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The 8th Oberwolfach Conference on Complexity Theory was organized
as before by C.P. Schnorr (Frankfurt), A. Schonhage (Tiibingen) and
V. Strassen (Konstanz). The 42 participants came from 9 countries, 17
participants came from North ard Scuth America, USSR and Israel.

34 Tectures were given at the conference covering various areas of
complexity theory. Most of them dealt with topics related to algebraic
problems, quantifier elimination and decision problems, graphs, com-
municaticn processes and cryptography.

Lectures were given on sequential resp. parallel complexity of
iterations, spectral transforms, computations in finite fields, deriv-
atives, tests, boolean functions, computing the order of finite abelijan
groups and multidimensional continued fraction algorithms. Others dealt
with questions on polynomial ideals, differential fields, gquantifier
elimination and feasible functionals. Several topics on graphs have
been considered, e.g. planarity, graph isomorphy, chromatic numbers,
universal traversal sequences, perfect matchings, expander graphs and
decomposition of graphs. Beside new algorithms for concrete preblems
such as hashing, routing, computing n! and the subset-sum problem
further Tectures were concerned with complexity classes, rcbust oracle
machines, P-NP analogues, communicaticn, Byzantine agreement and com-
plexity of justice.
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Abstracts

H. A1t On the Complexity of Analytic Functions

Beame, Cook and Hoover showed that integer division can be performed
by log-depth Boolean circuits using an expansion of 1/x into a power
series. With the same approach we show that the same bound can be obtained
for any meromorphic function whose domain is a closed subset of C .
Naturally, these circuit families are in general highly nonuniform or even
noncomputable. Some standard elementary functions like exp, In, sin,
€C0S,..., however, can be shown to be NCl—reducib1e to integer division
and thus can be evaluated polynomial-time uniformly in logarithmic depth.

W. Baur On the algebraic complexity of iteration procedures

Let o e € be algebraic over some subfield k of € . An n-point

iteration procedure (I.P.) for o is a rational function f(XO,...,Xn_l)
with coefficients from k such that for all starting values P
sufficiently close tc o the sequence X 1= f(xi-n""’xi—l) (i=n)

converges to a« . It is shown that any multipoint I.P. for a whose
power series expansion at o has a unique term that determines its order
of cenvergence can be replaced by a onepoint I.P. of the same efficiency

(with respect to the nonscalar algebraic model of computation).

A. Borodin Lower Bounds for Universal Traversal Sequences

Let é(d,n) be the set of all connected, d-regular, n-node, edge
labelled, undirected graphs. For every edge (u,v) there are two labels
]u,v and ]v,u with the property that for every u ¢ V, {]u,v!v e V3
= {0,1,2,...,d-1}. A sequence o ¢ {0,1,...,d=1}* can be thought of as
a sequence of edge traversal commands. That is, given a starting node
vV, € V, a sequence o = 010p . O determines a unique node sequence
VoVi e Vg such that 1V1_1’V1 T The sequence o is said to
traverse G starting at Yo if and only if every node in G appears
at least once in the induced sequriice VoVp - Vi - Finally, o 1is a
universal traversal sequence for G&(d,n) iff far all G e G(d,n) and
Vo € V, o traverses G starting at Vo U(d,n) denotes the 1eggth of
the shortest universal traversal sequence for G(d,n) . (Since G(d,n) # 0
iff dn even, we only consider U(d,n) when dn 1is even). At present
the best known upper bound for U(d,n) is 0(dn31og n) (Kahn, Linial,

Nison and Saks). We prove the following lower bounds:
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1) for 3 <d <n/4-1 (and for infinitely many n satisfying
3 <d <n/3-1), U(d,n) = 2(d®n?). Then for d = a(n) and
d

n/4-1 , the Tower bound is within a factor of 1log n
of optimality.

2) for small d > 3, U(d,n) = a(dn” Tog n/d))
(Joint work with Larry Ruzzo and Martin Tompa)
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M. Clausen Fast spectral transforms

According to Wedderburn's Theorem the group algebra €G of a finite

group G of order n s isomorphic to a suitable algebra of block-
d.xd.

diagonal matrices. Every such isomorphism W : GG > € ¢ VT s called

}
a spectral transform for C€G . W.r.t. natural C-bases, W can be viewed

as an n-square matrix. The linear complexity of W is the minimal number

LS(W) of €-operations sufficient to compute W-x , for a generic input

vector x . The linear complexity of G is defined by Ls(G) 1=
min{max(Ls(w),Ls(w_l))|w a spectral transform for €G}. The classical
FFT-algorithms show that LS(G) = 0(|G|1og|G|), for cyclic groups G .
Theorem 1 If G s metabelian (G"=1) then LS(G) = 0(|G|1og|G|) .
Theorem 2 For arbitrary G : LS(G) = O(|G|3/2) .

Theorem 3 For symmetric groups: LS(Sn) = o(|Sn§-1og3\Sn|).

The proofs of these results "nearly automatically" translate into highly
regular VLSI-Designs.

S.A. Cook Feasible Functionals

(joint with Alasdair Urquhart and Bruce Kapron)

The type 1 functionals take tuples of natural numbers to natural
numbers, andin general functionals of type k+1 take functionals of
type Kk together possibly with functicnals of type less than k and
numbers, to numbers. We say that a functional is feasible if it is de-
fined by some term of typed the A -calculus using function symbols for
the type 1 polynomial time computable furctions and a type 2 function
symbol for a recursor R which represents higher type limited re-
cursion on nctation. The type 1 feasible functionals provably coincide
with the polynomial time computable functions.

We give two characterizations of the feasible functionals, both
in terms of programming languages which allow procedure declarations
for functionals. First, F 1is feasible iff it is computable by a kind
of bounded loop program, and second, F 1is feasible iff it is computed
by a kind of typed white programm in time bounded by |G|, for some
feasible G .
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D. Coppersmith Polynomials whose Powers are sparse

We produce polynomials all of whose Jjth powers, j=2,3,...,k,
are simultaneously sparse. That is, for each integer k > 2, we find
reals ¢ >0, d <1, and a family of dense real univariate poly-
nomials .

_n i
pn(x) - Zi=0 pi X s pi # O
with degree n going te infinity, such that for all J=2,3,...,k,
the number of.nonzero terms in

(py (0

is bounded by c¢n".

This is joirt work with James Davenport (Bath).

U. Faigle Communication Complexity

Interpreting (0,1)-matrices as (reduced) incidence matrices of
(partially) ordered sets, the following general problem is considered:
Given an ordered set P via its incidence matrix, player I chooses
an element x and player II chooses an element Y . How many bits
of information must the two players exchange in order to settle the
question "? x < y ?". In this context, the communication complexity
of binary relations may be viewed as a parameter which is closely re-
Tated to "classical" order parameters such as width, setup number,
dimension. The communication complexity may be explicitly determined
for special classes of orders, e.g., N-free orders and interval orders
(The results are obtained jointly with Gy. Turan).

M.J. Fischer Communicating a Secret Bit without Cryptography

We consider the problem of transmitting a secret bit s from
player A to player B in a situaticn where al] communication is
public and the only commen information comes from a random deal of a
deck of n cards. Ina (p, q, r) protocol, A receives p cards,

B receives q cards, and the remaining r =n - p - g cards go to

the opponents. For example, one simple protocol may allow A and B

to find a pair of cards such that each holds exactly cne card of the
pair, but the oppcnent does not know who holds which. A then transmits
s by naming the card of the pair held by A if s=1 and the card held
by B if s=0. This works whenever P.g = 1 and pt+tq = r+2.

We then investigate whether or not a secret bit transmission
protocol exists for particular triples (p> 9, r) and show for example
that for a1l a > 0 and all sufficiently large r, there is a
(p» g, r) protecol for p = ar.
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Theorem (Rackhoff) Let m be the probability that randomly dealt
hands u and v of sizes p and q respectively have a ncn-empty
intersection when dealt from different n-card decks. No secret bit trans-
mission protocol for (p, q, r) exists if m < 1/2.

This shows for example that no (1, 1, 1) protocel exists.

Finally, we investigate deterministic protocols. In a full dis-
closure protocol, A's first message lets B deduce the opponent's
hand, but at least two hands are possible (and equiprobable) from the
opponent's point of view. We exhibit full disclosure protocols for
(2, 3, 1) and (3, 3, 1). The case (3, 2, 1) 1{s possible, but not
by any full disclosure protocoel.

(Joint work with Michael Paterson and Charles Rackoff)

M. Flirer A Courterexample In Graph Isomorphism Testing

Vertex classification by coloring k-simplices cor ordered k-tuples
for bounded k has been conjectured to solve all or many of the known
tractable subclasses of the graph isomorphism problem. For k=2, the
vertex classification by edge coloring has a fast parallel implementation,
and it is so simple that most of the practical iscmorphism tests should
start with this algorithm. However, coloring k-tuples for bounded k is
not sufficient for most of the known feasible subclasses of the graph
isomorphism preblem including the bounded valence case. A counter-

example ¢f valence 3 vrequiring valence k = Q( n ) 1is presented.

Z. Galil The Subset-Sum Problem and Analytic Number Theory, an Interplay

We consider the dense version of the subset-sum problem in which
the number of elements (m) is longer than some power of the bound (%?)
on the size of the elements. We describe a new approach due to G. Freman
which uses theorems proved by analytic number theoretical means to
characterize the set of subset sums as a ccllection of arithmetic pro-
gressions with the same difference. The theorems lead to algorithms for
the subset-sum problem which are better than the dynamic programming
approach. Recently, new algorithms which use only elementary methods have
been designed (with 0. Margalit). They can be used to give a proof for a
theorem which is stronger than the theorems mentioned above. These
algorithms are linear (0(m)) in some cases and are 0(% Tog g&) in all
cases; thus are two orders of magnitude faster than dynamic programming.
The talk discussed the Timitation as well as the potential of this approach.
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J. von zur Gathen Inversion in Finite Fields

Inverses in GF(p") can be computed by (P-uniform) arithmetic
circuits over Zp (eGF(p™)) of optimal depth  0(log n). This algorithm
is based on a numerical method proposed by Litow and Davida, and extends
the corresponding result by Fich and Tompa, valid for small p (say,

p <n).

D. Yu. Grigor'ev Complexity of factorizing and GC(R)D calculating

for linear ordinary differential operators

An algorithm is designed which for a linear ordinary differential
031.Snvai(X)d/an(D(X)[d/dX] with the order n factorizes
L = Ll"'Ls’ where the operators Ll,...,LSem(X)[d/dX] are irreducibhle.
Assume that for any operators Ql,QZ,Q3eE(X)[d/dX] such that L = Q1Q2Q3
and QZ’QS are monic, degX(QZ) < N holds. The designed factorizing

cperator L = %

algorithm has a time-bound polynomial in (N size(L))”4. Besides, the
bound N < exp(size(L)zn) is proved.

Also a polynomial time algorithm is produced which for a family of
operators Ll,...,LkeQ(X)[d/dX] yields their greatest common (right)
divisor L. = GC(R)D(L .,Lk)e Q(X)rd/dx] such that L, = L. L ,..

1°" 1 170" 772

Ly = 'EKLO for some [y ,...,[ €Q(X)(d/dX! the crder of L = is the

largest possible (or in other words \fv(L‘v=...= Lv=08Lyv=0 ) holds).

J. Heintz New complexity results in computational geometry

Effective Nullstellensétze which appeared in the last time
(Brownawell 1986 for characteristic 0 fields, Caniglia-Galligo-Heintz
1987, Kollar 1988, Fitchas-Galligo 1988 for arbitrary fields) allowed to
consider basic algorithmic problems in Cemputer Algebra from the com-
plexity point of view. In some cases satisfactory sequential complexity
bounds were already known, due to previous work of Chistov-Grigor'ev
and Grigor'ev-Vorobjov jr., in other cases problems became for the first
time accessible to complexity analysis. However, all parallel results are
new and algorithms became essentially simnler, since polynomial factor-
jzation is avoided. Linear Algebra (parallelizable) is used (Berkowitz,
Chistov and Mulmuley). We now list some of the results:

Let be given an arbitrary field Kk, Xl""’xn indeterminates over k

and F,F oFo e KIX{s...nX 3 with d := max deg F.. Let k be the

12 .
l1<ix<s
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algebraic closure of k and Vi = ixek Dy F1 (x) = O,...,Fs(x) = 03},
Write also a := (Fl,...,Fs)ci kle,...,Xn].
Thecrem 1: The following problems/functions can be decided/computed in

sequential time 54d0<n2) and parallel time O(n41ogzsd) simultaneously:
(1) V=p2
(ii)  dim Vv =2
(iii) deg V. = ? (if all irreducible components of V are of

the same dimensiecn)

(iv) Fzeroon V ? (if deg F < d).
Theorem 2: Suppose dim V< 0 (i.e. # V < »). Then a GEﬁbner (standard)-
basis of a can be computed in sequential time s4d0(n ) and parallel
time O(n41ogzsd).

Theorem 3: (Effective and quantitative version of Suslin's Theorem)
Let k be infinite and R := k[Xl,...,Xn]. Let F = (Fij

nomial rxs-matrix with d := deg F := max deg Fij . Suppose that F s
i,d
unimodular (i.e. the rxr-minors of F generate the trivial ideal R). Then

) ¢ RS poly-

there exists an unimodular matrix M e R°*S such that

(1) FeM-= (1r[0) (rxs Matrix)
(1) deg M = (r¢)0(n)

(i11) M s computable in sequential time rO(nZ) SO(rz) dO(n2+r2)
and parallel time O(n6r4 1og4rd 1ogzsd),
Theorem 4: Let L be the first order language with the following nonlogical
symbols: constants correspending to the elements of k, +,-,#.= . We consider

the first order theory of k . Let 2(Xy5...5X) e L a formula involving
Fis.wsFg e k[Xy5...X 1. Suppese that @  is prenex with m quantifier

blocks. Then quantifiers can be eliminated from ¢ in sequential time
n0(m) 0(m) 0(1)
(sd) and parallel time n (Tog sd) . (The doubly exponential

sequential and the simply exponential parallel bound are intrinsic by the
existence of corresponding Tower bounds.) As a consequence one obtains

for k=Q and n fixed an NC-algerithm deciding the satisfiability of quan-
tifier free formulas in R". 1In particular, this algorithm "solves"
polynomial inequality systems (compare corresponding sequential results

of Grigor'ev-Vorobjov jr. and Grigor'ev 1988).

(joint work of the Noai Fitchas working group, Instituto Argentino de
Mathematica COMICET - Buenos Aires, André Galligo, Jacques Morgenstern,
Nice, Marie-Frangoise Roy, Rennes.)



B. Just Generalisation of the continued fraction algorithm to

arbitrary dimensions

It is well known that the continued fraction algorithm (CFA) applied
to a real number x constructs a sequence of bases of 12 that is finite
iff x e @ , and moreover the basisvectors are best diophantine approxi-
mations for x . We present for the first time an algorithm that generalises
these properties. Given real numbers X1oeweaXy 1> it
1.) constructs by elementary transformations a sequence of bases of
n-1)R
.) stops iff X{s+-+sX_ 11 areZ-linearly dependent,

approximating (xl,...,x

w N
~—

produces diophantine approximations of more than linear goodness:
if (pl,...,pn) is the first vector of a basis, then

P
max ]xi - —] <
1<i<n-1 Pn

const
1+1/2n(n-1)
pn

E. Kaltofen Efficient Parallel Algebraic Circuits for Partial Derivatives

Given be a straight-line program P of Tength ¢ that computes a
rational function f ¢ K(Xl""’xn)’ K an arbitrary field. The depth d
of P is the Tength of the longest chain of variables, the values of the
next depending on the preceeding cnes. We construct two straight-line

programs Q; and QZ’ Q1 » computing N (f), axz(f),...,axK(f) , and
'1 1 1
(f)s 8, (f)y..oya, (F) , where 5 (f) is the partial
1 X2 *n X3 :
derivitive of f with respect to the variable X and ai (f) =
N (...(ax (f))), the j-th fold iteration of By
i i i
Our constructions satisfy
1ength(Q1)=O(K1og(K)]og(]ogK)Q), 1ength(02) = 4q

QZ’ computing 9y

depth(Q;)=0(Tog(K)(d+Tog(K))), depth (Qy) = 0(d).
Q1 is constructed using the Taylor series expansion of f(x1+y,x2,...,xn)
with respect to y, carried out in P . Q2 is a variant of a construction
by Baur and Strassen, that preserves asymptotically the depth by using

a fan-out reduction in circuits due to Hoover, Klawe and Pippenger.

M. Karpinski The Parallel Complexity of Perfect Matching and

algebraic Interpolation

We construct a fast parallel algorithm for enumerating all the perfect
matchings in bipartite graphs with polynomially bounded permanents. Some
implications towards the general maximum matching and counting problems



- 10 -

are formulated as well as some surprising applications towards efficient
deterministic interpolation schemes for polynomials over arbitrary fields.
These results imply in particular the existence of efficient deterministic
sparse conversicn algorithms working cver arbitrary fields. As another
application we display a deterministic polynomial time (boolean NC) RSE-
conversion algorithm for the (GF[2]-) sparse boolean circuits.

J.C. Lagarias More on Multidimensional Continued Fractions

Multidimensional continued fraction algorithms are desired to find
simultaneous Diophantine approximations to (91,...,®d) € \Rd , to find
small values of a linear form O1Xqt- .. 04Xy » and integer relations
®1X1+...+9dxd = 0 if they exist. We describe a new class of such
ai¢orithms, parametric multidimensional continued fractions, or geodesic

centinued fractions, having these properties. One takes a parametrized

family Bt of bases of lattices, where

Bt = - is a (row) basis of a lattice '\t . We vary t from
1

1>t >0, decreasing t . Let Pt e GL{d+1,2Z) be chosen so that

P.B is Minkowski-reduced where

£t
Pl -+ Prg qi\
P =

Part1, 170 Pdr1,d qdﬂ!ﬁ

P1 = 1 . There is a sequence of critical values 1 = t1 >
decreasing to 0 at which Pt changes vg]ue. Define .P(1
t; >t >t.,,and define A, ; by pli+1) =.A1+1P(1) . The A,
are partial quotient matrices of alcorithm, P ) are convergent.

The Ai are drawn from a finite set La+1 in 1-1 correspondence with
walls of Minkowski fundamental domain (MCF algorithm in the sense of
Brentjes). There is a way to caiculate t1+1 and A1+1 directly from
ti and P(1): one solves a set of quadratic equations in 1-1 correspon-
dence with elements of g+l The algorithm has a gecmetric inter-
pretation in that M = BtBI follows a geodesic in the cone P;+1
positive definite symmetric matrices (P;+1 = GL(d+1,R/0(d+1,R))

with respect to the usual invariant Riemannian metric. This algorithm

of

R i X

has the property that (Pgl’/qilz..jPél)/q§1) gives good simultaneous
. . Sy 1+1/d+1

approximation Hej - Pgl)/q§1)” < c(d)/(q§1)) , and infinitely

often in & best Euclidean norm approximation. The Tinear form problem
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T -1
is solved using ((P(1)) ) . This algorithm generalizes to solve several

linear forms problems; one can alsoc use different reduction theories (e.q.
Korkine-Zolotarev reduction) instead; one can do it on other symmetric
spaces modulo discrete subgroups.

Th. Lickteig Lower bounds on testing vanishing of polynomials

We present new lower bourds on testing polynomials for zero. Non-
trivial lower bounds have recently been given by Ben-Or based on real
algebraic geometry. The computational model is that of computation trees.
The main differences between Ben-0r's method and the present one are:

a) the lawer bounds hold for the purely arithmetic costs (i.e. comparisons
are free of charge), b) additions and subtractions can be treated as well,
c) the bcunds hold for the "thick path" in computation trees. The concept
of appreximative complexity, which has been introduced by Strassen in 1974,
comes in in a natural way. The proofs employ Strassen's degree method, the
Baur-Strassen derivation theorem and Strassen's local reduction method,
thus showing the power of these methods.

Examples: 1. Testing the Lagrangian interpolation polynomial fer a certain
velue has muitiplicative complexity = const. n log n.

2. Testing the determinant for 1 has multiplicative (additive) complexity

v

const. R <n,n,n’ (border rank of matix multiplication).

=

. Maass The Complexity Types of Computable Sets

(joint work with Theodore A. Slaman)

We analyze the fine structure of time complexity classes for
RAM's, in particular the equivalence relation A =c B ("A and B have the same
time complexity") e (for all time constructible f : A e DTIMERAM(f)¢> B e
DTIMERAM(f)). The =C-equ1va1ence class of A is called its complexity type.
We prove that every set X can be partitioned into twe sets A and B such
that X =. A =. B, that a complexity type C contains sets A,B which are
incomparable with respect to polynomial time reductions if and only if
C £ P, and that there is a cohp]exity type C that contains a minimal pair
with respect to polynomial time reducticns. Furthermore we analyze the
fine structure of P with respect to linear time reductions: we show that
each complexity type C £ DTIME(n) ccntains a rich structure of linear time
degrees, and that these degree structures are not all isomorphic (in
particular we characterize those C that have a maximal linear time degree).
Finally we show that every complexity type contains a sparse set. Our
proofs employ finite injury priority arguments, together with a new technique
for constructing sets of a given time complexity type.
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E.W. Mayr Membership in Polynomial Ideals over (

Is Exponential Space Complete

A polynomial ideal membership problem is an (n+l)-tuple
P = <p,p1,p2,...,pn> where p and the p; are multivariate polynomials
over some ring, and the problem is to determine whether p s in the
ideal generated by the Pi - For polynomials over the integers or
rationals, it is known that this problem is exponential space hard.
We show that the problem for multivariate polynomials over the rationals
is solvable in exponential space, establishing its exponential space
completeness.

K. MehThorn Dynamic Perfect Hashing: Upper and Lower bounds

(joint work with M. Dietzfelbinger, A. Karlin, F. Meyer auf der Heide,
H. Rohnert, and R.E. Tarjan)

We give a randomized algorithm for the dictionary problem
with 0(1) worst case time for lookup and 0(1) amortized expected time for
insertion and deletion. We also prove an Q(log n) lower bound on the
amortized worst case time complexity of any deterministic algorithm in a
class of algorithms encompassing realistic hashing-based schemes. Further-
more, if the worst case lookup time is restricted to k, then the lower
bound for insertion becomes Q(k-nl/k).

F. Meyer auf der Heide On Genuirely Polynomial Computations

We consider random access machines with fixed set Sc{+,-,%,DIV,...}
of arithmetic operations. They read the input integer by integer, not bit
by bit. We use the uniform cost criterion and measure the runtime T(n)
to be the worst case runtime taken over all inputs consisting of n
integers. Algorithms that are polynomial in this sense are called genuinely
(or strongly) polynomial over S . We define complexity classes re]ative‘to
the set S of arithmetic operations using this notion of complexity.

In this context we are able to prove separations between complexity classes.
E.g., the genuine classes P and NP, for operation set {+,-,DIV} are
different.

(joint work with M. Karpinski)
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S. Micali Fast Byzantine agreement

Consider a communication network in which messages are exchanged
in pulses between pairs of processors. A Byzantine agreement protocol
(BAP) allows the good (properly computing) processor to coordinate
themselves. Namely, if each processor helds an initial value, for
any set of initial values a BAP guarantees the following properties:
1) A11 good processors adopt a common value .

2) If all good processors start with the same value then they will
adopt that value.

We present a probabilistic BAP that runs in expected constant time

and tolerates 1/3 of the processors to be bad, have arbitrary com-

putational power, and coordinate their strategies for trying to

disrupt the protocol.

(joint with Paul Feldman)

M. Paterson Planar Acyclic Computation

Restricting acyclic Boolean circuits to two dimensions is a severe
Timitation. Although for most bases we may design 'crossovers', i.e.,
planar subcircuits simulating the crossing of a pair of wires, such a
simulation is deficient in one important respect: acyclicity may be
violated.

Thus the computations of some functions may become more expensive
using planar circuits, while for some sets of functions with input and
output locations specified the computation may become impossible.

In this joint work with Bill McColl (Oxford) we characterise
those input/output specifications which are realisable with planar
acyclic circuits.

R. Reischuk Decomposition of Graphs - A Uniform Approach for the Design

of Fast Sequential and Parallel Algorithms on Graphs

(joint work with W. Hohberg)

For general k ¢ N we develop the graphtheoretic notion
how an arbitrary (hyper)-graph can be decomposed into k-connected com-
ponents and describe a sequential algorithm for this task. An inde-
pendence relation for separating sets is defined; based on this notion
the work can be extended to derive also a fast parallel algorithm. Consider
the class of graphs for which an arbitrary decomposition into k-connected
components generates components of small size. It turns out that the
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families of graphs for which the known NP-complete graph problems can

be solved in polynomial time are all subsets of this class. Decomposing
a graph into k-connected components is the basis for a uniform method

to derive fast pclynomial algorithms for all those problems restricted
to this class - decision as well as construction. This approach can also
be parallelized such that we get NC-algorithms in all these cases. We
can even handle problems above NP and illustrate the method by solving
the #P-complete problem of network reliability.

C.P. Schnorr Computing the Order of Finite, Abelian Groups via

Random Relations

(joint work with A.K. Lenstra)

Let G be a finite, abelian group with gererators Sps-++sS, -
We present two efficient methods that compute with high probability the
grcup order |G| using random relations with respect to these generators.
If the relations Zys-eesZpyq a@re uniformly distributed over all relations
in the cube {0,...,B-1}" then the order of G equals, with probability
at lTeast 0.2-0(1), the gcd of det(zl,...,zn_l,z) for z = Z5Z011
where o(1) ds arbitrarily small for sufficiently large B . Our second
method for computing |G| uses an arbitrary set of n Tinearly inde-
pendent relations in {O,...,B—l}n and in addition 0(leg n) random
relations. Based on this method we present and analyse a probabilistic
algorithm for computing the class number hA of quadratic field ex-
tensions with negative discriminant 4, i.e. for computing the order of
the group of SLZ(Z.)-equiva1ence classes of binary quadratic forms with
negative discriminant 4 . Under the sole assumption of the GRH we
prove that this algorithm computes hA with probability 1/2 + o(1l) in
3/ 8+0(1)

an expected number of L(|a])
L(n) = exp~/Tog n log Tog n .

bit operations, where

A. Schonhage How to compute n!

The obvious divide-and-conquer approach to compute n! by log n
passes of multiplying "neighbored" factors has a time bound of order
M(n.Tog n).log n , where M(N) is a time bound for N-bit integer multi-
plication, but there is a better method based on the prime factor de-
composition of n! with time bound O(M(n.log n)) - see also P.B.
Borwein, J. of Algorithms 6, 376-380 (1985), who obtained a bound of
order M(n.log n).leglog n . -
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The basic idea is best explained by an example. Fer n=38, we have

381 = 23°.317 58 75113132172 .19%.23.29.31.37

= (217 .38.5%.7%.11.13.17.19)2.(2.3.7.11.23.29.31.37) = y2.p,

similarly y = (28.3%.52.7)2.(2.11.13.17.19), etc.

The time for the nested squarings can be estimated by a geometric series,
and a similar argument applies to the Tength bounds for the products P
of single primes. Mcreover, a sufficiently fast implementation for the
sieve of Erathostenes is required, e.g. on a multitape Turing machine

or for a pointer machine.

U. Schoning Robust Oracle Machines

The notion of a robust oracle machine and an oracle set "helping"
a robust oracle machine has been introduced for better understanding the
nondeterministic "witness searching" process in NP problems. It is shown
that straightforward modifications of the original notior are closely re-
lated with other concepts in structural complexity theory, such as "self-

reducibility", "lowness", and "interactive procf systems".

A. Shamir The Complexity of Justice

In this talk we consider a model in which one resource bounded verifier
interacts with two infinitely powerful provers. Unlike the multi prover
model of Ben-Or, Goldwasser, Kilian and Wigderson, we assume that one
prover is trustworthy and the other prover acts maliciously, but the
verifier does not know who is who. The problem we consider is which
languages L can be decided cerrectly with overwhelming probability by
the verifier. The main twe results are that polvnomial time verifiers
can accept exactly PSPACE Tanguages, while Tog space verifiers can accept
all the elementary recursive languages and some non-elementary recursive
languages.

(Joint work with Uri Feige)

E. Szemerédi Construction of a thin set with small Fourier coefficients
(Joint work with M. Astai, H. Iwaniec, J. Komlés, S. Pintz)

Let m be a positive integer. Given a set T = {tl,tz,...,tn}

{0,1,...,m-1} the seauence

frlk) = 23y e (z; k/m)

k = 0,...,m=-1 where e(x)
is called the (discrete) Fourier Transform of T .

2mix
zeﬂ-
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We construct a set T = Tm for every m such that

IT.1 = g(m)-Tog m g(m) & log m
and [, | = ofT |
m
where |[f] = max | T(k) |
1<k<m-1

Such a construction has applications in graph theory, computer science
and in combinatorial number theory.

E. Upfal An_0(log N) Deterministic Packet Routing Scheme

We present a deterministic 0(lcg N) time algorithm for the problem
of routing an arbitrary permutation on an N-processor bcunded-degree net-
work with bounded buffers.

Unlike all previous deterministic solutions to this problem our
routing scheme does not reduce the routing problem to sorting and does not
use the Ajtai, Komlds and Szemerédi sorting network [AKS]. Consequently,
the constant in the run time of our routing scheme is substantially smaller,
and the network topology is significantly simpler.

n

U. Vazirani  x(G°) and approximations for chromatic numbers

The square of a graph G(V,E) 1is a graph Gz(VxV ,E)  where (x,y)
and (x',y') are adjacent if (x,x') e E or (y,y') ¢ E . We show that the
chromatic number of G2 is bounded between:

12 2 y(62) = x(6)° _
= x(67) = 5= where n = |V].

The bounds are tight: the lower bound is achieved by the squares of directed
line graphs. In fact, we show that X(DL(G)Z) < cx(DL(G)) for some constant c .
The bounds stated above imply that any approximation algorithm for

chromatic numbers that guarantees an answer within an f(n) multiplicative
factor on n vertex graphs, where ]og1+an < f(n) < n® for every e > 0

and some o > 0 , can be improved to one that achieves an asymptotically
better appreximation ratio. In view of this result and the fact that the best

known approximation algorithms guarantee only an nl'c/K"1

coloring for K
chromatic graphs of size n (Wigderson 1983, Blum 1988), we speculate that
no polynomial time algorithm approximates chromatic numbers better than nt
ratio for every ¢ > 0 .

(joint work with Nati Linial)
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I. Wegener How to compute the parity functions

The circuit complexity of the parity function is well studied for
fan-in 2 circuits. For unbounded fan-in circuits over (a,v,1) Hastad
has proved that depth q(Tog n/Toglog n) is necessary for pclynomial
size. Here we consider the exact complexity over various bases with un-
bounded fan-in. Optimal NOR-circuits have size 3n-2 and 8(n-1)
wires. Over the basis of all AND-type gates the minimal number of gates
is in the interval [2n-1, 75/2(n-1)7] and the minimal number of wires
is 6(n-1), but circuits with 6(n-1) wires need 3(n-1) gates. Optimal
synchronous threshold circuits have size n+l while optimal asynchronous
threshold circuits have only Tlog(n+l)! gates, this gives an exponential
gap between syrichronous and asynchronous threshold complexity.

V. Weispfenning Complexity of quantifier elimination

The talk presents 3 uniform methods to cbtain good upper and lower
complexity bounds for quantifier elimination (QE) in various classes of
algebraic structures:

1. Skolem terms.

2. Isomorphism type extensions.

3. Topological boundaries of definable sets.

Applications concern eg. linear formulas in fields, ordered and valued

fields; Presburger arithmetic, Boolean algebras and Stone algebras,

semilattices, linear and partial orders, graphs, trees. Most of the

results appear in the author's papers in Prcc. AAECC-3, Grenoble 1985,

Proc. ISSAC-88, Rome, Journal Symb. Comput. 5 (1988). New results include:

- a triple exponential upper and lower bound for QE in Presburger arithmetic.

- a double exponential lower bound for QE in atomless Boolean algebras and
existentially closed Stone algebras.

- an exponential lower bound fer QE in existentially closed semilattices,
Tinear and partial orders, graphs and abelian m-groups.

Berichterstatter: Thomas Lickteig
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