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Algorithmen und Komplexit&tstheorie
16:.10. bis 22.10.1877

Die dritte Tagung Uber Algorithmen und Komplexitdts-
theorle stand wieder unter der Lsitung ven C.P. Schnorr
(Frankfurt), A. Sch8nhage (Tiibingen) und V. Strassen
(Zirich). Von den insgesamt 49 Teilnshmern aus 9 Lindern

kamen 17 von ausserhalb Europa.

Mit 40 Vortrdgen war das Programm wesentlich dichter ge-
dréngt als friher. Schwerpunkte bildeten algebraische
Komplexitatstheorie, insbesonders dis der endlich dimen-
sionalen linsaren Algebran, sowie Sprachen- und Automa-
tentheorie, insbesondere Fragen, die mit der Cookschen
Hypothese zusammenh#ngen. Eine gridssere Anzahl von Bei-
tr3gen befasste sich mit kombinatorischan Algorithmen,
deren Datenstrukturen und Komplexiti#t. Ferner wurde liber
8o verschiedenartigs Gegenstdnde wie Mustsrerkennung,
Komplexit&t von Spielen, Komplexitdt logischer Theorien,
Boolesche Komplexit&t und Kolmogoroveche Komplexitit
bsrichtat.
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Vortragsausziige

Lower bounds on formula size for symmstric Boolean functions

Mike Paterson, Coventry

Two lower bound results are described, each a corollary
of a mors general thecorem for arbitrary functions. The first
theorem, due to Krapchenko, is given a new, more elsgant,
proof by induction on formula size. Thes second theorem is
new and is due to M., Fischer, A. Meyer and . Paterson,

Let Brl denote the set of n-argument Boolean functions,
and Sn(C Bn) the subset of symmatric functions. Each f¢€ Sn
can be defined by a Boolean vector <FD,...,Fn> giving the
value of f({x) for in ranging from 0 through n. LB(¥) de-
notes the number of cccurrences of variables in the smallest
farmula for f, with connections from the basis 8. Lst BZ da-
note the set of all 16 Z-argumant Boolean functions, and
U=28,-{®,=}

RESULT A (Corollary of Krapchenko's theorem)

If f€ S, and £, _,#f then L;(f) > (n-k+1)k
RESULT B (Corollary of FMP theorem bslow)

If f€ Sn and f A

(c canstant)

then LBz(f) > cn+logk

k=1" "k+1

To state our new theorem, some further definitions
ars needed., f€ B_ is affine-if flx) = a_+ {(a,A x,)+..*(a_A x_)
n o 1 1 n n

whars ai6 {0,1}. A central subfunction of ¥ is obtained by

giving some squal numbers of arguments of f to 0 and to 1.
FMP-THEOREM (Fischer, Meyser, Paterson)

If F€B_ and Lp,(f) < rn then f has an affine, central
subfunction of at least n/kp arguments where k is indspendent
of n,r.



A new complexity measurs for languages

Maurice Nivat, Paris

(in collaboration with Luc Boasson and Bruno Courcella)

Call Ratn the family of rational languages which can
be recognized by a non deterministic finits automaton with
a number of states less than or equal to n.

Call GK,L the minimal lsngth of a word in Knl. We
consider the function B attached to a given language L
and called the rational index of L:

g, (n) = max{s§ K€ Ratn}

K,L
On the contrary of what happens for most complexity measures
which have been proposed up to now for languages, the rate
of growth of 2L is a3 complexity measure which behaves
"well"” when the standard operations of languags thsory are
performed on L. We write, for all pairs of functions ¥, 24
of I dinto I f<g iff for infinitely many n f(n) < g(n)
Results g, r < maxlg .g ) '

BlLr < Bt B

L < An ngL(n)
If © is a rational transduction which maps L onto L

g < An ngL(pn) for some integer p.
If LoL' denotas the marked substitution of L' into L

BloLr < An gL(n)(1+gL.[n))
From these lemmas the two following thaorems follow easily
Jh 1 Call Less(Pol) the family of languages L such that

g < An nk for soma k€ I!
Then Laess(Pol) is a substitution closed rational cone (or
AFL) _
Th 2 Call More{Exp) the family of languages such that

an 2%" < gL for some a€ R, a > o,
Then More(Exp) is an anticone which means that L€ Mors(Exp)
and thers exists a rational transduction of L' onto L imply
L' € Mora(Exp). )
Ws then raemark that if dé is the languags generataed by tha

= - n
grammar § = a, EE a, + asa, then An 2 < gdéf
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We also remark that if L is a linear algebraic
language, or a one counter language L€ Les(Pol)
The following inclusions follow
Gan€ More(Exp)} whera Gan is the family of generators
of Alg, as a rational cone.
Grec€ Les(Pol) where Greis the least substitution
closed rational cone containing the linear and one
counter languages {(Gre is the family of Greibach
languages)
We can show that the last inclusion is proper by looking at
at the rational index of AZ, the language proved by
L. Boasson to be in Alg\(Gre v Gan)

We end with the two conjscturas

Conjecture 1 More(Exp)n Alg = Gan
Conjectura 2 Alg = (Algnles{Pol))w (Alg nMore(Exp))

Thess two conjectures are closely linked to leng standing

conjecturas of S, Greibach and the authors.

The Complexity of Counting Problems

L.G. Valiant, Edinburgh

A complsteness class intermediate between the NP-
complete and the PSPACE-complete problems is established.
Typical numbers of this class (called the {P-complste
problems) are the problems of counting the number of so-
lutions for NP-complete problems. The importance of the
class follows from the discovery that for numerous problems
for which the detection gf a solution is polynomial time
computable, the counting problem is still {P-complete.
Examples of such problems are (i) counting perfect
matchings in bipastite graphs, or eguivalently the permanant
of (0-1)-matrices, (ii) counting trees in directad graphs,
(iii) the probability that in a given graph with edge pro-
bability a half, two given nodss are connected, (iv)
counting maximal cliques, and (v) counting the number 1
satisfying assignments for monotons Boolean formulae in

2-conjunctive normal form.
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Complsxity of Scheduling Problems

Peter Bruckar, QOldenburg

A survey on complexity of scheduling problems is
given. Scheduling problems on singla, different and
identical machines are classifisd and the influsnce
of various parameters on the complexity is studied. The
problems for which a polynomial-bounded algorithm is
available are listed. NP-completeness is established for
a large number of other scheduling problems leaving only
a small class of problems for which it is unssttled wsther

they ars polynomial-bounded or NP-complsta.

Proofs of optimality for bilinear forms computation

Jean Claude Lafon, Strasbourg

We show how to obtain lower bound for ths minimum
number of general multiplications necessary to compute p
bilingar forms xtBiy (i=1,..4,p), Biﬁ W% n(KJ (K being a
field of characteristic differsnt of two), x = (x1,..,xm),

t t
y (y1,....yn), z (21....,zp).

m,n,p

If we taks xtBky = E b..k XY 52 then we have to compute
i‘rjpk +J 1

the rank of the tensor (bijk) of K™x kMx Kp, that is the

lsast integer q such that:

ty ) = j21 B Vs Uy € KT v €K, u e kP,
Equivalently we have:

(1) - xtB(z)y~' ? (u?x)(vty)(wtz) and is the tensorial
rank of this bilg;éarjfnrm{ .

To 6btain a lower bound for this tensorial rank, we describe
two kinds of methods. In the first, we use linear sub-
stitution of the form x — Tx (for example), to make soms
elements of (1) be squal to zero, and then we have to

study the remaining bilinear forms. In ths sscond kind of
methods, we use invariant transformatiors to do the sama

thing:



An invariant transformation is a transformation x —+ T1X-
y —* sz. z — T32 (T1, TZ’ T3 being regular) such that:

t
x Bz)y = xt T: B(TEZ)TZy (the bilinear form is in-

variant).

With these techniques, ws can obtain a lowsr bound of

2n -1 for the product of two nxn matrices and results of
optimaiiﬁy,for the following computation: vectorial
product-polynaomial product-convolution of twao vectors -

quaternion multiplication.

On varieties of optimal algorithms for the computation of

a bilinear mapping

Hans F. de Groote, Tibingen

Let K be a field, 2: k¥ x K™ — k" a bilinear
mapping with corresponding tensor t€ K&@ K"® kK", The notion
"gquivalence of algorithms for the computation of @" was
discussed in the non-commutative model of computation. The
scaling equivalence classes of length-R-algorithms for o

are in one-to-one corraspondence of the set
i&(@) = {(u1@)v1® WysensUR® VB wR)/F§1ur87vP@)wr=t}
of ordered decompositions of t into R tensors of rank one.
The group T of automorphisms ¢ of KR@ KW@ k" that are of
the form wo(A @ B @ C) (n a suitable permutational
mapping) and leave the tensor t fixed operates on the
varisty of length-R-algorithms for o. F¢ is called the
isotopy group ¢.

rg = {A®B®C/(A®B®C)t=t}
is a normal subgroup of P¢.
The group Yh of permutations of {1,...,R} acts on bR and
since the actions of Yh and F¢ commute on JDR'

M is called the extended

G¢ 1= P¢-7h is a group, too. 6
isotopy group of ¢.

Bef. Two (scalingéquivalence classes of) algorithms for 9
are called equivalent iff they are in the same Gé-orbit.
For some importent cases, isotopy groups were determined,

B4g
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Prop. Let A be a finite dimensional unital central simple
algebra over K, ¢ the multiplication of A. Then A® B®C
is an slement of r: iff there are units a, b, c€ A such
that

T T

Al=L 4Ry B =L 4 -1

a b c

whers L, R ars the operators of left and right multiplications
respectively. (This was proved indepsndently also by V.Strassen.)

R,C=1L_R
c a

The following results on conorgte algorithm varietiass were
prasented:

Theorem A Lst K be a Fiald,le(K) the algsebra of 2x2-
matrices over K, & the multiplication of NZ(K). Then
avery optimal algorithm for ¢ is squivalant to Strasssn’s
algorithm. Pracisely G; 1= Fg. Y} acts transitively on
the varisty of scealing squivalence classss of optimal
algorithms for @

Theorem B Let &: M, (K) x M, (K) —A-MZ(K) X NZ(K)
(x,y) == (xy,yx)

(i) If the characteristic of K is different from two,
then optimal algorithms havs length nine. Morsovsr
there ars ssveral different eguivalaence classes of
optimal algorithms for ¢.

(ii) If K is the Galois fisld GF{2), than optimal algo-
rithms for ¢ have length ten.

Fop both casqsroptimal algorithms wers presented.

Multiplicative Complexity of Product of Polynomials

Shmuel Winograd, Yorktown Heights

Fourier transform lgads to the problems of the
computational complexity of tha product of two polynomials
with indetsrminats coefficients modulo a third polynomial
with constant coefficients. As a first step all (multi-
plicatively) m1n1ma1 algorlthms for computing ths co-

afficients of ( z X5u ¢ E Yju ) ( i.e. all the algoplthms
i=o i=g
using m+n+1 multiplications) were classified. This rssult
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was used to classify all [multlpllcatlvely) ?1n1ma1 a%go-

rithms for computing the coefficients of ( Z xsu e ) yyu )
i=o i=o
mod Pn(U), where Pn(U) is an irreducible polynomial. The

number of multiplication in this case is 2"-1, By the
Chiness Ramaindar1Thenram %he problem of computing the co-
gfficients of (nE X, u.;(nf ysu *) mod P (u), whers P _(u) =
k ey jeg i=0
1Q1P1 (u), is reduced to the k indspandent problem of
multiplication modulo P: (u). It is shown that the only
(multiplicatively) minimal algorithms are those which com-
pute each of the k problems separately, and therefors re-
quirs 2n-k multiplications. These results lad to new algo-
rithms for computing the Discrete Fourier Transform. The
problem of computing the coefficients of the product of
two polynomials in several variables modulo polynomials in
sach of the variables modulo polynomials in esach of ths
variables was shown to be sguivalent to several independsnt
problems of this kind in one variable. This latter result
lgads to new algorithms for computing the multidimensional

Discretes Fourier Transform.

Additive Complexity

Jacques Morgenstern, Nice

When one wants to compute a set of linear forms by
a linear algorithm one can save additions if certain re-
lations occur between the coefficients of the given forms.
A knowledge of these relations would be of interest to
find lowsr bounds.

In the simple case of three forms on thres variables,
the possible configurations in the projective plane Pz(k)
ars of the following forms:

+ 3 points are on the same line
. there exists a homology (with a center and cross ratio k)
which transform some given lingas into other given lines.

The relations could be vieswed as conditions for roots
of a certain matrix to be multiple.

In general the conditions are given by polynomials
which are homogeneocus with respect to each row and each

column that appears in the polynomial.



- 10 -

Playing "Twenty Questions” Against a Liar

Albert R. Meyer, Cambridgs

Searching for an unknown x€ {1,...,n} by comparing
x to constants can Be carried out with

logzn + k-logzlogzn + 0(k)

comparisons in the worst case, even whan the answers to
as many as k of the comparisons may be erronsous. For k
fixed independent of n, this bound is within an additive
constant of optimal, even if arbitrary "Yes-No" questions
about x ars allowed.

The problem of determining an interval of size ¢ %
containing an unknown y€ [0,1] is essentially squivalent,
and thes above results carry over to this continuous
version of the identification praoblem.

The rassults were obtainaed jointly with D.J. Kleitman
of M.I.T., R.L. Rivest of M.I.T. and J. Spencer Suny,
Stony Brook, U.S.A.

Complexity of guessing-games

Vaughén R. Pratt, Cambridge

We considar the problesm of guessing a numbsr n by
asking only questions of ths form "x<n?" for various x.
In place of the usual complexity measurs for this problem
(number of questions asked) we count the total tims re-
quired to formulate all the questions, in terms of the
number of applications of functions. Here an interesting
choice of constants and functions is 0, successor, and
doubling. For the nondeterministic case we sasily prove
a 0(2) bound whsre & = 1og2n (i.s. upper and lower bounds
both linear in %&). For the deterministic case we prove a
6(22) bound. The uppsr bound (0(22)) is obtained with a
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binary search algorithm which computes each of the 2 bits
of n at cost 0(R). The lower bound (9(22)] is proved by
arranging Y as a spiral in the plane, so that successor
takes us around the spiral while doubling takes us
radially outwards. An adversary argument identifies Q(%)
questions that a given algorithm must use such that sach
question can be charged with at least &/2 function
applications, giving 9(22) function applications alto-

gether.

Higher order network complexities

C.P. Schnorr, Frankfurt

We encode a Boolean network with < 2" nodes as a
Boolean function g: S— BPXBPXB4XB.

Let x€ B" be a node with gix) = (g1(x),gz(x],ga[x),g4(x))
then g1(xl,g2(x) are the first and second predscessor of x,
ga(x) sencodes the operation at node x and g4(x] = 1 iff x
is a terminal node. The k-order network complexity of the
Boolean function f is defined as

Ck(F) = minimal size of a network

that computes the encoding of a network

k-1 { that computes the encoding of a network
that computes the encoding of a network

that computes f
Thm 1: C, (f) < Croq(F)1(1+0(n)/n) for all f: B" — B

Thm 2: For any Turing program P for f: 8" — B

€, (F) < const, (| [P][+10g* T (T 1)

whers Ilﬁ[l is the size of the program, T, its maximal
running time. Here we only consider programs that also
determine the length n of the input of the computed
function f,
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Why Should A Table Be Sorted?

Andrew C. Yao, Stanford

.To retrieve an item from a table of size n, it is
known that |lg(n+1)] prabéa are nacessary and sufficient
in the worst case, if the tabls is sorted. Do therse exist
entirely different scheme of arranging items in a table
(such as hashing) that improves on this bound? Ye prova
that, for any table arrangements, |[lg{n+1)] probes are
required in the worst case, provided that the ksy space
is large. For smaller kéy space, more afficient schemss
may exist. For example, we show that a single probs can
datermine whqthsr an item is in the table, if and only
if the ksy space contains fewer than 2Zn-1 kesys (n>3).

We also show that, with one additional location, an item
can be retrieved in two probes provided that ths kay
space is large. These results are obtained by combina-
torial reasoning rather then the usual information-

theoretical argument.

Relativizsd Complexity Classas

Charles Rackoff, Toronto

Let Rc NP be the sat of languages L such that for
soms polynomial time predicate § and number k,
L= x| y.lyl=]x],000y0}

= {x|Z at least 21%1777 values of Vs Iy]n[xlk.m(x,y)}.

Define U NP to be the set of languages L such that for
some polynomial time predicate O and number k,
L= tx|Z v lyl=Ix*000y))

= {x|= a unique y,Iyl-ixlk.Q(x.y)}.

For a set A, let PA be the class P dafined with respect
to machines using A for an oraclse; defins NPA, RA. stc.
similarly.

Theorem: There exist oracles A B such that

uh = R? = co-nP? = PP # PP and
A

neh 2 PR e Ut = RA - (wPfaco-nefy.
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Worst-case-behaviour and lower bounds of combinatorial
algorithms

Bernhard Korte, Bonn

Let us consider a subclusive set system (E,§), i.e.
|E[<= and @ ©p(E) such that S,

optimization problem over it: max{c(S)|S€ g} with

< SZE & = S1€ % and an

c: § —+ R separable on E {(submodular on g). We first
analyze the worst-cese-bshaviour of the most common algo-
rithmic approach to this general problesm, namely the
GREEDY-algorithm. Let C(SG) be tha solution of the greedy
algorithm and D(Sol the optimal solution. Then (theorem):

c(S.)
Ve 13C(S]2min(
0 FeE

whersas ur(F) := max{|SaF||S€ g} and
UelF) := min{|S||ScF,5€ p,Va & \5: So{e}€ g}.

A natural question which might be asked: Is there any

r (F)
ur(F)

polynomial approximative algorithm for gensral sub-
clusive set systems (or gaeneral 0-1 intsger programming
problems) which might have a better guaranteed performance
than ths greedy. The answer is no, i.a. (theorsm) any
oracle algorithms which check wether S€ ¢ or not by an
arbitrary coracle needs 0(2 E')calls on its oracle in
order to have a better worst-case-behaviour than the

greedy.

On Kolmogorov's complexity

Peter Gacs, Budapest

The logarithm of the maximal semicomputabls mseasurs
(the pror probability) and the variant of Kolmogorov's
complexity defined by Levin, K(x), are known to coincids
up to an additive constant. The proof of this theorsem
gives rise to a storage allocation problsm which we solve
within soms degree of accuracy. Ws also show that
K(K(x)x) is not always less than log n - loglog n, where
n is the length of x, although the prior probability of

the trouble-making x's is small.
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Simulation of multi-dimansional Turing machines

: :
Martin Flirer, Ziirich

T steps of a Turing machine M with several heads on
multi-dimensional tapes can be simulated in time D(Tz)
with a Turing machine M' with one hesad on one lingar tape.
(Straight forward simulations need time U(TzlogT].] With a
similar method we can get the improvement of M.J. Fischar
and N.J« Pihpengar fD(T2_1/dJ) of the result of H.J. Stoss
[D(T2-1/dlogT)] for the simulation with two tapes.

On the tape of M' we writa a chronological des-
cription of the symbols written and the moves executed by
M. On other tracks of the tape we writs decimal coordinates
of some squares visited by M. The length of the coordinates
determines the number of sgquares without coordinates bstwsen
two squares with coordinates. The origins of the coordinate
systems are ths positions of the heads of M, they are
always changing. So all intarasting squarss have small
coordinates. In each simulation step we change all
coordinates (by one), change the dinstance between two
coordinates (in linear tims) if necessary and look for

squares with coordinatas O.
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Schemes for fast matrix multiplication

John de Pillis, Riverside

1

Given real mxn matrix A (ai.), and
kk)' then

two products between A and B are defined, viz

gxr matrix B = (b

(1) A ®B (the tensor product, or Kronecker product)

: a B a B..ua B +
In matrix form, A ®@B = 1 12 n
354 B 855 B...azn B | mg
a1 B a - B...amn B. +
“ nr -

In operator form, A ® B: C — ACBt for appropriately

dimensioned matrices C.

(2) alle) [the'dyad‘product]

a,,b a,,b,,esea,,b 4
In matrix form (A][B) = T 2 tar

312811 8928427 3qpBgp |

amnb‘l‘l amnb12"'amanr ¥

— qre

Question How Do "®" and "][" Relate to Matrix Multiplication?

Answsr Given the product: of A mxn with B nxq
A<B = C = (cik); i=1,2,..45m; k=1,2,4:.4q, then
n
Gy = .Z1aij.bjk cij(A;B),‘a bilinear functional

in A, B. Thus (Reisz reprs'n thm., eq)
o5 (A,B) = <A @B, & > '
for some unique mnxnp matrix aeik' (Here <+,<> denotes ths
"inner product.) In fact,
Kik = j§1Eij® Ejk' where
Ers is the appropriately dimensioned matrix with 1 in the
rs-th place and zeros slsewhsre.
Note, the mnp element set

£+ {Eij@)Ejk: i=1,2,000,m,3%4,2,..,0,k=1,2,..,p}
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spans all mp-elsment set
R - {@ik: 11,2, 00.,m, k=1,2,...,p}.

Sinece each @ in the mnp-slement set corresponds to a scalar
multiplication in producing A-B, we ask:
Is there a P~ -alement set, "P<mnp, of tansors
Z' = X ®Y_: r=1,2,...F}
which (by 1,0 co-efficients) spans R’ as well as £?

Thm Existence of set ' above is aquivalent to P-slement set
Z = L JOY ): =1,2,...,P}
of dyads, which span (using #1,0 coefficients]) the set

Q = {Eik(@ﬂn: 129,2,000,M K=1,2,000,p}0

whars Eik is always an mxp matrix, and

1, is the nxn identity matrix.

This formulation, using dyads (or rank-one matrices) of set v
to gensrate single tensors E, Qﬁ)_& of set &E leads to rs-
capture and extensions as follows:

Thm [Hoperoft-Musinski,Probert] If an (m,n,p) set-up

(an mxn multiplying an nxp matrix) can be sffacted using
P{m,n,p) scalar products. Then the saﬁa number of scalar
products suffice for all permutsd set-ups, i.e., (m.p.n},
(pan,m), atc.

Extension Consider the k-fold product AgrRgeadh, 1.8, a

{m LR } set up [A is m xm_, r= 1 2,.=.,k). Suppose

r-1
ths product entriss are generatad as follows {using k=3,

for the product A<BeC for simplicity)

gy ° .1 233Dk Cyq “ standard algorithm

ok M
B osp i i, it
a ) ea_“eb “eg " 4— naw scheme
o r r r
where atz is a 1,0 linear combination of sntries from A,
* 45 asx1,0 - . o " B,
ct* 15 8 t1,0 - - - " C.

Then, as 2P scalar mult's are required (2P < m m1m2m3) for

the (mD,m1.m2.m ) set-up, so only 2P scalars suffice for any
dihedral permutation, i.a. genarated by shift
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(mo,m1,m2.m3) — (m1.m2,m3,m0), and reverse
(mo.m1.m2,m3) — (m3.m2.m1.mD).
Thm [Hoperoft-Kerr] Thers is a scheme H-K on a (6,2,6)
set-up where the number of scalar multns, H-K (6,2,6)=57.

Extension There is a schame § where Q(6,2,6) = 56

There is a schems O whare (72,72,72) = 7°8°.

On_languagss recognizable by deterministic Turing machinas

within polynomial time

W. Erni, Heidelbearg

It is well known that for ths family of context-free
CFC L PTINE’ the family of
languages acceptable by deterministic multitape Turing

languages LCF one can prove L

acceptors in polynomial time. Furthermore we know that

L DSPACE(log?(n))’ the family of languages acceptable by

deterministic multitape Turing acceptors in space log?(n).
Now one may ask whather for "moderate” extensions of L CE*
8.g. those language families L generated by regulated re-
.writing systems, we may prove -

(eIl S L prpmg o0 (2901 €L pepicetlog? (n)) "

First we survey recent results. Then we use log(n)-
space bounded nondeterministic auxiliary pushdown acceptors
as a tool for proving proparty (1+) or (2+¢). We discuss
the techniques if L is the family of languages accepted in
linear time by pushdown acceptors with counters, and if L
is the family of languages generated by nonterminal
bounded context-free grammars with context-fres control
sets, and if L is the family of languages gensratad by
deterministic L FIN-iteration grammars with context-free
control sets, and if L is the dhyper-algebraic extension

of L CE*
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Analysis of two equivalence alegorithms

Donald Knuth, Stanford

The algorithms "Quick Fing” and "Quick Find Weighted”
are considersd with random input of three kinds. In the
first model, all spanning trees of the graph are equally
likelys in the second model, each pair of distinct
equivalence classes is squally likely; in the third model,
gach pair of vertices in distinct equivalence classes is
equally likely. The algorithms have gualitatively different
behaviors in the different models, as shown in ths following
table:

Model 1 Model 2 Model 3
. . i 3/2 12
Quick Find~ ¢ n ~ nlnn gn

Quick Find Weighted~ Tnlnn ~ Inton  ~O(n)

The analysis of Model 3 is of greatest interest, as
it requires deep study of the connectivity of random

graphs. This work was done jointly with Arnold Schinhage.

The analysis of some alternative path compression techniques®

Jan van Leesuwen, Utrecht

Inuthe study of set-manipulation algorithms there has been
considerable attention for the analysis of UNION-FIND programs.
If the collapsing rule is used for FINDs and the weighted unien
ruls for UNIONs then the time for n-1 UNIONs and m FINDs is
bounded by J(matm,n)), where a¢lm,n) is an extremely slowly
growing function (Tarjan, 1972). In the collapsing rule one
must first climb up 2 tree to locate the roct and then traverse
the very same path a second time for attaching sach of its
nodas to the root. In his recent book on programming, Dijkstra
independently presented the same tschnigue, but he noted that
the need for traversing a FIND-path twice makes it a rather

unelegant method from the programmer’'s point of view. In an
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attempt to find a more elegant implementation, we shall con-
sider the problem of how the "second pass” can be eliminated
without loéing much of the original efficiency. We consider
ssveral alternative tree compression methods, including Rem’s
algorithm as presented by Dijkstra. We show that in worst
case the algorithms ars not as good as expected. We propose

a simpler one-pass tschnique called "path-halving", which
performs well in both the unbalanced and balanced cases. We
show that the time needed for (J{n) UNIONs and FINDs is bounded
by OInlogn) when only path halving is used. If the weightsd
union ruls is used for UNIONs and path halving for FINDs,
then the cost for U(n) UNIONs and FINDs reduced to & (nlog*n).
We conclude that path halving is a viable alternative to the
original collapsing rule for all practical purposss. We note
that a precise analysis like Tarjan's has failed to produce a
better than nlog*n bound, and we currently cenjescturs that
the bound is best possible for UNION-FIND programs using
balancing and path-halving (perhaps even for all "one-pass”

techniques).

* Footnote. This work was carried out jointly with
Th. van der Weide, Department of Applied Mathematics,
University of Leiden, Leiden, the Netherlands.

Space Bounds for Maze Threadability on Restricted Modals

Stephen Cook (spesaker) and Charles Rackoff, Toronto

Bur motivation is to show NSPACE(logn)# DSPACE(logn)
by showing the maze threadability problem is not
DSPACE(logn). We prove the latter, but only for a restricted
madel of Turing machine. A d-maze M is a triple <G,s,g>,
where G is a directed graph such that the edges leading out
of each node have distinct labels from {1,2,...,d}, and s
and g are nodes of G.M is threadables iff there is a directed
path from s to g. A d-JAG J (Jumping Automaton for Graphs)

is a machine with a deterministic finite state control with
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q states which operatss on an input maze £G,s,g> by moving p
pebbles (or pointers) around the nodes of G. In onz move, J
either movas some pebbles i along some edge J, ifjfp,

15j5d, or jumps. pebble i1 to the node on which pebble k is
located, ]<i,k<p. The move dspends on the currant state,

the coincidence partition on the pebbles, and which psbblas
sgcan s or g. Initially pebble 1 is on g and all othesrs are
on s. We say J is valid for N if J corrsctly determines
whether an arbitrary input d-maze of N or fewsr nodes is

threadable. We say the storage usad by J is S=plogNh+logq.

- 2
Thaorem 1. ¥V N = 3 valid for N with storage 0(logN)”)

2
. (1ogN)
Theorem 2. For d>2, any J valid for N has storage QtloglugNJ

Theorem 3. For d>3, no d-JAG corrsctly determinss thread-
ability on all undirected d-mazes {6,s,g) is undirected iff
for svery edge thare is an edge in the opposite direction

between the same two neodes).

Saving space in fast string matching

Zvi Galil, Tel Aviv

(Results are together with J. Seifezas at Pann State)

The string matching problem is to find all occurences
of a pattern string x in a text string y. Tha naive algo-
rithm has worst case time complexity proportional to
|x|=]yl while the fast algorithm of Knuth-Morris and Pratt
(KMP) requires only O0(]x|+|y]) time. On the other hand the
naive algorithm requires only two additional memory
location, but the KMP reguires |x| additional memory
location in every case.

We improve both algorithms as follows: We derive a
linear time algorithm that requires only D(log]x])
additional memory locations in the worst case (in the
average four additional memory locations suffice). For
every e>o we derive a constant space algorithm that re-

quires only O(|x|e+|y]) in the worst case.



- 921 -

Complexity of the Satisfiability Problem for Propeositional
Dynamic Logic
Michael J. Fischer, Seattls

The propositional dynamic logic of regular programs,
POL, is a formal logical system derived from modal logic
for reasoning about program schemes. The syntax consists
of two sets: I, a sst of programs and ¢, a set of formulas.
Let ZO be a set of uninterpreted statement symbols and @D
a set of uninterpreted predicate symbols (propositional
variables). I and ¢ ars defined inductively:
(i) ZD\I{G}C z, ¢Du;{trua,False}C 9,

(ii) 1If a,b€ %, p,q€ &, then aj;b, auvb, a*, p? €
and pV g, vp, <a>p€ 9.

Relational semantics arse given by a structure
V= (ww,“w'pu]. where W‘his a2 set of worlds or statss.

i @D—+ Zw“, and p*: ZD—+ zw‘wa_ We extend p to I and
T to ¥:
 plel = nltrus) = W
pla;b) = p(alop(b) w(false) =8
plavb} = plalup(b) w(puq) = wlplvmiq)
pla*) = p(a)® 7 (vp) = W-1(p)

plp?) = {{w,w)| w€ w(p)}
T(<a>p) {w]3 V (w,v) € plale

vE Pl

{u,v) € p%(a) means some exscution of a takes stats u to
state v. w€ 7™(p) means p holds (is true) in state w. We
write W,wiEp- iff we€ nw(p). p is satisfiable if Jd8 ,w
such that ﬁ,wl’“‘ P«

Theorem 1 (Small model). If p€ ¢ is satisfiable, then
dW,w such that %,wkp and size h < 2578 P,

Theorem 2 (Upper bound)}. The satisfiability problem for

POL is in NTIME(c") for some constant c.

Theorem 3 (Lower bound). 3o > 1 such that the satisfiability
problem for POL is not DTIME(c").
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Nondeterminism on Parallsl Machines

Hanks Bremer, Frankfurt

I consider processors, which can compute one boolean
function and which are connected like a tres. This tree-
‘machine has a simple and fixed structure and has polynomial
the same power than any othar parallel-machine. If I allow
to sach sub-automata (processor or node in the tree) a non-
deterministic choice, then I get a more powerful and
natural nondetermination, which does some effect sven for
parallel-machines, And in the corrssponding class NP of the
tres-automata there is a problem, which is complste and 1in
which it is asked, whether there exist Funcﬁions, which
satisfy a given expressian. '

= F1.....¥ : A(F1,..,,Fn).

n'
It is not to be ssen, how to solve this problem even on a

~ deterministic parallei-machine in polynomial time.

Two General Paradigms for Obtaining Lower and Upper Complexity

Bopnds
J.F. Traub, Pittsburgh

1. The lower bound paradigm is based on the pre-image
of an "information” opérator. It can be appliad to any problem
characterizsd by
A:. Tha problem cannot bes solved exactly with finite complexity.
B. Only certain "information” about a problem élement is

available.

Examples of such problems include optimization,
differential equations, integration, and nonlinear equations,
in a finite or infinite number of dimensions.

For such preblems we construct an "information based
tﬁenry" which permits the rational synthesis of algorithms.
These algorithms are optimal or close to optimal with respect
to srror and complexity.

Theorems may. be found in "General Theory of Optimal
Error Algorithms and Analytic Complexity-- Part A: General
Information Model” by J.F. Traub and H. Wozniakowski,

Carnegie-Mellon University Report, Sept. 1977.
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2. The upper bound paradigm is based on Newton iteration for
"algsbraic problems”. Earlier Kung and Traub ("All Algebraic
Functions Can be Computed Fast" CMU Report 1976) showed that
with Newton iteration the first q terms of any algebraic
function could be computed with complexity 0(M(g)). Newton
iteration has been extended to the multivariate non-
commutative case over abstract rings. An application is
genasration of context-free languages from programs.

Newton iteration is also widely applicable to davelop power

seriss solutions of nonlinear operator squations.

Some Results in Algebraic Complexity

Peter Schuster, Zirich

For some matrices rigidity in the sanse of

L.G. Valiant is computed (results of Bernhard Griesser),
Some negative results of Alex Alder on autarchy for
multiplicative complexity iﬁ polynomial rings are pre-
sented. The multiplicative complexity of the product,
composition, continued fraction and quotient of poly-
nomials with general coefficients is computed (results
of Werner Hartmann). The multiplicative complexity of
evaluating the d-th derivative aof an interpolation-
polynomial at the interpolation points is shown to have
order of magnitude n+logn (gensralizing a result of

V. Strassen). Ths complexity of a set of rational
functions symmetric under a finite substitution-group
"G of the variables is estimated from below by log|G]|.
The fixgroup of the structurs-tensor of the k-algebra
k[%;/F' whare f€ k[X], is completsly described (result
of Peter Ritzmann).
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A graph-theoretic property of computations

H.-J. Stoss, Konstanz

We investigate tha computational complaxity of
functions f = (f1.....fn1: K™ K" where K is an arbitrary
set, ® a2 set of operations in K and computations ars de-
fined as networks over &. From the usual definition of
"Fj depends on ths i-th variable xi" follows that in sach
natwork for f at least

V(o) &= #H 1,3} Fj depands on xi}

pairs of inputs and outputs are connected.

We generalize this concept defining quantities
Yf(k) (k=0,1,..) s.t. in each network for f we can eliminate
any k nodes and still yf(k) pairs of inputs and outputs are
connected. To defina chk) we have to investigate the re-
striction of £ to subsets Vo K™ that belong to a suitable
sat ULC pot K™,

In some more special situations (linsar-, boolean
functions) is for almost all functions yf(%) > % n?
that shows using a theoram of Valiant that these functions
have a complexity > en.lglg n.

and

Compromising betwssn finite and infinite complexity

Dirk Sisfkes, Barlin
Let WS1S be the monadic second order theory of <w,<>.

Theorem: If R is elementary recursive and k€ I', then
RPtkn is D(mk-n)-deFinahle in WS81S. (Hers t,n :=n,

t. n
tk+1n 12 27k L)

Thus for defining R in a given interval in an optimal way,
the choice of k is crucial. A similar observation on pro-
grams, s.g., for multiplying two integers, leads to the
following
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Definition: A sequencas (Ak)keF'OF algorithms computes a

function f piscewise iff the following holds:

(i) Each A, computes f.

(ii) There is a sequence q, =0<g4<... 5.t Ak is optimal
in the interval [qk,qk+1) among the Aj'

(iii) Both Ak and Q. are computable from k.

Measuring the complexity of functions using piecswise
computations compromises quite promisingly betwesn the

drawbacks of finite and infinite complexity.

Data representation and computational complexity

Klaus Weihrauch, Aachen
{and Rutgsr Verbesk)

A reasonable representation of 3 set M by eg. numbers
should satisfy some natural reguiresments. It is studied for
several reguirements whether they arse satisfyable or not.
Given any complexity class K, thers is soms function on M
which is computable for some bijsctive representation, but
which is not computable in K for any bijective represantation.
This is no longer true for numberings of M, however, a power-
ful numbering must have a difficult aquivalence problem. A
similar statement holds for gdelizations. Thers ara two
functions, esach of which can be computed easily using
appropriate gtdelizations, but for no gddelization both of
them becoma sasily computable. Finally it is shown that for
no pair f, r' of gddelizations the T'-primitive-recursive
functions propsrly includs the r-primitive-racursive

functions.



Hierarchy results for unary languapes

Burkhard Monien, Paderborn

We show that for the classes of languages over a
one-letter alphabet
DH(k), NH(k), DC(k), NC(k), DR(k), NR(k)
defined by deterministic or nondeterministic k-head
automata, linear bounded k-counter machinss and linear
bounded k-register machines the following hisrarchy
results hold:

» NH(k) € NH(k#1)

DHCK) €, DHCk+1), NH(K) &

DC(k) & DC(k+1), NC(k) < NC(k+2)
= *

DR(k) < DR(k+2), DR(k) ¢ DR(k+2) .
# *

Pebbling the FFT Graph and the Intsger Multiplication Function

John E. Savage, Providence

(and Sourmitri Swamy)

The performance of the FFT algorithms is examined under
limitations on computational space and time. It is shown that
if the algorithms with n inputs, n a powsr of 2, is implemented
with 5 temporary storage locations where 5 = 0(n/log n), then
the computation time T grows faster than n log n. Furthermore,
T can grow as fast as n2 if § = Smin+0[1] where Sm. = 1+log2n,
the minimum storage nescessary. These results are obtained by
deriving tight bounds on T versus S.

While the above results are derived for a particular
algorithm for the discrete Fourisr Transform, we show that any
straight—lihe algorithm for the multiplication of two binary
numbers with the rasult in binary must satisfy ST > Q(na/zl-

This is derived using a method introduced by Grigoryev.

Morg on Pehbles

Allan Borodin, Toronto

We consider the pebbling game on arithmetic circuits
(i.e. the gates are +., -, *, scalar multiplication) viswed
as directed graphs. The rulss are that a pebbls may be

placed on a nods if all the opsrands are presently pebbled
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(in particular, an innut may always be pebbledl), and that
any pebble may be removed from the graph. The goal is to
have pebbled a1l outputs in any order. We measure the
"space” 5, the maximum number of pebbles on the graph
during the game, and the "time” T, the total number of
pebble placements. It is shown that any n-super concentrator
graph require T > Diz {(roughly speaking). Consequently,
discrete Fourier transform of prime order n, require

T = 9[222). It is also shown that any (f(s),n,n) grate

(in the sense of Valiant) require T > q;é, whan f(s)=(n-s)?
or f(s)=n{n-s). Consequently "almost all” linear functions

X + . n2
(defined by An xnx1] require T = 2("/5) and mareover,

xn

2
the FFT graph of order n = 2" require T = at™Vs).

Implementation of PQ-Tree Algorithms

Richard E. Ladner, Seattle
(with Michael J. Fischer and Sarah M. Young)

PO-trees originally defined by Booth and Lucker are
data structures which they used to solve in linear time
the consecutive ordering problem, given 81,...,SkC v,
find a linear ordering of V in which the elements of sach
Si form an interval.

An example of a PQO-tres

l

3y / LT\
[4 gsa -
) P-node: Permutations of children allowed
[~ 3G-node: Reversal of children allowed.
We give a new design for the main PQ-tree algorithm.
The algorithm is linear time and has a form which is easy
to prove correct. We nrovide details of our PASCAL imple-

mentation of the algorithm.
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On the Modulo p Factorizations of an Integral Polynomial

George E. Collins, Madison

The degrees of the irreducibls factors of a polynomial
A of degree n constitute a partition of the intsger n, de-
noted by part (A). Let &. be ths homomorphism from Z onto
the prime finite field GF(p). Let Py be the iEﬂ prims, A
an integral polynomial of degree n, T, o= part[@pi(A)). For
any partition w of n, let P(w) be the known probability
than ths lengths of the disjoint cycles of an n-permutation
constitute the partition w. Let P(w,A) be the limit pro-
bability, if it exists that a term of the ssquence
(v1,w2....) is 7. A is normal in case, for avery
n-partition #, P(w,A) = P(m).

It is conjectursd that almost all integral polynomial
of degree n, for sach fixed n, are normal. This means that
if Sd is the set of all polynomials of degrees n with co-
gfficients in [-d,d] then the probability that an element
of d is normal approaches 1 as d+». The conjecturs is proved
for n = 2. Some theorems and computations support the con-
jecturs for n=3 and n=4, In fact, we ars led to two
stronger conjectures: (I) If the degrese of A is n and ths
order of the Galois group of A is n! then A is normal;

(II) Almost all integral polynomials of degrese n have Galois
groups of order n! Applications of normality to computing
part (A}, and thersby the complsts facthrization of A, ars
discusssd.
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Fast Quantifier Elimination for Algebraically Clesed Fislds

Joos Heintz, Zirich
together with Ruedi Withrich, Zirich

Theorem: Quantifier slimination of prenex formulas
in first order theories of algebraically closed fields of

n
arbitrary characteristic is possible in time d(cn)

whare
d = sum of the degrees of ths polynomials

appearing in tha formula
n = total number of variables in ths formula
c>o some constant.

This implies, that a formula without frae variablas is
decidable in tims ZZCL, where L is the langth of the
formula.

In connection with this theorem the follawing
question arises: Whal Is {!'e largest cardiality of a
finite subset of an affine spacs definable by a formula

of given length? We have the following

Theorsm: Let k be an algsbraically closed field of
arbitrary characteristic and = finite, definable by
a first order formula of length L. Then

cL
#Y<22 .

Complexity of algebraic numbers

Maurice Mignotte, Strasbourg

We try to give a reasonalbe definition of the
complexity of a given algebraic number. We study the
different conditions to be satisfied by such a notion.
We show the link bgtween the complexity of an algsbraic
number and the cost necessary to obtain an approximate
value of this number. Different possible definitions are

studied and discussed.
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Specialization of the multiplicative complexity function

M. Sieveking, Frankfurt

Let L, (z) = LK(‘/,{F1(gj,...,¥P(g)}) be the number of
multiplications/divisions required to evaluate (compute)
functions Fi of the form

a,(z)+..ta (g)xn
F,(2) = . 1
140, (Z)x*anarb ()"

A
=
A
e}

= € i -
where z (21,...,z£). ai’bj ko[z1,...,zl], z, algebrai
cally independent over kD and K is an algebraically
closed field containing a field k(z1.....z£) and ko is the
prime fisld of k. The computation may use the uperations
+,-,*,/ and constants from xvk. x is supposed to be
algebraically independent over K. Similarly we define
2
= *
Lk(g) Lk( /,{fq(g],..,,FP(g)}) c€ k
Theorem There is a natural number vy with the following
property: If any polynomial HE€ kD[z1,...,zE]\{0} with
H(c) = 0 has a degree > vy then
N2
= €
Ly (2) L (e) (c€ K™}

It suffices to take

Ly (2]
Le(z)-2
Yy =2 = deg graph@

r{zd+1) which has the first 2d

cosfficients of the powerseries expansion of f1.....Fr as

where ¢ is a mapping kg —r Kk

components and d = max{degxfil 1<i<r}.
Remark If r=1 and c€ k* is such that
L (o) < L (*/,# (2)ex*®" g} for all g€ k(x))

then a smaller y is sufficient, namely

LK(;)[2d+1)
Y = 2 + deg graph ¢.
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Non-Deterministic Polynomial Optimization Problems and their

Approximatian

—

A. Paz, Haifa

NP problems are considered as recognition problsms.
It is first shown that every NP problem can be raspresanted
as an optimization problem. We then develop a naw theory
of non-deterministic Dolynomial optimization problsms
(NPOP's},

NPOP's are classifisd and studied with regard to the
possibility or impossibility of "reducing” certain types
of NPOP's to other types, in a sensac specified in the text.
A "complete” NPOP is shown to exist thus gansralizing
Cook's theorem for NPOP's. Finally, approximations of NPOP's
are studied. Nacessary conditions and sufficient conditions
for approximability are given and it is shown that the known
approximability results fit within the general frame de-

valoped in this paper.

The Influence of the Machine Model on the Time Complaxity

of Context-Fres Language Recognition

Reinhold Weicker, Erlangen

It is shown that the assumption of a RAM model with
"unit cost criterion” in the case of context-free language
recognition lsads to time bounds significantly bettsr than
2*81). First,

Earley's algorithm for general context-fres language-

the well-known upper bounds of D(na) or O0{(n

recognition is modified in a way such that it makes use of
the array structure of the racognition matrix. This leads
to a formulation of the alpgorithm with steps "Union" (of
non-disjoint sets) and "Get next element"” as basic steps.
Twe models of a RAM are considered, a "BOOLRAM" with
Boolean operations and a one-bit shift operation, and the
normal "PLUSRAM" with addition and proper subtraction
operations. It is shown that, if we assume a unit cost
criterion, the algorithm can be implemented on a BOOLRAM
with time bound D(nz) and on a PLUSRAM with time bound
U(nzlog n).
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Progress on priority deques

P. van Emde Boas, Amstsrdam

In 1975 we presented at the FOCX 16 meeting in
Berkeley a data structure for set-manipulation on a fixed
universe U'= {1,...,n} in which all instructions on a
single ordered set, i.e. inserting elements, deleting esle-
ments, testing membership, computing lsast or largest sle-
ments, and computing predecessors and successors, all take
time 0(loglogn) for esach slement processed.

The structure as presented (see also [1]), uses space
O0(nloglogn) RAM-words. In the meantime the cverhead factor
loglogn in the space requirements has besn eliminated. An-
other problem is that the structurs as described does not
corrsspond to the structure obtained by unwinding ths ra-
cursion from a recursive sxplanation of the basic idsa. In
the talk I will explain what the structure should look like

in its most simplified form.

1. P. van Emde Boas, R. Kaas & E. Zijlstra, Design and
implementation of an efficient priority queus,
Math. Systems Theory 10(1877) 99-127.

2. Pi van Emde Boas, Preserving order in a forest in less
than logarithmic time and linear space,
Information Processing Letters 6{1977) 80-82.

V. Strassen (Ziirich)



