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The ninth Oberwolfach Conference on Complexity Theory was organized as
before by C.-P. Schnorr (Frankfurt), A. Schonhage (Bonn) and V. Strassen
(Konstanz). The 33 participants came from nine countries, twelve of them
came from North and South America and from the USSR.

The 28 lectures given at the conference covered many different areas of com-
plexity theory, with a major focus on topics related to algebraic problems,
graphs, and computational number theory.

Lectures were given on the sequential resp. parallel complexity of compu-
tational problems in linear algebra, Discrete Fourier Transforms, compu-
tations in finite fields, and factoring polynomials. Computational aspects
of algebraic geometry and geometric problems in semialgebraic sets were
discussed.

Other lectures dealt with unit computation, principal ideal testing, factor-
ing integers, computing discrete logarithms, and the reduction of quadratic
forms. Further topics were polynomial interpolation, counting solutions of
GF[2]-polynomials, computation of real numbers, and asymptotics.

Several topics on graphs have been considered, e.g. spanning trees, algo-
rithms on dense graphs, and the analysis of random walks.

Various other topics were discussed, such as polygonal chains, circuit de-
sign, branching programs for symmetric Boolean functions, sorting, hashing,
communication in parallel machines, relations between logics and complex-
ity classes, and learning algorithms.
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Abstracts

H. Alt
Measuring the Distance between Polygonal Chains

Motivated by shape- and pattern-recognition problems a distance measure
between curves is introduced which is compatible with parametrizations of
the curves and is called “continuous distance” §.. It is shown, that in the
case of convex curves 6, coincides with the Hausdorff-distance.

Therefore for convex polygons P,Q 6.(P,Q) can be determined in time
O(p+ q) (p, ¢ = numbers of edges of P, @, respectively), using an algorithm
by Atallah. For arbitrary polygonal chains P, () an algorithm of runtime
O(pq) is presented for the decision problem whether 6.(P, Q) < ¢ for a given
. This can be used to obtain an O((p?q + pq?) log(pg))-algorithm for the
problem of computing é.(P, Q).

(Joint work with Michael Godau.)

P. Borwein
Strange and Fraudulent Series

The series
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approximates 7 to 42 billion places (but not to 43 billion places).

The series
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is 1280640 to 1/2 billion places (and then goes wrong). These and other
strange series will be the topic of this short talk.

J. Buchmann

Complexity of Unit Computation and Principal Ideal Testing in
Number Fields
Starting with the diophantine equation

2 — Dy? = +4p



we discuss the complexity of unit computation and principal ideal testing
in number fields and prove

Theorem.

a) There is an algorithm for computing a generating system for the unit
group of an order of discriminant D in a number field of degree n in
time (nlog|D|)°(™) . R where R is the regulator of the order.

b) In the situation of a) an ideal a can be tested for principality in time
(nlog |D|)°™) . (R + |a|) where |a| is the input size of a.

P. Burgisser

Some Computational Problems in Linear Algebra as Hard as Ma-
trix Multiplication

Let F be a field of characteristic 0. Consider the following problems:

3-COMPRESSION(n):

data: (A;, Ay, A3) € (F7xn)®

solution: (By, By) € (F™"*")? with A; A,As = By Bs.
KERNEL(n):

data: A € F**n
solution: a basis of ker(A).

ORTHOGONAL BASIS(n):
data: A € F™**" symmetric
solution: S € GL,(F) with SAST diagonal.

We use the model of a computation tree with operations F U {+, —, %, /}
and branchings according to the relation “=".

We show that there are ¢,d > 0 such that every computation tree solving
one of the above problems has a complexity of at least

c- M, —d-n?,

where M,, denotes the nonschalar complexity of n x n matrix multiplication.

(Joint work with T. Lickteig and M. Karpinski.)



M. Clausen
Lower and Upper Complexity Bounds for Discrete Fourier Trans-
forms

Let 2 < ¢ < co. The c-linear complexity L.(A) of a complex matrix A is the
minimal number of additions, subtractions and multiplication by complex
constants of absolute value < ¢ needed to evaluate A at a generic input
vector. For a finite group G let DFT(G) denote the set of all DFT-matrices
corresponding to G and call L.(G) := min{L.(4) : A € DFT(G)} the
c-linear complexity of G.

Theorem. Let G be a finite group, A € DFT(G).

(1) |Loo(A) = Leo(A™H)| L |G
(2) L2(G) > § -Gl - log|Gl.

3) If G, = {( g f ) la, 8 € GF(2™), # 0} then Ly(G,) < 0.6
|G| - log |G| for all n > 7.
(4) G abelian = L,y(G) < 8- |G| - log |G-

((1) = (3) s joint work with Ulrich Baum, (4) is joint work with U. Baum
and Benno Tietz.)

J. von zur Gathen

Exponentiation in Finite Fields

A basis of a finite field IF;» over IF, (¢ a prime power) of the form
a,af, aqz, e, a?" " is called a normal basis. We show that a random « €
IF;» generates a normal basis with large probability Q(1/log, n). Hensel’s
test (1888) then provides an efficient probabilistic method to generate a
normal basis, with O"(n?logq) operations in IF,. (This is joint work with
Mark Giesbrecht.)

The property (3" a;a?)! = S a;_10f, with a; € IF,, shows that a ¢-th
power is just a cyclic shift of coordinates. The computation of a large
power, say z° with 1 < e < ¢", by multiplications and divisions is appro-
priately modelled by addition/subtraction chains with free multiplication by
¢. The minimal size is O(n/log, n), and a counting argument shows a



lower bound Q(n/logyn) for almost all e. The parallel complexity is ex-
actly [log, o,(e)] with additions, and exactly [log, cr;*‘(e)'] with additions
and subtractions. Here o,(e) is the sum of the digits of the g-ary repre-
sentation of e, and 0¥ (e) = min{o,(a) + o¢(b) : a,b € N,e = a — b}. We
give an example where Fermat’s Little Theorem speeds up a computation:
llog, o (e)] > Mlog, 7 (e + A(a” — 1))].

E. Gradel
Descriptive Complexity via Fragments of Second Order Logic

It is well known that NP can be characterized as the set of problems that
are expressible by existential second order logic. Other complexity classes
(P, NLOG, LOG, AC?) are captured by increasing the expressive power of
first order logic (with order) by operators for the least fixed point, transitive
closure etc. Here we discuss logical descriptions of complexity classes not by
increasing first order logic but by restricting second order logic. We define
second order Horn logic SO-HORN, second order Krom logic SO-KROM
and a symmetric fragment SO-SymKROM.

We show:

e These logics collapse to their existential fragments.

e In the presence of a successor relation, SO-HORN, SO-KROM and
SO-SymKROM capture P, NLOG and CoSymLOG, respectively.

e Without successor relation, SO-HORN is strictly weaker than fixed
point logic.

D.Yu. Grigor’ev

Finding Connected Components of a Semialgebraic Set in Subex-
ponential Time

Let a semialgebraic set be given by a boolean combination of systems of
polynomial inequalities in n variables with degrees at most d and bit-sizes of
coefficients at most M. An algorithm is designed which finds the connected
components of the semialgebraic set presenting them in a similar way with

the running time M,

(Joint work with N.N. Vorobjov (jr.) and J. Canny.)



J. Heintz
(Un)precise Complexity Bounds in Elementary Geometry *

We present in this talk algorithmical results in semialgebraic geometry
whose qualitative aspect is known since this can be deduced from cylin-
drical algebraical decomposition (involving doubly exponential sequential
complexity bounds). The new outcome are the single exponential complex-
ity bounds we present here. This improvement is due to recent progress in
commutative algebra (effective Nullstellensitze).

We show a general technical theorem which can be generalized to a result
on the complexity of quantifier elimination in the first order language of
ordered fields (where the formulae are interpreted in the real numbers).

The dimension, topological closure, and the interior of a s.a. set can be
computed in admissible time, i.e. with sequential complexity s0(1)gn°®
and parallel complexity (n log(sd))°(!) where d is a bound on the degree of
the polynomials Fy, ..., Fy € Z[zy,...,z,] involved in the definition of the
semialgebraic set which is considered.

Applications to questions concerning connected components of s.a. sets are
discussed, an effective Lojasiewicz Inequality is derived from the methods
described, and it is shown that integer programming with quasiconvex poly-
nomial restrictions is in NEXPTIME.

(Joint work with Teresa Krick, Pablo Solond (Noai Fiichas, Buenos Aires)
and Marie-Francoise Roy (Rennes).)

* As no sufficiently short abstract was available, an ertended abstract has
been summarized by the reporter.

E. Kaltofen
Effective Noether Irreducibility Forms and Applications

We consider the problem of factoring multivariate polynomials over the al-
gebraic closure of the coefficient field. A major instance of this is the prob-
lem of factoring rational polynomials into irreducible factors with complex
coefficients. The contributions discussed are threefold: first, we derive effec-
tive irreducibility theorems applicable to this problem; second, we establish
a methodology for estimating the bit complexity of an algorithm that is
defined for abstract algebraic extension fields, in our case the polynomial
factorization algorithm over an algebraically closed field; and third, we de-



scribe a representation model for algebraic numbers with the property that
factorization of multivariate polynomials with rational coefficients into com-
plex factors, using common polynomial representations, such as the sparse
representation, is within the complexity class N'C. Our representation for
the complex coefficients also yields their rational approximations to a given
precision with computaional complexity in NC.

M. Karpinski
An Efficient Approximation Algorithm for the Number of Solu-
tions of a GF|[2]-Polynomial

We construct an efficient Monte Carlo algorithm for estimating the number
of solutions of a multivariate polynomial over GF[2]. This gives the first
efficient method for estimating the number of points on algebraic varieties
over GF[2]. For the case of counting the number of zeros of an n-variate,
m-term polynomial (without constants), the (e, §)-approximation algorithm
. . nm?In(2/6 . 1 .
runs in time O(—;ﬁ—l) There exists also an RNC*-implementation of
the algorithm. The method of solution involves the new (sharp) bound on
the number of satisfying assignments and zeros of multivariate polynomials
with m terms over GF[2]. In the case of the number of zeros |G| of an n-
variate polynomial without constant terms, the following inequality is true:

2" /|G| < m + 1. This bound is also sharp.
(Joint work with M. Luby, Berkeley.)

T. Lickterg

Real Tests and Real Spectra

A semialgebraic decision problem is a finite partition {S;,...,S,} of the
real n-space IR” into semialgebraic subsets Sy, ..., S,. The (multiplicative)

complexity of computation trees (CT) 7 solving the decision question to
which S; an arbitrary input vector z € IR” belongs is discussed for various
decision problems from computational linear algebra, and relative lower
bounds in terms of the approximative (multiplicative) complexity AMAMU
and ASOL of the two main problems, matrix multiplication and solving a
linear system, are given.

Examples:

1. 7 isa CT for {SL,,,R**"\ SL,} then almost all matrices z € SL,,
follow a path in 7 of length > AMAMU,,.



2. If T is a CT for {P,S\ P} (P = positive symmetric matrices, S5 =
symmetric matrices) then almost all £ with det £ = 0 follow a path

in 7 of length > ASOL,.

3. If T is a CT for computing the rank of matrices from IR"*" then

almost all z with rank z = r» < n follow a path in 7 of length >
ASOL,.

Language and concepts of real algebraic geometry are well suited for dis-
cussing complexity of CTs in the real case.

H. Lombard:
Constructive real Nullstellensatz and Explicit Bounds for the De-
grees

We give a constructive proof of the real Nullstellensatz. So we obtain,
for every ordered field K, a uniformly primitive recursive algorithm that
computes, for the input “a sytem of generalized sign conditions (gsc) on
polynomials of K[X,,...,X,] impossible to satisfy in the real closure of
K”, an algebraic identity that makes this impossibility evident.

Our proof is a translation, step by step, of the Hormander algorithm for
testing the impossibility of the system of gsc.

We can pease our constructions sufficiently to obtain an explicit bound for
the degrees of the polynomials appearing in the final algebraic identity,
as a function of the degrees, the number of variables and the number of
polynomials in the input.

W. Maass

On the Complexity of Learning from Counterexamples and Mem-
bership Queries

We prove a lower bound for the required number of learning steps in a
common learning model in computational learning theory.

In this model the “environment” fixes an arbitrary target concept Cr € C
from the considered concept class C (where C C 2% for some finite domain
X; both X and C are known to the learner). The goal of the “learner”
(= learning algorithm) is to identify Cr in as few steps as possible. The
allowed moves of the learner are queries of the form “H = Cr?” for some
hypothesis H € C (to which he gets the reply “yes”, or the reply “no”



together with a counterexample z € (Cr — H)U (H — Cr)), and queries of
the form “z € Cr?” forz € X.

We show that no matter which algorithm the learner uses, the worst case
number of queries that he has to ask is for every concept class C bounded
below by VC-dim(C)/7 (where VC-dim(C) := max{|S|: SC X and CNS =
25} is the Vapnik - Chervonenkis dimension of C).

(Joint work with G. Turan.)

E. W. Mayr
Spanning Trees in Weighted Graphs

Given a weighted graph, let Wy, W,, W3, ... denote the increasing sequence
of all possible distinct spanning tree weights. Settling a conjecture due to
Kano, we prove that every spanning tree of weight W is at most £ — 1 edge
swaps away from some spanning tree of weight Wj. Three other conjectures
posed by Kano are unified and proven for two special classes of graphs.
Finally, we consider the algorithmic complexity of generating a spanning
tree of weight Wy.

(Joint work with C.G. Plazton, UT Tezas.)

K. Mehlhorn
Algorithms on Dense Graphs

We show how to speed up several algorithms on dense graphs by exploiting
the parallelism at the word level inherent to the RAM model of computa-
tion. In particular, DFS, BFS, and strongly and biconnected components
can be computed in time O(n?/logn), maximum bipartite matchings in
time O(n?°/logn), shortest paths in time O(n? logC/logn), and min cost
matchings in time O(n?%lognC - (loglogn/logn)/4). For the latter two
problems the weights are integers in the range [0...C].

(Joint work with J. Cherigan.)

F. Meyer auf der Heide
Dynamic Hashing

We present a new universal class of hash functions which have many desir-
able features of random functions but can (probabilistically) be constructed
using sublinear time and space, and can be evaluated in constant time.

10



These functions are used to construct a dynamic hashing scheme that per-
forms in real time, i.e. it uses linear space and needs worst case constant
time per instruction. Thus instructions can be given in fixed constant length
time intervals. Answers given by the algorithm are always correct, the space
bound is always satisfied, and the algorithm fails to fulfil the time bound
only with probability O(n=*) where n is the number of items currently
stored. k£ can be made an arbitrarily large constant.

We further sketch simulations of shared memory, i.e. of p-processor parallel
random access machines (p-PRAMs), on networks with p processors without
shared memory. For restricted classes of p-PRAMs, we show simulations
with expected constant time delay.

(Joint work with Martin Dietzfelbinger, Paderborn.)

R. Mirwald
The Rank of a Pair of Matrices over Z, and the Multiplicative
Complexity of a Pair of Boolean Quadratic Forms

I. Let (A, B) be a pair of m x n matrices with coefficients from the field
Z,. We characterize the rank R(A, B) of (A, B) — i.e. the rank of the
corresponding tensor in ZJ' ® Z5 ® Z3 — in terms of invariants related to
the Kronecker canonical form of (A, B).

For all pairs (A, B) we prove the lower bound R(A, B) > [1(R(A)+ R(B)+
R(A+ B))]. We show that this lower bound is tight if (A, B) is non excep-
tional in the sense that all its invariants are different from five exceptional
ones (which correspond to diagonal blocks of small size in a Kronecker
canonical form). We prove upper and lower bounds for arbitrary pairs
(A, B). The maximal rank of a pair of n x n matrices over Z, is [2n].

I1I. We compare the multiplicative complexity of a set of quadratic forms to
the multiplicative complexity of the corresponding set of Boolean quadratic
forms. The multiplicative complexity of a pair of Boolean quadratic forms
equals half the rank of an associated pair of matrices over Z, provided that
this pair of matrices is non exceptional.

(Joint work with C.-P. Schnorr, Frankfurt.)

11



A.M. Odlyzko
An Elementary Method in Asymptotics

When a generating function f(z) = ) f,z" is analytic, there are many
methods for extracting asymptotic estimates for the f,, from information
about the behavior of f(z). When f(z) is known only for real z, fewer
methods are known, and usually they give cruder estimates than can be
obtained when f(z) is analytic. When f, > 0 for all n, one can use a very
simple elementary method that is very general, and often produces fairly
good estimates. The upper bound is very well known, and says that

fo <27 f(2)

for every £ > 0. What is perhaps slightly surprising is that one can often
obtain lower bounds for partial sums ), ... fi by a variant of this method.

M.S. Paterson
Shallow Multiplication Circuits

Carry save adders were used by Ofman, Wallace and others to design mul-
tiplication circuits whose total delay is proportional to the logarithm of the
length of the two numbers multiplied. An extension of this method was pre-
sented here. We have a general theory giving the optimal way of combining
a given design of carry save adder. In addition we have detailed designs for
carry save adders which yield multiplication circuits of depth 4.57 log, n.

(Joint work with Uri Zwick (Warwick) and Nick Pippenger (UBC).)

A.A. Razborov
Nondeterministic Branching Programs for MAJORITY Require
Superlinear Size

It is shown that the size of nondeterministic branching programs (known
also as switching-and-rectifier networks) computing MAJORITY and sev-
eral other symmetric Boolean functions must be superlinear. The proof
uses a reduction to a particular instance of the “Minimum Cover” problem.
Another essential ingredient in the proof is Ramsey theory.

12



R. Reischuk
Degree Bounds for Communication by Exclusive Write Shared
Memory

We consider parallel machines in which the processors communicate via a
shared memory with exclusive write access (CREW PRAM). The time com-
plexity of Boolean functions is estimated improving results of Cook, Dwork,
Reischuk [SIAM J. Computing, 1986]. We set up a full information model in
which states of processors and memory cells correspond to partitions of the
input domain {0, 1}". The notion of degree for such partitions is defined by
associating elements of the IR-Algebra of functions g : {0,1}" — IR to the
characteristic functions of a partition. We show that the growth rate of the
degrees is upper bounded by the Fibonacci sequence. That way the time
complexity of functions like OR,,, AND,,, PARITY,, and many others can
be determined exactly or up to a small additive constant. Generalizations
to nondeterministic and probabilistic computations are obtained. We finally
mention new upper time bounds achieved by processor efficient algorithms.

(Joint work with M. Kutylowski and M. Dietzfelbinger.)

C.-P. Schnorr
Factoring Integers and Computing Discrete Logarithms via Dio-
phantine Approximation

Let N be an integer with at least two distinct prime factors. We reduce
the problem of factoring N to the task of finding random integer solutions
(e1,...,e:) € Z* of the inequalities

t
’Zeilogpi—logN <N~°¢

i=1

and t

> leilogp;| < (2¢ — 1) log N + o(log py),

1=1
where ¢ > 1 is fixed and p,,...,p; are the first ¢ primes. We show, under
the assumption that the smooth integers distribute “uniformly”, that there
are N¢*t°(1) many solutions (e;,...,e;) if ¢ > 1 and if e ;= ¢ — 1 — (2¢ —

1)loglog N/logp; > 0. We associate with the primes p,, ..., p; alattice L C
IR**! of dimension t and we associate with N a point N € IR**!. We reduce
the problem of factoring N to the task of finding random lattice vectors z

13



that are sufficiently close to n in both the co-norm and the 1-Norm. The
dimension ¢ of the lattice L is polynomialin log N. For N = 2°!2 it is about
6300. We also reduce the problem of computing, for a prime N, discrete
logarithms of the units in Z/yz to a similar diophantine approximation
problem.

A. Schonhage
Fast Reduction and Composition of Binary Quadratic Forms

Similar to the fast computation of integer gcd’s, the reduction of binary
quadratic forms az? + bzy + cy? with integral coefficients a, b, ¢ bounded
by 2" is possible in time O(u(n)logn), where p(n) denotes a time bound
for n-bit integer multiplication. This result is obtained by a corresponding
algorithm for the monotone reduction of positive forms (after which the final
reduction of definite and indefinite forms can easily be done in a few steps).

Given integers z,y > 0, reduction of the form [m2?z? + 1, 2m?%zy, m*y?] with
sufficiently large m, like m = 2y, admits to find u, v for uz + vy = ged(z, y),
whence mere reduction of forms has at least the complexity of extended ged.

The composition in the special case [ay, b, asc] with [as, b, a1c] gives simply
[@yas,b,c]. Fast transformation of the general case to this relies on the
following

Lemma. Given a, m > 2", decomposing a = u-v such that pla Ap|m & plu
and pla A p fm < plv for any prime p is possible in time O(p(n)logn).

M.A. Shokrollah:
On the Rank of Certain Finite Fields

Using results of D.V. Chudnovsky and G.V. Chudnovsky and W.C. Water-
house we prove that the rank (= bilinear complexity of multiplication) of
the finite field IF;» regarded as an IF,-algebra is 2n if n satisfies %q +1<
n < 1(g+1+¢(q)). Here (q) is the greatest integer < 2./q which is prime
to ¢ if ¢ is not a perfect square and £(¢) = 2,/7 if ¢ is a perfect square. For

the case ¢ = 4,n = 4 a machine constructed bilinear algorithm is presented
(joint work with U.Baum).

14



P. Tiwart
On the Decidability of Sparse Univariate Polynomial Interpolation

We consider the problem of whether or not there exists a sparse univariate
polynomial p(z) that interpolates a given set S = {(z;, y;)} of points. Sev-
eral cases are resolved, e.g. the case when the z;’s are all positive. But the
general problem remains open.

(Joint work with Allan Borodin, University of Toronto.)

U.V. Vazirani
Rapidly Mixing Markov Chains

The conductance of a graph is a measure of the connectedness of the graph.
It has been established via eigenvalue arguments by Jerrum and Sinclair,
and by direct combinatorial arguments by Mihail that the mixing rate of
the random walk on a graph is determined by its conductance.

We extend the latter approach to analyze mixing in graphs where all but
K vertices of the graph are well-connected. We prove that the conductance
of all but K vertices in a graph determines the mixing rate when the ran-
dom walk is started with uniform probability on any subset of vertices of
size > K. Similar results have been proved independently by Lovasz and
Simonovitz by completely different arguments.

I. Wegener
On Some Variants of HEAP SORT

BOTTOM-UP HEAP SORT is a fast HEAP SORT variant where the reheap
procedure consists of three modules. With procedure leaf-search we look for
the so-called special leaf. Starting at the root we always look for the smaller
son. Then we search bottom-up for the new position of the root object
and, finally, we perform the data transport. The worst case number of
comparisons is bounded by 1.5nlogn. The average case number is nlogn +
a(n)n where a(n) € [0.35,0.39] depends on n. This result can be proved only
under some realistic assumptions and is supported by simulations. MDR,
HEAP SORT is a variant of BOTTOM-UP HEAP SORT using n extra bits
to store information about smaller sons. Its worst case complexity can be
computed. It equals nlogn, if n = 2%,

Berichterstatter: Peter Kirrinnis
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E-Mail Addresses

P. Borwein :
P. Burgisser :
J. Buchmann :
M. Clausen :
J. von zur Gathen :
E. Gradel :

J. Hastad :

E. Kaltofen :
M. Karpinski :
T. Lickteig :
W. Maass :

E. W. Mayr :
K. Mehlhorn :
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R. Mirwald :
A.M. Odlyzko :
M.S. Paterson :
A.A. Razborov :
R. Reischuk :
C.-P. Schnorr :
M_.A. Shokrollahi :
P. Tiwari :

U.V. Vazirani :

pborwein@cs.dal.ca
buerg@icsi.berkeley.edu
buchmann@cs.uni-sb.de
clausen@leon.informatik.uni-bonn.de
gathen@theory.toronto.edu
graedel@urz.unibas.ch
johanh©@nada.kth.se
kaltofen@cs.rpi.edu
marek@theory.cs.uni-bonn.de
lickteig@icsi.berkeley.edu
U45381@QUIVCM.BITNET
mayr@vaxl.rz.uni-frankfurt.dbp.de
mehlhorn@cs.uni-sb.de
fmadh@uni-paderborn.de
rbiffm!mirwald
amo@research.att.com
paterson@cs.warwick.ac.uk
razb@log.mian.su
xitirrei@ddathd21.bitnet
rbiffm!schnorr
amin@leon.informatik.uni-bonn.de
tiwari@cs.wisc.edu
vazirani@ernie.berkeley.edu
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