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1 IntroductionBroadcast [DM] is one of the most fundamental tasks in distributed computing. It isinitiated by a single processor, called the source, wishing to distribute a message (theinitial message) to all processors in the network.We consider the standard model of distributed computing, which is a point-to-point communication network. The network is modeled by an undirected graphG(V;E) whose vertices represent processors and whose edges represent bidirectionalcommunication links (cf. [A1, Bu, FL, GHS]). Communication itself is either syn-chronous or asynchronous � all our results hold for both cases. An elementary mes-sage may contain only a constant number of bits and a constant number of ver-tex identities. Longer messages must be chopped into elementary messages prior totransmission. The communication complexity of an algorithm is the total number of(elementary) messages sent in a worst-case execution.The two most basic and well-known algorithms for broadcast in a point-to-pointcommunication network are tree broadcast and ooding. The tree broadcast algorithmrequires the existence of a spanning tree that is known to all processors. Given sucha tree, broadcast can be performed with only jV j � 1 messages. In case such a treeis not available, it has to be constructed �rst. Note, however, that the problem ofconstructing a spanning tree from a single initiator is equivalent in terms of commu-nication complexity to the problem of broadcasting a single message. This followsfrom the fact that any broadcast algorithm can also be used to build a tree in thenetwork; the parent of a node in that tree is the neighbor from which the �rst messageis received.In contrast, the ooding algorithm makes no initial assumptions. This algorithmachieves its task by simply forwarding the message over all links. Clearly, this requires�(jEj) messages.When discussing the applicability of these (and other) broadcast algorithms toa communication network, a central issue is the amount of knowledge available atthe vertices regarding the topology of the network. There are two common models,representing the two possible extreme situations. In the �rst model (which we denoteKT1 for reasons which will become clear later) one assumes that every vertex has fullknowledge of the network topology. In this model, it is obvious that broadcast can beperformed with the minimal number of messages, i.e., the communication complexityof the problem is �(jV j). This is because each vertex can use its knowledge in orderto locally construct the (same) spanning tree without sending any message. Then,the tree broadcast algorithm can be applied.The standard model for a communication network, which we denoteKT1, assumesvery little knowledge. That is, initially each processor knows only its own identityand the identity of its neighbors, but nothing else. In this model, a well-known \folktheorem" asserts that ooding is the best that can be done, i.e., that �(jEj) is a tight2



bound for the communication complexity of the problem. However, to the best ofour knowledge, no proof of this lower bound (or for that matter, of any lower boundhigher than 
(jV j)) was given before. At �rst glance the claim seems obvious. Indeed,the claim is obvious if we consider the even more extreme \anonymous" model KT0,based the (unnatural) assumption that a vertex does not know even the identities ofits neighbors. The intuition behind the 
(jEj) lower bound for KT0 is that in thiscase \every edge must be traversed at least once". However, slightly shifting fromthis extreme model towards the more common (and more reasonable) KT1 model,this intuition fails, as is implied by the following algorithm.Consider a \traveler" which performs a Depth-First Search (DFS) traversal (cf.[E]) on the communication graph. Observe that by carrying the list of vertices visitedso far, the traveler may avoid traversing non-tree edges (or \backward" edges) sinceat any point during the search the traveler knows which vertices have already beenvisited. Thus, the traveler will not traverse every graph edge, but only n � 1 treeedges (each being traversed exactly twice).While this algorithm indicates that there is no need to traverse each graph edge,it does not disprove the above \folk theorem". Indeed, observe that the total numberof elementary messages sent is not 2jV j, but rather O(jV j2), as the lists carried bythe traveler may contain up to O(jV j) vertex identities; thus the traversal of an edgemay require O(jV j) elementary messages.In this paper, we (�nally) prove the above \folk theorem" for the standard KT1model. More precisely, we show that in a communication network where each vertexknows only its neighbors, the number of elementary messages required for broadcastis 
(jEj).Theorem 1: For every graph G(V;E) there exists a related family CG containing jEjgraphs of 2jV j vertices and 2jEj edges each, such that any protocol that works correctlyon all graphs of CG sends 
(jEj) elementary messages over a constant fraction of thegraphs of CG. This lower bound holds even if the network is synchronous, all thevertices start the protocol at the same round, and the vertices know the size of thenetwork.Once we establish this gap between the two extrememodels, it becomes interestingto look at intermediate points, in which processors are allowed only partial knowledgeof the topology, and investigate the implications of such knowledge with regard tothe communication complexity of the broadcast operation. These intermediate pointsattempt to capture common situations in which vertices know more about their near-by vicinity than about other regions of the network. We formalize such situations byintroducing a (mainly theoretical) hierarchy of models KT� (for every integer � � 0)in which, loosely speaking, every vertex knows the topology of a subgraph of radius �around it. Hence the models KT0 and KT1 described earlier correspond to the lowesttwo levels of this hierarchy, while KT1 corresponds to the highest levels, i.e., themodels KT� with � being the diameter of the network or larger.3



For this hierarchy of models, we prove a general tradeo� result. For every �xed� � 1, the number of elementary messages required for broadcast in the model KT�is �(minfjEj; jV j1+�(1)� g). To be more precise, we can prove the following.Theorem 2: There exists a constant c0 > 0 such that for every two integers � � 1and n � 1 there exists a family F� of graphs with m edges and n vertices each, wherem = 
(n1+ c0� ), such that any protocol that works correctly on all graphs of F� in themodel KT� sends at least 
(m=�) messages over a constant fraction of the graphs ofF�. This lower bound holds even if the network is synchronous, all the vertices startthe protocol at the same round, and the size of the network is known to each vertex.Theorem 3: There exists a constant c > 0 such that for every integer � � 1 andfor any graph G(V;E), broadcast can be performed in the model KT� using at mostO(minfjEj; jV j1+ c�g) messages. This upper bound holds even if the network is asyn-chronous.Our results suggest that there exists an inherent tradeo� between the informationthat the vertices have about the communication graph, and the number of messagesneeded to perform the broadcast. The more knowledgeable vertices are about thenetwork, the cheaper it is to perform broadcast.One should not confuse our problem of constructing a tree from a single initiatorwith the harder problem of constructing a tree when the algorithm is initiated by(possibly) multiple vertices (or the strongly related leader-election problem). Thelatter problem is itself a very basic problem in distributed computing, since it isequivalent to a variety of other problems (e.g., counting, computing majority or parity,�nding a leader, etc.).Most previously known lower bounds on the leader election problem, as well aslower bounds on various related problems, were proved in the KT1 model, i.e., fornetworks whose topology is known to all vertices, and in particular, networks with avery regular structure. Among others, network topologies considered in lower boundsproofs include: rings [AAHK, ASW, Bu, F, FL, GS, MW, MZ, PKR], cliques [AG, F,KMZ1, KMZ2], toruses [GI], meshes [F], binary trees [F] and others. Other results,e.g. [KMZ1], are obtained in the other extreme model, KT0, and strongly rely on theassumption that processors do not a-priori know the identities of their neighbors.One of the novelties of our work is that it applies to a network of arbitrary topology,and takes full advantage of the fact that network's topology is initially unknown. Forexample, as a corollary we get also that constructing a spanning tree in a networkwhose topology is unknown is harder than constructing a spanning tree in a networkwhose topology is known. Furthermore, our results hold for very general classes ofgraphs and in particular for every edge-density, in contrast to previous works whichmainly concentrated on rings and cliques.Our result enables one to prove an 
(jEj + jV j log jV j) lower bound on the com-4



munication complexity of any spanning tree construction algorithm, thus implyingoptimality of the algorithm of [GHS].Some of the above results have been reported in an earlier version of this paper[AGV]. Results somewhat weaker than [AGV] have been independently obtained by[RK]. (The lower bound of [RK] does not hold if the size of the network is known.)The rest of the paper is organized as follows. In Section 2 we de�ne the modelused for the main result and state the problem. In Section 3 we state and prove thelower bound on the message-complexity of broadcast in the model KT1. In Section 4we give the lower bound for the general model KT�, and in Section 5 we present theupper bound.2 The model2.1 BasicsOur communication model consists of a point-to-point communication network, de-scribed by a simple undirected graph G(V;E), where the vertices represent networkprocessors and the edges represent bidirectional communication channels operatingbetween them.Whenever convenient, we will assume that V = f1; 2; :::; jV jg. Initially, (unique)ID's are assigned to the processors (vertices) of the graph G. These ID's are takenfrom an ordered set of integers S = fs1; s2; : : :g where si < si+1 for every i � 1.Thus a system con�guration consists of a graph G and an ID-assignment, which is aone-to-one mapping � : V ! S.One can distinguish between synchronous and asynchronous network models, as in[A1]. For the lower bound, we assume here that communication is synchronous; i.e.,communication takes place in \rounds", where processors transmit only in the verybeginning of a round and all messages are received by the end of the round. Clearly,the lower bound holds also if communication is asynchronous. For the upper bound,we assume that the network is asynchronous. Thus, our results hold assuming eithersynchronous or asynchronous communication.A protocol is a local program executed by all the vertices in the network. In everystep, each processor performs local computations, sends and receives messages andchanges its local state according to the instructions of the protocol. A vertex startsexecuting a protocol either by means of a special wake-up signal, or as a result ofreceiving a message of the protocol. The set of vertices which can possibly receive awake-up signal is called the initiators of the protocol. A protocol achieving a giventask should work on every networkG, and every assignment � of ID's to the processorsof G. 5



In order to enable a convenient way of measuring the size of messages, we introducethe following formalism. We assert that programs have local variables of two types:identity (ID-typed) variables �I = (I1; I2; : : :) and ordinary variables �X = (X1;X2; : : :).Initially, the ID-typed variables are empty, except for the ID-typed input variables(say, the �rst in the list of variables), which contain the ID's of some processors insome standard order. The ordinary variables initially contain some constants (e.g.0 and 1). We want our lower bounds to apply also to the case where the size ofthe network is known to the processors, so we assume also that the ordinary inputvariable X1 contains jV j. (This will not be used in our upper bound proofs.) Thestate of a processor v consists of the combined list, L = ( �X; �I).We assume that all messages sent by the protocol contain at most a constantnumber B of vertex ID's. (Alternatively, we could have allowed longer messages,but charged them by the number of processor ID's they contain.) Our complexitymeasure is the number of messages (containing at most B vertex ID's) sent in theworst-case execution of the protocol on the network G(V;E).Speci�cally, the communication instructions of the program are of two types: anunconditional \receive" message, and a (possibly) conditional \send" message. Thecondition in the \send" instruction is a comparison of two ordinary variables. (Notethat this does not restrict generality, as allowing the condition to be a comparisonof two ID-typed variables does not change the computational power of the protocol.)Messages consist of the values of some of the variables of the local program. Withoutloss of generality we may further assume that all \send" instructions are of the formif Xi = Xj then send the message (Ik1; Ik2; :::; IkB;Z) to processor IkB+1 .This instruction sends the contents of B ID-typed variables plus an additional infor-mation �eld Z, to the processor whose ID is stored in IkB+1 . The receiving processormay store some or all of the received values in its variables. In proving our lowerbounds we will naturally have to be more speci�c about further restricting the al-lowed content of the additional information �eld Z.We also assume, without loss of generality, that each processor can send at mostone message to each of its neighbors in each round.Finally let us give a precise statement of the problem of broadcast from a singlesource. One of the vertices is marked as source, and it has a certain value. The factthat a vertex is a source, and the value which needs to be broadcast is kept at aspecial input tape. This value should be disseminated from the source vertex to allvertices in the network, which will write it on their output tape.2.2 Partial knowledge of the topologyThe local program at a vertex has local input and local output variables. Our hierarchyof models KT� (for � � 0) is characterized by the local inputs regarding the topology.6



De�nition: Denote the distance between two vertices u; v 2 V by dist(u; v). Forevery v 2 V and e = (u;w) 2 E denotedist(v; e) = minfdist(v; u); dist(v;w)g:De�nition: In the modelKT�, the input to the local program at a vertex v containsall (and only) the edges e such that dist(v; e) < � (where \storing" an edge meanshaving a designated pair of variables holding the ID's of its endpoints).In particular, in the anonymous model KT0, no topological information is stored.In KT1, a vertex knows all edges incident to itself, hence it knows the ID's of itsneighbors. However, it does not know which pairs of its neighbors are connected byedges, since these edges are already at distance 1 from it. For general �, v knowsalmost all the subgraph of G induced by all vertices at radius � from v; the only\unknowns" are the (possible) edges connecting two vertices at distance exactly �from v.We comment that the results for general � hold with only small changes if weuse the more natural de�nition for KT�, by which each vertex v simply knows thesubgraph of G induced by all vertices at radius � from it. The only reason for de�ningthe models in this particular way was to ensure the compatibility between the �rsttwo levels and the traditional models.3 The lower bound for KT1Following some necessary de�nitions (given in Subsections 3.1 and 3.2), our lowerbound proof proceeds in several stages. In the �rst stage (Subsections 3.3 through3.5) we prove the claim only for � = 1, and only in a restricted model of comparisonprotocols. The proof is then extended (in Subsection 3.6) to the general model, whichallows arbitrary computations at vertices. In Section 4 we handle the case of anarbitrary �.We begin the section by giving some preliminary de�nitions and developing nec-essary tools. This is done in the �rst three subsections.3.1 Executions, histories and similarityDe�nition: We denote the execution of a protocol � on a synchronous networkG(V;E) with an ID-assignment � by EX(�; G; �). (This execution adheres to therules of the standard synchronous model as described in Subsection 2.1; we omit aformal de�nition.) Denote the state of a processor v in the beginning of round i ofthe execution EX by Li(EX; v). 7



De�nition: The decoded representation of a message sent during the executionEX(�; G; �) is obtained by replacing each ID value �(v) occurring in the message byv.De�nition: The message history of an execution EX = EX(�; G; �), denotedh(EX), is a sequence of quadruples(ROUND;SENDER;RECEIV ER;MESSAGE)containing the messages sent during the execution in decoded representation. Thequadruples are ordered lexicographically by the �rst three entries. The message his-tory of a particular round i in the execution EX, denoted hi(EX), is the subsequenceof h(EX) with ROUND = i.De�nition: Consider a protocol �, two graphs G0(V;E0) and G1(V;E1) over thesame set of vertices V and two ID-assignments �0 and �1 for V , and the correspondingexecutions EX0 = EX(�; G0; �0) and EX1 = EX(�; G1; �1). We say that twomessages M1 and M2 sent during these executions (respectively) are similar if theirdecoded representation is identical. Likewise, we say that the executions are similarif their message history is identical.We state the following immediate fact for future use.Fact 3.1: Similarity of executions is transitive.A crucial element of our lower bound proof involves �nding pairs of ID-assignments�0, �1 whose substitution in the processors of the network essentially \preserves" theexecution. We now formalize this notion of \mixable" ID-assignments.De�nition: Let �0 and �1 be two ID-assignments with disjoint ranges. For anyn-bit string �� = �1 : : : �n, let ��� be an ID-assignment such that for every i 2 V���(i) = ��i(i):The mixing set of �0 and �1 is de�ned asM(�0; �1) = f��� j �� 2 f0; 1gng:We say that the ID-assignments �0 and �1 are fully mixable for the protocol � andthe graph G(V;E) if all the executions EX(�; G; ���) (for every ��� in the mixing setM(�0; �1)) are similar.3.2 Edge utilization, charge-counts and message complexityThe goal of this Subsection is to establish some de�nitions which will enable us toe�ectively bound the message complexity of our broadcast algorithms.8



De�nition: We say that an edge (u; v) 2 E is utilized during an executionEX(�; G; �)if at least one of the following three events takes place:(i) A message is sent on (u; v).(ii) Processor u either sends or receives a message containing �(v).(iii) Processor v either sends or receives a message containing �(u).This de�nition provides us with an accounting method for charging messages sentduring the execution of any protocol to the links of the network.De�nition: The charge count of an execution EX(�; G; �) is obtained by employingthe following charging rule. For every message containing �(z) that is sent during theexecution from the processor x to the processor y, we charge(C1) the edge (x; y),(C2) the pair (possibly edge) (x; z), and(C3) the pair (possibly edge) (z; y).We now claim that the above charge-count, the number of messages sent during theexecution and the number of edges utilized during the execution are closely related,and particularly, the message complexity of the execution is at least a (positive)constant factor times the number of utilized edges. We stress that this does notimply that messages must actually be sent over every utilized edge.A message sent from x to y is charged to the edge (x; y) and to all the pairs (x; z)and (y; z) such that �(z) occurs in the message. Since there are at most B ID's ineach message, we have the following lemma.Lemma 3.2: The number of edges that get charged for a single message sent duringan execution EX(�; G; �) is at most 2B + 1.Also, inspection of the de�nitions of edge utilization and charge-count reveals thefollowing.Lemma 3.3: Applying the charge count of the above de�nition to an executionEX(�; G; �), each utilized edge gets charged at least once.Lemma3.4: Letm denote the number of utilized edges in an execution EX(�; G; �).Then the message complexity of the execution is 
(m).Proof: Let C denote the total charge placed by the above rules on the executionEX(�; G; �), and let M denote the total number of messages sent during that exe-cution. Combining Lemma 3.2 with Lemma 3.3, we getm � C � (2B + 1)M:9



Recalling that B is a constant, the Lemma follows.3.3 The model of comparison protocolsAt this point, we restrict the local computations of the program which involve pro-cessors' ID's to comparing two ID's. The local computations of the program mayinvolve operations of the following two types:1. Comparing two ID-typed variables Ii; Ij and storing the result of the comparisonin an ordinary variable. We refer to this result as comp(Ii; Ij). Since the set Sof possible ID's is ordered, the result of the comparison may be either of thethree values \<", \=" or \>". We assume some standard encoding of the resultof the comparison. For instance, encode \<" as �1, \=" as 0 and \>" as +1.2. Performing an arbitrary computation on ordinary variables and storing the re-sult in another ordinary variable.Under this restriction, our \send" instructions may be allowed to include the entirelist of ordinary variables of the sending processor in their \additional information"�eld Z.The reason for restricting the permissible operations of local programs on ID'sto comparisons is that this makes it easy to prove the existence of a fully mixableID-assignment.De�nition: Two lists of ID's �a = (a1; : : : ; ak) and �b = (b1; : : : ; bk), �a;�b � S arecalled adjacent if the following conditions hold:� For every 1 � i � n and for every s 2 S � fai; big, comp(ai; s) = comp(bi; s).� For every 1 � i; j � n, comp(ai; aj) = comp(bi; bj).Two ID-assignments �0, �1 are adjacent if the corresponding lists are adjacent(where the list corresponding to an ID-assignment � is (�(1); : : : ; �(jV j)).Clearly, if jSj � 2jV j then there exist two adjacent assignments �0; �1 with disjointrange. (For example, let �i(j) = s2j�i.)Lemma 3.5: Let �0 and �1 be two adjacent ID-assignments. Then for any protocol� and any graph G(V;E), the executions EX(�; G; �0) and EX(�; G; �1) are similar.Proof: Immediate by observing that all the ordinary variables of all local programshave the same values in both executions.Corollary 3.6: Let �0 and �1 be adjacent ID-assignments with disjoint ranges. Then�0 and �1 are fully mixable for any protocol � and any graph G(V;E).10



3.4 Networks and ID-assignments for the lower boundWe are now ready to introduce the family of networks to be used in our lower boundproof. Consider a graph G(V;E) with a specially designated source s. Construct agraph G0(V 0; E 0) where V 0 = fw0 : w 2 V g;E0 = f(w01; w02) : (w1; w2) 2 E gand G0 has no special source vertex. Construct a graph G2(V 2; E2) whereV 2 = V [ V 0and E2 = E[E 0:Thus G2(V 2; E2) is the graph consisting of two (disconnected) identical copies of G,one with a source and one without a source.For every edge e = (u; v) 2 E, let e0 = (u0; v0) and construct Ge(V 2; Ee) by lettingEe = (E � feg) [ (E0 � fe0g) [ f(u; v0); (u0; v)g:Namely, Ge consists of two identical copies of G�feg connected with correspondingcrossing edges (i.e., u of one copy to v of the other, and vice versa). Now u0 has thesame topological environment as u.Example: Consider the graph G(V;E) where V = f1; 2; 3g and E = f(1; 2); (1; 3); (2; 3)g,and the edge e = (1; 3). The corresponding graphs G2 and Ge are presented in Figures1 and 2, respectively.
11
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Figure 1: The graph G2(V 2; E2) corresponding to the exampleFurther, for any given graph G(V;E) de�ne the family of graphsCG = fGe : e 2 Eg:Note that G and G2 are not included in CG. Also note that all the graphs in CG havethe same number of vertices (i.e. jV 2j = 2jV j) and the same number of edges (i.e.jEej = 2jEj). Therefore the variable X1, storing the size of the network, will containthe same value in the run of any algorithm on any of these graphs.For the remainder of the section we �x G(V;E) to be some arbitrary graph andconstruct the class CG. We �x some speci�c vertex s 2 V as the source in all thegraphs of CG. (Note that s occurs in the �rst copy of G in all of these graphs.)Let S be a set of ID's (jSj � 2jV j), and let �0 : V ! S and �1 : V ! S betwo adjacent ID-assignments with disjoint ranges. By Corollary 3.6, �0 and �1 arefully mixable for any protocol � and any graph G on the vertex set V or V 0 (taking�i(v0) = �i(v) for v 2 V , where v0 is the corresponding vertex in V 0). De�ne theID-assignment  : V 2 ! S as  (w) = �0(w) and  (w0) = �1(w) for every w 2 V .Let � be a protocol that achieves broadcast from s on at least a fraction � > 0 of thegraphs of CG with the ID-assignment  .Our goal is to prove that for a constant fraction of graphs in CG, � requires 
(jEj)messages. In our lower bound argument we concentrate on the graph G2, switchingwhenever required to one of the auxiliary graphs Ge, and relying on the fact that theprotocol � is correct when run on Ge 2 CG. We argue that neighbors must \hear" ofone another during any execution of a broadcast protocol, and therefore 
(jEj) edgesneed to be utilized. The intuition behind the proof is that in case some edge e 2 Eis not utilized, no processor in the network can distinguish the case in which it takes12
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Figure 2: The corresponding graph Ge(V 2; Ee)part in an execution on G2 from the case in which it takes part in an execution onGe. The only potential di�erence between these executions lies in whether u and vare neighbors or not, where e = (u; v). But this neighborhood relation can not betested if no messages bearing the ID of one processor are communicated from/to theother.This intuition needs careful formalization, which requires us to de�ne some appro-priate ID-assignments and executions for the graphs of CG. For every e = (u; v) 2 E,de�ne the ID-assignment  eu : V 2 ! S just as  , except for interchanging the ID's ofu and u0 (i.e., letting  eu(u) = �1(u) and  eu(u0) = �0(u)), and de�ne  ev analogouslyfor v. Finally de�ne EX = EX(�; G2;  );EXeu = EX(�; G2;  eu);EXev = EX(�; G2;  ev);EXe = EX(�; Ge;  ):3.5 The lower bound proofWe start by observing the following lemma.Lemma 3.7: The executions EX, EXeu and EXev are similar.Proof: The claim follows directly from the following facts. First, G2 is composed oftwo completely disconnected graphs G and G0. Secondly, �0 and �1 are fully mixable13



for � and G as well as for � and G0. Finally, �0, �1 and the parts of  eu and  evrestricted to G and to G0 are in the mixing set M(�0; �1).We need to argue about the relationships between these executions and the exe-cution on Ge, EXe.Lemma 3.8: Suppose that during the �rst r rounds of the execution EX both e ande0 are not utilized, for some e = (u; v) 2 E. Then the following hold for every round1 � i � r of the executions EX, EXeu, EXev and EXe:(1) The states of the processors in the beginning of the round satisfy:(1.1) For every processor w 2 V 2 � fu; u0; v; v0g, Li(EXe; w) = Li(EX;w).(1.2) For x 2 fu; u0g, Li(EXe; x) = Li(EXev ; x).(1.3) For x 2 fv; v0g, Li(EXe; x) = Li(EXeu; x).(2) The messages sent during the round are similar, i.e., hi(EX) = hi(EXeu) =hi(EXev ) = hi(EXe).(3) In EXe, no messages are sent during the round over the edges (u; v0) and (v; u0).Proof: Let us �rst remark that the assumption that e is not utilized in round i ofEX implies that it is not utilized in EXeu or EXev either, since these executions aresimilar (and the graphs are identical).As a major step towards proving the lemma we argue the following.Claim 3.8.1: If (1) holds at the beginning of a round 1 � i � r then (2) and (3)must hold during the round.Proof: By cases corresponding to the cases of (1). In general, for each processor wwe show that the messages sent by it in the execution EXe are similar to those sentby it in some of the other three (similar) executions. This su�ces in order to prove(2) due to the transitivity of similarity.Let us �rst consider any processor w 2 V 2 � fu; u0; v; v0g. Part (1.1) ensures thatw sends precisely the same messages in round i of EX and EXe, since its state isidentical. We need to show that these messages are not only identical but also similar(i.e., they are identical also in decoded representation). This is immediate since bothexecutions use the same ID-assignment,  . Consequently, the part of (2) that isrelevant to w follows.Next, consider the processor u. Part (1.2) ensures that its states in the beginningof the round in executions EXev and EXe are identical, and therefore u executes thesame \send" instructions and sends precisely the same messages in both runs. Againwe need to show that these messages are not only identical but also similar. This14



requires us to show that every ID value sent in these two executions by u has the samemeaning (i.e., it represents the same processor) under  and  ev. The assumption thate is not utilized in round i of EXev implies that the particular ID-typed variable Istoring �1(v) in u is not used in any \send" instruction executed by u in the executionEXev , neither in its content nor in its destination �eld. Consequently in EXe thisvariable is not used either. Since in G2 the two copies of the graph G are disconnected,any ID held by u in the execution EXeu is the ID of some w 2 V . Every processorin V � fvg has the same ID under  and  ev. Consequently, the part of (2) that isrelevant to u follows.Since I is not used as a destination �eld of any \send" instruction, no messageis sent from u to v0 in this round of EXe, which accounts for the part of (3) that isrelevant to u.The case of u0 is handled in the same way. As for the cases of v and v0, theseare handled analogously, using (1.3) in place of (1.2) and discussing EXeu instead ofEXev . This completes the proof of Claim 3.8.1.We now prove the lemma by induction on i, the round number. For the inductionbase, i = 1, Part (1) follows from the de�nition of the input variables of processorsunder a given topology and ID-assignment, and (2) and (3) follow by Claim 3.8.1.For the induction step we assume that (1), (2) and (3) hold during rounds 0; : : : ; i�1, i � r, and look at round i. By induction hypothesis, the messages sent during thei � 1-st round of all four executions are similar. A case analysis converse to that ofthe proof of Claim 3.8.1 establishes that (1) holds at the beginning of round i. Forinstance consider the processor u. The messages it gets in the end of round i� 1 aresimilar in EXev and EXe. It does not get a message on the edge e in EXev or on theedge (u; v0) in EXe. Also it doesn't get a message containing the ID of v in eitherexecution (since otherwise the executions cannot be similar). Consequently all themessages it gets contain only ID's of vertices from V �fvg. For these processors, theID's assigned by  ev and  are identical, hence any received values that are stored byu are identical in both executions (relying on the fact that any local computationsmade by u in order to determine which values to store will again be identical by theinductive assumption). Similar arguments apply for the other processors. Parts (2)and (3) follow by Claim 3.8.1. This completes the proof of the lemma.Corollary 3.9: Suppose that during the execution EX both e and e0 are not utilized,for some e = (u; v) 2 E. Then the executions EX and EXe are similar (h(EX) =h(EXe)), and furthermore, in EXe no messages are sent over the edges (u; v0) and(v; u0).Lemma 3.10: Suppose that for some e = (u; v) 2 E, both e and e0 are not utilizedduring the �rst r rounds of the execution EX, but e or e0 (or both) is utilized in roundr + 1 of EX. Then for every other edge e1 2 E � feg, if e1 is utilized in round r + 115



of EX then it is utilized also in EXe.Proof: We �rst note that Part (1) of Lemma 3.8 holds also for round r + 1, by thesame inductive proof. Repeating an analysis similar to that in the proof of Claim3.8.1 we can show that the \send" instructions executed by each processor duringround r + 1 are identical in EXe and the appropriate execution according to thecases of Part (1) of Lemma 3.8. The di�erence, however, is that in this round, theedge e does get utilized, hence two corresponding messages may contain the ID's ofdi�erent processors. Nonetheless, one can see that hr+1(EX) is still almost identicalto hr+1(EXe), and the only possible discrepancies are the following:� the processor u might send �0(v) (the ID of v) in EX and �1(v) (the ID of v0)in EXe,� the processor u0 might send �1(v) in EX and �0(v) in EXe,� the processor v might send �0(u) in EX and �1(u) in EXe,� the processor v0 might send �1(u) in EX and �0(u) in EXe.A straightforward case analysis shows that the only edge whose utilization may bea�ected by these discrepancies is e, and for every other edge e1 2 E � feg, if e1 isutilized in this round of EX then it is utilized also in EXe.Lemma 3.11: For at least a fraction � of the edges e 2 E, either e or e0 is utilizedin the execution EX.Proof: Suppose otherwise. By Corollary 3.9, more than a fraction � of the edgese = (u; v) 2 E satisfy the condition that, in EXe, no messages are sent over theedges (u; v0) and (v; u0). But then, in EXe, the broadcast message never reaches u0or v0, so � performs incorrectly on more than a fraction � of the graphs in CG, underID-assignment  .Let Ei denote the set of edges e 2 E such that e or e0 is utilized during the �rsti rounds of EX, and let Qi = E � Ei. Consider the �rst round r such that jErj ��jEj=2 (such a round exists by Lemma 3.11). Consider any edge e = (u; v) 2 Qr�1.By Lemma 3.8, the �rst r � 1 rounds of the executions EX and EXe are similar.Furthermore, by Lemma 3.10 in the r'th round the histories are either identical (ifalso e 2 Qr) or almost identical, disagreeing only in some occurrences of �0(u), �1(u),�0(v) and �1(v) (if e is utilized in round r). Thus all the edges in Er except possiblye are utilized during the �rst r rounds of EXe.Lemma 3.12: For every e 2 Qr�1, the message complexity of the execution EXe is
(�jEj). 16



Proof: By direct application of Lemma 3.4, noting that m, the number of utilizededges, satis�es m = 
(�jEj), since m � jErj � �jEj=2.Observe that, by de�nition, jQr�1j � (1 � �2)jEj. Therefore the lower boundimplied by Lemma 3.12 applies to a constant fraction of the networks in CG. Thisgives us our theorem.Theorem 3.13: Let G(V;E) be an arbitrary graph, and let � be a protocol with anyset of initiators achieving broadcast on at least a fraction � > 0 of the networks of thefamily CG in the comparison model. Then the message complexity of � is 
(�jEj) ona constant fraction of the networks of CG. This holds even when the vertices knowthe size of the network.This strong formulation of the Theorem enables us to extend the result and derivea statement concerning randomized protocols as well.Theorem 3.14: Let G(V;E) be an arbitrary graph, and let � be a randomized(Monte-Carlo) protocol with any set of initiators achieving broadcast on the networksof the family CG (in the comparison model) with error probability less than �. Thenthe average message complexity of � on the networks of CG is 
((1 � �)jEj). Thisholds even when the vertices know the size of the network.Proof: View the randomized protocol � as a probability measure � over a collectionf�ig of deterministic protocols; in every execution one of these protocols is randomlyselected and used according to �.Let �G(�) be the fraction of graphs in CG on which the deterministic protocol �achieves broadcast. Since � errs with probability less than �, R� �Gd� > 1 � �. ByTheorem 3.13, the average message complexity of � over CG is at least R� cjEj�Gd� >c(1� �)jEj, for some constant c > 0.Note that this result is tight, since a Monte-Carlo broadcast algorithm can beginwith the source deciding, with probability 1� �, to initiate a ooding algorithm, andwith probability � to do nothing. The average message complexity of this algorithmis O((1 � �)jEj).3.6 Extending the proof to the unrestricted modelWe now extend the result of Theorem 3.13 by getting rid of the simplifying restric-tions imposed on the local programs in the comparison model, and allowing arbitrarycomputations in the local programs. This introduces di�culties unencountered so far.We have to explicitly bound the length of messages, otherwise an unbounded numberof ID's can be transferred in a single message. Also, we have to disallow protocolswith time unbounded in terms of the network topology, otherwise one may encodean unbounded number of ID's by the choice of transmission round. (This clearly17



relates only to the synchronous communication model. In the asynchronous modelsuch encoding is impossible!)We introduce an upper bound T on number of rounds, and an upper bound L onthe length of the \additional information" �eld Z of messages, both depending onlyon G. Modifying the argument of Section 3.5, we getTheorem 3.15: Let G(V;E) be an arbitrary graph, and � a protocol with arbitrarylocal computations achieving broadcast on every network of the family CG. Further,assume that � requires at most T rounds, and the length of the \additional informa-tion" �eld Z of its messages is at most L, where both bounds depend only on G. Thenthe message complexity of � is �(jEj) on a constant fraction of the networks of CG.Proof: The only way in which we used the restriction to comparison models wasin proving the existence of ID-assignments �0 and �1 that are fully mixable for �with respect to both G and G0. In the general model we can not use the \adjacency"property which is now irrelevant. Instead, we use a Ramsey Theory argument [GRS].Let S be an arbitrary ordered set of ID's. Denote n = jV j and m = jEj. Let �denote the number of possible nonsimilar executions EX(�; G2; �) (i.e., executionswith di�erent message histories) over all possible ID-assignments � : V ! S satis-fying �(u) < �(v) for every u < v. The number of possible messages (in decodedrepresentation) is at most (2n)B � 2L. Assuming that less than m messages are sent(otherwise the Theorem holds trivially), one can readily verify that the number ofpossible quadruples(ROUND;SENDER;RECEIV ER;MESSAGE)(where messages are in decoded representation) is bounded above by T �4m�(2n)B �2L.It follows that � <  T � 4m � (2n)B � 2Lm ! :The execution histories (or, the equivalence classes of similar executions) induce a�-coloring of the n-subsets of S. Ramsey's Theorem asserts that if S is su�cientlylarge (though still �nite) then there exists a set R � S of 2n ID's so that all then-subsets of R have the same color [GRS, Sec. 1.2]. The set R is then partitionedinto two disjoint subsets R0 = fr0i j 1 � i � ng and R1 = fr1i j 1 � i � ng, and thedesired ID-assignments are de�ned as �0(i) = r0i and �1(i) = r1i for every 1 � i � n.By choice, these ID-assignments are fully mixable. The rest of the proof follows as inthe restricted case.A simpler (but more tedious) direct argument is possible, noting that we do notreally need a collection of monochromatic n-subsets of a 2n elements set, but rathera collection of n+1 monochromatic subsets S0, S1; :::; Sn such that jS0TSij = n� 1,for all 1 � i � n. 18



We remark that we do not know how to extend the result for general randomizedprotocols, since the Ramsey argument might produce a di�erent pair of fully mixableID-assignments for each of the deterministic algorithms in the collectionR constitut-ing the randomized protocol. However, it is possible to derive the result for restrictedrandomized protocols in which there is a bound on the number of \coinips," or, thesize of the collectionR, and this bound is independent of the ID's. For such protocolswe can apply the above technique to produce a single pair of ID assignments thatworks for all the deterministic algorithms in R simultaneously, since a �nite boundon � still exists.4 Lower bound for the model of partial topologicalknowledgeIn order to prove Theorem 2, giving the lower bound for the model KT�, for any� � 2, we need to go through the entire proof and revise it to this more powerfulsetting. The problem is that in order for a vertex u to distinguish between the originalgraph G2 and some \switched graph" Ge, e = (x; y), it does not have to be incidentto the edge, or to get the ID of some endpoint; it is enough that it gets the ID of somevertex w in distance � or less from itself which is \on the other side of e" (i.e., suchthat some short path from v to w goes through e). The de�nitions of edge utilizationand charge count from Section 3.2 have to be modi�ed accordingly.In order to de�ne our graph family we need the following result. Let g(G) denotethe girth of a graph G, i.e., the length of a smallest cycle in G. (A single edge is notconsidered a cycle of length 2, so g(G) � 3 for every G.)Proposition 4.1 [Bo]: There exists a constant c > 0, such that for every integer� � 2 there exists a graph G(V;E) with girth g(G) > 2� and jEj = 
(jV j1+ c� ).Our family of graphs, F�, is constructed as follows. We �rst pick a graph G(V;E)satisfying the conditions of Proposition 4.1, and then let F� = CG.The advantageous property of the networks in CG is that for every two vertices ofdistance at most � from each other, there is a unique path of that length connectingthem.De�nition: In a graph G with girth g(G) > 2�, two vertices u; v 2 V are said to bee-connected for some edge e 2 E if they are at distance at most � and the (unique)shortest path between them contains e.Note that for every two processors u and v, the number of edges e such that u andv are e-connected is at most � (in fact, this number is exactly the distance betweenthem if this distance is at most �, and 0 otherwise).19



De�nition: We say that an edge e = (u; v) 2 E is utilized during an executionEX(�; G; �) if at least one of the following events takes place:(i) A message is sent on (u; v).(ii) Processor x either sends or receives a message containing �(z), for two e-connectedprocessors x; z 2 V .De�nition: The charge count of an execution EX(�; G; �) is obtained by employingthe following charging rule. For every message containing �(z) that is sent from theprocessor x to the processor y, we charge(C1) the edge (x; y), and(C2) every edge e such that z is e-connected to either x or y.Lemma 4.2: For every graph G with girth g(G) > 2�, the number of edges thatget charged for a single message sent during an execution EX(�; G; �) is at most2B�+ 1.Proof: A message sent from x to y is charged to the edge (x; y). In addition, forevery ID �(z) occurring in the message, the message is charged to all the edges esuch that either x and z or y and z are e-connected. Since G has girth greater than2�, there are at most � edges of each of these types. Since there are B ID's in eachmessage, the Lemma follows.Lemma 4.3: Applying the charge count of the above de�nition to an executionEX(�; G; �), each utilized edge is charged at least once.Proof: For each utilized edge e = (u; v) consider the following three cases:(i) A message is sent on e: Then e is charged by (C1).(ii) Processor x either sends or receives a message containing �(z), for two e-connectedprocessors x; z 2 V : Then e is charged by (C2).The Lemma follows.Lemma 4.4: Let G be a graph with girth g(G) > 2�, and let m denote the numberof utilized edges in an execution EX(�; G; �). Then the message complexity of theexecution is 
(m=�).Proof: Let C denote the total charge placed by the above rules on the executionEX(�; G; �), and let M denote the total number of messages sent during that exe-cution. Combining Lemma 4.2 with Lemma 4.3, we getm � C � (2B�+ 1)M:20



Recalling that B is a constant, the Lemma follows.De�nition: For every edge e = (u; v) 2 E, the neighborhood �i(u; e) is the i-neighborhood of u (i.e., the set of nodes at distance i from u) in the graph obtainedfrom G by eliminating the edge e.For proving the lower bound we de�ne the graphs G2 and Ge (for every e = (u; v) 2E), the ID-assignment  and the executions EX and EXe as before. We need tode�ne a collection of \intermediate" ID-assignments  eu;j and  ev;j, for 1 � j � �,as follows: de�ne  eu;j just as  , except for interchanging the ID's of w and w0 forevery w 2 �j(u; e), and de�ne  ev;j analogously for v. De�ne the executions EXeu;jand EXev;j accordingly. The main lemma parallel to Lemma 3.8 becomes:Lemma 4.5: Suppose that during the �rst r rounds of the execution EX both e ande0 are not utilized, for some e = (u; v) 2 E. Then the following hold for every round1 � i � r of the executions EX, EXe and EXeu;j and EXev;j for every 1 � j � �:(1) The states of the processors in the beginning of the round satisfy:(1.1) For every processor w 2 V 2 � fu; u0; v; v0g, Li(EX;w) = Li(EXe; w).(1.2) For x 2 (�j(u; e)��j�1(u; e)) [ (�j(u0; e)��j�1(u0; e)) (for 1 � j � �),Li(EXe��j�1;v; x) = Li(EXe; x).(1.3) For x 2 (�j(v; e)��j�1(v; e)) [ (�j(v0; e)��j�1(v0; e)) (for 1 � j � �),Li(EXe��j�1;u; x) = Li(EXe; x).(2) The messages sent during the round are similar, i.e., hi(EX) = hi(EXeu;j) =hi(EXev;j) = hi(EXe) for every 1 � j � rho.(3) In EXe, no messages are sent over the edges (u; v0) and (v; u0).The proof of this lemma follows arguments similar to those proving Lemma 3.8,although the overall proof becomes more complex. The rest of the proof also mimicsthe arguments of Section 3, and we omit the details. We haveTheorem 4.6: There exists a constant c0 > 0 such that for every two integers � � 1and n � 1 there exists a family F� of graphs with m edges and n vertices each, wherem = 
(n1+ c0� ), such that any protocol that works correctly on all graphs in F� in themodel KT� sends at least 
(m=�) messages over a constant fraction of the graphsfrom F�. This lower bound holds even if the network is synchronous, all the verticesstart the protocol at the same round, and the size of the network is known.21



5 The upper boundIn this section we prove Theorem 3, that is, we show that for any integer � � 1 andfor any connected graph G(V;E), in the model KT� broadcast can be performed withat most O(minfjEj; jV j1+ c�g) messages for some constant c > 0. This upper boundholds even if the network is asynchronous.De�nition: A cycle is short if its length is 2� or less.The key observation behind the algorithm is that if a vertex knows all the edgesat distance � or less from it, then it can detect all short cycles going through it. Thisenables us to disconnect all short cycles locally, by deleting the heaviest edge (theone with the highest weight) in each such cycle.More precisely, assume some (locally computable) assignment of distinct weightsto the edges. De�ne a subgraph �G(V; �E) of G by marking the heaviest edge in everyshort cycle \unusable" and including precisely all unmarked edges in �E. We requireonly the vertices incident to an edge e to know whether or not e is usable. Therefore,given the partial topological knowledge of the vertices, such edge deletions can beperformed locally by the vertices incident to each edge, without sending a singlemessage.Lemma 5.1: If G is connected then �G is connected as well.Proof: The claim holds even if one deletes the heaviest edge in every cycle of thegraph. In fact, the remaining subgraph in such a case is a spanning tree of the originalgraph (cf. [E]).An immediate consequence of the marking process used to de�ne �G is that allshort cycles are disconnected, and hence we haveLemma 5.2: The girth of �G satis�es g( �G) � 2�+ 1.We need the following proposition.Proposition 5.3 [A1, PS]: There exists a constant c > 0 such that for any graphG(V;E) and for any k � 1 there exists a subgraph G0(V;E 0) such that1. jE0j � O(jV j1+ ck ).2. For every edge (u; v) 2 E, the distance between u and v in G0 is at most k.(I.e., G0 is a k-spanner of G [PS].)Corollary 5.4: There exists a constant c > 0 such that any graph G(V;E) withgirth g(G) � 3 has at most jEj = O(jV j1+ cg(G)�2 ) edges.22



Proof: Select c as in Proposition 5.3 and set k = g(G) � 2 � 1. We claim thatthe only k-spanner of G (i.e., the only possible subgraph G0 satisfying property 2 ofProposition 5.3) is G itself. To see this, consider any proper subgraph G0 of G and let(u; v) be some edge in E � E0. The shortest path between u and v in G0 is of lengthat least g(G) � 1 = k + 1, violating the desired property. Consequently, Proposition5.3 implies that G itself satis�es also the �rst property, namely, jEj = O(jV j1+ cg(G)�2 ).It follows from Lemma 5.2 and Cor. 5.4 that j �Ej = O(jV j1+ c� ). We can nowperform broadcast on �G using by the standard ooding algorithm described earlier.That is, whenever a vertex receives the message for the �rst time, it sends it over allthe usable edges e 2 �E incident to it. This requires O(j �Ej) = O(jV j1+ c� ) messages.This completes the proof of our �rst Theorem.Theorem 5.5: There exists a constant c > 0 such that for every integer � � 1and for any graph G(V;E), broadcast can be performed in the model KT� using atmost O(minfjEj; jV j1+ c�g) messages. This upper bound holds even if the network isasynchronous.ACKNOWLEDGMENTSWe wish to thank Mike Luby, Yishay Mansour, R�udiger Reischuk, Avi Wigdersonand two anonymous referees for their help in various stages of this work.
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