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The fourth Oberwolfach conference on complexity theory has
been guided as before by C.P. Schnorr (Frankfurt), A. Schdn-
hage (Tiibingen) and V. Strassen (Zirich). The 40 participants

came from 9 countries, 10 participants came from North-America.

There were given 34 lectures covering a large area of complex-—
ity theory. 17 of them dealt with subjects of algebraic
nature including fast matrix multiplication; multiplicative
complexity of bilinear forms, of multiplication in algebras
and of the Fourier transform; complexity of evaluation,
factorization and of testing polynomials. Some more results
about solvability of systems of polynomial equations, testing
primality of polynomial ideals, optimality of algorithms

solving linear equation systems were presented.

Other lectures concerned various general computational models
and complexity measures such as Kolmogorov complexity, Crypto-
complexity, Boolean complexity, decision trees, iterative
arrays, Petri nets, and in particular Turing machine complexity,
where time, space (both in the deterministic, nondeterministic
and probabilistic model) alternations and tapes have been
counted. The specific problems of the lectures dealt with e.g.
context-free languages, sorting, searching, text edition, en-

cryption systems, tree layout, graph threadability.

C.P. Schnorr
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Vortragsausziige

EXACT AND APPROXIMATE COMPUTATION OF BILINEAR FORMS AND
APPLICATION TO THE MATRIX MULTIPLICATION PROBLEM

F. Romani, Pisa

An alternative approach to the computation of bilinear forms
is presented. A new class of algorithms (APA-algorithms) is

introduced.

APA-algorithms allow a reduction of the number of non-scalar
multiplications in exchange for an arbitrarily small error in
the result and they can be converted into exact ones with small
increase of complexity (Bini). The application of this tech-
nigque to matrix multiplication allowed reducing the upper
bounds of the problem (Bini et al., Pan, Schdnhage).

Two complexity measures are introduced for matrix multi-
plication algorithms which take into account the stability
properties of algorithms. Wamely fixed precision complexity
is the number of bit operations needed to get a given accuracy
in the result; asymptotic complexify is a finite measure for

the "infinite precision" complexity of matrix multiplication.

TRILINEAR AGGREGATING, UNITING AND CANCELLING REVISITED

V. Pan, Albany

At first the problems of matrix multiplication and inversion
are reduced to a special decomposition of a certain trilinear
form. This generalizes recent analogous reductions done by

D. Bini, M. Capavani, G. Lotti, F. Romani, A. Schonhage.

Then the techniques of trilinear aggregating, uniting and
cancelling (introduced earlier by the author) are applied to
derive an appropriate decomposition of the trilinear form.
Although the resulting exponent of the complexity of matrix
multiplication and inversion is inferior comparing with one
derived very recently by A. Schdnhage 1979 (2.6054 vs 2.548)
the technigques applied by the author and by A. Schinhage seem
to be different and may complement each other to derive better

exponents in the future.



PARTIAL AND TOTAL MATRIX MULTIPLICATION

A. Schénhage, Tilbingen

By using the notion of approximate rank and observing the fact
that favourable patterns of partial matrix multiplication A-B
—- some of the a's and b's may be zero - can efficiently be
utilized to speed up multiplication of large total matrices

I recently have found new bounds on the exponent w for matrix
multiplication (Preprint, University of Tiibingen, June 1979) ,
for instance w<2.,609.

Now a further improvement is presented: Multiplying a (k,1)-
matrix A (i.e. a column vector) with a (1,n)-matrix B and, in
addition, evaluating a scalar product U:V of length m=(k-1) (n-1)

in variables disjoint from those in A and B can be done by an
approximate algorithm of length kn+1 (which, for m®2, is better
than the obvious bound kn+m). Based upon this the bound ws3t

is derived, where Tt is determined as the solution of (kn)T+mT=kn+1.
The best value is obtained by k=n=4, m=9, namely w<2.548.

THE EVALUATION OF SEVERAL BILINEAR FORMS

M.D. Atkinson, Cardiff

Methods of computing the rank of an arbitrary mxnxp tensor are
currently known only for p=1,2 and require the theory of
canonical forms of matrices. Such a theory does not exist for
p=3,4,... and so we concentrate on evaluating r(m,n,p) =
highest rank of any mxnxp tensor over C. It is possible to
prove

r(m,n,p) s m+t%gln if m<n

(%p+1)n if m=n

For large values of p rather more precise results can be
proved. In particular, if p=mn-1, mn~2 and a tensor is described

by p linearly independent matrices A1,..,A then its exact rank

PI



can be found. For small values of m,n,p one can show the
following
r(3,3,3) =5, r(4,4,4) =8 or 9, r(5,5,5)%13

together with similar results.

MULTIPLICATIVE COMPLEXITY OF A BILINEAR FORM OVER A COMMUTATIVE

RING *)
D.Ju. Grigor'ev, Leningrad

The complexity of a bilinear form with parameters reduces to
the complexity of a bilinear form over some commutative ring.
Multiplicative complexity RgKA of a bilinear form A over a

commutative ring K is no less than its rank rgA.

Theorem 1 For every bilinear form A (over a noetherian com-
mutative ring K) the equality RgKA = rgA is fulfilled iff

K = K1®...®Kn where Ki(1SiSn) is an integer domain such that
1) global homological dimension of Ki is no greater than 2;

2) every Ki—projective module is free.

A bilinear form A over a polynomial ring K = F[Xq,..,Xq]

(F is a field) is free of squares if every coefficient of A

is a F-linear form over Kiresr®y (note that F[x1,x2] satisfies
the conditions of theorem 1).

Theorem 2 For free of squares bilinear forms A (RgKA/rgA)<2
and sup(RgKA/rgA) = 2 (for n=3 max(RgKA/rgA) = 3/2).

THE MULTIPLICATIVE COMPLEXITY OF A PAIR OF
BILINEAR FORMS

P. Schuster, Tiibingen

A formula for the rank of a 2xmxn tensor is exhibited. It
holds over any field that is large enough. This result con-
tains the results of Grigor'ev and Ja'Ja' as special cases.
Given the coefficients of the tensor over R, this formula can
be evaluated by a number of arithmetic operations growing
polynomially in n+m.

*) This lecture was not given at the conference



COMPLEXITY OF ALGEBRAS

V. Strassen, Ziirich

A joint result with A. Alder: Let A be a finite dimensional
associative algebra of dimension n, L(A) its multiplicative
complexity. Then:

L(A) 2 2n-number of maximal ideals of A. This implies almost
all known lower bounds for algebras.

MULTIPLICATIVE COMPLEXITY OF FOURIER TRANSFORM

S. Winograd, Yorktown Heights

Let G and F 2 G be two fields. Let P(u)€G[u] be irreducible,

and let HP be its companion matrix. For every vector

- n . . - 01 i
f = (fo,f1,..,fn_1)eF we assign the matrix Hp;f zi=ofiHP

where n = degP(u). Let D = D(f1,fz,..,fk;P1,P2,..,Pk) denote

the block diagonal matrix whose ith block is 1, ¢ s1sisk.
L.
D is an mXm matrix where 1t
_ ok _ <k . . i
m = Ei=1ni = zi=1deg Pi(u). We are interested in the multi

plicative complexity of DMl, where M is an mxl matrix over G
and y is the vector Y= (y1,y2,..,yl)t of 1 indeterminates.
Let p:F + F/G be the natural vector space homomorphism.

We denote by p(f) the vector (p(fo),p(f1),..,p(fn_1)) and by
LG(p(ﬁ)) the G linear space of the elements of p(f). A
special case of the result (which dis sufficient for app-

lications to Fourier transform) is:
Theorem: If [G|2m§x{2(ni—1)} and
- i

1) for each 1ei¢k dimLg(p(£;)) = n;

2) for ifj either LG(p(fi))ﬂLG(p(fj)) = {0} or else
p(fi) = p(fj) and Pi = Pj

.then MG(DX) = 2mk

Let A = Wa be the Fourier transform over the group

2/N1XZ/N2X...X7/NS. There exist two invertible matrices



(over Q) R and S such that W = RDS, where D is a block

diagonal matrix with eachblock a 1 Whenever N1,N ..,NS

p;f" 27

satisfy: "If for a prime number p,p2|Ni then p*Nj for every jFi"
the matrix D satisfies the assumptions of the theorem.
Therefore one can determine the multiplicative complexity of
these Fourier transforms. For example, a corollary of the

theorem is that uQ(FT(Zn)) = 2n+1—n2-3.

TESTS ON POLYNOMIALS

M. Mignotte, Strasbourg

Given a polynomial Pe Z[x1,..,xg such that one can compute
Pty -aix ), (%qr..+% )¢ 77, and which satisfies deg(P)=sd,
Height (P) sH, we consider the question <<P = 0?>>.

We show that a suitable choice of (x1,..,xn) leads to the
answer. We compare this method with "probabilistic" ones and

show that the second may fail even on small examples.

SOME APPLICATIONS OF BEZOUT'S THEOREM TO THE COMPLEXITY
OF POLYNOMIALS

C.P. Schnorr, Frankfurt

Let EiClKn i=1,..,r be (Zariski)=-closed (affine) sets definable
over the field KOC K. Then Bezout's inequality for the degree
of affine closed sets implies
Lemma deg/\ E, = deg E, - (max deg E.)dlm Eq
—_—— : i 1% i

isr i>1 _
The following consequence-yields a random polynomial decision
procedure for deciding whether a given polynomial is O:

Cor. 1 Let PGK[X1,..,XJ and let BC Kn be finite and the inter-
section of hypersurfaces of degree sm, then

#{x B|P(x) = 0}s deg P-mn—1, provided P £ 0.
Cor. 2 (common with Heintz) There is a closed set W(v,n)c< K"

which contains all (a1,..,an)e K® such that 2?=1aixl can be



computed with s$v nonscalar steps and

(v+1) (v+2)
14

(1) deg W(v,n)<(2vn) (2) dim W(v,n)s(v+1) (v+2)

n i 2,
Cor. 3 max{Lns (T _qay% )[aie{0,1}}>\/3n/log n and for most
(a1,..,an)e{0,1}n this bound is achieved.

We also establish lower bounds on the minimal number of non-
scalar operations which are necessary to evaluate some
specific multivariate polynomials with O,1-coefficients; e.g.:

k i 1 . 1/4
Lns(2i=1ylxin)25k log n provided k<n / .

SOME POLYNOMIALS THAT ARE HARD TO COMPUTE

J. von zur Gathen, Ziirich

The nonscalar complexity L(f) of a polynomial fe€(X) is the
minimal humber of nonscalar multiplications/divisions suf-
ficient to evaluate £ by a straight-line program. "Nonscalar"
means that multiplication by a complex number which may depend
on the coefficients of £, but not on the value of X, is free.
Paterson and Stockmeyer have proved that for all £, L(f)so(fH),
and for almost all £, L(f)éq;LZ where n=deg f£f. Strassen,
Schnorr, and Heintz and Sieveking have given specific poly-
nomials which are hard to compute. Using a theorem by the
latter two authors, Strassen & von zur Gathen showed that for

zEeQ-3: L(Z jzxj)Pq?Og = and for ze €

1€jsn

n
log n

not zero or a root of unity L(E'z1/3xj)>
1sjsn

The bounds make use of the fact that the coefficient sequences
generate algebraic field extensions of high degree.

Analogous results hold in the case where all operations are
counted.



POLYNOMIALS WITH SIMPLE COEFFICIENTS WHICH ARE
HARD TO COMPUTE

H.J. Stoss, Konstanz

We are interested on the complexity of polynomials of degree n
over the complex field using computations in the field ¢(x).
The main result is the following:

Definition: A polynomial p(x) = p(o)+E?=1aixlé C[x) is of
type Ml , where M. «{1,2,...,n} iff af%o <=> ieW (i=1,2,..,n).
Then we get

Theorem: Given &, o<e<1, there exists no(e) such that for all
n>n, and all g:Jgx(lgn)? at least (1-¢) () sets M<{1,2,..,n}
with #rWl= g have the property that all polynomials p of

typeY“ have complexity

L.(p) > 0.8 \,%-ﬁ

(p)>0.19 L—

Ltot lg n

From this theorem we get some further results, e.g. that al-
most all 0-1 polynomials are hard to compute.

It is also possible to derive lower bounds for specific poly-
nomials with algebraic coefficients.

FACTORIZATION OF UNIVARIATE INTEGRAL POLYNOMIALS

G.E. Collins

Let A be a primitive squarefree univariate integral polynomial
of degree n. An irreducible factor of A can be found by
forming products of lifted modulo p factors of A for a suit-
able small prime p. One can either form first the products
consisting of the smallest numbers of lifted factors (cardin-
ality procedure) or form first the products with smallest
degrees (degree procedure). Let m be the partition of n con-
sisting of the degrees of the irreducible factors of A. The
average number of products formed before finding an irreducible

factor of A is a function of T, C(m) or D(m) respectively.
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Let C¥*{(n) (resp. D*(n)) be the maximum of C(w) (resp. D(m)) for
all partitions ™ of n. It is proved that D¥(n) is an ex~-
ponential function of n whereas, subject to a conjecture for
which there is considerable evidence, C*(n) is dominated by
n2. If the conjecture is indeed true then the cardinality
procedure provides a complete factorization algorithm whose
"maximum average" computing time is dominated by a polynomial

function of its degree n.

TOWARDS A DECISION PROCEDURE FOR PRIME IDEALS
IN POLYNOMIALS RINGS

Jd. Heintz, Frankfurt

Let k be an algebraically closed field, X.],..,Xn indetermin-
ates over k and F1,..,Fre;k[x1,..,xﬂ].

Goal: decide if (F1""Fr)‘:k[x1""xn] is prime when the
elementary theory of k is given.

A partial solution of the problem is given by the following

Theorem: Let d = (deg F1+...+deg Fr)n

(F1""Fr) is prime and {F1 =0,..,F_= 0} is smooth iff

(i} for all polynomials H,L& k[X1,..,X£] with degH + degLsd

there is: H-LE (F1,..,Fr) = He (F1""Fr) or L &€ (F1""Fr)
(ii) for all xe{F1 =0,..,F_= 0} holds:
oF.
r (BX.(X))j=1,..,r = n-s
i=1,..,n
k k
where s = min{k: (3] ul,..,u;+1,..,u1,..,un+1)
_ _ 1 1, _.1 _
O<#{F1 =0,..,F. =0, wX+...4u X ~u . =0,..,
k k k
u1x1+...+uan-—un+1 = 0}=d
By the theorem we can decide if (F1""Fr) is prime and
{F1 =0,..,F_= 0} is smooth. However, this decision procedure

is not polynomial in deg F1+..+degFr.



COMPLEXITY OF SYSTEMS OF ALGEBRAIC EQUATIONS

D. Lazard, Poitiers

Let f1,..,fn be n homogeneous polynomials in n indeterminates
which have a finite number of common zeros in the algebraic
closure of the ground field, counting the zeros at infinity.
An algorithm is described which computes all those zeros.

If d is the highest degree of the polynomials, the comput-
ations needed by this algorithm consist in the resolution

of one univariate polynomial whose degree is the number of
solutions and a number of operations of the ground field
which is polynomial in (ed)? where e bounds the number of
solutions.

OPTIMALITY OF SOME ALGORITHMS USING ELEMENTARY MATRICES

J. Lafon, Strasbourg

Let k be an infinite field. M(k) denote the space of mxn
matrices over k. An elementary matrix Ei.(a) has all its
elements null except element i,j equal to a and diagonal

elements equal to 1.

1) Linear system resolution

To a general linear system AX = B we associate the nx(n+1)

matrix A' = (AB). We define(k,R (resp.kp) as the set of
algorithms which compute the triangular matrices R = (8\\J)
resp. the diagonal D = (é‘”.?é)) from A' by using only

left products by elementary matrices and rational oper—
ations on k. We prove the following fact:

- Gauss is the unique optimal algorithm in QtR (with respect
to the number of mult. div. (or add.) used)

- Gauss is also optimal in;tP but it is not unique. There
exist optimal algorithms which don't make first the
triangularisation.

2) Transformation of a matrix in a Hessenberg tridiagonal or
Frobenius form.



We consider only algorithms which use transmutation by
elementary matrices and rational operations on k. The

results are the following:

- The classical algorithm is optimal to obtain the Hessen-
berg form - The minimum cost (number of mult./divisions) is:

wm
|
nNo
]
+
=]
+
-

6 6
- The optimal algorithms are different from the classical
one both for the computation of the tridiagonal and the

Frobenius forms. The minimum costs are:
2

3 'P2—2 if n=2p
n~ - % - 1ln + 5 - p 4+p-2 if n=2p+1 for the tridiagonal form
2 if n=3
n3 - n2 + 9n - 4 for the Frobenius form.

HORN COMPLEXITY FOR BOOLEAN FUNCTIONS

E. Bb6rger, Dortmund
(joint work with S.0. Aanderaa)
We measure the complexity of Boolean fcts in terms of the
complexity of the logical structure defining them. The hope is
that one may become able to derive impossibility results (lower
bounds) for particular Boolean fcts if the logical structure
of the formulae defining them is "simple" but at the same time

"comprehensive enough" to express interesting facts.

The Horn complexity CH(f) is defined as minimal length of any
formula defining £ which is Horn in its working variables.
Here o defines f iff for all g (£f(g))=1 iff a(x|qg,y) is satis-
fiable; x are the input variables, y the output variables;
a{x,y) is Horn in y iff it is a Horn formula when the occur-
rences of the input variables are disregarded.

2 3
Theorem: CH(f) < O(CN(f)) B CN(f) < O(CH(f) (lgCH(f)) )
where CN(f) denotes the network complexity of £.

Interesting connexions to the P=NP-problem are discussed.



GENERALIZED NONDETERMINISTIC ITERATIVE ARRAYS

M. Firer, Edinburgh

A d-dimensiocnal iterative array consists of identical finite
automata in all points of ?d—(0,0,...,O). The automaton at
(0,0,...,0) has in addition an input device and an accepting
state. The new state of each automaton depends not only on
its old state but also on the old states of all automata with
distance 1.

Another simple and highly regular interconnection pattern
which is a combination of array and tree structure yields

a very powerful machine (generalized iterative array) if the
automata are nondeterministic. Linear time of this machine
corresponds exactly to exponential nondeterministic Turing
machine time. If there are not so many interconnections (e.g.
with a tree structure), polynomial time of the generalized
iterative array corresponds only to polynomial Turing machine
space (as in the deterministic case). Generalized iterative
arrays are therefore a helpful object to study the time versus
space and determinism versus nondeterminism problems, and to
investigate the influence of the structure of memory on the

computational complexity.

The linear time bounded alternating version of the above
parallel machine with array-tree structure is exactly as
powerful as an exponential time bounded alternating Turing
machine with a linear number of alternations. The languages
accepted by such machines form a very natural class. E.g.
the first order theory of real numbers with addition TH( R,+)

is complete in this class.
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NEW ALGORITHM AND COUNTERALGORITHM FOR SELECTION

L. Hyafil, Paris

In this paper we present a new algorithm for selecting the
first k elements of an ordered set of size n, which improves,
for asymptotic values of n, over all previously known al-
gorithms; it improves also over algorithms restricted to the
search for the k-th element. A counteralgorithm (adversary
strategy) is also given which‘reduces the gap between the

lower and the hpper bound to a few comparisons.

A TIME-SPACE TRADEOFF FOR SORTING ON A GENERAL
SEQUENTTIAL MODEL OF COMPUTATION

A. Borodin, Toronto

On a general model of computation, no restriction is placed on
the way in which the computation may proceed, even though the
inputs and outputs come from a specific mathematical structure.
For example, a "bucket sort" does not restrict itself to the
structure of a totally ordered set. We define a "most general"
sequential model of computation and then prove that for sorting
N distinct integers, each in [1,N% , we must have T-S=O(N2/log N)
where T is the time and § the space used in the computation.
This result is due to A.Borodin and S.Cook.

EVERY DETERMINISTIC CFL_ IS ACCEPTED SIMULTANEOUSLY
IN POLYNOMIAT, TIME AND L.OG SQUARED SPACE

S5.A. Cook, Toronto

We prove the theorem in the title by showing how to simulate

2 deterministic pushdown automaton in small time and space.

The simulating machine remembers enough about the pushdown

stack (and past history of the computation) so that re-
computations are not frequently necessary, but remembers

little enough that the O(logzn) space bound is not exceeded.

The paper provides the first examples in the literature of

a language L and a proof that L can be recognized simultaneously
in small time and space, such that no proof is known that L

is in DSPACE (log n).



PEBBLING MOUNTATN RANGES

K. Mehlhorn, Saarbriicken

Recently, S5.A. Cook showed that DCFL's can be recognized in
O((log n)z) space and polynomial time simultaneously. We show
that O0{log n)z/log log n) space suffices under the assumption
that the height of the pushdownstore as a function of time is

given as an additional input.

TIME VERSUS SPACE

R. Reischuk, Bielefeld

The pebble-game is generalized and a generalized pebble-

lemma is proved. With the help of this it can be shown that
t(n)-time bounded tree-tape Turing machines and logarithmically
t{n)-time bounded RAM's can be simulated by a t(n)/log t(n)~-

tape bounded Turing machine. For an extended model of Turing
machines with ps—-admissible storage structure (this includes’
multidimensional Turing machines) an analogous space bound
t(n)log log t(n)/log t(n) can be obtained. With the help of a
fast simulation of time bounded multidimensional Turing machines
by tree-tape Turing machines the space-bound for multidimensional

Turing machines can be improved to "nearly" t(n)/log t(n).

KOLMOGOROV COMPLEXITY AND ON-LINE COMPUTATIONS

W.J. Paul, Bielefeld

If d 2 2, then for d-dimensional on-line Turing machines k+1
tapes are better than k. The proof uses the concept of Kol-

mogorov complexity.
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COMPLETE PROBLEMS FOR NONDETERMINISTIC COMPLEXITY CLASSES
DEFINED BY SUBLINEAR SPACE BOUNDS AND POLYNOMIAL TIME

B. Monien, Paderborn

In this talk we consider a class of pseudopolynomial problems.
A problem Le&X*, LeNP, ‘is called pseudopolynomial if to each
ueX* there is associated a number m=muFN such that (u,m) is
accepted by a det. TM within a time bound which is polynomial
in m. We use reductions which guarantee that for every pair
(u,m) the number m grows at most polynomial. Let Pair, be the
class of all sets R such that (u,m)éR can be tested by a nondet.
TM within the time bound pol(|u},log m) and the space bound
max(log|u},log m). We present a problem which is complete for
Pair,; with respect to our reductions.

If R is complete for Pair, then for every easily computable
function £ the class Lp(f) = {ugv|(u,v)eR and |v|sf(|u[)} is

complete for U NPTIMESPACE(f(nd)).
d

PATH SYSTEM PROBLEMS
I.H. Sudborough, Paderborn

Path systems with bounded bandwidth are considered. It is
shown that the family of solvable path systems with bandwidth

2cf(n) is complete for the set

, denoted by {SPS(ZCf(n))}Cz1,
of languages recognized by alternating Turing machines within
space f(n), denoted by ASPACE(f(n)), with respect to log space
reductions, when feO(log n) is constructible. It is also shown
that SPS(f(n)) can be solved deterministically within space
f(n)log n. Thus, it follows that, for constructible functions

fe0 (log n), ASPACE(f(n));:U DSPACE(Zkf(n) log n). In particular,

ASPACE(log log n) &) DSPACE((log n)
Skt



NP-HARDNESS AND CRYPTOCOMPLEXITY

S. Even, Haifa

A family of encryption systems which are NP-hard to break
is shown. One such highly "linear" system is shown to be
almost always easy to crack, but others are believed to be

hard to break in most cases, although this remains to be proven.

The Public-Key-Crypto-System (PKCS8) model is formulated and it
is shown that such a system is unlikely to be NP-hard to break.
This differs from the result of Brassard, Fortune and Hopcroft
in two respects. First, the one-way functions they analyse
cannot have trapdoors (and therefore are not suitable for PKCS);
this allows the possibility of existence of a one-way trapdoor
function, since the ceracking algorithm must solve for all
encryption keys, which may change with the input. Second, we
do not require that the function is onto.

A NON PRIMITIVE RECURSIVE DECISION PROBLEM FOR PETRI NETS

E.W. Mayr, Miinchen

Finite reachability sets of Petri nets or vector addition
systems can effectively be constructed. The complexity of
the inclusion and equality problem for finite reachability
sets can, however, be shown to be very hard as the time or
space complexity of each decision procedure for these problems
exceeds any primitive recursive function i.o. For the proof
of this lower bound a bounded version of Hilbert's Tenth
Problem concerning integer solutions of diophantine equations
is reduced to the finite inclusion problem using the concept
of weak computation of a function by a Petri net. The finite
inclusion and equality problem are thus first uncontrived

decidable problems which are not primitive recursive.



LOCAL OPTIMIZATION OF QUAD TREES

P. van Emde Boas, Amsterdam

In their 1974 paper Finkel and Bentley write that they have
obtained a 10% reduction of the total path length of randomly
created QUAD trees by application of local transformations.
It is not clear from their paper which transformations were
used and how they were applied. Our empirical investigation
tries to answer these questions. We also look for new tricks
which might increase the reduction of path length obtained.
Our results suggest that Finkel and Bentley have used dynamic
optimisation (optimising after each insertion) without Guards.
We present two patterns which give a small increase over the
one obtained by Finkel and Bentley. Combination of Patterns
seems not to be helpful.

One of our patterns can be used to solve the deletion problem
for QUAD trees. Nodes are not really deleted but tagged as
being virtual for not being present, keeping this way their
role in guiding searches in the tree. Our transformations
allow to eliminate virtual nodes with only one son, whereas
subtrees consisting of virtual nodes only may be deleted
right away. Therefore the virtual nodes will never form the

majority of nodes in a tree.

OPTIMAL TREE LAYOUT

M.S. Paterson, Warwick
(joint work with M.J. Fischer)

Given 1) a planted tree T with leaves x1,..,xn, root z, and

with a weight We associated with each edge e, and

ii) fixed positions for x,2, in mk
We seek positions y1,y2,... for the internal nodes of T so as
to minimize X we'length(e). Denote minimum by
eeT

COSTT(g,z)



Theorem
If we consider planar embeddings in R2, i.e. with no edges
crossing, then the recognition problem

(planar)(
T

{(T,g,z,k)~| cost, %,2) <k}

is NP-complete.

If edges must be made from line segments parallel to the co-
ordinate axes, length(e) becomes the L_l norm and

Observation:
Each L1—optimal layout problem in Rk decomposes into k

independent layout problems in R1.

We have linear time algorithms for the one-dimensional problem

in the following cases:

i) unit weights

ii) leaf positions are in "natural" tree order.
Otherwise we have an algorithm with complexity O(n log n) .

The following characterization, used in deriving the algorithms,

describes the dependence of cost,, on X and z.

T
Theorem

For any fixed ordering of the leaves, say x15x25...sxn,

+oo
cost (,2) = Izi(;‘(,t)dt + [7b(x,£)at

where a-b is non-decreasing function of t and

where a and b are step-functions defined by

a(i,t) =0, bx,t) = bO if te(-=,x,) |and a,h depend only
=8y = bi if te[Xi’xiﬂ) on w's and ordering of x's
= a, =0 if te[xn,W)
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CONCURRENT GRAPH SEARCHING

M.J. Fischer, Seattle
(joint work with M.O. Rabin)

We present concurrent algorithms for searching a list-structured
memory. The memory is a finite labelled directed graph
augmented by a fixed number of pointer- and integer-valued
storage registers at each node. A process has a finite state
control and a fixed number of such storage registers. In one
step, a process can access any single node to which it holds a
pointer. We say such a node is visited. A process is placed
on a node by initializing éll its registers with pointers to
that node. A sequence {Pi}i21 of processes solves the graph-
searching problem if for all n and all memories of suitable
type but arbitrarily many nodes, if P1""Pn are placed
arbitrarily on the graph, then every non-failing Pi eventually
visits every node accessible from its starting places. (A pro-
cess fails if it ceases execution).

Theorem There exists a sequence of pfocesses, each having the
same number of registers, which solves the graph-searching
problem. Moreover, on any run of the first n processes, all
integer-valued registers are bounded by O(n). If one assumes
pointers are totally ordered and can be compared, then the
Processes can be chosen to be identical, and the bound on the
register size becomes constant.

A PROBABILISTIC LOG SPACE ALGORITHM FOR UNDIRECTED
GRAPH THREADABILITY

Ch. Rackoff, Toronto
(joint work with Aleliunas, Karp, Lipton, Lovasz)

. R G is an undirected graph containing nodes
Let T = {(G,a,b) a and b, and there is a path from a to b

Theorem 1: There is a polynomial time, log space coin-tossing
algorithm for T: if the input ¢ T, the algorithm says NO;
if the inputeg¢ T, the algorithm.says YES with probability >?/2.
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Theorem 2: There is a log space, non—un;form algorithm for T.
That is, for each n there is a finite state machine M with a
polynomial (in n) number of states, such that M accepts
precisely the members of T of size n.

EFFICIENT IMPLEMENTATION OF STICKY POINTERS IN TEXT EDITORS

R.E. Ladner, Seattle
(joint work with M.J. Fischer)
Efficient algorithms for insertion and deletion of text which
supports sticky pointers in the base text is presented.
The cost of n edit operations is O(n) for the insertions and
deletions and O(n log n) for locating the pointers in the text.

The algorithm uses balanced trees in a new and unusual way.

NOTWENDIGE BEDINGUNGEN FUR DIE AQUIVALENZ KONTEXTFREIER SPRACHEN

G. Hotz, Saarbriicken

Sei G = (X,T,P,S) eine kontextfreie Grammatik und L(G) die
durch G erzeugte Sprache. Wir bilden die freie Gruppe F(X),

die durch X erzeugt wird und den Gruppenring Z(F(X)). Z(A(X))
ist der Gruppenring der freien abelschen Gruppe, die X erzeugt.
e,c:F(X) » A(X) sind Gruppenhomomorphismen, die wir zu Gruppen-
ringhomomorphismen fortsetzen. Wir bilden P={u-v| (u,v)eP} und
a(F) = e(F)v c¢(F) und das durch a(F) in 2(A(X)) erzeugte Ideal
(a(P)). Es sei R = Z(A(X))/(a(P)) und T, die kanonischen Ver-
ldngerungen von c,e zu Homomorphismen in R. Wir bilden nun

den Z(A(x))—ModulWY\ = ® Rdx, worin dx eine freie Variable ist.
XeX
Eine freie Differentiation ist eine Abbildung d von Z (F(X)) inyn

mit folgenden Eigenschaften:
1) d(f+g)
2) da(f-g)

d{£) + d(g)
d(f)-e(g) + T(f)-d(£f).

Setzen wir fest, daB dx fiir x¢ X eine freie Variable ist,

dann ist d durch e und c eindeutig bestimmt. Wir bilden den
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durch 4(?P) erzeugten % (A(X))-Modul (d(P)) und faktorisieren
M nach (d(P)). Das Resultat bezeichnen wir mit Yn,(P,e,c).
Es wurde der Beweis des folgenden Satzes skizziert.

Satz: Sind G und G' kontextfreie Grammatiken ohne iiberfliis-

sige Variablen, und ist L(G) = L(G"'), dann ist fW\(P,e,c)

isomorph'zu Yn_(P',e,c) und zwar unter den folgenden Voraus-

setzungen:

1) e(x)
e(x) = 1.

e(x) = 4x; c(x) = 1 und e(x) = +x, c(x) = +x und

Modifiziert man die Definition von WYUP,e,c) fiir e{(x) = c(x) = 1
in naheliegender Weise, dann erhdlt man auch hierfiir das gleiche
Resultat.

A GENERAL THEORY OF OPTIMAL ALGORITHMS

J.F. Traub, Columbia (N.Y.)
(joint work with H. Wozniakowski)
Assume we are given N(f) where fcG. We wish to compute or
approximate S(f). The information operator N and the solution
operator S can be linear or nonlinear. The basic concepts

of optimal error algorithm, optimal complexity algorithm,

optimal information, and problem complexity are defined.

Instances are given of general theorems which can be established
in this framework. One example: If S and N are linear operators
then adaptive information is no better than nonadaptive in-
formation. ZKiefer's famous result on optimal search for uni-

modal functions show this result is false if S is nonlinear.

Applications illustrate that very tight bounds can often be
obtained for problem complexity.

Berichterstatter: J,Heint=z
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