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The 10-th Oberwolfach conference on Complexity Theory was organized by Joachim von
zur Gathen (Toronto), Claus-Peter Schnorr (Frankfurt) and Volker Strassen (Konstanz).
There were 38 participants coming from nine countries.

The 32 lectures covered a broad range of actual resarch in complexity theory as well as
in classical subjects. Some talks were given about various aspects of cryptography. The
new theory of probabilistically checkable proofs was addressed. A group of talks dealt with
combinatorical optimization. Others investigated general models for parallel computing and
average—case complexity. A big topic was the complexity of algebraical and arithmetical
problems. It was a quite active and stimulating conference.



Abstracts

Eric BacH

Statistical Evidence for Small Generating Sets

Joint work with LORENZ HUELSBERGEN

For an integer n, let G(n) denote the smallest = such that the primes < z generate the multiplicative
group modulo n. We offer heuristic arguments and numerical data supporting the idea that G(n) <
(log2)~lognloglogn asymptotically. We believe that the coefficient 1/log2 is optimal. Finally,
we show the average value of G(n) for n < N is at least (1 + o(1))loglog N logloglog N, and
give a heuristic argument that this is also an upper bound. This work gives additional evidence,
independent of the ERH, that primality testing can be done in deterministic polynomial time; if
our bound on G(n) is correct, there is a deterministic primality test using O(log n)? multiplications
modulo n.

ULRICH BAuMm

Computing Irreducible Representations of Supersolvable
Groups

Joint work with MICHAEL CLAUSEN

We present an algorithm that, given a power—-commutator presentation of a supersolvable group G,
computes a full set of inequivalent irreducible and monomial ordinary matrix representations of G
in time O(]G|log|G|). The algorithm is based on Clifford theory and adapting the representations
to a chief series of G. The algorithm only requires symbolic calculations in a suitable group of roots
of unity; no field arithmetic is needed at all. The result is valid over every field containing a suitable
(e.g. exp(G)-th) primitive root of unity.

INGRID BIEHL
Models for Average—Case Complexity

In 1984 L. Levin developed a definition of “a function f : £* — N is polynomial on average with
respect to a distribution g : £* — [0,1]”. We study the question, of how Levin’s definition can be
generalized and whether this definition is the only reasonable one. We characterize properties which
seem to be “natural” for a reasonable average—case model. This leads to the definitions of strong
average—-case models and weak average—case models. We show that basic results, well-known from
worst—case complexity theory e.g. relations between time and space complexity classes ..., hold in all
weak average—case models. Moreover we show that for a special class of weak average—case models
completeness results similar to known completeness results in Levin’s theory hold.

PETER BURGISSER

Decision Complexity of Generic Complete Intersections

We study the complexity of algebraic decision trees that decide membership in a semi-algebraic
subset X C R™, where R is a real (or algebraically) closed field. We prove a general lower bound on
the verification complexity of the vanishing ideal of an irreducible algebraic subset X C R™ in terms
of the degree of transcendency of its minimal field of definition. As an application, we determine
exactly the number of additions, subtractions and comparisons that are needed to test membership in
a generic complete intersection X = Z(fi1,..., fr) € R™; for the number of multiplications, divisions
and comparisons needed, we obtain an asymptotically optimal lower bound as maz;degf; — co. A



further application is given to test problems related to partial or continued fractions.

MARTIN FURER

Minimum Degree Steiner Tree Approximation

Joint work with BALAJI RAGHAVACHARI

There is a polynomial time deterministic algorithm to compute a spanning tree of degree at most
A + 1 for every graph for which a spanning tree of degree A exists. The same result holds for
Steiner trees, whereas the directed version of the minimum degree spanning tree problem can be
approximated by a spanning tree of degree O(A + logn). To compute the minimum degree is well
known to be NP-hard in all of these three cases.

MERRICK FURST
Are Relevant Bits Hard to Find?

Since the first seminal paper of Valiant on learning we have known if certain cryptographic systems
are secure, then certain families of circuits are unlearnable. He pointed that if one-way functions
exist, then there are methods to show that general polynomial size circuits are not even weakly
learnable.

We show that if certain cryptographic systems do not exist, then certain classes of circuits are
learnable. We show that if we assume that a certain cryptographic assumption is false, then we
can weakly learn polynomial size DNF in polynomial-time in the query model. Under a similar
assumption we partially solve another learning problem due to Avrim Blum.

The importance of these results is two-fold. First, they show a potential approach to resolving these
open questions. Perhaps it will be possible to prove that these assumptions are true. Of course many
may believe that our assumptions are false; however, all the more reason to study the consequences
of assuming that certain crypto-systems do not exist. Second, they show an interesting link between
two important areas of complexity theory.

We study two questions about learning. The first is whether or not we can weakly learn a family of
circuits given the ability to ask arbitrary queries. The first problem, more precisely, is the following.
Suppose that C is a family of boolean circuits. We can weakly learn the family provided there is a
polynomial-time procedure that given an oracle for any circuit C from the family with one output,
can construct a new circuit D so that

Pr(D(z) = C(z)] > 1/2 + 1/2°W),

Thus, we can weakly learn circuits from a family provided we can build a new circuit that “predicts”
the given circuits output. We are allowed only a polynomial number of questions. It is currently
open whether or not we can weakly learn many families of circuits. In particular, this is true for the
important family of DNF that are of size at most n%() and of AC® circuits.

The second problem is due to A. Blum. It really is a spectrum of questions which we will denote
by AB(s(n),S) where s(n) is integer valued function between 1 and log(n). The set S is a class
of boolean functions. A problem instance consists of a function f from the class S with s(n) = m
inputs and a set of indices i1 < i3 < ... < im. A learner gets to ”see” the value f(z;,,...,zi,.)
where z1, ..., z,, are randomly selected from the uniform distribution. The learner is to both exactly
determine the function f and the indices. As usual the key open question is whether or not the
learner can do this with a polynomial time procedure. The question appears to be open even if S is
restricted to the class of symmetric functions. Here are the main results.

Theorem 1: If a family of circuits C does not contain a pseudo-random generator, then C is weakly
learnable.



Corollary 1: If depth 2 and size n®(1) circuits do not contain a pseudo-random number generator,
then polynomial size DNF is weakly learnable.

Corollary 2: If AC® circuits do not contain a pseudo-random number generator, then AC? is weakly
learnable.

The class of all boolean functions is denote by ALL.

Theorem 2: If depth O(1) and size n9(!) circuits do not contain a pseudo-random number generator,
then AB(loglog(n), ALL) is exactly learnable in polynomial time.

MAaRrcC GIUSTI
Complexity of Effective Nullstellensatze

Joint work with Joos HEINTZ

Let k£ be an infinite and perfect field, and fy,..., f; polynomials in k[z,,...,z,], of degree at most
d > n, given by the array of their coefficients in dense representation.

Then there exists an arithmetic network over k of size L = s2(1)d%(") and depth £ = O(n'?log® sd)
which decides if the ideal (f1,..., f;) is trivial (i.e. contains 1). 7

If so, the network constructs a straight-line program in k[z;,...,z,] without divisions, of size and
depth of the same order as L and £, which represents polynomials py,...,p, of degree d°(®) such
that the Bézout identity 1 = p1 fi + - - + p, fs holds.

Eventually, this network can be constructed by a probabilistic (random) algorithm in sequential and
parallel time of the same order as L and £.

ODED GOLDREICH
Towards a Theory of Statistical Tests

Joint work with MaANUEL BLuMm (UC-BERKELEY)

We initiate a computational theory of statistical tests. Loosely speaking, we say that an algorithm
is a statistical test if it rejects a “negligible” fraction of strings. We say that a statistical test is
universal for a class of algorithms if it rejects all (but finitely many) of the strings rejected by each
algorithm in the class.

We consider the existence and efficiency of universal statistical tests for various classes of statistical
tests. We also consider the relation between ensembles passing statistical tests of particular complex-
ity and ensembles which are indistinguishable from uniform by algorithms of the same complexity.
Some of our results refer to relatively simple statistical tests (e.g., those implemented by counter
machines). In addition to their own merit, we hope that these results will stimulate investigations
directed towards results that refer to more complex statistical tests (e.g., those implemented in
log—space).

SHAFI GOLDWASSER

Probabilicsticaly Checkable Proofs and Approximation Prob-
lems

We address the question of how hard is it to approximate the solution of several optimization
problems such as maximum-—clique in a graph, minimum-coloring in a graph, minimum-set cover,
and maximum-3-satisfiability. The corresponding decision problems of clique, coloring, set cover,
and satisfiability are well known to be NP complete.

We surveyed work of the last few years on classifying the complexity of the above approximation
problems. This work relies on new characterization of NP as languages which have ”compact”



probabilistically checkable proofs(pcp). A language L is in pep(r, a,¢) if there exists a probabilistic
polynomial time verifier V' which has access to an oracle II such that

1. if z € L, then there exists II. Pr(V(z) =1) = L.
2. ifz ¢ L, then for all II, Pr(Vi(z) = 1) < 1—¢
3. the verifier V uses at most r coins, and gets from oracle total of at most a answer bits.

Through a sequence of results originating with Feige-Goldwasser-Lovasz-Safra , followed by
Szegedi, Arora—Safra, and Arora-Lund-Motwani—Sudan-Szegedi it has been shown that NP is in
pep(O(logn), O(1),0(1)) .

In the talk we proved a theorem by FGLS90 as follows: if approximating max—clique within a
constant ¢ is in polynomial time, then NP is contained in DTIM E(27+%) where r and a are the
number of coins (and respectively number of answer bits) used by a verifier accepting N P languages
with probability € = %. Since NP C pep(O(logn), O(1), O(1)), it follows that there exists an ¢ such
that approximating max—clique within n¢ is NP~complete.

We announced some new results concerning the results of minimum set—cover. In joint work with
Bellare and Russel we showed (again improving the best bounds known on the compactness of pcp
proofs with small ¢) that (1) approximating set—cover within an constant c¢ in polynomial time is

NP-complete, and (2) there exists a ¢ such that approximating set—cover within ¢ log n factor, implies
that NP is in Uy DTIM E(n?%).

JOHAN HASTAD
The Shrinkage Constant is 2

Given a Boolean formula of size L and suppose we hit it with a random restriction from R,, i.e. for
each variable z; independently we keep it as a variable with probability p and otherwise we set it
with equal probability to 0 or 1. After this we do the following simplifications at each V-gate.

If one input is 1 replace the gate by the constant 1.
If both inputs are 0 replace the gate by the constant 0.
If one input is 0 replace the output by the other input.

[P

If one input reduces to a single variable z; (Z;), substitute z; = 0 (z; = 1) in the subformula
giving the other input.

We have similar simplification rules at the A-gates.

We prove that the expected size of the reduced formula is bounded by O(p?(logp~1)*/2L + pV'L).
This is optimal except for the factor (1ogp‘1)3/2. As a corollary we obtain a formula size lower
bound ©(n3~°M) for a simple explicit function.

MicHAEL KAIB

A Sharp Worst—Case—Analysis of the Gaufl Lattice Basis
Reduction Algorithm for any Norm

Joint work with CLAUS SCHNORR

We study the reduction of 2-dimensional lattices in a real vector space with arbitrary norm. We prove
for any norm that the GauB reduction algorithm terminates after at most log, /3 (2v2B/2) + o(1)
many iterations, where B is the maximum of the norms of the two input vectors and A, is the second



successive minimum of the lattice with respect to the given norm. This bound is sharp for all norms
and all lattices.

ERICH KALTOFEN

Parallel Sparse Linear System Solving

In our algorithms, a sparse matrix is a matrix that has an efficient algorithm for multiplying it
by a vector. D. Wiedemann in 1986 invented an algorithm that can find the solution of a non—
singular linear system with a sparse coefficient matrix in O(N) matrix times vector operations and
additionally O(N?) arithmetic operations in the coefficient field; here N is the dimension of the
(square) matrix. D. Coppersmith in 1992 showed how this approach could be parallelized. With
n processors the parallel time is then O(N/n) matrix times vector operations, and an additional
O(nN?) sequential field operation. Both algorithms are randomized.

We show that if the matrix has the property that the degree of the minimum polynomial is equal
to the rank plus 1, the parallel algorithm has a high probability of finding such a solution. This
condition can be also enforced by pre- and postmultiplying by random triangular Toeplitz matrices
and then post-multiplying by a random diagonal matrix. We have also implemented the method on
a network of 8 Sun Sparc workstations. A system of dimension 10.000 with 300.000 non—zero entries
over GF(2'% — 19) can be solved in two days.

MAREK KARPINSKI

An Approximation Algorithm for Counting the Number of
Zeros of Polynomials over GF(q)

Joint work with D. GRIGORIEV

We design the first polynomial time (for an arbitrary and fixed field GF(q)) (e, 8)-approximation
algorithm for the number of zeros of an arbitrary polynomial f(zi,...,z,) over GF(q). This extends
the recent approximation algorithms over GF(2) [Karpinski, Luby, 1991], and gives the first efficient
method for estimating the number of zeros and nonzeros of multivariate polynomials over small fields
other than GF(2).

The algorithm is based on the tight upper bounds proved on the sampling ratios for the number of
nonzeros of certain polynomials over GF(q) in the function of the number m of terms only. The
bound is proven to be m'°8¢, sharply.

PETER KIRRINNIS

Fast Computation of Numerical Partial Fraction Decomposi-
tions and Contour Integrals of Rational Functions

The problem of computing the numerical value of the integral [.q(z)/p(z)dz, where ¢ and p are
polynomials, given by their coefficients, and I is a curve in the complex plane, is investigated from
the point of view of (serial) bit complezity.

Two algorithms are presented: The first one computes the integral in the special case that the
zeros of p lie in a small circle not intersected by I'. The second algorithm computes a special type
of partial fraction decomposition especially well suited for this application, but also of interest by
itself. Combining these algorithms yields an algorithm for the computation of contour integrals of
rational functions in the general case.

It turns out that under reasonable norming conditions, the integral can be computed up to an error
of 2=¢ with O(n3(1 + ) + n?s) bit operations (O indicates that logarithmic factors are neglected) if
for every zero z of p and every point y on I' the estimates |z| < 1 and |z — y| > 277 hold.



JAN KRAJICEK

Complexity of Propositional Logic

The following is a combinatorical situation encountered in lower bounds to the size of constant-
depth propositional proofs. Let £ > 0, n large and k ~ n®. M is a set of partial partitions of
2n+1 = {0,...,2n} into 2-element classes. For k1, k2 € M, k1 and k are compatible if k; Uk, € M.
A k-complete system is any § # S C M such that

1. VheS — |h| <k,
2. Yhy,hy €S, hy # hs — hy and hy are incompatible,
3. VfEM, |fl+k<2m — 3h€ S hand f are compatible.

Let ¢ be arbitrary formula built from atoms p;;, 0 <4,j < 2n+1, with connections 0,1, -,V/.
A k-evaluation of ¢ is a pair of maps H, S assigning to any subformula ¢ of ¢ a k-complete system
Sy and Hy C Sy such that

1. So=51=5, =1{0}, Ho= 0,H, = Hp,, = {0} .

2. Spiio = 1Picjo} U {Picjpijolall 4, 7, io, jodifferent} and Hp, ;. = {piojo} -
3. Syp =Sy, Hy,=8y—Hy .

4. If ¢ = \/,, ¥n, none of ¥, starts with \/, then

(a) Yh € Sy, either h is compatible with all f € |J,, H¢n, or h contains some f € |J,, H¢n .
(b) Hy = {h € Sy|h contains some f € | J, H¢n} .

Lemma. If H, # 0 is any k-evaluation of ¢ then the parity principle requires erponential-size
constant-depth proofs from .

Parity principle says that the relation {(i, j)|pi; = 1} is not a total partition of 2n +1 into 2-element
classes. It is open wheter the hypothesis of the lemma is satisfied when ¢ is an instance of M OD;-
principle (saying that 3! + 1 cannot be partitioned into 3-element classes) for formulas built from
atoms pj;.

THOMAS LICKTEIG

On Randomized Algebraic Decision Complexity

The impact of randomization on the complexity of deciding membership in a semi—algebraic subset of
the real n-space is investigated. Examples are exhibited where allowing for a certain error probability
in the answer of the algorithm the complexity of decision problems decreases. A general lower bound
is given which on the other hand shows that in many cases randomization does not help much.
This lower bound on randomized complexity is based on previous lower bound results on decision
complexity by [Lickteig 90], and [Buergisser & Lickteig 92].

MICHAEL LUBY

Efficient construction of a small hitting set for combinatorial
rectangles in high dimension

Joint work with NATI LINIAL

Given d, m and ¢, we deterministically produce a sequence of points S that hits every combinatorial
rectangle in {0,...,m — 1} of volume at least ¢. Both the running time of the algorithm and |S|



are polynomial in d, m and 1/¢. This algorithm has applications to deterministic constructions of
small sample spaces for general multivalued random variables.

O.B. LuraNovVv

On the Realization Complexity of Iterations of Boolean Maps
Let M = {o1,...,0n} be a set of binary strings of length n; let Sp¢ be the set of all one-to—one
maps M «—» M. For any F from Sy let Ap(%,§) be the following function:

Ap(6,7) = F(F(...F(3)...)

|7| times

(|7] denotes the number, the binary notation of which is 7.) Let us consider all possible extensions
of F and Ap to the outside of M. The complexity of a function f is defined to equal the minimal
number of elements which is sufficient for the realization of f by a scheme of functional elements
over the basis {&,V\/,—}. Let L*(F) denote the complexity of the simplest extension of Ar to the
outside of M, and let '

L (M):FnelgiL (F), L (n,M):mMa.xL (M) .

Theorem. If % — oo then L*(n, M) ~ 1ogf{1'§4n

The proof of the Theorem is based on the principle of local coding of the author, along with certain
version of the result of D.Uhlig on the simultaneous realization of a function on several strings
(mass—production), some modifications of certain theorems on the complexity of partial functions
(E.L. Nechiporuk, N.P. Redkin, A.E. Andreev) and some bounds of formula depth of certain functions
(V.M. Khrapchenko); there is also a certain amount of “programming” in terms of circuits.

WOLFGANG MAASS

Bounds for the Computational Power and Learning Complex-
ity of Analog Neural Nets

It is shown that high order feedforward neural nets of constant depth with piecewise polynomial
activation functions and arbitrary real weights can be simulated for boolean inputs and outputs by
neural nets of a somewhat larger size and depth with heaviside gates and weights from {0, 1}. This
provides the first known upper bound for the computational power and VC-dimension of such neural
nets. It is also shown that in the case of first order nets with piecewise linear activation functions
one can replace arbitrary real weights by rational numbers with polynomially many bits, without
changing the boolean function that is computed by the neural net. In order to prove these results
we introduce two new methods for reducing nonlinear problems about weights in multi-layer neural
nets to linear problems for a transformed set of parameters.

In addition we improve the best known lower bound for the VC~dimension of a neural net with w
weights and gates that use the heaviside function (or other common activation functions such as ¢)
from {w) to Q(wlog w). This implies the somewhat surprising fact that the Baum-Haussler upper
bound for the VC—dimension of a neural net with heaviside gates is asymptotically optimal.
Finally it is shown that neural nets with piecewise polynomial activation functions and a constant
number of analog inputs are probably approximately learnable (in Valiant’s model for PAC-learning)



IKURT MEHLHORN

Variation on the Dictionary Problem

Joint work with PAUL DIETZ, RAJEEV RAMAN AND CHRISTIAN UHRIG

We consider the following set intersection reporting problem. We have a collection of initially empty
sets and would like to process an intermixed sequence of n updates (insertions into and deletions
from individual sets) and g queries (reporting the intersection of two sets). We cast this problem in
the arithmetic model of computation of Fredman [JACM ’82] and Yao [SIAM, J. on Comp. 85] and
show that any algorithm that fits in this model must take time Q(gq 4+ n,/q) to process a sequence of
n updates and ¢ queries, ignoring factors that are polynomial in logn. We also show that this bound
is tight in this model of computation, again to within a polynomial in log n factor, improving upon
a result of Yellin [SODA ’92]. Furthermore we consider the case ¢ = O(n) with an additional space
restriction. We only allow to use m memory locations, where m < n3/2. We show a tight bound of
©(n?/m!/3) for a sequence of O(n) operations, again ignoring polynomial in logn factors.
Furthermore we present a data structure for maintaining a dynamic family of sequences under
equality—tests. We allow to create new sequences by concatenating or splitting existing sequences
without destroying them. The data structure supports equality—tests in O(1) time and concatenates
and splits in time O(log n(log mlog” m + log n)) where n is the length of the sequence and m is the
number of the operations performed so far. The solution is deterministic and almost achieves the
time bound of Sundar’s randomized solution [FSTTCS ’92].

FRIEDHELM MEYER AUF DER HEIDE

Computation with Integer Division

Joint work with KATHARINA LURWER-BRUGGEMEIER

Computation trees with integer inputs and operations from S C {+, —, *, DIV, DIV, } are considered;
DIV denotes integer division, DIV, integer division by constants. It is shown that the expressive
powers of different such operation sets are also different, if languages from ZZ",n > 1, are considered.
It was shown earlier by Just, Wigderson and the author that the expressive power of a set S is only
dependent on whether DIV or DIV, isin S or not, for n = 1.

We characterize the expressive powers of different operation sets.

Further we prove lower bounds, including the first lower bound for the powerful operation set S =

{+,—,%,DIV}.

SILVIO MICALI
Fair Cryptosystems

We show that the secret decryption key of a public-key cryptosystem can be shared among several
trustees so that no university of the trustees can reconstruct the secret key, while any majority of
the trustees can easily compute it. Furthermore, upon receiving his own piece of the secret key, each
trustee can verify (without any interaction with other trustees or with the owner of the public/secret
key pair) that he indeed has a concret piece of the secret key. That is, each trustee can verify that,
given any majority of shares that have satisfied a check similar to his own, the secret key of the
given public key can be recomputed. This scheme can be used to achieve private (encrypted) com-
munication among citizens of a democratic country while permitting court—authorized line tapping
under the circumstances envisaged by the law.



PAVvEL PuDLAK

Communication Complexity, Circuits and Tensor Rank
Joint work with V. RODL

Fori,je[0,n—1], £ € {0,1}" let f be the function

f(i,4,2) = ziy;(modn) .
Suppose f should be computed by three players where

Player 0 knows 1¢,j
Player 1 knows j %
Player 2 knows ¢,Z.
Players 1 and 2 send independently messages to Player 0 and he gives the value of f(,j,z).

Theorem. They need only O(nloglogn/logn) to communicate.

RUDIGER REISCHUK

Average Case Analysis

Joint work with CHRISTIAN SCHINDELHAUER

To measure the complexity in the average case Levin has proposed a modification of the classical
measure, which is obtained by taking the expectation. His motivation was to overcome problems
with the expectation when trying to set up a theory of average case complexity classes. But this
new measure basically can only differenciate between polynomial and superpolynomial complexity.
We define and analyse a new measure obtained from monotone transformations of the probability
distributions. It is shown that in this case only the ranking of the inputs by decreasing probabilities
matters. As a main result we obtain tight time hierarchy results for average case complexity classes
comparable to those for worst case classes. Thus, this measure turns out to be very precise. Also, a
tight separation with respect to the complexity of the distributions involved — their rankability — can
be established. Finally, we consider reductions and completeness in this new approach and propose
a classification of NP~problems with respect to their average case behaviour.

ADI SHAMIR

On the Generation of Multivariate Polynomials

In this talk we consider the difficulty of factoring multivariate polynomials F(z,y, z,...) modulo n.
We consider in particular the case in which F is a product of two randomly chosen polynomials P
and @ with algebraically specified coefficients, and n is the product of two randomly chosen primes
p and ¢. The general problem of factoring F' is known to be at least as hard as the factorization
of n, but in many restricted cases (when P or @ are known to have a particular form) the problem
can be much easier. The main result of this paper is that (with one trivial exception), the problem
of factoring F' is at least as hard as the factorization of n whenever P and @ are randomly chosen
from the same sample space, regardless of what may be known about its form.



ALISTAIR SINCLAIR

Quadratic Dynamical Systems

Joint work with YURI RABINOVICH AND Avl WIGDERSON

Quadratic dynamical systems are widely used to model phenomena in the natural sciences, and
serve as the basis for many computer simulations of these phenomena. Examples include population
genetics and the kinetic theory of ideal gases. Less classically, they also provide an appropriate
framework for the study of genetic algorithms for combinatorial optimization. In contrast to linear

systems, which are well understood, there is little general theory available for the quantitative
analysis of quadratic systems.

In this talk, we present several fundamental properties of the large class of symmetric quadratic
systems acting on populations over a fixed set of types. We go on to give a complete analysis of
one particular system, defined on populations over the set of matchings in a tree. In particular,
it will turn out that convergence to the limit in this system requires only polynomial time. This
demonstrates that such systems, though non—linear, are sometimes amenable to analysis.

ARNOLD SCHONHAGE

Power Sums mod p and a generalized Padé Approximation
Problem
Over fields of characteristic zero parallel computation of matrix inverse A~! or det4A = o, (in the
eigenvalues o; of a) is easily done by computing s; = tr(A7) for 1 < j < n and then using Newton
identities. Here this approach is adopted to fields of characteristic p < n. One computes some extra
power sums s; for j € J(p, n) = first n elements of IN \ pIN; from these sufficiently many coefficients
Gk i 1N

ar + ag4pz + ak+2p22 + .-

I+apz+agz2+---

0 3
=) qidt (1<k<p-1)
1=0

are obtained; then the coefficients of the characteristic polynomial f(t) = 1+ a1t +ast® + - - - 4 a,t"
are determined by solving this Padé approximation problem.
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LESLIE VALIANT

Models in Parallel Computation

Two aspects of the bulk-synchonous parallel (BSP) models of computation are described. First
it is argued that this is an appropriate pragmatic model for expressing the parallel complexity of
algorithms in a machine-independant manner. For problems such as sorting and Gauss-Jordan
elimination, such transportable algorithms can be developed that are efficient to within a factor
of 1 (asyptotically as the problem size increases), when compared with a corresponding sequential
algorithm, for wide ranges of the parameters of the model. (Joint work with A. Gerbessiotis)
Second, an algorithm for performing combining for arbitrary concurrent access patterns is described.
The algorithm requires no combining within the router. It recirculates the requests through the
router a small number, m, of times and performs the neccessary combining at the processor nodes.
For any € > 0, if there are at most p® requests from each of the p rodes, and if the requests are
to an approximately hashed address space, then the algorithm takes time (1 + o(1))mgp® where
m =1+ |¢7!] and g is time per message is charged. This i#a factor of about m more than would
be required on this model for access patterns requiring no combining.

BRIGITTE VALLEE
On the average—case time complexity of the three algorithms:

Euclid, Gauss, LLL

The aim of these algorithms is to build short bases for integer lattices; when dimension 7 is increasing,
this is, first, the Euclid algorithm (n = 1), then the Gauss algorithm (n = 2), and finally the LLL
algorithm (n > 3). We consider here the number Ly of iterations of these algorithms on integer
inputs less than M. The average number E(Lys) of iterations is a O(log M) for the Euclid algorithm
[Heilbronn, Dixon, 1980], it is asymptotically constant for the Gauss algorithm [Vallée, Flajolet, 90].
It was shown [Daudé, Vallée, 91] that, for the LLL algorithm in n dimensions, the expectation
E(Lpr) is upper-bounded by O(n?logn). We present here a variant of the LLL algorithm, called
the Gram algorithm. This variant is very close to the original one, and we can show, under a very
natural hypothesis, that the expectation E(Lys) is bounded by O(n).

UMESH VAZIRANI
Quantum Complexity Theory

Joint work with ETHAN BERNSTEIN

In its modern form, the Church-Turing thesis asserts that any reasonable (i.e. physically realizable)
computing device can be simulated with at most a polynomial slowdown by a probabilistic Turing
Machine. About a decade ago, Feynman pointed out that no straightforward simulation of a quantum
physical system appeared possible without an exponential slowdown. A precise model of a quantum
physical computer was formulated by Deutsch. His ‘quantum Turing Machine’ is the quantum
mechanical analog of a probabilistic Turing Machine.

Our first result is the existence of a universal quantum TM. The first difficulty in designing a universal
quantum TM is that even though a quantum TM is a finitely specified by its state transition diagram,
1t is a valid quantum TM only if it is time-reversible, or equivalently the corresponding time evolution
operator (which is an infinite object) is unitary. We start by giving a completely local criterion for
checking whether a quantum TM is well formed. The second interesting feature that distinguishes
the construction of a universal quantum TM from the classical case is the conflicting requirement to
preserve both the reversibility and the quantum interference. In full generality, on any given input a
quantum TM produces a random sample from a probability distribution. We say that quantum TM
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T simulates T’ with accuracy ¢, if on every input x T’ outputs a sample from a distribution which
is within total variation distance ¢ of the corresponding distribution for T. We prove that there is a
universal quantum TM, which takes as input the description of a quantum TM T, and input x, and
outputs an e approximation to T(x). The slowdown is polynomial in 1/e.

Our second result explores the computational power of the quantum Turing machine. Given any
boolean function on n bits (specified by a program), we show how to sample from the Fourier
spectrum of the function in polynomial time on a quantum computer. This problem is not known
to be polynomially solvable on a classical computer. By specifying the function by an oracle, and
building on the sampling problem using recursion, we show that there is an oracle relative to which
quantum polyomial time is not contained in two-sided error o(n!'°6") time. This result gives the first
evidence that quantum TMs might be more powerful than classical probabilistic TMs. A more careful
analysis shows that relative to the same oracle, quantum polynomial time is not even contained in
one round Arthur-Merlin in which the verifier has o(n'°8") time.

INGO WEGENER

Graph Driven BDD’s — A New Data Structure for Boolean
Functions

Joint work with DETLEF SIELING

(Ordered) binary decision diagrams (OBDD’s) are used as data structure for Boolean functions in
the logical synthesis process, for verification and test pattern generation, and as part of CAD tools.
For several important functions like arithmetical and logical units with quite different functions, the
indirect storage access function or the hidden weighted bit function OBDD’s have exponential size
for any ordering of the variables. Since an ordering of the variables may be stored as a list, ordered
binary decision diagrams may be called also list driven BDD’s. Two new generalized models of graph
driven BDD’s are presented. The above mentioned and many other functions can be represented in
small polynomial size in this model and the usual operations on OBDD’s can be performed efficiently
also for graph driven BDD'’s.

Avi WIGDERSON
Undirected Connectivity in O(log'®n) Space

Joint work with NoaAM NISAN AND ENDRE SZEMEREDI

We present a deterministic algorithm for the connectivity problem on undirected graphs that runs
in O(log'*® n) space. Thus, the recursive doubling technique of Savich which requres O(log® n) space
is not optimal for this problem.

Berichterstatter: MICHAEL KAIB
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16.00-16.30 LESLIE VALIANT Models in Parallel Computation
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