
necessary to do query reduction, is needed in order to to ensure that the resulting CWP will have
linear proofs.

Remark 6.15. We comment that the linearity of the veri�er of the main construction (Theorems
6.3 and 6.8) can also be deduced from a result of Ben-Sasson et al. [BHR05] showing that every
linear locally testable code has a linear veri�er. However, using such a strong result is unnecessary,
since it is easy to give a direct proof of the linearity of our veri�er.

6.4 Obtaining CWPs with constant rejection ratio
The CWPs we obtained in Theorems 6.3 and 6.13 have rejection ratio of only Ω (1/ poly (log k)),
and thus translated into LTCs with rejection probability Ω (1/ poly (log k)). In this section we
use the gap ampli�cation technique of [D07] to obtain CWPs with constant rejection ratio while
maintaing the constant query complexity and the randomness complexity of log k + O(log log k).
Such CWPs translate into LTCs with constant rejection probability that maintain the block length
of k · poly (log k).

Basically, the gap ampli�cation theorem of [D07] provides a transformation that increases the
rejection ratio of a CWP by a constant factor while increasing its randomness complexity by a
constant additive term. By applying this transformation to our CWPs for O(log log k) times, we
get CWPs of constant rejection ratio, while maintaining the randomness complexity of log k +

O(log log k) (though the constant inside the Big-O notation will be a larger one). Implementing
this idea requires handling two issues:

1. Since the gap ampli�cation theorem of [D07] was proved in a somewhat di�erent setting,
there are few minor technical issues that need to be handled before we can apply it to our
CWPs. Those issues are handled in Section 6.4.1.

2. The gap ampli�cation theorem of [D07] does not preserve the linearity of the proof part of
the CWPs. In order to obtain CWPs of constant rejection ratio that have linear proofs, we
need to modify the proof of [D07]. This is done in Sections 6.4.2 and 6.4.3.

60

We note that this subsection is less detailed than the rest of this paper, since writing the full
details would have required us to rewrite large parts of [D07]. It is not di�cult, however, to �ll-up
the missing details, based on [D07].

6.4.1 Obtaining CWPs with non-linear proofs and constant rejection ratio

In order to state the gap ampli�cation theorem of [D07], we �rst extend the de�nition of CWPs
to allow CWPs whose proof strings are over a di�erent alphabet than their codewords.

De�nition 6.16. We say that a CWP C has proof alphabet Σ if its proof strings are over the
alphabet Σ (which may or may not be F). The veri�er of such a CWP is given oracle access to
two oracles: The oracle of the tested string, which is over the alphabet F, and the oracle of the
proof string, which is over the alphabet Σ.

The gap ampli�cation theorem of [D07] we need is stated and proved for PCPPs (a.k.a Assign-
ment Testers). Nevertheless, the following variant of this theorem is implicit in [D07]:

Theorem 6.17 (implicit in [D07, Theorem 9.1]1). There exists a constant ε0 > 0 such that for
every natural number e the following holds: Let C be a CWP with a veri�er V , rejection ratio ε,
randomness complexity r, query complexity 2 and proof alphabet Fe. Then, there exists a veri�er V ′

with respect to which C is a CWP with rejection ratio at least min {2ε, ε0}, randomness complexity
r + O(1), query complexity 2 and proof alphabet Fe. Furthermore, there exists a polynomial time
algorithm that when given as input the veri�er V , outputs the veri�er V ′.

We comment that in order to derive Theorem 6.17 from the proof of [D07, Theorem 9.1], one
should pay attention to the following issues:

1. Theorem 9.1 of [D07] is stated for PCPPs of NP-complete sets. However, the proof of [D07,
Theorem 9.1] does not rely on the fact that the input veri�er is a veri�er for a PCPP of an
NP-complete set. In particular, the algorithm claimed in Theorem 6.17 is the same as the
algorithm used in the proof of of [D07, Theorem 9.1], and it can be shown that if we feed
this algorithm with a veri�er of a CWP (rather than a veri�er of an NP-complete set), then
the output will be a veri�er of a CWP.

1There seems to be a gap in the proof of [D07, Theorem 8.1]. However, this gap can be �lled, see [GM07b] for
details.

61

2. Theorem 8.1 of [D07] is originally stated only for PCPPs of sets of binary strings, while we
want to use it for codes over the alphabet F. However, the proof of [D07, Theorem 9.1] works
also for sets of strings over F.

We would like to apply Theorem 6.17 to our CWPs. However, Theorem 6.17 is only stated for
CWPs with query complexity 2, while the CWPs we constructed in Theorem 6.13 have query
complexity 3. This problem is solved the following well-known technique (see, e.g., [FRS88]):

Lemma 6.18. Let C be a (q, ε, r)-CWP with a veri�er V . Then, there exists a veri�er V ′ with
respect to which C is a CWP with query complexity 2, proof alphabet Fq, rejection ratio 1

q
· ε and

randomness complexity r+log q. Furthermore, there exists a polynomial time algorithm that, when
given V as input, outputs the veri�er V ′.

Proof We include the proof of this lemma for the sake of self-containment. We de�ne the proof
strings of C with respect to V ′ as follows. Let c ∈ C and let πc be its proof string with respect to
V . The proof string π′c of c with respect to V ′ consists of two parts:

1. The string πc, viewed as a string over Fq using some simple embedding of F into Fq.

2. For every sequence of coin tosses ω ∈ {0, 1}r, the proof string π′c contains a symbol in Fq that
contains the q answers that V would have recieved if it was given coin tosses ω and oracle
access to c and πc. Let iω denote the coordinate of this symbol in π′c.

Given oracle access to a string w and proof string π′, the veri�er V ′ acts as follows. V ′ �rst tosses
random coins ω ∈ {0, 1}r, and queries π′ at iω. Let aω denote the answer V ′ recieves to its query,
and let i1, . . . , iq the coordinates that V would have queried on coin tosses ω. The symbol aω is
supposed to contain the values of w and π′ on the coordinates i1, . . . , iq. Now, V ′ �rst checks that
V would have accepted on coin tosses ω and given the vector aω as answers to its queries. Then,
V ′ chooses j ∈ [q] uniformly at random and checks that the j-th element of aω equals to wij (if ij
is a coordinate of the tested string) or to (π′)ij (if ij is a coordinate of the proof string). It is not
hard to see that C with respect to V ′ is a CWP with the claimed parameters. �

We now obtain CWPs with constant rejection ratio as follows: First, we apply Lemma 6.18 to
the CWPs of Theorem 6.13, and obtain CWPs with proof alphabet F3, query complexity 2 and

62

related rejection ratio and randomness complexity. Next, we apply Theorem 6.17 to the latter
CWPs for O(log log k) times and obtain CWPs with rejection ratio Ω(1), randomness complexity
log +O(log log k), query complexity 2 and proof alphabet F3. Finally, we modify the aforemen-
tioned CWPs to have proof alphabet F by �unbundling� every symbol in F3 to a sequence of 3

symbols in F. The result is CWPs with query complexity 6, rejection ratio Ω(1), and randomness
complexity log k +O(log log k), as desired.

Unfortunately, the CWPs constructed this way do not have linear proofs, since Theorem 6.17
does not maintain the linearity of the proof strings. In order to maintain the linearity of the proof
strings, we have to modify the proof of [D07].

6.4.2 Review of additional known techniques

Before modifying the proof of [D07], we review some known techniques that will be useful in the
proof. First, we de�ne a generalization of the Hadamard code to arbitrary �nite �elds.

De�nition 6.19. The |F|-ary Hadamard code, denoted H, encodes a message x ∈ Fk by the
codeword H(x) ∈ F|F|k de�ned by

H (x)i = 〈x, i〉 for every i ∈ Fk

That is, H(x) consists of the inner products of x ∈ Fk with all the vectors in Fk.

It is not hard to see that the |F|-ary Hadamard code has relative distance |F|−1
|F| . Furtheremore,

it is well-known that the |F|-ary Hadamard code is strong localy testable (see De�nition 5.9):

Lemma 6.20. The |F|-ary Hadamard code is strong locally testable with query complexity 3, re-
jection ratio 1/6 and randomness complexity 2(k + 1) log |F|.

Proof The veri�er of the |F|-ary Hadamard code is de�ned as follows: Given oracle access to a
tested string w ∈ F|F|k , the veri�er chooses two vectors u, v ∈ Fk and two scalars a, b ∈ F uniformly
at random, and checks that

a · wu + b · wv = wa·u+b·v

The analysis of this veri�er follows from a simple variant of the proof of Blum et. al. [BLR93].
For completeness, we include this analysis in Appendix B. �

63

The following self-correction property of the |F|-ary Hadamard code is the key property we use
in the modi�ed proof of [D07]. Intuitively, this proposition means that given oracle access to the
|F|-ary Hadamard encoding of a string x ∈ Fk, one can retrieve the inner product of x with any
vector in Fk using only 2 queries, even if the oracle is slightly corrupted. We will use this property
to emulate, using very few queries, veri�ers that check linear conditions.

Lemma 6.21 (Self-correction of the |F|-ary Hadamard). There exists a probabilistic polynomial
time oracle machine that on input v ∈ Fk and oracle access to any w ∈ F|F|k such that δ (w,H(x)) <
1
2
for some x ∈ Fk, outputs 〈x, v〉 with probability at least 1 − 2 · δ (w,H(x)). Furthermore, the

machine makes at most 2 non-adaptive queries to its oracle and tosses at most k log |F| coins.
Proof On input v ∈ Fk and oracle access to w, the machine �rst chooses a vector u ∈ Fk uniformly
at random, then queries w at the coodinates u and v − u, and �nally outputs wu + wv−u.

The vectors u and v − u are uniformly distributed over Fk, and we therefore have that both
Pru [wu 6= H (x)u] and Pru

[
wv−u 6= H (x)v−u

]
are upper bounded by δ (w,H(x)). By the union

bound, with probability at least 1 − 2 · δ (w,H(x)) we have that both wu = H (x)u and wv−u =

H (x)v−u hold, which implies that

wu + wu+v = H (x)u +H (x)v−u = 〈x, u〉+ 〈x, v − u〉 = 〈x, v〉

It follows that the machine outputs 〈x, v〉 with probability at least 1−2·δ (w,H(x)), as required. �

We also use the following notation.

Notation. Let C be a CWP with a linear veri�er V . Recall that V is a linear veri�er if and only
if on every sequence of coin tosses, it chooses some system of linear equations, and then queries
its oracle and checks that the answers it gets satisfy the system. We say that V checks at most
` equations if and only if on every sequence of coin tosses, the system that V chooses contains at
most ` equations.

The following Lemma allows us to reduce the number of equations that a linear veri�er checks
to one, while roughly preserving the parameters of the CWP.

Lemma 6.22. Let C be a (q, ε, r)-CWP with a linear veri�er V that checks at most ` equations.
Then, V can be transformed in polynomial time to a linear veri�er V ′ that checks at most one

64

equation with respect to which C is a CWP with query complexity q, rejection ratio Ω (ε) and
randomness complexity r +O(`).

Proof The proof strings of C with respect to V ′ are de�ned to be the same as its proof strings
with respect to V . The veri�er V ′ is de�ned as follows: When given oracle access to any oracle,
V ′ �rst emulates V to �nd the system of linear equations that V checks, and chooses a linear
combination of those linear equations uniformly at random. Then, V ′ makes the same queries as
V , and checks that the answers it gets satisfy the linear combination of the equations. Clearly, V ′

checks at most one equation. The query complexity and randomness complexity of V ′ are obvious
from its description, and it is not hard to prove that the V ′ has rejection ratio |F|−1

|F| · ε. �

6.4.3 Maintaining linear proofs

The proof of [D07, Theorem 9.1] consists of two main steps:

1. First, the rejection ratio of the CWP is increased at the expense of increasing the proof
alphabet's size. This step is called �Graph Powering�2.

2. Next, PCP composition is applied to the CWP in order to reduce the size of the proof
alphabet.

The reason that the resulting CWP does not necessarily have linear proofs is the use of the PCP
composition technique. In order to solve this problem, we observe that if the original CWP has
a linear veri�er, then we can avoid the use of PCP composition and reduce the proof alphabet
size by concatenating the proof strings with the |F|-ary Hadamard code. The concatenation with
the |F|-ary Hadamard preserves the linearity of the proof strings, as desired. The reason we can
use concatenation with the |F|-ary Hadamard instead of PCP composition is that we can use the
self-correction property of the the |F|-ary Hadamard (Lemma 6.21) to emulate the action of a
linear veri�er on symbols of the big alphabet. Details follow.

We begin by making the following de�nitions:
2Actually, the proof of [D07] divides this step into two di�erent steps, called �Preprocessing� and �Graph Pow-

ering�. We ignore this minor technical issue.

65

De�nition 6.23. Let C be a CWP with proof alphabet Fe. We say that C has F-linear proofs if
it has linear proofs when viewing its proof strings as vectors over F rather than Fe. In such a case
we say that a matrix P is the proof matrix of C if P is the proof matrix of C as per De�nition 6.6
when viewing its proof strings as vectors over F.

De�nition 6.24. Let C be a CWP with a veri�er V and proof alphabet Fe. We say that V is an
F-linear veri�er if it treats the answers to its queries as vectors over F and checks that their elements
satisfy linear equations over F. Alternatively, we can view C as a CWP with proof alphabet F,
and view V as querying e symbols over F whenever it needs to query a symbol in Fe. We say that
V is an F-linear veri�er if it is a linear veri�er when taking the latter view.

For an example of the two latter notions, note that if apply Lemma 6.18 to a CWP C (with
proof alphabet F) that has linear proofs and a linear veri�er, the result is a CWP with F-linear
proofs and F-linear veri�er.

The following lemma summarizes the properties of the Graph Powering step that are relevant
to us:

Lemma 6.25 (�Graph Powering�, implicit in [D07, Theorem 9.1]). There exists d ∈ N such that
for every t ∈ N the following holds: Let C be a CWP with veri�er V , query complexity 2, proof
alphabet Fe, rejection ratio ε and randomness complexity r. Then there exists a veri�er Vt with
respect to which C is a CWP such that

1. C has rejection ratio Ω
(
min

{√
t · ε, 1/t}), proof alphabet Fe·dt/2, randomness complexity

r +O(t) and query complexity 2.

2. If C has linear proofs with respect to V then it has F-linear proofs with respect to Vt.

3. If V is a linear veri�er then Vt is an F-linear veri�er.

Furthermore, Vt can be computed in polynomial time from V . Finally, if C has linear proofs with
respect to V then the proof matrix of C with respect to Vt can be computed in polynomial time from
the veri�er V , the generating matrix of C and the proof matrix of C with respect to V .

We mention that [D07] only deals with Item 1, but it is easy to verify that Items 2 and 3 hold for
her construction. We can now prove a �linear version� of the gap ampli�cation theorem for CWPs
(Theorem 6.17), by replacing PCP composition by concatenation with the |F|-ary Hadamard:

66

Theorem 6.26. There exist constants q0 ≥ 3 and ε0 > 0 such that the following holds: Let C be
a (q0, ε, r)-CWP that has linear proofs and a linear veri�er V . Then there exists a linear veri�er
V ′ with respect to which C is a CWP with linear proofs, rejection ratio at least min {2ε, ε0},
randomness complexity r+O(1), and query complexity q0. Furthermore, there exists a polynomial
time algorithm that, when given as input the generating matrix of C, the veri�er V , and the proof
matrix of C with respect to V , outputs the veri�er V ′ and the proof matrix of C with respect to V ′.

Proof Idea In order to prove the theorem, we �rst apply Graph Powering to C with a large
parameter t. This increases the rejection ratio of C and also increases its proof alphabet. Let Fe′

and Vt denote the proof alphabet and veri�er of C after the Graph Powering. The challenge is to
reduce the proof alphabet of C back to F while not decreasing its rejection ratio by too much.
In order to do so, we concatenate the proof strings that are over the alphabet Fe′ with the |F|-ary
Hadamard code. We then observe that the fact that Vt is an F-linear veri�er implies that, while an
answer to a query of Vt is a symbol in Fe′ , the veri�er Vt only needs to know a linear combination
of this answer in order to decide whether to accept or not. Thus, if we have oracle access to the
|F|-ary Hadamard encoding of each of the answers to Vt's queries, or even to a slightly corrupted
encoding, then we can use the self-correction of the |F|-ary Hadamard (Lemma 6.21) to obtain the
linear combinations that Vt needs and use them to emulate the operation of Vt. We can also make
sure that we are indeed given access to a (slightly corrupted) |F|-ary Hadamard encoding, using
the local testability of the |F|-ary Hadamard (Lemma 6.20).
It follows that we can emulate the operation of Vt on the proof strings that were concatenated with
the |F|-ary Hadamard, and it can be shown that this emulation does not decrease the rejection
ratio of C by too much. By choosing t to be a su�ciently large constant, we get the desired
parameters. Details follow.

Proof Let q0 and t be some large enough integers to be �xed later, and let ε0 be some constant to
be �xed later. Let C be a (q0, ε, r)-CWP that has linear proofs and a linear veri�er. We begin by
reducing the query complexity of C to 2 using Lemma 6.18, and then applying the Graph Powering
(Lemma 6.25) with the parameter t. Let Vt denote the resulting veri�er. With respect to Vt, the
CWP C has proof alphabet Fq0·dt , query complexity 2 and rejection ratio Ω

(
min

{√
tε, 1/t

})
.

Observe that the veri�er Vt is an F-linear veri�er. We can assume without loss of generality

67

that Vt checks at most 2 · q0 · dt linear equations (over F), since its queries contain at most 2 · q0 · dt
values in F. We modify Vt so it checks at most one linear equation (by using Lemma 6.22), and
obtain a new veri�er V ′t . Observe that V ′t is an F-linear veri�er and that C with respect to V ′t has
F-linear proofs.

We view the veri�er V ′t as follows: Recall that C with respect to V ′t has proof alphabet Fq0·dt .
For simplicity, we assume that the answers to the queries of V ′t are always elements of Fq0·dt , where
the symbols of the tested string are embedded into Fq0·dt using a trivial linear embedding. On a
sequence of coins tosses ω, the veri�er V ′t �rst chooses two vectors vω1 , vω2 ∈ Fq0·dt that depend only
on ω. The veri�er V ′t then makes two queries to its oracles, recieving answers x1, x2 ∈ Fq0·dt , and
accepts if and only if < vω1 , x1 > + < vω2 , x2 >= 0.

We are now ready to de�ne the veri�er V ′. We de�ne the proof strings of V ′ to be the
concatenation of the proof strings of V ′t with the |F|-ary Hadamard. That is, for every codeword
c whose proof string with respect to V ′t is πt, the proof string π′ of c with respect to V ′ is a string
over F that consists of the |F|-ary Hadamard encoding of every symbol of πt (recall that every such
symbol is an element of Fq0dt). Observe that C with respect to V ′ has linear proofs, since it has
F-linear proofs with respect to V ′t .

Given oracle access to a tested string w and to a proof string π′, the veri�er V ′ acts as follows:

1. The veri�er V ′ �rst emulates V ′t on a sequence of coins ω. Let iω1 and iω2 be the coordinates
of that V ′t queries on coins ω, and assume that both iω1 and iω2 belong to the proof string (the
other cases can be handled similiarly). The veri�er V ′ �nds iω1 and iω2 and also the vectors
vω1 and vω2 de�ned above.

2. Let a1 and a2 denote the blocks of π′ that are supposed to be |F|-ary Hadamard encoding of
the coordinates iω1 and iω2 . The veri�er V ′ uses the local testability of the |F|-ary Hadamard
(Lemma 6.20) to check that a1 and a2 are close to legal codewords of the |F|-ary Hadamard,
and rejects otherwise.

3. Let x1, x2 ∈ Fq0·dt be such that a1 and a2 are close to H(x1) and H(x2) respectively. The
veri�er V ′ uses the self-correction of the |F|-ary Hadamard (Lemma 6.21) to retrieve the
inner products 〈vω1 , x1〉 and 〈vω2 , x2〉 and accepts if and only if

〈vω1 , x1〉+ 〈vω2 , x2〉 = 0

68

Note that the veri�er V ′ needs to make only a constant number of queries in order to use local
testing and self-correction of the |F|-ary Hadamard, and in particular its query complexity is a
constant that does not depend on t and on the original query complexity of V . We can therefore
�x q0 to be the query complexity of V ′. Furthermore, it is not hard to prove that the rejection
ratio of V ′ is at least a constant factor times the rejection ratio of V ′t , so V ′ has rejection ratio of
at least Ω

(
min

{√
t · ε, 1/t}). Now, �x t to be a large enough constant so that V ′ has rejection

ratio min {2ε, 1/t}, and set ε0 to be 1/t. Finally, note that V ′ has randomness complexity r+O(1)

(where the constant in the Big-O notation depends on q0 and t). It follows that C with respect to
V ′ is a CWP with the required parameters. �

Remark 6.27. Note that the reason we needed to reduce the number of equations that Vt checks
(Lemma 6.22) is as follows: If we had not applied Lemma 6.22 to Vt, the veri�er V ′ would have
needed to check that 2 · q0 · dt linear equations are satis�ed, and thus its query complexity would
have become at least 2 · q0 · dt. However, we need the query complexity of V ′ to be independent of
t and of the initial query complexity.

We can now apply Theorem 6.26 to the CWPs of Theorem 6.13 for O (log log k) times and
obtain the following theorem:

Theorem 6.28. For every constant c > 0 the following holds: There exists an in�nite family of
CWPs {Ck}k such that Ck has block length O(k), relative distance Ω(1), query complexity O(1),
rejection ratio Ω(1), and randomness complexity log k + O(log log k). Furthermore, the codes in
the family are linear and have linear proofs, and there exists a probabilistic algorithm that on input
k, runs in time poly (k) and outputs with probability 1 − exp (−Ω (logc k)) the generating matrix,
proof matrix and veri�er circuit of Ck.

Using Theorem 6.7, we obtain the following LTCs:

Theorem 6.29. For every two constants c > 0 and τ > 0 the following holds: There exists
an in�nite family of LTCs {Ck}k such that Ck has block length k · poly (log k), relative distance
Ω(1), query complexity O(1), distance threshold τ , and rejection probability Ω(1). Furthermore,
the codes in the family are linear and there exists a probabilistic algorithm that on input k, runs in
time poly (k) and outputs with probability 1− exp (−Ω (logc k)) the generating matrix and veri�er
circuit of Ck.

69

Remark 6.30. Note that replacing the PCP composition technique with the code concatenation
technique allows us to avoid using PCP machinery in this part of our construction. Thus, changing
the proof of [D07] serves our goal of constructing LTCs without using PCP machinery, in addition
to preserving the linearity of the proof strings.

6.5 The size of our veri�ers
So far we have ignored the size of the veri�er circuits of our CWPs and LTCs, but of course, since
they are produced in time poly (k) their size is at most poly (k). In this subsection we show that
the veri�ers of our CWPs and LTCs are much more e�cient, namely, their size is poly (log k).

We �rst note that the CWPs of the main construction (Theorem 6.3) have veri�ers of size
poly (log k), by observing that the initial CWP of the construction has a veri�er of size poly (log k),
and that every iteration increases the size of the veri�er by an additive term of at most poly (log k).
The only issue that one should be careful about is that the expander graph used in the distance
ampli�cation operation should be strongly explicit3. Next, we observe that the CWPs that have
constant query complexity (Theorem 6.13) have veri�ers of size poly (log k), by noting that the
query reduction theorem (Theorem 6.11) increases the size of the veri�er by an additive term that
is polynomial in the query complexity of the input veri�er.

Showing that the CWPs that have constant rejection ratio (Theorem 6.28) have veri�ers of
size poly (log k) is little more involved. The problem is showing that applying �Graph Powering�
(Lemma 6.25) to a veri�er does not increase its size by too much. In order to show it, we need the
following de�nition:

De�nition 6.31. Let C be a CWP with a veri�er V . A circuit W is called a reverse sampler for
V if when given as input a coordinate i, which may belong either to the tested string or to the
proof string, the circuit W outputs a list of all the sequences of coin tosses on which V queries the
coordinate i.
Recall that the proof of [D07] views veri�ers that have query complexity 2 as graphs, in which
every vertex correspond to a coordinate of the oracle and every edge corresponds to a possible

3A graph G on n vertices is said to be strongly explicit if there exists a circuit of size poly (logn) that, when
given as input a vertex v of G, outputs a list of all the neighbors of v in G. Needless to say, the vertices of such
graph must be of degree at most poly (logn).

70

check that the veri�er makes. Taking this view, a veri�er that has an e�cient reverse sampler
corresponds to a strongly-explicit graph.

By carefully following the proof of the Graph Powering (Lemma 6.25) in [D07], one can show
the following: If Lemma 6.25 is applied to a veri�er V of size s that has a reverse sampler W of
size w, then the resulting veri�er Vt is of size O(s + w) + poly (log k) and has a reverse sampler
Wt of size O(w) + poly (log k). Given this fact, it is can be shown that a similiar claim holds for
Theorem 6.26: If Theorem 6.26 is applied to a veri�er V of size s that has a reverse sampler W
of size w, then the resulting veri�er V ′ is of size O(s+w) + poly (log k) and has a reverse sampler
W ′ of size O(w) + poly (log k). To see it, observe that all that the veri�er of Theorem 6.26 does in
addition to emulating the veri�er of Lemma 6.25 is local testing and decoding of F-ary Hadamard
code of constant block length.

We turn to show that the CWPs of Theorem 6.28 have veri�ers of size poly (log k). The CWPs
of the main construction (Theorem 6.3) have reverse samplers of size poly (log k). The reason
is that the initial CWP has a trivial reverse sampler, and that a single iteration of the main
construction increases the size of the reverse sampler by an additive term of at most poly (log k)

(provided, as before, that a strongly explicit graph is used for the distance ampli�cation). It can
also be shown that the CWPs that have constant query complexity (Theorem 6.13) have reverse
samplers of size poly (log k). Now, recall that the CWPs of Theorem 6.28 are obtained by applying
Theorem 6.26 for O (log log k) times to the CWPs of Theorem 6.13 . By the discussion above, it
follows that the CWPs of Theorem 6.28 have veri�ers of size poly (log k).

We now state the strongest theorems we can prove:

Theorem 6.32. For every constant c > 0 the following holds: There exists an in�nite family of
CWPs {Ck}k such that Ck has block length O(k), relative distance Ω(1), query complexity O(1),
rejection ratio Ω(1) and randomness complexity log k+O(log log k). Furthermore, the codes in the
family are linear and have linear proofs, the size of veri�er circuit of Ck is bounded by poly (log k)

and there exists a probabilistic algorithm that on input k, runs in time poly (k) and outputs with
probability 1− exp (−Ω (logc k)) the generating matrix, proof matrix and veri�er circuit of Ck.

The following theorem follows by applying Theorem 6.7 to the latter CWPs and noting that
this theorem increases the size of the veri�er by an additive term of at most poly (log k).

71

Theorem 6.33. For every two constants c > 0 and τ > 0 the following holds: There exists
an in�nite family of LTCs {Ck}k such that Ck has block length k · poly (log k), relative distance
Ω(1), query complexity O(1), distance threshold τ and rejection probability Ω(1). Furthermore, the
codes in the family are linear, the size of veri�er circuit of Ck is bounded by poly (log k) and there
exists a probabilistic algorithm that on input k, runs in time poly (k) and outputs with probability
1− exp (−Ω (logc k)) the generating matrix and veri�er circuit of Ck.

7 Discussion and Open Problems

7.1 Variants of our construction
Integrating the query reduction and gap ampli�cation into the main construction We
point out a possible variant of our construction. We recall the structure of our construction: Our
main construction is iterative, where each iteration increases the query complexity and decreases
the proof rate and rejection ratio by constant factors. By applying O(log log k) iterations, the
main construction yields a CWP with query complexity poly (log k), rejection ratio 1/ poly (log k)

and proof rate 1/ poly (log k). Then, we apply query reduction and gap ampli�cation techniques
to reduce the query complexity to O(1) and to increase the rejection ratio of Ω(1).

Observe that, instead of applying the query reduction and the gap ampli�cation after the main
construction, we could have integrated those operations into the iterations of our main construction.
That is, we could have added the query reduction and the gap ampli�cation to the iteration as two
additional basic operations (in addition to the Tensor Product, Random Projection and Distance
Ampli�cation), and use them to maintain the query reduction and the rejection ratio of the CWP.
In such case, each iteration would have maintained the query complexity and the rejection ratio of
the CWP, and would have decreased the proof rate of the CWP by a larger constant factor, which
we could still a�ord. After applying O(log log k) iterations, this construction would have yielded
with a CWP with query complexity O(1), rejection ratio Ω(1) and proof rate 1/ poly (log k), like
our original consturction.

A simple construction of LTCs of block length poly (k) We point out that using the
query reduction and gap ampli�cation techniques of Section 6 (Theorems 6.11 and 6.26) one

72

can obtain a relatively simple construction of LTCs of block length poly (k): The construction
starts with any linear code C of message length k and block length poly (k), and views it as a
CWP with the trivial veri�er. With respect to this veri�er, C is a CWP with query complexity
poly (k), rejection ratio 1 and randomness complexity 0. The construction then applies the query
reduction theorem (Theorem 6.11) to C, resulting in a CWP with query complexity 3, rejection
ratio 1/ poly (k) and randomness complexity O(log k). Finally, the construction applies the gap
ampli�cation theorem (Theorem 6.26) to C for O(log k) times, resulting in a CWP with query
complexity O(1), rejection ratio Ω(1) and randomness complexity O(log k). By transforming this
CWP into an LTC (Theorem 6.7), we obtain an LTC with block length poly (k), query complexity
O(1), arbitrarily small constant distance threshold, and rejection probability Ω(1).

7.2 The connection to the construction of Ben-Sasson and Sudan
The construction presented in this work was inspired by the work of Ben-Sasson and Sudan [BS05],
and was obtained by trying to imitate their construction without using algebraic techniques. In
order to make the connection between the two constructions more appearant, we need to present
the construction of [BS05] di�erently than the way it is presented in their original paper. In this
subsection, we describe this alternative presentation of the construction of [BS05], and discuss the
similiarities and di�erences between the their construction and our construction. We begin the
with de�ning the Reed-Solomon code:

De�nition 7.1. Let K denote a �nite �eld, let S ⊆ K and let d < |S| denote a natural number.
The Reed-Solomon code RSK,S,d : Kd+1 → K|S| is de�ned as follows: Suppose we wish to encode
a message a ∈ Kd+1 with RSK,S,d. We de�ne the polynomial Pa(X)

def
=
∑d

i=0 aiX
i, and set the

codeword RSK,S,d(a) to consist of the evaluations of Pa at each of the elements of S. The relative
distance of RSK,S,d is 1− d+1

|S| (see [S01, Lecture 4]).

The result of [BS05] we are interested in states that certain Reed-Solomon codes are CWPs.
Speci�cally, the work of [BS05] proves the following theorem.

Theorem 7.2 ([BS05, Theorem 4]). Let K = GF(2`) and let L ⊆ K be a GF(2)-linear subspace
of K. Then for any d < |L| the code RSK,L,d is a CWP with query complexity O(1), rejection ratio
1/ poly (log |L|), randomness complexity log |L|+O (log log |L|) and proof length |L| ·poly (log |L|).

73

Note that by choosing d = O(|L|) in Theorem 7.2, one gets a CWP with the same parameters
as the CWPs we constructed in Theorem 6.13, albeit over an alphabet of a super-constant size
(since a Reed-Solomon code of block length n must be over an alphabet of size at least n).

Much like our main construction, the construction of Theorem 7.2 is an iterative construction.
The construction starts with an RS code with constant block length (rather than message length),
and increases the block length in iterations while maintaining the other parameters. Speci�cally,
in every iteration:

1. The block length is squared.

2. The rate, relative distance, and query complexity remain the same.

3. The proof rate and the rejection ratio are decreased by a constant factor.

Note that the e�ect of a single iteration of [BS05] is very similiar to the e�ect of a single iteration
of our main construction (compare the above list to Table 2 at the begining of Section 3.2). The
only important di�erence between the iteration of [BS05] and our iteration is that our iteration
increases the query complexity by a constant factor, which is the reason that we end up with a
poly-logartihmic query complexity.

The iteration of [BS05] and our iteration not only share a similiar e�ect on the parameters, but
they also have a similiar structure. In particular, an iteration of [BS05] can be divided into two
operations:

• Tensor Product - In this operation, the construction algorithm chooses two Reed-Solomon
codes C1 and C2 according to a certain algebraic rule. The algorithm then computes the
tensor product C1 ⊗ C2, which is the code whose codewords are the matrices whose rows
are codewords of C1 and whose columns are codewords of C2. Ben-Sasson and Sudan show
that the code C1⊗C2 is a CWP with respect to the row/column veri�er described in Section
3.2.1. The tensor product operation is used in order to increase the message length and block
length of the CWP.

• Algebraic Projection - In this operation, the construction algorithm projects C1 ⊗ C2 to
a subset of its coordinates that is chosen according to a sophisticated algebraic rule. The

74

coordinates that are �projected out� are moved to the proof part of the CWP. The algebraic
projection operation is used to increase the rate and relative distance of the CWP back to
the level they were at before the tensor product operation.
In addition to increasing the rate and the relative distance, the algebraic projection operation
has another role: Recall that the �nal goal is obtaining a CWP which is an RS code. However,
the tensor product operation results in a CWP which is not an RS code but rather a tensor
product of RS codes. The algebraic projection operation transforms the CWP C1⊗C2 back
to a CWP which is a RS code.

We now discuss few important di�erences between the iteration of [BS05] and our iteration.

• Unlike the random projection operation operation that we use, the algebraic projection
operation is deterministic. This is the reason why the CWPs of [BS05] are explicit while
our CWPs are constructed by a randomized algorithm.

• The algebraic projection operation increases the relative distance, while the random projec-
tion operation decreases the relative distance. This is the reason why we need to use the
distance ampli�cation operation while [BS05] do not.
Note that the distance ampli�cation is the only operation in our iteration that increases the
query complexity. Indeed, the use of distance ampli�cation is the reason that our iteration
increases the query complexity while the iteration of [BS05] does not.

• Recall that in order to show that the tensor product operation preserves the local testability
(i.e., applying a tensor product to a CWP yields a CWP), we needed to use a result of [BS04].
This result of [BS04] forced us to maintain the square form throughout our construction (see
Section 3.3 for details). In contrast, the analysis of [BS05] relies on a result of Polishchuk
and Spielman [PS94], which says roughly that the tensor product of RS codes can be tested
using the row/column veri�er described in Section 3.2.1. Thus, the construction of [BS05]
does not need to preserve a square form.

Remark 7.3. We note that the above presentation of the construction of [BS05] is very di�er-
ent from the presentation of this construction in the paper of [BS05]. In particular, the above
presentation views the construction as going �bottom-up�, from codes of constant block length to

75

codes of large block length, while the paper of [BS05] views the construction as going �top-down�.
Furthermore, the paper of [BS05] does not divide a single iteration to two separate operations, but
rather views the whole iteration as consisting of a single operation.

Remark 7.4. The above presentation omits some important technical details of the construction
of [BS05]. In particular, the construction of [BS05] does not use Tensor Product, but rather a
�Tensor Product with some additions�. However, the code that results from the �Tensor Product
with some additions� operation can still be veri�ed using the row/column veri�er described in
Section 3.2.1.

7.3 Open Problems
An explicit combinatorial construction of LTCs While in this work we give a combinatorial
construction of LTCs, our construction is randomized and therefore not entirely explicit. Giving
an explicit combinatorial construction of LTCs remains an interesting open problem.

One possible approach for giving such explicit construction is derandomizing our construction.
This only requires derandomizing the random projection operation we use. In order to derandomize
the random projection, one needs to design a deterministic algorithm that given a code C with
block length n that has good relative distance, �nds a relatively small set S ⊂ [n] such that C|S has
good relative distance. Designing such an algorithm requires overcoming two signi�cant obstacles:

1. Observe that for every small set S ⊂ [n] there exists a code C with good relative distance
such that C|S does not have a good relative distance. For example, one can take any linear
code with good relative distance and permute its coordinates such that for some speci�c
codeword most of the non-zero coordinates do not fall in the set S. Thus, the choice of the
set S must somehow depend on C. In contrast, standard derandomization techniques seem
to give a set S that does not depend on C, which means that we need to do something
non-standard and indeed C-dependent.

2. The problem of approximating the relative distance of a linear code is NP-hard. Thus, even
if we are given a set S, it is not clear that we can check whether C|S has a good relative
distance. In contrast, many derandomization techniques require the ability to check whether
a candidate object is good.

76

It is interesting to note that the construction of [BS05] overcomes both obstacles by ensuring that
the code to which the projection is applied has a certain algebraic structure. The construction of
[BS05] then uses the structure of the code to �nd a good subset of coordinates to which the code
can be projected. Thus, it may be possible to derandomize the random projection operation by
�rst changing our construction so that the code C has a certain combinatorial structure, and then
using the combinatorial structure to �nd the set S.

Strong locally testable codes Recall that a locally testable code C is said to be strong if it has
a veri�er that rejects any non-codeword w with a probability that is proportional to the relative
distance of w from C (see De�nition 5.9 for details). Our construction does not yield strong LTCs
because the transformation from CWPs to LTCs loses the strong rejection property. Thus, it
remains an open problem to give a combinatorial construction of strong LTCs. It seems to us that
such a construction will have to be very di�erent from our construction, since it will not be able
to use CWPs.

We mention that, unlike constructions of non-strong LTCs, the best known construction of
strong LTCs achieves block length of k1+log−1/2+ε (for every ε > 0), and relies heavily on algebra
and PCP machinery (see [GS02, Sections 3 and 5]). Thus, a combinatorial construction of strong
LTCs with block length k1+o(1) (or even poly (k)) will be very interesting. One might also consider
the open problem of giving a (not necessarily combinatorial) construction of strong LTCs that
have a block length k · poly (log k).

Shorter Locally Testable Codes Another interesting open problem is constructing LTCs
whose block length is shorter than k · poly (log k). Alternatively, one can also try to give lower
bounds for LTCs and show that any LTC must have block length of at least k · log k.

Simplifying our construction Recall that in order to show that the Tensor Product operation
preserves the local testability of CWPs, we had to use a result of [BS04], which required us to
maintain a �square form� throughout our construction. The need to maintain the �square form�
makes our construction more complicated than the simpli�ed construction outlined in Section 3.2.
It is not clear whether this complication is really required.

In particular, it is possible that simpli�ed construction outlined in Section 3.2 yields good

77

CWPs, but we do not know how to prove it. To be more speci�c, recall the simplifying assumption
that was made in the construction of Section 3.2. This assumption says that if a code C is a
CWP then C2 is a CWP with respect to the row/column veri�er. While it is known that this
assumption does not hold for every CWP C (see [D07, V05, GM07a]), it is possible that it holds
for the CWPs that result from our construction. If this is indeed the case, it will be possible to
replace our construction by the simpler construction outlined in Section 3.2. We suggest checking
this possibility as an additional open problem.

Acknowledgement. The author would like to thank Madhu Sudan for valuable discussions, and
in particular for suggesting the query reduction technique described in Section 6.3, which simpli�ed
this work considerably.

References
[ABNNR92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptotically good

low rate error-correcting codes through pseudo-random graphs, IEEE Transactions on
Information Theory 38, 1992, pages 509�516.

[ALMSS98] S. Arora, C. Lund, R. Mutwani, M. Sudan and M. Szegedy, Proof veri�cation and
Intractability of Approximation Problems, Journal of ACM, Volume 45(3), 1998, pages
501-555. Preliminary version in FOCS, 1992, pages 14-23.

[AS98] S. Arora and S. Safra, Probabilistic Checkable Proofs: A New Characterization of
NP, Journal of ACM volume 45(1), 1998, pages 70-122. Preliminary version in FOCS
1992, pages 2-13.

[BHR05] E. Ben-Sasson, Prahladh Harsha, Sofya Raskhodnikova, Some 3-CNF properties are
hard to test, SIAM Journal on Computing, 35(1), 2005, pages 1-21. Preliminary ver-
sion in STOC 2003, pages 345-354.

[BLR93] M. Blum, M. Luby and R. Rubinfeld, Self Testing/Correcting with applications to
Numerical Problems, Journal of Computer and System Science, Volume 47(3), 1993,
pages 549-595.

78

[BGHSV04] E. Ben-Sasson, O. Goldreich, P. Harsham, M.Sudan and S. Vadhan, Robust PCPs of
Proximity, Shorter PCPs and Applications to Coding, SIAM Journal of Computing
36(4), 2006, pages 889-974. Preliminary version in STOC 2004, pages 120-134.

[BS04] E. Ben-Sasson and M. Sudan, Robust locally testable codes and products of codes,
APPROX-RANDOM 2004, pages 286-297.

[BS05] E. Ben-Sasson and M. Sudan, Simple PCPs with poly-log rate and query complex-
ity, STOC 2005, pages 266-275. Full version can be obtained from Eli Ben-Sasson's
homepage at http://www.cs.technion.ac.il/~eli/.

[CR05] D. Coppersmith and A. Rudra, On the robust testability of tensor products of codes,
ECCC TR05-104, 2005.

[D07] I. Dinur, The PCP Theorem by gap ampli�cation, Journal of ACM 54(3), 2007. Pre-
liminary version in STOC 2006, pages 241-250.

[DR06] I. Dinur and O. Reingold, Assignment testers: Towards combinatorial proofs of the
PCP theorem, SIAM Journal of Computing 36(4), 2006, pages 975-1024. Preliminary
version in FOCS 2004, pages 155-164.

[DSW06] I. Dinur, M. Sudan and A. Wigderson, Robust local testability of tensor products of
LDPC codes, APPROX-RANDOM 2006, pages 304-315.

[FRS88] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive proto-
cols, In 3rd IEEE Symp. on Structure in Complexity Theory, 1988, pages 156-161. See
errata in 5th IEEE Symp. on Structure in Complexity Theory, 1990, pages 318-319.

[G05] O. Goldreich, Short locally testable codes and proofs (Survey), ECCC TR05-014, 2005.

[G52] E. N. Gilbert, A comparision of signalling alphabets, Bell System Technical Journal
31, 1952, pages 504-522.

[GM07a] O. Goldreich and O. Meir, The tensor product of two good codes is not necessarily
locally testable, ECCC TR07-062, 2007.

79

[GM07b] O. Goldreich and O. Meir, A small gap in the gap ampli�cation of assignment testers,
Comment 3 on ECCC TR05-46, 2007.

[GS02] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost linear length,
Journal of ACM 53(4), 2006, pages 558-655, Preliminary version in FOCS 2002, pages
13-22.

[HLW06] S. Hoory, N. Linial and A. Wigderson, Expander Graphs and their Applications, Bul-
letin of AMS, 43(4), 2006, pages 439-561.

[KT00] J. Katz and L. Trevisan, On the e�ciency of local decoding procedures for error
correcting codes, STOC 2000, pages 80-86.

[KS07] T. Kaufman and M. Sudan, Sparse random linear codes are locally decodable and
testable, FOCS 2007.

[PS94] A. Polishchuk and D.A. Spielman, Nearly-linear size holographic proofs, STOC 1994,
pages 194-203.

[RVW00] O. Reingold, S. Vadhan and A. Wigderson, Entropy Waves, the Zig-Zag Graph Prod-
uct, and New Constant-Degree Expanders and Extractors, FOCS 2000.

[S01] M. Sudan, Algorithmic introduction to coding theory, Lecture notes. Available from
http://theory.csail.mit.edu/~madhu/FT01/, 2001.

[V05] P. Valiant, The tensor product of two codes is not necessarily robustly testable,
APPROX-RANDOM 2005, pages 472-481.

[V57] R. R. Varshamov, Estimate of the number of signals in error correcting codes, Doklady
Akadamii Nauk 117, 1957, pages 739-741.

[Z71] V. V. Zybalov, An estimate on the complexity of constructing binary linear cascade
codes, Problems of Information Transmission 7(1), 1971, pages 3-10.

80

A Zybalov Bound
In this appendix, we review a special case of the Zybalov bound, which gives an explicit construction
of an ini�nite family of codes over the alphabet F that has relative distance arbitrarily close to
|F|−1
|F| and a constant rate. For more details, the reader is referred to [S01, Lectures 5 and 6].

The construction of the Zybalov bound starts with two codes, the Reed-Solomon code and the
Gilbet-Varshamov bound, and shows that, while each of those codes falls short of achieving the
desired properties, their concatenation does achieve them. We begin with recalling the de�nition
of the Reed-Solomon code, de�ned in Section 7:

De�nition (De�nition 7.1, restated). Let K denote a �nite �eld, let S ⊆ K and let d < |S| denote
a natural number. The Reed-Solomon code RSK,S,d : Kd+1 → K|S| is de�ned as follows: Suppose we
wish to encode a message a ∈ Kd+1 with RSK,S,d. We de�ne the polynomial Pa(X)

def
=
∑d

i=0 aiX
i,

and set the codeword RSK,S,d(a) to consist of the evaluations of Pa at each of the elements of S.
The relative distance of RSK,S,d is 1− d+1

|S| (see [S01, Lecture 4]).
The Reed-Solomon code constitues an explicit ini�nite family of codes that has constant rate

and relative distance, as we desire. The problem is that this family has alphabet of non-constant
size, and in particular much larger than F. To see it, observe that if a Reed-Solomon code RSK,S,d
has block length n, then its alphabet must be of size |K| ≥ |S| = n.

We turn to introduce the Gilbert-Varshamov codes. Let q def
= |F|. We use the following

de�nitions:

De�nition A.1. The q-ary entropy function Hq : (0, 1)→ [0, 1] is de�ned as follows:

Hq(p) = p · logq
1

p
+ (1− p) · logq

1

1− p

De�nition A.2. Let r ≤ n be natural numbers and let v ∈ Fn. The q-ary Hamming ball with
center v and radius r is de�ned to be

B(v, r) = {u ∈ Fn : δ(u, v) ≤ r/n}

Observe that |B(v, r)| =
∑r

i=0

(
r
i

)
(q − 1)i . Using Stirling's formula, one can show that when n

81

goes to in�nity we have that

logq |B(v, r)| ≈ (Hq(r/n) + (r/n) · logq(q − 1)
) · n

.

The Gilbert-Varshamov bound uses the probabilistic method to give a non-explicit construction
of an in�nite family of codes {GVk}k over the alphabet F that has constant rate and relative
distance.

Theorem A.3 (Gilbert-Varshamov Bound, due to [G52, V57]). For any constant δ ∈
(

0, q−1
q

)

and for any ε > 0 there exists an in�nite family of linear codes {GVk}k over the alphabet F that
has relative distance δ and rate R = 1−Hq(δ)− δ · logq(q − 1)− ε.

Proof Let δ ∈
(

0, q−1
q

)
and let R = 1−Hq(δ)− δ · logq(q−1)− ε. Fix some large enough message

length k and let n = k/R. Let G be a k×n matrix over F chosen uniformly at random and de�ne
GVk to be the code generated by G, that is, GVk(x) = x ·G for every x ∈ Fk. We show that GVk

has relative distance δ with non-zero probability, and this will imply the theorem.
Fix some message x ∈ Fk. It is easy to see that GV(x) = x ·G is uniformly distributed in Fn.

The probability over the choice of G that C(x) has weight less than δ equals the probability that
C(x) ∈ B(0, δn) and is therefore at most

|B(0, δn)|
qn

≈ q(Hq(δ)+δ·logq(q−1)−1)·n = q−(R+ε)·n

By taking union bound over all possible messages x ∈ Fk , we get that the probability that GVk

does not have relative distance δ is at most

qk−(R+ε)·n = qR·n−(R+ε)·n = q−εn < 1

It follows that GVk has relative distance δ with non-zero probability, as required. �

The problem with the codes of the Gilbet-Varshamov Bound is, of course, that they are non-
explicit. However, observe that a generating matrix of a Gilbert-Varshamov code can be computed
in exponential time, by going over all possible matrices. The Zybalov bound uses this observation

82

to construct a code of message length k as follows: First, we compute the generating matrix of an
RS code of message length k

logq O(k)
over alphabet of size O (k). Then, we compute the generating

matrix of a GV code of message length logq O (k), and note that this can be done in time polynomial
in k. Finally, we concatenate the two codes, taking the RS code to be the outer code and the GV
code to be the inner code. This results in the following family of codes:

Theorem A.4 (Zybalov Bound, due to [Z71]). For any constant δ ∈
(

0, q−1
q

)
and for every ε > 0

there exists an in�nite family of linear codes {Zk}k over the alphabet F that has relative distance
δ and rate

R = max
δ<δ2<

|F|−1
|F|

{
(1−Hq(δ2)− ε)

(
1− δ

δ2

)}

Furthermore, there exists an algorithm that on input k, runs in time poly (k) and outputs the
generating matrix of Zk.

B Local Testability of the |F|-ary Hadamard
We recall the de�nition of the |F|-ary Hadamard code:

De�nition (De�nition 6.19, restated). The |F|-ary Hadamard code, denoted H, encodes a mes-
sages x ∈ Fk by the codeword H(x) ∈ F|F|k de�ned by

H (x)i = 〈x, i〉 for every i ∈ Fk

That is, H(x) consists of the inner products of x ∈ Fk with all the vectors in Fk.

In this appendix we prove Lemma 6.20, which stated that the |F|-ary Hadamard code is strong
locally testable (see De�nition 5.9).

Lemma (Lemma 6.20, restated). The |F|-ary Hadamard code is strong locally testable with query
complexity 3, rejection ratio 1/6 and randomness complexity 2(k + 1) log |F|.

The proof presented here is a variant of the analysis of [BLR93]. Fix some message length k.
For convinience, we view strings in F|F|k as functions from Fk to F, and note that taking this view,
the codewords of the |F|-ary Hadamard are exactly the linear functions from Fk to F.

83

We recall the veri�er V of the |F|-ary Hadamard de�ned in Section 6.4.2: Given oracle access
to a function f : Fk → F, the veri�er V chooses two vectors x, y ∈ Fk and two scalars a, b ∈ F
uniformly at random, and checks that

a · f(x) + b · f(y) = f(a · x+ b · y)

The query complexity and the randomness complexity of this veri�er are obvious from its de�nition.
We turn to analyze its rejection ratio. Let f : Fk → F be a function such that V rejects with
probability ε < 1

6
when given oracle access to f . We show that δH(f) ≤ 2 · ε, and this will imply

the required result.
In order to prove that δH(f) ≤ 2 · ε, we de�ne a linear function φ : Fk → F such that

δ(f, φ) ≤ 2 · ε. For every two vectors x, y ∈ Fk and scalars a, b ∈ F de�ne the vote of y, a and b
regarding the value of f at x by

φy;a,b(x) = a−1 · (f(a · x+ b · y)− f(b · y))

We de�ne φ by de�ning φ(x) to be the corresponding pluarlity vote, that is, φ(x) is de�ned to be the
value v that maximizes the probability Pry∈Fk,a,b∈F [φy;a,b(x) = v]. Note that indeed δ(f, φ) ≤ 2 · ε,
since:

ε = Pr
[
V f rejects

]

= Pr
x,y∈Fk,a,b∈F

[a · f(x) + b · f(y) 6= f(a · x+ b · y)]

= Pr
x,y∈Fk,a,b∈F

[f(x) 6= φy;a,b(x)]

≥ Pr
x,y∈Fk,a,b∈F

[f(x) 6= φy;a,b(x) ∧ f(x) 6= φ(x)]

= Pr
x,y∈Fk,a,b∈F

[f(x) 6= φy;a,b(x)|f(x) 6= φ(x)] · Pr [f(x) 6= φ(x)]

= Pr
x,y∈Fk,a,b∈F

[f(x) 6= φy;a,b(x)|f(x) 6= φ(x)] · δ

≥ 1

2
· δ

Where the last inequality follows from the fact that for every x ∈ Fk, if Pr [f(x) = φy;a,b(x)] > 1
2
,

84

then by de�nition of φ(x) we must have φ(x) = f(x).
It remains to prove that φ is a linear function. We begin with proving that for every x ∈ Fk

it holds that Pry∈Fk,a,b∈F [φy;a,b(x) = φ(x)] ≥ 1 − 2 · ε. Fix x ∈ Fk, and call a pair of triplets
((y1, a1, b1) , (y2, a2, b2)) ∈ (Fk × F× F)2 good if

a−1
1 · f(b1 · y1)− a−1

2 · f(b2 · y2) = f(a−1
1 · b1 · y1 − a−1

2 · b2 · y2) (4)

a−1
1 · f(a1 · x+ b1 · y1)− a−1

2 · f(a2 · x+ b2 · y2) = f(a−1
1 · b1 · y1 − a−1

2 · b2 · y2) (5)

and observe that for every such a good pair of triplets is it holds that φy1;a1,b1(x) = φy2;a2,b2(x).
Now, note that for a uniformly distributed pair of triplets, each of Equations 4 and 5 holds with

probability at least 1− ε. Therefore, by applying the union bound, a uniformly distributed pair of
triplets is good with probability at least 1− 2 · ε. By an averaging argument, there exists a triplet
(y1, a1, b1) such that for a uniformly distributed triplet (y2, a2, b2) the pair ((y1, a1, b1) , (y2, a2, b2)) ∈
(Fk × F × F)2 is good with probability at least 1 − 2 · ε. It follows that for a uniformly chosen
y2 ∈ Fk and a2, b2 ∈ F it holds that Pr [φy1;a1,b1(x) = φy2;a2,b2(x)] ≥ 1 − 2 · ε > 2

3
, and therefore it

holds that φ(x) = φy1;a1,b1(x) and Pry∈Fk,a,b∈F [φy;a,b(x) = φ(x)] ≥ 1− 2 · ε, as we wanted.
Finally, let x, y ∈ Fk and let a, b ∈ F. We prove that φ(a · x + b · y) = a · φ(x) + b · φ(y). We

prove it by showing, using the probabilistic method, that there exist z ∈ Fk and c, d ∈ F such that

a · φ(x) = c−1 (φ(c · a · x+ d · z)− φ(d · z)) (6)

b · φ(y) = c−1 (φ(d · z)− φ(d · z − c · b · y)) (7)

φ(a · x+ b · y) = c−1 (φ(c · a · x+ d · z)− φ(d · z − c · b · y)) (8)

Observe that if such z, c and d exist then indeed φ(a · x+ b · y) = a · φ(x) + b · φ(y), since the sum
of right hand sides of Equations 6 and 7 equals the right hand side of Equation 8. To show that
such z, c and d exist, observe that by substituing z′ = z − d−1 · c · b · y, a′ = c · a and b′ = c · b, the
above equations are equivalent to

φ(x) = φz;a′,d(x)

φ(y) = φz′;b′,d(y)

85

φ(a · x+ b · y) = φz′;c,d(y)

Furthermore, observe that if z, c and d are chosen uniformly at random, then z′, a′ and b′ are
uniformly distributed. Therefore, for each of the three latter equations, the probability that it
holds for a uniformly chosen z, c and d is at least 1 − 2 · ε. By the union bound, the probability
that all the three equations hold is at least 1 − 3 · 2 · ε > 1 − 3 · 2 · 1

6
> 0. This implies there

exists at least one choice of z, c and d satisying equations 6, 7 and 8, and therefore we get that
φ(a · x+ b · y) = a · φ(x) + b · φ(y), as required.

86

