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Theorem 5°: The SHWP problem is undecidable even if [ 2 rv.

Proof: Modify the proof of Theorem 5 as follows: Replace

T ™ w T b m m
iI [d: 1 by tx i [dx dx ] and Ex

(0} 1 by if +iF
o o ki it o e a a N>

{ S o
[d; *d; l, for v € {L,R} and o € {0,1}. Replace
4 B

0 [a] ) by il 2l fded” ) and 85 [O7 1 by
iu an au EU Eu an Eﬂ aﬂ

io si  [d) +d7 ], for v € {L,R} and v € {0.1}.
1 ®a b |

Q.E.D.

6. ON FINDING THE SHORTEST INSECURITY STRING AND THE POWER OF
MAME APPENDING

In this section we return to the definitions of Section 2.

6.1  We consider, first, the following problem: Given an insacyre
P-party ping-pong protocol, find the length of a shortest Insecurity
string (when the length of a string is defined to be the number of
operators im it].

This problem may eithey be of interest to a cryptanalyst who
wishes to read a message transferred via sn insecure protocal or
for a protocol-designer who is seeking a protscol which is "practically"
secure (i.e. its shortest insecurity string is infeasibly long].

Our selution is essentially the one given In DEE, for the
security-testing problem, with the modification of using 4 priority
queue, instead of an ordinary queue used there [see Appendix EJ,
Note that the implementation of a priority queue costs & Factor of
log n both in the time and space complexities: thus the time
complexity of the algorithm is UFus-]ug fn}, when mn i3 the length

of the protocol.
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dbviously, a cryptanalyst would like to find the shortest
insecurity string and not only to know its length. To this end
another modification of the algorithm would be needed [see usgain
Appendix E}. The modification consists of leaving tracks, during
the computation of the length of the shortest insecurity strims,
s that this string can latter be written inm time linear to its

length,

6.2 Mext, we present a distributed problem which demonstrates the

power of protocols which use a name appending mechanism [or any
gimilar pair of operators, o and 1, such that o1t = 1 is &
cancellation rale but 1o = L is not).

Define a Multi-Reader Protocel (MRF)] to be a secure multi-party

ping-pong protocol such that at least two participants (im addition

to the imnitiator) read the initial message.
Theorem 6: For & = {i .d ,E .0 : x € N} there exists a MRP.

Proof ! Consider the following (t+l)-party protocol where

x e [x % is the vector of variable-users:

)

G (x) 2 E it ees i and for every 1% i =t
1= xR, X,

nl}:lp = =g

o, (%) 4 E, i tieer i ed eeed_ed -D_, where
(141 ri 01y @ 71 t Tt 1 "o i
"lm denotes the reduction of n module m. Mote that the protocol,
which is initiated by L illows each of the xi'5 to read the
initisl message.
Using induction, one can show that in each step of the protocel

a user decrypts the message wsing his instance of the PECS but

transmits it encryvpted by an instance of one of the original users.
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Thus, whenever a saboteur eavesdrops a functionm of the initial
message, it 14 encoded by one of the original users. Thus, the
protocel is secure.

Q.E.D.

As we shall see,the use of ordered cancellation is essential.

Lemma B: For I which consists of operators with unordered
cancellation mles (i.e. if o1 = 4 is g cancellation tule then so
is 10 = i) there is no 3-party MRP.
The proof is given in Appendix F,

The lemma holds even if the words of the protocol must not be
in their reduced forms. The proof of Lemma 8 can be extended to any

number of participants thus proving the following:

Theorem 7: For [ which consists of operators with unordered
cancellation rules there exists no MRP.

We define an echo-protocal to be a SECUTe two-party ping-pong

protocol in which the initiator can read the initial message after his
counterpart has read it. Note that Plx.,y) = [GLEI’Tj}f=l’ where
ulix, 3 2 E},*ix and nzfx,y] & E:'[-:ix-]]]Ir is an echo-protocol.
However, using a modification of the claim, used (in Appendix F)

to prove Lemma 8, one can prove the following:

Theorem 8: For [ which consists of operators with unordered

cancellation rules there exists no echo-protocol.
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APPENDIX A: ON THE ASSUMPTION THAT EXACTLY p USERS
LEGITIMATELY USE A p-PARTY PROTOCOL

We consider it very natural to assume that if a protocel is
defined for p wusers them it should be used by p different users.
(For example, consider a 3-party ping-pong protocol which is a
simulation of certified-mail from sender to addressee via the post-
office. Clearly, an honest user will participate in an instance of
this protocol only if it is played by 3 different users.] Also note
that the "correct" way to introduce protocols for a variable number
of participants is to introduce a femily of protocols such that each
pretecel, Py, is defined for a fixed mumber of participants, p;. and
should be used by p; different users.

However, if this assumption is not made and it i% assumed that
an honest user is willing to participate in any instance of the
protocol (even if it is played by less than p users), then the
definition of insecurity differs from the definitiom given in
Section 2 and proceeds as follows:

A p-party ping-pong protocol PE [uj [:51]:’]'=1 is insecure if there

exist 2 set § and a string ¥ such that

YE(UZ)Ufayb): 1550, Beaus), |8f<pn’
z€5

and m = k. Note that the choice of a (as long as |[A|<p)
is immaterial.

Under this definition, if a protocol is insecure then a single
saboteur suffices to demonstrate it. (Simply replace all saboteurs
in ¥ by the saboteur s.) ‘Thus, for every fized p the security
of p-party ping-pong protocols can be tested in time u{n5] and

space U(nz}, using the technics described in DEK. However,
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Yair Itzhaik [I] showed that, if the number of participants is
part of the security-problem's input them the problem is NP-

Complete.

APPENDIX B: PROOF OF LEMMA &

Cur poal (Lemma B6) is to show that if s is & t-string and

G, is a c-chromatic them ¢ = 3(t-1) + 2,

Befinitions:
Let s be a t-string, we say that a vertex, v, of the graph

Gs appears in a word, w, (of the string) if the variable associated

with v occurs in w. Also, an edge, (u,v), appears in a word, w,

if both its endpoints ,u and v, appear in w. We say that a vertex
[an edpe] of G_ appears in a subset of the words of = if it
appears in a word of this subset.

We =zay that a lime carries a vertex, v, botween two words, w

1
4 - hd ¥
amnd W, if there is a palr of occurrences of the variable associated

with v such that one eélement of the pair is in ¥ while the other

is in Wy We define a path of lines (pol) which carries a vertex, v,

between two words, Wy and Wq recursively as follows:

{1} If thers 1z a line which carries v between Wy and L2

then there is a pol which carries v between Wy and W

(2) If there is a pol which carries v between Wy and Wy

g pol which carries v between W and LT then there is a

znd

* BSee the definition of a pair in Section 3, following the proof
of Theorem 1.



pol which carries v between W, and  ws.

(Note that a pol which carries v between W, and Wy corresponds
to a route between an cccurrence in Wy of the variable associated
with v, and an occurrence in w, of this variable.)

MNote that according to the definition of t-strings, there exists a
route between every two occurrences of a varisble. Thus, 1f a vertex,
v, appears in two words of & t-string, then there is a pol whach
carries v between them. We refer to this property as the

vertex unity.

Occasionally it will be convenient to view a t-string, s, as
a closed (circular) one rather than viewing s as open. Modulo
this convention the string s = s's", where s' and s" are sub-
strings of s, is congruent to s"s'; clearly the SA problems for

&'2" and s5"s5' are identical.

We denote by L[H;EI,HI.EI,HEJ g line betwesan Wy and Was
where &% = 8. W,5.W We say that this line separates s 1into

1'1"27°2]
two substrings, =, and  s,.

Lemma Bl: Let s be a t-string and L{s;sl.wl,sz,wz} he a line
in s. All the vertices which appear in both 5 and s,, appear

in either w orT “2'

1

Proof: Let v be a vertex which appesrs in both =,  and s,.
Let W} [wi] be a word of s, [s,] such that v appears in wj
I'i]‘ By the vertex unity, there is a path of lines which

carries v betwaen Hi and Hi' Mote that there is no line bet-

ween 2 word of 5 end g word of Sy Therefore, there is an

1
i € {1,2} such that there is a path of lines which carries v
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between ui and W and a path of line between Wy and wi.

Thus, v appears in LY and the lemma follows.

fefinitions: We sav that a t-string, s, is a8 c-requiring t-string

if the chromatic number of G5 is at least ¢ and © 2 3[t-1)+1.

We say that a t-string, s, is a minimum c-requiring t-string 1if it

satisfies the following two conditions:
[1] 5 is a c-requiring t-string

{2) s has the minimum number of variables w.r.t. (1].

Lemma BZ: Let 5 be & minimum c-requiring t-string, and consider
a line L[s;sl.wl,sz,iz} in it., Let W be the set of vertices
which appear in w, or w,. Let 5, [8,] be the set of vertices

which appear in 55 [52]. Either EI cW or 5,cW.

Proof: Assume, on the contrary to the statement of the lemma,

that peither 5. € W nor 52 c N. Lemma Bl implies that 51 U W ",E 1:’5

1

and SE Uwi\f5+
Let us demote by v the vertex which is carried by the line L.

For 1 £ i1 £ 2, demote by wi the set of vertices which appear in Wy -

Denote a typical element of “1 = {?ﬂ}. by the letter u, and of

Wy = v bbby wv; W - Evu} = {"j: 1 £3 % q]] and

Wy={v] = {vjr L£]£q,l.

Clearly, each set may be empty and q; € t=1 for 11 g 2:
Denote by sI [55] the string which results from WaS W)

[wlszwl] by omitting the occurrences (of variables) which are un-

paired in this string. (Note that these occurrences are paired in s
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with occurrences in 5, [sl]. Also note that 5Y Isg] can be un-

linked since occurrences of a variable in Wy Bad w, may have heen

%
linked in s [enly) through 5, [51].]

Consider tho following two cases:

Denote si - 5?, for 1 g i £ 2. (Note that 5; is linked.)
Case 2: 90y > o

Consider the t-string B, Presented in Figure 3.

=, w oo
"1 w2 0 "ay el
| | L. | [ | L | i F__F ik P 1 i ¥ 0. i P i
.'I.'lzl.l1 ul‘l'qz-”."."z"l"l ﬁ'l'ﬂ'z-n-ﬁ'qzuz'“qz--.'fz‘l'l Ullrz.,,?qzuq]'fqz.,-\ljfl '-I'l.'lul'z-....'I.l‘l:l.E
| S il
| J T +
. 1 _
I ! 'q q
g : 2z 9 iz
+ | 4
II R — Nepri— e ——————
a, q,-1

{u' [v'] denotes the variable associated with u [v])

FiEuIE I

Note that 1f u, = v} then the varisblie associatod with "j

occurs in i; a5 well as in iq 1 and there exists a route, which
1
goos through ﬁi'il+]""'iq between these occurrences, On the
1

other hand, if for every 1 £ j = Gga Wy # vj then the vertices

IR T | appedar in W, and therefore gre a3 gned
i* L2 4z i

different colars in every coloring of |3= i
o
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Fenote by 55 the string which results from the reflection

of Sy
Denote by 5 [5&1 the string which results from S1%15 0¥
o
[55”]53“1] by merging LT ﬁn into one word and merging quii‘
ﬂz into one word. -

Note that 5{ {sél. constructed in each of the cases, is a
t-string. Also note that |v£_.| . |v5| [I¥ ,] < |¥.]]. This would
1 ) a
lead, as we will show below, to 8 contradiction implying that the
statement of the lemma does hold.

First,note that ] [ai] is not a c-regquiring t-string.

(Otherwise our assumption that s 1is @ minimum c-requiring t-string
is contradicted.) Thus, for 1 =£1 £ 2, there exists a coloring

of Gq.. fi' which uses less than & colors.

1
Note that in every colorinmg of G5" the vertices of W are
1

astigned different colors. (Since every co.oring of G, induces
T
g8 coloring of G5 and in every coloring of G5 the vertices of
o L4
W are assipgned different colors.) Also note that the intersection

and £, is W. Thus, £, and £,

of the domains of f 7 1

1
can be merged, consistently, to yield a coloring of G with

lesz tham ¢ colors, However, this contradicts our assumption that

5 1is a c-requiting t-string.
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Lemma B3: Let LLs;sl.ul,sz,uz} be a line in a minimum c-requiring
t-string, 5. There exists a vertex (in Gﬁ} which does not appear

in W, 0T W,.

Proof: Assume on the contrary that all the vertices of G, appear
in w; and wy. This yields c <[V | <2t-1, in contradiction to

€ & 3{t-1) +1 (condition (1] of the definition of a minimum c-Tequiring

t-string), since t > 1.
O

We are now ready to defime the line structure of a minimum

c-requiring t-string s. Consider a line between w, and W,

1
denoted L[5:51.v1.52.uz]. By Lemmaz B2 and B3 there exist

8 unique i € {1,2} such that every vertex which appears in 5y

appears either in Wy, or in LPT Draw the line from W, to Wo

below this 5,3 the words of s; are gaid to be above this line.
Let us show that it is possible to draw the lines according
to the definition of the line structure so that no two lines cross,

Note that a line drawn between the occurrences El and ﬂz

crosses the line drewn betwean the occurrences BE and Bd iff the

first line is drawn below EI3 and Ed and the latter is drawn

below El and BI'

Lemma B4 : Llet s be a minimum C=requiring t-string, No lines

cross in the line structure of =.
Proof: Assume that a line between the occurrences El and EIEr is

drawn below the occurrences El3 and El_1 and that there iz a line

between HS and &d‘ Let Wy ["EJ be the word in which El [EE]

occurs, and L{s;sl,wl.sa.wE] be the line between EI1 and By
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Assume, with no loss of generality, that the line between El and

8, is drawn below s . By the construction of the line structure,

1
there exists a vertex which appears in s, but not in w,s.w,.

Note that ﬂs and EI‘1 occur in WaS Wy and therefore the words
which contain them EHE and Wy respectively) are contained in WoSi Wy
Thus, there exists & vertex which appears in 85 but neither appears
in Wy TOT in w,. By the construction of the line structure, the

line betwesn By and B, is drawn below a substring of s, and

therefore is not drawn below El of EE*
Cl

We say that the line botwsen 8, and #, covers the line

between 53 and ﬂ# if the line between El and I:I2 15 driawn

below EE and 94.

Let us now define the star-line structure of & minimum e-requiring

t-string s. Consider the set of "out-most" lines (i.e. the lines

that are not covered by any line) in the line structure of s. The
lines in this set are called star-lines (). The words on the end
of a star-line are called its star-words (sw) and the words above a

star-line are called its word-interval . Kote that a word-interval

may be empty. (Pig. &4 shows the line structure &nd the star-line

structure of the 2Z-string presented in Lemma x.)
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The following lemma is the core of the entire proof [of

Lemma 6);

Lemma BS: Let s be a minimum c-requiring t-string, such that the
length of = (i.e. the number of occurrences in 5] is minimal.

|E| = (1.5+2-1)+|V | + 0.5-t.

Proof: The vertex umity property is instrumental in this

proof; it states that if a vertex appears in two words

of s then there is a path of lines between them.

The following facts, about the star-line structure of s, are

of interest:

Fact 1: Each word is either a sw or belongs to some word-interval.
(Otherwise, by the vertex unity property, the vertices which appear
in such a word do not appear in other words of s. Thus, the word
can be omitted from & resulting in a t-string s' such that s'

is c-requiring and |V_,| < |V |, contradicting our assumption that

s 13 a minimum c-reguiring t-string.)

Fact 2: There is at most one pair of adjacent sw's with no si
between them. (Otherwise, s can be divided into two variable-
disjoint t-strings, such that at least one of them is a
c-requiring t-string, again contradicting our assumption that =

is a minimum c-requiring t-string.)

Fact 3: The vertices which appear in the word interval of a si
appear at least in one of its sw's. (By the construction of the

line structure.)
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Fact 4: The set of vertices which appear in the s=w's is V-
(By Facts 1 and 3.}

We say that & vertex v is transferred through the star-line

L if the following hold: (1) There is a path of lines which
carries v between the star-words of L. (2] This path of lines
passes through words of L's word-interval only.

We say that a star-line is of multiplicity k if k wvertices

are transferred through it. If there is a pair of adjacent star-
words with no star-line between them, then we constrect s dummy

star-line between them and say that it is of multiplicity zero.

Fact 5: ‘There is no vertex which is transferred through all the
star-lines. (Assume on the contrary that a vertex, v, is tranferred
through all star-lines. Thus, there exists a clesed route, among
pecurrences of the variable associated with v, going through all
star-words, There are two adjacent occurrences on this route which
are not in the zame word, i.e. constitute a pair. The string, which
results from s by omitting this pair, is also a minimum e-requiring
t-string; however, it is shorter than s and thus contradicts our
assumption that s is of minimal length.)

Denote by n  the mumber of star-words. HBegimning at an
arbitrary &w and going clockwise, we number the sw's from 0 to

n-1, Denote by w, the i-th sw and by t. the number of

i
vertices which appear in it. Denote by ki the miltiplieity of

the =22 hetwesn W and W, where indices are considered

is]’
module n.
Let A(v) denote the number of sw's in which the vertex v

appears. Using the vertex unity property (znd Fact 4), we get



=1
Fact &: I (A(v)-1) = E Ky -

vE¥5 i=0
n-1
Boting that I A(v) = I ti' we pet
vEY 1=0
-
n-1
Fact T: . <
ract 7 ifnftt ki} : |U5|,

Let us denote by e, the number of edges which appear in word-

intervals but mot in star-words. (We remind the reader that an
edge appears in a set of words if both its end-points appear together

in same word of the set.]

n=1
Fact 8: e, = ifu[ti_ki“ti*l-ki]'

(Wote that the vertices which are transferred by the sl between
i and Wi. FPPEST in both sw's. Also note that, by Fact 3
and the definition of e

W
pv & MECEssary condition for an edge to be
counted in e, ie that one of its endpoints appears in W, but not
in W, and the other appears in w, . but not in W)

Denote by e the number of edges which appear in star-Words,
By Fact 5, for every vertex there exists a star-line through which
it is not transferred. Also note, that by the vertex unity concept

there 1= a single interval of star-lines through which a vertex is °

transferred. We say that the vertex v 1is born im Ms 1 if

appears in W, and is not transferred through the si between

+1

w; and LR The edge (u,v] 1is counted at LI if v is

bom in Wil and u (also) sppears in it.



Fact 9: The number of edges counted at W ol is bounded from

t. . .=k
above by {tiil'ti] ki o+ ( i*% 1] + [i.e. the suom of the number of
edges between vertices which are bom in LI and vertices which

appear in LI but are not born there and the number of edges

between vertices which are born in “i+1'}
Elaborating Fact 9, we get
fi=1 n-1
1 2 2 _2 2 .2
Fact 10: €. ‘;E ([t 1-!':?‘&1*1-]‘1:':' =w ¥ I:tirkj—{ti—ki}}l-

i 11 R i=0

Combining Facts B, 10 snd noting that t; £ t, we get:

Fact 11; IEﬂI = Byt B =
n-1 1 -1 3 1 1
SR e (g BT e e L eailly g b

By Fact 2 there is at wost one i for which k, = 0. Thus, we get

“‘! 1 1

3 1
Pact 12: |E_ | = ﬁn{ti—kij-[ Frt-gel-3) ¢ 3oL

! 2

Using Fact 7 we get

|Es|': E1-5‘1-11'|?5| + 0,5:t, and the lemma follows.



lemma BS5: 1f s is & t-string end G, is c-chromatic then

c s 3(t-1) « 2.

Proof; Assume ¢ > 3[t-1)=+2.

Consider a minimum c-TequitTing t-string with minimal length,

hereafter denoted s'. Denote by k the chormetic number of GE. Sote

that k # ¢. By Lemma E5, IEE,' £ i:1.5't—]}|l|1.'s,|-l-l315-t. Denote by

d'nun [dm,] the minimem [average] degree of a vertex in GE" Obvicusly,
2-1E_,|
- f-l T
d cd =5 3D e,
min av Ver] Vet |
Since © » 3(t-1)+2, [V ,| 2k 2 c > tholds. Thus (t/|v_,|) is

a fraction implying that dlin % 3t -2, HNote that 551 is critical gnd

» k=1'30=]. Thus, ©-1% 3t-2 and the lemma follows.

therefore d_.
min :

* A k-chromatic graph is called critical if the deletion of any
vertex reduces the chromatic nmumber of the graph.
Note that the minimum degree of a vertex in a critical k-chromatic

graph is at least k-1.
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APPENDIX C: PROOF OF LEMMA 7

The 3XC problem is defined as follows: Given a set, U = {ri}?]il.
and a collection, § = {sj}T=l' of three-element subsets of U, determine

whether there exists a subcollection of 5 such that every element of
U appears exactly in one subset of the subcollection.

The 3XC problem is known to be NP-Complete [GJ]. A restricted
version of this problem (hereafter denoted by r3XC), in which, in the
input, every element is restricted to appear in at most three subsots,
is also known to be NP-Complete [GJ]. One can easily prove this by
reducing 3XC to r3XC asz follows: Replace every element, which occurs
in more than three subsets, of the 3XC instance by the following

construction (see Fig. 5) resulting in a r3XC instance.

yd-4

b A

Fiiure 5
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{(Fig. 5 demonstrates the construction for an alement, denoted e,
which occurs in d > 3 subsets, denoted 51*52*"'5d'} Mote that
there is a solution of 3XC iff there is one of the corresponding
r3XC.

In order to prove the lemma let us reduce r3XC to R3XC,
First let us apply the following simplification process to the
instance of the r3XC problem: If there is an element which appears
only in one subset, omit the subset and its elements from the
instance and apply the process to the result. HNote that in each
"phase" of this process the subset which is omitted must participate
in every exact cover of the original instance of r3XC. When the
process terminates we either get an empty instance or get a T3XC
instance Iin which each element appears in two or three subsets.
[Mote that there is an exact - cover in the simplified r3XC iff there
is an exact cover in the original r3XC.) Partition the slements,
which appear in two subsets each, into triples. For each triple apply

4 construction, as shown in Fig. 6 for the triple B1+8548g-

This transformation yields a RIXC instance.




Note that the subset Tﬁ must participate in every exact cover of
the R3XC instance and that the subsets T;s T2 and T3 are never
used, Thus, there exists an exact cover of the T3XC instance 1ff

there exists an exact cover of the corresponding R3XC instance.

APPENDIX D: REASONS TO BELIEVE THAT SMPP € NP

Theorem D1: There exists a family of two-party ping-pong protocols
such that each is insecure and its shortest insecure string is of

length exponential in the length of the protocol.

Proof: Consider the following family: for every n z 1

n+1
i=1

4 (i), (i) 0i-1)
= E: Ex DI

1 fu
P|:|. & {ui[x.}’]]' . Whore 2y g Ei ], a - D:En] and for ocvery

n+l
l<isn ay . The following two claims can be
proven by induction on i: (1) For every a £ N, a saboteur can
effect Dﬁi} on any message. (Here the induction is from n to 1.)

(2) Let a = (a,b), Dgij appears at least 2i-1

times in any

insecurity string of Fnigj, (Here the induction is from 1 to n.)
Q.E.D.

Note that the theorem holds even if I is restricted to

{4, B0 x €N} (Use B =B (1) and o) . @)'n, to

modify the definition of P+ and prove that ia[d.ﬂjjl:lEL appears at

least lj'l times in any insecurity string.)

Corollary D1: SMPP cannot be solved in polynomial time by guessing

an insecurity string and checking it.
Tha above is no reason to helieve that SMPP § NP, because we

know that there is a wuch more effective way to check insecurity,



namely the algorithm described in DEK. One may think that for every
insecure protocol one can guess & pelynomial number of instances

of each protocol word and run the collapsing algorithm described in
DEK on the partisl automatem. This may work only if for every in-
secure protocol there is an insecurity string in which every protacol
word occurs only in a pelynomlal number of different instances. Wo

shall show that this condition deoes not hold, namely:

Theorem D2: There exists a femily of multi-party ping-pong protocols
such that each is insecure and each of its insecurity strings contains
an exponential {in the number of participants) different instances
of a certain protocol word.

Before proving the theorem let us consider the following family:
for every n = I, Pn 4 [“En}{“a=xl"2=""“nj: 1=1=231 is a [n+l]-

party ping-pong protocel, where

1] =]

{m} & ¥
a {:';:I E ":i 1 1 =1 ]‘[i i =1 EE I | } F
e Yo M n M e D a
(n} & ; .
0 {1] = E "L'l. 'I LR 1 w1 Jll::ﬂ EEE s | .d d }_n
s - 1ﬂ 12 = i 1] In 33 3 :1 Hu
and
(n] 4 A ; 2 £ r )
ag (8 2 (4, d_d_Jeld, d, +d )0, .

n 2 1 n - | o
Lot Hn be the following transformation E“{[:E,zl,zz,ts,-_-,znj] =
i - :

{zﬂ,zl.zs,....z“le}, for every (n+l) vector =z. Eh[EJ is defined

<1 _
a8 Bu'{B: (2} &f j=>1 and 8 (z) if j=1. Note that

n-1 ol 2 . 1 i . .
uE[EJ-az[ﬂu [a}} uI{BnLEJ] uzfﬂntgj} a][gj is an insecurity

string of P where a e {au,a1.+...a“]. Mote that every insecurity

(n)
T

string of Fn must contain an instance of o end at least (n-1)

different instances of né“}. [Mote first that ngn] is the only
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protocel word which contains Di and dees not contain E_ + However,

o ]
an instance of ugn} can be applied to En only if
o
(i, =i, +== i, )e(i, i, =+ i ) appears om E_ 's r.h.s.
bl hE bn bl bE hn o
A (n) p : : "
Note that in  a. " {a) [l =3 oswe i de o Fa{Ioced sas 120)
1 ! 3, Ay a a, a, a, a

appears on En 's r.h.s. and thus the only instance of a protocol
o

word which can be applied to it is ﬂén}{ﬁiigjl. resulting in

E (L %1 =+*= % i J+(i_ -1 e+« i ). Gimilar arguments force
A, Ay a a, a, &, a

(nj (n)

the use of a5 [Hi{g}],,.,.az [E:_I{EJ] in the insecurity string.]

Generalizing this construction we can prove Theorem D2.

Proof (of Theorem D2Z): For every n 2 1, define {pgnj}?=l

the set of the first n primes which are greater than n. Denote

to he

3-1

q%nj & g pEn], for 1 < j = n+l and qf“] 0. Also
i=]

define for 1= j=n

I:ll:n:: E iI 'i.: 88 i'.: ¥
qEn} +] qJ‘[ﬂ] -} q}n] ij{n:l
p ol BT o | ' :
j lq}ﬂ]d-z IE_-E“}-FE “q%n] +-P;-|'|.J xqgn] ]
and

(n} &
G d aw d 'd a
;| ::qg..] +p :Enj qun] & xqgn}”

Consider the following family of protocols:

&

For every n = 1, Fn - {E;“][nn.xl,...x Y1 154is3} isa

(n)
Tnel
[ (n)

B 1)-party ping-pong proteocel, where
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- (n) & gl ) | Te), () (n) (n)
ﬂ-ln [E:I = Exn 11 :I:z L I.“ 11 12 o In

= {n) g0 Em) o Fm) n) - L(n]) o(n)
3" () & Exu 3 kg Tn Ty i .

and

~(n) & .(m) .., o) (0} (0] .. ~(0) .(6).
o Tl T T U

We claim that Pn is insecure and every insecurity string of

n
it mist contain at least (0 ij“]]—l di fferent instances aof
i=1

ﬁgn}. (The proof of this claim 1s a generalization of the considera-

n
tions applied to P .J Note that T p,(n) is exponential
i=1

n
in E pin] i
i=1

APPENDIX E: AN ALGORITHM FOR FINDING THE LENGTH OF THE SHORTEST
INSECURITY STRING

After constructing the automaton, use the following algorithm
to construct the collapsing relation: Let M be a (5+1) x (g+1)
matrix the entries of which are the length of the shortest collapsing
path between the nodes of the automaton. Let Q be a priority
queue the elements of which are triples of integers, such that if
(1,j,6) is an element of Q then i and j are states of the
automaton and & 1is the lemgth of a collapsing path from 1 to j.
If 6, « b, then [il.jl.ﬁlj is prior to {iz,jz.ﬁz] in Q. Let

1
HF be a (2+1} % [(8+1) matrix the entries of which are pointers to
elements of 0. Let Hs be a (s541) x(5+1) matrix the entries of
which are elements of the set (N,T,F}. During the execution of

the algorithm, Hﬁfi.j} = N denotes the case where no collapsing



52

path has been found from i to j; HE{i,j] = T denotes the case
where soch a path was found but it is still unknown whether it is
the shortest collapsing path from 1 to j; !-II[i,j} e F denotes tha
case where a shortest collapsing path from i to § has been found,
Let I-!I; [Ih'l;:'] be a (s+1) % (s+1) matrix the entries of which are
pairs of states [operators]. Ml and H‘LI will be used toc reconstruct
the shortest insecurity string after the algorithm stops.)

The algorithm proceeds as follows:

(0) For 0 <i#] <5 do Hs{i,j]‘.:hlz

For 0 <i<s do Imsert((i,i,0).Q,(i,i),(,1)];
(1) While Q # # do begin
(1.1) Delete the first triple, (i,j.8). from Q;
M(1,3):=8; M_(1,j):eF;

(1.2) Por 0 <k <5 do

If M_(§,k) = F then Update (i,k,8+M(§,k).Q,(5.51.(2,2));
(1.3) For 0 <k <5 do

If M_(k,i)=F then Update (k,j,M(k,i)8,Q,(i,1),(2,2));
(1.4) For all edges entering i and

all edges leaving j do

' then

k31", 30 and or

UFdﬂ-t-E ﬂ:l-:l*'s*l-Qi [ii]} LoiT))
end;

where the procedures Insert and Update are defined as follows:

a
#+ 1 + ] denotes the edge going from 1 to j and labelled o,

++ gt = A denotes the cancellation rule which reduces ot to 2.
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Procedure Insert ((i,7.8).Q.{(q,7).{o.71);
hogin_

Insert the triple (i,j,6) to Q and set Mb[i,j] to be a pointer
to the positiom of (i,j.6) in Q;
M (1,3):=T; MI{i,3)+=(q,r); MP(3,]):=(o,1);
end
Procedure Updete (1,7,4,0Q,(q.r),(o,1));
begin

Case of M_(i,])

Nt Imsert ((i,7,4),0,(9,1),(m:7));

§ - [HP{i.j] points to (i,7,6']]

If §' > & then begin
Delete (i,j,48') from Q;

Insert {{i,j,8),qQ, Eﬂ.uﬂ (o, x))3

Note that a priority queue can be implemented such that inserting
[deleting] an element costs 0(log,q) operations, where q 15 the
maximum length of the queue. The space such an implementation requires
is 0{q leg,q). Also note that the first element of the queue can be
found in constant time. Note that Q contains at most one triple such
that the first component of the triple is 1 apd the second is j.
Thus, the running time of the procedures Update and Insert is 0[log s).

Note that by the construction of the automaton, for 1 < 1 = s there

is & single edge entering 1 and at most one edge leaving it.



Also, there are at most (s+m) edges entering [leaving] state zero,
where m is the number of self-loops from 0 to 0. Thus, the loop
in step (1.4) is eéxecuted at most 1-{5+mjz + 25 [g+m) % 5:-1 < 4{5*m]2
times. Clearly, the loop im step (1.2) [(1.3)] is executed at most
s7es  times. Thus, the algorithm rums in time D[nllﬁgzn], where n
is the length of the protocol (n » s+m). Note that the algorithm
requires space 0[5119515].

To allow the copstruction of the shortest insecurity string run
the following recursive procedure, using the matrices H; and hﬁ
built by the above algorithm:

Procedure Track(i,j);
begin
(q,r):=M/{i,]]; {u,w]::!-l't';i,j];
Entli@_]ﬁgi_n [Mote thet g = ©, q # i and g # j.]
Track(i,q); Write <q»; Track{q.j):
end
else if q = r then Write o<3>71
Write o<q>; Track(q,r); Write <r®1j

end

Note that Track{0,1] outputs a shortest collapsing path specified by

its nodes and the labels of its edges.
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APPENDIX F: PROOF OF LEMMA 3

Assume, on the contrary, that such a protocol, Plx,v,z) g

{ni[x,y,z}}i=l, exists, Assume with no loss of generality that x
is the initiator of P(x,y¥,z) and ¥ 1s the first user who reads
the initial message, and that he first reads it while applying ..

Assume that z first reads the initial message while applying o,

(obviously r<t).

Note that since the cancellation rules are unordered, the inverse
of an operator can be defined. We denote the inverse of o by u'l.

Note that aeo L = o Vet w AL

Let urfx,y,:} = Ezix,f,zj-ﬂltx,y.z} such that y reads the

initial message after applying El{x,y,:]‘ Note that

Bl ysz)ra , (x,y,2) +oo nz{x,y,zj-alfx,y.z] =},

Consider a cancellation pattern, C , which reduces the string

El{x,y,zj-urhlfx.f.zj wa e EIEI.F-I}'EJ{K.T,I] to A,

(Note that C is a sequence of pa£15 of operators such that:

(1) The elements of the first pair cancel each other and are adjacent
in the original string,

(2} The elements of the j-th pair cancel each other in the string which
results from the original string after applying the first (j-1)
cancellations of C,

(3) The string which results from the eriginal string, after applying

all the pairs of C, is A.)

We define, recursively, a route between o (x,y,2) and uj[x,y,:],
with respect to the cancellation pattern C, a5 follows:
(1} Both uitx,y,z} and mj[x,y.:] are applied by x and there is

an operator in “j and an operator in a, such that these



56

operators cancel each other in C [i.e. constitute a pair of C).
(2) There is = protocol word, qk[x,y.z}. such that there exist &

Toute between oz and oy gnd & Toute between nk and nj.

We call k the boundary of P(x,y,z), with respect to C, if k
is the greatest integer such that there exists a route betweésn
nl{x,r,s] and uk[x,y,:}. Hote that k « v, since nr{t,y,z} iz
applied by y and if i « r « § then there exists no pair in C
such that its first element iz in uifn,y,:} and its second in uj[;,y,z}ﬂ
Let k be the boundary of P{x,¥,z}, apply C to nk{x,r.z} ree
uz{x,?,:]-ulfx,y,:] and denote the result by Tl{x,y,z}, {By applying
C to ﬂk{x,y.rl L nlfx.r,zl we pean applving only the cancellations
between pairs of operators which are in uk[x,y,:] A ulfx,y,:}- Hote
that this may differ from the reduced form of uk{x,y,a] ia ul{x,y,z}.]
Mote that Tl{x,r,:] contains only operators which occur in words
that are applied by x. Thus, ?I{x,r,tl does not contain decryptions
by either ¥ or z. Also note that ?I[x.r,:] does not contain
encryptions by x, since decryptions by x can only ocecur in words
which are applied by x.

The following claim implies that P(x,¥,z] is insecure and thus

contradicts our assumption that P(x,y,z) is a 3-party MRP,

Claim: Two saboteurs, 51 and 52, can affect the inverse of any

o o

operator which occurs in Tl[a,b,c] (= W e nz-nlj to any message,

Proof: Let uq be an operator of Tl{a.h,:}. 1f nq is not an

z =]
encryption then ﬂq € Esl and s,
message. Otherwise, assume that uq = E“, where v £ {b,c} ([zince

Ea cannot occur in Tl[l,b.:]]. Define P[b] & P[ﬂljb,ﬂzl and

can apply it directly to any



Plc] & P(s,,%;,c). Note that v plays in P[v] the same role he
plays in P{a,b,c). Define ni[hl £ ai[sl.h.sz} Tl[h] é Yy{sp.b,8,0,
ui[:] b uic51‘52‘=] and Tl[c] M tylsye55.:5). Let ?]{v] = &n sen éz-nI.

Note that &q = uq. since both are the same operator indexed by v.

Alsc note that for 1 =1 = n oy E Es y 2inge Tlfz,r.:} contains
1

no decryptions by ¥ er . BNote that for every message M',

1

El[v].urhllv] e E_L‘-][\I'Jmﬁ\‘n s Erq+1{Hl] = E]_I] W ﬂ-;l {H"'
I-| * & il | kT 0 = _‘J a-
(i.e B, Iv] . q[v] uk+1h1 B EanEua® W e "qlf.

(Since for any two strings of operators, BI and 62,

S8, =% implies 608, =% and 5 = &2,

Thus, s; and s, can get ﬂ&atﬂ'j = D (M') =s follows:

s, initiates P[v] end replaces the k-th transmission by & .-. l"q_JI:H"'.
-1 =1 5 -1 3 ' I T I

51 reads ﬂl P nqh] Eq [ 1 during the r-th step if v=c and

during the t-th step if v=b,
By applying ﬂq_l s n] to what 55 has rezd, the ssboteurs get
-:::ql (M.

Having proven the claim, it is easy to see that P(x,y,z] 15
insecure: Note that two saboteurs 3 and 8, can redad the initial
messege, M, if they eavesdrop the k-th transmission of P(a,b,c)

(i.e. read Tll{a,b,r_}{lﬂ] and play several instances of P(x,y.z)

with either b or c¢. Thus, Lemma 8 follows.
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