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The 6th Oberwolfach Conference on Complexity Theory was
organized as before by C.P.Schnorr (Frankfurt), A.Schénhage
(Tibingen), and V.Strassen (Zlrich). The 41 participants came
from 11 countries, 16 participants came from North and South
America and Israel.

42 lectures were given at the conference covering distinct

areas of complexity theory. They dealt with subjects of algebraic,
numerical, number theoretical, geometric, and combinatorial
nature and their applications including problems of concrete
computer implementation.

Lectures were given on bilinear complexity, polynomial com-—
plexity, solving algebraic equations numerically by fast algo-
rithms, problems connected with number theory as cryptography

and primality testing, computer implementation of fast algorithms,
Boolean complexity, VLSI and Computer Design, complexity classes,
and in particular on the complexity classification of problems
from graph theory, sorting, and coding.
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Vortragsausziige

M.D. ATKINSON : The complexity of euclidean congruence

Let 5, T be two n-point sets in real 3-dimensional space and let
Cong(S,T) be the set of Euclidean congruences from S onto T .
An algorithm of time complexity nlogn is given. The algorithm
applies a number of symmetry tests to S and T which reveal
either that S is not congruent to T or produce two sets s*,
T* of bounded size such that Cong (S,T) & Cong(S*,T*)

The algorithm makes use of an algorithm of Shamos and Bentley for
finding shortest distances, a fast pattern recognition algorithm,
and the Euler formula relating the edges and faces in a planar -

graph. It is optimal to within a constant factor.

T. BETH : On the complexity of group algebras

The investigation of fast regular algorithms (e.g. FFT, WFTA etc.)
leads to the study of certain G-modules associated with certain
suitable groups . (e.g. groups of the roots of unity, Galois groups
etc.). Generalization to a much wider class of problems leads to
the study of complexity of the "universal" G-module FG , the group
algebra of G over F . Very rough estimates show that the usual
"detour" of computing in semisimple group algebras FG by com-—
puting in the isomorphic Wedderburn—-algebra, can only guarantee
an expected reduction of complexity, if a fast transformation
method for carrying out this isomorphism can be derived.

It is shown that for solvable groups G whose order n is only
divided by primes of bounded size, the complexity of the trans-
formation algorithm can be reduced to O(nm/z) , where O(nw)
denotes the complexity of multiplying matrices of order n .

The proof is based on the iterative use of Clifford's theorem.

The method seems to be applicable to wider classes of groups that
shall be studied subseguently.



D. BINI : Some computational problems concerning linear spaces

of matrices

Linear spaces of matrices occur in several problems of Numerial
Analysis. Main computational issues are the construction of
concrete fast algorithms for matrix inversion, computation of the
determinant, approximation of the eigenvalues and eigenvectors of

a matrix belonging to a linear space. We show that the concepts

of tensor rank and border rank provide a valuable tool.for this
investigation. We prove that if the linear space A of nxn-matrices
is such that tensor rank (A) = n+k (border rank (A) = n+k),
where k <n is a constant, then for any A€A the computation
(approximation) of detA costs n(k2+1) + constant multiplications
or [log2n1-+constant parallel steps. Similar results hold for
achieving one step of the bisection method or Newton method

applied to the characteristic polynomial of A , yielding concrete
fast algorithms for approximating the eigenvalues of A . The
inverse of any non singular matrix A€ A can be computed in
[logzn]4-constant parallel steps. Moreover, in the case of
approximate algorithms, switching from approximate to exact
algérithm increases the number of processors, leaving almost un-
changed the number of parallel steps.

Applications to some important classes of matrices are given.

G.E. COLLINS : A close look at Karatsuba integer multiplication

The critical value of the Karatsuba algorithm is the operand size
at which the algorithm becomes faster than the classical algorithm.
An existing implementation in the SAC-2 computer algebra system

has a critical value of 38 beta-digits (about 380 decimal digits)
when running on the University of Wisconsin Madison's Univac 17100
computer. In this implementation integers are kept in linked

lists; a proposed implementation which would perform multiplications
in a large scratchpad array would have a critical value of about

21 beta-digits. At an operand size of about 250 beta-digits this
Karatsuba algorithm implementation would become twice as fast as



the classical algorithm, at about 1306 beta-digits four times as
fast; and at about 8oo0o beta-digits ten times as fast. On a com-
puter of the future executing instructions at a rate of 100 per
microsecond, this last multiplication would take 2 seconds using
the Karatsuba algorithm.

St.A. COOK : The parallel complexity of the Abelian permutation
group membership problem )

(joint work with Pierre McKenzie)

The Abelian permutation group membership problem (APGM) is in
RNC3 (i.e. it can be solvéd by Boolean circuits of depth
O(log3n) and polynomial size, provided the circuit is allowed
coin toss inputs). In fact, this problem is reducible to the
problem of solving a (singular) system of linear diophantine
equations modulo a number m, all of whose prime power divisors

- are small. We show that the latter problem is in RNC3 . Also
APGM is in NC' (solvable by deterministic O(logn) depth cir-
cuits) in case the number of generators of the group is bounded.
Finally, APGM is hard for nondeterministic log space.

P. VAN EMDE BOAS : On tape versus Core - an application of space

efficient hashing functions to the invariance

of space
(joint work with C. Slot)

Compiexity classes like P and NP are well defined based on the
fact that within the family of "reasonable" machine models, each
model can simulate each other model with a polynomially bounded
overhead in time. Similarly, in order that a class like LOGSPACE
is well defined, one needs to establish that these models simulate
each other with a constant factor overhead in space. It seems that
the standard definition for the space measure on RAM's, with
respect to this issue, is not the correct one. We provide an
alternative definition which is correct, and show that for the
case on on-line computations the two definitions indeed are



different. Our case would be much stronger if we could provide
an off-line counterexample as well, but an attempted counter-
example fails to separate tape and core. The simulation which
succeeds in accepting this language on a Turing machine in
extremely little space is based upon an improvement with respect
to space consumption of the perfect hashing functidns described
by Fredman, Komlos & Szémerédi in their 1982 FOCS paper. We show
that it is possible to obtain perfect hash functions for
n—-element subsets of an u-element universe requiring space
O(log(u) +n) bits for being designed, described and evaluated.

A generalisation of our simulation shows that the counterexample
looked for does not exist - the two measures lead for deter-
ministic RAM's to the same space-complexity classes.

M. FURER : & fast algorithm for the roots of complex polynomials

An algorithm is presented whose input consists of a positive
integer s and the coefficients of a complex polynomial of degree
n with sufficiently high precisidn (say given in floating-point
representation with an exponent of bounded length). The algorithm
computes the roots of the polynomial with precision 278
O(pin) - s1+E)
degree of p is higher than in Schénhage's algorithm, but the
method is much simpler. Therefore this algorithm might be faster
for practical values of s and =n . Furthermore it seems that

in time
for some polynomial p and every e >0 . The

the actual running time is faster (in the average and in the

worst case) than the proven running time. The algorithm compares

favorably with all the other algorithms I know, because these

have one of the following disadvantages:

- they don't work for all polynomials or for unlucky choices of
starting values '

- the running time is quadratic in s (only linear convergence
in the presence of clusters of zeros)

- the running time is exponential in n .

The algorithm is motivated by a geometric mechanical model of

Newton's method. But when the Newton correction is bad, because



some "gravitational" forces are small, the algorithm switches
discontinuously to higher forces. And accelerated Newton cor-
rections are used in order to handle multiple zeros and clu-

sters of zeros correctly and fast.

J. v.z. GATHEN : Factoring sparse multivariate polynomials

This talk presents probabilistic algorithms for testing irre-
cibility and computing the factorization of sparse multivaria—
te polynomials. The running time for the first algorithm is
polynomial in the input size, and for the factoring algorithm
polynomial in input plus output size. Both algorithms work over
algebraic number fields and over finite fields. They are based
on an effective version of Hilbert's irreducibility theorem.

H.F. DE GROOTE : Complexity of Lie algebras
(joint work with Joos Heintz)

In the following 8 denotes a (real or complex) Lie algebra
(finite dimensional), h € 8 a Cartan subalgebra, L(8) the mul-
tiplicative complexity of the bracket operation (X,Y)e— [X,Y]
and R(B) the bilinear multiplicative complexity of the bracket.
g 1is always supposed to be semisimple. The following results
were presented :

R .
Prop. 1 Let [X,Y]= Z_l up(X) vp(Y) wp be a bilinear computa-
p=

tion of [X,Y]. W.l.o.g:L let {w1,...,wn} be a basis of g.

Then H := {un+1,...,uR}- is an abelian subalgebra of g.
Corollary Let g be compact. Then R(g) 2 2 dim]Rg - dim]Rh .

Prop. 2 Let g be compact and gC 1= E@Rg its complexifica-
tion. If R(g) = 2 dimpg - dimRh then

© = msi2,0

Remark dimca < 2 for all abelian subalgebras of s1(3,C).

Hence R(sl(3,€)) = 15 .



Prop. 3 R(sl@m,@)2L(slin,C)>2dim,sl(nE)-dim k (= 2n° - 2n) .
Prop. 4 Let g be a complex semisimple Lie algebra, T(g) its
isotropy group and T°%g)cI{g) the small isotropy group. Then
r*(g) = ¢€'x "% aut(g) .
T(g)/T4g) = Y3

where Aut(g) is the automorphism group of g and Y3 the per-—
mutation group of three elements. ’

J. HEINTZ : Polynomials with symmetric Galois group which are
easy to compute

Let k be a Hilbertian field (e.g. a field of finite type over
its prime field with transcendence degree 21 in case characte-
ristic > 0) and let X be an indeterminate over k.

We construct a sequence (Fd)dE]N of polynomials FdE kIiX] of

degree deg Fd= d and nonscalar complexity L(Fd) s7+2 log2 d

with symmetric Galois group. This has two consequences :

1. Lfat v,d€N such that 7+2 logzd <v . The set of all poly-—
nomials F€k([X] with degFs<d and L{F)gsv contains a
Zariski — dense subset of polynomials with symmetric Galois
group. Since the polynomials Fekl[x] with L(F)= log, deg F
can be considered as those polynomials which are easy to
compute, we can rephrase this result as follows: Almost all
polynomials, in particular those which are easy to compute,”
have maximal, i.e. symmetric, Galois group.

2. Let FEkI[X] with d=degF and symmetric Galois group. Then
all factors G of F (with coefficients in the splitting
field of F) with degG not too close to d are hard to com-
pute (i.e. L(G)® VdegG). So 1. implies that almost all po-
lynomials have factors which are hard to compute. In particu-
lar, there exist polynomials which are easy to compute with
all factors of not too high degree hard to compute.



Jd. HOPCROFT : Complexity problems in robotics

In this talk we introduce some of the algorithm problems in
robotics. In particular, we formulate a general frame work for
the multiple object motion planning and provide a heuristic
solution. The planning of motion for rectangles in a rectangular
box is shown PSPACE~hard. Motion of non-figid objects such as
linkages is considered, and the complexity of various problems
is classified. In particular, it is shown motion pianning with-
out boundaries is as hard as with boundaries and is PSPACE-hard.

M. KLAWE : A tight bound for black and white pebbles on the
pyramid

Lengauer and Tarjan proved that the number of black and white

pebbles needed to pebble the root of a tree is at least 1/2 the

number of black pebbles needed to pebble the root. We extend

this result to a class of acyclic directed graphs which includes
pyramid graphs. v

J. VAN LEEUWEN : Data organization for parallel computing
(joint work with H.A.G. Wijshoff)

Modern vector- and arrayprocessing computers have one or more
highly pipelined processing units and a (large) number of
memory banks that can be accessed independently in parallel.

A skewing scheme is any storage scheme S that assigns the
elements of a matrix to an address in the M memory banks
available such that any "template" of data items of interest
(rows, blocks, etc.) can be retrieved conflictfree. Skewing
schemes were introduced in the nineteen sixties, in the
systems programming efforts for thé ILLIAC IV, and continue

to be of interest to designers of large computers. The common
linear skewing schemes are an instance of the larger class of
periodic schemes defined by Shapiro in terms of tables of
"bounded size". We show that periodic skewing schemes are best
analysed using their connection to (classical) integer lattices.



A number of new results are ﬁresented for estimating the

minimum number of memory banks required for common types of
conflictfree access, and necessary and sufficient conditions
are derived in terms of the basis of the generating lattice

for a periodic skewing scheme to be essentially linear.

H.W. LENSTRA, JR. : Primality testing and Galois theory

It will be shown how Galois theory, both for algebraic numbers
and for finite rings, can be used to present several primality
testing algorithms from a unified point of view. A central role
is played by the notion of an Artin symbol for extensions with
an abelian Galois group. This theory makes it possible to com-
bine the recent Jacobi sum tests of Adleman et al. with the
older tests of Lucas, Lehmer, Brillhart and Selfridge, as
generalized by Williams. It is expected that this combination

will lead to an important improvement in practice.

R. ILOOS : An analysis of the improved Kronecker algorithm for

factoring polynomials over Qla)

Let A be the minimal polynomial of o over Q of degree m .
Let f be a squarefree polyncmial over Q{a} of degree n .
Following Trager f(a,x) can be translated to £f(a,x+ sa) for
the integer o < s j}mzn2 such that the norm of £ over Q(a)
is squarefree too. Then Kronecker's algorithm ("Grundziige einer
arithmetischen Theorie algebraischer Grossen" 1882) has the com-
puting time O(m2 n2 Hz) +tZ (k,d) , where

H=mn +n 1ogIAl1 + m-loglfl1 and tz(k,d) is the time for
factorization of an integral polynomial of degree k and coefficient
length d. With Schénhage's new algorithm for this purpose (see
this conference) the time for the algorithm over Q(c) becomes
otk 4 +x"%(1ogd)?) with k = max(m,n) and d = max (121, 1£1,) .
Empirically, however, the gcd over Q{a) "dominates the total
computing time.



K. MEHLHORN : Area-time optimal VLSI integer multiplier with

minimum computation time

According to VLSI theory [logn, vh] is the range of computation
times for which there may exist ATz—optimal multiplier for n-bit
integers. Such networks were previously known for the time range
[Q((log]l)z) , 0(vn)]; we settle this question by exhibiting a
class of AT2—optimal multipliers with computation times

[@(log n), O(nz/s)].

F. MEYER AUF DER HEIDE : A polynomial algorithm for the n-—dimen-
sional Knapsack problem

A linear search algorithm is presented which recognizes the
n-dimensional knapsack problem in 2n4log(n) + O(n3) steps. This
algorithm works for inputs consisting of n numbers for some
arbitrary but fixed integer n. This result solves an open problem
posed by Dobkin/Lipton and A.C.C. Yao among others. It destroys

the hope of proving nonpolynomial lower bounds for this NP-complete
problem in the model of linear search algorithms. A generalization
to the integer programming problem is presented, and some lower
bounds for this problem are established.

B. MONIEN : How to find long paths efficiently

We study the complexity of finding long paths in directed or un-
directed graphs. Given a graph G = (V,E) and a number k our
algorithm decides within time O(k!-|V{-|E|) for all u,vEV
whether there exists some path of length k from u to v .
The complexity of this algorithm has to be compared with
O(IVIk_1'IEI) which is the worst case behaviour of the algorithms
described up to now in the literature. We get similar results
for the problems of finding a longest path, a cycle of length k
or a longest cycle, respectively.

Our approach is based on the idea of representing certain
families of sets by subfamilies of small cardinality. We also
discuss the border lines of this idea.
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J. MORGENSTERN : Implementation of two dimensional Fourier

transform via polynomial transform

(joint work with M. Lhomme and M. Quandalle)

Polynomial transforms were discovered by Nussbaumer and Quandalle
in 1979. It is a fast way to compute convolutions of sequences

of polyncmials mod(ZN—1) by avoiding certain multiplications
since the root of the transformation (analogous to the ordinary
Discrete Fourier Transform) is a power of Z which resuits in
shifts in words.

M. Truong and Reed have implemented such algorithms enabling to
compute two dimensional convolutions and saving 20% of the time.
In a joint work with M., Lhomme and M. Quandalle we implemented

a two dimensional Fourier transform using that tool which
requires less operations but is not faster on different machines.
In particular this FORTRAN Program cannot beat a parallel program
even on a scalar machine.

H. ONG : Signatures through approximate representations by

quadratic forms

(joint work with C.P. Schnorr)

We propose a signature scheme where the private key is a random
{n,n)-matrix T with coefficients in Z%x= Z/mz, m a product of
two large primes. The corresponding public key is - A,m with

A = TtT . A signature y of a message =z € zm is any y E(Z%Rn
such that ytAy approximates z , e.qg.

lz-ytAyl < 4m2 B . Messages z can be efficiently signed using
the privaté key T and by approximating 2z as a sum of squares.
Heuristical arguments show that forging signatures is not easier
than factoring m. The prime decomposition of m is not needed for
signing messages, however knowledge of this prime decomposition
enables forging signatures. Distinct participants of the system
may share the same modul m provided that its prime decomposition
is unknown. Our signature scheme is faster than the RSA-scheme.
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M.S. PATERSON : An improved depth O{logn) comparator network
for sorting

The recent O(logn) network devized by Ajtai, Xomlds, and
Szemerédi is simplified and improved. For the new network we
provide closer estimates of the parameter values need. The
principal simplification has been the elimination of their Zig
and Zag steps with separate register reassignment stages in
favour of a purely rhythmical ‘'pumping action' combining the
functions of those steps.

N. PIPPENGER : The exg;icit congtruction of highly expanding
graphs
We extend the methods of G.A. Margulis, D. Gabber, and Z. Galil

to the construction of highly expanding graphs. We construct
bipartite graphs that expand sets of size on out of n to sets

of size Bn out of n with degree

1 c 1 2c
o ((ar=an® o arran )

where c = log3(1+-V§+-2V§) = 1.62... . We describe applications
to the construction of superconcentrators with limited depth
and sorting schemes with few rounds.

R. REISCHUK : Coding strings by pairs of strings

(joint work with Chung, Paul and Tarjan)

Let X,¥ < {0,1}* . We say Y codes X if every x€X can be
obtained by applying a short program to some y€Y . We are
interested in sets ¥ that code X robustly in the sense that
even if we delete an arbitrary subset Y'c<cY of size k , say.,
the remaining set of strings Y~Y' still codes X . In general,
this can only be achieved by making in some sense more than k
copies of each x€X and distributing these copies on different
strings Y . Thus if the strings in X and Y have the same
length, then #Y > (k+1)#X .



If we allow coding of X by Y in a way that every x€X is
obtained from strings x,z€Y by application of a short program,
then we can do better.
Let Y = {Ss | S=X} where @® denotes bitwise sum mod 2. Then

b4

#x #x-1_

#Y = 2”7, yet ¥ codes X robustly for k = 2 1 . We explore

the limitations of coding schemes of this nature.

C.P. SCHNORR : The complexity of quadratic equations moduloc n

(joint work with H. Ong and A. Shamir)

We study the complexity of solving for given k, m, n€ W,

n a product of two large primes, the equation

(1) x2 + ky2 = m (mod n)

This equation, with -k a square modulo n, is the base of the 0SS-
signature scheme presented by A. Shamir. Solving (1) is not

easier than solving a general, binary quadratic equation modulo n.
Equation (1) has uniform complexity which indicates that the
corresponding signature schemeé is cryptographically strong.
Theorem Any T (n)-time algorithm which for fixed n solves

equation (1) for an e-fraction of the messages m and Multipliers k,
-k a square modulo n, yields a probabilistic % T(n)-time algorithm
for solving egquation (1) with probability >1/2 for arbitrary m
and k. Equation (1) is a special case of the equation

220

Let G(A) Dbe the class group of SLZ(Z)—equiValence classes of

(2) ax2 + bxy + cy2 = [x,y] [ ] =m (mod n) .

primitive, positive quadratic forms ax2 + bxy + cy2 with negative
discriminant A = bz-4ac . Equation (2) can be solved by ex-
ploiting the group structure of G(A) .

Lemma Let the order 1G(A)] be odd with prime decomposition
t
e, e
M p,* then equation (2) can be solved in O(max p, ') multipli-
i=1 % it

cations in G(A) .
Using some heuristic_assumptions on the behaviour of class groups
this yields an ofe ln]{lnlck)-time algorithm for solving

equation (1).



Zum Bericht von C.P. SCHNORR :

A Prize of $ 100 will be paid to the first person who

1. finds a provably polynomial time algorithm for solving the
equation m = s? + k sg (mod n) for arbitrary k,n,m , or

2. solves a challenge equation with a 1000 bit modulus n that
will be sent to him upon request.

A, SCHONHAGE : Factorization of univariate polynomials

Factorization over € means, for any given polynomial

Plz) =a z' + ... + a with a,.€C and Pl =Z2la_| <1,
n [} 3 v v -
and for given s €N, to compute approximate linear factors
- . _ -S
Lj(z) ugz o+ vy (1<j<n) such that |P-L,L,...L | <2

holds.

Theorem 1. There exists a multitape TM doing this in time

. O(n3logn +n25) 1g (ns) lglg{(ns) .

The underlying splitting circle method combines numerical
techniques like Newton's method, Fourier transforms, and
Graeffe's method with fast aléorithms from complexity theory.

Factorization over Z can be accomplished by computing a
root =z of the given integer polynomial F{(x) and then
finding its minimal polynomial by diophantine approximation
of 1,z,zz,23,... via the basis reduction algorithm of
Lenstra, Lenstra and Lovasz. The time analysis yields

Theorem 2. Factorization of F(x) is possible in time

O(n7+E + notE . (logIFl)2+E)

A. SHAMIR : An efficient signature scheme based on quadratic

equations
(joint work with H. Ong and C.P. Schnorr)

In this talk I present a new signature scheme which is based on
the binary quadratic equation m = s? + k sg(mod n) , where m
is the message, (s1,52) is the signature, and {(n,k) is the
public- key. For messages n1EZ§ the set of signatures is

characterized by sy = (m/r + r)/2 (mod n) ,



s, = {(m/r-r)-u/2 {mod n) , where r ranges over Z; and

ui:z; represents the secret key. The complexity of signature
generation is one modular multiplication and one modular division,
and the complexity of signature verification is three modular
multiplications. The security of the scheme depends (but is not
provably equivalent to the difficulty of factoring, and thus

it is recommended to use a composite modulus with at least 1000
bits. The signature scheme has uniform complexity with respect

to k and m , and the secret signature key cannot be obtained
by analyzing message-signature triplets if factoring is difficult.

M. SIEVEKING : The set of functions defined by a sequence of

nonscalar operations

Given a sequence R of multiplications/divisions 01""'0k and

indeterminates RyreeesX s define a sequence of functions in

E[x1...xn] by

r_; =% (15151'1)
r =1
0 =1 3-1
r. = s5,0,t, s. = X LT t. = I b, 1 <3 <k
i 39 %5 0 %57 [ %isTs 3% I PysTs (12320
k
B
s = ¥ a r
s=-n ktis’s
B

We study the set VB of all s with varying parameters
‘aij’ blm.' Bounds for the dimension of VB are applied to the
question 1) How long is the shortest possible correct test
sequence for VB ? )
2) How complex are multiples of functions?
3) How complex is the "f(x) = 0" test problem compared

with the f£(x) evaluation problem?

I..G. VALIANT : Short monotone formulae for the majority function

It is shown that for the n-input Boolean majority functions there

exist monotone formulae of size O(n5'3) .
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H. VOLGER : Scme remarks on the evaluation of powers

(joint work with T. Lickteig)

We consider the nonscalar complexity L(xn) of the rational

function x° (i.e. minimum number of multiplications and

divisions) and the discrete complexity l(xn) which is the

length of the shortest addition/subtraction chain for n .

The following is known: [logn] < L(x™) < 1(x™ < l[logn] + s{n) - 1.
Question 1: 3In : L(xn) < l(xn) ?

Question 2: limsup(L(x") -[logn]l= = 2

We have the following partial results:

2%q
(1) Lix +...)> k+1 for k>3
Zk—1 Zk—1
Lx ) = 1lx ) =k+1 for k>3
—2k+1 '
(2) Lix +...) >k+1 for k>2
k k
Lx"? )y =1t = ke
Let L, resp. l+ be the divisionfree analogues of L resp. 1.
k
(3) L,x% '+...) >k+2 for k25
in particular L*(x31) = l+(x31) =7 >L(x31) = l(x31) = 6

(4) x! = limp_ Lip,) =3, L(X7) =4

x ~ = limg, , L(4) =2, Lix

I. WEGENER : Decision trees and restricted branching programs

for the computation of Boolean functions

Decision trees for Boolean functions are labelled binary trees

where the leaves are labelled by ‘O or 1 and the inner nodes

by Boolean variables. The cdmputation starts at the root. At

each node we test the appropriate Boolean variable and follow

the left (0) or right (1) edge until we reach a leaf where

we read the value of the function. In branching programs we drop

the assumption that the in degrée of the nodes is 1 . We con-

sider those restricted branching programs, where we are allowed

to test each variable on each path only once. We give optimal al-
gorithms for the computation of optimal decision trees and restricted
branching programs for symmetric functions. For the k-clique function

we prove large (for non constant k even exponential) lower bounds.



A.C. YAO : Lower bounds on restricted boolean computations

As strong lower bounds to problems in NP have so far been elusive
in the general computational models, it is of interest to study

the complexity of such problems for restricted classes of Boolean
circuits, in the hope that new techniques might be developed.

In this talk we show that to compute the majority function of n
variables, any monotone circuit of depth 3 must have size at least
2nE, and any branching program of width 2 hust have superpolynomial
size. We also show that, any depth-4 circuit with “Exclusive-OR"
gates at the lowest level, must have superpolynomial size in order
to compute the majority function.

Berichterstatter: J. Heintz
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