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Preface

Indistinguishable things are identical.!

G.W. Leibniz (1646-1714)

This primer to the theory of pseudorandomness is based on a fresh view at the
question of randomness, which has been taken by complexity theory. Underlying
this view is the postulate that a distribution is random (or rather pseudorandom)
if it cannot be told apart from the uniform distribution by any efficient procedure.
Thus, (pseudo)randomness is not an inherent property of an object, but is rather
subjective to the observer.

At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources of
randomness) is irrelevant. What matters is how the world looks to us and to various
computationally bounded devices. That is, if some phenomenon looks random then
we may just treat it as if it were random. Likewise, if we can generate sequences
that cannot be told apart from the uniform distribution by any efficient procedure,
then we can use these sequences in any efficient randomized application instead of
the ideal coin tosses that are postulated in the design of this application.

The pivot of the foregoing approach is the notion of computational indistin-
guishability, which refers to pairs of distributions that cannot be told apart by
efficient procedures. The most fundamental incarnation of this notion associates
efficient procedures with polynomial-time algorithms, but other incarnations that
restrict attention to other classes of distinguishing procedures also lead to impor-
tant insights. Likewise, the effective generation of pseudorandom objects, which
is of major concern, is actually a general paradigm with numerous useful incar-
nations (which differ in the computational complexity limitations imposed on the
generation process).

Pseudorandom generators are efficient deterministic procedures that stretch
short random seeds into longer pseudorandom sequences. Thus, a generic formula-
tion of pseudorandom generators consists of specifying three fundamental aspects —
the stretch measure of the generators; the class of distinguishers that the generators

1This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples
to this principle are conceivable but will not occur in real life because God is much too benev-
olent. We thus believe that he would have agreed to the theme of this text, which asserts that
indistinguishable things should be considered as if they were identical.



are supposed to fool (i.e., the algorithms with respect to which the computational
indistinguishability requirement should hold); and the resources that the generators
are allowed to use (i.e., their own computational complezity).

The archetypical case of pseudorandom generators refers to efficient generators
that fool any feasible procedure; that is, the potential distinguisher is any proba-
bilistic polynomial-time algorithm, which may be more complex than the generator
itself (which, in turn, has time-complexity bounded by a fixed polynomial). These
generators are called general-purpose, because their output can be safely used in
any efficient application. Such (general-purpose) pseudorandom generators exist if
and only if one-way functions exist.

In contrast to such (general-purpose) pseudorandom generators, for the pur-
pose of derandomization a relaxed definition of pseudorandom generators suffices.
In particular, for such a purpose, one may use pseudorandom generators that are
somewhat more complex than the potential distinguisher (which represents a ran-
domized algorithm to be derandomized). Following this approach, adequate pseu-
dorandom generators yield a full derandomization of BPP (i.e., BPP = P), and
such generators can be constructed based on the assumption that some problems
in £ have no sub-exponential size circuits.

It is also beneficial to consider pseudorandom generators that fool space-bounded
distinguishers and generators that exhibit some limited random behavior (e.g., out-
putting a pair-wise independent or a small-bias sequence). Such (special-purpose)
pseudorandom generators can be constructed without relying on any computational
complexity assumption.

Note: The study of pseudorandom generators is part of complexity theory (cf,
e.g., [19]); in fact, the current primer is an abbreviated (and somewhat revised)
version of [19, Chap. 8].



Chapter 1

Introduction

The “question of randomness” has been puzzling thinkers for ages. Aspects of this
question range from philosophical doubts regarding the existence of randomness
(in the world) and reflections on the meaning of randomness (in our thinking) to
technical questions regarding the measuring of randomness. Among many other
things, the second half of the 20th century has witnessed the development of three
theories of randomness, which address different aspects of the foregoing question.

The first theory (cf., [13]), initiated by Shannon [51], views randomness as rep-
resenting lack of information, which in turn is modeled by a probability distribution
on the possible values of the missing data. Indeed, Shannon’s Information Theory
is rooted in probability theory. Information Theory is focused at distributions that
are not perfectly random (i.e., encode information in a redundant manner), and
characterizes perfect randomness as the extreme case in which the information con-
tents is maximized (i.e., in this case there is no redundancy at all). Thus, perfect
randomness is associated with a unique distribution — the uniform one. In par-
ticular, by definition, one cannot (deterministically) generate such perfect random
strings from shorter random seeds.

The second theory (cf., [33, 34]), initiated by Solomonov [52], Kolmogorov [30],
and Chaitin [11], views randomness as representing lack of structure, which in turn
is reflected in the length of the most succinct (effective) description of the object.
The notion of a succinct and effective description refers to a process that trans-
forms the succinct description to an explicit one. Indeed, this theory of random-
ness is rooted in computability theory and specifically in the notion of a universal
language (equiv., universal machine or computing device). It measures the ran-
domness (or complexity) of objects in terms of the shortest program (for a fixed
universal machine) that generates the object.! Like Shannon’s theory, Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme case.
However, following Kolmogorov’s approach one may say that a single object, rather
than a distribution over objects, is perfectly random. Still, by definition, one can-
not (deterministically) generate strings of high Kolmogorov Complexity from short

1We mention that Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Com-
plexity is uncomputable).



random seeds.

1.1 The Third Theory of Randomness

The third theory, which is the focus of the current primer, views randomness as
an effect on an observer and thus as being relative to the observer’s abilities (of
analysis). The observer’s abilities are captured by its computational abilities (i.e.,
the complexity of the processes that the observer may apply), and hence this the-
ory of randomness is rooted in complexity theory. This theory of randomness is
explicitly aimed at providing a notion of randomness that, unlike the previous two
notions, allows for an efficient (and deterministic) generation of random strings
from shorter random seeds. The heart of this theory is the suggestion to view ob-
jects as equal if they cannot be told apart by any efficient procedure. Consequently,
a distribution that cannot be efficiently distinguished from the uniform distribution
will be considered random (or rather called pseudorandom). Thus, randomness is
not an “inherent” property of objects (or distributions) but is rather relative to
an observer (and its computational abilities). To illustrate this perspective, let us
consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them, Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by
the knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on
the motion. Thus we believe that, also in this case, Bob wins with
probability 1/2.

The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate
information on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly con-
nected to a powerful computer programmed to solve the motion equa-
tions and output a prediction. It is conceivable that in such a case Bob
can substantially improve his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. At the extreme, even events that are fully
determined by public information may be perceived as random events by an ob-
server that lacks the relevant information and/or the ability to process it. Our



focus will be on the lack of sufficient processing power, and not on the lack of suffi-
cient information. The lack of sufficient processing power may be due either to the
formidable amount of computation required (for analyzing the event in question)
or to the fact that the observer happens to be very limited.

A natural notion of pseudorandomness arises — a distribution is pseudorandom
if no efficient procedure can distinguish it from the uniform distribution, where ef-
ficient procedures are associated with (probabilistic) polynomial-time algorithms.
This specific notion of pseudorandomness is indeed the most fundamental one, and
much of this text is focused on it. Weaker notions of pseudorandomness arise as
well — they refer to indistinguishability by weaker procedures such as space-bounded
algorithms, constant-depth circuits, etc. Stretching this approach even further one
may consider algorithms that are designed on purpose so not to distinguish even
weaker forms of “pseudorandom” sequences from random ones (where such algo-
rithms arise naturally when trying to convert some natural randomized algorithm
into deterministic ones; see Chapter 5).

The foregoing discussion has focused at one aspect of the pseudorandomness
question — the resources or type of the observer (or potential distinguisher). An-
other important aspect is whether such pseudorandom sequences can be generated
from much shorter ones, and at what cost (or complexity). A natural approach
requires the generation process to be efficient, and furthermore to be fixed be-
fore the specific observer is determined. Coupled with the aforementioned strong
notion of pseudorandomness, this yields the archetypical notion of pseudorandom
generators — those operating in (fixed) polynomial-time and producing sequences
that are indistinguishable from uniform ones by any polynomial-time observer. In
particular, this means that the distinguisher is allowed more resources than the
generator. Such (general-purpose) pseudorandom generators (discussed in Chap-
ter 2) allow to decrease the randomness complexity of any efficient application,
and are thus of great relevance to randomized algorithms and cryptography. The
term general-purpose is meant to emphasize the fact that the same generator is
good for all efficient applications, including those that consume more resources
than the generator itself.

Although general-purpose pseudorandom generators are very appealing, there
are important reasons for considering also the opposite relation between the com-
plexities of the generation and distinguishing tasks; that is, allowing the pseudo-
random generator to use more resources (e.g., time or space) than the observer it
tries to fool. This alternative is natural in the context of derandomization (i.e.,
converting randomized algorithms to deterministic ones), where the crucial step is
replacing the random input of an algorithm by a pseudorandom input, which in turn
can be generated based on a much shorter random seed. In particular, when de-
randomizing a probabilistic polynomial-time algorithm, the observer (to be fooled
by the generator) is a fixed algorithm. In this case employing a more complex
generator merely means that the complexity of the derived deterministic algorithm
is dominated by the complexity of the generator (rather than by the complexity of
the original randomized algorithm). Needless to say, allowing the generator to use
more resources than the observer that it tries to fool makes the task of designing



pseudorandom generators potentially easier, and enables derandomization results
that are not known when using general-purpose pseudorandom generators. The
usefulness of this approach is demonstrated in Chapters 3 through 5.

We note that the goal of all types of pseudorandom generators is to allow the
generation of “sufficiently random” sequences based on much shorter random seeds.
Thus, pseudorandom generators offer significant saving in the randomness complex-
ity of various applications (and in some cases eliminating randomness altogether).
Saving on randomness is valuable because many applications are severely limited in
their ability to generate or obtain truly random bits. Furthermore, typically, gener-
ating truly random bits is significantly more expensive than standard computation
steps. Thus, randomness is a computational resource that should be considered on
top of time complexity (analogously to the consideration of space complexity).

1.2 Organization

We start by presenting some standard conventions (see Section 1.3). Next, in
Section 1.4, we present the general paradigm underlying the various notions of
pseudorandom generators. The archetypical case of general-purpose pseudoran-
dom generators is presented in Chapter 2. We then turn to alternative notions
of pseudorandom generators: generators that suffice for the derandomization of
complexity classes such as BPP are discussed in Chapter 3; pseudorandom gen-
erators in the domain of space-bounded computations are discussed in Chapter 4;
and special-purpose generators are discussed in Chapter 5.

The text is organized to facilitate the possibility of focusing on the notion of
general-purpose pseudorandom generators (presented in Chapter 2). This notion
is most relevant to computer science at large. Furthermore, the technical details
presented in Chapter 2 are relatively simpler than those presented in Chapters 3
and 4.

The current primer is an abbreviated (and somewhat revised) version of [19,
Chap. 8]. Additional connections between randomness and computation are dis-
cussed in other chapters of [19].

Preliminaries. We assume a basic familiarity with elementary probability theory
and randomized algorithms (see, e.g., [38]). In particular, standard conventions
regarding random variables (presented next) will be extensively used.

1.3 Standard Conventions

Throughout the entire text we refer only to discrete probability distributions.
Specifically, the underlying probability space consists of the set of all strings of a
certain length ¢, taken with uniform probability distribution. That is, the sample
space is the set of all ¢-bit long strings, and each such string is assigned proba-
bility measure 2. Traditionally, random variables are defined as functions from
the sample space to the reals. Abusing the traditional terminology, we use the



term random variable also when referring to functions mapping the sample space
into the set of binary strings. We often do not specify the probability space, but
rather talk directly about random variables. For example, we may say that X is a
random variable assigned values in the set of all strings such that Pr[X =00] = 1
and Pr[X =111] = 2. (Such a random variable may be defined over the sample
space {0,1}? such that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One
important case of a random variable is the output of a randomized process (e.g., a
probabilistic polynomial-time algorithm).

All our probabilistic statements refer to random variables that are defined be-
forehand. Typically, we may write Pr[f(X) = 1], where X is a random variable
defined beforehand (and f is a function). An important convention is that all oc-
currences of the same symbol in a probabilistic statement refer to the same (unique)
random variable. Hence, if B(:,-) is a Boolean expression depending on two vari-
ables, and X is a random variable then Pr[B(X, X)| denotes the probability that
B(x, z) holds when z is chosen with probability Pr[X =z]. For example, for every
random variable X, we have Pr[X = X] = 1. We stress that if we wish to discuss the
probability that B(xz,y) holds when z and y are chosen independently with identi-
cal probability distribution, then we will define two independent random variables
each with the same probability distribution. Hence, if X and Y are two indepen-
dent random variables then Pr[B(X,Y")] denotes the probability that B(x,y) holds
when the pair (z,y) is chosen with probability Pr[X =z] - Pr[Y =y]. For example,

for every two independent random variables, X and Y, we have Pr[X =Y] = 1
only if both X and Y are trivial (i.e., assign the entire probability mass to a single
string).

Throughout the entire text, U,, denotes a random variable uniformly distributed
over the set of all strings of length n. Namely, Pr[U,, =a] equals 27" if « € {0,1}"
and equals 0 otherwise. We often refer to the distribution of U, as the uniform
distribution (neglecting to qualify that it is uniform over {0,1}"). In addition, we
occasionally use random variables (arbitrarily) distributed over {0,1}" or {0, 1}¢(™),
for some function ¢:N—N. Such random variables are typically denoted by X,,,
Y., Zn, etc. We stress that in some cases X, is distributed over {0, 1}", whereas in
other cases it is distributed over {0, 1}*(""), for some function £ (which is typically a
polynomial). We often talk about probability ensembles, which are infinite sequence
of random variables {X,,},cn such that each X, ranges over strings of length
bounded by a polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between
the random variables X and Y is defined as
1
3 D IPHX = o] = PrlY = ]| = max{Pr[X € ] - Pry € S]}. (1.1)
We say that X is d-close (resp., é-far) to Y if the statistical distance between them
is at most (resp., at least) .



1.4 The General Paradigm

We advocate a unified view of various notions of pseudorandom generators. That
is, we view these notions as incarnations of a general abstract paradigm, to be pre-
sented in this section. A reader who is interested only in one of these incarnations,
may still use this section as a general motivation towards the specific definitions
used later. On the other hand, some readers may prefer reading this section after
studying one of the specific incarnations.

Figure 1.1: Pseudorandom generators — an illustration.

1.4.1 Three fundamental aspects

A generic formulation of pseudorandom generators consists of specifying three fun-
damental aspects — the stretch measure of the generators; the class of distinguishers
that the generators are supposed to fool (i.e., the algorithms with respect to which
the computational indistinguishability requirement should hold); and the resources
that the generators are allowed to use (i.e., their own computational complezity).
Let us elaborate.

Stretch function: A necessary requirement from any notion of a pseudorandom
generator is that the generator is a deterministic algorithm that stretches short
strings, called seeds, into longer output sequences.? Specifically, this algorithm
stretches k-bit long seeds into £(k)-bit long outputs, where ¢(k) > k. The function
¢:N — N is called the stretch measure (or stretch function) of the generator. In
some settings the specific stretch measure is immaterial (e.g., see Section 2.4).

Computational Indistinguishability: A necessary requirement from any no-
tion of a pseudorandom generator is that the generator “fools” some non-trivial
algorithms. That is, it is required that any algorithm taken from a predetermined
class of interest cannot distinguish the output produced by the generator (when the
generator is fed with a uniformly chosen seed) from a uniformly chosen sequence.

2Indeed, the seed represents the randomness that is used in the generation of the output
sequences; that is, the randomized generation process is decoupled into a deterministic algorithm
and a random seed. This decoupling facilitates the study of such processes.



Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-time
algorithms) and a class F of (threshold) functions (e.g., reciprocals of positive poly-
nomials), and require that the generator G satisfies the following: For any D € D,
any f € F, and for all sufficiently large k’s it holds that

|PriD(G(Uy)) = 1] = PrD(Usry) = 1| < f(k), (1.2)

where U,, denotes the uniform distribution over {0, 1}", and the probability is taken
over Uy, (resp., Uyy)) as well as over the coin tosses of algorithm D in case it is
probabilistic. The reader may think of such a distinguisher, D, as of an observer
that tries to tell whether the “tested string” is a random output of the generator
(i.e., distributed as G(Uy)) or is a truly random string (i.e., distributed as Uyy)).
The condition in Eq. (1.2) requires that D cannot make a meaningful decision;
that is, ignoring a negligible difference (represented by f(k)), D’s verdict is the
same in both cases.? The archetypical choice is that D is the set of all probabilistic
polynomial-time algorithms, and F is the set of all functions that are the reciprocal
of some positive polynomial.

Complexity of Generation: This aspect refers to the complexity of the gen-
erator itself, when viewed as an algorithm. The archetypical choice is that the
generator has to work in polynomial-time (i.e., make a number of steps that is
polynomial in the length of its input — the seed). Other choices will be discussed
as well. We note that placing no computational requirements on the generator
(or, alternatively, imposing very mild requirements such as upper-bounding the
running-time by a double-exponential function), yields “generators” that can fool
any subexponential-size circuit family.

1.4.2 Notational conventions

We will consistently use k£ for denoting the length of the seed of a pseudorandom
generator, and ¢(k) for denoting the length of the corresponding output. In some
cases, this makes our presentation a little more cumbersome (since a more natural
presentation may specify some other parameters and let the seed-length be a func-
tion of the latter). However, our choice has the advantage of focusing attention on
the fundamental parameter of pseudorandom generation process — the length of the
random seed. We note that whenever a pseudorandom generator is used to “de-
randomize” an algorithm, n will denote the length of the input to this algorithm,
and k will be selected as a function of n.

3The class of threshold functions F should be viewed as determining the class of noticeable
probabilities (as a function of k). Thus, we require certain functions (i.e., those presented at the
Lh.s of Eq. (1.2)) to be smaller than any noticeable function on all but finitely many integers. We
call the former functions negligible. Note that a function may be neither noticeable nor negligible
(e.g., it may be smaller than any noticeable function on infinitely many values and yet larger than
some noticeable function on infinitely many other values).

4This fact can be proved via the probabilistic method; see [19, Exer. 8.1].



1.4.3 Some instantiations of the general paradigm

Two important instantiations of the notion of pseudorandom generators relate to
polynomial-time distinguishers.

1. General-purpose pseudorandom generators correspond to the case that the
generator itself runs in polynomial-time and needs to withstand any prob-
abilistic polynomial-time distinguisher, including distinguishers that run for
more time than the generator. Thus, the same generator may be used safely
in any efficient application. (This notion is treated in Chapter 2.)

2. In contrast, pseudorandom generators intended for derandomization may run
more time than the distinguisher, which is viewed as a fixed circuit having
size that is upper-bounded by a fixed polynomial. (This notion is treated in
Chapter 3.)

In addition, the general paradigm may be instantiated by focusing on the space-
complexity of the potential distinguishers (and the generator), rather than on their
time-complexity. Furthermore, one may also consider distinguishers that merely
reflect probabilistic properties such as pair-wise independence, small-bias, and hit-
ting frequency.

10



Chapter 2

General-Purpose
Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is fre-
quently used in the design of sequential, parallel and distributed algorithms, and
it is of course central to cryptography. Whereas it is convenient to design such al-
gorithms making free use of randomness, it is also desirable to minimize the usage
of randomness in real implementations. Thus, general-purpose pseudorandom gen-
erators (as defined next) are a key ingredient in an “algorithmic tool-box” — they
provide an automatic compiler of programs written with free usage of randomness
into programs that make an economical use of randomness.

Organization of this chapter. Since this is a relatively long chapter, a short
road-map seems in place. In Section 2.1 we provide the basic definition of general-
purpose pseudorandom generators, and in Section 2.2 we describe their archetypical
application (which was eluded to in the former paragraph). In Section 2.3 we pro-
vide a wider perspective on the notion of computational indistinguishability that
underlies the basic definition, and in Section 2.4 we justify the little concern (shown
in Section 2.1) regarding the specific stretch function. In Section 2.5 we address
the existence of general-purpose pseudorandom generators. In Section 2.6 we mo-
tivate and discuss a non-uniform version of computational indistinguishability. We
conclude by reviewing other variants and reflecting on various conceptual aspects
of the notions discussed in this chapter (see Sections 2.7 and 2.8, resp.).

2.1 The Basic Definition

Loosely speaking, general-purpose pseudorandom generators are efficient determin-
istic programs that expand short randomly selected seeds into longer pseudorandom
bit sequences, where the latter are defined as computationally indistinguishable
from truly random sequences by any efficient algorithm. Identifying efficiency with
polynomial-time operation, this means that the generator (being a fixed algorithm)

11



works within some fized polynomial-time, whereas the distinguisher may be any
algorithm that runs in polynomial-time. Thus, the distinguisher is potentially more
complex than the generator; for example, the distinguisher may run in time that
is cubic in the running-time of the generator. Furthermore, to facilitate the de-
velopment of this theory, we allow the distinguisher to be probabilistic (whereas
the generator remains deterministic as stated previously). We require that such
distinguishers cannot tell the output of the generator from a truly random string of
similar length, or rather that the difference that such distinguishers may detect (or
“sense”) is negligible. Here a negligible function is a function that vanishes faster
than the reciprocal of any positive polynomial.!

Definition 2.1 (general-purpose pseudorandom generator): A deterministic polynomial-
time algorithm G is called a pseudorandom generator if there exists a stretch func-

tion, £ : N—N (satisfying ¢(k) > k for all k), such that for any probabilistic
polynomial-time algorithm D, for any positive polynomial p, and for all sufficiently

large k’s it holds that

L
p(k)

where Uy, denotes the uniform distribution over {0,1}" and the probability is taken
over Uy, (resp., Uir)) as well as over the internal coin tosses of D.

|PrID(G(Uk)) = 1] = PriD(Uery) = 1]| < (2.1)

Thus, Definition 2.1 is derived from the generic framework (presented in Sec-
tion 1.4) by taking the class of distinguishers to be the set of all probabilistic
polynomial-time algorithms, and taking the class of (noticeable) threshold functions
to be the set of all functions that are the reciprocals of some positive polynomial.?
Indeed, the principles underlying Definition 2.1 were discussed in Section 1.4 (and
will be further discussed in Section 2.3).

We note that Definition 2.1 does not make any requirement regarding the stretch
function ¢ : N— N, except for the generic requirement that ¢(k) > k for all k.
Needless to say, the larger £ is, the more useful the pseudorandom generator is. Of
course, ¢ is upper-bounded by the running-time of the generator (and hence by a
polynomial). In Section 2.4 we show that any pseudorandom generator (even one
having minimal stretch ¢(k) = k+ 1) can be used for constructing a pseudorandom
generator having any desired (polynomial) stretch function. But before doing so, we
rigorously discuss the “saving in randomness” offered by pseudorandom generators,
and provide a wider perspective on the notion of computational indistinguishability
that underlies Definition 2.1.

1Definition 2.1 requires that the functions representing the distinguishing gap of certain algo-
rithms should be smaller than the reciprocal of any positive polynomial for all but finitely many
k’s, and the former functions are called negligible. The notion of negligible probability is ro-
bust in the sense that any event that occurs with negligible probability will occur with negligible
probability also when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

2The latter choice is naturally coupled with the association of efficient computation with
polynomial-time algorithms: An event that occurs with noticeable probability occurs almost
always when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

12



2.2 The Archetypical Application

We note that “pseudo-random number generators” appeared with the first com-
puters, and have been used ever since for generating random choices (or samples)
for various applications. However, typical implementations use generators that are
not pseudorandom according to Definition 2.1. Instead, at best, these generators
are shown to pass some ad-hoc statistical test (cf., [29]). We warn that the fact
that a “pseudo-random number generator” passes some statistical tests, does not
mean that it will pass a new test and that it will be good for a future (untested)
application. Needless to say, the approach of subjecting the generator to some
ad-hoc tests fails to provide general results of the form “for all practical purposes
using the output of the generator is as good as using truly unbiased coin tosses.” In
contrast, the approach encompassed in Definition 2.1 aims at such generality, and
in fact is tailored to obtain it: The notion of computational indistinguishability,
which underlines Definition 2.1, covers all possible efficient applications and guar-
antees that for all of them pseudorandom sequences are as good as truly random
ones. Indeed, any efficient randomized algorithm maintains its performance when
its internal coin tosses are substituted by a sequence generated by a pseudorandom
generator. This substitution is spell-out next.

Construction 2.2 (typical application of pseudorandom generators): Let G be a
pseudorandom generator with stretch function £:N—N. Let A be a probabilistic
polynomial-time algorithm, and p:N—N denote its randomness complexity. De-
note by A(x,r) the output of A on input = and coin tosses sequence r € {0,1}°(=)
Consider the following randomized algorithm, denoted Ag:

On input x, set k = k(|z|) to be the smallest integer such that £(k) >
p(|z|), uniformly select s € {0,1}*, and output A(x,r), where r is the

p(|z])-bit long prefiz of G(s).

That is, Ag(z,s) = A(z,G'(s)), for |s| = k(|z|) = argmin,{£(i) > p(|z|)}, where
G'(s) is the p(|z|)-bit long prefiz of G(s).

Thus, using Ag instead of A, the randomness complexity is reduced from p to
¢~1op, while (as we show next) it is infeasible to find inputs (i.e., #’s) on which the
noticeable behavior of Ag is different from the one of A. For example, if £(k) = k?,
then the randomness complexity is reduced from p to /p. We stress that the
pseudorandom generator G is universal; that is, it can be applied to reduce the
randomness complexity of any probabilistic polynomial-time algorithm A.

Proposition 2.3 Let A, p and G be as in Construction 2.2, and suppose that
p: N — N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,
a finder F' and a tester T', every positive polynomial p and all sufficiently long n’s

me{z@;}ﬂ PrlF(1") = 2] - | Aar(z)| < o (2.2)
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where Aar(z) < PrT(z, A(z,Uyap)) = 1] — PrT(z, Ag(z, Ur(ep)) = 1], and
the probabilities are taken over the Uy, ’s as well as over the internal coin tosses of
the algorithms F' and T'.

Algorithm F' represents a potential attempt to find an input x on which the output
of A¢g is distinguishable from the output of A. This “attempt” may be benign
as in the case that a user employs algorithm Ag on inputs that are generated
by some probabilistic polynomial-time application. However, the attempt may
also be adversarial as in the case that a user employs algorithm Ag on inputs
that are provided by a potentially malicious party. The potential tester, denoted
T, represents the potential use of the output of algorithm Ag, and captures the

requirement that this output be as good as a corresponding output produced by A.

Thus, T is given x as well as the corresponding output produced either by Ag(z) def

A(x, Ug(ja))) or by A(z) = A(x,U,())), and it is required that 7" cannot tell the
difference. In the case that A is a probabilistic polynomial-time decision procedure,
this means that it is infeasible to find an = on which Ag decides incorrectly (i.e.,
differently than A). In the case that A is a search procedure for some NP-relation,
it is infeasible to find an x on which Ag outputs a wrong solution.

Proof Sketch: The proposition is proven by showing that any triple (A, F,T)
violating the claim can be converted into an algorithm D that distinguishes the
output of G from the uniform distribution, in contradiction to the hypothesis. The
key observation is that for every x € {0,1}"™ it holds that

Ay r(z) = Pr[T(z, A(z, Uypy)) =1] — Pr[T(z, A(z, G'(Ukmy))) =1], (2.3)

where G’(s) is the p(n)-bit long prefix of G(s). Thus, a method for finding a string
x such that |A 4 ()] is large yields a way of distinguishing Uy(x(n)) from G(Uy(n));
that is, given a sample r € {0, 1}**(") and using such a string = € {0,1}", the
distinguisher outputs T'(z, A(z,7’)), where ' is the p(n)-bit long prefix of r. Indeed,
we shall show that the violation of Eq. (2.2), which refers to E,._p(in)[|Aa,r(2)|],
yields a violation of the hypothesis that G is a pseudorandom generator (by finding
an adequate string x and using it). This intuitive argument requires a slightly
careful implementation, which is provided next.

As a warm-up, consider the following algorithm D. On input r (taken from
either Uy(x(n)) or G(Uk(n))), algorithm D first obtains x < F(1"), where n can be
obtained easily from |r| (because p is 1-1 and 1" — p(n) is computable via A).
Next, D obtains y = A(x,r’), where r’ is the p(|z|)-bit long prefix of r. Finally D
outputs T'(z,y). Note that D is implementable in probabilistic polynomial-time,
and that

def
D(Uf(k(n))) = T(XH,A(XH,Up(n))), where Xn = F(l")

D(G(Ukm)) = T(Xn, A(Xn, G (Ur(my))), where X,, & F(17).

Using Eq. (2.3), it follows that Pr[D(Uyk(ny)) = 1] — Pr[D(G(Ugm))) = 1] equals
E[A4 r(F(1™))], which implies that E[A4 7(F(1™))] must be negligible (because
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otherwise we derive a contradiction to the hypothesis that G is a pseudoran-
dom generator). This yields a weaker version of the proposition asserting that
E[A4 7(F(1™))] is negligible (rather than that E[|A 4 »(F(1™))]] is negligible).

In order to prove that E[|A4 r(F(17))]] (rather than to E[A4 r(F(17))]) is
negligible, we need to modify D a little. Note that the source of trouble is that
A 4,7 (-) may be positive on some x’s and negative on others, and thus it may be the
case that E[A4 p(F(1™))] is small (due to cancelations) even if E[|A 4 1 (F(1™))]]
is large. This difficulty can be overcome by determining the sign of A (-) on
x = F(1™) and changing the outcome of D accordingly; that is, the modified D
will output T'(z, A(x, ")) if Agr(x) >0and 1 —T(z, A(x,r’)) otherwise. Thus, in
each case, the contribution of z to the distinguishing gap of the modified D will be
|A 4 r(x)]. We further note that if |A 4 7 ()| is small then it does not matter much
whether we act as in the case of Ay r(z) > 0 or in the case of A4 r(z) < 0. Thus,
it suffices to correctly determine the sign of Ay 7(x) in the case that |[A4 ()]
is large, which is certainly a feasible (approximation) task. Details can be found
in [19, Sec. 8.2.2]. O

Conclusion. Although Proposition 2.3 refers to standard probabilistic polynomial-
time algorithms, a similar construction and analysis applied to any efficient ran-
domized process (i.e., any efficient multi-party computation). Any such process
preserves its behavior when replacing its perfect source of randomness (postulated
in its analysis) by a pseudorandom sequence (which may be used in the implemen-
tation). Thus, given a pseudorandom generator with a large stretch function, one
can considerably reduce the randommness complexity of any efficient application.

2.3 Computational Indistinguishability

In this section we spell-out (and study) the definition of computational indistin-
guishability that underlies Definition 2.1.

2.3.1 The general formulation

The (general formulation of the) definition of computational indistinguishability
refers to arbitrary probability ensembles. Here a probability ensemble is an infinite
sequence of random variables {Z,},,cv such that each Z,, ranges over strings of
length that is polynomially related to n (i.e., there exists a polynomial p such that
for every n it holds that |Z,| < p(n) and p(|Z,|) > n). We say that {X,,}, ey and

{Y,}.eN are computationally indistinguishable if for every feasible algorithm A the

difference d4(n) ef |PrlA(X,,) = 1] — Pr[A(Y,,) =1]| is a negligible function in n.

That is:
Definition 2.4 (computational indistinguishability): The probability ensembles

{Xn}tnen and {Y,,},cn are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm D, every positive polynomial p, and all sufficiently
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large n,

1
p(n)
where the probabilities are taken over the relevant distribution (i.e., either X,, or
Y.) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (2.4), when
viewed as a function of n, is often called the distinguishing gap of D, where {X,,},,cn
and {Y,, } hen are understood from the context.

|Pr[D(X,)=1] — Pr[D(Y,,)=1]| < (2.4)

We can think of D as representing somebody who wishes to distinguish two distri-
butions (based on a given sample drawn from one of the distributions), and think
of the output “1” as representing D’s verdict that the sample was drawn according
to the first distribution. Saying that the two distributions are computationally in-
distinguishable means that if D is a feasible procedure then its verdict is not really
meaningful (because the verdict is almost as often 1 when the sample is drawn from
the first distribution as when the sample is drawn from the second distribution).
We comment that the absolute value in Eq. (2.4) can be omitted without affecting
the definition, and we will often do so without warning.

In Definition 2.1, we required that the probability ensembles {G(Uy)}1en and
{Uk) }en be computationally indistinguishable. Indeed, an important special
case of Definition 2.4 is when one ensemble is uniform, and in such a case we call
the other ensemble pseudorandom.

2.3.2 Relation to statistical closeness

Two probability ensembles, {X,}, e and {Y;, },en, are said to be statistically close
(or statistically indistinguishable) if for every positive polynomial p and all suffi-
cient large n the variation distance between X,, and Y,, is bounded above by 1/p(n).
Clearly, any two probability ensembles that are statistically close are computa-
tionally indistinguishable. Needless to say, this is a trivial case of computational
indistinguishability, which is due to information theoretic reasons. In contrast,
we shall be interested in non-trivial cases (of computational indistinguishability),
which correspond to probability ensembles that are statistically far apart.

Indeed, as claimed in Section 1.4 (see [19, Exer. 8.1]), there exist probability
ensembles that are statistically far apart and yet are computationally indistinguish-
able. However, at least one of the two probability ensembles in this unconditional
existential claim is not polynomial-time constructible.®> We shall be much more
interested in non-trivial cases of computational indistinguishability in which both
ensembles are polynomial-time constructible. An important example is provided by
the definition of pseudorandom generators. As we shall see (in Theorem 2.14), the
existence of one-way functions implies the existence of pseudorandom generators,
which in turn implies the existence of polynomial-time constructible probability
ensembles that are statistically far apart and yet are computationally indistin-
guishable. We mention that this sufficient condition is also necessary (cf., [15]).

3We say that {Z"}neN is polynomial-time constructible if there exists a polynomial-time
algorithm S such that S(1™) and Z,, are identically distributed.
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2.3.3 Indistinguishability by Multiple Samples

The definition of computational indistinguishability (i.e., Definition 2.4) refers to
distinguishers that obtain a single sample from one of the two relevant probability
ensembles (i.e., {X,},en and {Y,},cn). A very natural generalization of Defini-
tion 2.4 refers to distinguishers that obtain several independent samples from such
an ensemble.

Definition 2.5 (indistinguishability by multiple samples): Let s:N— N be polynomially-
bounded. Two probability ensembles, {Xp},en and {Y,},cn, are computationally
indistinguishable by s(-) samples if for every probabilistic polynomial-time algorithm,
D, every positive polynomial p(-), and all sufficiently large n’s

1

‘Pr [D(X,(f),...,XT(f(")))zl} _Pr [D(Y,gl),...,y,gs(")))=1]‘ <o
p\n

where Xf,l) through XSF"D and Y,gl) through Yés(")) are ;‘ndependent random vari-
ables such that each Xff) is identical to X,, and each Yé” is identical to Y,,.

It turns out that, in the most interesting cases, computational indistinguishability
by a single sample implies computational indistinguishability by any polynomial
number of samples. One such case is the case of polynomial-time constructible
ensembles. We say that the ensemble {Z,,}, oy is polynomial-time constructible if
there exists a polynomial-time algorithm S such that S(1™) and Z,, are identically
distributed.

Proposition 2.6 Suppose that X {Xn}tneny andY oo {Yy} nen are both polynomial-
time constructible, and s be a positive polynomial. Then, X and Y are computa-
tionally indistinguishable by a single sample if and only if they are computationally
indistinguishable by s(-) samples.

Clearly, for every polynomial s > 1, computational indistinguishability by s()
samples implies computational indistinguishability by a single sample. We now
prove that, for efficiently constructible ensembles, indistinguishability by a single
sample implies indistinguishability by multiple samples.* The proof provides a
simple demonstration of a central proof technique, known as the hybrid technique,
which is a special case of the so-called reducibility argument (cf, e.g., [17, Sec. 2.3.3]
or [19, Sec. 7.1.2]).

Proof Sketch:® Using the counter-positive, we show that the existence of an ef-
ficient algorithm that distinguishes the ensembles X and Y using several samples,
implies the existence of an efficient algorithm that distinguishes the ensembles X
and Y using a single sample. That is, starting from the distinguishability of s(n)-
long sequences of samples (either drawn all from X, or drawn all from Y,,), we
consider hybrid sequences such that the i*" hybrid consists of i samples of X,, fol-
lowed by s(n)—1 samples of Y;,. Note that the “homogeneous” sequences (which we

4The requirement that both ensembles are polynomial-time constructible is essential; see, [23].
5For more details see [17, Sec. 3.2.3].
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assumed to be distinguishable) are the extreme hybrids (i.e., the first and last hy-
brids). The key observation is that distinguishing the extreme hybrids (towards the
contradiction hypothesis) implies distinguishing neighboring hybrids, which in turn
yields a procedure for distinguishing single samples of the two original distributions
(contradicting the hypothesis that these two distributions are indistinguishable by
a single sample). Details follow.

Suppose, towards the contradiction, that D distinguishes s(n) samples of X,
from s(n) samples of Y,, with a distinguishing gap of §(n). Denoting the ‘"
hybrid by Hi (e, Hi = (X, ., X9, v v,5))) this means that D
distinguishes the extreme hybrids (i.e., H® and Hi™) with gap d(n). It follows
that D distinguishes a random pair of neighboring hybrids (i.e., D distinguishes
Hi from H'tL, for a randomly selected i) with gap at least §(n)/s(n): the reason
being that

Eic{o,...s(m-1y [PrID(H,,) = 1] = Pr[D(H; ) = 1]]

s(n)—1
- ﬁ Z (Pr[D(H,) = 1] = Pr[D(H;) = 1]) (2.5)
=0
- L (p 0y — 1] — Pr sty _ 1) = 9(n)
ey (PrID(HS) = 1] = PrID(H) = 1]) s(n)

The key step in the argument is transforming the distinguishability of neighbor-
ing hybrids into distinguishability of single samples of the original ensembles (thus
deriving a contradiction). Indeed, using D, we obtain a distinguisher D’ of single
samples: Given a single sample, algorithm D’ selects i € {0,...,s(n) — 1} at ran-
dom, generates ¢ samples from the first distribution and s(n) — ¢ — 1 samples from
the second distribution, invokes D with the s(n)-samples sequence obtained when
placing the input sample in location ¢ + 1, and answers whatever D does. That is,
on input z and when selecting the index ¢, algorithm D’ invokes D on a sample
from the distribution (Xfll), o X2y ...,YTSS(”))). Thus, the construction
of D’ relies on the hypothesis that both probability ensembles are polynomial-time
constructible. The analysis of D’ is based on the following two facts:

1. When invoked on an input that is distributed according to X, and selecting
the index i € {0, ..., s(n) — 1}, algorithm D’ behaves like D(H:™!), because
(X, L XX, DLy = gis

2. When invoked on an input that is distributed according to Y;, and selecting
the index i € {0,...,s(n) — 1}, algorithm D’ behaves like D(H}), because
X, LX) Y, v L)y = g

Thus, the distinguishing gap of D’ (between Y,, and X,,) is captured by Eq. (2.5),
and the claim follows. [

The hybrid technique — a digest: The hybrid technique constitutes a special
type of a “reducibility argument” in which the computational indistinguishability
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of complex ensembles is proved using the computational indistinguishability of basic
ensembles. The actual reduction is in the other direction: efficiently distinguishing
the basic ensembles is reduced to efficiently distinguishing the complex ensembles,
and hybrid distributions are used in the reduction in an essential way. The following
three properties of the construction of the hybrids play an important role in the
argument:

1. The complex ensembles collide with the extreme hybrids. This property is
essential because our aim is proving something that relates to the complex
ensembles (i.e., their indistinguishability), while the argument itself refers to
the extreme hybrids.

In the proof of Proposition 2.6 the extreme hybrids (i.e., HfL(n) and H?) collide
with the complex ensembles that represent s(n)-ary sequences of samples of
one of the basic ensembles.

2. The basic ensemble are efficiently mapped to neighboring hybrids. This prop-
erty is essential because our starting hypothesis relates to the basic ensem-
bles (i.e., their indistinguishability), while the argument itself refers directly
to the neighboring hybrids. Thus, we need to translate our knowledge (i.e.,
computational indistinguishability) of the basic ensembles to knowledge (i.e.,
computational indistinguishability) of any pair of neighboring hybrids. Typ-
ically, this is done by efficiently transforming strings in the range of a basic
distribution into strings in the range of a hybrid such that the transforma-
tion maps the first basic distribution to one hybrid and the second basic
distribution to the neighboring hybrid.

In the proof of Proposition 2.6 the basic ensembles (i.e., X, and Y;,) were
efficiently transformed into neighboring hybrids (i.e., H:*! and H}, respec-
tively). Recall that, in this case, the efficiency of this transformation relied
on the hypothesis that both the basic ensembles are polynomial-time con-
structible.

3. The number of hybrids is small (i.e., polynomial). This property is essential
in order to deduce the computational indistinguishability of extreme hybrids
from the computational indistinguishability of each pair of neighboring hy-
brids. Typically, the “distinguishability gap” established in the argument
losses a factor that is proportional to the number of hybrids. This is due to
the fact that the gap between the extreme hybrids is upper-bounded by the
sum of the gaps between neighboring hybrids.

In the proof of Proposition 2.6 the number of hybrids equals s(n) and the
aforementioned loss is reflected in Eq. (2.5).

We remark that in the course of an hybrid argument, a distinguishing algorithm
referring to the complex ensembles is being analyzed and even invoked on arbi-
trary hybrids. The reader may be annoyed of the fact that the algorithm “was
not designed to work on such hybrids” (but rather only on the extreme hybrids).
However, an algorithm is an algorithm: once it exists we can invoke it on inputs of
our choice, and analyze its performance on arbitrary input distributions.
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2.4 Amplifying the stretch function

Recall that the definition of pseudorandom generators (i.e., Definition 2.1) makes
a minimal requirement regarding their stretch; that is, it is only required that
the output of such generators is longer than their input. Needless to say, we seek
pseudorandom generators with a much more significant stretch, firstly because the
stretch determines the saving in randomness obtained via Construction 2.2. It turns

out (see Construction 2.7) that pseudorandom generators of any stretch function

(and in particular of minimal stretch ¢; (k) g+ 1) can be easily converted into

pseudorandom generators of any desired (polynomially bounded) stretch function,
£. On the other hand, since pseudorandom generators are required (by Defini-
tion 2.1) to run in polynomial time, their stretch must be polynomially bounded.

Construction 2.7 Let G1 be a pseudorandom generator with stretch function
l1(k) = k+1, and £ be any polynomially bounded stretch function that is polynomial-
time computable. Let
def
G(s) = 0102+ 0(|s)) (2.6)
where xg = s and x;0; = G1(xi—1), for i =1,...,¢(|s|). That is, o; is the last bit of
G1(xzi—1) and x; is the |s|-bit long prefix of G1(xi—1).

Needless to say, G is polynomial-time computable and has stretch £. An alternative
construction is obtained by iteratively applying G on increasingly longer input
lengths (see [19, Exer. 8.11]).

Proposition 2.8 Let G and G be as in Construction 2.7. Then G constitutes a
pseudorandom generator.

Proof Sketch: The proposition is proven using the hybrid technique, presented
and discussed in Section 2.3. Here (for i = 0,...,¢(k)) we consider the hybrid
distributions Hj. defined by

5 def 1 2
H; = Ui( ) 'gz(k)—i(Ulg ))7

where - denotes the concatenation of strings, g;(z) denotes the j-bit long prefix of

G(z), and Ui(l) and U,52) are independent uniform distributions (over {0,1}% and
{0,1}*, respectively). The extreme hybrids (i.e., HY and H}) correspond to G(Uy,)
and Uy, whereas distinguishability of neighboring hybrids can be worked into
distinguishability of G1(Uy) and Uyy1. Details follow.

Suppose that one could distinguish H} from H;™'. Defining F'(z) (resp., L(z))
as the first |z|—1 bits (resp., last bit) of z, and using g,(s) = L(G1(s))-gj—1(F (G1(s)))
(for j > 1), we have

Hj, = U - LG (U) - g1 (F(GL(U)))
and
Y = U g (U
Ut L(U,gﬂ) - g(e(k)—i)—l(F(Uzg)))-
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Now, incorporating the generation of Ul-(l) and the evaluation of gy)_;—; into the

distinguisher, it follows that we distinguish G4 (U, ,52)) from U, Igi’ in contradiction
to the pseudorandomness of Gy. For further details see [19, Sec. 8.2.4] (or [17,

Sec. 3.3.3]). O

Conclusion. In view of the foregoing, when talking about the mere existence of
pseudorandom generators, in the sense of Definition 2.1, we may ignore the specific
stretch function.

2.5 Constructions

The constructions surveyed in this section “transform” computational difficulty, in
the form of one-way functions, into generators of pseudorandomness. We thus start
by reviewing the definition of one-way functions as well as some related results.

2.5.1 Background: one-way functions

One-way functions are functions that are easy to compute but hard to invert (in
an average-case sense).

Definition 2.9 (one-way functions): A function f:{0,1}*—{0,1}* is called one-
way if the following two conditions hold:

1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. Hard to invert: For every probabilistic polynomial-time algorithm A’, every
positive polynomial p, and all sufficiently large n,

1

Procronyn[A'(f(2),1") € fTH(f(2))] < — (2.7)
p(n)
where the probability is taken uniformly over the possible choices of x €

{0,1}"™ and over the internal coin tosses of algorithm A’.

Algorithm A’ is given the auxiliary input 1™ so as to allow it to run in time poly-
nomial in the length of z, which is important in case f drastically shrinks its input
(e.g., |f(x)] = O(log|z|)). Typically (and, in fact, without loss of generality), the
function f is length preserving, in which case the auxiliary input 1™ is redundant.
Note that A’ is not required to output a specific preimage of f(z); any preimage
(i.e., element in the set f~1(f(z))) will do. (Indeed, in case f is 1-1, the string = is
the only preimage of f(x) under f; but in general there may be other preimages.)
It is required that algorithm A’ fails (to find a preimage) with overwhelming prob-
ability, when the probability is also taken over the input distribution. That is, f
is “typically” hard to invert, not merely hard to invert in some (“rare”) cases.
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On hard-core predicates. Recall that saying that a function f is one-way
means that given a typical y (in the range of f) it is infeasible to find a preimage of
y under f. This does not mean that it is infeasible to find partial information about
the preimage(s) of y under f. Specifically, it may be easy to retrieve half of the bits

of the preimage (e.g., given a one-way function f consider the function f’ defined

by f'(x,r) ef (f(x),r), for every |x| =|r|). We note that hiding partial informa-

tion (about the function’s preimage) plays an important role in the construction
of pseudorandom generators (as well as in other advanced constructs). With this
motivation in mind, we will show that essentially any one-way function hides spe-
cific partial information about its preimage, where this partial information is easy
to compute from the preimage itself. This partial information can be considered
a “hard core” of the difficulty of inverting f. Loosely speaking, a polynomial-time
computable (Boolean) predicate b, is called a hard-core of a function f if no feasible
algorithm, given f(x), can guess b(z) with success probability that is non-negligibly
better than one half.

Definition 2.10 (hard-core predicates): A polynomial-time computable predicate
b:{0,1}* — {0,1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A’, every positive polynomial p(-), and all sufficiently
large n’s . .
!
Precioy [4/(F()=b(a)] < 5 + o

where the probability is taken uniformly over the possible choices of x € {0,1}™ and
over the internal coin tosses of algorithm A'.

Note that for every b : {0,1}* — {0,1} and f : {0,1}* — {0, 1}*, there exist obvious
algorithms that guess b(x) from f(z) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (of any function) then it follows that b is almost unbiased
(i.e., for a uniformly chosen z, the difference |Pr[b(z)=0] — Pr[b(x)=1]| must be a
negligible function in n).

Since b itself is polynomial-time computable, the failure of efficient algorithms to
approximate b(z) from f(z) (with success probability that is non-negligibly higher
than one half) must be due either to an information loss of f (i.e., f not being
one-to-one) or to the difficulty of inverting f. For example, for o € {0,1} and
x' €{0,1}*, the predicate b(ox’) = o is a hard-core of the function f(oz’) L 0g.
Hence, in this case the fact that b is a hard-core of the function f is due to the fact
that f loses information (specifically, the first bit: o). On the other hand, in the
case that f loses no information (i.e., f is one-to-one) a hard-core for f may exist
only if f is hard to invert. In general, the interesting case is when being a hard-core
is a computational phenomenon rather than an information theoretic one (which
is due to “information loss” of f). It turns out that any one-way function has a
modified version that possesses a hard-core predicate.

Theorem 2.11 (a generic hard-core predicate): For any one-way function f, the
inner-product mod 2 of x and r, denoted b(xz,r), is a hard-core of f'(x,r) =

(f(z), 7).
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In other words, Theorem 2.11 asserts that, given f(z) and a random subset S C
[|z]], it is infeasible to guess @®;csx; significantly better than with probability 1/2,
where = z1 - - -z, is uniformly distributed in {0,1}".

2.5.2 A simple construction

Intuitively, the definition of a hard-core predicate implies a potentially interesting
case of computational indistinguishability. Specifically, as will be shown in Proposi-
tion 2.12, if b is a hard-core of the function f, then the ensemble {f(U,) -b(Uy)} en
is computationally indistinguishable from the ensemble {f(U,,) - Ui },en. Further-
more, if f is 1-1 then the foregoing ensembles are statistically far apart, and thus
constitute a non-trivial case of computational indistinguishability. If f is also
polynomial-time computable and length-preserving, then this yields a construction
of a pseudorandom generator.

Proposition 2.12 (A simple construction of pseudorandom generators): Let b be

a hard-core predicate of a polynomial-time computable 1-1 and length-preserving

function f. Then, G(s) def f(s) - b(s) is a pseudorandom generator.

Proof Sketch: Considering a uniformly distributed s € {0,1}", we first note that
the n-bit long prefix of G(s) is uniformly distributed in {0,1}", because f induces
a permutation on the set {0,1}". Hence, the proof boils down to showing that
distinguishing f(s)-b(s) from f(s)-o, where o is a random bit, yields contradiction
to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictable from f(s)).
Intuitively, the reason is that such a hypothetical distinguisher also distinguishes

f(s)-b(s) from f(s)-b(s), where &@ = 1 — o, whereas distinguishing f(s) - b(s) from

f(s)-b(s) yields an algorithm for predicting b(s) based on f(s). For further details
see [19, Sec. 8.2.5.1] (or [17, Sec. 3.3.4]). O

Combining Theorem 2.11, Proposition 2.12 and Construction 2.7, we obtain the
following corollary.

Theorem 2.13 (A sufficient condition for the existence of pseudorandom gener-
ators): If there exists 1-1 and length-preserving one-way function then, for every
polynomially bounded stretch function £, there exists a pseudorandom generator of
stretch €.

Digest. The main part of the proof of Proposition 2.12 is showing that the (next
bit) unpredictability of G(Uy) implies the pseudorandomness of G(Uy). The fact
that (next bit) unpredictability and pseudorandomness are equivalent, in general,
is proven explicitly in the alternative proof of Theorem 2.13 provided next.

2.5.3 An alternative presentation

Let us take a closer look at the pseudorandom generators obtained by combining
Construction 2.7 and Proposition 2.12. For a stretch function ¢: N—N, a 1-1
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one-way function f with a hard-core b, we obtain

G(s) = 0102 Og(|s]) s (2.8)

where 1o = s and x;0; = f(x;_1)b(z;_1) for i = 1,...,4(|s|). Denoting by fi(x)
the value of f iterated i times on z (i.e., fi(z) = f=1(f(x)) and fO(x) = x), we
rewrite Eq. (2.8) as follows

G(s)  b(s) - b(f(s)) - b(f0N=1(s)). (2.9)

The pseudorandomness of G is established in two steps, using the notion of (next
bit) unpredictability. An ensemble {Zj}, <y is called unpredictable if any proba-
bilistic polynomial-time machine obtaining a (random)® prefix of Zj, fails to predict
the next bit of Zj, with probability non-negligibly higher than 1/2. Specifically, we
establish the following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if
it is unpredictable. Recall that an ensemble is pseudorandom if it is compu-
tationally indistinguishable from a uniform distribution (over bit strings of
adequate length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here
we actually need the other direction, which is less obvious. Still, using a
hybrid argument, one can show that (next-bit) unpredictability implies in-
distinguishability from the uniform ensemble. (Hint: The i** hybrid consists
of the i-bit long prefix of the distribution at hand augmented by an adequate
number of totally random bits.)

2. A specific result asserting that the ensemble {G(Uy)},en is unpredictable
from right to left. Equivalently, G'(U,) is polynomial-time unpredictable
(from left to right (as usual)), where G'(s) = b(f*UsD=1(s))---b(f(s)) - b(s)
is the reverse of G(s).

Using the fact that f induces a permutation over {0, 1}", observe that the (j+
1)-bit long prefix of G’(Uy) is distributed identically to b(f7(Uy)) - - - b(f(Ux))-
b(Uy). Thus, an algorithm that predicts the j + 15¢ bit of G'(U,,) based on
the j-bit long prefix of G'(U,,) yields an algorithm that guesses b(U,,) based
on f(Uy).

Needless to say, G is a pseudorandom generator if and only if G’ is a pseudoran-
dom generator. We mention that Eq. (2.9) is often referred to as the Blum-Micali
Construction.”

8For simplicity, we define unpredictability as referring to prefixes of a random length (dis-
tributed uniformly in {0, ..., |Z;|—1}). A more general definition allows the predictor to determine
the length of the prefix that it reads on the fly. This seemingly stronger notion of unpredictability
is actually equivalent to the one we use, because both notions are equivalent to pseudorandomness.

7Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. Indeed, this construction originates in [9].
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2.5.4 A necessary and sufficient condition

Recall that given any one-way 1-1 length-preserving function, we can easily con-
struct a pseudorandom generator. Actually, the 1-1 (and length-preserving) re-
quirement may be dropped, but the currently known construction — for the general
case — is quite complex.

Theorem 2.14 (On the existence of pseudorandom generators): Pseudorandom
generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of
one-way functions, consider a pseudorandom generator G with stretch function
((k) = 2k. For x,y € {0,1}*, define f(z,y) = G(x), and so f is polynomial-time
computable (and length-preserving). It must be that f is one-way, or else one can
distinguish G(Uy) from Uy by trying to invert f and checking the result: inverting
f on the distribution f(Usx) corresponds to operating on the distribution G(Uy),
whereas the probability that Uy, has an inverse under f is negligible.

The interesting direction of the proof of Theorem 2.14 is the construction of
pseudorandom generators based on any one-way function. Since the known proof is
quite complex, we only provide a very rough overview of some of the ideas involved.
We mention that these ideas make extensive use of adequate hashing functions.

We first note that, in general (when f may not be 1-1), the ensemble f(Uy)
may not be pseudorandom, and so Construction 2.12 (i.e., G(s) = f(s)b(s), where
b is a hard-core of f) cannot be used directly. One idea underlying the known
construction is hashing f(Uy) to an almost uniform string of length related to its
entropy.® But “hashing f(Uy) down to length comparable to the entropy” means
shrinking the length of the output to, say, k¥’ < k. This foils the entire point
of stretching the k-bit seed. Thus, a second idea underlying the construction is
compensating for the loss of k — &’ bits by extracting these many bits from the seed
Uy, itself. This is done by hashing Uy, and the point is that the (k — k’)-bit long
hash value does not make the inverting task any easier. Implementing these ideas
turns out to be more difficult than it seems, and indeed an alternative construction
would be most appreciated.

2.6 Non-uniformly strong pseudorandom gener-
ators

Recall that we said that truly random sequences can be replaced by pseudorandom
sequences without affecting any efficient computation that uses these sequences.
The specific formulation of this assertion, presented in Proposition 2.3, refers to
randomized algorithms that take a “primary input” and use a secondary “random

8This is done after guaranteeing that the logarithm of the probability mass of a value of f(Uy)
is typically close to the entropy of f(Ug). Specifically, given an arbitrary one-way function f’,
one first constructs f by taking a “direct product” of sufficiently many copies of f’. For example,

1/3 def
for z1,...,z,2/3 € {0, 13277 we let F(@1, s @y 2/3) = F(1), o, f(wh2/3)-
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input” in their computation. Proposition 2.3 asserts that it is infeasible to find a
primary input for which the replacement of a truly random secondary input by a
pseudorandom one affects the final output of the algorithm in a noticeable way.
This, however, does not mean that such primary inputs do not exist (but rather
that they are hard to find). Consequently, Proposition 2.3 falls short of yielding
a (worst-case)? “derandomization” of a complexity class such as BPP. To obtain
such results, we need a stronger notion of pseudorandom generators, presented
next. Specifically, we need pseudorandom generators that can fool all polynomial-
size circuits, and not merely all probabilistic polynomial-time algorithms.*°

Definition 2.15 (strong pseudorandom generator — fooling circuits): A determin-
istic polynomial-time algorithm G is called a non-uniformly strong pseudorandom
generator if there erists a stretch function, ¢ : N—N, such that for any family
{Cr}ren of polynomial-size circuits, for any positive polynomial p, and for all suf-
ficiently large k’s

1

| PriCk(G(Ux)) = 1] — Pr[Cy(Upry) =1]| < D)

Using such pseudorandom generators, we can “derandomize” BPP.

Theorem 2.16 (derandomization of BPP): If there exists non-uniformly strong

def

pseudorandom generators then BPP is contained in (..o DTIME(t: ), where t-(n) =

e

A

e>0

Proof Sketch: For any S € BPP and any € > 0, we let A denote a probabilistic
polynomial-time decision procedure for S and G denote a non-uniformly strong
pseudorandom generator stretching n®-bit long seeds into poly(n)-long sequences
(to be used by A as secondary input when processing a primary input of length n).
Combining A and G, we obtain an algorithm A" = Ag (as in Construction 2.2).
We claim that A and A" may significantly differ in their (expected probabilistic)
decision on at most finitely many inputs, because otherwise we can use these inputs
(together with A) to derive a (non-uniform) family of polynomial-size circuits that
distinguishes G(Up<) and Uply(n), contradicting the the hypothesis regarding G.
Specifically, an input z on which A and A’ differ significantly yields a circuit C,, that

9Indeed, Proposition 2.3 yields an average-case derandomization of BPP. In particular, for
every polynomial-time constructible ensemble {Xn} |, every Boolean function f € BPP, and
every ¢ > 0, there exists a randomized algorithm A’ of randomness complexity r-(n) = n® such
that the probability that A’(X,) # f(X») is negligible. A corresponding deterministic (exp(re)-
time) algorithm A’ can be obtained, as in the proof of Theorem 2.16, and again the probability
that A”(Xy) # f(Xn) is negligible, where here the probability is taken only over the distribution
of the primary input (represented by X, ). In contrast, worst-case derandomization, as captured
by the assertion BPP C DTIME(2"<), requires that the probability that A”(X,) # f(Xn) is zero.

10Needless to say, strong pseudorandom generators in the sense of Definition 2.15 satisfy the ba-
sic definition of a pseudorandom generator (i.e., Definition 2.1). We comment that the underlying
notion of computational indistinguishability (by circuits) is strictly stronger than Definition 2.4,
and that it is invariant under multiple samples (regardless of the constructibility of the underlying
ensembles).
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distinguishes G(U})=) and Upoly(jz)), by letting Cy(r) = A(z,r).'" Incorporating
the finitely many “bad” inputs into A’, we derive a probabilistic polynomial-time
algorithm that decides S while using randomness complexity n°.

Finally, emulating A’ on each of the 2" possible random sequences (i.e., seeds
to G) and ruling by majority, we obtain a deterministic algorithm A” as required.
That is, let A’(x,r) denote the output of algorithm A’ on input  when using coins
r € {0,1}™". Then A”(z) invokes A’'(x,r) on every r € {0,1}"", and outputs 1 if
and only if the majority of these 2" invocations have returned 1. [

We comment that stronger results regarding derandomization of BPP are pre-
sented in Section 3.

On constructing non-uniformly strong pseudorandom generators. Non-
uniformly strong pseudorandom generators (as in Definition 2.15) can be con-
structed using any one-way function that is hard to invert by any non-uniform
family of polynomial-size circuits, rather than by probabilistic polynomial-time
machines. In fact, the construction in this case is simpler than the one employed
in the uniform case (i.e., the construction underlying the proof of Theorem 2.14).

2.7 Stronger (Uniform-Complexity) Notions

The following two notions represent strengthening of the standard definition of
pseudorandom generators (as presented in Definition 2.1). Non-uniform versions
of these notions (strengthening Definition 2.15) are also of interest.

2.7.1 Fooling stronger distinguishers

One strengthening of Definition 2.1 amounts to explicitly quantifying the resources
(and success gaps) of distinguishers. We choose to bound these quantities as a
function of the length of the seed (i.e., k), rather than as a function of the length

of the string that is being examined (i.e., ¢(k)). For a class of time bounds 7 (e.g.,

T = {t(k) def QCﬂ}CGN) and a class of noticeable functions (e.g., F = {f(k) &

1/t(k) : t € T}), we say that a pseudorandom generator, G, is (7T, F)-strong if for
any probabilistic algorithm D having running-time bounded by a function in 7°
(applied to k)2, for any function f in F, and for all sufficiently large k’s, it holds
that

PAD(G(UL) = 1] — PHDU) = 11| < f(h).

An analogous strengthening may be applied to the definition of one-way functions.
Doing so reveals the weakness of the known construction that underlies the proof
of Theorem 2.14: It only implies that for some ¢ > 0 (¢ = 1/8 will do), for any

HIndeed, in terms of the proof of Proposition 2.3, the finder I’ consists of a non-uniform family
of polynomial-size circuits that print the “problematic” primary inputs that are hard-wired in
them, and the corresponding distinguisher D is thus also non-uniform.

12That is, when examining a sequence of length £(k) algorithm D makes at most t(k) steps,
where t € 7.
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7T and F, the existence of “(7T, F)-strong one-way functions” implies the existence

of (7', F')-strong pseudorandom generators, where 7' = {t'(k) Lef t(k®)/poly(k) :
t e T} and F' = {f'(k) e poly(k) - f(k°) : f € F}. What we would like to

have is an analogous result with 7/ = {t/(k) et t(Q2(k))/poly(k) : t € T} and

F' = {f'(k) < poly(k) - f(QE)) : f € F}.

2.7.2 Pseudorandom Functions

Recall that pseudorandom generators provide a way to efficiently generate long
pseudorandom sequences from short random seeds. Pseudorandom functions are
even more powerful: they provide efficient direct access to the bits of a huge pseu-
dorandom sequence (which is not feasible to scan bit-by-bit). More precisely, a
pseudorandom function is an efficient (deterministic) algorithm that given an k-bit
seed, s, and an k-bit argument, x, returns an k-bit string, denoted fs(x), such that
it is infeasible to distinguish the values of f, for a uniformly chosen s € {0, 1}*,
from the values of a truly random function F' : {0,1}¥ — {0,1}*. That is, the
(feasible) testing procedure is given oracle access to the function (but not its ex-
plicit description), and cannot distinguish the case it is given oracle access to a
pseudorandom function from the case it is given oracle access to a truly random
function.

Definition 2.17 (pseudorandom functions): A pseudorandom function (ensemble),
is a collection of functions { fs:{0, 1} — {0, 1}/*I} ;e (0.1}~ that satisfies the follow-
ing two conditions:

1. (efficient evaluation) There exists an efficient (deterministic) algorithm that
given a seed, s, and an argument, x € {0, 1}*, returns f(z).

2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,
M, every positive polynomial p and all sufficiently large k’s
1

PriM e (1%) = 1) — Pr[MTx (1%) = 1] | < —

[Pridrfn (%) =1 = Prid ™ (1% = 11| < 7

where F}, denotes a uniformly selected function mapping {0,1}* to {0, 1}*.

One key feature of pseudorandom functions is that they can be generated and
shared by merely generating and sharing their seed; that is, a “random looking”
function f, : {0,1}* — {0,1}*, is determined by its k-bit seed s. Thus, parties wish-
ing to share a “random looking” function f, (determining 2¥-many values), merely
need to generate and share among themselves the k-bit seed s. (For example, one
party may randomly select the seed s, and communicate it, via a secure channel,
to all other parties.) Sharing a pseudorandom function allows parties to determine
(by themselves and without any further communication) random-looking values
depending on their current views of the environment (which need not be known
a priori). To appreciate the potential of this tool, one should realize that sharing
a pseudorandom function is essentially as good as being able to agree, on the fly,
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on the association of random values to (on-line) given values, where the latter are
taken from a huge set of possible values. We stress that this agreement is achieved
without communication and synchronization: Whenever some party needs to asso-
ciate a random value to a given value, v € {0, 1}, it will associate to v the (same)
random value 7, € {0,1}* (by setting r, = fs(v), where f, is a pseudorandom
function agreed upon beforehand). Concretely, the foregoing idea underlies the
construction of secure private-key encryption and message-authentication schemes
based on pseudorandom functions (cf. [18, Sec. 5.3.3&6.3.1]). In addition to nu-
merous applications in cryptography, pseudorandom functions were also used to
derive negative results in computational learning theory [56] and in the study of
circuit complexity (cf., Natural Proofs [46]).

Theorem 2.18 (How to construct pseudorandom functions): Pseudorandom func-
tions can be constructed using any pseudorandom generator.

Proof Sketch:'3 Let G be a pseudorandom generator that stretches its seed by a
factor of two (i.e., £(k) = 2k), and let Go(s) (resp., G1(s)) denote the first (resp.,
last) |s| bits in G(s). Let

Gopoyrrosos (8) = G (- Gy (G (8)) ),

define fq(x129- - x)) Lef Gy 20, (8), and consider the function ensemble {f; :
{0,1}s! = {o, 1}‘5|}s€{071}*. Pictorially, the function f, is defined by k-step walks
down a full binary tree of depth k£ having labels at the vertices. The root of the
tree, hereafter referred to as the level 0 vertex of the tree, is labeled by the string
s. If an internal vertex is labeled r then its left child is labeled Go(r) whereas its
right child is labeled G1(r). The value of fs(z) is the string residing in the leaf
reachable from the root by a path corresponding to the string x.

We claim that the function ensemble { f;}seq0,1}+ is pseudorandom. The proof
uses the hybrid technique (cf. Section 2.3): The i'" hybrid, denoted H +, is a function
ensemble consisting of 22* functions {0,1}* — {0,1}%, each determined by 2°
random k-bit strings, denoted 3 = (s3)geq0,13:- The value of such function hz at
x = aff, where |B] = i, is defined to equal G,(sg). Pictorially, the function hz
is defined by placing the strings in 5 in the corresponding vertices of level ¢, and
labeling vertices of lower levels using the very rule used in the definition of f;.
The extreme hybrids correspond to our indistinguishability claim (i.e., HY) = fu,
and HJ is a truly random function), and the indistinguishability of neighboring
hybrids follows from our indistinguishability hypothesis. Specifically, we show that
the ability to distinguish H}C from H,i“ yields an ability to distinguish multiple
samples of G(Uy) from multiple samples of Uy, (by placing on the fly, halves of the
given samples at adequate vertices of the i + 15¢ level). [

Variants. Useful variants (and generalizations) of the notion of pseudorandom
functions include Boolean pseudorandom functions that are defined over all strings

13See details in [17, Sec. 3.6.2].
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(i.e., fs: {0,1}* — {0,1}) and pseudorandom functions that are defined for other
domains and ranges (i.e., f, : {0,130 — {0,1}7(sD  for arbitrary polynomially
bounded functions d,r : N — N). Various transformations between these variants
are known (cf. [17, Sec. 3.6.4] and [18, Apdx. C.2]).

2.8 Conceptual reflections

We highlight several conceptual aspects of the foregoing computational approach
to randomness. Some of these aspects are common to other instantiation of the
general paradigm (esp., the one presented in Chapter 3).

Behavioristic versus Ontological. The behavioristic nature of the computa-
tional approach to randomness is best demonstrated by confronting this approach
with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string
is Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to
the phenomenon described by the string. A Kolmogorov-random string is thus a
string that does not have a substantially simpler (i.e., shorter) explanation than
itself. Considering the simplest explanation of a phenomenon may be viewed as an
ontological approach. In contrast, considering the effect of phenomena on certain
devices (or observations), as underlying the definition of pseudorandomness, is a
behavioristic approach. Furthermore, there exist probability distributions that are
not uniform (and are not even statistically close to a uniform distribution) and nev-
ertheless are indistinguishable from a uniform distribution (by any efficient device).
Thus, distributions that are ontologically very different, are considered equivalent
by the behavioristic point of view taken in the definition of computational indistin-
guishability.

A relativistic view of randomness. We have defined pseudorandomness in
terms of its observer. Specifically, we have considered the class of efficient (i.e.,
polynomial-time) observers and defined as pseudorandom objects that look ran-
dom to any observer in that class. In subsequent chapters, we shall consider re-
stricted classes of such observers (e.g., space-bounded polynomial-time observers
and even very restricted observers that merely apply specific tests such as linear
tests or hitting tests). Each such class of observers gives rise to a different notion
of pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)
explicitly aims at distributions that are not uniform and yet are considered as such
from the point of view of certain observers. Thus, our entire approach to pseu-
dorandomness is relativistic and subjective (i.e., depending on the abilities of the
observer).

Randomness and Computational Difficulty. Pseudorandomness and com-
putational difficulty play dual roles: The general paradigm of pseudorandomness
relies on the fact that placing computational restrictions on the observer gives rise
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to distributions that are not uniform and still cannot be distinguished from uni-
form distributions. Thus, the pivot of the entire approach is the computational
difficulty of distinguishing pseudorandom distributions from truly random ones.
Furthermore, many of the constructions of pseudorandom generators rely either on
conjectures or on facts regarding computational difficulty (i.e., that certain com-
putations that are hard for certain classes). For example, one-way functions were
used to construct general-purpose pseudorandom generators (i.e., those working in
polynomial-time and fooling all polynomial-time observers). Analogously, as we
shall see in Sec. 3.2.3, the fact that parity function is hard for polynomial-size
constant-depth circuits can be used to generate (highly non-uniform) sequences
that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness
and unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions (cf. Sections 2.5 and 3.2). Here, we wish to highlight the
intuitive appeal of this connection.
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Chapter 3

Derandomization of
Time-Complexity Classes

Let us take a second look at the process of derandomization that underlies the
proof of Theorem 2.16. First, a pseudorandom generator was used to shrink
the randomness-complexity of a BPP-algorithm, and then derandomization was
achieved by scanning all possible seeds to this generator. A key observation re-
garding this process is that there is no point in insisting that the pseudorandom
generator runs in time that is polynomial in its seed length. Instead, it suffices
to require that the generator runs in time that is exponential in its seed length,
because we are incurring such an overhead anyhow due to the scanning of all pos-
sible seeds. Furthermore, in this context, the running-time of the generator may
be larger than the running time of the algorithm, which means that the genera-
tor need only fool distinguishers that take less steps than the generator. These
considerations motivate the following definition of canonical derandomizers.

3.1 Defining Canonical Derandomizers

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A,
we first obtain a functionally equivalent algorithm Ag (as in Construction 2.2) that
has (significantly) smaller randomness-complexity. Algorithm A has to maintain
A’s input-output behavior on all (but finitely many) inputs. Thus, the set of the
relevant distinguishers (considered in the proof of Theorem 2.16) is the set of all
possible circuits obtained from A by hard-wiring any of the possible inputs. Such a
circuit, denoted C, emulates the execution of algorithm A on input z, when using
the circuit’s input as the algorithm’s internal coin tosses (i.e., Cy(r) = A(z,1)).
Furthermore, the size of C), is quadratic in the running-time of A on input x, and
the length of the input to C, equals the running-time of A (on input z).! Thus,

Indeed, we assume that algorithm A is represented as a Turing machine and refer to the
standard emulation of Turing machines by circuits. Thus, the aforementioned circuit C, has size
that is at most quadratic in the running-time of A on input z, which in turn means that C, has

32



the size of C, is quadratic in the length of its own input, and the pseudorandom
generator in use (i.e., G) needs to fool each such circuit. Recalling that we may
allow the generator to run in exponential-time (i.e., time that is exponential in the
length of its own input (i.e., the seed))?, we arrive at the following definition.

Definition 3.1 (pseudorandom generator for derandomizing BPTIME(-))3: Let ¢ :
:N =N be a monotonically increasing function. A canonical derandomizer of stretch
{ is a deterministic algorithm G that satisfies the following two conditions.

1. On input a k-bit long seed, G makes at most poly(2¥ - £(k)) steps and outputs
a string of length £(k).

2. For every circuit Dy, of size {(k)? it holds that

PADLGE) = 1]~ PADWia) =11| < 5. ()

The circuit Dy, represents a potential distinguisher, which is given an £(k)-bit long
string (sampled either from G(Uy) or from Uyy). When seeking to derandomize
an algorithm A of time-complexity ¢, the aforementioned ¢(k)-bit long string repre-
sents a possible sequence of coin tosses of A, when invoked on a generic (primary)
input of length n = ¢t~1(¢(k)). Thus, for any z € {0,1}", considering the circuit
Dy(r) = A(z,r), where |r| = t(n) = £(k), we note that Eq. (3.1) implies that
Ac(z) = A(x, G(Uy)) maintains the magjority vote of A(x) = A(z,Uyx). On the
other hand, the time-complexity of G implies that the straightforward deterministic
emulation of Ag(z) takes time 2% - (poly(2*¥ - £(k)) +t(n)), which is upper-bounded
by poly(2F - £(k)) = poly(2¢ () . ¢(n)). This yields the following (conditional)
derandomization result.

Proposition 3.2 Let ¢,t : N—N be monotonically increasing functions and let
¢=1(t(n)) denote the smallest integer k such that (k) > t(n). If there erists a
canonical derandomizer of stretch £ then, for every time-constructible t :N— N, 4t
holds that BPTIME(t) € DTIME(T), where T(n) = poly(2¢ () . ¢(n)).

size that is at most quadratic in the length of its own input. (In fact, the circuit size can be made
almost-linear in the running-time of A, by using a better emulation [45].) We note that many
sources use the fictitious convention by which the circuit size equals the length of its input; this
fictitious convention can be justified by considering a (suitably) padded input.

2 Actually, in Definition 3.1 we allow the generator to run in time poly(2¥£4(k)), rather than in
time poly(Zk). This is done in order not to trivially rule out generators of super-exponential stretch
(ie., £(k) = 2¢()). However, the condition in Eq. (3.1) does not allow for super-exponential
stretch (or even for £(k) = w(2%)). Thus, in retrospect, the two formulations are equivalent
(because poly(2¥¢(k)) = poly(2F) for £(k) = 20(F)).

Fixing a model of computation, we denote by BPTIME(¢) the class of decision problems that are
solvable by a randomized algorithm of time complexity ¢ that has two-sided error 1/3. Using 1/6 as
the “threshold distinguishing gap” (in Eq. (3.1)) guarantees that if Pr[Dy (Uy)) = 1] > 2/3 (resp.,
Pr[Dy(Upy) = 1] < 1/3) then Pr[Dy(G(Ux)) = 1] > 1/2 (resp., Pr[Dy(G(Uy)) = 1] < 1/2).
As we shall see, this suffices for a derandomization of BPTIME(t) in time T, where T(n) =
poly(2£71(t(")) -t(n)) (and we use a seek of length k = £71(¢(n))).
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Proof Sketch: Just mimic the proof of Theorem 2.16, which in turn uses Con-
struction 2.2. (Recall that given any randomized algorithm A and generator G,
Construction 2.2 yields an algorithm Ag of randomness-complexity ¢~' o ¢ and
time-complexity poly(2¢ °) + £.)* Observe that the complexity of the result-
ing deterministic procedure is dominated by the 2F = 27" (=) invocations of
Ag(x,s) = A(z,G(s)), where s € {0,1}*, and each of these invocations takes
time poly(2€_1(t(‘w|)) + t(|z|). Thus, on input an n-bit long string, the determinis-
tic procedure runs in time poly(2rl(t(”)) -t(n)). The correctness of this procedure
(which takes a majority vote among the 2¥ invocations of Ag) follows by combining
Eq. (3.1) with the hypothesis that Pr[A(z)=1] is bounded-away from 1/2. Specifi-
cally, using the hypothesis |Pr[A(zx)=1] — (1/2)| > 1/6, it follows that the majority
vote of (Ag(w,s))«o,13+ equals 1 if and only if Pr[A(z) =1] > 1/2. Indeed, the
implication is due to Eq. (3.1), when applied to the circuit Cy(r) = A(x,r) (which
has size at most |r|?). O

The goal. In light of Proposition 3.2, we seek canonical derandomizers with
stretch that is as large as possible. The stretch cannot be super-exponential (i.e.,
it must hold that £(k) = O(2%)), because there exists a circuit of size O(2* - £(k))
that violates Eq. (3.1) whereas for £(k) = w(2*) it holds that O(2% - £(k)) < £(k)>.
Thus, our goal is to construct a canonical derandomizer with stretch £(k) = 2.
Such a canonical derandomizer will allow for a “full derandomization of BPP”:

Theorem 3.3 If there exists a canonical derandomizer of stretch (k) = 2920,
then BPP =P.

Proof: Using Proposition 3.2, we get BPTIME(t) C DTIME(T), where T(n) =
poly(2* () ¢(n)) = poly(t(n)). M

Reflections: Recall that a canonical derandomizer G was defined in a way that
allows it to have time-complexity ¢t that is larger than the size of the circuits that
it fools (i.e., t(k) > £(k)? is allowed). Furthermore, tg(k) > 2* was also allowed.
Thus, if indeed tg(k) = 22(*) (as is the case in Section 3.2), then G(Uy) can be
distinguished from Uy in time 2% - tq(k) = poly(te(k)) by trying all possible
seeds.” We stress that the latter distinguisher is a uniform algorithm (and it works
by invoking G on all possible seeds). In contrast, for a general-purpose pseudoran-
dom generator G (as discussed in Chapter 2) it holds that ¢¢(k) = poly(k), while

4Actually, given any randomized algorithm A and generator G, Construction 2.2 yields an
algorithm Ag that is defined such that Ag(x,s) = A(zx, G'(s)), where |s| = £71(¢(|z|)) and G'(s)
denotes the t(|z|)-bit long prefix of G(s). For simplicity, we shall assume here that £(|s|) = t(|z|),
and thus use G rather than G’. Note that given n we can find k = £71(¢(n)) by invoking
G(1%) for 4 = 1,...,k (using the fact that 2:N 5 N is monotonically increasing). Also note that
£(k) = O(2%) must hold (see Footnote 2), and thus we may replace poly(2* - £(k)) by poly(2F).

5We note that this distinguisher does not contradict the hypothesis that G is a canonical
derandomizer, because tg(k) > £(k) definitely holds whereas £(k) < 2* typically holds (and so
2k . ta(k) > £(k)?).
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for every polynomial p it holds that G(Uy) is indistinguishable from Uy in time
p(ta(k)).

3.2 Constructing Canonical Derandomizers

The fact that canonical derandomizers are allowed to be more complex than the
corresponding distinguisher makes some of the techniques of Chapter 2 inapplicable
in the current context. For example, the stretch function cannot be amplified
as in Section 2.4. On the other hand, the techniques developed in the current
section are inapplicable to Chapter 2. For example, the pseudorandomness of
some canonical derandomizers (i.e., the generators of Construction 3.4) holds even
when the potential distinguisher is given the seed itself. This amazing phenomenon
capitalizes on the fact that the distinguisher’s time-complexity does not allow for
running the generator on the given seed.

3.2.1 The construction and its consequences

As in Section 2.5, the construction presented next transforms computational diffi-
culty into pseudorandomness, except that here both computational difficulty and
pseudorandomness are of a somewhat different form than in Section 2.5. Specif-
ically, here we use Boolean predicates that are computable in exponential-time
but are strongly inapproximable; that is, we assume the existence of a Boolean
predicate and constants c,e > 0 such that for all but finitely many m, the (resid-
ual) predicate f : {0,1}™ — {0,1} is computable in time 2°™ but for any cir-
cuit C' of size 2°™ it holds that Pr[C(Un) = f(Un)] < & +27°™. (Needless to
say, € < ¢.) Such predicates exist under the assumption that the class £ (where
€ = U.so DTIME(29™)) contains predicates of (almost-everywhere) exponential
circuit complexity [26]. With these preliminaries, we turn to the construction of
canonical derandomizers with exponential stretch.

Construction 3.4 (The Nisan-Wigderson Construction):® Let f:{0,1}™—{0,1}
and Sy, ..., S be a sequence of m-subsets of {1,...,k}. Then, for s € {0,1}*, we let
def
G(s) = f(ss,) - f(ss,) (3.2)
where sg denotes the projection of s on the bit locations in S C {1,...,|s|}; that is,
fors=o01---0r and S = {i1,...,im}, we have ss =04, -+ 0y, .

Letting k£ vary and ¢,m : N — N be functions of k, we wish G to be a canoni-
cal derandomizer and ¢(k) = 2%*). One (obvious) necessary condition for this to
happen is that the sets must be distinct, and hence m(k) = Q(k); consequently,
f must be computable in exponential-time. Furthermore, the sequence of sets
S1, ..y Sgxy must be constructible in poly(2¥) time. Intuitively, the function f
should be strongly inapproximable, and furthermore it seems desirable to use a set

6Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. This construction originates in [40, 43].
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system with relatively small pairwise intersections (because this restricts the over-
lap among the various inputs to which f is applied). Interestingly, these conditions
are essentially sufficient.

Theorem 3.5 (analysis of Construction 3.4): Let o, 3,7v,& > 0 be constants sat-
isfying € > (2a/B) + v, and consider the functions £,m,T : N—N such that
(k) =2°% m(k) = Bk, and T(n) = 2°". Suppose that the following two conditions
hold:

1. There exists an exponential-time computable function f:{0,1}* —{0,1} such
that for every family of T-size circuits {Cy},en and all sufficiently large n

it holds that ) 1
PriCa(Un) # f(Un)] = 5 + ) (3.3)

In this case we say that f is T-inapproximable.

2. There erists an exponential-time computable function S : NxN — oN such
that

(a) For every k and ¢ € [¢(k)], it holds that S(k,i) C [k] and |S(k,i)| =
m(k).

(b) For every k and i # j, it holds that |S(k,i) N S(k, )| <~ -m(k).

Then, using G as defined in Construction 3.4 with S; = S(k, 1), yields a canonical
derandomizer with stretch €.

Before proving Theorem 3.5 we mention that, for any v > 0, a function S as in
Condition 2 does exist for some m(k) = Q(k) and £(k) = 2°%(%); see [19, Exer. 8.19].
We also recall that T-inapproximable predicates do exist under the assumption
that £ has (almost-everywhere) exponential circuit complexity (see [26] or [19,
Sec. 8.2.1]). Thus, combining such functions f and S and invoking Theorem 3.5, we
obtain a canonical derandomizer with exponential stretch based on the assumption
that & has (almost-everywhere) exponential circuit complexity. Combining this
with Theorem 3.3, we get the first part of the following theorem.

Theorem 3.6 (derandomization of BPP, revisited):

1. Suppose that £ contains a decision problem that has almost-everywhere expo-
nential circuit complexity (i.e., there exists a constant g9 > 0 such that, for
all but finitely many m’s, any circuit that correctly decides this problem on
{0,1}™ has size at least 2°°™). Then, BPP = P.

2. Suppose that, for every polynomial p, the class € contains a decision problem
that has circuit complexity that is almost-everywhere greater than p. Then

BPP is contained in (..o DTIME(t.), where t.(n) def gn®,
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Indeed, our focus is on Part 1, and Part 2 is stated for sake of a wider perspective.
Both parts are special cases of a more general statement that can be proved by
using a generalization of Theorem 3.5 that refers to arbitrary functions ¢,m,T :
N— N (instead of the exponential functions in Theorem 3.5) that satisfy ¢(k)? +
O(¢(k) - 27 ®)) < T(m(k)), where m/(k) replaces v - m(k). We note that Part 2
of Theorem 3.6 supersedes Theorem 2.16. We also mention that, as in the case of
general-purpose pseudorandom generators, the hardness hypothesis used in each
part of Theorem 3.6 is necessary for the existence of a corresponding canonical
derandomizer.

Additional comment. The two parts of Theorem 3.6 exhibit two extreme cases:
Part 1 (often referred to as the “high end”) assumes an extremely strong circuit
lower-bound and yields “full derandomization” (i.e., BPP = P), whereas Part 2
(often referred to as the “low end”) assumes an extremely weak circuit lower-bound
and yields weak but meaningful derandomization. Intermediate results (relying on
intermediate lower-bound assumptions) can be obtained via the aforementioned
generalization, but tight trade-offs are obtained differently (cf., [54]).

3.2.2 Analyzing the construction (i.e., proof of Theorem 3.5)

Using the time complexity upper-bounds on f and S, it follows that G can be
computed in exponential time. Thus, our focus is on showing that {G(Uy)} cannot
be distinguished from {Uy,} by circuits of size £(k)?; specifically, that G satisfies
Eq. (3.1). In fact, we will prove that this holds for G'(s) = s - G(s); that is, G
fools such circuits even if they are given the seed as auxiliary input. (Indeed, these
circuits are smaller than the running time of GG, and so they cannot just evaluate
G on the given seed.)

We start by presenting the intuition underlying the proof. As a warm-up sup-
pose that the sets (i.e., S(k,7)’s) used in the construction are disjoint. In such a
case (which is indeed impossible because k < £(k)-m(k)), the pseudorandomness of
G(Uy) would follow easily from the inapproximability of f, because in this case G
consists of applying f to non-overlapping parts of the seed. In the actual construc-
tion being analyzed here, the sets (i.e., S(k,4)’s) are not disjoint but have relatively
small pairwise intersection, which means that G applies f on parts of the seed that
have relatively small overlap. Intuitively, such small overlaps guarantee that the
values of f on the corresponding inputs are “computationally independent” (i.e.,
having the value of f at some inputs x1, ..., z; does not help in approximating the
value of f at another input x;;1). This intuition will be backed by showing that,
when fixing all bits that do not appear in the target input (i.e., in x;41), the former
values (i.e., f(x1),..., f(x;)) can be computed at a relatively small computational
cost. Thus, the values f(z1),..., f(z;) do not (significantly) facilitate the task of
approximating f(z;y1). With the foregoing intuition in mind, we now turn to the
actual proof.

The actual proof employs a reducibility argument; that is, assuming towards
the contradiction that G’ does not fool some circuit of size £(k)?, we derive a
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contradiction to the hypothesis that the predicate f is T-inapproximable. The
argument utilizes the relation between pseudorandomness and unpredictability (cf.
Section 2.5). Specifically, any circuit that distinguishes G'(Uy) from Uy with
gap 1/6, yields a next-bit predictor of similar size that succeeds in predicting the
next bit with probability at least % + 62’#(1@) > % + ﬁ, where the factor of ¢/(k) =
k) +k < (1+0(1))- (k) is introduced by the hybrid technique (cf. Eq. (2.5)).
Furthermore, given the non-uniform setting of the current proof, we may fix a bit
location i + 1 for prediction, rather than analyzing the prediction at a random bit
location. Indeed, ¢ > k must hold, because the first k bits of G'(Uy) are uniformly
distributed. In the rest of the proof, we transform the foregoing predictor into a
circuit that approximates f better than allowed by the hypothesis (regarding the
inapproximability of f).

Assuming that a small circuit C’ can predict the i41% bit of G’ (Uy,), when given
the previous i bits, we construct a small circuit C' for approximating f(Up, 1)) on
input Uy, k). The point is that the i+1% bit of G'(s) equals f(sg(k,j+1)), where j =
i—k >0, and so C" approximates f(sg(s,;+1)) based on s, f(Sg(,1))s - f(S5(k,5))5
where s € {0,1}* is uniformly distributed. Note that this is the type of thing that
we are after, except that the circuit we seek may only get sg(x j41) as input.

The first observation is that C’ maintains its advantage when we fix the best
choice for the bits of s that are not at bit locations S; 11 = S(k,j + 1) (i.e., the
bits sjx\s,,,)- That is, by an averaging argument, it holds that

s/e{onf?kx—m(k){Prse{O-rl}’“[C/(S’ f(881), 5 f(s5;)) = f(35j+1) | SIkN\S;j4+1 = s'I}

> p/ = PrsE{O,l}k[C/(s’ f(ssl)7 ) f(ssj)) = f(85j+1)}'

Recall that by the hypothesis p’ > 1+ %. Hard-wiring the fixed string s’ into C”,
and letting 7(z) denote the (unique) string s satisfying ss,,, = z and sy s,,, = 5,
we obtain a circuit C” that satisfies

Procoymm [C7 (@, f(m(2)s,), .. f(w(2)s,)) = f(2)] = p'.

The circuit C” is almost what we seek. The only problem is that C” gets as input
not only x, but also f(m(x)s,),..., f(7(x)s,), whereas we seek an approximator of
f(x) that only gets .

The key observation is that each of the “missing” values f(7(x)s,), ..., f(7(2)s;)
depend only on a relatively small number of the bits of x. This fact is due to the
hypothesis that |S;NS;11| < v-m(k) for t =1, ..., 7, which means that 7(x)g, is an
m(k)-bit long string in which my def |S¢ N S;41| bits are projected from z and the
rest are projected from the fized string s’. Thus, given z, the value f(w(x)s,) can
be computed by a (trivial) circuit of size 6(2““); that is, by a circuit implementing
a look-up table on m; bits. Using all these circuits (together with C"), we will
obtain the desired approximator of f. Details follow.

We obtain the desired circuit, denoted C', that T-approximates f as follows. The
circuit C' depends on the index j and the string s” that are fixed as in the foregoing
analysis. Recall that C incorporates (O(271%)-size) circuits for computing z
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f(r(x)s,), for t = 1,...,5. On input = € {0,1}™*)  the circuit C' computes the
values f(7(x)s,), ..., f(7(x)s,), invokes C"” on input 2 and these values, and outputs
the answer as a guess for f(z). That is,

Cla) =C"(@, f(n(x)s,), - [ (m(2)5,))
By the foregoing analysis, Pr,[C(z) = f(z)] > p' > 1 + %7 which is lower-
bounded by 3 + m, because T(m(k)) = 25F) = 258k 5 920k 5 74(k),
where the first inequality is due to € > 2a/f and second inequality is due to
(k) = 2°%_ The size of C' is upper-bounded by £(k)2 + £(k) - O(27™®)) <« O(¢(k)? -
2 mk)y = Q2o (m(k)/B)+rm(k)) « T(m(k)), where the last inequality is due to
T(m(k)) = 22m(®) > O(22a/B)mE)+ym(k)) (which in turn uses € > (2a/3) + 7).
Thus, we derived a contradiction to the hypothesis that f is T-inapproximable.
This completes the proof of Theorem 3.5.

=C'(r(z), f(n(2)s,), ... f((2)s,))-

3.2.3 Construction 3.4 as a general framework

The Nisan—Wigderson Construction (i.e., Construction 3.4) is actually a general
framework, which can be instantiated in various ways. Some of these instantiations,
which are based on an abstraction of the construction as well as of its analysis, are
briefly reviewed next.

We first note that the generator described in Construction 3.4 consists of a
generic algorithmic scheme that can be instantiated with any predicate f. Fur-
thermore, this algorithmic scheme, denoted G, is actually an oracle machine that
makes (non-adaptive) queries to the function f, and thus the combination (of G
and f) may be written as G/. Likewise, the proof of pseudorandomness of G (i.e.,
the bulk of the proof of Theorem 3.5) is actually a general scheme that, for every
f, yields a (non-uniform) oracle-aided circuit C' that approximates f by using an
oracle call to any distinguisher for G¥ (i.e., C uses the distinguisher as a black-box).
The circuit C' does depends on f (but in a restricted way). Specifically, C' contains
look-up tables for computing functions obtained from f by fixing some of the input
bits (i.e., look-up tables for the functions f(7(-)s,)’s). The foregoing abstractions
facilitate the presentation of the following instantiations of the general framework
underlying Construction 3.4

Derandomization of constant-depth circuits. In this case we instantiate
Construction 3.4 using the parity function in the role of the inapproximable pred-
icate f, noting that parity is indeed inapproximable by “small” constant-depth
circuits. With an adequate setting of parameters we obtain pseudorandom gen-
erators with stretch (k) = exp(k*/©(M) that fool “small” constant-depth circuits
(see [40]). The analysis of this construction proceeds very much like the proof
of Theorem 3.5. One important observation is that incorporating the (straightfor-
ward) circuits that compute f(7(x)g,) into the distinguishing circuit only increases
its depth by two levels. Specifically, the circuit C uses depth-two circuits that com-
pute the values f(mw(z)g,)’s, and then obtains a prediction of f(x) by using these
values in its (single) invocation of the (given) distinguisher.

39



The resulting pseudorandom generator, which use a seed of polylogarithmic
length (equiv., £(k) = exp(k'/?M)), can be used for derandomizing RAC (i.e.,
random AC”), analogously to Theorem 3.3. Thus, we can deterministically ap-
proximate, in quasi-polynomial-time and up-to an additive error, the fraction of
inputs that satisfy a given (constant-depth) circuit. Specifically, for any constant
d, given a depth-d circuit C, we can deterministically approximate the fraction of
the inputs that satisfy C' (i.e., cause C to evaluate to 1) to within any additive
constant error’ in time exp((log|C|)°?). Providing a deterministic polynomial-
time approximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an open
problem.

Derandomization of probabilistic proof systems. A different (and more
surprising) instantiation of Construction 3.4 utilizes predicates that are inapprox-
imable by small circuits having oracle access to N'P. The result is a pseudorandom
generator robust against two-move public-coin interactive proofs (which are as pow-
erful as constant-round interactive proofs). The key observation is that the analysis
of Construction 3.4 provides a black-box procedure for approximating the under-
lying predicate when given oracle access to a distinguisher (and this procedure is
valid also in case the distinguisher is a non-deterministic machine). Thus, under
suitably strong (and yet plausible) assumptions, constant-round interactive proofs
collapse to NP. We note that a stronger result, which deviates from the foregoing
framework, has been subsequently obtained (cf. [37]).

Construction of randomness extractors. An even more radical instantiation
of Construction 3.4 was used to obtain explicit constructions of randomness ex-
tractors (see [50]). In this case, the predicate f is viewed as (an error correcting
encoding of) a somewhat random function, and the construction makes sense be-
cause it refers to f in a black-box manner. In the analysis we rely on the fact that
f can be approximated by combining relatively little information (regarding f)
with (black-box access to) a distinguisher for G¥. For further details see either [53]
or [50] (or [19, Apdx. D.4]).

3.3 Reflections Regarding Derandomization

Part 1 of Theorem 3.6 is often summarized by saying that (under some reasonable
assumptions) randomness is useless. We believe that this interpretation is wrong
even within the restricted context of traditional complexity classes, and is bluntly
wrong if taken outside of the latter context. Let us elaborate.

“We mention that in the special case of approximating the number of satisfying assignment
of a DNF formula, relative error approximations can be obtained by employing a determinis-
tic reduction of relative error approximation to additive constant error approximation (see [16,
Apdx. B.1.1] or [19, §6.2.2.1]). Thus, using a pseudorandom generator that fools DNF formu-
lae, we can deterministically obtain a relative (rather than additive) error approximation to the
number of satisfying assignment in a given DNF formula.
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Taking a closer look at the proof of Theorem 3.3 (which underlies Theorem 3.6),
we note that a randomized algorithm A of time-complexity ¢ is emulated by a
deterministic algorithm A’ of time complexity ¢ = poly(¢). Further noting that
A’ = Ag invokes A (as well as the canonical derandomizer G) for () times
(because £(k) = O(2%) implies 2¥ = Q(t)), we infer that ¢ = Q(¢?) must hold.
Thus, derandomization via (Part 1 of) Theorem 3.6 is not really for free.

More importantly, we note that derandomization is not possible in various dis-
tributed settings, when both parties may protect their conflicting interests by em-
ploying randomization. Notable examples include most cryptographic primitives
(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).
Additional settings where randomness makes a difference (either between impossi-
bility and possibility or between formidable and affordable cost) include distributed
computing (see [6]), communication complexity (see [31]), parallel architectures
(see [32]), sampling (see, e.g., [19, Apdx. D.3]), and property testing (see, e.g., [19,
Sec. 10.1.2]).
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Chapter 4

Space-Bounded
Distinguishers

In the previous two chapters we have considered generators that output sequences
that look random to any efficient procedures, where the latter were modeled by
time-bounded computations. Specifically, in Chapter 2 we considered indistin-
guishability by polynomial-time procedures. A finer classification of time-bounded
procedures is obtained by considering their space-complexity; that is, restricting
the space-complexity of time-bounded computations. This restriction leads to the
notion of pseudorandom generators that fool space-bounded distinguishers. In-
terestingly, in contrast to the notions of pseudorandom generators that were con-
sidered in Chapters 2 and 3, the existence of pseudorandom generators that fool
space-bounded distinguishers can be established without relying on computational
assumptions.

Prerequisites: Technically speaking, the current chapter is self-contained, but
various definitional choices are justified by reference to the standard definitions of
space-bounded randomized algorithms. Thus, a review of that model (as provided
in, e.g., [19, Sec. 6.1.5]) is recommended as conceptual background for the current
chapter.

4.1 Definitional Issues

Our main motivation for considering space-bounded distinguishers is to develop a
notion of pseudorandomness that is adequate for space-bounded randomized algo-
rithms. That is, such algorithms should essentially maintain their behavior when
their source of internal coin tosses is replaced by a source of pseudorandom bits
(which may be generated based on a much shorter random seed). We thus start
by recalling and reviewing the natural notion of space-bounded randomized algo-
rithms.
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Unfortunately, natural notions of space-bounded computations are quite subtle,
especially when non-determinism or randomization are concerned (see [19, Sec. 5.3]
and [19, Sec. 6.1.5], respectively). Two major definitional issues regarding random-
ized space-bounded computations are the need for imposing explicit time bounds
and the type of access to the random tape.

1. Time bounds: The question is whether or not the space-bounded machines
are restricted to time-complexity that is at most exponential in their space-
complexity.! Recall that such an upper-bound follows automatically in the
deterministic case, and can be assumed without loss of generality in the non-
deterministic case, but it does not necessarily hold in the randomized case.
Furthermore, failing to restrict the time-complexity of randomized space-
bounded machines makes them unnatural and unintentionally too strong
(e.g., capable of emulating non-deterministic computations with no overhead
in term of space-complexity).

Seeking a natural model of randomized space-bounded algorithms, we postu-
late that their time-complexity must be at most exponential in their space-
complexity.

2. Access to the random tape: Recall that randomized algorithms may be mod-
eled as machines that are provided with the necessary randomness via a spe-
cial random-tape. The question is whether the space-bounded machine has
uni-directional or bi-directional (i.e., unrestricted) access to its random-tape.
(Allowing bi-directional access means that the randomness is recorded “for
free”; that is, without being accounted for in the space-bound.)

Recall that uni-directional access to the random-tape corresponds to the nat-
ural model of an on-line randomized machine, which determines its moves
based on its internal coin tosses (and thus cannot record its past coin tosses
“for free”). Thus, we consider uni-directional access.?

Hence, we focus on randomized space-bounded computation that have time-complexity
that is at most exponential in their space-complexity and access their random-tape
in a uni-directional manner.

When seeking a notion of pseudorandomness that is adequate for the foregoing
notion of randomized space-bounded computations, we note that the correspond-
ing distinguisher is obtained by fixing the main input of the computation and
viewing the contents of the random-tape of the computation as the only input of
the distinguisher. Thus, in accordance with the foregoing notion of randomized
space-bounded computation, we consider space-bounded distinguishers that have a

L Alternatively, one can ask whether these machines must always halt or only halt with prob-
ability approaching 1. It can be shown that the only way to ensure “absolute halting” is to have
time-complexity that is at most exponential in the space-complexity. (In the current discussion
as well as throughout this chapter, we assume that the space-complexity is at least logarithmic.)

2We note that the fact that we restrict our attention to uni-directional access is instrumen-
tal in obtaining space-robust generators without making intractability assumptions. Analogous
generators for bi-directional space-bounded computations would imply hardness results of a break-
through nature in the area.
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uni-directional access to the input sequence that they examine. Let us consider the
type of algorithms that arise.

We consider space-bounded algorithms that have a uni-directional access to their
input. At each step, based on the contents of its temporary storage, such an
algorithm may either read the next input bit or stay at the current location on the
input, where in either case the algorithm may modify its temporary storage. To
simplify our analysis of such algorithms, we consider a corresponding non-uniform
model in which, at each step, the algorithm reads the next input bit and update
its temporary storage according to an arbitrary function applied to the previous
contents of that storage (and to the new bit). Note that we have strengthened the
model by allowing arbitrary (updating) functions, which can be implemented by
(non-uniform) circuits having size that is exponential in the space-bound, rather
than using (updating) functions that can be (uniformly) computed in time that is
exponential in the space-bound. This strengthening is motivated by the fact that
the known constructions of pseudorandom generators remain valid also when the
space-bounded distinguishers are non-uniform and by the fact that non-uniform
distinguishers arise anyhow in derandomization.

The computation of the foregoing non-uniform space-bounded algorithms (or
automata)® can be represented by directed layered graphs, where the vertices in
each layer correspond to possible contents of the temporary storage and transition
between neighboring layers corresponds to a step of the computation. Foreseeing
the application of this model for the description of potential distinguishers, we
parameterize these layered graphs based on the index, denoted k, of the relevant
ensembles (e.g., {G(Ug)}reny and {Upm) fren). That is, we present both the input
length, denoted ¢ = ¢(k), and the space-bound, denoted s(k), as functions of the
parameter k. Thus, we define a non-uniform automaton of space s: N—N (and
depth ¢: N—N) as a family, {Dy}cn, of directed layered graphs with labeled
edges such that the following conditions hold:

e The digraph Dj, consists of ¢(k) + 1 layers, each containing at most 25(F)
vertices. The first layer contains a single vertex, which is the digraph’s (single)
source (i.e., a vertex with no incoming edges), and the last layer contains all
the digraph’s sinks (i.e., vertices with no outgoing edges).

e The only directed edges in Dy, are between adjacent layers, going from layer
i to layer i + 1, for ¢« < (k). These edges are labeled such that each (non-
sink) vertex of Dy has two (possibly parallel) outgoing directed edges, one
labeled 0 and the other labeled 1.

The result of the computation of such an automaton, on an input of adequate length

3We use the term automaton (rather than algorithm or machine) in order to remind the reader
that this computing device reads its input in a uni-directional manner. Alternative terms that may
be used are “real-time” or “on-line” machines. We prefer not using the term “on-line” machine
in order to keep a clear distinction from randomized (on-line) algorithms that have free access
to their input (and on-line access to a source of randomness). Indeed, the automata consider
here arise from the latter algorithms by fixing their primary input and considering the random
source as their (only) input. We also note that the automata considered here are a special case
of Ordered Binary Decision Diagrams (OBDDs; see [57]).
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(i.e., length ¢ where Dy, has £ + 1 layers), is defined as the vertex (in last layer)
reached when following the sequence of edges that are labeled by the corresponding
bits of the input. That is, on input = z; - - - 24, in the i*® step (for i = 1,...,£) we
move from the current vertex (which resides in the i'" layer) to one of its neighbors
(which resides in the i + 1% layer) by following the outgoing edge labeled z;. Using
a fixed partition of the vertices of the last layer, this defines a natural notion of
a decision (by Dy); that is, we write Dy(x) = 1 if on input a the automaton Dy,
reached a vertex that belongs to the first part of the aforementioned partition.

Definition 4.1 (indistinguishability by space-bounded automata):

e For a non-uniform automaton, { Dy },cn, and two probability ensembles, { Xk }en
and {Yi ren, the function d:N—10,1] defined as

d(k) “ |Pr[Dy(Xy) = 1] — Pr[Dy(V3) = 1]]

is called the distinguishability-gap of { Dy} between the two ensembles.

o Let s : N—N and e : N — [0,1]. A probability ensemble, {Xy}pcN, is
called (s,e)-pseudorandom if for any non-uniform automaton of space s(-),
the distinguishability-gap of the automaton between {Xi},en and the corre-
sponding uniform ensemble (i.e., {U)x,|}reN) is at most €(-).

o A deterministic algorithm G of stretch function £ is called an (s, €)-pseudorandom
generator if the ensemble {G(Uy) }ren is (s, €)-pseudorandom. That is, every
non-uniform automaton of space s(-) has a distinguishing-gap of at most (+)
between {G(Uy)}ren and {Upm) }reN-

Thus, when using a random seed of length k, an (s,e)-pseudorandom generator
outputs a sequence of length ¢(k) that looks random to observers having space
s(k). Note that s(k) < k is a necessary condition for the existence of (s,0.5)-
pseudorandom generators, because a non-uniform automaton of space s(k) > k
can recognize the image of a generator (which contains at most 2* strings of length
0(k) > k). More generally, there is a trade-off between k — s(k) and the stretch ¢
of (s,¢)-pseudorandom generators (i.e., £(k) = O(e(k) - k- 2F75(F)) for e(k) < 1/2).

Note: We stated the space-bound of the potential distinguisher (as well as the
stretch function) in terms of the seed-length, denoted k, of the generator. In
contrast, other sources present a parameterization in terms of the space-bound of
the potential distinguisher, denoted m. The translation is obtained by using m =
s(k), and we shall provide it subsequent to the main statements of Theorems 4.2
and 4.3.

4.2 Two Constructions

In contrast to the case of pseudorandom generators that fool time-bounded distin-
guishers, pseudorandom generators that fool space-bounded distinguishers can be
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constructed without relying on any computational assumption. The following two
theorems exhibit two rather extreme cases of a general trade-off between the space-
bound of the potential distinguisher and the stretch function of the generator.* We
stress that both theorems fall short of providing parameters as achieved by a non-
constructive argument, but they refer to relatively efficient constructions. We start
with an attempt to maximize the stretch.

Theorem 4.2 (stretch exponential in the space-bound for s(k) = Vk): For every
space constructible function s:N—N, there erists an (s,27%)-pseudorandom gen-
erator of stretch function ((k) = min(2¥/CK) 25(®)) - Fyrthermore, the generator
works in space that is linear in the length of the seed, and in time that is linear in
the stretch function.

In other words, for every ¢ < m, we have a generator that takes a random seed
of length k = O(t - m) and produce a sequence of length 2¢ that looks random to
any (non-uniform) automaton of space m (up to a distinguishing-gap of 27™). In
particular, using a random seed of length k = O(m?), one can produce a sequence of
length 2™ that looks random to any (non-uniform) automaton of space m. Thus,
one may replace random sequences used by any space-bounded computation, by
sequences that are efficiently generated from random seeds of length quadratic in
the space bound. The common instantiation of the latter assertion is for log-space
algorithms. In Sec. 4.2.2, we apply Theorem 4.2 (and its underlying ideas) for
the derandomization of space-complexity classes such as BPL (i.e., the log-space
analogue of BPP). Theorem 4.2 itself is proved in Sec. 4.2.1.

We now turn to the case where one wishes to maximize the space-bound of po-
tential distinguishers. We warn that Theorem 4.3 only guarantees a subexponential
distinguishing gap (rather than the exponential distinguishing gap guaranteed in
Theorem 4.2). This warning is voiced because failing to recall this limitation has
led to errors in the past.

Theorem 4.3 (polynomial stretch and linear space-bound): For any polynomial
p and for some s(k) = k/O(1), there exists an (s,2~V®)-pseudorandom genera-
tor of stretch function p. Furthermore, the generator works in linear-space and
polynomial-time (both stated in terms of the length of the seed).

In other words, we have a generator that takes a random seed of length k& = O(m)
and produce a sequence of length poly(m) that looks random to any (non-uniform)
automaton of space m. Thus, one may convert any randomized computation uti-
lizing polynomial-time and linear-space into a functionally equivalent randomized
computation of similar time and space complexities that uses only a linear number
of coin tosses.

4.2.1 Sketches of the proofs of Theorems 4.2 and 4.3

In both cases, we start the proof by considering a generic space-bounded distin-
guisher and show that the input distribution that this distinguisher examines can

4These two results have been “interpolated” in [5]: There exists a parameterized family of
“space fooling” pseudorandom generators that includes both results as extreme special cases.
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be modified (from the uniform distribution into a pseudorandom one) without hav-
ing the distinguisher notice the difference. This modification (or rather a sequence
of modifications) yields a construction of a pseudorandom generator, which is only
spelled-out at the end of the argument.

Sketch of the proof of Theorem 4.2 (see details in [41])

The main technical tool used in this proof is the “mixing property” of pairwise
independent hash functions (see, e.g., [19, Apdx. D.2]). A family of functions H,,
which map {0, 1}" to itself, is called mixing if for every pair of subsets A, B C {0,1}"
for all but very few (i.e., exp(—(n)) fraction) of the functions h € H,, it holds
that
PriU, € ANRU,) € Bl ~ % : % (4.1)
where the approximation is up to an additive term of exp(—(n)).
We may assume, without loss of generality, that s(k) = Q(vk), and thus £(k) <
25(k) holds. For any s(k)-space distinguisher Dy, as in Definition 4.1, we consider
an auxiliary “distinguisher” Dj. that is obtained by “contracting” every block of

n O(s(k)) consecutive layers in Dy, yielding a directed layered graph with

] 0(k)/n < 250 layers (and 25(%) vertices in each layer). Specifically,

e cach vertex in Dj, has 2" (possibly parallel) directed edges going to various
vertices of the next level; and

e cach such edge is labeled by an n-bit long string such that the directed edge
(u,v) labeled o109 - - - 0y, in Dy, replaces the n-edge directed path between u
and v in Dy, that consists of edges labeled o1, 09, ....,0p,.

The graph Dj, simulates Dy, in the obvious manner; that is, the computation of Dj,
on an input of length ¢(k) = ¢’ - n is defined by breaking the input into consecutive
substrings of length n and following the path of edges that are labeled by the
corresponding n-bit long substrings.

The key observation is that D) cannot distinguish between a random ¢’ - n-bit
long input (i.e., Up.,, = Ué,l)UT(LQ) e Ug’)) and a “pseudorandom” input of the form
UPUYUPhUP) - U P U ’?), where h € H, is a (suitably fixed)
hash function. To prove this claim, we consider an arbitrary pair of neighboring
vertices, u and v (in layers ¢ and ¢ + 1, respectively), and denote by L, , C {0,1}"
the set of the labels of the edges going from w to v. Similarly, for a vertex w at
layer i 42, we let L;, ,, denote the set of the labels of the edges going from v to w.
By Eq. (4.1), for all but very few of the functions h € H,,, it holds that

PrlUn € Luw AR(Uy) € Ly, ) = Pr[U, € Ly, - Pr[U, € L, ], (4.2)

where “very few” and = are as in Eq. (4.1). Thus, for all but exp(—Q(n)) fraction
of the choices of h € H,, replacing the coins in the second transition (i.e., the
transition from layer i+ 1 to layer i+ 2) with the value of h applied to the outcomes
of the coins used in the first transition (i.e., the transition from layer i to ¢ 4+ 1),
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approzimately maintains the probability that D), moves from u to w via v. Using a
union bound (on all triples (u,v,w) as in the foregoing), we note that, for all but
235(k) . ¢ . exp(—Q(n)) fraction of the choices of h € H,, the foregoing replacement
approximately maintains the probability that D} moves through any specific two-
edge path of Dj.

Using ¢’ < 2°(%) and a suitable choice of n = O(s(k)), it holds that 23(*) . ¢/ .
exp(—Q(n)) < exp(—(n)), and thus all but “few” functions h € H,, are good for
approximating all these transition probabilities. (We stress that the same h can be
used in all these approximations.) Thus, at the cost of extra |h| random bits, we
can reduce the number of true random coins used in transitions on D} by a factor
of two, without significantly affecting the final decision of D), (where again we use
the fact that ¢’ - exp(—(n)) < exp(—(n)), which implies that the approximation
errors do not accumulate to too much). In other words, at the cost of extra |h
random bits, we can effectively contract the distinguisher to half its length while
approximately maintaining the probability that the distinguisher accepts a random
input. That is, fixing a good h (i.e., one that provides a good approximation to
the transition probability over all 235() . ¢/ two-edge paths), we can replace the
two-edge paths in D}, by edges in a new distinguisher Dj/ (which depends on h)
such that an edge (u,w) labeled r € {0,1}" appears in D} if and only if, for some
v, the path (u,v,w) appears in D) with the first edge (i.e., (u,v)) labeled r and
the second edge (i.e., (v, w)) labeled h(r). Needless to say, the crucial point is that
Pr[D; (U j2).n) =1] approximates Pr[D} (Up.,) =1].

The forgoing process can be applied to D} resulting in a distinguisher D}’ of
half the length, and so on. Each time we contract the current distinguisher by a
factor of two, and do so by randomly selecting (and fixing) a new hash function.
Thus, repeating the process for a logarithmic (in the depth of D} ) number of times
we obtain a distinguisher that only examines n bits, at which point we stop. In

total, we have used ¢ %< log,(¢'/n) < log, ¢(k) random hash functions. This means
that we can generate a (pseudorandom) sequence that fools the original Dy by
using a seed of length n +t - logy |H,|. Using n = O(s(k)) and an adequate family
H, (which, in particular, satisfies |H,| = 2°("), we obtain the desired (s,27*)-
pseudorandom generator, which indeed uses a seed of length O(s(k)-log, ¢(k)) = k.

Rough sketch of the proof of Theorem 4.3 (see details in [44])

The main technical tool used in this proof is a suitable randomness extractor (see,
e.g., [50] or [19, Apdx. D.4]), which is indeed a much more powerful tool than
hashing functions. The basic idea is that when the distinguisher Dy is at some
“distant” layer, say at layer t = Q(s(k)), it typically “knows” little about the ran-
dom choices that led it there. That is, Dy has only s(k) bits of memory, which
leaves out t — s(k) bits of “uncertainty” (or randomness) regarding the previous
moves. Thus, much of the randomness that led Dy to its current state may be
“re-used” (or “recycled”). To re-use these bits we need to extract almost uniform
distribution on strings of sufficient length out of the aforementioned distribution
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(over {0,1}%) that has entropy® at least ¢ — s(k). Furthermore, such an extraction
requires some additional truly random bits, yet relatively few such bits. In partic-
ular, using k¥ = Q(logt) bits towards this end, the extracted bits are exp(—Q(k’))
away from uniform.

The gain from the aforementioned recycling is significant if recycling is repeated
sufficiently many times. Towards this end, we break the k-bit long seed into two
parts, denoted 1’ € {0,1}*/2 and (r1, ..., 75 /5), where [r;| = Vk/6, and set n = k/3.
Intuitively, 7’ will be used for determining the first n steps, and it will be re-used
(or recycled) together with r; for determining the steps i-n + 1 through (i + 1) - n.
Looking at layer i-n, we consider the information regarding r’ that is “known” to Dy,
(when reaching a specific vertex at layer i-n). Typically, the conditional distribution
of ', given that we reached a specific vertex at layer i-n, has (min-)entropy greater
than 0.99 - ((k/2) — s(k)). Using r; (as a seed of an extractor applied to r'), we
can extract 0.9- ((k/2) — s(k) — o(k)) > k/3 = n bits that are almost-random (i.e.,
2-2(VK)_close to U,,) with respect to Dy, and use these bits for determining the next
n steps. Hence, using k random bits, we produce a sequence of length (1—1—3\/%) ‘n >
k3/2 that fools automata of space bound, say, s(k) = k/10. Specifically, using an
extractor of the form Ext : {0,1}V*/6 x {0,1}¥/2 — {0,1}*/3, we map the seed
(7,71, ...;75 /) to the output sequence (r', Ext(ry,r’), ..., Ext(ry z,7’)). Thus, we
obtained an (s,2~*V*))-pseudorandom generator of stretch function ((k) = k3/2.

In order to obtain an arbitrary polynomial stretch rather than a specific poly-
nomial stretch (i.e., £(k) = k3/2), we iteratively compose generators as above with
themselves (for a constant number of times). The basic composition combines
an (s1,e1)-pseudorandom generator of stretch function ¢;, denoted G, with an
(s2,€2)-pseudorandom generator of stretch function ¢, denoted Gy. On input
s € {0,1}*, the resulting generator first computes G (s), parses G4 (s) into ¢ con-
secutive k’-bit long blocks, where k' = s1(k)/2 and t = ¢1(k)/k’, and applies
G4 to each block (outputting the concatenation of the ¢ results). This generator,
denoted G, has stretch £(k) = t - l3(k’), and for si(k) = O(k) we have £(k) =
01(k) - £2(2(k))/O(k). The pseudorandom of G can be established via a hybrid ar-
gument (which refers to the intermediate hybrid distribution Go(U, ,5/1)) - Ga(U ,Ef))
and uses the fact that the second step in the computation of G can be performed
by a non-uniform automaton of space s1/2).

4.2.2 Derandomization of space-complexity classes

As a direct application of Theorem 4.2, we obtain that BPL C DSPACE(logQ)7 where
BPL denotes the log-space analogue of BPP. (Recall that N'L C DSPACE(logz),
but it is not known whether or not BPL C N L.)G A stronger derandomization
result can be obtained by a finer analysis of the proof of Theorem 4.2.

5 Actually, a stronger technical condition needs and can be imposed on the latter distribution.
Specifically, with overwhelmingly high probability, at layer ¢, automaton Dy, is at a vertex that can
be reached in more than 20-99-(t=s(k)) different ways. In this case, the distribution representing
a random walk that reaches this vertex has min-entropy greater than 0.99 - (¢t — s(k)).

6Indeed, the log-space analogue of RP, denoted RL, is contained in N'L C DSPACE(log2)7 and
thus the fact that Theorem 4.2 implies RL C Dspacg(log?) is of no interest.
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Theorem 4.4 BPL C SC, where SC denotes the class of decision problems that
can be solved by deterministic algorithms that run in polynomial-time and polylogarithmic-
space.

Thus, BPL (and in particular RL C BPL) is placed in a class not known to contain
NL. Another such result was subsequently obtained in [49]: Randomized log-space
can be simulated in deterministic space o(log2); specifically, in space 10g3/ 2 We
mention that the archetypical problem of RL has been recently proved to be in £
(see [47]).

Sketch of the proof of Theorem 4.4 (see details in [42])

We are going to use the generator construction provided in the proof of Theo-
rem 4.2, but show that the main part of the seed (i.e., the sequence of hash func-
tions) can be fixed (depending on the distinguisher at hand). Furthermore, this
fixing can be performed in polylogarithmic space and polynomial-time. Specifically,
wishing to derandomize a specific log-space computation (which refers to a specific
input), we first obtain the corresponding distinguisher, denoted D, that represents
this computation (as a function of the outcomes of the internal coin tosses of the
log-space algorithm). The key observation is that the question of whether or not
a specific hash function h € H, is good for a specific D}, can be determined in
space that is linear in n = |h|/2 and logarithmic in the size of D). Indeed, the
time-complexity of this decision procedure is exponential in its space-complexity.
It follows that we can find a good h € H,, for a given Dj , within these complexities
(by scanning through all possible h € H,,). Once a good h is found, we can also
construct the corresponding graph D} (in which edges represent two-edge paths
in Dj), again within the same complexity. Actually, it will be more instructive to
note that we can determine a step (i.e., an edge-traversal) in D} by making two
steps (edge-traversals) in Dj.. This will allow to fix a hash function for Dj/, and so
on. Details follow.

The main claim is that the entire process of finding a sequence of ¢ def log, ¢/ (k)
good hash functions can be performed in space t-O(n+log|Dg|) = O(n+log | Dy |)?
and time poly(2™:|Dg|); that is, the time-complexity is sub-exponential in the space-
complexity (i.e., the time-complexity is significantly smaller than than the generic
bound of exp(O(n + log |Dg|)?)). Starting with D,(gl) = Dj,, we find a good (for
D,il)) hashing function h") € H,,, which defines D,(f) = Dj/. Having found (and
stored) rM ..., h) e H,, which determine D,(fH), we find a good hashing function
UD€ H, for D,(:'H) by emulating pairs of edge-traversals on D,(:H). Indeed,
a key point is that we do not construct the sequence of graphs D,(f), ...,D,(;H),

but rather emulate an edge-traversal in D](;H) by making 2° edge-traversals in D,
using h(M, ..., h(¥: The (edge-traversal) move o € {0,1}" starting at vertex v of
D,(CZH) translates to a sequence of 2¢ moves starting at vertex v of D;,, where the
moves are determined by the 2%-long sequence (of n-bit strings)

0 _ni—2 _ni—2
h(o)(a),h(o 01) (0°~210)

(@), h

—(0%7211)

(), T (@), . 7%,
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where E(Uimal) is the function obtained by the composition of a subsequence of the

functions h(), ..., h(!) determined by o; - - - o1. Specifically, E(mmgl) equals h+) o
-0 hli2) o h(1) where iy < ig < -+- < iy and {i; : j=1,..,t'} = {j : 0;=1}.

)

Recall that the ability to perform edge-traversals on D,(jﬂ allows to determine

whether a specific function h € H,, is good for D,(;H). This is done by considering
all the relevant triples (u, v, w) in D,(:H), computing for each such (u, v, w) the three
quantities (i.e., probabilities) appearing in Eq. (4.2), and deciding accordingly.
Trying all possible h € H,,, we find a function (to be denoted R(*+1)) that is good
for DSH). This is done while using an additional storage of s’ = O(n + log|Dj,|)
(on top of the storage used to record h(M), ..., h(?), and in time that is exponential
in s’. Thus, given D}, we find a good sequence of hash functions, R h®) | in
time exponential in s’ and while using space s’ + t - logy |[Hy,| = O(t - ¢'). Such
a sequence of functions allows us to emulate edge-traversals on D,(:H), which in
turn allows to (deterministically) approximate the probability that D} accepts a
random input (i.e., the probability that, starting at the single source vertex of the
first layer, automaton D), reaches some accepting vertex at the last layer). This
approximation is obtained by computing the corresponding probability in Dl(ctH)
by traversing all 2™ edges.

To summarize, given D;, we can (deterministically) approximate the probability
that Dj, accepts a random input in O(t - s)-space and exp(O(s’ + n))-time, where
s =O(n+log|Dy}|) and t < log, |Dy,|. Recalling that n = ©(log |Dy,|), this means
O(log |D},|)?-space and poly(| D} |)-time. We comment that the approximation can
be made accurate up to an additive term of 1/poly(|Dy;]|), but an additive term of

1/6 suffices here.
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Chapter 5

Special Purpose Generators

The pseudorandom generators considered so far were aimed at decreasing the
amount of randomness utilized by any algorithm of certain time and/or space
complexity (or even fully derandomizing the corresponding complexity class). For
example, we considered the derandomization of classes such as BPP and BPL. In
the current chapter our goal is less ambitious. We only seek to derandomize (or
decrease the randomness of) specific algorithms or rather classes of algorithms that
use their random bits in certain (restricted) ways. For example, the algorithm’s
correctness may only require that its sequence of coin-tosses (or “blocks” in such a
sequence) are pairwise-independent. Indeed, the restrictions that we shall consider
here have a concrete and “structural” form, rather than the abstract complexity
theoretic forms considered in previous chapters.

The aforementioned restrictions induce corresponding classes of very restricted
distinguishers, which in particular are much weaker than the classes of distinguish-
ers considered in previous chapters. These very restricted types of distinguishers
induce correspondingly weak types of pseudorandom generators (which produce
sequences that fool these distinguishers). Still; such generators have many appli-
cations (both in complexity theory and in the design of algorithms).

We start with the simplest of these generators: the pairwise-independence gen-
erator, and its generalization to ¢-wise independence for any ¢ >2. Such generators
perfectly fool any distinguisher that only observe ¢ locations in the output sequence.
This leads naturally to almost pairwise (or t-wise) independence generators, which
also fool such distinguishers (albeit non-perfectly). The latter generators are im-
plied by a stronger class of generators, which is of independent interest: the small-
bias generators. Small-bias generators fool any linear test (i.e., any distinguisher
that merely considers the XOR of some fixed locations in the input sequence). We
finally turn to the Expander Random Walk Generator: this generator produces a
sequence of strings that hit any dense subset of strings with probability that is
close to the hitting probability of a truly random sequence.!

IRelated notions such as samplers, dispersers, and extractors are not treated here (although
they were treated in [16, Sec. 3.6] and [19, Apdx. D.3&D.4]).
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Comment regarding our parameterization: To maintain consistency with
prior chapters, we continue to present the generators in terms of the seed length,
denoted k. Since this is not the common presentation for most results presented in
the sequel, we provide (in footnotes) the common presentation in which the seed
length is determined as a function of other parameters.

5.1 Pairwise-Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two
(resp., t) elements in the output sequence of the generator. Such local tests are
indeed very restricted, yet they arise naturally in many settings. For example, such
a test corresponds to a probabilistic analysis (of a procedure) that only relies on the
pairwise independence of certain choices made by the procedure. We also mention
that, in some natural range of parameters, pairwise independent sampling is as good
as sampling by totally independent sample points (see, e.g., [19, Apdx. D.1.2.4]).
A t-wise independence generator of block-length b:N— N (and stretch function
?) is a relatively efficient deterministic algorithm (e.g., one that works in time poly-
nomial in the output length) that expands a k-bit long random seed into a sequence
of £(k)/b(k) blocks, each of length b(k), such that any ¢ blocks are uniformly and
independently distributed in {0, 1}**(%). That is, denoting the i*® block of the gen-

erator’s output (on seed s) by G(s);, we require that for every i; < ig < -+ < i3
(in [€(k)/b(k)]) it holds that
G(Uk)ilyG(Uk)i27~'~7G(Uk)it EUt-b(k)- (5.1)

We note that this condition holds even if the inspected t blocks are selected adap-
tively. In case t = 2, we call the generator pairwise independent.

5.1.1 Constructions

In the first construction, we refer to GF(2(*)), the finite field of 2°(%) elements,
and associate its elements with {0, 1}(%).

Proposition 5.1 (t-wise independence generator):2 Let t be a fived integer and

b, 0,0 :N—N such that b(k) = k/t, ('(k) = £(k)/b(k) > t and ¢'(k) < 2°(®). Let
a1, .. gy be fized distinct elements of the field GF(2b(k)). For sg,81,...,8t—1 €
{0, 13°0) et

t—1 t—1 t—1
def 7 j 7
G(80, 815 ey St—1) = E sjal g S ..y E 550 (k) (5.2)
i=0 i=0 i=0

where the arithmetic is that of GF(2°F)). Then, G is a t-wise independence gen-
erator of block-length b and stretch €.

2In the common presentation of this t-wise independence generator, the length of the seed is
determined as a function of the desired block-length and stretch. That is, given the parameters
b and ¢ < 2 the seed length is set to ¢ - b.
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That is, given a seed that consists of ¢ elements of GF(2b(k)), the generator outputs
a sequence of ¢'(k) such elements. The proof of Proposition 5.1 is based on the
observation that, for any fixed vo,v1, ..., vs—1, the condition {G(so, 51, ...,5¢-1)i; =
v;}f_, constitutes a system of ¢ linear equations over GF(2°®)) (in the variables
50, 81, .-, St—1) such that the equations are linearly-independent. (Thus, linear inde-
pendence of certain expressions yields statistical independence of the corresponding
random variables.)

A somewhat tedious comment. We warn that Eq. (5.2) does not provide a
fully explicit construction (of a generator). What is missing is an explicit rep-
resentation of GF(2(®)), which requires an irreducible polynomial of degree b(k)

over GF(2). For specific values of b(k), a good representation does exist: e.g.,

for d % b(k) = 2 -3¢ (with e being an integer), the polynomial 2¢ + z%? 4+ 1 is

irreducible over GF(2).

We note that a construction analogous to Eq. (5.2) works for every finite field
(e.g., a finite field of any prime cardinality), but the problem of providing an explicit
representation of such a field remains non-trivial also in other cases (e.g., consider
the problem of finding a prime number of size approximately 2b(k)). The latter
fact is the main motivation for considering the following alternative construction
for the case of t = 2.

The following construction uses (random) affine transformations (as possible
seeds). In fact, better performance (i.e., shorter seed length) is obtained by us-
ing affine transformations affected by Toeplitz matrices. A Toeplitz matrix is a
matrix with all diagonals being homogeneous (see Figure 5.1); that is, T' = (¢; ;)
is a Toeplitz matrix if ¢; ; = t;41,j41 for all 4,j. Note that a Toeplitz matrix is
determined by its first row and first column (i.e., the values of ¢; ;’s and t;1’s).

Figure 5.1: An affine transformation affected by a Toeplitz matrix.

Proposition 5.2 (alternative pairwise independence generator, see Figure 5.1):3
Let b,0,0',;m :N—N such that (k) = £(k)/b(k) and m(k) = [log, ¢'(k)] = k —

3In the common presentation of this pairwise independence generator, the length of the seed
is determined as a function of the desired block-length and stretch. That is, given the parameters
b and ¢/, the seed length is set to 2b + [logy ¢/] — 1.
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2b(k) + 1. Associate {0,1}"™ with the n-dimensional vector space over GF(2), and
let vi,...,vp k) be fired distinct vectors in the m(k)-dimensional vector space over

GF(2). For s € {0,1}00)+mk)=1 gng r e {0,132 et

Gs,r) & (Tyvr + 7, Tova 47, oo, Tsvprry +7) (5.3)

where Ty is an b(k)-by-m(k) Toeplitz matrix specified by the string s. Then, G is a
pairwise independence generator of block-length b and stretch L.

That is, given a seed that represents an affine transformation defined by an b(k)-
by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs a
sequence of ¢'(k) < 2"™*) strings, each of length b(k). Note that k = 2b(k) +
m(k) — 1, and that the stretching property requires ¢'(k) > k/b(k). The proof
of Proposition 5.2 is also based on the observation that linear independence of
certain expressions yields statistical independence of the corresponding random
variables: here {G(s,7);, = v;}3_, is a system of 2b(k) linear equations over GF(2)
(in Boolean variables representing the bits of s and r) such that the equations are
linearly-independent. We mention that a construction analogous to Eq. (5.3) works
for every finite field.

A stronger notion of efficient generation. Ignoring the issue of finding a
representation for a large finite field, both the foregoing constructions are efficient
in the sense that the generator’s output can be produced in time that is polynomial
in its length. Actually, the aforementioned constructions satisfy a stronger notion
of efficient generation, which is useful in several applications. Specifically, there
exists a polynomial-time algorithm that given a seed, s € {0,1}*, and a block
location 7 € [¢'(k)] (in binary), outputs the i*® block of the corresponding output
(i.e., the i*" block of G(s)). Note that, in the case of the first construction (captured
by Eq. (5.2)), this stronger notion depends on the ability to find a representation
of GF(2°®") in poly(k)-time.* Recall that this is possible in the case that b(k) is
of the form 2 - 3¢.

5.1.2 Applications (a brief review)

Pairwise independence generators do suffice for a variety of applications (cf., [58]).
Many of these applications are based on the fact that “Laws of Large Numbers”
hold for sequences of trials that are pairwise independent (rather than totally in-
dependent). This fact stems from the application of Chebyshev’s Inequality, and is
the basis of the (rather generic) application to (“pairwise independent”) sampling.
As a concrete example, we mention the derandomization of a fast parallel algo-
rithm for the Maximal Independent Set problem (as presented in [38, Sec. 12.3]).°

4For the basic notion of efficiency, it suffices to find a representation of GF(20(®)) in poly (£(k))-
time, which can be done by an exhaustive search in the case that b(k) = O(log £(k)).

5The core of this algorithm is picking each vertex with probability that is inversely proportional
to the vertex’s degree. The analysis only requires that these choices be pairwise independent.
Furthermore, these choices can be (approximately) implemented by uniformly selecting values in
a sufficiently large set.
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In general, whenever the analysis of a randomized algorithm only relies on the hy-
pothesis that some objects are distributed in pairwise independent manner, we may
replace its random choices by a sequence of choices that is generated by a pairwise
independence generator. Thus, pairwise independence generators suffice for fool-
ing distinguishers that are derived from some natural and interesting randomized
algorithms.

Referring to Eq. (5.2), we remark that, for any constant ¢ > 2, the cost of
derandomization (i.e., going over all 2¥ possible seeds) is exponential in the block-
length (because b(k) = k/t). On the other hand, the number of blocks is at most
exponential in the block-length (because ¢/ (k) < 2°())  and so if a larger number
of blocks is needed, then we can artificially increase the block-length in order to
accommodate this (i.e., set b(k) = log, ¢/(k)). Thus, the cost of derandomization is
polynomial in max (¢ (k), 2°'(®)), where ¢ (k) denotes the desired number of blocks
and o'(k) the desired block-length. (In other words, ¢ (k) denotes the desired
number of random choices, and 2t (k) represents the size of the domain of each
of these choices.) It follows that whenever the analysis of a randomized algorithm
can be based on a constant amount of independence between feasibly-many random
choices, each taken within a domain of feasible size, then a feasible derandomization
is possible.

5.2 Small-Bias Generators

As stated in Sec. 5.1.2, O(1)-wise independence generators allow for the efficient
derandomization of any efficient randomized algorithm the analysis of which is only
based on a constant amount of independence between the bits of its random-tape.
This restriction is due to the fact that t-wise independence generators of stretch
¢ require a seed of length Q(t - log ¢). Trying to go beyond constant-independence
in such derandomizations (while using seeds of length that is logarithmic in the
length of the pseudorandom sequence) was the original motivation of the notion of
small-bias generators. Specifically, as we shall see in Sec. 5.2.2, small-bias genera-
tors yield meaningful approximations of t-wise independence sequences (based on
logarithmic-length seeds).

While the aforementioned type of derandomizations remains an important ap-
plication of small-bias generators, the latter are of independent interest and have
found numerous other applications. In particular, small-bias generators fool “global
tests” that examine the entire output sequence and not merely a fixed number of
positions in it (as in the case of limited independence generators). Specifically, a
small-bias generator produces a sequence of bits that fools any linear test (i.e., a
test that computes a fixed linear combination of the bits).

For ¢ : N — [0,1], an e-bias generator with stretch function ¢ is a relatively
efficient deterministic algorithm (e.g., working in poly(¢(k)) time) that expands a
k-bit long random seed into a sequence of ¢(k) bits such that for any fixed non-
empty set S C {1,...,4(k)} the bias of the output sequence over S is at most
g(k). The bias of a sequence of n (possibly dependent) Boolean random variables
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C1y.yCn € {0,1} over aset S C {1,..,n} is defined as

2 |Pri®ies¢ = 1] = |Pr[@iesi = 1] — Pr[®ies¢; = 0]| (5.4)

2
The factor of 2 was introduced so to make these biases correspond to the Fourier
coefficients of the distribution (viewed as a function from {0,1}" to the reals).

5.2.1 Constructions

Relatively efficient small-bias generators with exponential stretch and exponentially
vanishing bias are known.

Theorem 5.3 (small-bias generators):” For some universal constant ¢ > 0, let

0:N—N and ¢ :N—[0,1] such that £(k) < e(k) - exp(k/c). Then, there exists an
e-bias generator with stretch function £ operating in time that is polynomial in the
length of its output.

In particular, we may have (k) = exp(k/2c) and (k) = exp(—Fk/2c¢). Three simple
constructions of small-bias generators that satisfy Theorem 5.3 are known (see [3]).
One of these constructions is based on Linear Feedback Shift Registers (LFSRs),
where the seed of the generator is used to determine both the “feedback rule” and
the “start sequence” of the LFSR. Specifically, a feedback rule of a ¢-long LFSR is
an irreducible polynomial of degree t over GF(2), denoted f(z) = x* + Z;;(l) fixd
where fo = 1, and the (£-bit long) sequence produced by the corresponding LFSR
based on the start sequence sgs1 ---s,—1 € {0,1}! is defined as rory - - - 7,_1, where

si ifie{0,1,...,t—1}
Ty = — P
S0 S Ticery fiEef{tt+1,., 01}

(see Figure 5.2). As stated previously, in the corresponding small-bias generator
the k-bit long seed is used for selecting an almost uniformly distributed feedback
rule f (i.e., a random irreducible polynomial of degree ¢t = k/2) and a uniformly
distributed start sequence s (i.e., a random t-bit string).® The corresponding £(k)-
bit long output r = rory - - 7¢)—1 is computed as in Eq. (5.6).

(5.6)

6To see the correspondence replace {0,1} by {£1}, and substitute XOR by multiplication. The
bias with respect to a set S is thus written as
i€S

o= o[ =

which is merely the (absolute value of the) Fourier coefficient corresponding to S.

7In the common presentation of this generator, the length of the seed is determined as a
function of the desired bias and stretch. That is, given the parameters € and ¢, the seed length
is set to ¢-log(¢/e). We comment that using [3] the constant c is merely 2 (i.e., k = 2log,(¢/¢)),
whereas using [39] k = log, £ + 4logs(1/e).

8Note that an implementation of this generator requires an algorithm for selecting an almost
random irreducible polynomial of degree t = Q(k). A simple algorithm proceeds by enumerating
all irreducible polynomials of degree ¢, and selecting one of them at random. This algorithm can
be implemented (using ¢ random bits) in exp(¢)-time, which is poly(4(k)) if £(k) = exp(Q2(k)). A
poly(t)-time algorithm that uses O(t) random bits is described in [3, Sec. 8].

(55)
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Figure 5.2: The LFSR small-bias generator (for ¢t = k/2).

A stronger notion of efficient generation. As in Section 5.1.1, we note that
the aforementioned constructions satisfy a stronger notion of efficient generation,
which is useful in several applications. That is, there exists a polynomial-time
algorithm that given a k-bit long seed and a bit location i € [£(k)] (in binary),
outputs the i bit of the corresponding output.

5.2.2 Applications (a brief review)

An archetypical application of small-bias generators is for producing short and ran-
dom “fingerprints” (or “digests”) of strings such that equality /inequality among
strings is (probabilistically) reflected in equality /inequality between their corre-
sponding fingerprints. The key observation is that checking whether or not x =y
is probabilistically reducible to checking whether the inner product modulo 2 of
x and r equals the inner product modulo 2 of y and r, where r is produced by a
small-bias generator G. Thus, the pair (s,v), where s is a random seed to G and
v equals the inner product modulo 2 of z and G(s), serves as the randomized fin-
gerprint of the string z. One advantage of this reduction is that only few bits (i.e.,
the seed of the generator and the result of the inner product) needs to be “com-
municated between z and y” in order to enable the checking. A related advantage
is the low randomness complexity of this reduction, which uses |s| rather than
|G(s)| random bits, where |s| may be O(log|G(s)|). This low (i.e., logarithmic)
randomness-complexity underlies the application of small-bias generators to the
construction of PCP systems and amplifying reductions of gap problems regarding
the satisfiability of systems of equations (see, e.g., [19, Exer. 10.6]).

Small-bias generators have been used in a variety of areas (e.g., inapproxima-
tion, structural complexity, and applied cryptography; see references in [16, Sec
3.6.2]). In addition, as shown next, small-bias generators seem an important tool
in the design of various types of “pseudorandom” objects.
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Approximate independence generators. As hinted at the beginning of this
section, small-bias is related to approximate versions of limited independence.® Ac-
tually, even a restricted type of e-bias (in which only subsets of size t(k) are required
to have bias upper-bounded by ¢) implies that any ¢(k) bits in the said sequence
are 2t(M)/2 . ¢(k)-close to Uy, where here we refer to the variation distance (i.e.,
Norm-1 distance) between the two distributions. (The max-norm of the difference
is bounded by &(k).)!® Combining Theorem 5.3 and the foregoing upper-bound,
we obtain generators with exponential stretch (i.e., £(k) = exp(Q(k))) that pro-
duce sequences that are approzimately Q(k)-wise independent in the sense that any
t(k) = Q(k) bits in them are 2= _close to Uyy). Thus, whenever the analysis of a
randomized algorithm can be based on a logarithmic amount of (almost) indepen-
dence between feasibly-many binary random choices, a feasible derandomization is
possible (by using an adequate generator of logarithmic seed length).!
Extensions to non-binary choices were considered in various works (see refer-
ences in [16, Sec 3.6.2]). Some of these works also consider the related problem of
constructing small “discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-
norm (of the deviation from uniform of any ¢ locations), any e-bias generator yields
a t-universal set generator, provided that e < 27t. The latter generator outputs
sequences such that in every subsequence of length ¢ all possible 2¢ patterns occur
(i.e., each for at least one possible seed). Such generators have many applications.

5.2.3 Generalization

In this section, we outline a generalization of the treatment of small-bias generators
to the generation of sequences over an arbitrary finite field. Focusing on the case
of a field of prime characteristic, denoted GF(p), we first define an adequate notion
of bias. Generalizing Eq. (5.5) (in Footnote 6), we define the bias of a sequence
of n (possibly dependent) random variables (1, ..., (, € GF(p) with respect to the
linear combination (cq,...,c,) € GF(p)™ as HE {wz;lc"ﬂ

p" (complex) root of unity (i.e., w = —1 if p = 2). We mention that upper-

bounds on the biases of (3, ..., {, (with respect to any non-zero linear combinations)
yield upper-bounds on the distance of Y., ¢;¢; from the uniform distribution over

GF(p).

‘7 where w denotes the

9We warn that, unlike in the case of perfect independence, here we refer only to the distribution
on fixed bit locations.

10Both bounds are derived from the Norm2 bound on the difference vector (i.e., the difference
between the two probability vectors).

HFurthermore, relying on the linearity of the construction presented in Proposition 5.1, we can
obtain generators with double-ezponential stretch (i.e., (k) = exp(2ﬂ(k))) that are approzimately
t(k)-independent (in the foregoing sense). That is, we may obtain generators with stretch £(k) =
927" producing bit sequences in which any t(k) = Q(k) positions have variation distance at
most e(k) = 2-9(k) from uniform; in other words, such generators may have seed-length k =
O(t(k) + log(1/e(k)) + loglog ¢(k)). In the corresponding result for the max-norm distance, it
suffices to have k = O(log(t(k)/e(k)) + loglog £(k)).
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We say that S C GF(p)™ is an e-bias probability space if a uniformly selected
sequence in S has bias at most € with respect to any non-zero linear combination
over GF(p). (Whenever such a space is efficiently constructible, it yields a corre-
sponding e-biased generator.) We mention that the LFSR construction, outlined
in Sec. 5.2.1, generalizes to GF(p) and yields an e-bias probability space of size (at
most) p¢, where e = [log,(n/e)]. Such constructions can be used in applications
that generalize those in Sec. 5.2.2.

5.3 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a
random walk on a large graph that has a small degree but an adequate “mixing”
property. Such a graph is called an expander, and by taking a random walk (of
length ¢') on it we generate a sequence of ¢’ values over its vertex set, while using a
random seed of length b+ (¢ —1)-log, d, where 2° denotes the number of vertices in
the graph and d denotes its degree. This seed length should be compared against
the ¢ - b random bits required for generating a sequence of ¢ independent samples
from {0,1}" (or taking a random walk on a clique of size 2°). Interestingly, as we
shall see, the pseudorandom sequence (generated by the said random walk on an
expander) behaves similarly to a truly random sequence with respect to hitting any
dense subset of {0,1}°. Let us start by defining this property (or rather by defining
the corresponding hitting problem).

Definition 5.4 (the hitting problem): A sequence of (possibly dependent) random
variables, denoted (X1, ..., X¢), over {0,1}° is (g, 8)-hitting if for any (target) set
T C{0,1}° of cardinality at least € - 2°, with probability at least 1 — &, at least one
of these variables hits T'; that is, Pr[3i s.t. X;€T] > 1 6.

Clearly, a truly random sequence of length ¢ over {0,1}" is (e, §)-hitting for § =
(1—¢)*. The aforementioned “expander random walk generator” (to be described
next) achieves similar behavior. Specifically, for arbitrary small ¢ > 0 (which
depends on the degree and the mixing property of the expander), the generator’s
output is (e,d)-hitting for § = (1 — (1 —¢) - €)’. To describe this generator, we
need to discuss expanders.

5.3.1 Background: expanders and random walks on them

By expander graphs (or expanders) of degree d and eigenvalue bound A < d, we
actually mean an infinite family of d-regular graphs, {Gx}yes (S € N), such that
Gy is a d-regular graph over N vertices and the absolute value of all eigenvalues,
save the biggest one, of the adjacency matrix of Gy is upper-bounded by A. For
simplicity, we shall assume that the vertex set of Gy is [IN] (although in some
constructions a somewhat more redundant representation is more convenient). We
will refer to such a family as to a (d, A)-expander (for S). This technical definition
is related to the aforementioned notion of “mixing” (which refers to the rate at
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which a random walk starting at a fixed vertex reaches uniform distribution over
the graph’s vertices).

We are interested in explicit constructions of such graphs, by which we mean that
there exists a polynomial-time algorithm that on input N (in binary), a vertex v
in Gy and an index i € {1,...,d}, returns the i*" neighbor of v. (We also require
that the set S for which G'x’s exist is sufficiently “tractable” — say that given any
n € N one may efficiently find an s €S such that n < s < 2n.) Several explicit
constructions of expanders are known (cf., e.g., [36, 35, 48]). Below, we rely on the
fact that for every A > 0, there exist d and an explicit construction of a (d, - d)-
expander over {2° : b € N}.12 The relevant (to us) fact about expanders is stated
next.

Theorem 5.5 (Expander Random Walk Theorem): Let G = (V,E) be an ex-
pander graph of degree d and eigenvalue bound \. Consider taking a random walk
on G by uniformly selecting a start vertex and taking ¢’ — 1 additional random steps
such that at each step the walk uniformly selects an edge incident at the current

vertexr and traverses it. Then, for any W CV and p def |[W|/|V|, the probability
that such a random walk stays in W is at most

P (p+(1—p)~2)[_1 (5.7)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting
property (i.e., when we consider hitting the set V' \ W and use € = 1 — p); that is,
a set of density ¢ is hit with probability at least 1 — d, where § = (1 —¢)- (1 —e+
(A/d)-e)! ' < (1= (1= (\/d))-&)*. A proof of Theorem 5.5 is given in [28], while
a proof of an upper-bound that is weaker than Eq. (5.7) is outlined next.

A weak version of the Expander Random Walk Theorem: Using notations
as in Theorem 5.5, we claim that the probability that a random walk of length ¢’
stays in W is at most (p+ (\/d)2)?/2. In fact, we make a more general claim that
refers to the probability that a random walk of length ¢ intersects Wy x Wy x - - - X
Wy —1. The claimed upper-bound is

V=1

Voo [T Ve +vay, (5.8)

where p; def |[W;|/IV|. In order to prove Eq. (5.8), we view the random walk as the
evolution of a corresponding probability vector under suitable transformations. The
transformations correspond to taking a random step in the graph and to passing
through a “sieve” that keeps only the entries that correspond to the current set
W;. The key observation is that the first transformation shrinks the component
that is orthogonal to the uniform distribution, whereas the second transformation
shrinks the component that is in the direction of the uniform distribution. For
further details, see [19, Apdx. E.2.1.3].

12This can be obtained with d = poly(1/X). In fact d = 0(1/X2), which is optimal, can be
obtained too, albeit with graphs of sizes that are only approximately powers of two.
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5.3.2 The generator

Using Theorem 5.5 and an explicit (2¢, A - 2!)-expander, we obtain a generator that
produces sequences that are (g, )-hitting for ¢ that is almost optimal.

Proposition 5.6 (The Expander Random Walk Generator):'3 For every constant
X > 0, consider an explicit construction of (2¢, X - 2)-expanders for {2 : n € N},
where t € N is a sufficiently large constant. For v € [2"] = {0,1}"™ and i €
[2¢] = {0,1}, denote by T';(v) the vertex of the corresponding 2™-vertex graph
that is reached from vertex v when following its i*" edge. For b, ¢':N—N such that
k= b(k)+(l'(k)—1)-t < ¢'(k)-b(k), and for vy € {0,1}*®) and iy, ...,ipx)—1 € [21],
let

G(UQ, il, ceeey ié’(k)—l) déf (’Uo, Uty eeeey Ué’(k)—l)v (59)
where v; = Ty (vj_1). Then, G has stretch (k) = {'(k) - b(k), and G(Uy) is (g,0)-
hitting for any e >0 and 6 = (1 — (1 —=X) - )¢ ®),

The stretch of G is maximized at b(k) ~ k/2 (and ¢'(k) = k/2t), but maximizing
the stretch is not necessarily the goal in all applications. In many applications,
the parameters n, ¢ and ¢ are given, and the goal is to derive a generator that
produces (g, ¢)-hitting sequences over {0,1}" while minimizing both the length
of the sequence and the amount of randomness used by the generator (i.e., the
seed length). Indeed, Proposition 5.6 suggests using sequences of length ¢ =
£711og,(1/6) that are generated based on a random seed of length n + O(¢).

Expander random-walk generators have been used in a variety of areas (e.g.,
PCP and inapproximability (see [8, Sec. 11.1]), cryptography (see [17, Sec. 2.6]),
and the design of various types of “pseudorandom” objects.

13In the common presentation of this generator, the length of the seed is determined as a
function of the desired block-length and stretch. That is, given the parameters b and ¢’, the seed
length is set to b+ (¢ — 1) - t.
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Notes

Figure 5.3 depicts some of the notions of pseudorandom generators discussed in this
primer. We highlight a key distinction between the case of general-purpose pseudo-
random generators (treated in Chapter 2) and the other cases (cf, e.g., Chapters 3
and 4): in the former case the distinguisher is more complex than the generator,
whereas in the latter cases the generator is more complex than the distinguisher.
Specifically, a general-purpose generator runs in (some fized) polynomial-time and
needs to withstand any probabilistic polynomial-time distinguisher. In fact, some
of the proofs presented in Chapter 2 utilize the fact that the distinguisher can
invoke the generator on seeds of its choice. In contrast, the Nisan-Wigderson Gen-
erator, analyzed in Theorem 3.5, runs more time than the distinguishers that it
tries to fool, and the proof relies on this fact in an essential manner. Similarly, the
space-complexity of the space-resilient generators presented in Chapter 4 is higher
than the space-bound of the distinguishers that they fool.

distinguisher’s generator’s stretch comments
TYPE resources resources (ie., £(k))
[ gen.-purpose [ p(k)-time, V poly. p [ poly(k)-time [ poly (k) [ Assumes OW ]
[ canon. derand. [ 2F/700) _time [ 200%)_time [ 2k/0() [ Assumes EvC ]
space-bounded | s(k)-space, s(k) < k | O(k)-space 2k/0(s(R)) runs in time
robustness k/O(1)-space O(k)-space poly (k) poly(k) - £(k)
t-wise indepen. | inspect t positions poly (k) - £(k)-time | 2F o (e.g., pairwise)
small bias linear tests poly (k) - £(k)-time | 25/00) . ¢(k)
expander “hitting” poly(k) - (k)-time | ¢'(k) - b(k)
random walk (0.5,2=¢ (#)/OM)) hitting for {0,1}°*) with (k) = ((k — b(k))/O(1)) + 1.

By OW we denote the assumption that one-way functions exists, and by EvC we denote the

assumption that the class £ has (almost-everywhere) exponential circuit complexity.

Figure 5.3: Pseudorandom generators at a glance.

(The following historical notes do not mention several technical contributions that
played an important role in the development of the area. For further details, the
reader is referred to [16, Chap. 3]. In fact, the current text is a revision of [16,
Chap. 3|, providing significantly more details for the main topics, and omitting
relatively secondary material.)
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The general paradigm of pseudorandom generators. Our presentation,
which views vastly different notions of pseudorandom generators as incarnations
of a general paradigm, has emerged mostly in retrospect. We note that, while the
historical study of the various notions was mostly unrelated at a technical level,
the case of general-purpose pseudorandom generators served as a source of inspi-
ration to most of the other cases. In particular, the concept of computational
indistinguishability, the connection between hardness and pseudorandomness, and
the equivalence between pseudorandomness and unpredictability, appeared first in
the context of general-purpose pseudorandom generators (and inspired the devel-
opment of “generators for derandomization” and “generators for space bounded
machines”). Indeed, the study of the special-purpose generators (see Chapter 5)
was unrelated to all of these.

General-purpose pseudorandom generators. The concept of computational
indistinguishability, which underlies the entire computational approach to random-
ness, was suggested by Goldwasser and Micali [24] in the context of defining secure
encryption schemes. Indeed, computational indistinguishability plays a key role
in cryptography (see [17, 18]). The general formulation of computational indis-
tinguishability is due to Yao [59]. Using the hybrid technique of [24], Yao also
observed that defining pseudorandom generators as producing sequences that are
computationally indistinguishable from the corresponding uniform distribution is
equivalent to defining such generators as producing unpredictable sequences. The
latter definition originates in the earlier work of Blum and Micali [9].

Blum and Micali [9] pioneered the rigorous study of pseudorandom generators
and, in particular, the construction of pseudorandom generators based on some
simple intractability assumption. In particular, they constructed pseudorandom
generators assuming the intractability of the Discrete Logarithm Problem (over
prime fields). Their work also introduces basic paradigms that were used in all
subsequent improvements (cf., e.g., [59, 25]). We refer to the transformation of
computational difficulty into pseudorandomness, the use of hard-core predicates
(also defined in [9]), and the iteration paradigm (cf. Eq. (2.9)).

Theorem 2.14 (by which pseudorandom generators exist if and only if one-
way functions exist) is due to Hastad, Impagliazzo, Levin and Luby [25], building
on the hard-core predicate of [22] (see Theorem 2.11). Unfortunately, the current
proof of Theorem 2.14 is very complicated and unfit for presentation in this primer.
Presenting a simpler and tighter (cf. Sec. 2.7) proof is indeed an important research
project.

Pseudorandom functions were defined and first constructed by Goldreich, Gold-
wasser and Micali [20]. We also mention (and advocate) the study of a general
theory of pseudorandom objects initiated in [21]. Finally, we mention that a more
detailed treatment of general-purpose pseudorandom generators is provided in [17,
Chap. 3].

Derandomization of time-complexity classes. As observed by Yao [59], a
non-uniformly strong notion of pseudorandom generators yields non-trivial deran-
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domization of time-complexity classes. A key observation of Nisan [40, 43] is that
whenever a pseudorandom generator is used in this way, it suffices to require that
the generator runs in time that is exponential in its seed length, and so the generator
may have running-time greater than the distinguisher (representing the algorithm
to be derandomized). This observation motivates the definition of canonical de-
randomizers as well as the construction of Nisan and Wigderson [40, 43], which
is the basis for further improvements culminating in [26]. Part 1 of Theorem 3.6
(i.e., the so-called “high end” derandomization of BPP) is due to Impagliazzo and
Wigderson [26], whereas Part 2 (the “low end”) is from [43].

The Nisan-Wigderson Generator [43] was subsequently used in several ways
transcending its original presentation. We mention its application towards fooling
non-deterministic machines (and thus derandomizing constant-round interactive
proof systems) and to the construction of randomness extractors (see [53] as well
as [50]).

In contrast to the aforementioned derandomization results, which place BPP in
some worst-case deterministic complexity class based on some non-uniform (worst-
case) assumption, we now mention a result that places BPP in an average-case
deterministic complexity class based on a uniform-complexity (worst-case) assump-
tion. We refer specifically to a theorem, which is due to Impagliazzo and Wigder-
son [27] (but is not presented in the main text), that asserts the following: if BPP
is not contained in EXP (almost everywhere) then BPP has deterministic sub-
exponential time algorithms that are correct on all typical cases (i.e., with respect
to any polynomial-time sampleable distribution).

Pseudorandomness with respect to space-bounded distinguishers. As
stated in the first paper on the subject of “space-resilient pseudorandom genera-
tors” [1],! this research direction was inspired by the derandomization result ob-
tained via the use of general-purpose pseudorandom generators. The latter result
(necessarily) depends on intractability assumptions, and so the objective was iden-
tifying natural classes of algorithms for which derandomization is possible without
relying on intractability assumptions (but rather by relying on intractability results
that are known for the corresponding classes of distinguishers). This objective was
achieved before for the case of constant-depth (randomized) circuits [40], but space-
bounded (randomized) algorithms offer a more appealing class that refers to natural
algorithms. Fundamentally different constructions of space-resilient pseudorandom
generators were given in several works, but are superseded by the two incomparable
results mentioned in Section 4.2: Theorem 4.2 (a.k.a Nisan’s Generator [41]) and
Theorem 4.3 (a.k.a the Nisan—Zuckerman Generator [44]). These two results have
been “interpolated” in [5]. Theorem 4.4 (BPL C SC) was proved by Nisan [42].

Special Purpose Generators. The various generators presented in Chapter 5
were not inspired by any of the other types of pseudorandom generator (nor even by
the generic notion of pseudorandomness). Pairwise-independence generator were

Mnterestingly, this paper is more frequently cited for the Expander Random Walk technique,
which it has introduced.
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explicitly suggested in [12] (and are implicit in [10]). The generalization to t-wise
independence (for ¢t > 2) is due to [2]. Small-bias generators were first defined
and constructed by Naor and Naor [39], and three simple constructions were sub-
sequently given in [3]. The Expander Random Walk Generator was suggested by
Ajtai, Komlos, and Szemerédi [1], who discovered that random walks on expander
graphs provide a good approximation to repeated independent attempts to hit any
fixed subset of sufficient density (within the vertex set). The analysis of the hitting
property of such walks was subsequently improved, culminating in the bound cited
in Theorem 5.5, which is taken from [28, Cor. 6.1].

We mention that an alternative treatment of pseudorandomness, which puts
more emphasis on the relation between various techniques, is provided in [55].
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