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ABSTRACT

We define a p-party ping-pong protocol and its security problem,
along the lines of Dolev end Yao's definitions for two-party ping-pong
protocols.

In the case of two parties, it was assumed, with no loss of
generality, that there exists a single saboteur in the net and the
protocol was defined to be secure iff it was secure against the
active interventions of one saboteur. We show that for more than
2 parties this assumption can no longer be made and that for p
parties 3(p-2) +1 4is a lower bound on the number of saboteurs which
should be considered for the security problem. On the other hand
we establish a 3(p-2} + 2 upper bound en the number of saboteours
which should be considered. We conclude that for a fixed p, p-party
ping-pong protocols can be tested for security in D[nlj time and
ﬂ[nzl space, where n is the length of the protocel. We show that
if p, the number of participants in the protocol, is part of the
input then the security problem becomes NP-Hard. Relaxing the
definition of a ping-pong protocol so that operators can operate on

half words [thus introducing commutativity of the operators) causes

the security problem to become undecidable.



1. IKTRODUCTION

The use of public-key encryption [DH, RSA] for the secure net-
work communication has received considerable attention. Such systens
are effective against a “passive" eavesdropper, namely, one who merely
taps the communication line and tries to decipher the intercepted
message. However, as pointed out by Needham and Schroeder [M5], an
improperly designed protocol can be vulnerable to "active" sabotage.

The saboteur may be & legitimate user in the network. He can
intercept and alter messages, impersomate other users or initiate
instances of the protocol between himself and other users, in order
to use their responses. It is possible that through such complex
manipulations he can read messages, which are supposed to be protect-
ed, without cracking the cryptographic systems In use.

In view of this danger it is desirable to have a formal model
for discussing security issucs in a precise manner, and to investigate
the existence of efficient algorithms for checking the security of
protocols,

Dolev and Yao [DY] investigated the security of two-person,
ping-pong protocols; this investigation, was carried on by Dolev,
Even and Karp [DEK]. In Section 2, we formulate the notion of multi-
party ping-pong protocols and the related security problem. It was
shown in DEK that if s two-party protocol is insccure, one saboteur
suffices to demonstrate it and hence only one saboteur need be
considered for checking the security of a two-party ping-pong protocol.
In Section 3 we show that 3(p-2] +1 and 3{p-2] +2 are lower and upper
bounds on the number of saboteurs which should be considered for the

security problem of a p-party ping-pong protocol and conclude that



for a fixed p these protocols can be tested for security In D[nJ]
time and DLnZ] space, when m is the length of the protocol,

In Section 4 we show that the security problem is NP-Hard if
the number of participants in the protocol is part of its input. In
Section 5 we relax the definition of a ping-pong protocol and get a
class of two-party protocols for which the security problem is un-
decidable. In Section 6 we discuss the problem of finding the

shortest imsecurity string and the power of name appending.

2. MULTI-PARTY PING-PONG PROTOCOLS AND THEIR SECURITY

Let N be the set of members in & communication network and T
be a set of operators. Some operators may have & user name subscript
(hereafter called index). We assume that © consists of aperators
such as encryption and decryption of Public-Key Cryptosystems (PECS),
name appending and deletlon [NS, DY, DEK], and other functions.

Note that there may be several PKCS instances per user and the same
gpplies for the name appending/deletion mechanisms and other functions.

We will demote instances of x's PKCS encryption and decryption
by Eij] and Dij} respectively. The name appendings/deletions
of user x will be denoted by Liij and dij} respectively. In
case theres is only one PKCS instance [name sppending/deletion
mechanism] per user we will take the liberty of omitting the super-
seript (j). The subset of operators, which user x can perform is
denoted by L, @nd is called x's wvocabulary. We assume that
::-z-m}Ej]: y € N-{x}, 1 <j<gq}, where q is the number of PKCS

instances per user. Note that the vocabularies of all users are



similar in the sense that if one replaces the index x by y, and
y by x, in Ly the result is ::r"

Algo, there 1z a piven set of cancellation rules of the form

oT = 1+. where o, 1T € E, If both are indoxed then the indlces pre
the same. The cancellation rules are similar for all users. Thus,
if ome or both operators are indexed then the same cancellationm rule
holds for every index. Note that it may be the case that both
gv = & and vo= A hold. Im this case, we say that the cancellation
rule 1o = & 15 unordered. Note that the cancellation rules of the
name appending/deletion mechanism (i.e. dij]-igj] £ A) is ordered.
We will demote hy iij], dijj all pairs of operators which are not
secret and are ordered.

Mote that if a,b,¢c € I, ab=2 and bc = 3 then a = e¢.
This follows from the fact that members of [ are oporators:

Let w e {0,L}*.

abe (w)

a(be{w)) = a(w), since bec = A, but on the other hand,
abc(w) = ab(c(w)) = c(w).

Thus a

E.

Given a string a E 'l_'-. one may répeatedly apply cancellation
rules until no cancellation rule is applicable any more. By the
previous paragraph, the reduction process has the Church Rosser
property [R], and thus the end result, hereafter called the reduced

form of @, is unique. Let us denote the reduced form of o by ao.

+ We say that two sequences of operators, o and £, are equal if
they are equal as words over I, and denote this by a = B, We say
that two sequences of operators, o and #, are equivalent if for
every wE {0,1}" applying a to w and applylng B to w
yields the same result (i.e. a(w] = B(w)), and denote this by
a=f,



(Note that a =a and that o = 8 if & = f.)

An underlying assumption in our analysis is that the set I is
free from any relations other than those implied by cancellation
rules. Thus, two strings of operators, a and f are oguivalent if
and only if both have the same reduced form.

Examples and demonstrations can be found in DEK,

We will assume throughout this work that p = 2,

We define a p-party Ping-Pong Protocol as a sequence of operator-

words {uj[§}};_l where x = [II'IE"*":p] is a sequence of user-
name-variables, and for every j there exists an Ij* 1%= ij =p,

such that EJ(E} E [in_]*; 1 specifies the phase in which the

B
operator-word quEJ is applied by user %; . Sometimes we will

write «. instead of a,(x), provided x is defined before. Ne
j Jrs g
shall always assume that uj{EJ = ﬂiiEE; however, all the results
held even if this sassumption is not made.
An a-instance of a p-party ping-pong protocol 15 an assignment

of the participants a = tul,...,ap} to the variable-users x.

In the j-th phase of the a-instance of protocol P, hereby denoted

by P(a), Bi} applies ujig}, which denotes the a-instance protocaol
word obtained by assigning the participants a to the variable-users x.
This operator word is applied (by B; ] to the message transmitted inm
the (j-1)-st phase if j > 1; for § =1 it is applied to some message,
M, initiated by aiI. In either case, aij transmits the result with
4 gtatement specifying the name of the protocol ("P"), the phase (§)
and the sctual participants (a).

Let us denote by A the set of users in 2. We will assume that

|A| = p (i.e. that one user 1s not allowed to play the role of different



variable-users in an instance of a protocol) and that an honest user
would refuse to participate in an instance of a protocol which does
not meet this condition [suspecting that this instance is used for
some illegitimate purpose). For further discussion of this assumption
and what happens if it is not made, see Appendix A,

A protocol, P, is said to be insecure if there exists an instance
of it, P{a), such that a user, $y M0t in A can, perhaps via col-
laboration with other users in the net, get the orlginal message M
through 8 fixed, predetermined, sequence of actions, The user s,
and all the users not In A, who collaborate with him knowingly (see
action (2) below) or unknowingly (action (3)], are called saboteurs,

It is dassumed that users in A do not collaborate with s knowingly
but they may help him inadvertently, by Participating in other instances
of the protocol. Due to the assumption of freeness, the assumption

that the saboteurs' sequence of sctions is flxed and predetermined,

is no weakening of the saboteurs’ options.

Actions which s can take are:

(1) Obtain any message transmitted opemly in the a-instance of the
protocol. MNote that this is a purely "passive" eavesdropping.
(2] Apply any operator of a saboteur's vocabulary to any message,

Note that s cannot apply directly an operator which is in z's

vocabulary, but not in that of s, unless z, knowingly,

colleborates with Him.
(3) Apply any b-instance of a protocol word [EJEPJ} to any message,
where B < (AU 8) and [B] =p. This miy be done by waiting

for P(b} te occur (or convincing bil to initiate it), replac-

ing the (j-1)-th message by the desirsble message [(1f 4 = 1:



otherwise convincing bil to choose it as the initial messape)
and reading the j-th transmission.
When a party, b; , reacts to a message by dapplying “j (k)

]
to it, sccording to the protocol, he has no TEeasOn to
i

suspect that his action may help someone to illegitim-

ately seize M.

Lat us denote E,': ¢ ¥ :: + WNote that rq
- CES "
Qperators s can apply to any message (i.e. action (2)). For

iz the set of all

protocol P and a set of users T, define T(P,T) = {'mit'_t_-}.- 18 < g,
IEE T, |Bf =p). I(P,5 U A} is the set of all instances of protocol
words, where the p users, in the instance, are a subset of 5 U A,
luph thet T(P,5 U A) constitutes action (3).

We define protocol P to be insecure iff thore exists a set
| of saboteurs, S, and a y such that + € (T, UT(P,S UAY) and
:' = &, Note that the choice of a is inmaterial.

.I e eall ﬁr-nl{y an insecurity string of P. Consider a parsing

(partition) of y into words in Ig U IP,S U A) 1,e.
'-.r=-|-n ver ¥prvy wWhere y, E I U I(P,SURA), for 15§ <q,

We call Yy & filler 'if vy, € [gi otherwise ¥; s a word of

d parsing of it. Consider a reduction process, which reduces
ﬂ:l{y to A. Throughout the paper, when we talk about an insecurity
string, we assume some reduction process on it.

| Let & be an occurrence of some operator in the insecurity

ng, we call the occurrence of the operator which cancels it,

in the reduction process, 6's mate.



[set) of protocols as Follows: An environment {Pi}gtl, whe e

—
L irgs o
[The notion of insecurity can be extended for an environment
PR |
P ) {a.[x)}. is & p.-party ping-pong protocol, is said to be
e R D i
insecure iff there exist a protoecol Pr+ @ set of saboteurs 5 and
| a ¥ € (5g quk{,_,]: 1S5 <2, Be(AUS), |8 = p0", such that
T-uI[g] = 4. The results of Sections 3, 4 and 5 ¢an be extended to

Apply to the security problem of enviromments of protocols, ]

In this work, when we introduce a protocol, we do not assume

any purpose for which this protocol will be executed. Furthermore,
we even do not assume that during a honest execution of it a party

to it will be able to read M or even that the protocal can be
executed honestly, (i.e. that the result of the application of tha
i-th protocol word to the (i-1)-st transmission is defined). If a
Protocol, we present, "does not make sense", it c¢an be viewed as

part of some other protocol or part of a collection (i.e. environment)

of protocols.

I 3. BOUNDS ON THE WUMBER OF SABOTEURS

Having defined the notion of insecurity of a P-party ping-pang
protocol we introeduce the following problem, hereby referrod to as

the Minimum nusber of Saboteurs which demonstrate the Insecurity of

@ p-party Protocel problem (MSIP(p}):

What is the minimum cardinality of $ such that for every insecure
)

p-party ping-pong protocol, P g {“i}z

a1t there exist a v such that

o P
y E {LE v I(P,5 U A)) and v-nI{E} -k,



Theorem 1: If I consists only of encryptions and decryptions of
PKC5's [i.e. several encryption decryption mechanisms per user) then

the sclution of MSIP(p) is (p-1).

Proof:  MNote, first, that (p-1) saboteurs are needed to allow a
saboteur to read the original message in an instance of the following

insecure protocol:

4 g g (1) ., (1) 5(0)
1y 2 5 1%

We now prove that (p-1) saboteurs are always sufficient to

demonstrate the insecurity of an insecure protocol over PKCS's.
Ller P be such an insecure protocol, 5§ a set of ssboteurs and ¥
be a string in (£, U I(F,5 U A))" such that the reduced form of
veo,(8) 1s . Also, assuze that among the possible strings, ¥
contains the minimum number of words of I(P,S UA); and furthermore,
that the number of fillers is minimal,

Clearly, no word of I[P,5 U A) contains decryptions of several
users and all the non-decryption eperators (1.e. the encryptions]
can be performed by any user. Thus, ¥ contains only words of
I(P,5 U A} which include decryptions by some user in A (note that
& word of I(P,5 U A) which does not contain such a decryption
can be replaced by the appropriate operators in EE' i.e. by fillers).
By the minimality assumptions om ¥, if two operators of the saboteur
cancel in the cancellation patternm of ¥ then one of the operators
occurs in a word of I(P,5 U A) and the othor is a filler. We
replace, independently, in each word of I(F,5 U A) in ¥, the saboteurs
which eccur in that word by saboteurs which belong to a global set of

p-1 saboteurs, denoted 5',



This replacemont changes the indices of operators which oceur
in words of I{P,5 U A) and arc indexed by elements of 5. To
preserve the cancellation pattern we replace the indices of their
mates accordingly.

Mote that this last replacemant Effects only fillers and thus no
repeated replacement occurs. A formal description of this process
which transforms v € (£ U 1(P,5 U A))" into y"E(I_, UI[P,S' uan®
such that |$'| = p-1 and yW-a (2] =3 follows:

Replace each E(b) € I(P,5 U A), which appears in y by the
word fB{b'), where for 1Sisp h;_’bi if hi'EA: otherwise
hi is some element of 5' such that for ifj, biﬂ hj. The string
wWhich results is denoted ',

Let ﬂn L3 IE be a filler and E; its mate. Let E;. be tha
operator which replaces ﬂi in the process of obtaining ¥'. We now
replace B by &x" Kote that the reduction pattern which applies
to T-ulfgj still applies to T”*ulfgﬁ-

q.E.D.

We say that a string, of words over an infinite alphabet of
variables, is paired if the occurrences of the variables are
partitioned into pairs such that:

(1] The elements of a palr dre occurrences of the same variable
and occur in different words.

(2) There exist no two pairs such that one and only one of the
elements of the first pair occurs in the string between the
occurrences of the elements of the second pair (i.e. the pairs

constitute a well-formed parentheses expression).



- gl =

We say that a paired string is linked if there exists a route
between any two occurrences of the same variable, where a route is
defined recursively as follows:

(1} There is a route between two occurrences of the same variable
in the same word.

(2] There is a route between two occurrences which are in the same
pair.

(3) If thers i3 a rfoute between B, and B, and a route between

B

and &, then there 13 a route botwesn B arnd #

Z 3
(i.8. transitivity].

1 3

[(Note that being paired is a precondition to a string being

linked.]

We define the following word problem, hereafter referred to
b String Assignment (SA):
Given a linked string find the minimum number of constants which can
be assigned to the varisbles such that the same constant is not
assigned to different variables, if there is a word of the string in
which both occur.

Define a t-string to be a linked string in which every word
consists of occurrences of at most t different variables (while
a variable may appear several times in the same word).

Define the Symbol Assignment of t-Strings problem (SAS(t)) to be the

following question: What is the maximum solution of the SA problem
when restricted to t-strings?

Throughout this section assume t > 1 and p > 2,

Lemma 1: For every lnsecure p-party ping-pong protocol P which

requires q saboteurs in order to demonstrate its insecurity,



L=

there exist a [p-1)-string whose SA's solution is oqual to g.

et P 4 [ui{§}}i=1 be an insecure p-party ping-pong
ocol and g be an integer such that g saboteurs arc necessary
d sufficient to demonstrate P's insecurity. Let 5 be & set of
| ;n’tntuu.rs and ¥ € {Is W I{P.5 U A}]' be a string which contains
the minimm number of words from I(P, U A), such that vea (3] = A
te that each non-filler contains at least one non-saboteur

ption and thus the number of saboteurs which occur in words

of y does not exceed (p-1). Also note that omitting a non-saboteur
ator and its mate does not relax the constraints on the number
;;zjlhntuﬁra in vy, since these constraints are embedded in the

ions among saboteurs' operators.

We say that twoe occurrences of operators indexed © are
ralated if thore exist a path between thes, when a path is defined

recursively as follows;

word and are indexed by the same user.
There is & path between two operators which cancel each other
[i.e. mates).

If there is a path between B, and B, =and a path between &

prd
-and ﬂ'3 then there is a path betweem 6

2
and O,.

1 3

(Hote that the definition of & path between occcurrences of
h5é~ tors in y is similar to the definition of a route between
s of a variagble in p paired string.)

We presont tho following (p-1)-string: Assign a different

igble to each set of occurrences of operators indexed by a sabot-

such that the ocourrences sre related. Replace, in vy, each



yrence of an operstor by the variable assigned to it., Non-sabot-
jperitors are omitted. Define two ocourrences of s varlable as

' if the occurrences of the operators which they have replaced

$ words. Note that the solution to the 54 problem for the Tesult-
g is q.

hote that the constants  can be assigned to the string accarding

3 the way the saboteurs appeared in v+a,{z): On the other hand,

1_ mt possible to assign less than g constants to the sTring
ince one can use such an assignment to derive an insecurity string
Br P which is similar to veu,(8) but uses less than q saboteurs.)

ma follows.
O

For every t-string whose SA's solution is g, there exist

1 ins cure  [t+1]-party ping-pong protocel which requires g saboteurs

mstrate its insecurity.

iroof: Lot LITREEN P be a t-string of minimal length such
is the solution of its SA problem. We zhall introduce a

party protocol which is insSecure and cannot be cracked by less

saboteurs

' -.,. each ""';[ We replace the variables by operators indexed by

: variables KyaXa,eoeuX. This replacement is performed consist-
:_ﬁ_ﬂ'liﬂ each word (but independently of other words). Let us
-__-ﬁr q:j(xij the variable of N5 which is replaced by X .



R [

rator is & name-appending if the occurrence of the variable
the r.h.5. element in its pair; otherwise the operator is an
d name-deletion. Denote by W the word which results from Wy
ﬁﬁne the following (t+l)-party ping-pong protocol (for user

XyaXoseorsKyaky g0

A
= |
4 Itﬂ Lre1
A j+l i
a a B sE ses E =E «[1 3 wiid 19«0 .
Jrl TRy UEy X Zrel Fead R 5 ML,
for 1 £33 &
u£+= E {dx ]1-"‘1-']1
t+l t+l

First let us show that the protocol, hereafter denoted P, is
insecure and that a set of q saboteurs, denoted 5, suffices to
demonstrate its insecurity. To this end we introduce the string

B

-
B 4% EE'EI' where Bj E I(P,5 U M-EE for 1 3§ £ 42,

A )
. LR R

by

242 Tg#l

Let Eultg}, ﬂuzﬂ“ (a) and

122 Bies
z 1
With no loss of generality, we can assume that the names of tha

sgboteurs in 5§ dre the constants assigned to the variables of

Wy et MW, in the splution of the 5\ problem. For 1 41 g t

and 1= js&, h{” is the saboteur whose name has been assigned

to the variable mj[xk]‘ For 13 £ &, héﬂ =8

@ & = 1 P =
Mote that EI.”2 EEH i IEI2 El Wi oaes Wy b, Thus,

B

A * Ei-ﬁ'l , demonstrates P's insecurity using q ssaboteurs.

542 el



- 14 =

Having shown that P is insecure, Let 5' be a set of
saboteurs and vy € (Ig, U I(P,S' U M]t such that ?TEIf§f==1
and ¥ contains the minimm number of words of I(P,5° U A). The
following facts are of interest:

{1) In cach instance of protocol word (i.e. a word of I(P,5" U A])

which occurs in y the role of el is played by Bl In

each appearance of aj‘] in vy saboteurs are assigned to all
the other xi‘s. since there is no protocol word which can remove

the string E;.; B, K of ...

i1 xy g+l
- wl = oyl
[2) uj+1 = uj+1* for 1 % j £ L. This follows from “j = H! and
the fact that on the r.h.s. of Hj EppEATE 6 dx operator
T+l

while om its l.h.s. appears an lx operator.
tl

(3) The string v conteins an instance of Oy yae

{4) The j-th protocol word in vy (counting from right to left) is

an instance of uj*1+
(Using induction onm j one can prove that the nmumber of dx

el
in the j-th protocol word is j. MNote that the ¢laim holds for

j=1. Assume that the claim holds for every k < j. HNote that

the d: s which occur in the j-th protocol word must be canceled
t+l
by the i 's which occur in the (j-1)-st protocol word. Also
t+l
note that, by the minimality of w, =++ w,*w,, the 1 'g
2 271 %61
which occur in the (j=-1)-5t protocol word must be canceled by

the d *s which occur in the j-th protocoel word. Thus, the
+1
claim halds Eor j.)

5 = ] i r L]
(5] 4=y EIEEJ Wy w3 g -
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f6) |5'] ®q. Assuming on the contrary that |s'| « q contradicts

P

- assusption that the solution te w, ... W, w;'s SA problem
s q (since the constants can be assigned to the wj':

g to the assignment of saboteurs to the ui'a].
in |

s of the following:
) L consists of encryptions and decryptions by a single PKCS
and a single name appending/deletion mechanism per user (i.e,
,ix,dx: x € N1}).
1,150 -

i) The cancellation rules are unordered (i.e. if ov =} isa

e {E'x'n::

cancellation rule then so is 1o = 1).
ote that the proof of the lemma uses only protocels restricted

To prove the validity of the lemma under restriction (ii)

. the following protocol, for a given string Wy 0t WMyl
P T o IR 8 ) T8¢ L TR

1 %1 *en 427 Xy Fpag
”... E":‘IL]-EU“'E:l -u"-nu"l] for l=js i, % is
t L PO B | i

ned from vrj by replacing, as in the proof of lemma 2, its



= 1 =

Er operators indexed by user-variables L TR ST
yperator is a name-dependent function Lf the occurrence of the
variable is the r.h.s. element in its pair, otherwise the opeErator
is the inverse of this function. We use a different function for
every pair; it may be possible to reduce the number of functions

used by considering the specific ui's.]

Corollary 1: If B5AS(t) has a solution then it is equal to the

solution of MSIP[t+1].

Proot: Follows from Lemmas 1 and Z,

Lemma 3: 5 is a lower bound on the solution of SAS(2).

Proof: Consider problem SA for the following Z-string (Fig.l):

VI iﬁgéaur-@-u.x%,ﬂ,?&}_“.m
LWHuwmﬂﬁm”uur

The lines below the string show the partition into
pairs while the lines above show routes within words.

FiE.EB 1

It is easy to see that the solution to this instance of the SA problem

is 5, since no two variables can be assigned the same copstant.

o

Lemma 4: 35({t-1}+1 4s a lower bound on the solution of SAS(t).



e b

Proof: Consider the following t-string (Pig. 2)

(x wx) + s(x, ]-[r wwylesly.z) - (2¥2] - s(z, x

L L) | Theod L1 |

t-1
A
s(x, ¥)= {; LT Yoo = oy - SVEPC JSy JO X, ¥,
1761717 1 t-1 W¥e-2"1 1E-1 P E=1" T g
Al 4|7 |—__x—l [ = A |
£1 ‘ted t=1 £-1 fal t-1

2 S -

2 t-2 t-1

Figure 2

It can be verified that no two variables can be assigned the same

constant. Thus one should use 3(t-1) +1 constants for this "instance”

of SAS(t].
o
Theorem 2: 5 and 3({p-2) +1 are lower bounds for MSIP(3) and
MSIP(p]l, respectively.
Proof: Immediate by Lemmas 2, 3 and 4. Q.E.D.
(&

Given a t-string, s, we define GE{FE,EBJ to be the following
undirected graph: Vs is the set of variables in s and E= consists
of pairs of varisbles such that there exists a word in the string s

in which both variables occur. The following lemma is immediate:

Lemmz 5: k is the solution of the SA problem when applied to a
t-string s Iiff G, is k-chromatic.
Notice that the graphs, of the strings presented in Lemmas 3

mnd 4 are cliques of 5 and 3{t-1) = 1 vertices respectively.
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The following combinatorial lemma concerns the chromatic number
of Gs, when s iz a t-string.

Lemma 6: If = iz g t-string and Gﬁ is ¢-chromatic then
c % 3(t-1) +2,

The proof of Lenma 6 is Elven in Appendix B,
Theorem 3: 3(p-2) +2 is an upper bound for MSIP(p).

Proof: Immediate by Lemmas 1, 5 and &,

Q.E.D0.
Corollary 2: 5 is the solution to MSIP(3).

We conjecture that for p>3, 3(p-2) +1 is the solution to

MSIP(p).

Corollery 3: For every fixed P, the security of a p-party ping-
Feng protocol can be tested in time -EI{nJ] and space D{nz]l, when n
is the length of the protocal .,

This follows easily from technics in DEE.

4. ON THE NP-HARDNESS OF THE SECURITY PROBLEM WHEN THE KUMBER OF
PARTICIPANTS IS PART OF ITS INPUT

At shown in the previous section, for every fixed P, the
security of a p-party Ping-pong protocol can be tested in polynomial
Eime. In this section we show that this is unlikely to be the case
for an unfixed p. To this end we fornulate the following decision

problem, hereafter referred to as the Security of Mul ti-Party Ping—

Peng Protocol problem (SMPF): Glven a milti-party ping-pong protocoi

determine whether it is ingsecure, We have Ffound it comvenient to
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reduce a restricted 3XC (R3XC) problem, defined below, to the

SMPP problem.

R3XC Ernhlqﬂ: Given a ser U = iej}le and & collection of three-

elenent subsets S5 = {Ejj;El

appears exactly in three subsets, determine whether thers exists z sub-

aof U, such that every element of 1

cellection of 5 such that every element of U appears exactly in

one sigbset of the subcollection.

Lemma 7: The R3XC problem is NP-Complete.
The proof is given in Appendix C and is by a reduction from

the 3XC problem.

Theorem 4: The SMPF problem is NP-Hard, even if T = {Et’nx‘it‘dx: x € M}
{1.e. consists of encryption and decryption of a single PKCS and a

single name appending/deletion mechanism, per user).

Proof: By reduction from the R3XC problem, The idea of the reduc-
tion is to simulate in an insecurity string of the protocol (of the
SMPP instance) a correct guess of the solution to the R3XC instance

and its verification, provided such a solution exists,

Given an instance U = {Bi}ffl* 8 = {51}521 of R3IXC, define

fj[i} to be the index of the j-th subset which contains e; [i.e,

if eifskj for 1= j =3 and k) <k, <k; then fj[ijl:kj

for 1%=j%3).
Given (U,5), we introduce the following (instance of SMPP
which is a) ([6nel)-party ping-pong protocol, denoted P{x), where

X = {xu,xl.....x ]

6m

The first word of P(x), nl{f}’ is tﬂn+51ﬂ+1'f§]'EIEE]'EEEE]"'Eintﬁl‘ixu'
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where I'(x] E L e i -d and
an 1 :n

B, 214 = . . for 1%i%y,

13n*£1{i} Inef (1) Man+f, (i)

[Note that @ (x] fully encodes the structure of {U,5).]

Denote C'(x) 2d -d = d , I i i a4
*a ¥ *3n *an Tinez Faner

and Clx) 2 C'(x)-d_ d, e d
o 3n+l “3n+2 4n

nsz} & E:; *I{':_t']-ﬁ'[,},'l'dx -D: . [Note that the correspondance
1 o o

batween [the instances) u1[§} and uzfyl relates to & subcollection

r

{_h_]'ﬂ“ tin

of cardinality n, of 5, provided that ili=gne1 © {ai}i-.}nﬂ I

Such a subcollection may be an exact cover of U, i.e. it is a guess,
wWhich may be correct, of an exact cover of 11.]

&
Denote (x} =4d s - -
Lk "qmz “4n+t *snek

e I T N R
2,k ¥ane2  Fanek Tynel

A
C [x) = 4d ad =d s for 1=k<nq,
Ayl inek *4n+2 r‘-'-‘»ni‘l

A : :
qi.j.k{]—‘} = Exj_-rl Il'.'}] ‘-'-'j:kfll,‘.l'ﬂl:g]l nxi" for 1<i%<3n, | o=
and 1 Sk = q,

e - -
(Hote that EL"-[E] Ei[y A ‘onlyif {hIEntk‘hrln-hl'hént?}
iﬂf iyt 159% 3} This fact is used to verify that there is a (unique)
q
subset in the subcollection, introduced by the correspondence
betwaen o, (a) and u.z{g,':. which covers l:i.]

u}Exj 4 d_«C(x)«D . [Nete that n,{x) is the only protocol
= xﬂ - Ilm*] 3=

word which contains a decryption and does mot contain en encryption.]
P(x) & (a(x): 1S <3 U oy, (0): 1S1<3m, 1<) <3,

1Sk <],
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Let us prove that the reduction is valid, First, assume that
there is an exact cover, denoted E {ﬂi {=1* of U. TDenote hy
"q the index in € of the subset which ;:nntnins 'q (i.e; iF

_ 3
an_-aij then kq 1}. Denote by M the index in {51_.:”..':”:':]:l

of this subset (i.e. if i = fj{q} then " 1). Extend
q

{ij};'_] 50 that {1:']-:‘;'21 - Ejﬁzl. Let a £ (a gryre- ., ) and

a £ (a '“l""'“;ﬁn’aEn*i L =PS BERSRT Pr I
2 3n

Let 2'(q) : {hn-' pree=ebe ] such that hj = a, for 0% j < 4p,

and b “Jn+ft[q]' where r < t and

Dgnet ﬂl3r1'a+1E‘I,['::}I dn+2 "

{nq,-r,'l:} = {1,2,3}, MKote that €, § (alq)) =
q'q

! -d_ d, » for 1% q% 3n, Note that
]"-'m*fstqjl i€y (q)  “3nef,(q)

ag(a']) va (a®(In])+++n {a'(2))-a (a'(1))+a,(a'}a, (5
34 % m, x, (2 2,0, ,k, "2 L, .k, 2 1(a)
is an insecurity string of P. Thus P is insecure.

i Assume, ¢on the other hand, that P i insecure. Assume, with
no loss of gemerality, that the original participants of P are
as= {lﬂ,ﬂl,...,ﬂ.ﬁn].. Let 5' be a set of sabotoors and let
YE ([ U L) U I(P5 UA))" have the minimm number of words

[E'

such that yea (8) = A, Let ¥ = Wy *** wWoew,. The following

14
facts about ¥y are of interest:
Pact 13w, = a,0("), whore () & O R S 4 Lo e
I!r'“'.I 5" UA (Since a f::} is the only protecol word which
Can cancel E i )
% %
_Pact 2: For 0% q<3m, hé“] =4, (Sime C [gtﬁjj.p@ w2y

Fact 3: For 1=4i=3n, w

a1 ™ % Tyt (b { ]]. whars Hri] c5"UA,
1
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ST, S€3and 1<t =n. Furthernore, I:éi]- hfli'”: h:ilﬂ-'r. s
(Using induction on i, note that {ui F k{]f]; 1=§=3,

kS n} is the set of protocol words which can cancel g, »1epi71),

an i
at E.j-'.lfﬂ:l{1 ”} appears In Wy e uzwl-nlfa'}l. Also,

I-'. Ifh T =4 and h:[li] = h:i-l] . for 0 = q < dn, follows.)

. < (1
For 1% i< in, hSn-ti =3mfr_ (1 {Note that
1

1N - (i)
1 B;(8) = % and b:‘rr:-tti = 'Srl*f_r_ () follows.)

i

? 1

2 ‘I'E:I_"IE £ ﬁ_s{bfsn“ ]jl E = 3In+2 and -hésl'lil] _ hr-![:n). for

q%in.]
s

6: For every 1 <1< 3n,

€s: [i). (By £.(1)'s definition.)
fri ]

“%

Ilj:f- t; = tJ. then fr [i) = fl_ {(i}). [(Combining Facts 3 and

O ) j (0) 0
B B, = h3n+t1 i‘3:'|+f1|_ (i) ‘nd 1:'3:1+t:| - hs{iﬂj =
i

.: Assuming L tJ. E]mfri{ﬂ = '3“*f,jﬁi and

trj[” follow. ]

!fffr (): 1 <i<3n}| €n, (By Fact 7.)
S

Define Eghf sqf I i %3n}, By Fact 6 C covers U whije
] t-_l:l]

1
by Fect B |C] Sn. Thus, C is an exact cover of I,

0.E.D,

We do not know whether the SMPP problem is in NP, We have

reasons (see Appendix D) to believe that this is not the cese. 1In

© fact, we conjecture that SMPP is neither in NP nor in Co-NP, However,

using techniques which are presented in DEK, SMPP can be solved ip

exponential time (and exponential spacal.,



i 3. g

‘5. ON THE UNDECIDABILITY OF THE SECURITY PROBLEM OF HALF-NORD
PING-PONG PROTOCOLS

In the previous sections we were concerned with protocols over
‘operators which are free of any relations other than those implied
Hrthu cancellation rules. We now relax this assumption allowing
commutativity of some pairs of operators.

We define a Half-Word Ping-Fong Protocol to be a two-party ping-

pang protocol over the following structure:

) = {E;.:: x €N, vE{L,R,W}} U H;,d:: x €N, » € {L,R}}.

with the cancelliation rules

E;*ﬂ; = A D:-E: =4 for x €N, v € {L, RN}
and
d:-i; = ) for x € N, = € {L,R}.

{2) The semantics

For ® € {E,D}] and x € N, H: is the extension of B:, of the
previcus sections (which operates on word from {H,ij, to opoTate
on words over {0,1,%}. '[E:: ID::I is the encryption [decryption] of
x's instance of a PKCS and i [dI] 1s the appending [deletion] of
his nane.) For 8 € {E,D,i,d}, x € N, v € {L,R} and we€(0,1,8) , if
W€ {0,11°+8§+40,11" then 67(w) is mot defined; otherwise w cen be
written as 1""1;""2 where WyaWs E 10,11" and

s cnitn) &8 sy, sRtw s @ wise o).

(3] There are no relations among the operators other than those

implied by the cancellation rules and the semantics.

We define the Security of Half-Word Ping-Pong Protocol problem

(SHWP) as follows:
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Given a half-word ping-pong protocol determine whether it is
insecure. (The notion of insecurity of a Half-Word protocols is

similar to the notion given in Section 2.)

Theorem 5: 'The SHWP problem is undecidable,

Praof: The Post-Correspondence Problem (PCP) was defined and shown
to be undecidable by Post [P]. Its instance consists of two list,
¥ 4 {y, 37 d -z 4 [z.}0 of words over ([0 1]. d one i

asked to determine whether there exists a non-empty sequence of

Lﬂli{ﬂﬂ.s lIlin...'li’. such that :i'il ' }"il = lit LR Ii.l [i-ﬂ-

the strings are bit-wise equal].

We prove that the SHWP problem is undecidable by reducing the
PCP problem to it. The idea of the reduction is to simulate in an
insecurity string (of the SHWP instance) a correct guess of a solu-
tion to the PCP instance and its verification, provided such a solu-
tion exists. In the simulation process, wa first construct a string
of ¥Y's words and a string of Z's words both corresponding to one,
non-deterministically chosen, sequence of indices. Next we check
deterministically, whether these strings are bit-wise equal.

Given en instance, ¥ 2 (y;)f ) and 2z 8 {237, of the pcP

1=]

problem, introduce the following half-word ping-pong protocol,

denoted F(x] where x = Eln*xll:

The first protocol word, a,(x), is Ez 'EL{E]'SH{EJ, where
a

E g.m _.m L I |

5 (x) = i, i, EI i for v E{L,R}.

[+ 1 o o
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Before presenting the next 2n protocol words (which fully

¥ and 7] we introduce the following denotations:

x q
a g Wy

lfﬁlgi: cee i} «ii  where v € {L,R} and o € {0,1]

i‘. mamw ﬂ'z-l o

1<q<n 1) (08 121-1' “1](x)+d] +d’ , where @ denotes

. @l 1 o
addition modulo 2, rE:rj if v=L and T

[ i="1

I:
k|

U L R
that Ijlh{:_a] encodes :rj while Ij.ln encodes :j.]

g operators superscripted by L [R] which corresponds to the

" of Y's [I's] words. Only the lest protocol word used for
this purpose has an odd serial nimber. ]
b The next two protocol words, “1114-1"-3-':} and nznﬂi_';}, will be
'.ﬂid. to check whether the strings, simulated by the above defined
-"il; words, are bit-wise equal.
B () * E:u-cf;tgn-cﬁt;:-n: for o € (0,1}, where

o

iy & 1T T ea" a® d" , for v € 1L,RD.
N i 1 Iﬂ dﬁﬂ' Iﬂ xl
:M{E} : FL[:E}"I'J:"[!}'D:D, whore F“I{EJ 2 d:D-D:u-d: «d"  for

S

WE{L,R), Note that P(x) & fa (01 1% 5 = 2nua).

Let us prove that the reduction is valid. First, assume that

-iriz,. .‘,1],_ is a sequence of indices which constitutes a solution

E R

to the PCP instance (i.e. 4 e Tyt WYy =8
1

L] e | 4

E o+2 )
i, il

- A
Lat 4, and @, be two users and a = tau.ili. Define Ej ﬂ“irijh-ﬂ'
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for 1= j=<14, and Ei. i Oy +I[E]. Let § = 070y aiv @, wheoTa
etk |
{al, for

:rqE{lJ.l} for 1=q%m. Define Euq “zmzmq

l=q%m, and g Mote that

E+m+1 E uln—h! (a).

el P ...Ez-ﬁL-ulﬂg'j- ‘. Thus, the SHWNP instamce ,P(x),

15 INseCcure.
Asgume, on the other hand, that P(x) is Insecure.
Asgume, with no loss of generality, that LR and 4, are the original

users of the protocol, 1-&1{11“,;1] =% aod 4 = ”q Pen Moew, hag

the minimm number of words (either instances of protocol words or

fillers). The following facts about ¥ are of interest:

LI
Depote E':I = “'j e 'H'.-_""H'l"l.'.l.I rﬂﬂ.ﬂlj, for 0 ‘:J < g.

Fact 1: If there is no Instance of nan{E] in the sequence
“1*'2"""”:]’ then {wk: lSksijle {u.k_[uﬂ.u.lj: 2%k « Inwd},
the left-most operator of E} is E:D and the tws leoft-most
pparators of it which have superseript L [R], horeafrer denoted
suf"(§) [suf (i)], are either 12 il Rty e gk b

| B EII "1 B

[iEl'iE ]. (Using induction on j mnotice that if the claim holds
o
for j-1 then the right-most oporator of 'Hj mist be Iﬁ . Thus,
0

uj € {oy(a,¥): 2%k < In+4, y € N}l. Also note that the two right-
most operators of ""'j which have superscript L must cancel
Eu!'T"[j-lL Thus, ¥ £ {u.k[an,al]: 2% k < Ined]} and the claim

holds for j. Vacuously, the claim holds for j = 0.)

Fagt 2: If wj is #n instince of nﬂnﬂ{f:l then j = q and

‘j T L i G

{(Denote by k the smallest integer such that w, is an instance

of Ayed” Using Fact 1 one can show that W =

i

IaLE:l'm-l! {ua’ zl:l )



St | .

ratars in EJ'. which have superscript L [R] are E: ",‘[1'

o ‘o

] and that E: [EER] Eppeirs only once in ﬂ.i- Mote that
i o Yo

-] which appears in “znﬂ[‘n'“la mist be cancelled by

: [d:‘] is on itg 1.h.s. Therefore,
L] 0

e of Hllt-l,‘ since d

e By the minimality of v, k = q follows.)

5, [au,n]]. (By Facts | and 2.3

£ For 1<is<q, suf'(i-1) = i" is  Aff
) n]
ine2 S k S In+d},  [Note that the two right-most

or of 'Hj g

3. A2 Sk S2nsd and A7 d)  if 3Kk S 2ned,
1 "o

".':'-' these operators must cancel 5ufﬁ|:;]-1} and therefore
FPL

ISk < 2ned Qff suf'(§-1) = 1" 17 L)

. T %

nkl{nn,alj which have superse-ipt + are

Thers is a unique r such that l¢r<q and w_E {uzhlruu'al};

]E {uik‘:aﬂ‘lll: lskgn) iff jer,

1T w P T w "
suf ' (0) = i} i and suf'(g-1) = iy )

g0}, Furthermore, w

i

a 1 1 "o
Mote that suf”[j-1) = il A0 and suf(j) = Uy A1 ifF
o 1 1 ]
§fay . 08,.2)): Lcken). Furthermare, if suf" (§-1) =

2 : then "5 E {u“[aﬂ.ul}: 1£ksnl. By fact 4 if
] T
ll‘lan than I-l':| £ {ukfnu,n]]. 2ne? = k= 2n+4l.

_ that if LF € lay [iﬂ,ﬂ.l:]:. n+? % k = ?n+3) then

-i: « Thus, Fact § follows,)
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me, with no loss of generality, that Wy ql'ijtan"ll

r - Il"Ea-it.+_1l::r:ln'“l‘]*'

Py, =0 ¥po¥y =% wencTooerc . (By-Fact S the SeLuCTICe
x A T 54

Atois 3t A0 which have superscyipt L [R] is

L L L
i ﬂl J (8,08, «2n lﬁz[a oot )T v, faﬂ,al}-Ezn.lan
T 1
%R R . R iRl
B.I'ia ]I'- "'1:I r [En"al}'lz [P;-’HIJ EI- ‘s 1. tete

that 'I'q = uznvdﬁn’al] only cancels the two right-most and the
two left-most operators in each of these sequences, Thus,

L

l: (a,08y) === I [a LIRS
Y.

'i'r i 11

[aﬂ .al} and

ID (a,,8,) vae 1 (ag.a)-10 (4,08,) must be cancelled by
i i
1

operators in ”q-l *re Wola"Woq- By Fact 5 'urj E {']Enﬁm{“u'“l::

o€ {0,1H}, for r < j<q. Note that, for = <j <q, if
Ii‘j = BoneZegliyedy) then the third operator from the laft, in the

sequence of operators in BJ which have superscript L [R], is
sk [iH
lﬂ H":F
two operators. Thus, the operator sequances I;' [aﬂ,a.l}

]. Furthermore, Hiﬂ results from HJ! by omitting these

e
R R R
[aﬂ.al'j ind I.’L {nu,alj ey Iz- Ea‘n'a'l]q:. [an,at}
1 tr 2 i
mst be equal up to different superscripts implying that

L
{_uu,ti'_'l I 74

F LI ] r —].r_ = T wra Fo o8g, .J-
%— iE i, il_ i, "1y

Thus, the sequence il‘i:"“'ir i# a4 solution to the PCP instance.
Q.B.D.

The result of Theorem 5 holds even for a subset of half-word

L protocols in which I is restrictsd to 21 & (£V,0f,1L iR ok R,

x € N}, namely:



