
The Best of Both Worlds:Guaranteeing Termination in Fast RandomizedByzantine Agreement ProtocolsOded GoldreichErez PetrankDepartment of Computer ScienceTechnionHaifa, Israel.AbstractAll known fast randomized Byzantine Agreement (BA) protocols have (rare) in�nite runs.We present a method of combining randomized BA protocols of a certain class with any deter-ministic BA protocol to obtain a randomized protocol which preserves the expected averagecomplexity of the randomized protocol while guaranteeing termination in all runs. In particu-lar, we obtain a randomized BA protocol with constant expected time which always terminatewithin t + O(log t) rounds, where t = O(n) is the number of faulty processors.Comment: Reproduced from an old tro� �le. Paper has appeared in IPL, Vol. 36, October1990, pp. 45{49.Keywords: Byzantine Agreement , Randomized Algorithms , Distributed Computing.



1 IntroductionByzantine Agreement (BA) is a fault tolerant distributed task with the following input-outputrelations:1. Agreement: For every set of inputs and any behavior of the faulty processors, all goodprocessors should output the same value.2. Validity: If all good processors start with the same input value, they should all output thisvalue, no matter what the faulty processors do.BA was introduced in the seminal paper of Pease, Shostak, and Lamport [PSL]. It has sincebeen recognized as a key problem in the area and attracted much research. The status of BA, aswell as other distributed tasks, heavily depends on the underlying communication model. In thisnote we assume that communication takes place in synchronous rounds and via private channelsconnecting each pair of processors. (Brief remarks on the asynchronous model can be found insection 6).Let n be the number of processors and t be the number of faulty processors, [PSL] showed thatno solution exists if n � 3t. They also gave a deterministic algorithm solving the problem forthe case n 3t. Their protocol consisted of t+ 1 rounds but required exponential amount of com-munication. A deterministic algorithm with polynomial message (and computation) complexityand t + 1 rounds for t = O(n) was recently introduced by Moses and Waatz[MW]. Fischer andLynch [FL] proved that t+ 1 rounds are optimal (i.e. every deterministic BA protocol has a runwhich take at least t+1 rounds). Improvement is possible through randomization.1 In particular,Feldman and Micali [FM], improving over previous works of Ben-Or [Be], Rabin [R], Chor andCoan [CC], and Bracha [Br], presented a randomized BA protocol with a constant expected timefor t = O(n). However, their protocol has a shortcoming: there is no bound on the number ofrounds in the worst case (i.e. for the worst sequence of coin-tosses). Namely, for every m, theprobability that the protocol proceeds more then m rounds is (very small, yet) greater then 0.This disadvantage is shared by all randomized BA protocols (with expected number of rounds lessthan t+1) known so far.2 Is this disadvantage unavoidable? Namely, must every randomized BAprotocol with expected number of rounds smaller then t+1, have unbounded runs? This questionis the focus of this note.Our main result is a randomized BA with a constant expected number of rounds in whichall runs take at most t + O(log t) rounds. In fact we show how every randomized BA protocolof certain natural class (to which almost all known randomized BA protocols belong) can betransformed into a randomized BA which always terminates, yet has the same (up to an additiveconstant) expected running time as the original protocol. Hence we obtain the best of bothworlds: a randomized BA protocol with expected running time as the best possible randomizedBA protocol and with no in�nite runs (as good deterministic BA). In other words, our randomizedBA protocol is almost optimal3 on the average and on the worst case simultaneously.1 Interestingly, Randomized protocols o�er no advantage in case one requires concurrent termination [DM,MT].2 Also in the weaker model of fail-stop failures, fast randomized agreement protocols (e.g. [CMS]) have (rare)in�nite runs.3 Optimality on the average means up to an additive constant, while in the worst case optimality means up toan additive logarithmic factor.



It should be stressed that naive attempts to solve the problem fail. In particular, one cannotjust run a deterministic protocol in case the randomized protocol has not stopped within a prede-termined number of rounds, since the problem of determining whether the protocol has stoppedwithin a given number of rounds is as hard as the original problem (of BA). The same problemoccurs when one tries to run deterministic and randomized protocols in parallel, and take theoutput value of the protocol that �nishes earlier.2 The ModelWe consider a synchronous system of n processors with unique identities, in which every pair ofprocessors is connected via a private line. Each processor has a local input value, and has todecide upon a local output value. We distinct between the notion of writing a local output and thelocal termination of a processor. When a processor has gained enough information to decide uponhis output, he writes it into his output tape. In most previous works, a processor that wrote hisoutput, �nished his role in the protocol4 We shall make each processor proceed after writing hisoutput, for the bene�t of the other processors. Therefore local termination will occur after theround in which the output was written. However, further participation might have been risky inthe sense that further writing might be erroneous. Therefore we stress, that a processor writes anoutput only once. Once an output was written, the processor never tries to "change his mind".The local running time of a processor is the number of rounds needed until its local termination.The running time of the protocol (for a speci�c input, speci�c behavior of the faulty processorsand a given sequence of coin-tosses) is the maximum over the local running times of the goodprocessors. The average running time of a protocol is de�ned by taking the worst inputs andthe worst behavior of the adversaries, and applying the expectation operator over the coin-tossesprobability space. The worst running time is the running time of the protocol for the worstinputs the worst behavior of the adversaries and for the worst sequence coin-tosses. In (good)deterministic protocols the worst (and average) running times are equal to t + 1. In currentlyknown randomized protocols the average time is less then t + 1 (in particular [FM] has an O(1)expected running time) and the worst case running time is unbounded.3 The Protocol:All the known randomized protocols share a structure based on the notion of phases (consistingof a �xed number of rounds), and the notion of current value (which is the "favorite value" ofthe processor at the end of a phase). Most of these protocols (in particular the [FM] protocol)meet the following properties:P1. If a good processor writes output v during a phase, then at the end of that phase all goodprocessors have v as their current value.P2. If all good processors enter a phase with the same current value, then this value will bewritten on their output tape after that phase. (This value will also remain their current4 Some of the protocols ignore this question completely, thus, implicitly identifying decision with termination.



value).Note that in most of the original protocols, writing the output is (implicitly or explicitly) identi�edwith local termination. We shall mention explicitly stopping, and writing the output will not implylocal termination. Our protocol can use any randomized protocol that meet both properties P1and P2, and any deterministic BA protocol.Our Protocol (for a processor P)The protocol will be parametrized by an integer (k � 1).1. Run up to k phases of the randomized protocol. Proceed to step 2 if local writing has takenplace or the k phases are over.2. If you wrote your output in phase l k , then stop at the end of phase l + 1 (without anyfurther writing).3. If you wrote your output at phase k, participate in a deterministic protocol that starts afterthe kth phase. (Without any further writing!). Use your current value as an input to thedeterministic protocol.4. If you have not written your value during these k phases, participate in the deterministicprotocol starting after the kth phase. and write the local output determined by this ex-ecution. the input to the deterministic protocol is the current value at the end of phasek.4 CorrectnessValidity: If all good processors start with the same value then by P2, during the �rst phase theywill all write their input values.Agreement: P1 and P2 together guarantee that, in the original randomized BA protocol, all thegood processors write their output values in the same phase or during two consecutive phases. Inanalysing our protocol there are three possible cases to consider :a: The �rst good processor to write an output, did so in phase l k. In this case, all goodprocessors wrote their values in phases l ; l+1 (both smaller or equal to k). In these phasesour protocol is still following the instructions of the randomized protocol, and thereforeagreement is guarantied by the agreement property of the randomized protocol.b: The �rst good processor to write an output, did so during the kth phase. If all the goodprocessors wrote their value during the kth phase, then we use the same argument as in case(a). Otherwise, some of the good processors wrote their values during the kth phase, whilethe others entered the deterministic protocol without having written an output. By propertyP1, all good processors have at this stage the same current value and those which wrote an



output, wrote the same output value. Remember that though some of the good processorshave written their values, they all participate in the deterministic protocol. The validityproperty of the deterministic protocol assures us that all the remaining good processors willwrite their identical current value into their output tape.c: None of the good processors has written an output during the �rst k phases. In this case,all the good processors write their values during the deterministic protocol, and thereforethe agreement follows from the agreement property of the deterministic protocol.We emphasize again that a processor does not write an output twice. Therefore any furtherparticipation in the protocol after writing a local output, does not change the value writtenbefore.5 Rounds Complexity AnalysisLet r denote the number of rounds in a phase, Pk - the probability that the randomized protocolenters the kth phase, (i.e., has not �nished in k � 1 phases), TR - the expected running time ofthe randomized protocol, and TD the running time of the deterministic protocol. (All time unitsare in rounds). Clearly TR � r:Let X be the random variable representing the running time of our protocol, and let Y be therandom variable representing the running time of the randomized protocol used. Let Z be therandom variable that represents the additional time due to the use of the deterministic protocol.Namely, Z = 0 if Y k � r and Z = TD otherwise. Obviously, E(X) � E(Y + r + Z) (Theadditional term r represents the extra phase we add to the the randomized protocol). Therefore:E(X) � E(Y ) + r +E(Z)� Tr + r + Pk � TDThe worst running time of the protocol is r � k + TDNote that by the Markov inequality it is always true thatPk � TRk � rHowever in all known randomized protocols a much stronger statement holds; namely, for someconstant c 1, Pk � ckIn particular, let us use a standard deterministic protocol (such as in [MW]) with TD = t+1, andthe randomized protocol suggested in [FM] with r = 15; TR = 56 and Pk � 0:27k�1. Finally,choosing k = O(log t) gives a constant expected time and worst case time of t+ O(log t).



6 The Asynchronous CaseFischer, Lynch and Peterson [FLP] proved that no deterministic solution exists for the asyn-chronous BA problem even with one faulty processor. It follows that there is no randomizedasynchronous protocol that terminates for all coin-tosses, all inputs, and all adversary behavior.Otherwise choose in advance a sequence of coin-tosses, say - all zeros, and get a deterministicprotocol that always terminates contradicting [FLP]. Therefore, in the asynchronous case it is notpossible to "bene�t from both worlds".7 Conclusions and Open ProblemsIn light of the result presented here, even the greatest opposers of randomization must agree touse it for Byzantine Agreement. There is almost nothing to loose. If worse comes to worst, weend up with essentially the same complexity as in the deterministic case, whereas if we are evenslightly "lucky" we gain a lot !The choice of k introduces a trade-o� between worst case and average case: the worst caseincreases linearly with k, while the average case decreases exponentially with k. Can a bettertrade-o� be found ? In particular, can one obtain a smaller (than log t) addition to TD for theworst case, while keeping the expected time a constant?8 References[Be] M. Ben-Or, "Advantages of Free Choice: Completely Asynchronous Agreement Protocols",1983 PODC, pp. 27-30.[Br] G. Bracha, "An O(log n) Expected Rounds Randomized Byzantine Generals Protocol",JACM 34(4), pp. 910-920[CC] B. Chor and B. Coan, "A Simple and E�cient Randomized Byzantine Agreement Algo-rithm", IEEE Transactions on Software Engineering, Vol. SE-11, No. 6 1985.[CMS] B. Chor, M. Meritt and D.Shmoys, "Simple Constant-Time Consensus Protocols in Real-istic Failure Models", 1985 PODC.[DM] C. Dwork and Y. Moses, "Knowledge and Common Knowledge in a Byzantine Environment:The Case of Crash Failures", Proceedings of the Conference on Theoretical Aspects of ReasoningAbout Knowledge, Monterey 1986, J.Y. Halpern ed., Morgan Kaufman, pp. 149-170.[FM] P. Feldman and S. Micali, "Optimal Algorithms for Byzantine Agreement", 1988 FOCS, pp.148-161.[FLP] M. Fischer, N. Lynch and M. Paterson, "Impossibility of Distributed Consensus with OneFaulty Process", JACM 32(2), pp. 374-382, 1985.[FL] M. Fischer and N. Lynch, "A Lower Bound for the Time to Assure Interactive Consistency",Information Processing Letters, 14(4), pp. 183-186, 1982.



[MT] Y. Moses and M.R. Tuttle, "Programming Simultaneous Actions Using CommonKnowledge:Preliminary Version", 1986 FOCS, pp. 208-221[MW] Y. Moses and O. Waatz, "Coordinated Traversal: (t + 1)-Round Byzantine Agreement inPolynomial Time", 1988 FOCS.[PSL] M. Pease, R.Shostak and L. Lamport, "Reaching Agreement in the Presence of Faults",JACM 27(2), 1980.[R] M. Rabin, "Randomized Byzantine Generals", 1983 FOCS, pp. 403-409.[TC] R. Turpin and B. Coan, "Extending Binary Byzantine Agreement to Multivalued ByzantineAgreement", Information Processing Letters, Vol. 18, pp. 73-76, Feb. 1984.


