
Addendum to the paper\Randomness in Interactive Proofs"�Mihir Bellare Oded Goldreichy Sha� GoldwasserMay 2, 1997Contents: We reproduce a result regarding randomwalks on expander graphs which is implicit in [BGG90].The presentation in [BGG90] makes an unnecessary step (i.e., modifying the random walk). The presentationbelow is obtained by omitting this step and instantiating one parameter (i.e., L = 1).1 IntroductionA fundamental discovery of Ajtai, Komlos, and Szemer�edi [AKS87] is that random walks on expandergraphs provide a good approximation to repeated indepdendent attempts to hit any arbitrary �xed subsetof su�cient density (within the vertex set). The importance of this discovery stems from the fact that arandom walk on an expander can be generated using much fewer random coins than required for generatingindepdendent samples in the vertex set. Precise formulations of the above discovery were given in [AKS87,CW89, GILVZ90] culminating in Kahale's optimal analysis [K91, Sec. 6].Theorem 1.1 (Expander Random Walk Theorem [K91, Cor. 6.1]): Let G = (V;E) be an expander graphof degree d and � be an upper bound on the absolute value of all eigenvalues, save the biggest one, of theadjacency matrix of the graph. Let W be a subset of V and � def= jW j=jV j. Then the fraction of random walks(in G) of (edge) length ` which stay within W is at most� ��� + (1� �) � �d�`A more general bound (which is weaker for the above special case) is implicit in [BGG90]:Theorem 1.2 (Expander Random Walk Theorem { general case): Let G = (V;E), d and � be as above.Let W0;W1; :::;W` be subsets of V with densities �0; :::; �`, respectively. Then the fraction of random walks(in G) of (edge) length ` which intersect W0 �W1 � � � � �W` is at mostp�0 � Ỳi=1�iwhere �i def= minf1;maxfp2�i;p2 � �d gg.Below we reproduce (and slightly adapt) the argument of [BGG90].�Appeared in Computational Complexity, Vol. 4, No. 4 (1993), pages 319{354. Extended abstract in 31st FOCS, 1990,pages 318{326.yDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. Email:oded@wisdom.weizmann.ac.il. 1



2 Proof of Theorem 1.2Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix of G divided by thedegree, d). We consider an orthonormal eigenvalue basis u1; : : : ; un, where ui being an eigenvector of A witheigenvalue �i. Without loss of generality �1 = 1 (and u1 = (n�1=2; : : : ; n�1=2)). Thus, j�ij � �� def= �=d fori = 2; :::; n. We let V1 be the space spanned by u1 and V2 the space orthogonal to V1 which is spanned byu2; : : : ; un.Let kxk denote the Euclidean norm of x 2 Rn.Claim 1: For any x 2 V2, kAxk � �� � kxk (1)Proof: Since u2; : : : ; un is a basis for V2 there are real numbers c2; : : : ; cn such that x = Pni=2 ciui. ButAui = �iui and the vectors u2; : : : ; un are orthonormal, sokAxk2 = k nXi=2 ciAuik2 = k nXi=2 ci�iuik2 = nXi=2 c2i�2i :Since j�ij � �� for i = 2; :::; n. kAxk2 � ��2 nXi=2 c2i = ��2 kxk2which proves the claim.Using a similar argument, we have kAxk � kxk for any x 2 Rn. Let ei be the n-vector with 1 in positioni and zeroes elsewhere. De�ne the projection matrix Pj as having its i-th column equal to ei if i 2 Wj andthe 0 vector otherwise. Note that kPju1k2 = �j .Claim 2: For any x 2 Rn and any j = 1; : : : ; v,kPjAxk � p2 �maxfp�j ; ��g kxk (2)and kPjAxk � kxk.Proof: Let x = x1 + x2 where x1 = c1u1 2 V1 and x2 2 V2. ThenkPjAxk � kPjAx1k+ kPjAx2k� kPjx1k+ kAx2k� [2 (kPjx1k2 + kAx2k2)]1=2Here the �rst inequality is by the triangle inequality. The second uses the fact that Ax1 = x1 and kPjyk � kykfor any y 2 Rn. The third is just an application of the inequality a + b � [2(a2 + b2)]1=2. Clearly,kPjx1k2 � �jkx1k2. On the other hand, since A maps V2 into itself we can apply Eq. (1) to conclude thatkAx2k � ��kx2k. Putting all this together we getkPjAxk � [2 (�jkx1k2 + ��2kx2k2)]1=2 =q2maxf�j ; ��2g kxkas desired. Finally, observe that kPjAxk � kPjxk � kxk.Let kxk1 denote the L1 norm (that is, the sum of the absolute values of the components) of x 2 Rn. Nowlet x = (1=n; : : : ; 1=n) = n�1=2u1 be the n vector corresponding to the uniform distribution and sety = P`A � � �P1AP0x :2



Eq. (2) implies that kyk � Qì=0�i � kxk = Qì=0 �i � n�1=2, where the �i's are as in the statement of thetheorem (with �0 = p�0). Thus, the probability that a random walk, starting at the uniform distributionx, and terminating after ` steps at distribution y, visits a vertex in the set Wi at step i for i = 0; 1; :::; ` iskyk1 � pn kyk � Ỳi=0�iand the theorem follows.References[AKS87] M. Ajtai, J. Komlos, E. Szemer�edi, \Deterministic Simulation in LogSpace", Proc. 19th STOC,1987, pp. 132{140.[BGG90] M. Bellare, O. Goldreich, and S. Goldwasser \Randomness in Interactive Proofs", Computa-tional Complexity, Vol. 4, No. 4 (1993), pp. 319{354.[CW89] A. Cohen and A. Wigderson, \Dispensers, Deterministic Ampli�cation, and Weak RandomSources", 30th FOCS, 1989, pp. 14{19.[GILVZ90] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, \Security Pre-serving Ampli�cation of Hardness", 31st FOCS, pp. 318{326, 1990.[K91] N. Kahale, \Eigenvalues and Expansion of Regular Graphs", Journal of the ACM, 42 (5), pages1091{1106, September 1995. Combines works reported in 32nd FOCS (1991) (pages 398{404)and 33rd FOCS (1992) (pages 296{303).
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