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1 IntroductionThe notion of an \e�ciently veri�able proof" plays a fundamental role in the study of e�cientcomputation. Traditionally this notion is associated with the complexity class NP [22], the set oflanguages with short (polynomial length) and polynomial-time veri�able proofs of membership. Inother words, NP as a proof system consists of a prover who provides a short proof and a veri�erwho checks it. How the prover found the proof is immaterial; as long as the veri�er can check itvia some mechanical procedure then the proof is valid.More recently, Goldwasser, Micali and Racko� suggested that the notion of \e�ciently veri�ableproofs" be extended to include interactive proof systems [31]. Interactive proof systems augmentNP proof systems with two ingredients: interaction and randomness. The veri�er is now no longera silent partner; he is allowed to ask the prover questions. Thus the two parties exchange a short(polynomial in the theorem length) sequence of messages and it is only after the completion of thisexchange that the veri�er decides whether or not he believes the theorem valid. Furthermore, bothparties may ip coins, and the proof is probabilistic: there is some small chance that the veri�eraccepts the proof of a false theorem.Since their inception interactive proofs have proven to be very useful. The original motivationfor their introduction was the introduction of zero-knowledge interactive proofs [31], which in turnwere suggested as a principal tool for cryptographic protocol design [31]. The wide applicabilityof this tool was demonstrated by Goldreich, Micali and Wigderson [30], yielding a dramatic e�ecton the theory and practice of cryptography. However, in the above mentioned development, thepotential power of interactive proofs to serve as proof systems for languages outside NP was nottaken advantage of. First indications to such potential were presented by Babai [5] and Goldreich,Micali and Wigderson [30]. But it is only in the last two years that a full understanding of thepower of interactive proofs has emerged. And here the truth was startling: interactive proofs existfor any language which can be recognized in polynomial space (cf. Lund, Fortnow, Karlo� andNisan [40] and Shamir [45]). Hence, IP (the class of languages possessing interactive proofs ofmembership) is probably much larger than NP.We conclude that interaction and randomness make a potent brew. We are well motivatedthen, to understand more the precise role played by these ingredients in the granting of so muchpower. The principal issue here is to determine how the power of interactive proofs varies with theamount of interaction (measured by the number of rounds of message exchange) or the number ofcoin tosses (of the veri�er).We can begin by observing that the proof of IP=PSPACE yields proof systems using polyno-mially many rounds and polynomially many coin tosses. On the other hand it is easy to see thatin the absence of either ingredient the power of IP vanishes: if there were no interaction then theveri�er is left to decide on his own and IP would equal BPP, and if there were no randomnessthen the prover could anticipate all the veri�er's moves and IP would collapse to NP. So the realquestion lies in understanding what happens in between these extremes.In this regard the role of interaction has received a lot of study [2, 5, 6, 7, 15]. The roleof randomness remained, in contrast, unaddressed. This paper initiates a study of the role of3



randomness in interactive proofs.Below we begin by reviewing some de�nitions and background, and briey review what is knownon the role of interaction in interactive proof systems. Next we turn to randomness, and describeour results and techniques. We conclude by discussing related work and possible avenues for furtherinvestigation.1.1 Interactive Proofs and Arthur-Merlin GamesAn interactive proof system [31] consists of two communicating parties, the prover and the veri�er.The veri�er is restricted to probabilistic polynomial time while the prover is not computationallyrestricted. On a common input w they exchange a sequence of messages, with the number ofmessages polynomial in the length n of w. At the end of this exchange the veri�er either accepts orrejects the common input. Associated to a prover-veri�er pair (P; V ) and an input w is a probabilitythat V accepts w which we denote by P[(P; V ) accepts w].We say that a language L has an interactive proof if there is a strategy for the veri�er underwhich he can be convinced to accept inputs in L but rejects inputs not in L no matter what strategythe prover follows. More precisely, L has an interactive proof if there is a veri�er V such that twoconditions hold. First, there is a prover P such P[(P; V ) accepts w] � 2=3 for every w 2 L (thecompleteness condition). Second, P[( bP; V ) accepts w] � 1=3 for every prover bP and w 62 L (thesoundness condition). This error probability can be decreased to 2�k(n) for any polynomial k(n) bystandard techniques. Let IP denote the class of languages that possess interactive proofs.Arthur-Merlin (AM) games, introduced by Babai [5] (see also Babai and Moran [6]), can beviewed as special kinds of interactive proof systems; they are sometimes called interactive proofsystems with public coins. Merlin is the prover and Arthur the veri�er. Merlin plays just like aprover in an interactive proof system; the specialty is in the role of Arthur. During the interaction,Arthur is restricted to tossing coins and sending their outcome to Merlin. At the end of theinteraction he computes a deterministic polynomial time predicate of the common input and theconversation and decides whether or not to accept based on the value of this predicate. AM proofsystems for a language L are de�ned just like interactive ones.Goldwasser and Sipser [32] showed that any language having an interactive proof system alsohas an AM proof system; the two systems are thus of equal power as far as language recognitionis concerned. Moreover, the equivalence established by [32] preserves the number of rounds. Theadvantage of the AM formulation lies in its simpler combinatorial structure, and it is via AM gamesthat most structural results (including ours and [5, 2, 6, 15, 29, 10]) are proved. In the rest of thispaper we consider AM proof systems.Let AM[g(n)] denote the class of languages which possess AM proofs of membership of g(n)rounds of interaction. Much attention has been devoted to understanding the hierarchy AM =IP = Sc�0AM[nc]. We now briey review what is known.Babai [5] showed that any constant number of rounds is equivalent to two: AM[k] = AM[2] forany integer k � 2. Probably the most interesting positive result to date however is that of Babaiand Moran [6] who showed that the number of rounds in an Arthur-Merlin game can always be cut4



in half. That is, AM[2g(n)] = AM[g(n)] for any polynomial g(n). It is important to note that inconstructing a g(n) round Arthur-Merlin proof system for L from a 2g(n) round one the proof of[6] blows up the message lengths of both parties by polynomial factors, and thus we cannot iteratethe collapse more than a constant number of times. Whether or not AM = AM[2] remains an openquestion.Boppana, H�astad and Zachos [15] provide some indication that co-NP does not have constantround interactive proofs by showing that if it did then the polynomial time hierarchy would collapseto the second level.Aiello, Goldwasser and H�astad [2] show that if �(n) ! 1 then there are oracles separatingAM[g(n)] from AM[g(n)=�(n)]. However, we note that the results of [40, 45] indicate that rela-tivized separations are not evidence of real separations, for although IP=PSPACE, a random oracleseparates them [33, 20]. So a better than constant factor collapse in IP need not be ruled out bythe relativized separation results of [2].1.2 Our ResultsThe results in this paper represent the �rst attempt to understand the role of randomness ininteractive proofs in a quantitative sense. The speci�c problem we consider is that of reducing theerror probability of an Arthur-Merlin game in a randomness-e�cient manner. Let briey describethe problem and then our contribution.The Problem. Recall that an AM game is an AM proof system for the language L if the errorprobability on any input w (the probability that Arthur accepts if w 62 L or rejects if w 2 L) is� 1=3. It is well known that this error probability can be decreased to 2�k for any polynomiallybounded k = k(n) by running the game O(k) times in parallel and taking a majority vote onthe outcomes [5, 6]. Note that this maintains the number of rounds. Supposing that Arthur sentl = l(n) random bits per round in the original game, this results in a game in each round of whichArthur sends O(lk) random bits.Error-reduction is the most basic and most often used transformation of AM games and anatural place to begin to investigate the possibility of saving coins. The problem we consider is toaccomplish round-preserving error-reduction using fewer coin tosses than the standard method.Summary of Results. Given a g = g(n) round AM proof system for L in which Arthur sendsl = l(n) random bits per round, and given a polynomially bounded function k = k(n), our mainresult is that we can construct a g round AM proof system for L which achieves error probability� 2�k at the cost of Arthur sending only O(l + k) random bits per round.We also show that if we only need to decrease the error probability to n�O(1) then a constantfactor more coins per round su�ces. More precisely, given a g = g(n) round AM proof systemfor L in which Arthur sends l = l(n) random bits per round, and given a function � = �(n) withpolynomially bounded inverse, we show how to construct a g round Arthur Merlin proof systemfor L which achieves error probability � � at the cost of Arthur sending only O(l) random bits perround.Both results extend to the case where the error probability of the original game was 12 � n�O(1)5



rather than 1=3.The value 1=3 in the bound on the error probability in the de�nition of L having an AMproof system is not crucial: equivalent de�nitions are derived by letting the bound on the errorprobability be either 12 � n�O(1) or n�!(1). However, until now it was not known whether thisequivalence preserves the amount of randomness used (even up to a constant multiplicative factor).1.3 Comparison with the Case of RP and BPPThe problem of reducing the error probability in a randomness-e�cient manner has received muchattention in the context of the randomized complexity classes RP and BPP.That such randomness-e�cient error-reduction was possible was pointed out, non-constructively,by Sipser [47] and Santha [43]. The �rst constructions were obtained by Karp, Pippinger and Sipser[38] and Chor and Goldreich [19] who showed that the error-probability of a BPP algorithm whichused r = r(n) coin tosses could be reduced to n�c for any given constant c while using only O(r)coin tosses. Cohen and Wigderson [21] and Impagliazzo and Zuckermann [37], using techniques ofAjtai, Komlos and Szemeredi [3], showed how the error could be decreased to 2�k at the cost ofO(r+ k) coins for any polynomially bounded k = k(n).Furthermore, pseudo-random sequences [14, 48] can be used to decrease the error of any BPPalgorithm to n�c while using only n� coins, for any constants � and c. Coupling this with the resultsof [21, 37] and [36, 34] we get that the existence of one-way functions implies that the error of anyBPP algorithm can be reduced to 2�k while using only n� + O(k) coins, for any constant �.Error-reduction for AM games, however, seems more di�cult to handle. The above mentionedtechniques [47, 43, 38, 19, 21, 37, 3] are not directly applicable here as we are not dealing withwitness-sets which are �xed beforehand, but rather with an adversary (cheating Merlin) that dy-namically guides, by his responses to the veri�ers coins, the search of the veri�er for rejectingcomputations. Furthermore, techniques based on assumptions of computational di�culty are of nouse against a prover who has the power to invert one-way functions. Thus the veri�er cannot usepseudo-random sequences in place of random ones. We note however that our construction willexploit techniques from [19] and [3] but in a di�erent manner.In general, not every result for RP and BPP translates easily (or at all) to a result on theclass IP. Notable examples are results such as BPP equals almost-P [11] and BPP is contained innon-uniform P [1]. The IP counterpart of the �rst was open for several years and �nally proved in[42], while the IP analogue of the second (i.e. IP is contained in non-uniform NP) is not believedto be true.1.4 TechniquesOur result involves a novel techniques for randomness-e�cient sampling. More speci�cally, weconsider the task of estimating the average value E[f ] def= 2�lPx2f0;1gl f(x) of a given functionf : f0; 1gl ! [0; 1]. Our interest is in primitives for this task which we call (l; �; �)-approximators.An (l; �; �)-approximator is a two stage process. In a �rst, randomized stage, we pick a collectionof sample points x1; : : : ; xt 2 f0; 1gl. In a second, deterministic stage, we compute, as a function6



of f(x1); : : : ; f(xt), an estimate. We require that with probability � 1� � this estimate is within �of E[f ].The straightforward construction of an (l; �; �)-approximator is to select t = O(��2 log ��1)independent and uniformly distributed sample points and use as the estimate the average value ofthe function on these sample points. This requires O(tl) coin tosses and m function evaluations.The construction of randomness-e�cient (l; �; �)-approximators has been a subject of muchresearch, but existing constructions [19, 10, 21, 37, 41] that save coins over the standard methodsu�er from various restrictions (see x6 for details). We present a new construction which requires thesame (up to a constant multiplicative factor) number of sample points (and function evaluations)as the standard construction, but these sample points will be generated using only O(l + log ��1)coin tosses. Our technique is optimal in the number of sample points, and, amongst the techniquesthat use this number of sample points, optimal in the number of coin tosses (both up to constantfactors). It works for all functions f : f0; 1gl ! [0; 1].The tools we rely on are low independence distributions and random walks on explicitly con-structed expander graphs.It is interesting to note that (l; 1=6; �)-approximators for Boolean functions would su�ce forerror-reduction in BPP whereas our error-reduction for IP relies on (l; �; �)-approximators of arbi-trary functions ranging in [0; 1] with ��1 being a polynomial.1.5 Related Work and Avenues for Further InvestigationBellare and Rompel [10] have investigated the randomness complexity of the operation of reducingthe number of rounds of an AM game by one-half. Given a 2g(n) round AM proof system for Lin which Arthur sends l(n) random bits per round an Merlin responds with a q(n) bit string, theyshow how to construct a g(n) round AM proof system for L in which Arthur sends only O(l+q log l)random bits per round. This improves on the construction of [6] in which Arthur sent O(lqg3 log g)random bits per round in the g(n) round game.We looked at how the power of IP varies with the amount of randomness. A di�erent directionwas taken by Schrift [44] who investigated how the power of an interactive proof varies with thequality of the random bits used. She shows that interactive proofs retain their power even whenthe parties do not have access to truly random bits, but rather to certain kinds of sources of weakrandomness.We list in x7 some open questions relating directly to our results. Let us indicate here somemore global future directions.Our results are about AM games. Although AM games and interactive proofs are equivalentin language recognition power this does not mean that our results generalize directly to interactiveproofs. This is because there is a cost in randomness in transforming an interactive proof to anAM game. So one direction of research is to generalize our results to general interactive proofs.For example, is there a randomness-e�cient way of reducing the error probability of an interactiveproof? Or is there a randomness-e�cient way to transform any interactive proof into an AM game?A second and major direction of research is to investigate the role of randomness in zero-7



knowledge interactive proofs. The current situation for zero-knowledge exactly parallels that whichexisted for IP before our work. Namely, although there are many results known on reducinginteraction [31, 8, 9, 26, 27, 23, 16, 13, 12], nothing is known about reducing randomness. Aspeci�c question is to �nd a randomness-e�cient technique of reducing the error probability of azero-knowledge proof.2 PreliminariesWe review de�nitions and notation for the Arthur-Merlin games of Babai [5] and Babai and Moran[6], introduce the accepting probability function, and conclude by showing we can without loss ofgenerality restrict our attention to a special case.2.1 Arthur-Merlin GamesAn Arthur-Merlin game has two players called Merlin and Arthur. They have a common input;we will denote it by w and its length by n. A designated start player makes the �rst move andafter that the players alternate moves. The total number of moves is a polynomially bounded,polynomial time computable function of the input length which we usually denote by G. A player'smove consists of sending the other player a message. Merlin's message in any of his moves is a q(n)bit string, computed as an arbitrary function of the common input and Arthur's previous messages.Arthur's messages are more special: each consists of the outcomes of l(n) independent, unbiasedcoins. Here l and q are �xed polynomially bounded, polynomial time computable functions. WhenMerlin's last move is completed, Arthur applies a polynomial time computable binary predicate �to the common input w and the transcript c of the conversation, and is said to accept if and onlyif the value of �(w; c) is 1. We call � Arthur's decision predicate. Merlin is said to win the game ifArthur accepts w. Note that there is no restriction on Merlin's computational power.We will use a bit s 2 f0; 1g to denote the start player, with 0 standing for Merlin and 1for Arthur. We call (�;G; l; q; s) a Arthur strategy. A Merlin strategy for the game de�ned bythe Arthur strategy A = (�;G; l; q; s) is a function which, given the common input and the l bitmessages received so far from Arthur, returns a q bit string which is Merlin's next message.We write G; l; q for G(n); l(n); q(n) respectively whenever the input length n is understood.Arthur's i-th message will be typically denoted ri while Merlin's will be denoted yi. GA will denotethe number of Arthur moves and GM = G� GA the number of Merlin moves in the game.A round consists of an Arthur move followed by a Merlin one, or vice-versa. To simplifynotation we usually assume that the game consists of G=2 rounds with Arthur playing �rst andMerlin second in each round. We call such a game symmetric. We stress that the consideration ofsymmetric games is only for notational ease: all our theorems extend to the general setting. WhenA = (�;G; l; q; s) is the Arthur strategy of a symmetric game we let g = G=2 denote the number ofrounds. For the rest of this section we assume the game is symmetric.Let A = (�;G; l; q; s) be a Arthur strategy and let t � g. An A Arthur history is a sequenceof strings r1y1 � � �rtyt where rj 2 f0; 1gl and yj 2 f0; 1gq for j = 1; : : : ; t. A A Merlin history is a8



sequence of strings of the form r1y1 � � �rt�1yt�1rt where rj 2 f0; 1gl and yj 2 f0; 1gq for j = 1; : : : ; t.An A history is either an A Arthur history or an A Merlin history. If t = g we call an A Arthurhistory an A conversation and otherwise we call it a proper A Arthur history. When A is understoodwe omit mention of it and speak of Arthur and Merlin histories, and conversations.Let M be a Merlin strategy for the game de�ned by A and let t � g. An Arthur historyr1y1 � � �rtyt in which yj = M(w; r1 : : : rj) for j = 1; : : : ; t is called an (A;M) Arthur history. AMerlin history r1y1 � � �rt�1yt�1rt in which yj = M(w; r1 : : : rj) for j = 1; : : : ; t � 1 is called an(A;M) Merlin history. If t = g we call a (A;M) Arthur history a (A;M) conversation. In the gamebetween A and M each (A;M) conversations occurs with probability 2�lg.The assumption that the players send the same number of bits in each of their moves (l forArthur and q for Merlin) is made only for notational simplicity. All our results generalize to gamesin which the number of bits sent in move i is a function of i.2.2 Arthur-Merlin Proof SystemsWith respect to any �xed Merlin strategy, there is for each w a probability (de�ned by Arthur'srandom moves) that Arthur will accept. One can now de�ne Arthur-Merlin proof systems for alanguage L just like one de�nes interactive proof systems. Namely, we say that an Arthur strategyA = (�;G; l; q; s) de�nes an Arthur-Merlin proof system for L if whenever w 2 L there exists astrategy for Merlin under which Arthur accepts with probability � 2=3 (the completeness condition)and whenever w 62 L the probability that Arthur accepts is � 1=3 regardless of Merlin's strategy(the soundness condition). Note that since Merlin is computationally unbounded we may, for bothconditions, simply assume he plays an optimal winning strategy. Note also that this strategy isdeterministic, which justi�es our assuming Merlin deterministic in the �rst place.As we said above, it actually su�ces to consider an \optimal Merlin" that chooses all its mes-sages in a way maximizing Arthur's accepting probability. This leads to the much more convenientformulation of Arthur-Merlin games in terms of max-average combinatorial games as developed by[5, 6]. We capture this formulation below with the de�nition of the accepting probability functionof the game.Note that the optimal Merlin strategy depends on the Arthur strategy A. For any Arthurstrategy A we �x a particular optimal Merlin strategy which we denote by MoptA .2.3 The Accepting Probability FunctionThe game tree and its accepting probability function which we now describe are a convenient wayof analyzing an Arthur Merlin game (cf. [5, 6]).Fix an input length n. We visualize a tree of depth equal to the number of moves 2g(n). Nodesin this tree are named according to their level: those at even levels are called Arthur nodes whilethose at odd levels are called Merlin nodes. An Arthur node has 2l(n) children, and the set ofbranches that lead to these children are labeled by the strings from f0; 1gl(n). Similarly, a Merlinnode has 2q(n) children, and the set of branches that lead to these children are labeled by the stringsfrom f0; 1gq(n). 9



The execution of the game de�nes a path beginning at the root. The �rst message r1 thatArthur sends corresponds to picking the branch out of the root labeled r1, and the game moves tothe corresponding child of the root. It is now Merlin's turn, and his response y1 similarly selectsone of the children of this node. This goes on, with the players alternating, until a leaf is reached.We label each node of the game tree with an accepting probability chosen so that it boundsthe probability that Arthur will accept in the remaining part of the game (the probability is overArthur's messages in the rest | that is in the subtree rooted at this node | of the game). Moreformally, we have the following de�nition of the accepting probability function for an Arthur strategyA = (�; g; l; q; 1). This is a variation of what [6] call the payo� function.� The value at a conversation (leaf of the tree) is the value of A's deciding predicate:accA(w; r1y1 : : : rgyg) = �(w; r1y1 : : :rgyg)� The value at a proper Arthur history (even level internal node of the tree) is the maxi-mum value of all possible extensions by one move of Merlin: accA(w; r1y1 : : :rt�1yt�1rt) =maxy accA(w; r1y1 : : :rt�1yt�1rt:y) for t = g(n); : : : ; 1.� Finally the value at a Merlin history (odd level internal node of the tree) is the average value of allits extensions by one move of Arthur: accA(w; r1y1 : : :rt�1yt�1) = Er accA(w; r1y1 : : : rt�1yt�1:r)for t = g(n); : : : ; 1.The following fact is a direct consequence of the de�nition.Proposition 2.1 Let A be an Arthur strategy. Let t � g and let r1y1 : : :rtyt be a A Arthur history.Then accA(w; r1y1 : : : rt�1yt�1:rtyt) � accA(w; r1y1 : : :rt�1yt�1:rt)with equality holding when yj = MoptA (r1 : : :rj�1) for all j = 1; : : : ; t.A's accepting probability on input w is de�ned as accA(w) def= accA(w; �), where � is the emptystring. The error probability of A on input w with respect to a language L is de�ned aserrLA(w) = ( 1� accA(w) if w 2 LaccA(w) otherwise.The error probability of A with respect to L is the map from N ! [0; 1] whose value at n issupjwj=n errLA(w). Thus an Arthur strategy A de�nes a proof system for L if its error probabilitywith respect to L is � 1=3.2.4 Restriction to a Special CaseFor technical reasons it will be convenient to assume that Arthur messages are of length � c logn(for a speci�c constant c that will arise in our construction). This assumption does not reduce thegenerality of our results, since for every c > 0, any Arthur-Merlin game can transformed | withoutincreasing the number of rounds or, upto constant factors, the total number of coin tosses | intoone in which Arthur's messages are of length � c logn. More precisely, we have the following10



Proposition 2.2 There is a constant � such that the following is true. Let c be > 0 and supposeA = (�;G; l; q; s) de�nes an Arthur-Merlin proof system for L in which l(n) � c lgn. Then wecan construct A� = (��; G�; l�; q�; 1) which de�nes an Arthur-Merlin proof system for L in whichc lgn � l�(n) � �c lgn, the number of moves G� is � G, and the total number of coins ipped byArthur increases by a factor of at most �.Proof: The idea is to group consecutive rounds of the given game into blocks in such a way thatArthur is sending just over c lgn bits per block, and then \collapse" each block into a single round.Merlin begins this round by sending his responses to all possible messages of A for the block, andArthur then selects one sequence of responses at random. A more precise speci�cation follows.For simplicity we assume the given game is symmetric and let g = G=2 be the number of rounds.Without loss of generality we assume the error probability of the given game is � 1=6; this canbe achieved by standard error-reduction as per Theorem 3.1 at a constant cost in message lengthsand no cost in rounds. Let b(n) be the least integer such that b(n)l(n) � c lgn and let l� = bl.Let g�(n) be the least integer such that b(n)(g�(n) + 1) � g(n). We view the given game as beingdivided into g� blocks of b rounds each, followed by a block of � b rounds. The new game consistsof g� rounds followed by a �nal Merlin move. Merlin plays �rst and Arthur second in each of theg� rounds.The execution of the g� rounds will de�ne a A Arthur history h1 : : : hg� which is built up roundby round, with round i adding the sequence of strings hi which corresponds to moves of the originalplayers in block i. Initially this history is the empty string. Assuming the �rst t rounds of the gamehave been played and h1 : : :ht�1 is de�ned, here is how it is extended. Merlin's message in round tof the new game is (the encoding of) a l-ary tree of depth b each node of which is labeled with a qbit string; this represents his responses to each possible sequence of A moves in block t of the oldgame with history h1 : : :ht�1. Arthur's round t response is a l� = bl bit random string which selectsa branch of the tree and thus de�nes a particular sequence ht of b moves of the original game inthis block. This sequence is appended to the history, and the parties then move to the next round.For the last block, Merlin's message is (the encoding of) a l-ary tree of depth � b each nodeof which is labeled with a q bit string; this represents his responses to each possible sequence ofA moves in block g� + 1 of the old game with history h1 : : :hg� . At the conclusion of this move,Arthur has a polynomial number of A conversations. He evaluates � on each of these, and acceptsif and only if a majority are accepting, and, additionally, if Merlin's message for each round wasindeed (the encoding of) a l-ary tree of the appropriate depth labeled with q bit strings.The fact that the original game had error probability � 1=6 implies that if w 2 L and Merlinprovides responses corresponding to those of MoptA then the majority of conversations extendinga history h = h1 : : :hg� are accepting for at least 2=3 of these histories. Similarly if w 62 L thenregardless of how Merlin responds, the majority of conversations extending a history h = h1 : : :hg�are accepting for at most 1=3 of these histories. So our �nal game is an Arthur-Merlin proof systemfor L. 11



subgame 1 subgame 2 : : : subgame mArthur's message:Merlin's response:...Arthur's message:Merlin's response: r11y11...r1gy1g r21y21...r2gy2g : : :: : : rm1ym1...rmgymg 9>>>>>>=>>>>>>; g roundsFigure 1: Framework of the Standard Error-Reduction Protocol3 Error-Reduction: The Basic TemplateWe call error-reduction the process of reducing the error probability of an Arthur-Merlin proofsystem from � 1=3 to � 2�k for a given polynomially bounded k = k(n). As an introduction toour error-reduction technique it is helpful to review the standard one [5, 6].3.1 The Standard Error-Reduction TechniqueGiven A = (�; g; l; q) de�ning an Arthur-Merlin proof system for L with error � 1=3 we are requiredto design A� de�ning an error � 2�k Arthur-Merlin proof system for L. The solution is to playin parallel m = O(k) independent copies of the old game (the one de�ned by strategy A). Theindependence of Arthur's moves in the various \subgames" is used to prove that the error probabilitydecreases exponentially with the number of subgames.More concretely, A� will, in round t, send ml random bits to Merlin. These bits are regardedas a sequence r1t : : :rmt of m di�erent round t messages of A. Merlin then responds with stringsy1t : : : ymt , and yit is regarded as the response of Merlin to rit in the i-th subgame (i = 1; : : : ; m).This continues for g rounds (see Figure 1). Finally, A� will accept in the new game i� a majorityof the subgames were accepting for the original A. The result isTheorem 3.1 [5, 6] There is a constant � such that the following is true. Let A = (�; g; l; q; s) bean Arthur strategy which has error � 1=3 with respect to L. Let k : N! N be polynomially boundedand polynomial time computable. Let m = �k. Then the Arthur strategy A� = (��; g;ml;mq; s) haserror probability � 2�k with respect to L, where��(w;~r1~y1 � � �~rg~yg) = ( 1 if jf i 2 [m] : �(w; ri1yi1 : : : rigyig) = 1 gj � m20 otherwise :Here Merlin's round t message ~yt 2 f0; 1gmq is parsed as ~yt = y1t : : :ymt with yit 2 f0; 1gq.The bound on the error probability of the new game follows from the fact that the coin tosses usedby Arthur in the di�erent subgames are independent. However, the cost of this argument is in thelarge number of coin tosses used by A�; namely O(lk) coin tosses per round (to be contrasted withthe l coin tosses used in each round of the original game).12



subgame 1 subgame 2 : : : subgame mArthur's message s1 speci�es:Merlin's response:...Arthur's message sg speci�es:Merlin's response: r11y11...r1gy1g r21y21...r2gy2g : : :: : : rm1ym1...rmgymg 9>>>>>>=>>>>>>; g roundsFigure 2: Framework of Our Error-Reduction Protocol3.2 Framework of Our SolutionWe will stay within the template of playing several copies of the original game in parallel, evaluatingeach of these subgames individually at the conclusion of the game, and, based on the outcomes ofthe subgames, deciding whether or not to accept. Our subgames, however, will be dependent copiesof the original game, and we will prove that although these copies depend on one another the errorprobability decreases exponentially with our \investment" in the randomness of each round.More precisely, Arthur's message in round t will consist of a randomly chosen \seed" st. Thisseed, via an appropriate deterministic process, which we will later describe, speci�es a sequenceof (statistically dependent) strings r1t : : :rmt , where m = m(n) is a function of our deterministicprocess. These strings will play the role of the original Arthur's round t messages for the di�erentsubgames. The Merlin of the new game computes the sequence of messages speci�ed by the seedand replies with a sequence of m strings y1t : : :ymt that will be interpreted as his answers in thecorresponding m subgames (see Figure 2). At the end, A� evaluates �(w; ri1yi1 : : :rigyig) for eachi = 1; : : : ; m and decides whether or not to accepts based on some function of these values.We stress the Arthur's moves in the di�erent rounds are still statistically independent (a newrandom seed is selected at each round), and that A� actually sends in round t the (uniformlyselected) seed st and both parties compute the sequence r1t ; : : : ; rmt speci�ed by the seed st.Within this template we rely on a combination of two di�erent ideas. The �rst idea is tospecify r1t ; : : : ; rmt so that this sequence is pairwise independently distributed. We show that wecan approximate the average accepting rate of independent subgames and thereby reduce the errorto � = n�O(1); the restriction on � comes from the fact that the message lengths in the game weconstruct here are polynomial in ��1. The second idea is to play many copies of this new game ineach of which the error is non-negligible (i.e. n�O(1)) and take the median value, relying on thefact that the probability that a majority of the games are not representative is exponentially small.In the implementation of this step we rely on random walks on explicitly constructed expandergraphs.We now elaborate on of these ideas in turn. 13



4 Reducing Error to any Non-Negligible FractionHere we show how to reduce the error probability to n�O(1) at the cost of multiplying by a constantfactor the number of coin tosses used by Arthur in each round. More precisely, we will prove thefollowingTheorem 4.1 There is a constant � such that the following is true. Let c be > 0 and let A =(�;G; l; q; s) be an Arthur strategy with error probability � 12 � n�c with respect to the languageL. Let �: N ! [0; 1] have polynomially bounded inverse. Then we can construct another Arthurstrategy A� = (��; G; �l; G3An2c��1q; s) with error probability � � with respect to L.We will see that if we restrict our attention to games in which Arthur's message length l is �lg(G3An2c��1) then the value of the constant � can be taken to be 2. In particular this is true ifl = !(logn). Otherwise we have to apply Proposition 2.2 to make l � lg(G3An2c��1) and this incursextra constant factors in coins.We now proceed to the proof. For notational simplicity we will assume the given game issymmetric and let g = G=2 be the number of rounds. We begin with a review of the constructionsof pairwise independent sequences. We then give an overview of the protocol and the intuitionbehind the analysis. We conclude with a more formal proof of correctness.4.1 Pairwise Independent GeneratorsFor integer m we let [m] def= f1; : : : ; mg.De�nition 4.2 Let X1; : : : ; Xm be random variables de�ned over a common probability spaceand assuming values in a common range R. We say that X1; : : : ; Xm are pairwise independent ifP[Xi1 = x1; Xi2 = x2] = P[Xi1 = x1] �P[Xi2 = x2] for all x1; x2 2 R and all distinct i1; i2 2 [m].Often we will be interested in random variables which assume all values in their range equiprobably.In the conventional terminology we haveDe�nition 4.3 A random variable is said to be uniform over a �nite set R if it assumes each valuein R with probability 1=jRj.We will need (deterministic) procedures which take a O(l) bit string s and, in time polynomial inl and m, specify a sequence of m � 2l strings of l bits each with the property that if s is chosenat random then the resulting sequence is pairwise independent and uniform over f0; 1gl (cf. [18]).Accordingly, we make the followingDe�nition 4.4 Let P (�; �; �) be a polynomial time algorithm which outputs strings of length equalto the length of its �rst input. We say that P is a pairwise independent generator if there is aconstant cP > 0 such that Pl;1; : : : ; Pl;2l are pairwise independent and uniform over f0; 1gl for eachl, where Pl;i : f0; 1gcPl ! f0; 1gl is de�ned by Pl;i(s) = P (1l; i; s) and is regarded as a randomvariable over the uniform distribution on f0; 1gcP l.14



It is well known that pairwise independent generators exist. For completeness, let us sketch twoimplementations.The �rst implementation [19] uses �nite �elds. We identify the sets f0; 1gl and [2l] with GF(2l).Using Shoup's (deterministic) algorithm [46] we can �nd a degree l irreducible polynomial overGF(2) in time polynomial in l, and this yields the ability to do polynomial time arithmetic in the�eld. We now regard s 2 f0; 1g2l as the concatenation of two �eld elements a and b and then letP (1l; i; s) = ai+ b, the arithmetic being in the �nite �eld. The pairwise independence follows fromthe fact that for any pair of points (i1; x1); (i2; x2) with i1 6= i2 there is a unique polynomial ofdegree � 1 which passes through these points.It is easy to see that if P is a pairwise independent generator then its associated constant cP is� 2. So the above implementation is optimal in the number of random bits used.Goldreich and Levin [28] propose an alternative implementation which, although it uses slightlymore random bits, has the advantage of being more e�cient in practice. In order to describe it we�rst recall that a l-by-l matrix [aij] is Toeplitz if ai;j = ai�1;j�1 for each i; j = 2; : : : ; l, and thussuch a matrix is speci�ed by its �rst row and column. The implementation of [28] consists of usinga 3l � 1 bit seed s to specify an l bit vector b and an l by l (0; 1)-Toeplitz matrix M and settingP (1l; i; s) = Mi+ b, where i is being regarded as a l bit vector and the arithmetic is mod 2.4.2 The Protocol: OverviewWe play m = g3n2c��1 copies of the original game in parallel, with the sequence of strings to playthe role of A's messages being pairwise independently distributed. More precisely, in each round tArthur sends a (random) cP l bit long seed st and this is used, via P , to specify the sequence of mstrings r1t : : : rmt 2 f0; 1gl which will play the role of A's round t messages. A� accepts i� a majorityof the subgames accept.The idea of the analysis is to guarantee that at each round the sequence of messages speci�ed bythe seed approximates, with very high probability, the average accepting probability of a sequenceof independently chosen messages. That is, for each t = 1; : : : ; g, assuming s1; : : : ; st�1 have beenchosen, we guarantee that with high probability1m mXi=1accA(w; ri1yi1 : : : rit�1yit�1:rit) � 1m mXi=1Er accA(w; ri1yi1 : : :rit�1yit�1:r)for the random choice of st, where r1j : : : rmj is the sequence speci�ed by sj . Indeed if for all roundswe can guarantee that all seeds selected provide good approximations in this sense then the fractionof accepting subgames in the new game will approximate the accepting probability in the originalgame.More precisely we call a seed st bad for a history s1~y1 � � �st�1~yt�1 if the values1m Pmi=1accA(w; ri1yi1 : : :rit�1yit�1:rit) and 1m Pmi=1accA(w; ri1yi1 : : :rit�1yit�1) di�er by more than n�cg�1,and then show that the fraction of seeds bad for any history is inversely proportional to m. Theappropriate choice of m yields a game in which with high probability conversations have all seedsgood for their corresponding histories, and these conversations are \representative".15



The restriction that � have polynomially bounded inverse comes from the fact that Merlin'smessage length in the game we construct here is polynomial in ��1.Let us now describe all this in more detail.4.3 The Protocol: Speci�cation and AnalysisWe �x a pairwise independent generator P and denote by cP its associated constant.De�nition 4.5 Let m � 2l be a polynomial. Then we let Am denote the Arthur strategy(�m; g; cPl;mq; s), where�m(w; s1~y1 � � �sg~yg) = ( 1 if jf i 2 [m] : �(w; ri1yi1 : : :rigyig) = 1 gj � m20 otherwise :Here rit = P (1l; i; st) and Merlin's round t message ~yt 2 f0; 1gmq is parsed as ~yt = y1t : : : ymt withyit 2 f0; 1gq, for i = 1; : : : ; m and t = 1; : : : ; g.We call Arthur's round t message in this game a seed , and continue to denote Merlin's round tmessage by ~yt = y1t : : : ymt with yit 2 f0; 1gq. We will show that by choosing m to be a suitablepolynomial in g and ��1 the error probability of Am with respect to L can be made � �. We beginwith the followingDe�nition 4.6 Let h = s1~y1 � � �st�1~yt�1 be an Am Arthur history, and st 2 f0; 1gcP l a seed. Wesay that st is bad for h if����� 1m mXi=1 �accA(w; ri1yi1 : : : rit�1yit�1:rit)� accA(w; ri1yi1 : : : rit�1yit�1)������ � 1ncgwhere rij = P (1l; i; sj) for i = 1; : : : ; m and j = 1; : : : ; t. We say st is good for h if it is not badfor h. We say that a Am conversation s1~y1 � � �sg~yg is representative if for each t = 1; : : : ; g it is thecase that st is good for s1~y1 � � �st�1~yt�1.The virtue of representative conversations is that they always yield the correct outcome: Am acceptsa representative conversation i� the input is in the language. More precisely, we have the followingLemma 4.7 Let s1~y1 � � �sg~yg be a representative Am conversation. Then(1) Suppose w 2 L and ~yt = y1t : : : ymt is the particular sequence of messages de�ned for t = 1; : : : ; gand i = 1; : : : ; m by yit = MoptA (w; ri1 : : : rit), where rit = P (1l; i; st). Then �m(w; s1~y1 � � �sg~yg) =1.(2) Suppose w 62 L. Then �m(w; s1~y1 � � �sg~yg) = 0.Proof: Suppose �rst that w 2 L and yit = MoptA (w; ri1 : : : rit) where rit = P (1l; i; st). ThenaccA(w)� 1m mXi=1 accA(w; ri1yi1 : : :rigyig)16



= gXt=1 1m mXi=1 �accA(w; ri1yi1 : : : rit�1yit�1)� accA(w; ri1yi1 : : : rityit)�= gXt=1 1m mXi=1 �accA(w; ri1yi1 : : : rit�1yit�1)� accA(w; ri1yi1 : : : rit�1yit�1:rit)�< gXt=1 1m mXi=1 1ncg = 1nc :Here the second equality is by Proposition 2.1 and the inequality is by the fact that the conversations1~y1 � � �sg~yg is representative. Noting that w 2 L implies accA(w) � 12 + n�c we get1m mXi=1accA(w; ri1yi1 : : : rigyig) > accA(w)� 1nc � 12 ;and hence �m(w; s1~y1 � � �sg~yg) = 1. The argument for w 62 L is much the same, but for completenesslet us give the details. Regardless of the values of ~y1; : : : ; ~yg we have1m mXi=1 accA(w; ri1yi1 : : : rigyig)� accA(w)= gXt=1 1m mXi=1 �accA(w; ri1yi1 : : : rityit)� accA(w; ri1yi1 : : :rit�1yit�1)�� gXt=1 1m mXi=1 �accA(w; ri1yi1 : : : rit�1yit�1:rit)� accA(w; ri1yi1 : : :rit�1yit�1)�< gXt=1 1m mXi=1 1ncg = 1nc ;again by Proposition 2.1 and the fact that the conversation s1~y1 � � �sg~yg is representative. But thistime accA(w) � 12 � n�c and thus we get1m mXi=1accA(w; ri1yi1 : : : rigyig) < accA(w) + 1nc � 12 ;and hence �m(w; s1~y1 � � �sg~yg) = 0.Next we show that the fraction of seeds bad for any particular history is inversely proportional tom.Lemma 4.8 Let m � 2l and h = s1~y1 � � �st�1~yt�1 a Am Arthur history. Then at most a g2n2c=mfraction of the seeds st 2 f0; 1gcP l are bad for h.Proof: Let rij = P (1l; i; sj) for i = 1; : : : ; m and j = 1; : : : ; t � 1. For each i = 1; : : : ; m de�neXi : f0; 1gcP l ! [0; 1] by Xi(s) = accA(w; ri1yi1 : : : rit�1yit�1:P (1l; i; s)). Note that X1; : : : ; Xm arepairwise independent when regarded as random variables over the uniform distribution on f0; 1gcP l.It follows that Var[Pmi=1Xi] =Pmi=1Var[Xi], and since Var[Xi] � 1 we have Var[Pmi=1Xi] � m. Soby Chebyshev's inequality we getP h j 1m Pmi=1(Xi � E[Xi])j � 1ncg i = P h jPmi=1 (Xi � E[Xi])j � mncg i17



� Var[Pmi=1Xi](m=(ncg))2� g2n2cm :To conclude the proof we need only note that E[Xi] = accA(w; ri1yi1 : : : rit�1yit�1) by de�nition of theaccepting probability function.We can use the above lemma to show that representative conversations occur with high probabilitywhen m is appropriately chosen, and thereby derive the desired conclusion.Lemma 4.9 Letm = g3n2c��1 and assume m � 2l. Then Am has error probability � � with respectto L.Proof: Fix any Merlin strategy M for the game de�ned by Am. By Lemma 4.8 the probabilitythat a (Am;M) conversation is representative is at least1� g � g2n2cm = 1� � :The conclusion now follows from Lemma 4.7.If l � lg(g3n2c��1) and we use the �nite �eld implementation of pairwise independent generatorsthen this says we can reduce the error probability to � at the cost of doubling the number of cointosses used per round. To complete the proof of Theorem 4.1 we need now only note that byProposition 2.2 we may assume l � lg(g3n2c��1) at the cost of a constant factor in coins.5 Error Reduction at Logarithmic CostWe now show how to reduce the error probability to 2�k using O(k) additional random bits perround, where k = k(n) is !(logn) and polynomially bounded. More precisely, we prove the followingTheorem 5.1 There is a constant � such that the following is true. Let c be > 0 and let A =(�;G; l; q; s) be an Arthur strategy with error probability � 12 � n�c with respect to the languageL. Let k : N ! N be polynomially bounded and !(logn). Then we can construct another Arthurstrategy A� = (��; G; �(l + k); 2000 �G7Ak5n2cq; s) with error probability � 2�k with respect to L.For the proof again assume for simplicity that the given game is symmetric and let g = G=2. Theconstruction uses explicit constructions of expander graphs.5.1 Expander Graphs and the Expander Path LemmaDe�nition 5.2 We call G = fGlgl�1 a family of graphs if Gl is for each integer l � 1 a (undirected)graph on the vertex set f0; 1g2l. We say that G is explicitly constructible if there is a polynomialtime algorithm which on input x 2 f0; 1g2l outputs the list of neighbors of x. We say that G isd-regular if each Gl is d-regular, and bipartite if each Gl is bipartite.18



De�nition 5.3 Let G = fGlgl�1 be a family of d-regular graphs. We denote by A(Gl) the matrixobtained by dividing every entry of the adjacency matrix of Gl by d and we denote by �2(Gl) thesecond eigenvalue of A(Gl). We call �2(G) = supl�1 �2(Gl) the second eigenvalue of G.De�nition 5.4 Let G be a family of d-regular graphs. We call G a (family of) expanders if�2(G) < 1.Gabber and Galil [24] demonstrate the existence of families of explicitly constructible, d-regular,bipartite expanders. It will be convenient for us to assume the degree d is a power of 2. By addingedges we can easily modify the construction of [24] to achieve this; via Alon's result [4] we can besure that the resulting graph is still an expander. To summarize:Theorem 5.5 [24] There exists an explicitly constructible family of d-regular expanders with thedegree d being a power of 2.Let G be a d-regular undirected graph and A the matrix obtained by dividing every entry ofthe adjacency matrix of G by d. A random walk on G is the sequence of vertices visited by a\token" which starts at a random vertex and then moves according to the following transition rule:if at time t the token is at vertex x then at time t + 1 it moves to a random neighbor of x. Inother words, if Xt is the random variable which describes the position of the token at time t thenfXtgt�0 is the Markov chain whose transition probability matrix is A and whose initial position X0is uniform over the vertex set of G.In a modi�ed random walk, the token at any point in time �rst ips a coin, and if the coinvalue is 1 it performs the random walk transition. Otherwise it stays where it is. In other wordsits position is described by the Markov chain whose transition probability matrix is �A = 12(I +A)(where I is the N by N identity matrix) with the initial position again being uniform over thevertex set.Note that a modi�ed random walk of length k is speci�ed by 2l+k(1+lg d) = 2l+O(k) randombits. Let us now be a little more precise.De�nition 5.6 Let d be a power of 2 and G a (undirected) d-regular graph on the vertex setf0; 1g2l. Assume a canonical order on the edges out of any given vertex. Let x 2 f0; 1g2l andfor i = 1; : : : ; k let ei 2 f0; 1glgd and bi 2 f0; 1g. The modi�ed walk speci�ed by the stringxb1e1b2e2 : : : bkek is the sequence of vertices x0; x1; : : : ; xk where x0 = x andxi = ( the ei-th neighbor of xi�1 if bi = 1xi�1 otherwisefor each i = 1; : : : ; k. We call k the length of the walk and xi the vertex visited at time i. Pickingxb1e1 : : : bkek at random yields a modi�ed random walk.A property of modi�ed random walks on expanders is the main tool of this section.19



Lemma 5.7 (Expander Path Lemma) For any family G = fGlg of expander graphs there is aconstant � � 1 such that the following is true. Let � be < 1=2 and let L = � lg ��1. Let v 2 N andlet B1; : : : ; Bv be subsets of the vertex set f0; 1g2l which have density � �. Let b be an integer � vand let 1 � j1 < : : : < jb � v be a sequence of indices between 1 and v. Consider a modi�ed randomwalk of length Lv on the expander and denote by Yj the vertex visited at time Lj for j = 1; : : : ; v.Then P[Yj1 2 Bj1 ; : : : ; Yjb 2 Bjb ] � (2�)b=2. We call � the expansion constant of G; it dependsonly on the second eigenvalue of G.A proof of Lemma 5.7, following the ideas of [3], appears in Appendix A. A variant of this lemmaappears in [25].5.2 The Protocol: OverviewWe will play in parallel v = O(k= log(kg)) copies of the game presented in x4, setting m such thatthe error in each of these games is at most an appropriately chosen �. Since each of our subgamesconsists itself of m subgames, we will be playing a total of vm subgames which are arranged in vblocks each consisting of m subgames. The sequence of v seeds which specify the original Arthur'smessages in each round is itself speci�ed by a random walk on the expander.More precisely, Arthur's message in the t-th round consists of a \super-seed" st of lengthcP l+O(k) (the constant in the O depends on the second eigenvalue and the degree of the expander).This super-seed is used to specify a random walk of length O(k) on the expander. We denote thevertices visited at intervals of length L = O(log ��1) by s1t ; : : : ; svt 2 f0; 1g2l. Each sjt speci�es viaP a sequence of m strings of l bit each (as in x4). We denote this sequence by rj;1t : : : rj;mt wherem = g3n2c��1. The string rj;it is regarded as A's round t move in the i-th subgame of the j-th block.Merlin's (answer) message in round t has the form y1;1t : : :y1;mt � � �yv;1t : : :yv;mt where yj;it is calledMerlin's answer in the i-th subgame of the j-th block. After all g rounds are completed Arthurevaluates � in each of the subgames and accepts i� in a majority of blocks there is a majority ofaccepting conversations.To analyze the game, we remind the reader that in each block of m subgames, for each round,at most a g2n2c=m = � fraction of the seeds are bad for the current history (Lemma 4.8). By theExpander Path Lemma, the probability that a particular sequence of b seeds is bad (in a sequenceof v seeds generated by the random walk) is bounded above by (2�)b=2. Thus, the probabilitythat in the g rounds of the game at least b = v=2 of the vg seeds are bad is bounded above by�vgb � � (2�)b=2 and by appropriate choices of the parameters this can be made � 2�k. It follows thatwith probability � 1 � 2�k, the conversations in � 1=2 of the blocks are representative. We canconclude by applying the analysis of x4.Let us now specify all this in more detail.5.3 The Protocol: Speci�cation and AnalysisWe �x an explicitly constructible family of d-regular expander graphs fGlg with d being a powerof 2, and let � denote its expansion constant. We also �x a pairwise independent generator P20



whose associated constant cP we assume (without loss of generality) to be even. To specify the newArthur strategy we �rst de�ne the parameters� = 1200 k4g4L = � lg ��1 = O(log(kg))v = 10�kL = 10klg ��1 = O� klog(kg)�m = g3n2c��1� = 10�(1+ lg d) = O(1) :De�nition 5.8 For t = 1; : : : ; g let st 2 f0; 1gcP l+�k denote Arthur's round t message; we call sta super-seed . For j = 1; : : : ; v let sjt 2 f0; 1gcP l be the vertex visited at time Lj by the modi�edrandom walk on GcP l=2 that is speci�ed by st. For i = 1; : : : ; m let rj;it = P (1l; i; sjt). We let A�denote the Arthur strategy (��; G; cP l+ �k;mvq; s), where��(w; s1~y 11 : : :~y v1 � � �sg~y 1g : : :~y vg ) = ( 1 if jf j 2 [v] : �m(w; sj1~y j1 � � �sjg~y jg ) = 1 gj � v20 otherwise :Here �m is the decision predicate of the game of De�nition 4.5 and the mvq bit string that isMerlin's round t message is being parsed as ~y 1t : : :~y vt where ~y jt = yj;1t : : :yj;mt with yj;it 2 f0; 1gq.De�nition 5.9 If C = s1~y 11 : : : ~y v1 � � �sg~y 1g : : :~y vg is a A� conversation and j 2 [v], we callsj1~y j1 � � �sjg~y jg a sub-conversation of C.Note that a sub-conversation of a A� conversation is an Am conversation. Our goal will be to showthat if M is any Merlin strategy for the game de�ned by A� then at least half the sub-conversationsof each (A�;M) conversation are representative with probability � 1 � 2�k. We begin with thefollowingDe�nition 5.10 Let M be a Merlin strategy for the game de�ned by A�. Let s1; : : : ; st�1 be asequence of super-seeds, and let ~y 1u : : :~y vu = M(w; s1 : : : su) for u = 1; : : : ; t � 1. For each blockj = 1; : : : ; v and each round t = 1; : : : ; g letBjt (M ; s1; : : : ; st�1) = f sjt 2 f0; 1gcP l : sjt is bad for the Am history sj1~y j1 � � �sjt�1~y jt�1 gdenote the set of seeds which are bad for the current history in this block.We note that if C = s1~y 11 : : :~y v1 � � �sg~y 1g : : :~y vg is a (A�;M) conversation and for each t = 1; : : : ; g itis the case that sjt 62 Bjt (M ; s1; : : : ; st�1) then the sub-conversation sj1~y j1 � � �sjg~y jg is representative.Lemma 5.11 Let M be a Merlin strategy for the game de�ned by A�. ThenP h jf (t; j) 2 [g]� [v] : sjt 2 Bjt (M ; s1; : : : ; st�1) gj � v2 i � 2�k ;where the probability is over Arthur's random choice of s1; : : : ; sg.21



Proof: By Lemma 4.8 and our choice of � we know that the density of Bjt (M ; s1; : : : ; st�1) is atmost � for each block j and round t. Now �x t and assume s1; : : : ; st�1 have been chosen. Let b � vand suppose 1 � j1 < : : : < jb � v is a sequence of b indices between 1 and v. By Lemma 5.7 weknow that P h sjbt 2 Bj1t (M ; s1; : : : ; st�1); : : : ; sjbt 2 Bjbt (M ; s1; : : : ; st�1) i � (2�)b=2 ;the probability being over Arthur's random choice of st. It follows thatP h jf (t; j) 2 [g]� [v] : sjt 2 Bjt (M ; s1; : : : ; st�1) gj � v2 i �  vgv=2! � (2�)v=4 ;the probability being over Arthur's random choice of s1; : : : ; sg. We bound this last expression by(vg)v=2(2�)v=4 = (vgp2� )v=2. Substituting p2� = (10k2g2)�1 and v = 10k= lg ��1 this is� � 10kg10k2g2 lg ��1� 10k2 lg ��1 = � 1kg lg ��1� 5klg ��1 = �2�k� 5 lg(kg lg ��1)lg ��1 :But 1 � lg ��1 � O(1) + 4 lg(kg) so 5 lg(kg lg ��1) � lg ��1 for large enough n and hence the aboveis � 2�k as desired.Now �x an arbitrary Merlin strategy for the game de�ned by A�. Lemma 5.11 implies thatP h jf j 2 [v] : sjt 62 Bjt (M ; s1; : : : ; st�1) for all t = 1; : : : ; g gj > v2 i � 1� 2�k ;or, in other words, at least half the sub-conversations of any (A�;M) conversation are representativewith probability � 1 � 2�k. So by Lemma 4.7 and the de�nition of �� it follows that the errorprobability of A� with respect to L is � 2�k. This concludes the proof of Theorem 5.1.6 Randomness-E�cient ApproximationImplicit in the previous sections is a new sampling method. An application of particular interestis to the problem of approximating the average value of an arbitrary real valued function.6.1 De�nitionsFor f : f0; 1gn ! [0; 1] we let E[f ] def= 2�nPx2f0;1gn f(x) denote the average value of f .An (l; �; �)-approximator is a two stage process. In a �rst, randomized, sampling stage, we picka collection of sample points x1; : : : ; xt 2 f0; 1gl. In a second, deterministic, estimation stage, wecompute, as a function of f(x1); : : : ; f(xt), an estimate. We require that with probability � 1� �this estimate is within � of E[f ].Let us now specify this more precisely. We begin with the sampling stage.De�nition 6.1 Let l; t; � : N! N. An (l; t; �)-sampler is a (deterministic) algorithm S(�; �) whichruns in time polynomial in its �rst input, and, on input 1n and a seed s 2 f0; 1g�(n), outputs a22



sequence of strings r1; : : : ; rt(n) 2 f0; 1gl(n) which we call sample points. The number of samplepoints is t. For i = 1; : : : ; t(n) we will denote by Si(1n; s) the i-th sample point output by S oninput 1n and s 2 f0; 1g�(n).As we will see when we complete the speci�cation of (l; �; �)-approximation, the seed for the samplerwill be chosen at random. So the seed length � will represent the number of coin tosses that thesampler uses.We now turn to the estimation stage.De�nition 6.2 Let l; t: N! N. A (l; t)-estimator is a (deterministic) polynomial time algorithmE(�; �) which on input 1n and (x1; : : : ; xt(n)) 2 Rl(n) outputs a real number between 0 and 1.If Fn is for each integer n a set of functions mapping f0; 1gn to [0; 1] then we will refer to F = fFngas a class of functions. We can now say what is an (l; �; �)-approximator for a class of functions F .De�nition 6.3 Let l: N ! N and �; � : N ! [0; 1]. Let S be a (l; t; �)-sampler and E a (l; t)-estimator, for some t; � : N! N. For each n and f : f0; 1gl(n) ! [0; 1] we de�ne An;f : f0; 1g�(n) ![0; 1] by An;f(s) = E(1n; (f(S1(1n; s)); : : : ; f(St(n)(1n; s))))and regard it as a random variable over the uniform distribution on f0; 1g�(n). We say that A =(S;E) is an (l; �; �)-approximator for the class of functions F = fFng ifP [ jAn;f �E[f ]j � �(n) ] � 1� �(n)for each n and each f 2 Fn. The number of sample points used is t and the number of coin tossesused is �.Note that both S and E are independent of the function f we are trying to approximate.We assume that the real numbers f(r1); : : : ; f(rt) that are provided to the estimator are trun-cated to O(log ��1) bits; this level of approximation is suitable for our purposes and henceforth wewill assume total accuracy.The parameters to consider in designing an (l; �; �)-approximator are the number of samplepoints t (which by the above de�nition is also the number of function evaluations), the number ofcoin tosses � used (by S) to generate these sample points, and the class F of functions that can beapproximated.For the purpose of the discussion that follows it is helpful to have the followingDe�nition 6.4 [10] An (l; �; �)-approximator (S;E) is called oblivious ifE(1n; (x1; : : : ; xt(n))) = 1t(n) t(n)Xi=1 xifor all n and (x1; : : : ; xt(n)) 2 Rl(n), where t is the number of sample points used by (S;E).Obliviousness is useful in some applications (cf. [10]).23



6.2 Approximation MethodsThe standard approximation method is to select t = O(��2 log ��1) independent and uniformlydistributed sample points and use as estimate the average value of the function on these samplepoints. An application of the Cherno� bound shows that this yields an (l; �; �)-approximator whichworks for all functions. However, it uses O(tl) coin tosses.A large savings in the number of coin tosses is possible by the use of pairwise independence.With O(l) coin tosses we can specify O(��2��1) pairwise independent sample points and again useas estimate the average value of the function on these sample points; an application of Chebyshev'sinequality shows that this yields a (l; �; �)-approximator for all functions (cf. Chor and Goldreich[19]). The cost is in the number of sample points which now grows in proportion to ��1 rather thanthe lg ��1 of the standard method; if we want the number of sample points to be polynomial in nthen we cannot attain exponentially small (in n) error.Using higher independence and an iterated sampling technique, Bellare and Rompel [10] areable to remove this restriction. They construct an (l; �; �)-approximator for all functions which,with O(l+ log ��1 � log l) coin tosses, speci�es O(��6 log6 l + log3 ��1) sample points and then usesas estimate the average value of the function on these sample points. Thus they do save coinscompared to the standard method and use a number of sample points which is polynomial in (l; ��1and) lg ��1, but the number of sample points is much more than that of the standard method.Using the techniques of Impagliazzo and Zuckermann [37] one can construct an (l; �; �)-approximator for the class of boolean functions which uses O(��2 log ��1) sample points andl +O(��4 log2 ��1) coin tosses as long as l = !(��2 log ��1).The (l; �; �)-approximator that we will present in x6.3 improves on all of these: with onlyO(l + log ��1) coin tosses it speci�es the same (up to constant factors) O(��2 log ��1) number ofsample points as the standard method, and works for all functions. It is optimal in the number ofsample points and coin tosses. We note, however, that our approximator will not be oblivious, incontrast to all the ones mentioned above.A somewhat coarser kind of approximation to the average of a boolean functions f : f0; 1gl !f0; 1g can be obtained via a random walk on a 2l node explicitly constructed expander graph (cf.[3, 21, 37]). For example, if E[f ] � 99=100 then we can use O(l+ log ��1) random bits to generateO(log ��1) sample points such that the average of f on these sample points is � 2=3 with probability� 1� �. This is useful for many applications such as randomness-e�cient error-reduction for BPPalgorithms.Other randomness-e�cient sampling techniques include that of Nisan [41] who shows howO(l log t) random bits su�ce to produce a sequence of l bit strings r1; : : : ; rt such that jP[f(r1) =� � � = f(rt) = 1]� E[f ]tj < 2�l for all boolean functions f : f0; 1gl ! f0; 1g. Recently Impagliazzo[35] presented a general technique to extend these kinds of results to real valued functions.6.3 Our (l; �; �)-approximatorWe construct an (l; �; �)-approximator which uses O(l + log ��1) coin tosses and O(��2 log ��1)sample points, and works for all functions. 24



Up to constant factors, the number of sample points used by our method is optimal. Namely,any (l; �; �)-approximator (even for just the class of boolean functions) must use 
(��2 log ��1)sample points (cf. [17]). Furthermore, among methods using the optimal number of sample points,our method is nearly optimal in the number of coin tosses used (for a wide range of natural choicesfor the parameters). Namely, any (l; �; �)-approximator (even for boolean functions) which usesO(��2 log ��1) sample points must use at least l + lg ��1 � lg ��2 � O(1) coin tosses (cf. [17] andconsider � < �!(1)).Let us now proceed to our theorem.Theorem 6.5 Let l: N ! N and �; � : N ! [0; 1] with l; ��1 and lg ��1 polynomially bounded andpolynomial time computable. Then there exists an (l; �; �)-approximator for all functions which usesO(��2 log ��1) sample points and O(l+ log ��1) coin tosses.Proof: We �x an explicitly constructible family of d-regular expander graphs fGlg with d being apower of 2, and let � denote its expansion constant. We also �x a pairwise independent generatorP whose associated constant cP we assume (without loss of generality) to be even. We de�ne theparameters L = 9� = O(1)v = lg ��1m = 29��2 = O(��2)t = vm = O(��2 lg ��1)� = 9� lg d = O(1)If m > 2l then we can trivially get a perfect estimate without expending any coin tosses because weare allowed enough sample points that exact computation becomes feasible. Formally, the samplerwould output a list of all the 2l � t points in f0; 1gl, and the estimator on input 1n and (x1; : : : ; xt)would output the average of the t values x1; : : : ; xt. So we may assume m � 2l.The sampler S chooses s 2 f0; 1gcP l+� lg ��1 at random. Let sj denote the vertex visited at timeLj on the (modi�ed) random walk on GcP l=2 that is speci�ed by s, and let rj;i = P (1n; i; sj) forj = 1; : : : ; v and i = 1; : : : ; m. The output of the sampler is r1;1; : : : ; r1;m; : : : ; rv;1; : : : ; rv;m. Thusthe approximator uses vm = O(��2 lg ��1) sample points and cP l + � lg ��1 = O(l + lg ��1) cointosses.The estimator E, on input 1n and (x1;1; : : : ; x1;m; : : : ; xv;1; : : : ; xv;m), evaluates xj = 1m Pmi=1xj;ifor j = 1; : : : ; v and then outputs the median value of x1; : : : ; xv.For the analysis, �x f : f0; 1gl ! [0; 1]. Call a seed s 2 f0; 1gcP l bad if�����1t tXi=1 f(ri)�E[f ]����� � � ;where ri = P (1n; i; s) for i = 1; : : : ; m. We know that m � 2l, so if s is selected at random thenf(r1); : : : ; f(rm) are pairwise independent random variables. By Chebyshev's inequality it followsthat P h j1t Pti=1 f(ri)�E[f ]j � � i � mm2�2 = 2�9 ;25



the probability being over a random choice of the seed. In other words, the density of Bj def=f s : s is bad g is � 2�9 for each j = 1; : : : ; v. By Lemma 5.7, the probability that a majority ofthe seeds are bad is bounded above by vv=2! � (2 � 2�9)v=4 � (2 � (2�8)1=4)v = 2� log ��1 = � :Thus when xj;i = f(rj;i), with probability � 1� � a majority of the values xj are within � of E[f ].So with probability � 1� � the median of these values is within � of E[f ].7 Conclusion and Open ProblemsWe recall our main result. Suppose we are given an Arthur-Merlin game of g = g(n) rounds in whichArthur sends l = l(n) (random) bits per round, and suppose this game is a proof system for L witherror probability � 13 . Then given a polynomially bounded function k = k(n) we can constructa new Arthur Merlin games in which the error probability is reduced to 2�k while maintainingthe number of rounds and using O(l + k) coin tosses per round. Here are some areas for furtherinvestigation.� For unbounded g, is there a construction which achieves error 2�k with Arthur ipping a totalof only O(gl+k) coins? Note that the total number of coins ipped by Arthur in the given gameis gl, and the total number of coins ipped in the new game that our result yields is O(g(l+k)).We know that the analogue of the question we pose is true for BPP algorithms. Namely, aBPP algorithm which has error� 13 with respect to L and uses r = r(n) coins can be transformedinto one which has error � 2�k and uses O(r+ k) coins [3, 21, 37].� Can our result be generalized to (general) interactive proof systems? We don't know of anydirect non-trivial error-reduction technique for general interactive proof systems. By \direct"we mean without �rst transforming the interactive proof into an Arthur-Merlin game (a trans-formation which requires exponentially small error probability), and by \non-trivial" we meanmore e�cient in terms of coin tosses than playing independent copies of the same interactiveproof.� Is it possible to achieve error � 2�k using only l + O(k) coins per round? Note that the bestour technique yields is 2l +O(k).Again, the analogue is true for BPP. A BPP algorithm which has error � 13 with respectto L and uses r = r(n) coins can be transformed, for any constant c > 0, into one which haserror � n�c and still uses only r coins (a result of [38] described in [21]) and one can then apply[21, 37] to reduce the error to 2�k at the cost of O(k) additional coins.AcknowledgmentsWe thank John Rompel for many valuable ideas and discussions in the early stages of this research,and Silvio Micali for helpful discussions. 26
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A Appendix: Proof of the Expander Path LemmaFix l and let N = 22l denote the number of nodes of Gl. Let A = A(Gl) and � = 1 � �2(G). Wedenote by �1 � �2 � : : : � �N the eigenvalues of A. The fact that all line sums of A equal 1 impliesthat the �rst eigenvalue �1 equals 1 and the spectral radius of A (maximum of the absolute valuesof all the eigenvalues of A) is 1. Moreover, the expander property says that �2 � 1� � < 1.We let �A = 12(I +A) denote the transition probability matrix of the modi�ed random walk. Itseigenvalues are ��1 � ��2 � : : : � ��N where ��i = 12(1 + �i). It follows that the �rst eigenvalue of �Ais 1, all its eigenvalues are � 0, and ��2 � 1� �=2 < 1.Since �A is a real symmetric matrix there is an orthonormal basis of RN which consists ofeigenvectors of �A. We �x such a basis u1; : : : ; uN with ui being an eigenvector of �A with eigenvalue��i. Note that ��1 = 1 implies that u1 = (N�1=2; : : : ; N�1=2). We let V1 be the space spanned by u1and V2 the space orthogonal to V1 which is spanned by u2; : : : ; uN .Let kxk denote the Euclidean norm of x 2 RN .Lemma A.1 k �Axk � (1� �=2)kxk for any x 2 V2.Proof: Since u2; : : : ; uN is a basis for V2 there are real numbers c2; : : : ; cN such that x =PNs=2 csus.But �Aus = ��sus and the vectors u2; : : : ; uN are orthonormal, sok �Axk2 = kPNs=2 cs �Ausk2 = kPNs=2 cs��susk2 = PNs=2 c2s��2s :Since ��2 � ��3 � : : : � ��N � 0 this impliesk �Axk2 � ��22PNs=2 c2s = ��22 kxk2 � (1� �=2)2 kxk2which proves the lemma.Let ei be the N -vector with 1 in position i and zeroes elsewhere. De�ne the projection matrix Pjas having its i-th column equal to ei if i 2 Bj and the 0 vector otherwise. Let � def= 12 [lg 22�� ]�1 andnote that this is a constant which depends only on the second eigenvalue of G. Let L def= � lg ��1.Lemma A.2 kPj �Aixk � p2� kxk for any x 2 RN and any j = 1; : : : ; v and i � L.Proof: Let x = x1 + x2 where x1 = c1u1 2 V1 and x2 2 V2. ThenkPj �Aixk � kPj �Aix1k+ kPj �Aix2k� kPjx1k+ k �Aix2k� [2 (kPjx1k2 + k �Aix2k2)]1=2 :Here the �rst inequality is by the triangle inequality. The second uses the fact that �Ax1 = x1 andkPjyk � kyk for any y 2 Rn. The third is just an application of the inequality a+b � [2(a2+b2]1=2.Now the fact that Bj has density � � and x1 = c1u1 implies that kPjx1k2 � �kx1k2. On theother hand, since A maps V2 into itself we can apply Lemma A.1 repeatedly to conclude thatk �Aix2k � (1 � �=2)ikx2k. Our choice of L implies that (1 � �=2)2L � � and hence it follows that30



k �Aix2k2 � �kx2k2. Putting all this together we getkPj �Aixk � [2 (�kx1k2 + �kx2k2)]1=2 = p2� kxkas desired.Let kxk1 denote the L1 norm (that is, the sum of the absolute values of the components) of x 2 RN .Now let x = (1=N; : : :; 1=N) = N�1=2u1 be the N vector corresponding to the uniform distributionand set y = Pjb �A(jb�jb�1)�L � � �Pj2 �A(j2�j1)�LPj1 �Aj1�Lx :Lemma A.2 implies that kyk � (2�)b=2kxk = (2�)b=2N�1=2. Thus, the probability that a randomwalk, starting at the uniform distribution x, and terminating after Lv steps at distribution y, visitsa vertex in the set Bji at time Lji for i = 1; 2; :::; b iskyk1 � pN kY k � (2�)b=2 :
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