
Free Bits, PCPs and Non-Approximability|Towards Tight Results�(Version 5: July 1997)Mihir Bellarey Oded Goldreichz Madhu SudanxAbstractThis paper continues the investigation of the connection between probabilistically checkableproofs (PCPs) the approximability of NP-optimization problems. The emphasis is on proving tightnon-approximability results via consideration of measures like the \free bit complexity" and the\amortized free bit complexity" of proof systems.The �rst part of the paper presents a collection of new proof systems based on a new error-correcting code called the long code. We provide a proof system which has amortized free bitcomplexity of 2+ �, implying that approximating Max Clique within N 13��, and approximating theChromatic Number within N 15��, are hard assuming NP 6= coRP, for any � > 0. We also derive the�rst explicit and reasonable constant hardness factors for Min Vertex Cover, Max2SAT, and MaxCut, and improve the hardness factor for Max3SAT. We note that our non-approximability factorsfor MaxSNP problems are appreciably close to the values known to be achievable by polynomialtime algorithms. Finally we note a general approach to the derivation of strong non-approximabilityresults under which the problem reduces to the construction of certain \gadgets."The increasing strength of non-approximability results obtained via the PCP connection mo-tivates us to ask how far this can go, and whether PCPs are inherent in any way. The secondpart of the paper addresses this. The main result is a \reversal" of the FGLSS connection: wherethe latter had shown how to translate proof systems for NP into NP-hardness of approximationresults for Max Clique, we show how any NP-hardness of approximation result for Max Cliqueyields a proof system for NP. Roughly our result says that for any constant f if Max Clique isNP-hard to approximate within N1=(1+f) then NP � FPCP[log; f], the latter being the class oflanguages possessing proofs of logarithmic randomness and amortized free bit complexity f . Thissuggests that PCPs are inherent to obtaining non-approximability results. Furthermore the tightrelation suggests that reducing the amortized free bit complexity is necessary for improving thenon-approximability results for Max Clique.The third part of our paper initiates a systematic investigation of the properties of PCP andFPCP as a function of the various parameters: randomness, query complexity, free bit complexity,amortized free bit complexity, proof size, etc. We are particularly interested in \triviality" results,which indicate which classes are not powerful enough to capture NP. We also distill the role ofrandomized reductions in this area, and provide a variety of useful transformations between proofchecking complexity classes.� In honor of Shimon Even's 60th birthday. To appear in SIAM Journal on Computing. Extended abstract appearedin Proceedings of the 0th Symposium on Foundations of Computer Science, IEEE, 1995.y Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA.E-mail: mihir@cs.ucsd.edu. Supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard FoundationFellowship in Science and Engineering. Some of this work was done when the author was at IBM.z Department of Computer Science and Applied Mathematics, Weizmann Institute of Sciences, Rehovot, Israel. E-mail: oded@wisdom.weizmann.ac.il. Supported in part by grant No. 92-00226 from the US{Israel Binational ScienceFoundation (BSF), Jerusalem, Israel.x Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139, USA. E-mail:madhu@theory.lcs.mit.edu. Some of this work was done when the author was at IBM.1

2 Bellare, Goldreich, SudanContents1 Introduction 51.1 Some background and de�nitions : 51.2 Overview of our results : 71.2.1 New proof systems and non-approximability results : : : : : : : : : : : : : : : : 71.2.2 Proofs and approximation: Potential and limits : : : : : : : : : : : : : : : : : : 91.2.3 Properties and transforms of PCP and FPCP : : : : : : : : : : : : : : : : : : : 101.3 History : 121.4 Related work : 141.5 Subsequent work : 141.6 Directions for further research : 151.7 Previous versions of this paper : 161.8 Organization : 161.9 Acknowledgments : 162 De�nitions and histories 172.1 General notation and de�nitions : 172.2 Proof systems : 172.2.1 Basic Setting : 172.2.2 Parameters : 172.2.3 History of proof systems : 192.3 Reductions between problems and classes : 212.4 Approximation problems and quality : 222.4.1 Optimization problems, approximation and gaps : : : : : : : : : : : : : : : : : 222.4.2 Some optimization problems we consider : 242.4.3 History of approximability results for these problems : : : : : : : : : : : : : : : 26I New proof systems and non-approximability results 313 The Long Code and its machinery 313.1 New PCPs and Hardness Results { Overview and guidemap : : : : : : : : : : : : : : : 313.2 Preliminaries to the Long Code : 323.3 Evaluation operators, the Long Code, and Folding : 333.4 Recursive veri�cation of proofs : 353.4.1 Outer veri�ers : 363.4.2 Inner veri�ers : 373.4.3 Composition of veri�ers : 383.5 The atomic tests : 403.5.1 Atomic linearity test : 423.5.2 Monomial basis test : 433.5.3 Atomic projection test : 463.5.4 Atomic circuit test : 47

Free Bits in PCP 34 A new 3-query PCP and improved MaxSNP hardness results 474.1 The MAX SNP veri�er : 474.1.1 The inner veri�er : 474.1.2 Main application: the MaxSNP veri�er : 504.1.3 Another application: minimizing soundness error in 3-query pcp : : : : : : : : 524.2 Satis�ability problems : 524.2.1 The Hardness of MaxE3SAT and Max2SAT : 534.2.2 Maximum Satis�able Linear Constraints (Parity Clauses) : : : : : : : : : : : : 574.3 MaxCUT : 585 Free bits and vertex cover 625.1 Minimizing the error achievable with two free bits : 625.2 Hardness of vertex cover : 666 Minimizing the number of queries for soundness 0.5 676.1 The PCP inner veri�er : 676.2 The new proof system : 707 Amortized free-bits and MaxClique hardness 717.1 The iterated tests : 717.1.1 Linearity and randomness : 717.1.2 Iterated projection test : 727.1.3 Technical claim : 727.1.4 Iterated linearity test : 737.1.5 Iterated RMB test : 747.1.6 Putting some things together : 747.2 NP in amortized free-bit complexity 2 : 757.3 Hardness of MaxClique : 77II Proofs and Approximation: Potential and Limitations 788 The reverse connection and its consequences 788.1 The Clique-Gap Veri�er : 788.2 Reversing the FGLSS reduction : 808.3 Main Consequences : 848.4 More Consequences : 859 On the Limitations of Some Common Approaches 899.1 The tasks : 899.2 Lower Bound for the Codeword Test : 919.3 Lower Bound for the Projection Test : 939.4 Lower Bound for the Combined Test : 94III PCP: Properties and Transformations 97

4 Bellare, Goldreich, Sudan10 The Complexity of PCP and FPCP 9710.1 MIP versus PCP : 9710.2 Query complexity and amortized query complexity : 9810.3 Free-bit complexity : 10210.4 Query complexity versus free-bit complexity : 10411 Transformations of FPCP Systems 10611.1 Gap ampli�cations maintaining amortized free-bit complexity : : : : : : : : : : : : : : 10611.2 Trading-o� gap location and free-bit complexity : 11011.3 Other e�ects on acceptance probabilities and free-bit complexity : : : : : : : : : : : : 112Bibliography 114A The coding theory bound 120

Free Bits in PCP 51 IntroductionIn the Max Clique problem we are given a graph G and must �nd the value of MaxClique(G) =maxfjSj : S is a clique in Gg. It is an example of an NP-optimization problem, of which others are to�nd the chromatic number of a graph; to �nd the size of the smallest vertex cover; etc. These problemsarise in many settings, and e�cient solutions are much desired. Unfortunately, many important NP-optimization problems (those mentioned above in particular) are NP-hard to solve. So algorithmdesigners seek e�cient (polynomial time) approximation algorithms.An approximation algorithm delivers a number that is supposed to be close to optimal. Thequality of the algorithm is measured in terms of how close. For example, if �(N) � 1 is a functionof the number N of vertices in a graph G, then we say an algorithm A approximates Max Cliquewithin �, or is factor � approximation algorithm, if MaxClique(G)=�(N) � A(G) � MaxClique(G)for every graph G. (For a minimization problem like Chromatic Number, we require instead thatChromNum(G) � A(G) � �(N) � ChromNum(G) where ChromNum(G) is the chromatic number ofG.)The search for e�cient approximation algorithms achieving good factors has met with varied suc-cess. For some problems, good approximation algorithms were found. For some important problems,including Max Clique and Chromatic Number, the best approximation algorithms found achieved fac-tors only marginally better than the trivial factor ofN . For others, like Minimum Vertex Cover, simplealgorithms achieving reasonable factors were discovered quite quickly, but it was unclear whether onecould do better. Algorithm designers want to know whether this is due to some inherent intractability,or only to the lack of cleverness in algorithm design.Some early non-approximability results were able to indicate (at least for some problems) thatvery good approximation (ie. achieving factors very close to optimal) can be NP-hard. But the realbreakthrough came more recently, when a strong hardness of approximation result for Max Cliquewas shown by establishing a connection between Max Clique and the existence of probabilisticallycheckable proof (PCP) systems for NP. Since then, similar connections have been found to otheroptimization problems. Meanwhile with the construction of more e�cient proof systems, the factorswithin which approximation is shown hard continue to increase. Indeed, in some cases, even tightresults seem in sight.This paper continues the development of the connection between PCPs and hardness of approx-imation with the goal of getting tight results. On the one hand, we continue past work by buildingnew proof systems and obtaining improved non-approximability results; on the other hand we opensome new directions with an exploration of the limits of the PCP connection.In what follows we provide a little background and then a high level overview of our results. Therich history of the ideas in this area is overviewed in Section 1.3, and more detailed histories areprovided in the body of the paper.1.1 Some background and de�nitionsWe will be informal and as brief as possible; formal de�nitions can be found in Section 2.Proof systems and parameters. A probabilistic proof system is described by a probabilistic,polynomial time veri�er V . It takes an input x of length n and tosses coins R. It has oracle accessto a poly(n) length string � describing the proof: to access a bit it writes a O(logn) bit addressand is returned the corresponding bit of the proof. Following its computation it will either acceptor reject its input x. The accepting probability, denoted ACC [V (x)], is the maximum, over all �, ofthe probability (over R) that V accepts x on coins R and proof string �. While the task is typicallylanguage recognition (namely to recognize whether x is in some �xed language L) we will, more

6 Bellare, Goldreich, Sudangenerally, consider promise problems (A;B) consisting of a set A of \positive" instances and a set Bof \negative" instances [ESY]. A languages L is identi�ed with the promise problem (L; L).Of interest in the applications are various parameters of the system. The completeness probabilityc = c(n) and the soundness probability s = s(n) are de�ned in the usual ways. In case c = 1 we saythat the system has perfect completeness. The gap is g = c=s. The query complexity is the maximum(over all coin tosses and proof strings) of the number of bits of the proof that are examined by theveri�er. The free-bit complexity, roughly speaking, is the logarithm of number of possible acceptingcon�gurations of V on coins R and input x. (For example a veri�er which makes 3 queries and acceptsi� the parity of the answers is odd has 4 accepting con�guration and thus free-bit complexity 2.)Either the query or the free-bit complexity may be considered in amortized form: e.g. the amortizedfree-bit complexity is the free-bit complexity (of a proof system with perfect completeness) divided bythe logarithm of the gap. (That is, the number of free-bits needed per factor of 2 increase in the gap.)Also, either the query or free-bit complexity may be considered on the average, the average being overthe random string of the veri�er.Denote by PCPc;s[r; q] the class of promise problems recognized by veri�ers tossing r coins, havingquery complexity q, and achieving completeness probability c and soundness probability s. FPCPc;s[r; f]is de�ned analogously with f being the free-bit complexity. PCP[r; q] is de�ned analogously with qbeing the amortized query complexity, and FPCP[r; f] is de�ned analogously with f the amortizedfree-bit complexity.Max Clique approximation. Although we look at many optimization problems there is a particularfocus on Max Clique. Recall the best known polynomial time approximation algorithm for Max Cliqueachieves a factor of only N1�o(1) [BoHa], scarcely better than the trivial factor of N . (Throughoutthe paper, when discussing the Max Clique problem, or any other problem about graphs, N denotesthe number of vertices in the graph.) Can one �nd even an N1�� factor approximation algorithm forMax Clique for some � < 1? An additional motivation for searching for such \weak" approximationalgorithms was suggested by Blum [Bl]. He showed that a polynomial-time N1��-factor approximationalgorithm for Max Clique implies a polynomial time algorithm to color a three colorable graph withO(logN) colors [Bl], which is much better than currently known [KMS]. But perhaps N1�o(1) is thebest possible. Resolving the approximation complexity of this basic problem seems, in any case, to beworth some e�ort.Gaps in clique size. Hardness of approximation (say of Max Clique) is typically shown via the con-struction of promise problems with gaps in max clique size. Speci�cally, let Gap-MaxCliquec;s be thepromise problem (A;B) de�ned as follows: A is the set of all graphs G with MaxClique(G)=N � c(N),and B is the set of all graphs G with MaxClique(G)=N < s(N). The gap is de�ned as c=s. Now, ahardness result will typically specify a value of the gap g(N) = c(N)=s(N) for which Gap-MaxCliquec;sis NP-hard under a (randomized) Karp reduction. This means that there is no polynomial time algo-rithm to approximate the Max Clique size of an N node graph within g(N) unless NP has randomizedpolynomial time algorithms. Gap problems can be similarly de�ned for all the other optimizationproblems we consider. From now on, we discuss approximation in terms of these gap problems.The connection: Making gaps from proofs. The FGLSS-reduction [FGLSS] is a reduction ofa promise problem (A;B) to Gap-MaxCliquec;s for some appropriate c; s de�ned by the reduction. Itworks by using a veri�er V of a pcp system for (A;B) to map any instance x 2 A [B to a graph Gxso that MaxClique(Gx) reects ACC [V (x)]. For the best results one typically uses a randomized formof this reduction due to [BeSc, Zuc] and it is this that we will assume henceforth.A NP-hard gap problem is obtained roughly as follows. First, one exhibits an appropriate proofsystem for NP. Then one applies the FGLSS reduction. The factor indicated hard depends on the

Free Bits in PCP 7proof system parameters. A key element in getting better results has been the distilling of appropriatepcp-parameters. The sequence of works [FGLSS, ArSa, ALMSS, BGLR, FeKi1, BeSu] lead us througha sequence of parameters: query complexity, free-bit complexity and, �nally, for the best known results,amortized free-bit complexity. The connection in terms of amortized free-bits can be stated as follows:if NP reduces to FPCP[log; f] then NP also reduces to Gap-MaxCliquec;s, with gap c(N)=s(N) =N1=(1+f). (In both cases the reduction is via randomized Karp reductions, and terms of � > 0 whichcan be arbitrarily small are ignored.) In particular if NP � FPCP[log; f] then approximating the maxclique size of an N vertex graph within N1=(1+f) in polynomial time is not possible unless NP hase�cient randomized polynomial time algorithms.1.2 Overview of our results1.2.1 New proof systems and non-approximability resultsThis section describes the new proof systems that we construct and the non-approximability resultsthat we derive from them.New proof systems. We present several new ways of capturing NP via probabilistic proof systems,summarized below and in Figure 1:(1) For every � > 0 it is the case that NP � FPCP[log; 2 + �].(2) NP � PCP1;1=2[log; 11].(3) NP � FPCP1;s[log; 2] for s = 0:794.(4) NP � PCP1;s[log; 3] for any s > 0:85.Some of these results are motivated by applications, others purely as interesting items in proof theory.The search for proof systems of low amortized free-bit complexity is motivated of course by theFGLSS reduction. Bellare and Sudan [BeSu] have shown that NP � FPCP[log; 3+ �] for every � > 0.The �rst result above improves upon this, presenting a new proof system with amortized free-bitcomplexity 2 + �.The question of how low one can get the (worst-case and average) query complexity required toattain soundness error 1=2 was investigated a lot in earlier works because they were applying theresult to obtain Max Clique hardness results. We now know we can do better with amortized free-bitcomplexity. Nevertheless, the original question is still one to which we are curious to know the answer.Minimizing the soundness error obtainable using only two (non-amortized!) free-bits is importantfor a more pragmatic reason. It enables us to get the �rst explicit and reasonably strong constantnon-approximability result for the Min Vertex Cover problem. This application is discussed below.Finally, the soundness achievable using only three query bits is natural to consider given the resultson the Max 3SAT gap problem. Indeed, if there is an NP-hard Max 3SAT gap problem with certainfocus error queries free-bits previous related result3 queries 0:85 3 2 error 7273 via MaxSAT [BeSu]2 free-bits 0.794 O(1) 2error 1/2 12 11 7 32 queries (24 on average) [FeKi1]amortized free-bits O(2�m) 23m 2m 3m free-bits [BeSu]Figure 1: New PCP Systems for NP, all with logarithmic randomness.

8 Bellare, Goldreich, SudanProblem Approx Non-ApproxFactor Due to Our Factor Previous Factor AssumptionMax3SAT 1:258 [Yan, GoWi2, TSSW] 1:038 1 + 172 [BeSu] P 6= NPMaxE3SAT 1 + 17 folklore 1 + 126 unspeci�ed [ALMSS] P 6= NPMax2SAT 1:075 [GoWi2, FeGo] 1:013 1 + 1504 (implied [BeSu]) P 6= NPMax�SAT 2 folklore 1 + 17 P 6= NPMaxCUT 1:139 [GoWi2] 1:014 unspeci�ed [ALMSS] P 6= NPMinVC 2� o(1) [BaEv2, MoSp] 1 + 115 unspeci�ed [ALMSS] P 6= NPMax-Clique N1�o(1) [BoHa] N 14 [BeSu] NP 6� coR~PN 13 N 15 coRP 6= NPN 14 N 16 [BeSu] P 6= NPChromatic N1�o(1) [BoHa] N 110 [BeSu] NP 6� coR~PNumber N 15 N 17 [Fu] coRP 6= NPN 17 N 114 [BeSu] P 6= NPFigure 2: Approximation factors attainable by polynomial-time algorithms (Approx) versus factorswe show are hard to achieve (Non-Approx). MaxE3SAT (resp., Max�SAT) denote the maximizationproblem for CNF formulae having exactly 3 di�erent literals in each clause (resp., a conjunction ofparity clauses).gap then one can easily get a three query proof system with the same gap. But in fact one can dobetter as indicated above.New non-approximability results. The results are summarized in Figure 2. (In the last items,we ignore terms of N � where � > 0 is an arbitrarily small positive constant.) Refer to Section 2.4.2for the de�nitions of the problems.The conclusion for Max Clique follows, of course, from the FGLSS-reduction and the �rst proofsystem listed above. The conclusion for the Chromatic Number follows from a recent reduction ofF�urer [Fu], which in turn builds on reductions in [LuYa, KLS, BeSu]. (F�urer's work and ours arecontemporaneous and thus we view the N1=5 hardness result as jointly due to both papers.)The improvements for the MaxSNP problems are perhaps more signi�cant than the Max Cliqueone: We see hardness results for MaxSNP problems that are comparable to the factors achieved byknown polynomial time approximation algorithms.We are obtaining the �rst explicit and reasonable non-approximability factor forMax2SAT, MaxCUTand minimum Vertex Cover. Recall that the latter is approximable within 2-o(1) [BaEv2, MoSp]. Ourresults for MaxCUT and Max2SAT show that it is infeasible to �nd a solution with value which isonly a factor of 1.01 from optimal. This may be contrasted with the recent results of [GoWi2, FeGo]which shows that solutions which are within 1.14 and 1.075, respectively, of the optimum are obtain-able in polynomial time. Thus, even though we do not know if the \pcp approach" allows to get thebest possible non-approximability results for these problems, we feel that the current results are notridiculously far from the known upper bounds.

Free Bits in PCP 9General framework. We emphasize a general framework for the derivation of strong non-approximabilityresults for MaxSNP problems which results from our tests and proof systems. We use direct reductionsfrom veri�ers to the problems of interest. (This follows and extends [BGLR], prior to which results hadused \generic" reductions, which did not take advantage of the nature of the tests performed by theveri�er.) In particular, in our case it turns out that the veri�er only performs two kinds of tests | (1)verify that a+ b+ c = � (mod 2); and (2) verify that a+ bc = �c, where a; b; b0; b1; c are answer bitsobtained from the oracle and the �'s are �xed bits. By constructing local gadgets (i.e., one gadget perrandom coin toss sequence) to verify each of the veri�er's tests, we achieve better non-approximabilityresults than using more general reductions. In particular our work seems to suggest that optimizingfor gadgets which \check" the two conditions listed above will lead to reasonably good lower boundsfor many MaxSNP problems. In this way, obtaining a non-approximability result for a particularproblem is reduced to the construction of appropriate \gadgets" to \represent" two simple functions.Techniques. The main technical contribution is a new error-correcting code which we have calledthe \long code. This code encodes an n-bit string as a 22n bit string which consists of the value ofevery boolean function on the n-bit string. It is easy to see such codes have large Hamming distance.We show that this code is also easily \testable" and \correctable", and derive the new proof systemsbased on this.As in all recent constructions of e�cient pcp's our construction also relies on the use of recursiveconstruction of veri�ers, introduced by Arora and Safra [ArSa]. We have the advantage of being ableto use, at the outer level, the recent veri�er of Raz [Raz], which was not available to previous authors.The inner level veri�er relies on the use of a \good" encoding scheme. Beginning with [ALMSS],constructions of this veri�er have used the Hadamard Code; in this paper we use instead the longcode.1.2.2 Proofs and approximation: Potential and limitsAs the above indicates, non-approximability results are getting steadily stronger, especially for MaxClique. How far can they go? And, in minimizing amortized free-bits, are we on the right track? Arethere other ways? The next set of results provides answers to these kinds of questions.Reversing the connection: Making proofs from gaps. The FGLSS Reduction Lemma indi-cates that one route to good non-approximability results for Max Clique is to show NP � FPCP[log; f]for values of f which are as small as possible. We present a \reverse connection" which says that, ina sense, this is the only way to proceed. Namely, we \invert" the above FGLSS-reduction. Roughly,we show that, for any constant f , the following statements are equivalent:(1) NP reduces to Gap-MaxCliquec;s with gap c(N)=s(N) = N1=(1+f).(2) NP reduces to FPCP[log; f].The (2))(1) direction is the FGLSS-reduction; The (1))(2) direction is our reversed connection.(The statement ignores terms of � > 0 which can be arbitrarily small. The proof and a more precisestatement are in Section 8.) In both cases the reduction is randomized. Furthermore the statementholds both for Karp and for Cook reductions. Also, if (1) holds with a deterministic Karp reductionthen NP � FPCP0[log; f], where FPCP0 is de�ned as being the amortized free-bit complexity of proofsystems with almost-perfect completeness (i.e., c = 1� o(1)).In other words any method of proving NP-hardness of Max Clique approximation to a factor ofN1=(1+f) implies that NP has proof systems of amortized free-bit complexity f .We stress both the \qualitative" and the \quantitative" aspects of this result. Qualitatively, itprovides an answer to the following kind of a question: \What do proofs have to do with approximatingclique size, and can we not prove non-approximability results without using proof checking?" The

10 Bellare, Goldreich, Sudanresult indicates that proofs are inherent, and explains, perhaps, why hardness results avoiding theproof connection have not appeared.However, at this stage it is the quantitative aspect that interests us more. It says that to get tighterresults on Max Clique hardness, we must construct proof systems to minimize the amortized free-bitcomplexity. So our current e�orts (recall that we have the amortized free-bit complexity down to two,yielding a N1=3 hardness for Max Clique) are in the right direction. To prove that, say Max Clique ishard to approximate within pN , our reverse connection says we must construct proof systems withamortized free-bit complexity one.Yet the reverse connection does more than guide our choice of parameters. It is also a usefulconceptual tool since it allows us to go from graphs to proof systems and vice versa, in the processperhaps gaining some property. As an example we show how all known hardness results for chromaticnumber can be viewed (with almost no loss in e�ciency) as reductions fromMax Clique | even thoughthese were essentially hardness results based on proof checking. Other examples demonstrating theusefulness of the equivalence may be found in Section 8.4. We believe that exploring and exploitingfurther this duality is a fruitful avenue to pursue.A lower bounds on amortized free-bits. Having shown that the minimization of amortizedfree-bits is unavoidable, we asked ourselves how low we can take them. Our approach here was tolook at current techniques and assess their limitations. We stress that this approach makes variousassumptions about methods, and is intended to show that signi�cantly novel techniques are requiredto go further. But it does not suggest an inherent limitation.We show that, under the framework used within this and previous papers on this subject, amortizedfree-bit complexity of 2 seems to be a natural barrier: any proof system in this framework must use2 � � amortized free-bits, where � > 0 as usual can be arbitrarily small. The result, including ade�nition of what we mean by the \framework," is in Section 9. Loosely speaking, it considers proofsystems which, among other things, probe two oracles in order to check that one oracle is \close"to a codeword (i.e., a codeword test) and the second oracle encodes a projection of the informationencoded in the �rst oracle (i.e., a projection test).In retrospect, our lower bounds justify H�astad's two deviations from these techniques; speci�cally,his relaxation of the codeword test [H1] and his relaxation of the projection test [H2]. Speci�cally,H�astad [H1, H2] has constructed a pcp system (for NP) of amortized free-bit complexity �, 8� > 0.This was done in two stages/papers. In his �rst paper [H1], H�astad builds on the framework presentedin the current work but introduces a relaxed codeword test which is conducted within amortized free-bit complexity �. In his second paper [H2], H�astad abandons the current framework and utilizes arelaxed projection test which is conducted within amortized free-bit complexity �. Our lower boundsjustify H�astad's deviations from the intuitive but more stringent forms of the codeword and projectiontests.1.2.3 Properties and transforms of PCP and FPCPProbabilistic proofs involve a vast arena of complexity parameters: query complexity, free-bit com-plexity, amortized free-bit complexity, randomness, and proof sizes to name a few. Some might, at �rstglance, seem less \natural" than others; yet all are important in applications. A better understandingof the basic properties and relations between these parameters would help move us forward.We initiate, therefore, a systematic investigation of the properties of pcp complexity classes as afunction of the parameter values. Besides providing new results we take the opportunity to state andprove a few folklore ones.A contribution of this work is to distill and formalize the role of randomized reductions. Thesetransforms provide an elegant and concise way to state connections between PCPs and approximability,

Free Bits in PCP 11or just between di�erent kinds of proof systems, and make it easier to manipulate the many connectionsthat exist to derive new results.We begin with \triviality results," namely results which say that certain parameter combinationsyield classes probably not capable of capturing NP.For simplicity we restrict attention in this part to classes of languages, not classes of promiseproblems.Triviality results. Perhaps the �rst thing to ask is whether, instead of amortized free-bit com-plexity, we could work with any of the simpler measures. After all FPCP[log; f] contains each of thefollowing classes: (1) PCP1;1=2[log; f]; (2) PCP[log; f]; (3) FPCP1;1=2[log; f]. Thus it would su�ce tominimize the query complexity to get error 1=2; or the amortized query complexity; or the free-bitcomplexity to get error 1=2. However it turns out these complexities will not enable us to reach ourtarget (of reducing the complexity to almost zero and thus proving that clique is hard to approximateto within a N1�� factor, for every � > 0). This is because the following classes are all contained in P:(1) PCP1;1=2[log; 2](2) PCP[log; 1](3) FPCP1;1=2[log; 1].Thus, we cannot expect to construct pcp systems for NP with either query complexity 2 (this is actuallyfolklore predating our work); or amortized query complexity 1; or free-bit complexity 1. However itis a feature of amortized free-bit complexity that so far it seems entirely possible that NP reduces toFPCP[log; f] with f an arbitrarily small constant. Indeed, if we believe (conjecture) that Max Cliqueis hard to approximate with N1�� for any � > 0 then such proof systems must exist, by virtue of theequivalence stated above. In fact, even if we do not believe that Max Clique is hard to approximatewith N1�� for any � > 0, it turns out that the amortized query bit parameter will be too weak tocapture the hardness of the clique function. In fact, if Max Clique is hard to approximate to withinN�, then the best hardness result obtainable from the amortized query bit parameter would be ofthe form N �2�� . This is shown by invoking Corollary 10.11 which shows that the amortized querycomplexity parameter is always one unit larger than the amortized free-bit parameter (and we knowthat the amortized free bit parameter captures the hardness of Max Clique tightly).Other results. We have already mentioned above that strict limitations on various query parametersmake PCP very weak. Actually, for every s < 1, PCP1;s[log; 2] and FPCP1;s[log; 1] collapse to P.This means that pcp systems with perfect completeness are very weak when restricted to either twoqueries or to free-bit complexity one. However, pcp systems with completeness error and the very samequery (resp., free-bit) bounds are not so weak. In particular, it is well known that NP = PCPc;s[log; 2]for some 0 < s < c < 1 (e.g., by using the NP-hardness of approximating Max2SAT). We show thatNP = FPCPc;s[log; 1] for some 0 < s < c < 1 (speci�cally, c = 12 and s = 0:8 � c). Furthermore, forsome smaller 0 < s < c < 1, the following holdsNP = FPCPc;s[log; 0] (1)(speci�cally, with c = 14 and s = 15). We �nd the last assertion quite intriguing. It seems to indicatethat one needs to be very careful when making conjectures regarding free-bit complexity. Furthermore,one has to be very careful also when making conjectures regarding amortized free-bit complexity; forexample, the result P = PCP[log; 1] holds also when one allows non-perfect completeness (in thede�nition of PCP[�; �]) as long as the gap is greater than 2q per q queries, but an analogous resultcannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[�; �]).Trying to understand the power of pcp systems with low free-bit complexity, we have waived thebound on the randomness complexity. Recall that in this case pcp systems are able to recognize

12 Bellare, Goldreich, Sudannon-deterministic exponential time (i.e., NEXPT = PCP1;1=2[poly; poly]) [BFL]. Thus, it may be ofinterest to indicate that for every s < 1,FPCP1;s[poly; 0] � coNP (2)FPCP1;s[poly; 1] � PSPACE (3)It seems that FPCP1;1=2[poly; 0] is not contained in BPP, since Quadratic Non-Residuosity and GraphNon-Isomorphism belong to the former class. (Speci�cally, the interactive proofs of [GMR] and [GMW]can be viewed as a pcp systemwith polynomial randomness, query complexity 1 and free-bit complexity0.) Thus, it seems that the obvious observation PCP1;s[poly; 1] � AM (for every s < 1, where AMstands for one round Arthur-Merlin games), would also be hard to improve upon.Transformations between proof systems. We provide various useful transformation of pcpsystems. These transformations are analogous to transformations that can be applied to graphs withrespect to the Max Clique problem. In view of the relation (mentioned above), between FPCP andthe gap-clique promise problem, this analogy is hardly surprising.One type of transformation ampli�es the gap (i.e., the ratio between completeness and soundnessbounds) of the proof system while preserving its amortized free-bit complexity and incurring a rela-tively small additional cost in the randomness complexity. Speci�cally, using a randomized reductionwe can transform FPCP1; 12 [log; f] into FPCP1;2�k [log+k; k � f] (ignoring multiplicative factors of 1+ �for arbitrarily small � > 0). This transformation is analogous to the well-known transformation ofBerman and Schnitger [BeSc]. Alternatively, using a known deterministic ampli�cation method basedon [AKS, LPS] one can transform FPCP1; 12 [log; f] into FPCP1;2�k[log+2k; k � f]. (To the best of ourknowledge this transformation has never appeared with a full proof.) Both alternatives are importantingredients in transforming pcp results into clique in-approximability results via the FGLSS method.A second type of transformation moves the location of the gap (or, equivalently, the completenessparameter). The gap itself is preserved by the transformation but moving it is related to changingthe free-bit complexity (and thus the amortized free-bit complexity is not preserved). Moving thegap `up' requires increasing the free-bit complexity, whereas moving the gap `down' allows to decreasethe free-bit complexity. For example, we randomly reduce FPCPc;s[log; f] to FPCP1;s�log[log; f +log(1=c) + log log]. On the other hand, for every k � f , we (deterministically) reduce FPCPc;s[log; f]into FPCP c2k ; s2k [log; f � k], provided that the original system has at least 2k accepting con�gurationsper each possible sequence of coin-tosses. (This condition is satis�ed in many natural pcp systems,even for k = f .)1.3 HistoryEarly work in non-approximability includes that of Garey and Johnson [GJ1] showing that it is NP-hard to approximate the chromatic factor within a factor less than two. The indication of higherfactors, and results for other problems, had to wait for the interactive proof approach.Interactive proofs were introduced by Goldwasser, Micali and Racko� [GMR] and Babai [Bab].Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] extended these ideas to de�ne a notion of multi-prover interactive proofs. Fortnow, Rompel and Sipser [FRS] showed that the class, MIP, of languagespossessing multi-prover interactive proofs equals the class of languages which have (using todaysterms) probabilistically checkable proofs (of unrestricted, and thus polynomial, randomness and querycomplexity).First indication to the power of interactive proof systems was given in [GMW], where it wasshown that interactive proofs exist for Graph Non-Isomorphism (whereas this language is not knownto be in NP). However, the real breakthrough came with the result of Lund, Fortnow, Karlo� and

Free Bits in PCP 13Nisan [LFKN] who used algebraic methods to show that all coNP languages (and actually, all languagesin P#P) have interactive proof systems. These techniques were used by Shamir [Sha] to show thatIP = PSPACE.A central result that enabled the connection to hardness of approximation is that of Babai, Fortnowand Lund [BFL]. They showed that the class MIP equals the class NEXP (i.e., languages recogniz-able in non-deterministic exponential time). The latter result has been \scaled-down" to the NP-levelby two independent groups of researchers. Babai, Fortnow, Lund and Szegedy [BFLS] showed thatif the input is encoded using a special error-correcting code (for which encoding and decoding canbe performed in polynomial-time) then NP has transparent proof systems (i.e., it is possible to ver-ify the correctness of the proof in poly-logarithmic time). Feige, Goldwasser, Lov�asz, Safra andSzegedy [FGLSS] showed that NP has probabilistically checkable proofs of poly-logarithmic random-ness and query complexity; namely, NP � PCP1;1=2[r; q], where r(n) = q(n) = O(logn � log logn).A hardness of approximation result based on interactive proofs was �rst proved by Condon [Con].The breakthrough PCP connection to approximation was made by Feige, Goldwasser, Lov�asz, Safraand Szegedy [FGLSS]. They showed that NP � PCP1;s[r; q] implies that approximating the maximumclique in a 2r(n)+q(n)-vertices graph to within a 1=s(n) factor is infeasible (i.e., not doable in polynomial-time), provided that NP is not in Dtime(2O(r+q)). (Here n is the length of the input x to the pcpveri�er.) Combined with the above-mentioned results, they obtained the �rst in a sequence of strongnon-approximability results for Max Clique: a non-approximability factor of 2log1�� N , 8� > 0, assumingNP does not have quasi-polynomial time algorithms.After the work of [FGLSS] the �eld took o� in two major directions. One was to extend theinteractive proof approach to prove the non-approximability of other optimization problems. Directreductions from proofs were used to show the hardness of quadratic programming [BeRo, FeLo],Max3SAT [ALMSS], set cover [LuYa], and other problems [Be]. The earlier work of Papadimitriou andYannakakis introducing the class MaxSNP [PaYa] now came into play; by reduction from Max3SAT itimplied hardness of approximation for any MaxSNP-hard problem. Also, reductions from Max Cliquelead to hardness results for the chromatic number [LuYa] and other problems [Zuc].The other direction was to increase factors, and reduce assumptions, for existing hardness ofapproximation results. This involves improving the e�ciency of the underlying proof systems and/orthe e�ciency of the reductions.The �rst stage of this enterprise started with the work of Arora and Safra [ArSa]. They showedthat NP � PCP1;1=2[log; o(log)]. This provided the �rst strong NP-hardness result for Max Clique(speci�cally, a hardness factor of 2plogN). This work introduced the idea of recursive proof checking,which turned out to play a fundamental role in all subsequent developments. Interestingly, the idea ofencoding inputs in an error-correcting form (as suggested in [BFLS]) is essential to make \recursion"work. Arora, Lund, Motwani, Sudan and Szegedy [ALMSS] reduced the query complexity of pcpsystems for NP to a constant, while preserving the logarithmic randomness complexity; namely, theyshowed that NP = PCP1;1=2[log; O(1)]. This immediately implied the NP-hardness of approximatingMax Clique within N �, for some � > 0. Furthermore, it also implied that Max-3-Sat is NP-hard toapproximate to within some constant factor [ALMSS] and so is any MaxSNP-hard problem [PaYa].The second stage of this enterprise started with the work of Bellare, Goldwasser, Lund and Russell[BGLR]. The goal was to improve (increase) the constant � in the exponent of the hardness ofapproximation factor for Max Clique, and also to improve the constant values of the hardness factorsin the MaxSNP hardness results. They presented new proof systems minimizing query complexityand exploited a slightly improved version of the FGLSS-reduction due to [BeSc, Zuc] to get a N1=30hardness of approximation factor for Max Clique. Feige and Kilian [FeKi1], however, observed thatone should work with free-bits, and noted that the free-bit complexity of the system of [BGLR] was 14,yielding a N1=15 hardness factor. Bellare and Sudan then suggested the notion of amortized free-bits.

14 Bellare, Goldreich, SudanProblem EASY to Approx. Factor HARD to Approx. Factor Tight?Factor Due to Our Factor NEW Factor AssumptionMax3SAT 1 + 17 + � [KaZw] (new) 1 + 126 1 + 17 � � [H3] P 6= NP YesMaxE3SAT 1 + 17 folklore 1 + 126 1 + 17 � � [H3] P 6= NP YesMax2SAT 1:075 [GoWi2, FeGo] 1:013 1:047 [H3] P 6= NP NoMax�SAT 2 folklore 1 + 17 � � 2� � [H3] P 6= NP YesMaxCUT 1:139 [GoWi2] 1:014 1:062 [H3] P 6= NP NoMinVC 2� o(1) [BaEv2, MoSp] 1 + 115 1 + 16 � � [H3] P 6= NP NoMax-Clique N1�o(1) [BoHa] N 13�� N1�� [H2] coRP 6= NP YesN 14�� N 12�� [H2] P 6= NP NoChromatic No. N1�o(1) [BoHa] N 15�� N1�� [FeKi2] coRP 6= NP YesFigure 3: State of the art regarding easy and hard approximation factors (updated July 1997). Here� > 0 is an arbitrarily small constant.They constructed proof systems achieving amortized free-bit complexity three, and in thus obtaineda N1=4 hardness for Max Clique assuming NP 6� coReP.Detailed histories for speci�c topics are given in Sections 2.2.3 and 2.4.3.1.4 Related workFollowing the presentation of our results, Arora has also investigated the limitations of proof checkingtechniques in proving non-approximability results [Ar]. Like in our free-bit lower bound result, he triesto assess the limitations of current techniques by making some assumptions about these techniquesand then showing a lower bound. His focus is on the reductions, which he assumes are \code like." Inthis setting he can show that one should not expect to prove non-approximability of Max Clique withinN1=2. (The assumptions made by us and by Arora do not seem to be comparable: neither implies theother. In retrospect, both sets of assumptions could be by-passed { as done by H�astad [H1, H2].)1.5 Subsequent workOur prophecy by which the PCP approach is leading to tight non-approximability results is in theprocess of materializing (see Figure 3). By now, tight results are known for central problems suchas Min-Set-Cover (cf., [LuYa, BGLR, Fe2]), Max-Clique (cf., [H1, H2]), Min-Coloring ([FeKi2]), andMax-3SAT (cf., [H3]). The latter results were obtained subsequently to the current work, and whilebuilding on it.Amortized free-bits and Max-Clique. The most intriguing problem left open by our work hasbeen resolved by H�astad [H1, H2]. He proved our conjecture (cf., [BGS2]) by which, for every � > 0,it is the case that NP � FPCP[log; �]. The Long-Code, introduced in this work, plays a pivotal rolein H�astad's work. He also uses the idea of folding. Applying the FGLSS-reduction to the new proofsystem, H�astad obtains a tight result for Max-Clique by showing that for every � > 0, assumingNP 6= coRP, there is no polynomial time algorithm to approximate Max-Clique within a factor of

Free Bits in PCP 15N1��.Improved 3-query proofs and Max-SNP. Another challenge, one we even did not dare state, wasachieved as well: H�astad [H3] has recently obtained optimal non-approximability results to MaxSNPproblems such as Max-E3-SAT. Furthermore, he has improved over all our non-approximability resultsfor MaxSNP problems, obtaining non-approximability factors of 22=21 and 17=16 for Max-2-SATand Max-CUT, respectively. Underlying these results is a new proof system for NP which yieldsNP � PCP1��;0:5[log; 3], for any � > 0. In addition, H�astad [H3] shows that NP is contained inPCP1;0:75+�[log; 3] (and it follows that NP � PCP1;0:5[log; 9]). The Long-Code plays a pivotal role inall these proof systems.Improved 2-free-bits proofs and Min-VC. The above-mentioned proof system of H�astad [H3]uses two (non-amortized) free-bits, and so NP � FPCP1��;0:5[log; 2], for every � > 0. This sets thenon-approximability bound for Min Vertex-Cover at 76 � �.Chromatic Number. Feige and Kilian [FeKi2] have introduced a new approach to showing hardnessof approximability of ChromNum, based on a new measure of proof checking complexity called thecovering complexity. By modifying our proof systems so as to preserve the amortized free-bit com-plexity and achieve low covering complexity, they proved a that approximating ChromNum withinN1=3 is hard unless NP = coRP. They were able to similarly modify H�astad's proof systems [H1, H2]and thereby improve the hard factor to N1��, for any � > 0.Gadgets. Another research direction, suggested in early versions of this work [BGS2], was takenon by Trevisan et. al. [TSSW] who initiated a systematic study of the construction of gadgets. Inparticular, they showed that the gadgets we have used in our reductions to the MaxSAT problemswere optimal, and constructed better (and optimal) gadgets for reduction to MaxCUT.Weights. An important issue neglected in our treatment of MaxSNP problems is the issue of weights.For example, in our MaxSAT problems we have allowed the same clause to appear many times inthe formula, which can be considered as allowing \small" weights. Certainly, one may want non-approximability results for the unweighted case (where one does not allow multiple occurrences of thesame clause). This issue is treated in a subsequent paper by Crescenzi et. al. [CST]. Essentially, theyshow that the unweighted cases of all problems considered in our paper are as hard as the weightedcases.1.6 Directions for further researchAlthough the most intriguing open problems suggested in previous versions of this work [BGS2] havebeen resolved, some very interesting problems remain. We mention a few.2-free-bits proofs and Min-VC. As we show, NP � FPCPc;s[log; f] implies that approximatingMin Vertex-Cover up to a 2f�s2f�c factor is NP-hard. This motivates us to ask whether the following,increasingly stronger, conjectures hold.(1) NP � FPCP1��;�[log; 2] (or even NP � FPCP1;�[log; 2]) for every � > 0. This would imply ahardness factor of 43 � � for MinVC.(2) For f def= log2 3, NP � FPCP1��;�[log; f] (or even NP � FPCP1;�[log; f]) for every � > 0. Thiswould imply a hardness factor of 32 � �.(3) NP � FPCP1��;�[log; 1] for every � > 0. This would imply a hardness factor of 2� �.Recall that FPCP1;s[log; 1] � P, for every s < 1, whereas NP � FPCP1��;0:5[log; 2] [H3]. It will beinteresting (though of no application for MinVC) to know whether NP � FPCP1;0:5+�[log; 2].

16 Bellare, Goldreich, SudanPerfect versus imperfect completeness. H�astad's work [H3] is indeed the trigger for the lastquestion and similarly we wonder whether NP � PCP1;0:5+�[log; 3]. Non-perfect completeness seemsto be useful in [H3], but it is to be seen if this is inherent. Similar issues arise with respect to someresults in the current work (e.g., see our transformations for increasing acceptance probability of proofsystems).De-randomization. We know that FPCP[log; f] is randomly reducible to FPCP1;2�k [log+(1 +�)k; (1+�)k �f]. On the other hand, the former class is contained in (i.e., is deterministically reduced to)the class FPCP1;2�k[log+(2+�)k; (1+�)k�f], for arbitrarily small � > 0. Can one obtain the best of bothworlds; namely, a deterministic reduction of FPCP[log; f] to, say, FPCP1;2�k[log+(1+�)k; (1+�)k �f],for arbitrarily small � > 0. An a�rmative answer will allow us to infer from NP � FPCP[log; f]that approximating Max Clique to within an N 11+f+� factor is NP-hard (rather than NP-hard underrandomized reductions).One ingredient of our method for reversing the FGLSS-reduction is the randomized reduction ofthe class FPCPc;s[log; f] to the class FPCP1; logc �s[log; f +log(1=c)+ log log]. (This statement is provedusing the ideas in Section 11. An alternative exposition, making use of a randomized graph-layeringprocess, is given in Section 8.) Anyhow, randomness plays an essential role in obtaining a pcp systemwith perfect completeness.1 The question is whether the class FPCPc;s[log; f] is contained in the classFPCP1; logc �s[log; f + log(1=c) + log log] (rather than being randomly reducible to it).1.7 Previous versions of this paperAn extended abstract of this work appeared in the proceedings of the FOCS 95 conference [BGS1]. Itwas backed up by the �rst versions of this large manuscript [BGS2], posted on ECCC. The paper wentthrough several revisions due to improvements and corrections in the results. These were regularlyposted on ECCC (as revisions to [BGS2]). This is the �fth version of the work.1.8 OrganizationThis introduction is followed by a section that contains de�nitions as well as detailed histories. Themain content of the paper is divided into three parts:(1) Part 1: New proof systems and non-approximability results, consisting of Sections 3 to 7, containsthe materiel discussed in Section 1.2.1. See overview in Section 3.1.(2) Part 2: Proofs and approximation: Potential and limitations, consisting of Sections 8 and 9,contains the materiel discussed in Section 1.2.2. Speci�cally, Section 8 contain the \reversereduction" of Clique hardness to PCP, and Section 9 contains lower bounds on the free-bitcomplexity of certain tasks.(3) Part 3: PCP: Properties and Transformations, consisting of Sections 10 and 11, contains themateriel discussed in Section 1.2.3. Speci�cally, Section 10 studies the expressive power of PCPsystems with certain parameters, and Section 11 contains transformations among PCP classes.1.9 AcknowledgmentsWe thank Uri Feige, Johan H�astad, Viggo Kann, Marcos Kiwi and Luca Trevisan for carefully readingthe previous versions of our work and pointing out several aws and improvements. We thank two(anonymous) referees for their careful reading and many comments towards improving the presentation.1This makes our results more elegant, but actually { as indicated in Section 8, we could have settled for \almostperfect" completeness which su�ces for presenting an inverse of the \FGLSS-reduction".

Free Bits in PCP 172 De�nitions and histories2.1 General notation and de�nitionsFor integer n let [n] = f1; : : : ; ng. A graph always means an undirected graph with no self-loops,unless otherwise indicated. We let kGk denote the number of vertices in graph G = (V;E).A probabilistic machine K has one or more inputs x1; x2; : : :. It tosses coins to create a randomstring R, usually of some length r(�) which is a function of the (lengths of the) inputs. We letK(x1; x2; : : : ;R) denote the output of K when it uses the random string R. Typically we are interestedin the probability space associated to a random choice of R.A function is admissible if it is polynomially bounded and polynomial-time computable. We willask that all functions measuring complexity (e.g. the query complexity q = q(n)) be admissible.In de�ning complexity classes we will consider promise problems rather than languages. (Thisconvention is adopted since approximation problems are easily cast as promise problems.) FollowingEven et. al. [ESY], a promise problem is a pair of disjoint sets (A;B), the �rst being the set of\positive" instances and the second the set of \negative" instances. A language L is identi�ed with(L; L).2.2 Proof systems2.2.1 Basic SettingA veri�er is a probabilistic machine V taking one or more inputs and also allowed access to one ormore oracles. Let x denote the sequence of all inputs to V and let n denote its length. During thecourse of its computation on coins R and input x, the veri�er makes queries of its oracles. Its �naldecision to accept or reject is a function DECV (x; a;R) of x;R and the sequence a of all the bitsobtained from the oracle in the computation. Contrary to standard terminology, acceptance in thispaper will correspond to outputting 0 and rejection to outputting 1.Oracles are formally functions, with the context specifying for each the domain and range. Some-times, however, an algorithm will be given a string s as an oracle. (Giving a veri�er s as an oraclemodels a \written proof" model in which someone has \written" s somewhere and the veri�er wantsto check it.) This is to be interpreted in the natural way; namely the oracle takes an index i andreturns the i-th bit of s. Let � denote the sequence (tuple) of all proof oracles supplied to the veri�erV . Now for veri�er V examining the proofs � and having input x, we letACC [V �(x)] = PrR [V �(x;R) = 0]denote the probability that V accepts when its random string is R. We then letACC [V (x)] = max� ACC [V �(x)] :This is the maximum accepting probability, over all possible choices of proof sequences �. (The domainfrom which the proofs are chosen depends, as mentioned above, on the context.)Let patternV (x;R) be the set of all sequences a such that DECV (x; a;R) = 0. (That is, all sequencesof oracle answers leading to acceptance). A generator for V is a poly(n)-time computable function Gsuch that patternV (x;R) = G(x;R) for all x;R. (That is, it can e�ciently generate the set of acceptedpatterns.)2.2.2 ParametersWe are interested in a host of parameters that capture various complexity measures of the proofchecking process. They are all functions of the length n of the input x given to the veri�er V . In the

18 Bellare, Goldreich, Sudanfollowing � denotes the concatenation of all the proof strings given to the veri�er. Also recall we areinterested in proof systems for promise problems (A;B) rather than just for languages.coins = Number of coins tossed by veri�er. Typically denoted r.pen = Length of the proof provided to the veri�er. Typically denoted l.c = Completeness probability. Namely minf ACC [V (x)] : x 2 A and jxj = n g.s = Soundness probability. Namely maxf ACC [V (x)] : x 2 B and jxj = n g.g = Gap. Namely c=s.Now we move to various measures of the \information" conveyed by the oracle to the veri�er. Forsimplicity we consider here only oracles that return a single bit on each query; that is, they correspondto strings, or \written proofs."query = The query complexity on input x is the maximum, over all possible randomstrings R of V , of the number of bits of � accessed by V on input x. Thequery complexity of the system q = q(n) is the maximum of this over allinputs x 2 A [B of length n.queryav = The average query bit complexity on input x is the average, over R, of thenumber of bits of the proof � accessed by V on input x and coins R. Theaverage query complexity of the system is the maximum of this over allx 2 A [B of length n. Typically denoted qav.query = V is said to have amortized query bit complexity �q if q= lg(g) � �q where qis the query bit complexity and g is the gap, and, furthermore, q is at mostlogarithmic in n.free = The free bit complexity of V is f if there is a generator G such thatjG(x;R)j � 2f for all R and all x 2 A [B of length n.freeav = The average free bit complexity of V is fav if there is a generator G suchthat ER [jG(x;R)j]� 2fav for all x 2 A [B of length n.free = V is said to have amortized free bit complexity �f if f= lg(g) � �f where f isthe free bit complexity and g is the gap.Notice that amortized query complexity is restricted to be at most logarithmic. We don't need toexplicitly make this restriction for the amortized free bit complexity since it is a consequence of thee�cient generation condition.In case the completeness parameter equals 1 (i.e., c = 1), we say that the system is of perfectcompleteness. In case the completeness parameter, c, satis�es c(n) = 1� o(1), we say that the systemis of almost-perfect completeness.The consideration of combinations of all these parameters give rise to a potentially vast numberof di�erent complexity classes. We will use a generic notation in which the parameter values arespeci�ed by name, except that, optionally, the completeness and soundness can, if they appear, do soas subscripts. Thus for example we have things like:PCPc;s[coins = r ; query = q ; pen = 2r ; free = f : : :] :However most often we'll work with the following abbreviations:PCPc;s[r; q] def= PCPc;s[coins = r ; query = q]

Free Bits in PCP 19PCPc[r; q] def= PCPc;�[coins = r ; query = q]FPCPc;s[r; f] def= PCPc;s[coins = r ; free = f]FPCPc;s[r; f; l] def= PCPc;s[coins = r ; free = f ; pen = l]FPCPc[r; f] def= PCPc;�[coins = r ; free = f] :We stress that in the de�nitions of the amortized classes, PCPc[r; q] and FPCPc[r; f], we refer tothe completeness parameter c (but not to the soundness parameter). In case c = 1, we may omit thisparameter and shorthand the amortized classes of perfect completeness by PCP[r; q] and FPCP[r; f],respectively. Namely, PCP[r; q] def= PCP1[r; q]FPCP[r; f] def= FPCP1[r; f]2.2.3 History of proof systemsModels and parameters. The model underlying what are now known as \probabilistically check-able proofs" is the \oracle model" of Fortnow, Rompel and Sipser [FRS], introduced as an equivalentversion (with respect to language recognition power) of the multi-prover model of Ben-Or, Goldwasser,Kilian and Wigderson [BGKW]. Interestingly, as shown by [BFLS, FGLSS], this framework can beapplied in a meaningful manner also to languages in NP. These works provide the veri�er V witha \written" proof, modeled as an oracle to which V provides the \address" of a bit position in theproof string and is returned the corresponding bit of the proof. Babai et. al. [BFLS] suggested amodel in which the inputs are encoded in a special (polynomial-time computable and decodable)error-correcting code and the veri�er works in poly-logarithmic time. Here we follow the model ofFeige et. al. [FGLSS] where the veri�er is probabilistic polynomial-time (as usual) and one considers�ner complexity measures such as the query and randomness complexity. The FGLSS-reduction (cf.,[FGLSS]), stated in terms of the query complexity (number of binary queries), randomness complex-ity and error probability of the proof system, has focused attention on the above model and theseparameters. The class PCP1;1=2[r; q] was made explicit by [ArSa].The parameterization was expanded by [BGLR] to explicitly consider the answer size (the oraclewas allowed to return more than one bit at a time) and query size{ their notation included �ve param-eters: randomness, number of queries, size of each query, size of each answer, and error probability.They also similarly parameterized (single round) multi-prover proofs, drawing attention to the ana-logue with pcp. This served to focus attention on the roles of various parameters, both in reductionsand in constructions. Also they introduced the consideration of average query complexity, the �rst ina sequence of parameter changes towards doing better for clique.Free bits are implicit in [FeKi1] and formalized in [BeSu]. Amortized free bits are introduced in[BeSu] but formalized a little better here.Proof sizes were considered in [BFLS, PoSp]. We consider them here for a di�erent reason { theyplay an important role in that the randomized FGLSS reduction [BeSc, Zuc] depends actually on thisparameter (rather than on the randomness complexity).The discussion of previous proof systems is coupled with the discussion ofMax Clique in Section 2.4.3.We conclude the current section, by discussing two somewhat related topics: query minimization andconstant-prover proof systems.Query complexity minimization. One seeks results of the formNP = PCP1;1=2[coins = log ; query = q ; queryav = qav] : (4)

20 Bellare, Goldreich, SudanDue to q qav[ALMSS] some constant some constant[BGLR] 36 29[FeKi1] 32 24This paper 11 10.9Figure 4: Worst case (q) and average (qav) number of queries needed to get 1=2 soundness withlogarithmic randomness; that is, results of the form of Eq. (4).This was originally done for deriving NP-hardness results for the approximation of MaxClique, butsubsequent work has indicated that other parameters actually govern this application. Still, the querycomplexity of a proof system remains a most natural measure, and it is an intriguing question as tohow many bits of a proof you need to look at to detect an error with a given probability. Speci�cally,we consider the question of determining the values of q; qav for which Eq. (4) holds.The fundamental result of [ALMSS] states that q; qav may be constants (independent of the inputlength). Reductions in the values of these constants were obtained since then and are depicted inFigure 4. See Section 6 for our results.Role of constant-prover proofs in PCP { perspective. Constant-prover proofs have beeninstrumental in the derivation of non-approximability results in several ways. One of these is thatthey are a good starting point for reductions| examples of such are reductions of two-prover proofsto quadratic programming [BeRo, FeLo] and set cover [LuYa]. However, it is a di�erent aspect ofconstant prover proofs that is of more direct concern to us. This aspect is the use of constant-proverproof systems as the penultimate step of the recursion, and begins with [ALMSS]. It is instrumental ingetting PCP systems with only a constant number of queries. Their construction requires that theseproof systems have low complexity: error which is any constant, and randomness and answer sizesthat are preferably logarithmic. The number of provers and the randomness and query complexitydetermine the quality of many non-approximability results (e.g., poly-logarithmic rather than logarith-mic complexities translate into non-approximability results using assumptions about quasi-polynomialtime classes rather than polynomial time ones). The available constant-prover proof systems appearin Figure 5 and are discussed below. Throughout this discussion we consider proof systems obtainingan arbitrary small constant error probability.The two-prover proofs of Lapidot-Shamir and Feige-Lov�asz [LaSh, FeLo] had poly-logarithmicrandomness and answer sizes, so [ALMSS] used a modi�cation of these, in the process increasing thenumber of provers to a constant much larger than two. The later constructions of few-prover proofsof [BGLR, Tar, FeKi1] lead to better non-approximability results.Bellare and Sudan [BeSu] identi�ed some extra features of constant prover proofs whose presencethey showed could be exploited to further increase the non-approximability factors. These features arecaptured in their de�nition of canonical veri�ers (cf. Section 3.4). But the proof systems of [FeKi1]that had worked above no longer su�ced| they are not canonical. So instead [BeSu] used (a slightmodi�cation of) the proofs of [LaSh, FeLo], thereby incurring poly-logarithmic randomness and answersizes, so that the assumptions in their non-approximability results pertain to quasi-polynomial timeclasses. (Alternatively they modify the [FeKi1] system to a canonical three-prover one, but then incura decrease in the non-approximability factors due to having more provers).A breakthrough result in this area is Raz's Parallel Repetition Theorem which implies the ex-

Free Bits in PCP 21Due to Provers Coins Answer size Canonical? Can be made canonical?[LaSh, FeLo] 2 polylog polylog No Yes [BeSu][ALMSS] poly(��1) log polylog No ?[BGLR] 4 log polyloglog No ?[Tar] 3 log O(1) No ?[FeKi1] 2 log O(1) No At cost of one more prover[BeSu][Raz] 2 log O(1) Yes (NA)Figure 5: Constant prover PCPs achieving error which is a �xed, but arbitrarily small, constant �.istence of a two-provers proof system with logarithmic randomness and constant answer size [Raz].Furthermore, this proof system is canonical.2.3 Reductions between problems and classesWe will consider reductions between promise problems. A deterministic Karp reduction from (A1; B1)to (A2; B2) is a polynomial time function T which for all x satis�es: if x 2 A1 then T (x) 2 A2 and ifx 2 B1 then T (x) 2 B2. A randomized Karp reduction from (A1; B1) to (A2; B2) is a probabilistic,polynomial time function T which takes two arguments: an input x and a security parameter k, thelatter written in unary. The transformation is required to have the property thatx 2 A1 =) Pr � T (x; 1k) 2 A2 � def= p1(x; k) � 1� 2�kx 2 B1 =) Pr � T (x; 1k) 2 B2 � def= p2(x; k) � 1� 2�k :The probability is over the coin tosses of T . We say the reduction has perfect completeness if p1 = 1and perfect soundness if p2 = 1. Notice a deterministic reduction corresponds to a randomized onein which p1 = p2 = 1. We write (A1; B1) �KR (A2; B2) if there is a randomized Karp reduction from(A1; B1) to (A2; B2). If the reduction is deterministic we omit the subscript of \R," or, sometimes, foremphasis, replace it by a subscript of \D."An example is the randomized FGLSS transformation [FGLSS, BeSc, Zuc]. Here (A1; B1) is typi-cally an NP-complete language L, and (A2; B2) is Gap-MaxCliquec;s for some c; s which are determinedby the transformation. (See Section 2.4 for de�nition of latter.) This transformation has perfect sound-ness, while, on the other hand, it is possible to get p1 = 1� 2�poly(n).Similarly one can de�ne (randomized) Cook reductions. The notation for these reductions is �CR .Let C be a complexity class (e.g. NP). We say that C reduces to (A2; B2) if for every (A1; B1)in C it is the case that (A1; B1) reduces to (A2; B2). An example is to say that NP reduces toGap-MaxCliquec;s. We say that C1 reduces to C2, where C1 and C2 are complexity classes, if for every(A1; B1) in C1 there is an (A2; B2) in C2 such that (A1; B1) reduces to (A2; B2). An example is to saythat NP reduces to FPCP[log; f]. The notation of �KR or �CR extends to these cases as well.Notice that our de�nition of reducibility ensures that this relation is transitive.For simplicity we sometimes view a randomized reduction T as a function only of x, and write T (x).In such a case it is to be understood that the security parameters has been set to some convenientvalue, such as k = 2.

22 Bellare, Goldreich, SudanHistorical Note. We've followed the common tradition regarding the names of polynomial-timereductions: many-to-one reductions are called Karp-reductions whereas (polynomial-time) Turing re-ductions are called Cook-reductions. This terminology is somewhat unfair towards Levin whose workon NP-completeness [Lev] was independent of those of Cook [Coo] and Karp [Kar]. Actually, thereductions considered by Levin are more restricted as they also e�ciently transform the correspond-ing NP-witnesses (this is an artifact of Levin's desire to treat search problems rather than decisionproblems). In fact, such reductions (not surprisingly termed Levin-reductions) are essential for resultssuch as Corollary 8.15. (Yet, this is the only example in the current paper.)2.4 Approximation problems and qualityWe discuss optimization problems, approximation algorithms for them, and how hardness is shownvia the production of \hard gaps." We then list all the problems considered in this paper.2.4.1 Optimization problems, approximation and gapsOptimization problems. An optimization problem � = (S; g; k � k; k � k�; opt) is speci�ed by:� A function S associating to any instance w a solution set S(w) 6= ;.� An objective function g associating to any instance w and solution y 2 S(w) a non-negative realnumber g(w; y). This number is sometimes called the value of solution y.� Two norm functions k�k; k�k�, the �rst admissible, the second polynomial time computable, eachassociating to any instance w a non-negative real number; their roles will be explained later.� An indication opt 2 fmin;maxg of the type of optimization, whether maximization or minimiza-tion.The task, given w, is to either maximize (this if opt = max) or minimize (this if opt = min), the valueg(w; y), over all y 2 S(w).De�nition 2.1 Let � = (S; g; k � k; k � k�; opt) be an optimization problem. The optimum value forinstance w is denoted �(w) and de�ned by�(w) = 8<: maxy2S(w) g(w; y) if � is a maximization problemminy2S(w) g(w; y) if � is a minimization problem.We sometimes consider the normalized optimum, de�ned by �(w) = �(w)=kwk�.The above de�nition illustrates the role of the second norm: it is to normalize the optimum. Thusk � k� will usually be chosen to make 0 � �(w) � 1, depending on the problem.Approximation. An approximation algorithm for � = (S; g; k� k; k � k�; opt) is an algorithm A whichon input w tries to output a number as close as possible to �(w). Unless otherwise indicated, anapproximation algorithm runs in time polynomial in the length of w.While the complexity of the algorithm is measured as a function of the length of the input, theapproximation quality is often measured as a function of some other measure associated to the input.This is what we have called the �rst norm of w and denoted kwk. For example, for graph problemsthe �rst norm is typically the number of vertices in the graph.The notion of an approximation algorithm achieving a certain approximation factor is di�erentdepending on whether it is a maximization problem or a minimization problem.

Free Bits in PCP 23De�nition 2.2 An approximation algorithm A for optimization problem � = (S; g; k� k; k � k�; opt) issaid to achieve a factor �(�) � 1 if for all instances w its output A(w) satis�es� �(w)�(kwk) � A(w) � �(w) if � is a maximization problem, or� �(w) � A(w) � �(kwk) � �(w) if � is a minimization problem.Note that as per this de�nition, our convention is that an approximation factor is always a numberat least one. In some other places, the approximation factor, at least in the case of minimizationproblems, is a number less than one: they set it to the reciprocal of what we set it.Gap problems. We are interested in instances of an optimization problem for which the optimum ispromised to be either \very high" or \very low." We capture this by associating to any optimizationproblem a promise problem, depending on a pair of \thresholds" c; s, both admissible functions ofthe �rst norm and satisfying 0 < s(�) < c(�). It is convenient to make the de�nition in terms of thenormalized optimum rather than the optimum. We consider maximization and minimization problemsseparately.De�nition 2.3 Let � = (S; g; k � k; k � k�;max) be a maximization problem, and let 0 < s(�) < c(�) beadmissible functions of the �rst norm. De�neY = f w : �(w) � c(kwk) gN = f w : �(w) < s(kwk) gGap-�c;s = (Y;N) :The gap of the promise problem is de�ned to be c=s.It is important that the inequality in the de�nitions of Y;N is strict in one case and not in the other.The same is true below although the order is reversed.De�nition 2.4 Let � = (S; g; k � k; k � k�;min) be a minimization problem, and let 0 < s(�) < c(�) beadmissible functions of the �rst norm. De�neY = f w : �(w) � s(kwk) gN = f w : �(w) > c(kwk) gGap-�c;s = (Y;N) :The gap of the promise problem is de�ned to be c=s.In this way, each of the many optimization problems we consider will give rise to a gap problem.Showing non-approximability via gaps. Hardness of approximation of some optimization prob-lem is shown by reducing NP to Gap-�c;s via a (possibly randomized) Karp reduction. (This is calledproducing \hard gaps.") The following proposition says that we can show � is hard to approximatewithin a factor equal to the gap by showing NP �K Gap-�c;s, and the assumption under which thenon-approximability result holds depends on the type of reduction. It is this proposition that motivatesthe consideration of gap problems.Proposition 2.5 Optimization problem � has no factor c=s approximation algorithm

24 Bellare, Goldreich, SudanUnder this assumption: If this is true:P 6= NP NP �KD Gap-�c;sNP 6= coRP NP �KR Gap-�c;s via a reduction with perfect completenessNP 6� BPP NP �KR Gap-�c;sProof: Let us illustrate by proving the �rst of the three claims under the assumption that the problemis one of maximization. We proceed by contradiction. Given a (polynomial time) algorithm A thatachieves an approximation factor of � = c=s for �, we present a polynomial time algorithm B to decideL, where L is any language in NP. Let T be a (deterministic, Karp) reduction of L to Gap-�c;s. Oninput x our algorithm B computes w = T (x). Next it computes � = s(kwk) � kwk�. Finally, B invokesA on w, outputs 1 (indicating x 2 L) if A(w) � � and 0 otherwise (indicating x 62 L).Since A runs in polynomail-time and the functions s; k � k; k � k� are polynomial time computable (byassumption), the algorithm B runs in polynomial time. We claim that B is always right. To see this,�rst let Y;N be the two parts of the promise problem Gap-�c;s as per De�nition 2.3. Now considertwo cases.First suppose x 2 L. Then w = T (x) 2 Y because T is a correct reduction of L to Gap-�c;s. So�(w) � c(kwk) by De�nition 2.3. But then, starting from De�nition 2.2 and simplifying, we haveA(w) � �(w)c(kwk)=s(kwk) = �(w) � kwk�c(kwk)=s(kwk) � c(kwk) � kwk�c(kwk)=s(kwk) = s(kwk) � kwk� = � :Thus, B will output 1, as desired.Now suppose x 62 L. Then w = T (x) 2 N . So �(w) < s(kwk) by De�nition 2.3. Starting fromDe�nition 2.2 and simplifying, we haveA(w) � �(w) = �(w) � kwk� < s(kwk) � kwk� = � :Thus B will output 0 as desired.The proofs for the other cases are similar (and thus omitted).2.4.2 Some optimization problems we considerA formula is a set of clauses (i.e., or-clauses) over some set of literals. We consider various classesof formulae. In particular, 3-SAT formulae (at most three literals in each clause), E3-SAT formulae(exactly three di�erent literals in each clause) and 2-SAT formulae (at most two literals in eachclause). We use the generic notation X-SAT to stand for some speci�ed class of formulae; thus theabove correspond to X 2 f3;E3; 2g. To each value of X we associate an optimization problem:Problem: MaxXSATInstance: X-SAT formula 'Solutions: An assignment v which associates to any variable x of ' a boolean value v(x) 2 f0; 1g. (Notnecessarily a satisfying assignment!)Objective Function: The value of an assignment v is the number of clauses in ' that v makes trueNorm: The norm k'k of formula ' is the number of clauses in it, and k'k� is the sameType: MaximizationIn particular we have optimization problems Max2SAT, Max3SAT, MaxE3SAT, and their correspond-ing gap problems.

Free Bits in PCP 25Problem: MaxLinEqInstance: A set of linear equations over GF(2)Solutions: An assignment v which associates to any variable x in the set of equations a value v(x) 2GF(2)Objective Function: The value of an assignment v is the number of equations that v satis�esNorm: Both norms are set to the number of equations in the instanceType: MaximizationProblem: MaxCUTInstance: G;w, where G = (V;E) is a graph and w: E ! R+ is a weight functionSolutions: A cut S; S in G, meaning a partition V = S [S of V into disjoint setsObjective Function: The value of a cut is its weight w(S; S), the sum of the weights of the edges withone endpoint in S and the other in S.Norm: kG;wk = jV j and kG;wk� =Pe2E w(e)Type: MaximizationProblem: MinVCInstance: Graph G = (V;E)Solutions: A vertex cover in G, meaning a set V 0 � V such that V 0 \ fu; vg 6= ; for every fu; vg 2 E.Objective Function: The value of vertex cover V 0 is it size, meaning the number of vertices in itNorm: kGk = kGk� = jV j is the number of vertices in the graphType: MinimizationSimilarly for any integer B we can de�ne MinVC-B, the version of MinVC in which the instance is agraph of degree B.Problem: MaxCliqueInstance: Graph G = (V;E)Solutions: A clique in G, meaning a set C � V such that fu; vg 2 E for every pair u; v of distinctvertices in CObjective Function: The value of clique C is its size, meaning the number of vertices in itNorm: kGk = kGk� = jV j is the number of vertices in the graphType: MaximizationProblem: ChromNumInstance: Graph G = (V;E)Solutions: A coloring of G, meaning a map c: V ! f1; : : : ; kg, for some k, such that c(u) 6= c(v) forany fu; vg 2 EObjective Function: The value of c is the number k of colors it usesNorm: kGk = kGk� = jV j is the number of vertices in the graphType: MinimizationAs per our general notation, �(w) is the optimum for instance w of optimization problem �. Giventhe above, this means, for example, that MaxClique(G) is the maximum clique size in graph G;ChromNum(G) is the chromatic number of G; MinVC(G) is the minimum vertex cover size of G; etc.The corresponding normalized versions get bars overhead. We will use these notations in what follows.By the above, MaxXSAT(') is the maximum number of simultaneously satis�able clauses in '. Weabuse notation slightly by dropping the \X", writing just MaxSAT('). Similarly for the normalizedversion.

26 Bellare, Goldreich, SudanDue to Assuming Factor Technique[ALMSS] P 6= NP some constant NP � PCP1;1=2[log; O(1)]; Reduction of this toMax3SAT.[BGLR] eP 6= NeP 94=93 Framework; better analyses; uses proof systems of[LaSh, FeLo].[BGLR] P 6= NP 113=112 New four-prover proof systems.[FeKi1] P 6= NP 94=93 New two-prover proof systems.[BeSu] eP 6= NeP 66=65 Canonicity and some optimizations.[BeSu] P 6= NP 73=72 Canonicity and some optimizations.This paper P 6= NP 27=26 Long code and new proof systems.Figure 6: Non-approximability results for Max3SAT indicating the factor shown hard and the assump-tion under which this was done.2.4.3 History of approximability results for these problemsSatisfiability problems. Max3SAT is the canonical Max-SNP complete problem [PaYa]. Apolynomial-time algorithm due to Yannakakis [Yan] approximates it to within a factor of 4=3 < 1:334(see Goemans and Williamson [GoWi1] for an alternate algorithm). Currently the best knownpolynomial-time algorithm for Max3SAT achieves a factor of 1:258 (and is due to Trevisan et. al. [TSSW]which in turn build on Goemans and Williamson [GoWi2]). For MaxE3SAT, which is also Max-SNPcomplete, a very simple algorithm achieves an approximation of 8=7 � 1:143 (where 7=8 is the expectedfraction of clauses satis�ed by a uniformly chosen assignment).Max2SAT is also Max-SNP complete [GJS, PaYa]. This problem is particularly interesting becauseit has been the focus of recent improvements in the approximation factor attainable in polynomial-time. Speci�cally, Goemans and Williamson [GoWi2] exhibited a polynomial time algorithm achievingan approximation factor of 10:878 � 1:139, and subsequently Feige and Goemans [FeGo] exhibited analgorithm achieving 10:931 � 1:074.Non-approximability results for Max-SNP problems begin with [ALMSS] who proved that thereexists a constant � > 0 such that Gap-3SAT1;1�� is NP-hard. They did this by providing a reductionfrom a given NP language L to the promise problem in question, constructed by encoding as a 3-SATinstance the computation of a PCP1;1=2[log; O(1)] veri�er for an NP-complete language, the variablesin the instance corresponding to bits in the proof string. The basic paradigm of their reduction hasbeen maintained in later improvements.Figure 6 depicts the progress. Improvements (in the constant value of the non-approximabilityfactor) begin with [BGLR]. They used Hadamard code based inner veri�ers following [ALMSS].They also introduced a framework for better analysis, and improved some previous analyses; weexploit in particular their better analyses of linearity testing (cf. Section 3.5) and of Freivalds's matrixmultiplication test (cf. Lemma 3.16). The improvement of Feige and Kilian [FeKi1] was obtained vianew proof systems; that of [BeSu] by use of the canonicity property of constant prover proofs andsome optimizations. (See Section 2.2.3 for a discussion of the role of constant-prover proofs in thiscontext).Garey, Johnson and Stockmeyer [GJS] had provided, as early as 1976, a reduction of Max3SATto Max2SAT which showed that if the former is non-approximable within (k + 1)=k then the latter

Free Bits in PCP 27is non-approximable within (7k + 1)=(7k). With the best previous non-approximability factor forMax3SAT (namely 66=65) we would only get a 456=455 factor non-approximability for Max2SAT. Infact, even using our new Max3SAT result we would only get only a hardness factor of 185=184. SeeSection 4.2 for our results.Linear equations. The MaxLinEq problem is known to be Max-SNP complete (see [BrNa] or [Pet]).We remark that the problem of maximizing the number of satis�able equations should not beconfused with the \complementary" problem of minimizing the number of violated constraints, inves-tigated by Arora et. al. [ABSS]. Also the case of maximum satis�able linear constraints over larger�elds (of size q) has been considered by Amaldi and Kann [AmKa], who show that this problem ishard to approximate to within a factor of q� for some universal � > 0. See Section 4.2.2 for our results.Max Cut. In 1976, Sahni and Gonzales [SaGo] gave a simple 2-approximation algorithm for thisproblem. Recently, in a breakthrough result, Goemans and Williamson [GoWi2] gave a new algorithmwhich achieves a ratio of 10:878 = 1:139 for this problem. On the other hand, [PaYa] give an approxi-mation preserving reduction from Max3SAT to MaxCUT. Combined with [ALMSS] this shows thatthere exists a constant � > 1 such that approximating MaxCUT within a factor of � is NP-hard. Noexplicit bounds were given since and even using the best known hardness results for MAX 3SAT, onesuspects that the bound for MaxCUT would not be very large, since the reduction uses constructionsof constant degree expanders etc. See Section 4.3 for our results.Vertex cover. There is a simple polynomial time algorithm to approximate MinVC in unweightedgraphs within a factor of 2. The algorithm, due to F. Gavril (cf. [GJ2]), consists of taking all verticeswhich appear in a maximal matching of the graph. For weighted graphs, Bar-Yehuda and Even [BaEv1]and Hochbaum [Hoc], gave algorithms achieving the same approximation factor. The best knownalgorithm today achieves a factor only slightly better, namely 2 � (log log jV j)=(2 log jV j) [BaEv2,MoSp].Evidence to the hardness of approximating MinVC was given by Bar-Yehuda and Moran whoshowed that, for every k � 2 and � > 0, a 1 + 1k � � approximator for (�nding) a minimum vertexcover would yield an algorithm for coloring (k + 1)-colorable graphs using only logarithmically manycolors [BaMo]. The version of MinVC in which one restricts attention to graphs of degree boundedby a constant B, is Max-SNP complete for suitably large B [PaYa]. In particular they provide areduction from Max3SAT. Combined with [ALMSS] this implies the existence of a constant � > 0such that approximating MinVC within a factor of 1 + � is hard unless P = NP. No explicit valueof � has been stated until now. Indeed, the value that could be derived, even using the best existingnon-approximability results for Max3SAT, will be very small, because of the cost of the reduction of[PaYa], which �rst reduces Max3SAT to its bounded version using expanders, and then reduces thisto MinVC-B. See Section 5.2 for our results.Max Clique. The best known polynomial time approximation algorithm for Max Clique achievesa factor of only N1�o(1) [BoHa], scarcely better than the trivial factor of N . There is not even aheuristic algorithm that is conjectured to do better. (The Lov�asz Theta function had been conjecturedto approximate the Max Clique size within pN but this conjecture was disproved by Feige [Fe1].)Prior to 1991, no non-approximability results on Max Clique were known. In 1991 the connection toproofs was made by Feige et. al. [FGLSS]. The FGLSS reduction says that PCP1;e[coins = r; query = q]Karp reduces to Gap-MaxCliquec;s via a reduction running in time poly(2r+q), and with the gap c=sbeing a function of (r; q and) the error e. In applying it one works with PCP classes containing NP. Oneobtains a result saying Max Clique has no polynomial time approximation algorithm achieving a certainfactor, under an assumption about the deterministic time complexity of NP (the time complexitydepends on r; q and the factor on these, but, most importantly, on the error e). In particular, these

28 Bellare, Goldreich, Sudanauthors were able to \scale-down" the proof system of [BFL] to indicate strong non-approximabilityfactors of 2log1�� N for all � > 0, assuming NP is not in quasi-polynomial deterministic time. They alsoinitiated work on improving the factors and assumptions via better proof systems. The best result intheir paper is indicated in Figure 7.Arora and Safra [ArSa] reduced the randomness complexity of a PCP veri�er for NP to logarithmic| they showed NP = PCP1;1=2[coins = log; query = plogN]. On the other hand, it is easy to see thatthat random bits can be recycled for error-reduction via the standard techniques of [AKS, CW, ImZu].The consequence was the �rst NP-hardness result for Max Clique approximation. The correspondingfactor was 2plogN .Arora et. al. [ALMSS] showed that NP = PCP1;1=2[coins = log ; query = O(1)], which implied thatthere exists an � > 0 for which approximating Max Clique within N � was NP-complete. The numberof queries was unspeci�ed, but indicated to be � 104, so � � 10�4. Later work has focused on reducingthe constant value of � in the exponent.In later work a slightly tighter form of the FGLSS reduction due to [BeSc, Zuc] has been used.It says that PCP1;1=2[coins = r ; queryav = qav] reduces, via a randomized Karp reduction, toGap-MaxCliquec;s for some c; s satisfying c(N)=s(N) = N1=(1+qav), and with the running time of thereduction being poly(2r). (We assume qav = O(1) for simplicity.) (We omit factors of N � where � > 0can be arbitrarily small, here and in the following.) Thus the hardness factor was tied to the (average)number of queries required to get soundness error 1=2. Meanwhile the assumption involved the prob-abilistic, rather than deterministic time complexity of NP{ it would be NP 6� coReP if r = polylog(n)and NP 6= coRP if r = log(n).New proof systems of [BGLR] were able to obtain signi�cantly smaller query complexity: theyshowed NP � PCP1;1=2[coins = polylog ; query = 24] and NP � PCP1;1=2[coins = log ; query = 29].This leads to their hardness results shown in Figure 7. However, signi�cantly reducing the (average)number of bits queried seemed hard.However, as observed by Feige and Kilian, the performance of the FGLSS reduction actuallydepends on the free-bit complexity which may be signi�cantly smaller than the query complexity[FeKi1]. Namely, the factor in the above mentioned reduction is N1=(1+f) where f is the free-bitcomplexity. They observed that the proof system of [BGLR] has free-bit complexity 14, yielding aN1=15 hardness of approximation factor.The notion of amortized free-bits was introduced in [BeSu]. They observed that the performanceof the reduction depended in fact on this quantity, and that the factor was N1=(1+ �f) where �f is theamortized free bit complexity. They then showed that NP � FPCP[polylog; 3]. This lead to a N1=4hardness factor assuming NP 6= coReP. See Section 7 for our results.Chromatic Number. The �rst hardness result for the chromatic number is due to Garey and Johnson[GJ1]. They showed that if P 6= NP then there is no polynomial time algorithm that can achieve afactor less than 2. This remained the best result until the connection to proof systems, and the abovementioned results, emerged.Hardness results for the chromatic number were obtained via reduction from Max Clique. A N �factor hardness for Max Clique translates into a N � factor hardness for the Chromatic number2, with� = �(�) a function of �. In all reductions �(�) = minfh(�); h(0:5)g, for some function h. The bigger h,the better the reduction.The �rst reduction, namely that of Lund and Yannakakis [LuYa], obtained h(�) = �=(5 � 4�).Via the Max Clique hardness results of [ArSa, ALMSS] this implies the chromatic number is hard to2Actually all the reductions presented here, make assumptions regarding the structure of the graph and hence do notdirectly yield the hardness results stated here. However, as a consequence of some results from this paper, we are ableto remove the assumptions made by the earlier papers and hence present those results in a simpler form. See Section 8.4for details.

Free Bits in PCP 29Due to Factor Assumption[FGLSS] 2log1�� N for any � > 0 NP 6� eP[ArSa] 2plogN P 6= NP[ALMSS] N � for some � > 0 P 6= NP[BGLR] N1=30 NP 6= coRP[BGLR] N1=25 NP 6� coReP[FeKi1] N1=15 NP 6= coRP[BeSu] N1=6 P 6= NP[BeSu] N1=4 NP 6� coRePThis paper N1=4 P 6= NPThis paper N1=3 NP 6= coRPFigure 7: Some Milestones in the project of proving non-approximability of the Clique number.approximate within N � for some � > 0. But, again, � is very small. Improvements to � were derivedboth by improvements to � and improvements to the function h used by the reduction.A subsequent reduction of Khanna, Linial and Safra [KLS] is simpler but in fact slightly lesse�cient, having h(�) = �=(5 + �). A more e�cient reduction is given by [BeSu] { they present areduction obtaining h(�) = �=(3 � 2�). Our N1=3 hardness for Clique would yield, via this, a N1=7hardness for the chromatic number. But more recently an even more e�cient reduction has becomeavailable, namely that of F�urer [Fu]. This reduction achieves h(�) = �=(2� �), and thereby we get ourN1=5 hardness.Following the appearance of our results, Feige and Kilian [FeKi2] have introduced a new approachto showing hardness of approximability of ChromNum. See discussion in Section 1.5.Randomized and de-randomized error reduction. As mentioned above, randomized and de-randomized error reduction techniques play an important role in obtaining the best Clique hardnessresults via the FGLSS method. Typically, one �rst reduces the error so that its logarithm relates tothe query (or free-bit) complexity and so that the initial randomness cost can be ignored (as long asit were logarithmic). (Otherwise, one would have needed to construct proof systems which minimizealso this parameter; i.e., the constant factor in the logarithmic randomness complexity.)The randomized error reduction method originates in the work of Berman and Schnitger [BeSc]were it is applied to the Clique Gap promise problem. An alternative description is given by Zuckerman[Zuc]. Another alternative description, carried out in the proof system, is presented in Section 11.The de-randomized error reduction method consists of applying general, de-randomized, error-reduction techniques to the proof system setting.3 The best method knows as the \Expander Walk"technique is due to Ajtai, Komlos and Szemeredi [AKS] (see also [CW, ImZu]). It is easy to see thatthis applies in the pcp context. (The usage of these methods in the pcp context begins with [ArSa].)It turns out that the (constant) parameters of the expander, speci�cally the ratio � def= log2 dlog2 � , where d isthe degree of the expander and � is the second eigenvalue (of its adjacency matrix), play an important3 An alternative approach, applicable to the Gap-Clique problem and presented in [AFWZ], is to \de-randomize" thegraph product construction of [BeSc].

30 Bellare, Goldreich, Sudanrole here. In particular, � � 1 determines how much we lose with respect to the randomized errorreduction (e.g., NP 2 FPCP[log; f] translates to a hardness factor of N 11+f under NP 6� BPP and toa hardness factor of N 1�+f under NP 6= P). Thus the Ramanujan Expander of Lubotzky, Phillips andSarnak [LPS] play an important role yielding � � 2 (cf. Proposition 11.4), which is the best possible.

31Part INew proof systems and non-approximabilityresults3 The Long Code and its machinery3.1 New PCPs and Hardness Results { Overview and guidemapThe starting point for all our proof systems is a two-prover proof system achieving arbitrarily smallbut �xed constant error with logarithmic randomness and constant answer size, as provided by Raz[Raz]. This proof system has the property that the answer of the second prover is supposed to be apredetermined function of the answer of the �rst prover. Thus, veri�cation in it amounts to checkingthat the �rst answer satis�es some predicate and that the second answer equals the value obtainedfrom the �rst answer. Following the \proof composition" paradigm of Arora and Safra [ArSa], theproof string provided to the PCP veri�er will consist of \encodings" of the answers of the two proversunder a suitable code. The PCP veri�er will then check these encodings. As usual, we will check boththat these encodings are valid and that they correspond to answers which would have been acceptedby the original veri�er.Our main technical contribution is a new code, called the long code, and means to check it. Thelong code of an n-bit information word a is the sequence of 22n bits consisting of the values of allpossible boolean functions at a. The long code is certainly a disaster in terms of coding e�ciency, butit has big advantages in the context of proof veri�cation, arising from the fact that it carries enormousamounts of data about a. The di�culty will be to check that a prover claiming to write the long codeof some string a is really doing so.The long code is described in Section 3.3. In Section 3.5 we provide what we call the \atomic"tests for this code. These tests and their analysis are instrumental to all that follows. Section 3.4 isalso instrumental to all that follows. This section sets up the framework for recursive proof checkingwhich is used in all the later proof systems.The atomic tests are exploited in Section 4.1, to construct a veri�er that queries the proof at3 locations and performs one of two simple checks on the answers obtained. These simple checksare implemented by gadgets of the MaxSNP problem at hand, yielding the non-approximability re-sults. Section 4.2 presents gadgets which are CNF formulae of the corresponding type and Section 4.3presents Max-CUT gadgets. The non-approximability results for Max3SAT, MaxE3SAT, Max2SATand MaxCUT follow. The veri�er of Section 4.1 bene�ts from another novel idea which is referred toas folding (see Section 3.3). Folding contributes to the improved results for Max3SAT, MaxE3SAT,Max2SAT and Max-CUT, but not to the results regarding Max Clique (and Chromatic Number).A reasonable non-approximability result for MinVC (Minimum Vertex Cover) can be obtained bythe above methodology, but a better result is obtained by constructing a di�erent veri�er, for NPlanguages, that uses exactly two free-bits. This veri�er is then used to create a reduction of NP toMinVC via the FGLSS reduction and the standard Karp reduction. This approach is presented inSection 5 where we try to minimizing the soundness error attainable using exactly two free-bits.In Section 6 we minimize the number of bits queried in a PCP to attain soundness error 1=2 { theresult is not of direct applicability, but it is intriguing to know how low this number can go.We then turn to Max Clique (and Chromatic Number). In Section 7.1 we provide the \iterated"tests. (Here the atomic tests are invoked (sequentially) many times. These invocations are notindependent of each other.) This leads to a proof system in which the number of amortized free-bits used is two. We then draw the implications for Max Clique (and Chromatic Number). A reader

32interested only in the (amortized) free-bit and Max Clique results can proceed directly from Section 3.5to and Section 7.The improvement in the complexities of the proof systems is the main source of our improvednon-approximability results. In addition we also use (for the Max-SAT and Max-CUT problems) arecent improvement in the analysis of linearity testing [BCHKS], and introduce (problem speci�c)gadgets which represent the various tests of the resulting PCP system.3.2 Preliminaries to the Long CodeHere � = f0; 1g will be identi�ed with the �nite �eld of two elements, the �eld operations beingaddition and multiplication modulo two. If X and Y are sets, then Map(X; Y) denotes the set of allmaps of X to Y . For any m we regard �m as a vector space over �, so that strings and vectors areidenti�ed.If a 2 �m then a(i) denotes its i-th bit. Similarly, if f is any function with range �m then f (i)denotes the i-th bit of its output.Linearity. Let G;H be groups. A map f : G! H is linear if f(x+ y) = f(x)+ f(y) for all x; y 2 G.Let Lin(G;H) denote the set of all linear maps of G to H .When G = �n and H = �, a function f : G ! H is linear if and only if there exists a 2 �n suchthat f(x) =Pni=1 a(i)x(i) for all x 2 �n.Distance. The distance between functions f1; f2 de�ned over a common �nite domain D isDist(f1; f2) = PrxR D [f1(x) 6= f2(x)] :Functions f1; f2 are �-close if Dist(f1; f2) < �. If f maps a group G to a group H we denote byDist(f;Lin) the minimum, over all g 2 Lin(G;H), of Dist(f; g). (Note the notation does not specifyG;H which will be evident from the context). We are mostly concerned with the case where G is avector space V over � and H being �. Notice that in this case we have Dist(f;Lin) � 1=2 for allf : V ! �.Boolean Functions. Let l be an integer. We let Fl def= Map(�l;�) be the set of all maps of �l to�. We regard Fl as a vector space (of dimension 2l) over �. Addition and multiplication of functionsare de�ned pointwise.We let Lm � Fm be the set Lin(�m;�) of linear functions of �m to �, and let L�m = Lm � f0g bethe non-zero linear functions.Let g 2 Fm and ~f = (f1; : : : ; fm) 2 Fml . Then g � ~f denotes the function in Fl that assigns thevalue g(f1(x); : : : ; fm(x)) to x 2 �l.The Monomial Basis. For each S � [l] we let �S 2 Fl be the monomial corresponding to S, de�nedfor x 2 �l by �S(x) = Q i2S x(i) :The empty monomial, namely �;, is de�ned to be the constant-one function (i.e., �;(x) = �1, for allx 2 �l). The functions f�SgS�[l] form a basis for the vector space Fl which we call the monomialbasis. This means that for each f 2 Fl, there exists a unique vector C(f) = (Cf(S))S�[l] 2 �2l suchthat f = PS�[l] Cf(S) � �S : (5)The expression on the right hand side of Equation (5) is called the monomial series for f , and themembers of C(f) are called the coe�cients of f with respect to the monomial basis. We note thatC: Fl ! �2l is a bijection. (The Monomial Basis is reminisent of the Fourier Basis, but the two areactually di�erent.)

333.3 Evaluation operators, the Long Code, and FoldingEvaluation operators. Let a 2 �l. We de�ne the map Ea: Fl ! � by Ea(f) = f(a) for all f 2 Fl.We say that a map A: Fl ! � is an evaluation operator if there exists some a 2 �l such that A = Ea.We now provide a useful characterization of evaluation operators. First we need a de�nition.De�nition 3.1 (Respecting the monomial basis): A map A: Fl ! � is said to respect the monomialbasis if(1) A(�;) = 1 and(2) 8 S; T � [l] : A(�S) �A(�T) = A(�S[T) :Proposition 3.2 (Characterization of the evaluation operator): A map ~A: Fl ! � is an evaluationoperator if and only if it is linear and respects the monomial basis.Proof: Let a 2 �l. It is easy to see that Ea is linear: Ea(f + g) = (f + g)(a) = f(a)+ g(a) = Ea(f)+Ea(g). It is also easy to see Ea respects the monomial basis. Firstly we have Ea(�;) = �;(a) = 1.Next, for every S; T � [l],Ea(�S) �Ea(�T) = �S(a) � �T (a) = Q i2S a(i) � Q i2T a(i) :However x2 = x for any x 2 � soQ i2S a(i) � Q i2T a(i) = Yi2S[T a(i) = �S[T (a) = Ea(�S[T)Now we turn to the converse. Let ~A: Fl ! � be linear and respect the monomial basis. For i = 1; : : : ; l,let ai def= ~A(�fig), and let a def= a1 : : :al. We claim that ~A = Ea. The proof is as follows. We �rst claimthat 8 S � [l] : ~A(�S) = �S(a) : (6)Since ~A respects the monomial basis we have ~A(�;) = 1 which in turn equals �;(a), proving Eq. (6)for S = ;. To establish Eq. (6) for S = fi1; : : : ; itg 6= ;, we write~A(�S) = ~A ��fi1g[���[fitg� = Q tj=1 ~A(�fijg) = Q tj=1 aij = �S(a) :where the second equality is due to the fact that ~A respects the monomial basis. This establishesEq. (6). Now for any f 2 Fl we can use the linearity of ~A to see that~A(f) = ~A (PS Cf(S) � �S)) = PS Cf(S) � ~A(�S) = PS Cf(S) � �S(a) = f(a) = Ea(f) :Thus ~A = Ea.The Long Code. Intuitively, the encoding of a 2 f0; 1gl (via the long code) is the 22l bit stringwhich in position f 2 Fl stores the bit f(a). The Long Code is thus an extremely \redundant" code,encoding an l-bit string by the values, at a, of all functions in Fl.De�nition 3.3 (Long Code:) The long code E: �l ! Map(Fl;�) is de�ned for any a 2 �l byE(a) = Ea.

34In some natural sense E is the longest possible code: E is the longest code which is not repetitive(i.e., does not have two positions which are identical in all codewords).We let Dist(A;Eval) = mina2�l Dist(A;Ea) be the distance from A to a closest codeword of E.It is convenient to de�ne E�1(A) 2 �l as the lexicographically least a 2 �l such that Dist(A;Ea) =Dist(A;Eval). Notice that if Dist(A;Eval) < 1=4 then there is exactly one a 2 �l such thatDist(A;Ea) = Dist(A;Eval), and so E�1(A) is this a.The long code is certainly a disaster in terms of coding e�ciency, but it has a big advantage inthe context of proof veri�cation. Consider, for example, the so-called \circuit test" (i.e., testing thatthe answer of the �rst prover satis�es some predetermined predicate/circuit). In this context oneneeds to check that the codeword encodes a string which satis�es a predetermined predicate (i.e., thecodeword encodes some w 2 f0; 1gn which satis�es h(w) = 0, for some predetermined predicate h).The point is that the value of this predicate appears explicitly in the codeword itself, and furthermoreit can be easily \self-corrected" by probing the codeword for the values of the functions f and f + h,for a uniformly selected function f : f0; 1gn ! f0; 1g (as all these values appear explicitly in thecodeword). Actually, the process of verifying, via self-correction, that the value under h is zero canbe incorporated into the task of checking the validity of the codeword; this is done by the notionof \(h; 0)-folding" (see below). The fact that we can avoid testing whether the codeword encodes astring which satis�es a given function (or that this testing does not cost us anything) is the key to thecomplexity improvements in our proof systems (over previous proof systems in which a \circuit test"was taking place).Folding. The intuition behind the notion we will now de�ne is like this. When A is the long codeof some string x for which it is known that h(x) = b for some function h and bit b, then half the bitsof A become redundant because they can be computed from the other half, via A(f) = A(f + h)� b.This phenomenon enables us to reduce the proof checking complexity. To capture it we now de�nethe notion of folding.Fix � to be some canonical, polynomial-time computable total order (reexive, antisymmetric,transitive) on the set Fl. Given functions A: Fl ! � and h 2 Fl n f�0g (i.e., h is not the constantfunction �0) and bit b 2 �, the (h; b)-folding of A is the function A(h;b): Fl ! � given byA(h;b)(f) = 8<: A(f) if f � h + fA(f + h)� b otherwise.(Notice that the above is well-de�ned for any h 6= �0.) For sake of technical simplicity (see De�ni-tion 3.9), we de�ne the (�0; 0)-folding of A to be A itself; namely, A(�0;0)(f) = A(f), for every f 2 Fl.As shown below, the (h; b)-folding of a function A is forced to satisfy A(h;b)(f + h) = A(h;b)(f) + b, forevery f 2 Fl (whereas A itself may not necessarily satisfy these equalities). Before proving this, letus generalize the notion of folding to folding over several, speci�cally two, functions h1; h2 2 Fl (andbits b1; b2 2 �).De�nition 3.4 (Folding): Let f; h1; h2 2 Fl. The (h1; h2)-span of f , denoted spanh1 ;h2(f), is de�nedas the set f f + �1h1 + �2h2 : �1; �2 2 � g. Let mincoefh1;h2(f) be the pair (�1; �2) of elements of �for which f + �1h1 + �2h2 is the smallest function (according to �) in spanh1 ;h2(f). Let A: Fl ! �.Assume h1; h2 are distinct and non-zero. Let b1; b2 2 �. The folding of A over (h1; b1) and (h2; b2),denoted A(h1;b1);(h2 ;b2), is de�ned for every f 2 Fl byA(h1 ;b1);(h2 ;b2)(f) = A(f + �1h1 + �2h2)� �1b1 � �2b2 ;where (�1; �2) = mincoefh1;h2(f).

35The de�nition extends naturally to the following two cases. In case (h1; b1) = (h2; b2), folding over thetwo (identical) pairs is de�ned as folding over one pair. In case h1 � �0 and b1 = 0, folding over both(h1; b1) and (h2; b2) is de�ned as folding over (h2; b2). Note that folding over two pairs is invariantunder the order between the pairs; namely, A(h1;b1);(h2;b2) � A(h2;b2);(h1;b1). Finally, observe that afunction A: Fl ! � that is folded over two functions (i.e., over both (h1; b1) and (h2; b2)) is folded overeach of them (i.e., over each (hi; bi)).Proposition 3.5 (Folding forces equalities): Let A: Fl ! �, h1; h2 2 Fl and b1; b2 2 � (with bi = 0in case hi � �0). Then, for every f 2 Fl,A(h1;b1);(h2;b2)(f + h1) = A(h1;b1);(h2;b2)(f) + b1Proof: By de�nition, A(h1;b1);(h2 ;b2)(f) = A(f + �1h1 + �2h2) � �1b1 � �2b2, where the function f +�1h1 + �2h2 is the smallest function in spanh1 ;h2(f). Since spanh1 ;h2(f + h1) � spanh1;h2(f), we haveA(h1 ;b1);(h2 ;b2)(f + h1) = A(f + �1h1 + �2h2)� (�1 � 1)b1 � �2b2. The claim follows.As a corollary to the above (combined with the self-correcting paradigm [BLR]), we getProposition 3.6 (folding and the evaluation operator): Let A: Fl ! �, h 2 Fl, b 2 � and a 2 �l.Suppose that for any f 2 Fl it is the case that A(f + h) = A(f) + b. Then Dist(A;Ea) < 1=2 impliesh(a) = b. Consequently, if Dist(A(h;b);(h0;b0); Ea) < 1=2 then h(a) = b, provided b = 0 if h � �0.Proof: By the hypothesis, we have A(h+f) = A(f)+b, for every f 2 Fl. Suppose that Dist(A;Ea) <1=2. Then, noting that Ea is linear and applying a self-correction process (cf., Corollary 3.14 below),we get Ea(h) = b. Using the de�nition of the Evaluator operator (i.e., Ea(h) = h(a)) we haveh(a) = b. The consequence for A(h;b);(h0;b0) follows since by Proposition 3.5 we have A(h;b);(h0 ;b0)(f+h) =A(h;b);(h0;b0)(f) + b for any f 2 Fl.The veri�ers constructed below make virtual access to \folded" functions rather than to the functionsthemselves. Virtual access to a folding of A is implemented by actual accessing A itself accordingto the de�nition of folding (e.g., say one wants to access A(h;0) at f then one determines whetherf � h + f or not and accesses either A(f) or A(f + h), accordingly). One bene�t of folding in ourcontext is illustrated by Proposition 3.6; in case a (h; b)-folded function is close to a codeword (inthe long code), we infer that the codeword encodes a string a satisfying h(a) = b. We will see thatfolding (the long code) over (h; 0) allows us to get rid of a standard ingredient in proof veri�cation;the so-called \circuit test".In the sequel, we will use folding over the pairs (h; 0) and (�1; 1), where h 2 Fl is an arbitraryfunction (typically not identically zero) and �1 is the constant-one function. Folding over (�1; 1) allowsus to simplify the \codeword" test (w.r.t. the long-code).3.4 Recursive veri�cation of proofsThis section speci�es the basic structure of proof construction, and in particular provides the de�nitionsof the notions of inner and outer veri�ers which will be used throughout. It is useful to understandthese things before proceeding to the tests.Overview. The constructions of e�cient proofs that follow will exploit the notion of recursive veri�erconstruction due to Arora and Safra [ArSa]. We will use just one level of recursion. We �rst de�nea notion of a canonical outer veri�er whose intent is to capture two-prover one-round proof systems[BGKW] having certain special properties; these veri�ers will be our starting point. We then de�ne

36a canonical inner veri�er. Recursion is captured by an appropriate de�nition of a composed veri�erwhose attributes we relate to those of the original veri�ers in Theorem 3.12.The speci�c outer veri�er we will use is one obtained by a recent work of Raz [Raz]. We willconstruct various inner veri�ers based on the long code and the tests in Section 3.5 and Section 7.1.Theorem 3.12 will be used ubiquitously to combine the two.Comparison with previous work. For a history and a better understanding of the role of constant-prover proof systems in this context, see Section 2.4.3. In comparison, our de�nition of outer veri�ers(below) asks for almost the same canonicity properties as in [BeSu]. (The only di�erence is that theyhave required � to be a projection function, whereas we can deal with an arbitrary function. Butwe don't take advantage of this fact.) In addition we need answer sizes of log logn as opposed tothe O(logn) of previous methods, for reasons explained below. This means that even the (modi�ed)[LaSh, FeLo] type proofs won't su�ce for us. We could use the three-prover modi�cation of [FeKi1]but the cost would wipe out our gain. Luckily this discussion is moot since we can use the recentresult of Raz [Raz] to provide us with a canonical two-prover proof having logarithmic randomness,constant answer size, and any constant error. This makes an ideal starting point. To simplify thede�nitions below we insisted on constant answer size and two provers from the start.The inner veri�ers used in all previous works are based on the use of the Hadamard code construc-tions of [ALMSS]. (The improvements mentioned above are obtained by checking this same code inmore e�cient ways). We instead use a new code, namely the long code, as the basis of our inner veri-�ers. Note the codewords (in the long code) have length double exponential in the message, explainingour need for log log n answer sizes in the outer veri�er. We also incorporate into the de�nitions thenew idea of folding which we will see means we don't need a circuit test (a hint towards this fact isalready present in the de�nition of a good inner veri�er).3.4.1 Outer veri�ersAs mentioned above, outer veri�ers will model certain special kinds of two-prover, one-round proofsystems. We think of the veri�er as provided with a pair of proof oracles �; �1, and allowed one queryto each. The desired properties concern the complexity of the system and a certain behavior in thechecking of the proof, as we now describe.Let r1; s; s1: Z+ ! Z+ and let l and l1 be positive integers. An (l; l1)-canonical outer veri�er Voutertakes as input x 2 �n, and has oracle access to a pair of proofs ��: [s(n)]! �l and ��1: [s1(n)]! �l1 .It does the following.Picks a random string R1 of length r1(n).Computes, as a function of x and R1, queries q 2 [s(n)] and q1 2 [s1(n)], and a (circuit computinga) function �: �l ! �l1 (which is determined by x and R1). Determines, based on x and q, afunction h: �l ! � (and computes an appropriate representation of it).(We stress that h does not depend on R1, only on q and x).Lets a = ��(q) and a1 = ��1(q1).If h(a) 6= 0 then rejects.If �(a) 6= a1 then rejects.Otherwise accepts.We call s; s1 the proof sizes for Vouter and r1 the randomness of Vouter.Recall that by the conventions in Section 2, ACC [V ��;��1outer(x)] denotes the probability, over the choiceof R1, that Vouter accepts, and ACC [Vouter(x)] denotes the maximum of ACC [V ��;��1outer(x)] over all possibleproofs ��; ��1.

37De�nition 3.7 (goodness of outer veri�er): Outer veri�er Vouter is �-good for language L if for all xit is the case that(1) x 2 L implies ACC [Vouter(x)] = 1.(2) x 62 L implies ACC [Vouter(x)] � �.Employing the FRS-method [FRS] to any PCP(log,O(1))-system for NP (e.g., [ALMSS]) one gets acanonical veri�er which is �-good for some � < 1. (Roughly, the method is to take the given pcpsystem, send all queries to one oracle, and, as a check, a random one of them to the other oracle.)Using the Parallel Repetition Theorem of Raz, we obtain our starting point {Lemma 3.8 (Construction of outer veri�ers): Let L 2 NP. Then for every � > 0 there exist positiveintegers l; l1 and c such that there exists an (l; l1)-canonical outer veri�er which is �-good for L anduses randomness r(n) = c log2 n.Actually, Raz's Theorem [Raz] enables one to assert that l; l1 and c are O(log ��1); but we will notneed this fact. Also, the function � determined by this veri�er is always a projection, but we don'tuse this fact either.3.4.2 Inner veri�ersInner veri�ers are designed to e�ciently verify that the encoding of answers, which a (canonical) outerveri�er expects to see, indeed satisfy the checks which this outer veri�er performs. Typically, theinner veri�er performs a combination of a codeword test (i.e., tests that each oracle is indeed a properencoding relative to a �xed code { in our case the Long Code), a projection test (i.e., that the decodingof the second answer corresponds to the value of � applied to the decoding of the �rst), and a \circuittest" (i.e., that the decoding of the �rst answer evaluates to 0 under the function h).Let r2; l; l1 2 Z+. A (l; l1)-canonical inner veri�er Vinner takes as inputs functions �: �l ! �l1and h 2 Fl. (It may also take additional inputs, depending on the context). It has oracle access to apair of functions A: Fl ! � and A1: Fl1 ! �, and uses r2 random bits. The parameters �1; �2 > 0 inthe following should be thought as extremely small: in our constructions, they are essentially 0 (seecomment below).De�nition 3.9 (goodness of inner veri�er): An inner veri�er Vinner is (�; �1; �2)-good if for all �; h asabove{(1) Suppose a 2 �l is such that h(a) = 0. Let a1 = �(a) 2 �l1 . Then ACC [V Ea;Ea1inner (�; h)] = 1.(2) Suppose A;A1 are such that ACC [V A;A1inner (�; h)] � �. Then there exists a 2 �l such that:(2.1) Dist(A(h;0);(�1;1); Ea) < 1=2� �1.(2.2) Dist(A1; E�(a)) < 1=2� �2.We stress that although the inner veri�er has access to the oracle A (and the hypothesis in condition(2) of De�nition 3.9 refers to its computations with oracle A), the conclusion in condition (2.1) refersto A folded over both (h; 0) and (�1; 1), where �1 is the constant-one function. (Typically, but notnecessarily, the veri�er satisfying De�nition 3.9 accesses the virtual oracle A(h;0);(�1;1) by actual accessto A according to the de�nition of folding.) Furthermore, by Proposition 3.6, condition (2.1) impliesthat h(a) = 0. (Thus, there is no need to explicitly require h(a) = 0 in order to make Theorem 3.12work.) We comment that the upper bounds in conditions (2.1) and (2.2) are chosen to be the largestones which still allow us to prove Theorem 3.12 (below). Clearly, the complexity of the inner veri�erdecreases as these bounds increase. This is the reason for setting �1 and �2 to be extremely small.We stress that this optimization is important for the MaxSNP results but not for the Max Cliqueresult. In the latter case, we can use �i's greater than 14 which simpli�es a little the analysis of thecomposition of veri�ers (below).

38Remark 3.10 (a tedious one): The above de�nition allows h to be identically zero (although this casenever occurs in our constructions nor in any other reasonable application). This is the reason that wehad to de�ne folding over (0,0) as well. An alternative approach would have been to require h 6� 0 andassert that this is the case with respect to the outer veri�er of Lemma 3.8.3.4.3 Composition of veri�ersWe now describe the canonical composition of a (canonical) outer veri�er with a (canonical) innerveri�er. Let Vouter be a (l; l1)-canonical outer veri�er with randomness r1 and proof sizes s; s1. LetVinner be a (l; l1)-canonical inner veri�er with randomness r2. Their composed veri�er hVouter; Vinneritakes as input x 2 �n and has oracle access to proofs �: [s(n)] � Fl ! � and �1: [s1(n)]� Fl1 ! �.We ask that it does the following {Picks random strings for both Vouter and Vinner; namely, picks a random string R1 of length r1(n)and a random string R2 of length r2(n).Computes queries q and q1 and functions � and h as Vouter would compute them given x;R1Outputs V A;A1inner (�; h;R2) where A(�) = �(q; �) and A1(�) = �1(q1; �).The randomness complexity of the composed veri�er is r1+r2 whereas its query and free-bit complex-ities equal those of Vinner.We show how the composed veri�er hVouter; Vinneri inherits the goodness of the Vouter and Vinner. Todo so we need the following Lemma. It is the counterpart of a claim in [BGLR, Lemma 3.5] and willbe used in the same way. The lemma is derived from a coding theory bound which is slight extensionof bounds in [McSl, Ch. 7] (see Appendix).Lemma 3.11 Suppose 0 � � � 1=2 and A: Fl ! �. Then there are at most 1=(4�2) codewords thathave distance less than 1=2� � from A. That is,��f a 2 �l : Dist(A;Ea) � 1=2� � g�� � 14�2 :Furthermore, for � > 1=4 the above set contains at most one string.Proof: We know that Ea is linear for any a (cf. Proposition 3.2). So it su�ces to upper bound thesize of the set A = fX 2 Lin(Fl;�) : Dist(A;X)� 1=2� � g :This set has the same size asB = fX � A : X 2 Lin(Fl;�) and Dist(A;X)� 1=2� � g :Let n = 22l and identify Map(Fl;�) with �n in the natural way. Let w(�) denote the Hamming weight.Now note that Z = X �A 2 B implies w(Z)=n = Dist(X;A) � 1=2� �. Furthermore if Z1 = X1 �Aand Z2 = X2 � A are in B then Dist(Z1; Z2) = Dist(X1; X2) and the latter is 1=2 if X1 6= X2, sinceX1; X2 are linear. Thus, B is a set of binary vectors of length n, each of weight at most (0:5� �)n,and any two of distance at least 0:5n apart. Invoking Lemma A.1 (with � = � and � = 0), we upperbound the size of B as desired. Finally, when � > 1=4 the triangle inequality implies that we cannothave a1 6= a2 so that Dist(A;Eai) � 1=2� � < 1=4 for both i = 1; 2.In some applications of the following theorem, �1; �2 > 0 will �rst be chosen to be so small thatthey may e�ectively be thought of as 0. (This is done in order to lower the complexities of the innerveri�ers.) Once the �i's are �xed, � will be chosen to be so much smaller (than the �i's) that �=(16�21�22)may be thought of as e�ectively 0. The latter explains why we are interested in outer veri�ers whichachieve a constant, but arbitrarily small, error �. For completeness we provide a proof, following theideas of [ArSa, ALMSS, BGLR].

39Theorem 3.12 (the composition theorem): Let Vouter be a (l; l1)-canonical outer veri�er. Supposeit is �-good for L. Let Vinner be an (l; l1)-canonical inner veri�er that is (�; �1; �2)-good. Let V =hVouter; Vinneri be the composed veri�er, and let x 2 ��. Then |(1) If x 2 L then ACC [V (x)] = 1(2) If x 62 L then ACC [V (x)] � �+ �16�21�22 .For �1; �2 > 1=4 the upper bound in (2) can be improved to �+ �.(The latter case (i.e., �1; �2 > 1=4) su�ces for the Max Clique results.)Proof: Let n = jxj, and let s; s1 denote the proof sizes of Vouter.Suppose x 2 L. By De�nition 3.7 there exist proofs ��: [s(n)] ! �l and ��1: [s1(n)] ! �l1 such thatACC [V ��;��1outer(x)] = 1. Let �: [s(n)]�Fl ! � be de�ned by �(q; f) = E��(q)(f). (In other words, replacethe l bit string ��(q) with its 22l bit encoding under the long code, and let the new proof provide accessto the bits in this encoding). Similarly let �1: [s1(n)]�Fl1 ! � be de�ned by �1(q1; f1) = E��1(q1)(f1).Now one can check that the item (1) properties in De�nitions 3.7 and 3.9 (of the outer and innerveri�er, respectively) imply that ACC [V �;�1(x)] = 1.Now suppose x 62 L. Let �: [s(n)]�Fl ! � and �1: [s1(n)]�Fl1 ! � be proof strings for V . We willshow that ACC [V �;�1(x)] � �+ �=(16�21�22). Since �; �1 were arbitrary, this will complete the proof.We set N1 = b1=(4�21)c and N2 = b1=(4�22)c (with N1 = 1 if �1 > 1=4 and N2 = 1 if �2 > 1=4). Theidea to show ACC [V �;�1(x)] � �+N1N2 � � is as follows. We will �rst de�ne a collection of N1 proofs��1; : : : ; ��N1 and a collection of N2 proofs ��11; : : : ; ��N21 so that each pair (��i; ��j1) is a pair of oracles forthe outer veri�er. Next we will partition the random strings R1 of the outer veri�er into two categories,depending on the performance of the inner veri�er on the inputs (i.e., the functions �; h and the oraclesA;A1) induced by R1. On the \bad" random strings of the outer veri�er, the inner veri�er will acceptwith probability at most �; on the \good" ones, we will use the soundness of the inner veri�er to inferthat that the outer veri�er accepts under some oracle pair (��i; ��j1), for i 2 [N1] and j 2 [N2]. Thesoundness of the outer veri�er will be used to bound the probability of such acceptances.We now turn to the actual analysis. We de�ne N1 proofs ��1; : : : ; ��N1: [s(n)] ! �l as follows. Fixq 2 [s(n)] and let A = �(q; �). Let Bq = f a 2 �l : Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 g. (Notice thatfor this set to be well-de�ned we use the fact that h is well-de�ned given q.) Note that jBqj � N1by Lemma 3.11. Order the elements of Bq in some canonical way, adding dummy elements to bringthe number to exactly N1, so that they can be written as a1(q); : : : ; aN1(q). Now set ��i(q) = ai(q) fori = 1; : : : ; N1. In a similar fashion we de�ne ��j1(q1) = aj1(q1) for j = 1; : : : ; N2, where each aj1 = aj1(q1)satis�es Dist(�1(q1; �); Eaj1) � 1=2� �2.Let R1 be a random string of Vouter. We say that R1 is good ifACC [V �(q;�);�1(q1;�)inner (�; h)] � � ;where q; q1; �; h are the queries and functions speci�ed by R1. If R1 is not good we say it is bad . Theclaim that follows says that if R1 is good then there is some choice of the above de�ned proofs whichleads the outer veri�er to accept on coins R1.Claim. Suppose R1 is good. Then there is an i 2 [N1] and a j 2 [N2] such that V ��i;��j1outer (x;R1) = 0.Proof. Let q; q1; �; h be the queries and functions speci�ed by R1. Let A = �(q; �) and A1 = �1(q1; �)(be the oracles accessed by the inner veri�er). Since R1 is good we have ACC [V A;A1inner (�; h)] � �.So by Item (2) of De�nition 3.9 there exists a 2 �l such that Dist(A(h;0);(�1;1); Ea) < 1=2 � �1 andDist(A1; E�(a)) < 1=2 � �2. Let a1 = �(a). Since Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 it must be the case

40that a 2 Bq , and hence there exists i 2 [N1] such that a = ��i(q). Similarly Dist(A1; E�(a)) < 1=2� �implies that there is some j 2 [N] such that a1 = ��j1(q1). By Proposition 3.6 we have h(a) = 0, andwe have �(a) = a1 by (the above) de�nition. Now, by de�nition of the (execution of the) canonicalouter veri�er, V ��i;��j1outer (x;R1) = 0 holds. 2By conditioning we have ACC [V �;�1(x)] � � + � where� = PrR1 [R1 is good]� = PrR1;R2 [V �;�1(x;R1R2) = 0 j R1 is bad] :The de�nition of badness implies � � �. On the other hand we can use the Claim to see that� � PrR1 �9i 2 [N1] , j 2 [N2] : V ��i;��j1outer (x;R1) = 0�� PN1i=1PN2j=1PrR1 �V ��i;��j1outer (x;R1) = 0�� N1N2 � � ;the last by the soundness of Vouter (i.e., Item (2) of De�nition 3.7). Using the bound on N1 and N2,the proof is concluded.3.5 The atomic testsMotivation. Our constructions of proofs systems will use the outer veri�er of Lemma 3.8, com-posed via Theorem 3.12 with inner veri�ers to be constructed. The brunt of our constructions is theconstruction of appropriate inner veri�ers. The inner veri�er will have oracle access to a functionA: Fl ! � and a function A1: Fl1 ! �. In all our applications, A is supposed to be a folding of anencoding of the answer a of the �rst prover (in a two-prover proof system) and A1 is supposed to bethe encoding of the answer a1 of the second prover. The veri�er will perform various tests to determinewhether these claims are true. The design of these tests is the subject of this subsection.The atomic tests we provide here will be used directly in the proof systems for showing non-approximability of Max3SAT, Max2SAT and MaxCUT. Furthermore, they are also the basis ofiterated tests which will lead to proof systems of amortized free-bit complexity � 2, which in turn areused for the Max Clique and Chromatic Number results. We remark that for the applications to theabove-mentioned MaxSNP problems it is important to have the best possible analysis of our atomictests, and what follows strives to this end. We stress that the exposition and analysis of these tests,in this subsection, is independent of the usage of the codes in our proof systems.Testing for a codeword. The �rst task that concerns us is to design a test which, with highprobability, passes if and only if A is close to an evaluation operator (i.e., a valid codeword). Theidea is to exploit the characterization of Proposition 3.2. Thus we will perform (on A) a linearity test,and then a \Respect of Monomial Basis" test. Linearity testing is well understood, and we will usethe test of [BLR], with the analyses of [BLR, BGLR, BCHKS]. The main novelty is the Respect ofMonomial Basis Test.Circuit and projection. Having established that A is close to some evaluation operator Ea, wenow want to test two things. The �rst is that h(a) = 0 for some predetermined function h. This testwhich would normally be implemented by \self-correction" (i.e., evaluating h(a) by uniformly selecting

41The Atomic Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested.The tests also take additional inputs or parameters: below f; f1; f2; f3 2 Fl; g 2 Fml1 ; and�: �l ! �l1 .LinTest(A; f1; f2) (Linearity Test)If A(f1) +A(f2) = A(f1 + f2) then output 0 else output 1.MBTest(A; f1; f2; f3) (Respecting-Monomial-Basis Test)If A(f1) = 0 then check if A(f1 � f2 + f3) = A(f3)Otherwise (i.e. A(f1) = 1) then check if A(f1 � f2 + f2 + f3) = A(f3)Output 0 if the relevant check succeeded, else output 1.ProjTest�(A;A1; f; g) (Projection Test)If A1(g) = A(g � � + f)�A(f) then output 0, else output 1.The Passing Probabilities. These are the probabilities we are interested in:LinPass(A) = Prf1;f2 R Fl [LinTest(A; f1; f2) = 0]MBPass(A) = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 0]ProjPass�(A;A1) = Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 0]Figure 8: The atomic tests and their passing probabilities.f 2 Fl and computing A(f + h) � A(f)) is not needed here, since in our applications we will use an(h; 0)-folding of A instead of A. Thus, it is left to test that the two oracles are consistent in the sensethat A1 is not too far from an evaluation operator which corresponds to �(a) for some predeterminedfunction �.Self-correction. The following self-correction lemma is due to [BLR] and will be used throughout.Lemma 3.13 (Self Correction Lemma [BLR]): Let A; ~A: Fl ! � with ~A linear, and let x = Dist(A; ~A).Then for every g 2 Fl: Prf R Fl hA(f + g)� A(f) = ~A(g)i � 1� 2x :Proof: Prf R Fl hA(f + g)�A(f) = ~A(g)i� Prf R Fl hA(f + g) = ~A(f + g) and A(f) = ~A(f)i� 1� �Prf R Fl hA(f + g) 6= ~A(f + g)i+ Prf R Fl hA(f) 6= ~A(f)i� :However each of the probabilities in the last expression is bounded above by x.

42Corollary 3.14 Let A; ~A: Fl ! � with ~A linear, and suppose x def= Dist(A; ~A) < 1=2. Suppose alsothat A(f + h) = A(f) + �, for some �xed h 2 Fl, � 2 � and every f 2 Fl. Then ~A(h) = �.Proof: By the hypothesis, we have A(f + h)� A(f) = � for all functions f . Thus, we can writePrf R Fl hA(f + h)�A(f) = ~A(h)i = Prf R Fl h� = ~A(h)i :But the right hand side (and hence the left) is either 0 or 1 (as both h and � are �xed). However, byLemma 3.13 the left hand side is bounded below by 1� 2x > 0 and so the corollary follows.Convention. All our tests output a bit, with 0 standing for accept and 1 for reject.3.5.1 Atomic linearity testThe atomic linearity test shown in Figure 8 is the one of Blum, Luby and Rubinfeld [BLR]. We wantto lower bound the probability 1� LinPass(A) that the test rejects when its inputs f1; f2 are chosenat random, as a function of x = Dist(A;Lin). The following lemma, due to Bellare et. al. [BCHKS],gives the best known lower bound today.Lemma 3.15 [BCHKS] Let A: Fl ! � and let x = Dist(A;Lin). Then 1 � LinPass(A) � �lin(x),where the function �lin: [0; 1=2]! [0; 1] is de�ned as follows:�lin(x) def= 8>>><>>>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:The above lower bound is composed of three di�erent bounds with \phase transitions" at x = 516 andx = 45128 . It was shown in [BCHKS] (see below) that this combined lower bound is close to the bestone possible.Perspective. The general problem of linearity testing as introduced and studied by Blum et. al. [BLR]is stated as follows: Given a function A: G! H , where G;H are groups, obtain a lower bound on rAas a function of xA, where rA = Pra;bR G [A(a) +A(b) 6= A(a+ b)]xA = Dist(A;Lin) :Blum et. al. showed that rA � 29xA, for every A. Their analysis was used in the proof system andMax3SAT non-approximability result of [ALMSS]. Interest in the tightness of the analysis began with[BGLR], with the motivation of improving the Max3SAT non-approximability results. They showedthat rA � 3xA� 6x2A, for every A. This establishes the �rst segment of the lower bound quoted above(i.e., of the function �lin). Also, it is possible to use [BLR] to show that rA � 2=9 when xA � 1=4.Putting these together implies a two segment lower bound with phase transition at the largest root ofthe equation 3x� 6x2 = 29 (i.e., at 14 + p3336). This lower bound was used in the Max3SAT analyses of[BGLR] and [BeSu].However, for our applications (i.e., linearity testing over Fl as in Lemma 3.15), the case of interestis when the underlying groups are G = GF(2)n and H = GF(2) (since Fl may be identi�ed withGF(2)n for n = 2l). The work of [BCHKS] focused on this case and improved the bound on rAfor the case xA � 14 where A: GF(2)n ! GF(2). Speci�cally, they showed that rA � 45=128 for

43xA � 14 which establishes the second segment of �lin . They also showed that rA � xA, for everyA: GF(2)n ! GF(2). Combining the three lower bounds, they have derived the three-segment lowerbound stated in Lemma 3.15.The optimality of the above analysis has been demonstrated as well in [BCHKS]. Essentially4, forevery x � 5=16 there are functions A: GF(2)n ! GF(2) witnessing rA = �lin(xA) with xA = x. Forthe interval (516 ; 12], no tight results are known. Instead, [BCHKS] reports of computer constructedexamples of functions A: GF(2)n ! GF(2) with xA in every interval [k100 ; k+1100], for k = 32; 33; :::; 49,and rA < �lin(xA) + 120 . Furthermore, they showed that there exist such functions with both xA andrA arbitrarily close to 12 .3.5.2 Monomial basis testHaving determined that A is close to linear, the atomic respect of monomial basis test makes sure thatthe linear function close to A respects the monomial basis. Let us denote the latter function (i.e., thelinear function closest to A) by ~A. Recalling De�nition 3.1 we need to establish two things: namely,that ~A(�;) = 1 and that ~A(�S) � ~A(�T) = ~A(�S[T), for every S; T � [l]. Recall that we do not haveaccess to ~A but rather to A; still, the Self-Correction Lemma provides an obvious avenue to bypassthe di�culty provided Dist(A; ~A) < 1=4. This would have yielded a solution but quite a wasteful one(though su�cient for the Max Clique and Chromatic Number results). Instead, we adopt the followingmore e�cient procedure.Firstly, by considering only oracles folded over (�1; 1), we need not check that ~A(�;) = 1. (Thisfollows by combining Corollary 3.14 and the fact that the (�1; 1)-folded oracle A satis�es A(f + �1) =A(f) + 1, for all f 2 Fl.) Secondly, we test that ~A(�S) � ~A(�T) = ~A(�S[T), for every S; T � [l],by taking random linear combinations of the S's and T 's to be tested. Such linear combinations arenothing but uniformly selected functions in Fl. Namely, we wish to test ~A(f) � ~A(g) = ~A(f � g), wheref and g are uniformly selected in Fl. Since A is close to ~A, we can inspect A(f) (resp., A(g)) ratherthan ~A(f) (resp., ~A(g)) with little harm. However, f � g is not uniformly distributed (when f and gare uniformly selected in Fl) and thus Self-Correction will be applied here. The resulting test isA(f1) �A(f2) = A(f1 � f2 + f3)� A(f3) (7)This test was analyzed in a previous version of this work [BGS2]; speci�cally, this test was shown toreject a folded oracle A, with ~A (the linear function closest to A) which does not respect the monomialbasis, with probability at least (1 � 2x) � (38 � x + x22) = 38 � 74x + 52x2 � x3, where x = Dist(A; ~A).Here we present an adaptive version of the above test, which performs even better. We observe that ifA(f1) = 0 then there is no need to fetch A(f2) (since the l.h.s. of Eq. (7) is zero regardless of A(f2)).Thus, we merely test whether A(f1 � f2 + f3) � A(f3) = 0. But what should be done if A(f1) = 1?In this case we may replace f1 by f1 + �1 (yielding A(f1 + �1) = A(f1) + 1 = 0) and test whetherA((f1 + �1) � f2 + f3)� A(f3) = 0. The resulting test is depicted in Figure 8.A technical lemma. First we recall the following lemma of [BGLR] which provides an improvedanalysis of Freivalds's matrix multiplication test in the special case when the matrices are symmetricwith common diagonal.Lemma 3.16 (symmetric matrix multiplication test [BGLR]): Let M1;M2 be N -by-N symmetricmatrices over � which agree on their diagonals. Suppose that M1 6=M2. ThenPrx;y R �N [xM1y 6= xM2y] � 38 :4Actually, the statement holds only for x's which are integral multiple of 2�n

44Furthermore, Prx R �N [xM1 6= xM2] � 3=4 .Proof: Let M def= M1 �M2. The probability that a uniformly selected combination of the rows ofM yields an all-zero vector is 2�r, where r is the rank of M . Since M is symmetric, not identicallyzero and has a zero diagonal, it must have rank at least 2. Thus, Prx R �N [xM 6= 0N] � 3=4 and thelemma follows.RMB detectors. Suppose that A is actually linear. In that case, the following lemma provides acondition under which A respects the monomial basis. We start with a de�nition.De�nition 3.17 (RMB detector): Let A: Fl ! � and f 2 Fl. We say that f is a detector for A ifPrg R Fl [A(f 0 � g) 6= 0] � 1=2 :where f 0 = f if A(f) = 0 and f 0 = f + �1 otherwise.The number of detectors is clearly related to the rejection probability of the RMB test. Suppose thatA (or rather ~A) is linear. Clearly, if A respects the monomial basis then it has no detectors. On theother hand, the following lemma asserts that if A does not respect the monomial basis then it hasmany detectors.Lemma 3.18 (RMB test for linear functions): Suppose ~A: Fl ! � is linear, ~A(�;) = 1 and ~A doesnot respect the monomial basis. Then at least a 3=4 fraction of the functions in Fl are detectors for~A.Proof: Let N = 2l. We de�ne a pair of N -by-N matrices whose rows and columns are indexed by thesubsets of [l]. Speci�cally, for S; T � [l], we setM1[S; T] = ~A(�S) � ~A(�T)M2[S; T] = ~A(�S[T) :Clearly, both M1 and M2 are symmetric, and they agree on the diagonal. Using ~A(�;) = 1 we have,for every T � [l], M1[;; T] = ~A(�;) � ~A(�T) = 1 � ~A(�T) =M2[;; T] (8)By the hypothesis that ~A does not respects the monomial basis it follows that M1 6=M2. Our aim isto relate the inequality of the above matrices to the existence of detectors for ~A. We �rst express thecondition ~A(fg) = ~A(f) � ~A(g) in terms of these matrices.Recall that C:Fl ! �2l is the transformation which to any f 2 Fl associates the vector (Cf(S))S�[l]whose entries are the coe�cients of f in its monomial series. Using the linearity of ~A we note that~A(f) � ~A(g) = ~A (PS Cf(S) � �S) � ~A (PT Cg(T) � �T)= hPS Cf(S) � ~A(�S)i � hPT Cg(T) � ~A(�T)i= PS;T Cf(S) � ~A(�S) � ~A(�T) � Cg(T)= C(f)M1C(g) :For the next step we �rst need the following.Fact. Let f; g 2 Fl and U � [l]. Then Cfg(U) =PS[T=U Cf(S) �Cg(T).

45Using this fact (and the linearity of ~A) we have:~A(fg) = ~A (PU Cfg(U) � �U)= PU Cfg(U) � ~A(�U)= PU PS[T=U Cf(S) � Cg(T) � ~A(�U)= PS;T Cf(S) � Cg(T) � ~A(�S[T)= C(f)M2C(g) :Since ~A is linear and ~A(�1) = 1 (as �1 = �;), we can rephrase the condition A(f 0 � g) 6= 0, where f 0 = fif ~A(f) = 0 and f 0 = f + �1 otherwise, as A(f 0 � g) 6= A(f 0) � A(g). Thus, for every f (setting f 0 asabove), we conclude thatA(f 0 � g) 6= A(f 0) �A(g) if and only if C(f 0)M2C(g) 6= C(f 0)M1C(g) :A key observation is that C(f) and C(f 0) are identical in all entries except, possibly, for the entrycorresponding to ; (i.e., Cf (S) = Cf 0(S) for all S 6= ;). On the other hand, by Eq. (8), we haveM1[;; �] =M2[;; �]. Thus,A(f 0 � g) 6= A(f 0) �A(g) if and only if C(f)M2C(g) 6= C(f)M1C(g) :Now we note that C is a bijection, so that if h is uniformly distributed in Fl then C(h) is uniformlydistributed in �2l. Fixing any f 2 Fl and setting f 0 as above, we have, for x = C(f),Prg R Fl h ~A(f 0) � ~A(g) = ~A(f 0g)i = Prg R Fl [C(f)M1C(g) = C(f)M2C(g)]= Pry R �2l [xM1y = xM2y] :The latter probability is 1=2 if xM1 6= xM2 and zero otherwise. Invoking Lemma 3.16 we concludethat the �rst case, which coincides with f being a detector for ~A, holds for at least 3=4 fraction of thef 2 Fl. The lemma follows.Lemma 3.18 suggests that if we knew A was linear we could test that it respects the monomial basisby picking f; g at random and testing whether A(f 0g) = 0, where f 0 = f if A(f) = 0 and f 0 = f + �1otherwise. The lemma asserts that in case A is linear and does not respect the monomial basis we willhave Prf;g R Fl [A(f 0g) 6= 0] � 34 � 12where 3=4 is a lower bound on the probability that f is a detector for A and Prg R Fl [A(f 0g) 6= 0] � 12for any detector f (by de�nition). However, we only know that A is close to linear. Still we canperform an approximation of the above test via self-correction of the value A(f 0g). This, indeed, isour test as indicated in Figure 8.The RMB test. We are interested in lower bounding the probability 1�MBPass(A) that the testrejects when f1; f2; f3 are chosen at random, as a function of the distance of A to a linear function ~A,given that ~A does not respect the monomial basis. We assume that A satis�es A(f + �1) = A(f) + 1(for all f 2 Fl), as is the case in all our applications (since we use veri�ers which access a (�1; 1)-foldedfunction). The �rst item of the following lemma is in spirit of previous analysis of analogous tests.The second item is somewhat unusual and will be used only in our construction of veri�ers of free-bitcomplexity 2 (cf., Section 5).

46Lemma 3.19 (RMB test | �nal analysis): Let A; ~A: Fl ! � be functions such that ~A linear butdoes not respect the monomial basis. Let x = Dist(A; ~A). Suppose that the function A satis�esA(f + �1) = A(f) + 1, for all f 2 Fl. Then1. 1�MBPass(A) � �RMB(x) def= 38 � (1� 2x).2. Prf1 ;f3 R Fl [9f2 2 Fl s.t. MBTest(A; f1; f2; f3) = 1] � 2 � �RMB(x).In particular, the lemma holds for A(h;0);(�1;1), where A: Fl ! � is arbitrary and h 2 Fl. We willconsider the linear function closest to A(h;0);(�1;1), denoted ~A, and the case in which ~A does notrespect the monomial basis. (In this case Dist(A(h;0);(�1;1); ~A)) = Dist(A(h;0);(�1;1);Lin) � 1=2.)Proof: As a preparation to using Lemma 3.18, we �rst show that ~A(�1) = 1. For x < 1=2 this isjusti�ed by Corollary 3.14 (using the hypothesis A(f + �1) = A(f) + 1, 8f 2 Fl). Otherwise (i.e., incase x � 1=2) the claimed lower bound (i.e., 38 � (1� 2x) � 0) holds vacuously.Using Lemma 3.18 and Lemma 3.13 we lower bound the rejection probability of the test as follows:1�MBPass(A) � Prf1 R Fl hf1 is a detector for ~Ai� minf is a ~A-detectornPrf2;f3 R Fl [MBTest(A; f; f2; f3) = 1]o� 34 � minf is a ~A-detectornPrf2;f3 R Fl [A(f 0f2 + f3) 6= A(f3)]o� 34 � minf is a ~A-detectornPrf2;f3 R Fl h0 6= ~A(f 0f2) = A(f 0f2 + f3)�A(f3)io� 34 � 12 � minf 0, g s.t. ~A(f 0g) 6= 0nPrf3 R Fl h ~A(f 0 � g) = A(f 0 � g + f3)� A(f3)io� 38 � (1� 2x)where the second inequality uses Lemma 3.18, the fourth inequality follows by the de�nition of adetector for ~A (by which Prg R Fl h ~A(f 0g) 6= 0i � 1=2), and the last inequality follows by Lemma 3.13.This concludes the proof of Part (1). Part (2) is proven analogously with the exception that we don'tlose a factor of two in the fourth inequality (since here f2 is not selected at random but rather setexistentially).Remark 3.20 An RMB test for arbitrary A's (rather than ones satisfying A(f + �1) = A(f) + 1,8f 2 Fl) can be derived by augmenting the above test with a test of A(f +�1) = A(f)+1 for uniformlychosen f 2 Fl. The analysis of the augmented part is as in the circuit test (below).3.5.3 Atomic projection testThe �nal test checks that the second function A1 is not too far from the evaluation operator Ea1where a1 = �(a) is a function of the string a whose evaluation operator is close to A. Here, unlikeprevious works (for instance [BeSu]), � may be an arbitrary mapping from �l to �l1 rather than beinga projection (i.e., satisfying �(x) = x(i1) : : : x(il1) for some sequence 1 � i1 < � � � < il1 � l and allx 2 �l). Thus, the term \projection test" is adopted for merely historical reasons.

47Lemma 3.21 Let A: Fl ! � and let �: �l ! �l1 be a function. Let a 2 �l and let x = Dist(A;Ea).Let a1 = �(a) 2 �l1 . Then 1� ProjPass�(A;A1) � Dist(A1; Ea1) � (1� 2x).Proof: We lower bound the rejection probability as follows:Prf R Fl ; g R Fl1 [A1(g) 6= A(g � � + f)�A(f)]� Prf R Fl ; g R Fl1 [A1(g) 6= Ea(g � �) and A(g � � + f)� A(f) = Ea(g � �)]� Prg R Fl1 [A1(g) 6= Ea(g � �)] � (1� 2x) :Here we used Lemma 3.13 in the last step. Now we note that Ea(g��) = (g��)(a) = g(�(a)) = Ea1(g).Hence the �rst term in the above product is justPrg R Fl1 [A1(g) 6= Ea1(g)] = Dist(A1; Ea1) :This concludes the proof.3.5.4 Atomic circuit testFor sake of elegancy, we present also an atomic Circuit Test, denoted CircTesth(A; f). The testconsists of checking whether A(h + f) = A(f) and it outputs 0 if equality holds and 1 otherwise.Assuming that A is close to some evaluation operator Ea, the atomic circuit test uses self-correction[BLR] to test that a given function h has value 0 at a. As explained above, this test is not needed sinceall our proof systems will use a (h; 0)-folding (of A) and thus will impose h(a) = 0. The analysis lowerbounds the rejection probability, as a function of the distance of A from linear, given that h(a) = 1.Lemma 3.22 Let A: Fl ! � and let a 2 �l. Let h 2 Fl and x = Dist(A;Ea). If h(a) = 1 then1�CircPassh(A) � 1� 2x, whereCircPassh(A) def= Prf R Fl [CircTesth(A; f) = 0]4 A new 3-query PCP and improved MaxSNP hardness results4.1 The MAX SNP veri�erIn this section we present a simple veri�er which performs one of two simple checks, each dependingon only three queries. This veri�er will be the basis for the non-approximability results for severalMaxSNP problems, in particular Max3SAT, Max2SAT and MaxCUT, whence the name.4.1.1 The inner veri�erFigure 9 describes an inner veri�er. Our veri�er is adaptive; that is, some of its queries are determineas a function of answers to previous queries. (The adaptivity is not obvious from Figure 9; it is rather`hidden' in the RMB Test | see Section 3.5.2). Thus, adaptivity is used to improve the performanceof our veri�er and to strengthen the non-approximability results which follow (cf., previous versionsof this paper [BGS2]).The inner veri�er, VSNPinner, takes the usual length parameters l; l1 as well as additional (probabil-ity) parameters p1; p2 and p3 such that p1 + p2 + p3 = 1. It performs just one test: with probabilityp1 the linearity test; with probability p2 the respect of monomial basis test; and with probability p3

48the projection test. Formally, this is achieved by picking p at random and making cases based on itsvalue.5 To improve the results, we perform the tests on a folding of A over both (h; 0) and (�1; 1) (i.e.,on A(h;0);(�1;1)). We stress that A(h;0);(�1;1) is a virtual oracle which is implemented by the veri�er whichaccesses the actual oracle A (on points determined by the de�nition of folding). We now examinethe goodness of VSNPinner. Recall the de�nitions of �lin(x) (speci�cally, note that �lin(x) � x) and�RMB(x) = 38(1� 2x), for all x.Informally, the following lemma considers all the possible strategies of a \dishonest" prover andindicates the probability (denoted 1 � �) with which the veri�er detects an error (when run againstsuch strategies). The three cases correspond to the events that(1) the function A(h;0);(�1;1) may be very far from being linear;(2) the function A(h;0);(�1;1) is x-close to linear, for some x < 12 � �1, but is not x-close to a validcodeword (i.e., to a linear function which respects the monomial basis); and(3) the function A(h;0);(�1;1) is x-close to linear but the encoding of �(E�1(A(h;0);(�1;1))) is very far fromthe function A1.5 For simplicity p is depicted as being chosen as a random real number between 0 and 1. Of course we cannot quitedo this. But we will see later that the values of p1; p2; p3 in our �nal veri�ers are appropriate constants. So in fact anappropriate choice of p can be made using O(1) randomness, which is what we will implicitly assume.The Max-SNP inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er hasaccess to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes three [0; 1] valuedparameters p1; p2 and p3 such that p1 + p2 + p3 = 1.Pick p R [0; 1].Case: p � p1 :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).Case: p1 < p � p1 + p2 :Pick f1; f2; f3 R Fl.MBTest(A(h;0);(�1;1); f1; f2; f3).Case: p1 + p2 < p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 9: The Max-SNP inner veri�er VSNPinner

49Lemma 4.1 (soundness of VSNPinner): Suppose �1; �2 > 0 and l; l1 2 Z+. Suppose p1; p2; p3 2 [0; 1]satisfy p1 + p2 + p3 = 1. Then the (l; l1)-canonical inner veri�er VSNPinner is (�; �1; �2)-good, where1� � = min(T1; T2; T3) and(1) T1 def= p1 � (12 � �1)(2) T2 def= min x�1=2��1 [p1 � �lin(x) + p2 � �RMB(x)](3) T3 def= min x�1=2��1 [p1 � �lin(x) + p3 � (12 � �2)(1� 2x)].Proof: We consider an arbitrary pair of oracles, (A;A1), and the behavior of VSNPinner when givenaccess to this pair of oracles. Our analysis is broken up into cases depending on (A;A1); speci�cally, the�rst case-partition depends on the distance of A(h;0);(�1;1) (i.e., the folding of A) from linear functions.We show that, in each case, either the veri�er rejects with probability bounded below by one of thethree quantities (above) or the oracle pair is such that rejection is not required.Let x = Dist(A(h;0);(�1;1);Lin).Case 1: x � 12 � �1. Lemma 3.15 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) � x � 12 � �1. (Thesecond inequality follows from the fact that �lin(x) � x for all x.) Since VSNPinner performs the atomiclinearity test with probability p1 we have1� ACC [V A;A1SNPinner(�; h)] � p1 � (12 � �1) � 1� � (9)Case 2: x � 12 � �1. Lemma 3.15 implies that 1�LinPass(A(h;0);(�1;1)) � �lin(x) and so the probabilitythat VSNPinner performs the linearity test and rejects is at least p1 � �lin(x). Now let ~A be a linearfunction such that Dist(A(h;0);(�1;1); ~A) = x. We consider the following sub-cases.Case 2.1: ~A does not respect the monomial basis. In this case Part (1) of Lemma 3.19 implies that1�MBPass(A(h;0);(�1;1)) � �RMB(x). So the probability that VSNPinner performs the atomic respect ofmonomial basis test and rejects is at least p2 � �RMB(x). Since the event that the veri�er performs alinearity test and the event that it performs a respect of monomial basis test are mutually exclusive,we can add the probabilities of rejection and thus get1� ACC [V A;A1SNPinner(�; h)] � p1 � �lin(x) + p2 � �RMB(x) � 1� � (10)Case 2.2: ~A respects the monomial basis. By Proposition 3.2, ~A is an evaluation operator. So thereexists a 2 �l such that ~A = Ea. So Dist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into twofurther sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 12 � �2. By Lemma 3.21 we have 1 � ProjPass�(A(h;0);(�1;1); A1) �d � (1� 2x) � (1=2� �2) � (1� 2x). So the probability that VSNPinner performs the projection test andrejects is at least p3 � (1=2� �2)(1� 2x). Thus, adding probabilities as in Case (2.1), we get1� ACC [V A;A1SNPinner(�; h)] � p1 � �lin(x) + p3 � (1=2� �2)(1� 2x) � 1� � (11)Case 2.2.2: Else, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2� �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.9.Observe that the only case which does not yield 1 � ACC [V A;A1PCPinner(�; h)] � 1 � � is Case (2.2.2).However, Case (2.2.2) satis�es conditions (2.1) and (2.2) of De�nition 3.9. Thus, VPCPinner satis�escondition (2) of De�nition 3.9. Clearly, VPCPinner also satis�es condition (1) of De�nition 3.9, and thusthe lemma follows.

50The upper bound on the soundness error of VSNPinner, provided by Lemma 4.1, is somewhat complicatedto grasp. Fortunately, using �RMB(x) = 38(1 � 2x) and �lin(x) � x, for all x � 1=2, we can simplifythe expression as follows.Claim 4.2 Let T1, T2 and T3 be as in Lemma 4.1, � = max(�1; �2) > 0 and p1; p2; p3 2 [0; 1] satisfyp1 + p2 + p3 = 1. Then, T2 � minf12p1; 38p2g, T3 � minf12p1; 12p3g � �, andminfT1; T2; T3g � min�12p1; 38p2; 12p3�� � :Interestingly, this lower bound is tight.Proof: Clearly, T1 = (12 � �1)p1 � 12p1 � �. To analyze T2, let h(x) def= p1 � �lin(x) + p2 � �RMB(x).Fact 1: minx�1=2fh(x)g = minf38p2; 12p1g = minfh(0); h(1=2)g.proof: by considering two cases and using �lin(x) � x and �RMB(x) = 38 � 34x.case 1: p1 � 34p2 h(x) � p1x+ 38p2 � 34p2x = 38p2 + (p1 � 34p2) � x � 38p2case 2: p1 � 34p2 h(x) � p1x+ 38p2 � 34p2x = 12p1 + (34p2 � p1) � (12 � x) � 12p1The fact follows by observing that h(0) = 38p2 and h(1=2) = 12p1. 2Thus, we have T2 = min x�1=2��1 [h(x)] � minf12p1; 38p2g. The term T3 is analyzed similarly, by de�ningg(x) def= p1 � �lin(x) + p3 � (1� 2x)=2, and using the following fact.Fact 2: minx�1=2fg(x)g = minf12p3; 12p1g = minfg(0); g(1=2)g.proof: by considering two cases and using �lin(x) � x.case 1: p1 � p3 g(x) � p1x+ 12p3 � p3x = 12p3 + (p1 � p3) � x � 12p3case 2: p1 � p3 g(x) � p1x+ 12p3 � p3x = 12p1 + (p3 � p1) � (12 � x) � 12p1The fact follows by observing that g(0) = 12p3 and g(1=2) = 12p1. 2Thus, we have T3 � min x�1=2��2 [g(x)]� � � minf12p1; 12p3g � �. The claim follows.4.1.2 Main application: the MaxSNP veri�erWe are now ready to state the main result of this section. It is a simple veri�er for NP which achievessoundness error approaching 85% while performing one of two very simple tests.Proposition 4.3 (The MaxSNP Veri�er): For any > 0 and for any language L 2 NP, there existsa veri�er VSNP for L such that� VSNP uses logarithmic randomness and is perfectly complete;

51� VSNP has soundness error 1720 + ; and� on access to an oracle � (and according to the outcome of the veri�er's coin tosses), the veri�erVSNP performs one of the following actions:(1) Parity check: VSNP determines a bit b, makes three queries q1; q2 and q3, and rejects if�(q1)� �(q2)� �(q3) 6= b.(2) RMB check: VSNP determines two bits b0; b1, makes three out of four predetermined queries,q1; q2; q3 and q4, and rejects if either (�(q1) = 0) ^ (�(q2) � �(q4) 6= b0) or (�(q1) = 1) ^(�(q3)� �(q4) 6= b1).That is, the veri�er inspects �(q1) and consequently checks either �(q2) � �(q4) ?= b0 or�(q3)� �(q4) ?= b1.Furthermore, the probability (over its coin tosses) that VSNP performs a parity check is 35 (andthe probability that VSNP performs a RMB check is 25).Proof: Set �1 = �2 = =2 and � = 2 � (16�21�22) = 52 > 0. Now, let l and l1 be integers such thatthe outer veri�er, Vouter, guaranteed by Lemma 3.8 is (l; l1)-canonical and �-good for L. Consider the(l; l1)-canonical inner veri�er VSNPinner, working with the parameters p1, p2 and p3 set to minimize itserror. Obviously this calls for setting 12p1 = 38p2 = 12p3, which yieldsp1 = 310 ; p2 = 410 ; p3 = 310 (12)Let VSNP be the veri�er obtained by composing Vouter with VSNPinner.We start by analyzing the soundness error of VSNP. By Lemma 4.1 and Claim 4.2, we know that theinner veri�er VSNPinner, with pi's as in Eq. (12), is (�; �1; �2)-good, for� � 1� 12 � p3 + �1= 1� 320 + 12 � Invoking Theorem 3.12, we upper bound the soundness error of VSNP by 1� 320 + 12 � + �16�21�22 whichby the setting of � yields the claimed bound (of 0:85 +).Clearly, VSNP uses logarithmic randomness, has perfect completeness, and its computation on theanswers of the oracles are determined by VSNPinner. It is left to observe that each of the three tests(i.e., Linearity, Monomial-Basis, and Projection), performed by VSNPinner, is either a Parity Check oran RMB Check and that the latter occurs with probability 0:4. First observe that with probabilityp1, VSNPinner performs LinTest(A(h;0);(�1;1); f1; f2), where g1; g2 2 Fl. Recall that query f to A(h;0);(�1;1)translates to a query in the set ff; f + h; f + �1; f + h + �1g answered by A and that the answer ispossibly complemented (by adding 1 mod 2). Thus, the above linearity test translates to checkingthe exclusive-or of three values of A against a predetermined bit b (i.e., this bit is determined by thenumber of times which have shifted a potential query by �1). Similarly, MBTest(A(h;0);(�1;1); f1; f2; f3)translates to an RMB Check with b0, b1 and the ordering of the second/third function is determined bythe folding over �1. Finally, we observe that the projection test, performed by VSNPinner, also amountsto a Parity Check; this time, on answers taken from two di�erent oracles (which can actually be viewedas one oracle).

52Remark 4.4 (A tedious one): The probability that veri�er VSNP, of the above proposition, makestwo identical queries is negligible. Speci�cally, it can be made smaller than (mentioned in theproposition). Thus, we can ignore this case6 in the next two sections and assume, without loss ofgenerality, that all queries are distinct.Implementing the MaxSNP verifier via Gadgets. In the following sections we use the veri�erof Proposition 4.3 to obtain hardness results for various variants of MaxSAT as well as for MaxCUT.The hardness results are obtained by constructing an instance of the problem at hand so that theinstance represent the veri�er's computation on input x. The primary aspect of the reduction is theconstruction of gadgets which reect the result of the veri�er's computation (i.e., accept/reject) afterperforming one of the two types of checks, i.e., parity check or RMB check. We de�ne a performancemeasure of a gadget and then relate the hardness result achieved to the performance measure obtainedby the gadgets in use.7Sources of our improvements. The explicit statement of a generic veri�er for deriving Max SNPhardness results is a novelty of our paper. Thus, a quantitative comparison to previous works is notreadily available. Certainly, we improve over these works thanks to the use of the new LongCode-based inner-veri�er, the atomic tests and their analysis in Section 3.5, the new idea of folding, and theimproved analysis of linearity testing due to [BCHKS].4.1.3 Another application: minimizing soundness error in 3-query pcpAs a direct corollary to Proposition 4.3, we obtainTheorem 4.5 For any s > 0:85, NP � PCP1;s[coins = log ; query = 3 ; free = 2].4.2 Satis�ability problemsIn this section we mainly deal with CNF formulae. However the last subsection deals with formu-lae consisting of a conjunction of parity (rather than or) clauses. Refer to Section 2.4 for de�ni-tions, in particular for what is the problem MaxXSAT and the promise problem Gap-XSAT. Recallthat MaxSAT(()') is the maximum number of simultaneously satis�able clauses in formula ' andMaxSAT(') = MaxSAT(')=k'k be the normalized version, where k'k is the number of clauses informula '. See Section 2.4.3 for description of previous work.A consequence of the following theorem (apply Proposition 2.5) is that, assuming P 6= NP there isno polynomial time algorithm to approximate: (1) Max3SAT within a factor of 1:038; (2) MaxE3SATwithin a factor of 1:038; (3) Max2SAT within a factor of 1:013.Theorem 4.6 (MaxSAT non-approximability results): The following problems are NP-hard{(1) Gap-3SATc;s with c = 1 and s = 26=27.(2) Gap-E3SATc;s with c = 1 and s = 26=27.(3) Gap-2SATc;s for some 0 < s < c < 1 satisfying c > 0:9 and c=s = 74=73.Actually, Items (1) and (2) hold for any s > 1 � 380 whereas Item (3) holds as long as cs < 1 + 3217.Item (1) is implied by Item (2) so we will prove only the latter.6 Formally, suppose that when it occurs the veri�er performs some standard check on �xed di�erent queries. Thismodi�cation increases the soundness error by at most which tends to zero anyhow.7 Given that the performance of the various gadgets might be di�erent for the di�erent checks, one might suspectthat it might have been a better idea to �rst construct the gadgets and then to optimize the soundness of VSNP keepingin mind the relative performance measures of the two kinds of gadgets being employed. Surprisingly enough it turnsout (cf., [BGS2]) that the optimization is not a function of the performance of the gadgets and indeed the choice ofparameters p1; p2 and p3 as in Equation (12) is optimal for the following reductions.

534.2.1 The Hardness of MaxE3SAT and Max2SATGadgets. In the context of MaxSAT problems, we may easily replace a condition of the forma+b+c = 1 by �a+b+c = 0, where �a is the negation of the variable a. Thus, the task of designing gadgetsis simpli�ed, and we need to implement two (simpli�ed) types of checks: the Parity Check (checkingthat a+ b = c for a, b and c obtained from the oracle) and the RMB-Check for a, b0; b1 and c obtainedfrom the oracle). Accordingly a Parity Check (PC) gadget, PC(a; b; c; x1; x2; : : : ; xn), is a set of clausesover three distinguished variables a; b; c and n auxiliary variables x1; : : : ; xn. It is an (�; �)-PC gadget ifthe following is true: If a+b = c then MaxSAT(PC(a; b; c; x1; x2; : : : ; xn)) = �; else it is at most ���.Similarly a Respect-Monomial-Basis Check (RMBC) gadget, RMBC(a; b0; b1; c; x1; : : : ; xn), is a set ofclauses over four distinguished variables a; b0; b1; c and n auxiliary variables x1; : : : ; xn. It is an (�; �)-RMBC gadget if the following is true: If ba = c then MaxSAT(RMBC(a; b0; b1; c; x1; x2; : : : ; xn)) = �;else it is at most � � �. We stress that in both cases the maximum number of clauses which aresimultaneously satis�ed is at most �. A gadget is said to be a X-SAT gadget if, as a formula, it is aX-SAT formula.The following lemma describes how gadgets of the above form can be used to obtain the hardnessof MaxSAT.Lemma 4.7 (MaxSAT implementation of a veri�er): Let V be a veri�er for L of logarithmic ran-domness, with perfect completeness and soundness s, such that V performs either a single ParityCheck (with probability q) or a single RMB check (with probability 1�q). Furthermore, suppose thatin either case, the veri�er never makes two identical queries. If there exists an (�1; �)-Parity-CheckX-SAT gadget containing m1 clauses and an (�2; �)-RMBC X-SAT gadget containing m2 clauses thenL reduces to Gap-XSATc0;s0 for c0 = �1q + �2(1� q)m1q +m2(1� q)s0 = �1q + �2(1� q)� (1� s)�m1q +m2(1� q)In particular c0s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Remark 4.8 In the above lemma, we have assumed that both the PC and RMBC gadgets have thesame second parameter �. This assumption is not really a restriction since we can transform a pairof a (�1; �1)-PC gadget and (�2; �2)-RMBC gadget into a pair of a (�1�2; �1�2)-PC gadget and a(�2�1; �1�2)-RMBC gadget, thereby achieving this feature. (Actually, what really matters are thefractions �i=�.)Proof: Let PC(a; b; c; x1; : : : ; xn1) be the Parity Check gadget and let RMBC(a; b; c; d; x1; : : : ; xn2) bethe RMBC gadget. We encode V 's computation on input x by a CNF formula 'x. Corresponding toevery bit �[q] of the proof (oracle) accessed by the veri�er V we create a variable y[q]. In addition wecreate some auxiliary variables yAux[R; i] for each random string R used by the veri�er V and i goingfrom 1 to max(n1; n2). For each such R we will construct a formula 'R which encodes the computationof the veri�er when its coins are R. The union of all these formulae will be our 'x.On random string R if the veri�er performs a parity check on bits �[q1]; �[q2] and �[q3], then 'R consistsof the clauses PC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : : ; yAux[R; n1]). On the other hand if the veri�er per-forms a RMB check on bits �[q1]; �[q2]; �[q3]; �[q4], then 'R consists of the clauses RMBC(y[q1]; y[q2]; y[q3]; y[q4];yAux[R; 1]; : : : ; yAux[R; n2]).

54Let N denote the number of possible random strings used by V . Observe that the number of clausesin 'x equals m1 � qN +m2 � (1� q)N . We now analyze the value of MaxSAT('x).If x 2 L then there exists an oracle � such that V �(x) always accepts. Consider the assignmenty[q] = �[q] (i.e., y[q] is true i� �[q] = 1). Then for every R, there exists an assignment to thevariables yAux[R; i]'s such that the number of clauses of 'R that are satis�ed by this assignment is�1 if R corresponds to a Parity Check and �2 if R corresponds to a RMB-check. Since qN of thegadgets are PC-gadgets and (1 � q)N of the gadgets are RMBC-gadgets, we have MaxSAT('x) �qN�1 + (1� q)N�2, and the expression for c0 follows.Now consider the case when x 62 L. We prove below that if there exists an assignment which satis�esqN�1 + (1� q)N�2 � (1� s)N� clauses of 'x, then there exists an oracle � such that V �(x) acceptswith probability at least s. Since we know this can not happen we conclude that MaxSAT('x) <qN�1 + (1� q)N�2� (1� s)N� = s0j'xj.To prove the above claim, we convert any assignment to the variables y's into an oracle � in thenatural way, i.e., �[q] = 1 i� y[q] is true. Now by the property of the gadgets if a PC gadgetPC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : :) has more than �1 � � clauses satis�ed then �[q1] � �[q2] = �[q3].In turn this implies that the veri�er V accepts � on random string R. A similar argument can bemade about the random strings R which correspond to RMB checks. We also use the property thata PC (resp., RMB) gadget cannot have more than �1 (resp., �2) satis�ed clauses, even if the claim itchecks does hold. Thus, if an assignment satis�es qN � (�1 � �) + (1� q)N � (�2 � �) + sN� clauses,then there must exist sN random strings R on which V accepts. This proves the claim and the lemmafollows.Figure 10 describes gadgets which will be used for our MaxE3SAT construction: notice they are exact-3-SAT gadgets. We have a (4; 1)-PC gadget, PC3, and a (4; 1)-RMB gadget, RMBC3, each consisting of4 clauses in which all the clauses have exactly three variables. Both gadgets have no auxiliary variables.The PC3(a; b; c) gadget is merely the canonical 3CNF of the expression a + b+ c = 0. The �rst twoclauses in the RMBC3(a; b; b0; c) gadget are the canonical 3CNF of the expression (a = 0)) (b = c),whereas the latter two clauses are the canonical 3CNF of the expression (a = 1)) (b0 = c). Figure 11similarly describes 2-SAT gadgets for our Max2SAT construction. We have a (11; 1)-PC gadget, PC2,and a (11; 1)-RMB gadget, RMBC2, each consisting of 12 clauses. Each gadget has four auxiliaryvariables. The auxiliary variable x�� in the PC2 gadget is supposed to be the indicator of the event((a = �)^ (b = �)). Thus, a+ b = c allows to satisfy 11 clauses by appropriately setting the indicatorvariables (e.g., if a = b = c = 0 then setting x00 = 1 and the other x�� 's to 0 satis�es all clauses exceptthe last one). The RMBC2 gadget is composed of two parts; the �rst six clauses handle the expression(a = 0)) (b = c), whereas the latter six clauses are for the expression (a = 1)) (b0 = c).The Max-E3-SAT Gadgets.PC3(a; b; c) = f(a_ b _ c); (a _ b _ c); (a _ b _ c); (a _ b _ c)gRMBC3(a; b; b0; c) = f(a _ b _ c); (a_ b _ c); (a _ b0 _ c); (a _ b0 _ c); gFigure 10: The MaxE3SAT Gadgets

55Lemma 4.9 (SAT gadgets): The following gadgets existE3-SAT gadgets: a (4; 1)-PC gadget of 4 clauses and a (4; 1)-RMB gadget of 4 clauses.2-SAT gadgets: a (11; 1)-PC gadget of 12 clauses and a (11; 1)-RMB gadget of 12 clauses.Remark 4.10 In previous versions of this work [BGS2], it was observed that a ratio of 4 between thenumber of clauses and the second parameter (i.e., �) is minimal for both E3-SAT gadgets. Severalquestions regarding the �=� ratios achievable by 3-SAT and 2-SAT gadgets were posed. Answers weresubsequently provided in [TSSW], which undertakes a general study of the construction of optimalgadgets.Proof of Lemma 4.9: We use the gadgets presented in Figure 10 and Figure 11. The claimregarding E3-SAT follows from the motivating discussion above (i.e., by which these gadgets aremerely the canonical 3CNF expressions for the corresponding conditions). Thus, the E3-SAT gadgetsare satis�able if and only if the corresponding condition (i.e., parity or RMB) holds, and the �rst partof the lemma follows.We now turn to the 2-SAT gadgets in Figure 11, starting with the PC-gadget PC2(a; b; c; x00; x01; x10;x11).We �rst claim that if a+ b = c then we can satisfy 11 clauses. This is done by setting each x�� to1 if and only if both a = � and b = � . Clearly, this assignment satis�es the three clauses in whichthe variable xab appears (the �rst two by a and b and the last by xba). Out of the other 9 clauses, 6(i.e., those in which an auxiliary variable appears negated) are satis�ed by the 0-assignment to theother 3 auxiliary variables, and 2 (i.e., of the 3 in which an auxiliary variable appears unnegated)are satis�ed by the variable c.We next claim that no assignment for which a+ b = c can satisfy all 12 clauses. Let a = �, b = �and c = � + � be an arbitrary partial assignment and consider the three clauses in which theThe MAX 2SAT Gadgets.PC2(a; b; c; x00; x01; x10; x11) =f(x00 _ a); (x00 _ b); (x00 _ c);(x01 _ a); (x01 _ b); (x01 _ c);(x10 _ a); (x10 _ b); (x10 _ c);(x11 _ a); (x11 _ b); (x11 _ c)gRMBC2(a; b; b0; c; x00; x11; y00; y11) =f(x00 _ b); (x00 _ c); (a_ x00);(x11 _ b); (x11 _ c); (a_ x11);(y00 _ b0); (y00 _ c); (a_ y00);(y11 _ b0); (y11 _ c); (a_ y11)g:Figure 11: The Max2SAT Gadgets

56 variable x� � appears. To satisfy any of the �rst two clauses we must have x� � = 0 but this cannotsatisfy the third clause unless c 6= � + � , in contradiction to our hypothesis.Finally, we show that no assignment for which a + c 6= c can satisfy more than 10 clauses. Leta = �, b = � and c = 1+�+� be an arbitrary partial assignment and consider the three clauses inwhich the variable x�� appears. To satisfy the �rst clause we must have x�� = 0 but this cannotsatisfy the third clause unless c = � + � , in contradiction to our hypothesis. Applying the sameanalysis to the clauses in which the variable x�� appears, the claim follows.Finally, we consider the RMB-gadget RMB2(a; b; b0; c; x00; x11; y00; y11). This gadget is the conjunctionof two analogous 2CNF formulae, each consisting of six clauses. We �rst consider the �rst six clausesand the expression (a = 0)) (b = c).Suppose a = 1. Then, regardless of the values of b and c, we can satisfy all six clauses by settingx00 = x11 = 0.Suppose a = 0 and b = c = �, for � 2 f0; 1g. Then, we can satisfy �ve out of the six clausesby setting x�� = 1 and x� � = 0. On the other hand, it is not possible to satisfy all six clauses,since this requires setting x00 = x11 = 1 (to satisfy the 3rd and 6th clauses), which in turn requiressetting both b and b to 1.Suppose a = 0 and b 6= c. In this case we claim that no truth assignment can satisfy more than4 clauses. The claim is proven by contradiction. We already know that no truth assignment cansatisfy all clauses. Suppose that some truth assignment satis�es �ve (or more) clauses. Then,for some � 2 f0; 1g, we must satisfy all clauses in which the variable x�� appears. This requiressetting x�� = 1 (to satisfy the 3rd or/and the 6th clause), which in turn forces us to set b and c to� (to satisfy the other two clauses), in contradiction to the case hypothesis.The last six clauses are analyzed analogously. We conclude that if the RMB condition holds then wecan satisfy 6 + 5 = 11 clauses and that we can satisfy at most 11 clauses. Furthermore, in case theRMB condition does not hold we can satisfy at most 4 + 6 = 10 clauses. The lemma follows.Proof of Theorem 4.6: The theorem follows by applying Lemma 4.7 to the veri�er of Proposition 4.3and the gadgets of Lemma 4.9. Details follow.Recall that by Remark 4.4, we may assume that the veri�er does not make two identical queries.Applying Lemma 4.7 to the veri�er of Proposition 4.3 we obtain a reduction of any language in NP toGap-XSATc0;s0 for values of c0 and s0 determined as a function of the gadget parameters, the probabilityparameter q and the soundness s of the veri�er of Proposition 4.3. Speci�cally, we observe that forE3-SAT we have c0 = 1 (since �i = mi for i = 1; 2), whereas for 2-SAT we have 0:9 < c0 < 1 (since�imi = 1112 for i = 1; 2). In both cases, � = 1 and the expression for c0=s0 is given by1 + 1� sq�1 + (1� q)�2 � (1� s) (13)where s and q are determined by Proposition 4.3; that is (for every > 0)s = 1� 320 + (14)q = 35 (15)Substituting Eq. (14) and (15) in Eq. (13), and letting ! 0, we getc0s0 ! 1 + 312�1 + 8�2 � 3 :

57The bounds for E3-SAT and 2-SAT now follow by using the �i's values of Lemma 4.9. In particular,for E3-SAT we get s0 ! 77=80 and for 2-SAT we get c0s0 ! 1 + 3217 .We conclude this subsection by presenting a variant of Lemma 4.7. This variant refers only to 3SATformulae, but makes no restrictions on the veri�er in the PCP system.Lemma 4.11 (Max3SAT implementation of a generic veri�er): Let L 2 PCP1;1��[log; 3], for some0 < � < 1. Then, L reduces to Gap-3SAT1;1��4 .Proof: Let V be a veri�er as guaranteed by the hypothesis. Building on Lemma 4.7, it su�ces toshow that the computation of V on any possible random-tape can be captured by a 3CNF formulawith at most 4 clauses. We consider the depth-3 branching program which describes the acceptanceof V on a speci�c random-tape. (The variables in this program correspond to queries that the veri�ermay make on this �xed random-tape. Since the veri�er may be adaptive, di�erent variables mayappear on di�erent paths.) In case this tree has at most 4 rejecting leaves (i.e., marked false) writingcorresponding 3CNF clauses (which state that these paths are not followed) we are done. Otherwise,we consider the 4 depth-1 subtrees. For each such subtree we do the following. In case both leaves aremarked false we write a 2CNF clause (which states that this subtree is not reached at all). In casea single leaf is marked false we write one 3CNF clause (as above), and if no leaf is marked false wewrite nothing.Remark 4.12 The above argument can be easily extended to show that, for any 0 � �; � < 1,PCP1��;1��[log; 3] �KD Gap-3SAT1��;1��44.2.2 Maximum Satis�able Linear Constraints (Parity Clauses)Analogously to the MaxSAT problems considered above, we consider parity/linear clauses rather thandisjunctive clauses. In other words, we are given a system of linear equations over GF(2), and need todetermine the maximum number of equations which may be simultaneously satis�ed. The problem inquestion is MaxLinEq (cf. Section 2.4.2). See Section 2.4.3 for status and discussion of previous work.Here we provide an explicit hardness factor via a direct reduction from the MaxSNP veri�er.Theorem 4.13 Gap-MaxLinEqc;s is NP-hard for c = 6=7 and any cs < 8=7.Proof: The theorem follows by constructing appropriate gadgets. A PC-gadget is straightforwardhere and so we have a (1; 1)-PC gadget. We present a (3; 2)-RMB gadget consisting of 4 equations.Speci�cally, for RMB(a; b0; b1; c) we present the equations b0 + c = 0, a + b0 + c = 0, b1 + c = 0 anda+ b1 + c = 1. Observe that we can think of the RMB gadget as a (1:5; 1)-gadget with 2 clauses (or,equivalently, think of the parity gadget as a (2; 2)-gadget with 2 clauses).We claim that the above 4 equations are indeed a (3; 2)-gadget for ba = c. First observe that if a = 0and b0 = c (resp., if a = 1 and b1 = c) then the �rst (resp., last) two equations hold. On the otherhand, if a = 0 and b0 6= c (resp., if a = 1 and b1 6= c) then the �rst (resp., last) two equations are bothviolated. Finally, if a = 0 (resp., if a = 1) then, regardless of the values of b0; b1; c, exactly one of thelast (resp., �rst) two equations hold. Thus, the claim holds.Proceeding as in the proof of Theorem 4.6, we obtain a hardness for Gap-MaxLinEqc0;s0 , wherec0s0 ! 1 + 312�1 + 8�2 � 3 = 1 + 312 + 12� 3 = 87and c0 = 3�1+2�23m1+2m2 = 67 .

584.3 MaxCUTRefer to Section 2.4 for the de�nition of the MaxCUT problem and the associated gap problemGap-MaxCUTc;s. See Section 2.4.3 for discussion of status and previous work. The following the-orem (combined with Proposition 2.5) shows that MaxCUT is NP-hard to approximate to within afactor of 1:014. We note that the result of the following theorem holds also when the weights ofthe graph are presented in unary (or, equivalently, when considering unweighted graphs with paralleledges).Theorem 4.14 (MaxCUT non-approximability result): Gap-MaxCUTc;s is NP-hard for some c; ssatisfying c > 0:6 and c=s > 1:014 (anything below 72=71).A weaker result can be obtained for simple graphs without weights or parallel edges. In particular,one may reduce the MaxCUT problem for graphs with parallel edges to MaxCUT for simple graphs,by replacing every edge by a path of 3 edges. This causes a loss of a factor of 3 in the hardness factor;that is, we would get a hardness factor of 214=213 for the MaxCUT problem restricted to simplegraphs. A better reduction which preserves the non-approximation ratio has been recently suggestedby Crescenzi et. al. [CST].Gadgets. Unlike with MaxSAT problem, here we cannot negate variables at zero cost. Still, we �rstde�ne simpli�ed gadgets for Parity and RMB checking and make the necessary adaptations insideLemma 4.15.Gadgets will be used to express the veri�er's computation in terms of cuts in graphs. A parity checkgadget PC-CUT(a; b; c; T ;x1; : : : ; xn) is a weighted graph on n+4 vertices. Of these three vertices a; b; ccorrespond to oracle queries made by the veri�er. The vertex T will be a special vertex mapping cutsto truth values so that a vertex corresponding to an oracle query is considered set to 1 if it resides in theT -side of the cut (i.e., a is considered set to 1 by a cut (S; S) i� either a; T 2 S or a; T 2 S). The gadgetis an (�; �)-PC gadget if MaxCUT(PC-CUT(a; b; c; T ; x1; : : : ; xn)) is exactly � when restricted to cutswhich induce a+ b = c (i.e., either 0 or 2 of the vertices fa; b; cg lie on the same side of the cut as T),and is at most ��� when restricted to cuts for which a+b 6= c. A cut gadget to check if a+b 6= c can bede�ned similarly. Similarly a weighted graph RMBC-CUT(a; b0; b1; c; T ; x1; : : : ; xn) is an (�; �)-RMBCgadget if it satis�es the property that MaxCUT(RMBC-CUT(a; b0; b1; c; T ; x1; : : : ; xn)) is exactly �when restricted to cuts satisfying ba = c and is at most � � � otherwise. Cut gadgets for the othergeneralized RMB checks (checking if ba 6= c, or ba = c + a or ba 6= c + a) can be de�ned similarly.The following lemma (similar to Lemma 4.7) shows how to use the above forms of gadgets to derivea reduction from NP to Gap-MaxCUT.Lemma 4.15 (MaxCUT implementation of a veri�er): Let V be a veri�er for L of logarithmic ran-domness, with perfect completeness and soundness s, such that V performs either a single Parity Check(with probability q) or a single RMB check (with probability 1� q). Here, we refer to the generalizedchecks as de�ned in Proposition 4.3. Furthermore, suppose that in either case, the veri�er never makestwo identical queries. If there exists an (�1��; �)-PC gadget consisting of edges of total weight w1 andan (�2��; �)-RMBC gadget consisting of edges of total weight w2 then L reduces to Gap-MaxCUTc0;s0for c0 = �1q+�2(1�q)w1q+w2(1�q) and s0 = �1q+�2(1�q)�(1�s)�w1q+w2(1�q) . In particular c0=s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Remark 4.16 Actually, the conclusion of the lemma holds provided all the generalized parity check(resp., RMB-check) functions have (�1; �)-gadgets (resp., (�2; �)-gadgets).Proof: Let PC-CUT(a; b; c; T; x1; : : : ; xn1) denote the Parity Check gadget and RMBC-CUT(a; b0; b1; c;T; x1; : : : ; xn2) denote the RMBC gadget. These are simpli�ed gadgets as de�ned above. Increasing the

59� value by �, we can easily obtain the general gadgets as de�ned in Proposition 4.3. For example, tocheck that a+ b+ c = 1 we introduce a gadget which in addition to the variables a; b; c; T; x1; : : : ; xn1),has an auxiliary vertex, denoted �a. The new gadget consists of the edge (a; �a) having weight � togetherwith the weighted graph PC-CUT(�a; b; c; T; x1; : : : ; xn1). Clearly, the result is an (�1; �)-gadget fora + b + c = 1. Likewise we can check the condition ba + c = �a, where �0; �1 are any �xed bits asfollows. In case �0 = �1 = 1 we introduce an auxiliary vertex �c, connect it to c by an edge of weight� and use the graph RMBC-CUT(a; b0; b1; �c; T; x1; : : : ; xn2). In case �0 = 0 and �1 = 1 we introducean auxiliary vertex �b1, connect it to b1 by an edge of weight � and use the graph RMBC-CUT(a; b0;�b1; c; T; x1; : : : ; xn2). The case �0 = 1 and �1 = 0 is analogous, whereas �0 = �1 = 0 is obtained by thesimpli�ed gadget itself. Thus, we have (�2; �)-gadgets for all cases of the RMB Check. Throughoutthe rest of the proof, PC-CUT and RMBC-CUT denote the generalized gadgets.We create a graph Gx and weight function wx which encodes the actions of the veri�er V on input x.The vertices of Gx are as follows:(1) For every bit �[q] of the proof queried by the veri�er V , the graph Gx has a vertex v�[q] .(2) For every random string R tossed by the veri�er V , we create vertices vR;i, for i going from 1 tomaxfn1; n2g.(3) There will be one special vertex T .The edges of Gx are de�ned by the various gadgets. We stress that the same edge may appear indi�erent gadgets (and its weight in these gadgets may be di�erent). The graph Gx is de�ned by takingall these edges and thus it is a graph (or multi-graph) with parallel edges and weights. The naturalconversion of Gx into a graph with no parallel edges replaces the parallel edges between two verticeswith a single edge whose weight is the sum of the weights of the original edges. Alternatively, sincethe weights are constants which do not depend on x, we can transform Gx into a unweighted graphwith parallel edges.Suppose that on random string R the veri�er V queries the oracle for bits �[q1], �[q2] and �[q3],and then does a parity check on these three bits. Then corresponding to this random string weadd the weighted edges of the graph GR to the graph Gx where GR = PC-CUT(v�[q1]; v�[q2]; v�[q3]; T ;vR;1; : : : ; vR;n1). Alternatively, if the veri�er V performs a respect of monomial basis test on the bits�[q1], �[q2], �[q3] and �[q4], then we add the weighted edges of the graph GR = RMBC-CUT(v�[q1];v�[q2]; v�[q3]; v�[q4]; T ; vR;1; : : : ; vR;n2).Let N denote the number of possible random strings used by V . Observe that the total weight of theedges of Gx is w1qN + w2(1� q)N . We now analyze the value of MaxCUT(Gx).If x 2 L then there exists an oracle � such that V �(x) always accepts. We de�ne a cut (S; �S) in Gxin the following way: We place T 2 S and for every query q we place v�[q] 2 S i� �[q] = 1. Then foreach R, there exists an placement of the vertices vR;i so that the size of the cut induced in GR is �1if R corresponds to V performing a Parity Check and �2 if R corresponds to V performing an RMBcheck. The weight of the so obtained cut is �1qN + �2(1� q)N .Now consider x 62 L. We claim that if there exists a cut (S; �S) such that the weight of the cut isgreater than qN�1 + (1� q)N�2� (1� s)N�, then there exists an oracle �, such that V �(x) acceptswith probability at least s. Since we know this can not happen we conclude that MaxCUT(Gx) <qN�1 + (1 � q)N�2 � (1 � s)N�. To prove the claim, we convert any cut in Gx into an oracle �where �[q] = 1 i� T and v�[q] lie on the same side of the cut. Now by the property of the gadgets ifa graph GR = PC-CUT(y[q1]; y[q2]; y[q3]; T ; x1; : : : ; xn1) contributes more than a weight of �1 � � tothe cut, then V accepts � on random string R. (Similarly if the graph GR is an RMBC-gadget andcontributes more than �2�� to the cut then V accepts � on random string R.) Recall that no gadget

60can contribute more than the corresponding � to any cut. Thus if the total weight of the cut is morethan (�1 � �)qN + (�2 � �)(1� q)N + sN � �, then V accepts on at least sN random strings. Thisproves the claim and the lemma follows.We now turn to the construction of cut-gadgets. Our �rst gadget, denoted PC-CUT(a; b; c; T ;Aux),is a complete graph de�ned on �ve vertices fa; b; c; T;Auxg. The weight function, w, assign the edgefu; vg weight wu � wv, where wa = wb = wc = wT = 1 and wAux = 2. The following claim shows howPC-CUT(a; b; c; T ;Aux) functions as a parity check gadget.Claim 4.17 (MaxCUTPC-gadget): PC-CUT(a; b; c; T ;Aux) is a (9; 1)-parity check gadget consistingof edges of total weight 14.Proof: Recall that the edges in the graph are of two types: (1) edges to Aux having weight 2; and(2) other edges having weight 1. Thus, the total weight of the edges is 4 � 2 + 6 � 1 = 14. The weightfunction is decomposed as a product of vertices \weights" and so we can express the weight of a cut(S; S) by the corresponding product (Pu2S wu) � (Pv2S wv). It turns out that the weight of a cut ismaximized when the weight of the vertices on both sides are equal and speci�cally equal 62 = 3. Thus,the maximum cut has weight 32 = 9. Furthermore, a max-cut must have Aux and exactly one of theother vertices on one side. On the other hand, all other cuts (i.e., in which the vertex weights are notsplit evenly) have weight at most 8. Using the above characterization of a max-cut we conclude thatthe max-cut may have one of the two forms:(1) Aux resides in the same side with T : since a; b and c are on the other side, the induced assignmentis a = b = c = 0 which satis�es the parity condition.(2) Aux resides in the same side with x 2 fa; b; cg: this induces x = 0 and an assignment of 1 to theother two variables and thus the parity condition is satis�ed again.Thus a max-cut corresponds to an assignment which satis�es the parity condition and each suchassignment (can be extended to) corresponds to a max-cut. The claim follows.The second gadget, denoted RMBC-CUT(a; b0; b1; c; T ;Aux1;Aux2;Aux3; a0), is composed of twographs denoted G1 and G2, respectively. To motivate the construction we �rst observe that the con-dition ba = c (i.e., (a = 0)) (b0 = c) and (a = 1)) (b1 = c)) is equivalent to the conjunction of(b0 = b1)) (b0 = c) and (b0 6= b1)) (a+b0+c = 0). The graph G1(b0; b1; c;Aux1) will take care of the�rst implication. It consists of the vertex set fb0; b1; c;Aux1g, the unit-weight edges fb0;Aux1g andfb1;Aux1g, and a weight 2 edge fc;Aux1g. The graph G2(a; b0; b1; c; T ;Aux2;Aux3; a0), taking care ofthe second implication, consists of two subgraphs PC-CUT(a; b0; c; T ;Aux2) and PC-CUT(a; b1; c; T ;Aux3; a0),where the latter is supposed to \check" a + b1 + c = 1. Speci�cally, PC-CUT(a; b; c; T ;Aux; a0) con-sists of the graph PC-CUT(a0; b; c; T ;Aux) and a unit-weight edge fa; a0g. The following claim showsexactly how good this gadget is in \verifying" that ba = c.Claim 4.18 (MaxCUT RMB-gadget): RMBC-CUT(a; b0; b1; c; T ;Aux1;Aux2;Aux3; a0) is a (22; 2)-RMBC gadget consisting of edges of total weight 33.Proof: Clearly, the total edge weight is 4 + 14 + (14 + 1) = 33. We analyze the performance ofeach of the two sub-gadgets, G1 and G2, considering three cases. Recall that each of two sub-gadgetscorresponds to a condition of the formE) E 0, where both E and E0 are linear conditions on two/threevariables. The �rst case corresponds to both E and E 0 being satis�ed (i.e., \good case"), the secondcase (called \neutral") corresponds to E not being satis�ed, whereas the third case (called \bad")corresponds to E being satis�ed and E 0 being violated. We start with G1.Fact 1: Consider the set of all cuts in G1(b0; b1; c;Aux).

61(1) Good Case (b0 = b1 = c): If b0; b1 and c are all in same side of the cut then we can place Aux sothat the cut has weight 4. On the other hand, there is no cut with weight more than 4.(2) Neutral Case (b0 6= b1): If b0 and b1 are on opposite sides of the cut, we can always place Aux sothat the weight of the cut is 3. On the other hand, 3 is the maximum cut-weight for such cuts.(3) Bad Case (b0 = b1 6= c): If b0 and b1 are the same side of the cut and c is on the opposite sidethen, no matter where Aux is placed, the cut-weight is 2.proof: The lower bounds for Items (1) and (2) are proven by placing Aux on the opposite side to c.The upper bounds for Items (1) and (2) are obvious (since 4 is the total edge weight in G1 and sinceplacing b0 and b1 on opposite sides does not allow placing Aux opposite to both of them). Item (3) isobvious as in each of the two cases we get a cut of weight 2. 2Fact 2: Consider the set of all cuts in G2(a; b0; b1; c; T ;Aux;Aux0; a0).(1) Good Case (b0 6= b1 and a+ b0+ c = 0): If b0 and b1 are on opposite sides and a+ b0+ c = 0 thenwe can place Aux;Aux0 so that the cut has weight 19. On the other hand, there is no cut withweight more than 19.(2) Neutral Case (b0 = b1): If b0 and b1 are on the same side of the cut, we can place Aux;Aux0 sothat the weight of the cut is 18. On the other hand, 18 is the maximum cut-weight for such cuts.(3) Bad Case (b0 6= b1 and a+ b0 + c 6= 0): If b0 and b1 are on opposite sides and a+ b0+ c 6= 0 then17 is the maximum cut-weight for such cuts.proof: Recall that G2(a; b0; b1; c; T ;Aux;Aux0; a0) consists of the subgraphs PC-CUT(a; b0; c; T ;Aux)and PC-CUT(a0; b1; c; T ;Aux0), and the edge fa; a0g.Item (1) follows by Claim 4.17 (where for the lower bound we place a0 opposite to a and usea0 + b1 = a+ b0).The upper bound of Item (2) follows from Claim 4.17 by �rst observing that if both a+ b0+ c = 0and a0 + b1 + c = 0 then a = a0 (since in this case b0 = b1). Thus, either we obtain maximumweight of 9 in both PC gadgets (and lose the edge fa; a0g) or we do not obtain the weight 9 inboth PC gadgets { either way the bound follows.The lower bound of Item (2) follows by �rst observing that when we place a0 opposite to a, eithera + b0 + c = 0 or a0 + b1 + c = 0 holds. Extending the argument of Claim 4.17, we next observethat if the parity condition is not satis�ed we can still place the auxiliary vertex to obtain a cutof weight 8. Thus, we obtain a cut of weight 1 + 8+ 9 = 18 as claimed.Item (3) follows from Claim 4.17 by �rst observing that if b0 6= b1 and a + b0 + c 6= 0 thena + b1 + c = 0. Thus, PC-CUT(a; b0; c; T ;Aux) contributes at most weight 8 to the cut (useClaim 4.17) whereas either a = a0 or PC-CUT(a0; b1; c; T ;Aux0) also contributes at most 8. Asabove, in the former case (i.e., a = a0) the edge fa; a0g is not in the cut. Thus in either cases themaximum cut weight is 17 (obtained by either 2 � 8 + 1 or 8 + 9).This concludes the proof of Fact 2. 2The Claim now follows by combining the two facts. First recall that the RMB condition is equivalentto the conjunction of (b0 = b1)) (b0 = c) and (b0 6= b1)) (a + b0 + c = 0). If the RMB conditionholds then we obtain the Good Case weight from one sub-gadget, say Gi, and the Neutral Case weightfrom the other (i.e., G3�i). (The value of i 2 f1; 2g depends on whether b0 = b1 or not.) Thus, thetotal weight equals 22 (obtained by either 4 + 18 or 3 + 19). If the RMB condition does not holdthen we obtain the Bad Case weight from one sub-gadget and the Neutral Case weight from the other.Thus, the total weight equals 20 (obtained by either 2 + 18 or 3 + 17). The claim follows.

62Proof of Theorem 4.14: The theorem follows by combining Proposition 4.3, Lemma 4.15, Claim 4.17and Claim 4.18 (when regarding the RMB gadget as a (11; 1)-gadget rather than a (22; 2)-gadget).Details follows.As in the proof of Theorem 4.6, when applying Lemma 4.15 to the veri�er in Proposition 4.3, weobtain the same expression for the gap, c0=s0, for which NP �KD Gap-MaxCUTc0;s0 ; namely,c0s0 ! 1 + (1� s)�q � �1 + (1� q) � �2 � (1� s)�= 1 + 312�1 + 8�2 � 3 :Recall that here �1� 1 = 9 and �2� 1 = 11 (rather than �1 = 9 and �2 = 11 { see Lemma 4.15). Theabove simpli�es to 1 + 3213 = 7271 and the bound on c0s0 follows. As for c0, it equals 3�1+2�23m1+2m2 > 0:6.5 Free bits and vertex coverIt is known that approximating the minimum vertex cover of a graph to within a 1 + � factor ishard, for some � > 0 [PaYa, ALMSS]. However, we do not know of any previous attempt to providea lower bound for �. An initial attempt may use VC-gadgets that implement the various tests inVSNPinner, analogously to the way it was done in the previous sections for the Max SAT versionsand Max Cut. This yields a lower bound of � > 143 > 0:023 (see details in previous versions ofthis work [BGS2]). However, a stronger result is obtained via free-bit complexity:8 We apply theFGLSS-reduction to a proof system (for NP) of low free-bit complexity; speci�cally to a proof systemwhich uses 2 free-bits and has soundness error below 0.8. Consequently, the clique size, in case theoriginal input is in the language, is at least one fourth (1/4) of the size of the graph which means thattranslating clique-approximation factors to VC-approximation factors yields only a loss of a factor of3. Since the FGLSS-transformation translates the completeness/soundness ratio to the gap-factor forapproximating clique, our �rst goal is to construct for NP a proof system which uses two free-bitsand has soundness error as low as possible. We remark that the proof system of Section 6 uses 7free-bits and achieves soundness error less than 1=2. The reader may observe that, following the aboveapproach, it is not worthwhile to use the proof system of Section 6 or any proof systems which achievesa soundness error of 1=2 at the cost of 5 free-bits or more. On the other hand, in light of the resultsof Section 10, we cannot hope for a proof system of free-bit complexity 1 for NP.5.1 Minimizing the error achievable with two free bitsThe pcp system of Proposition 4.3 had free-bit complexity 2 (and query-complexity 3). However, asmaller soundness error can be achieved if we make more queries. Our starting point is Part (2) ofLemma 3.19 which suggests an RMB-test with a detection probability that is twice as big, still using 2free-bits (alas 2l + 2 rather than 3 queries). Speci�cally, we consider an enhanced RMB test which oninput f1; f2 2 Fl, goes over all f 2 Fl invoking the Atomic RMB test with input functions f1; f; f2. Theenhanced RMB Test, denoted EMBtest, is depicted in Figure 12. Further improvement is obtained by\packing" together the Linearity Test and the Enhanced RMB Test (in contrast to VSNPinner in whichthese tests were performed exclusively). Both tests make three queries of which two are common, andthe answers to these queries determine the answer to the third query (which is di�erent in the twotests). The resulting inner veri�er, denoted V2inner, is depicted in Figure 13. As VSNPinner, the veri�erV2inner works with functions/oracles A that are folded twice | once across (h; 0) and once across (�1; 1).8 Furthermore, there seems to be little hope that the former approach can ever yield an improvement over the betterbounds subsequently obtained by H�astad [H3].

63The Enhanced RMB Test. Again, A: Fl ! � is the object being tested, and the testtake additional inputs or parameters f1; f2 2 Fl.EMBTest(A; f1; f2) (Enhanced Monomial-Basis Test)For every f 2 Fl, invoke MBTest(A; f1; f; f2).Output 0 if all invocations answered with 0, else output 1.The Passing Probability:EMBPass(A) = Prf1;f2 R Fl [EMBTest(A; f1; f2) = 0]Figure 12: The Enhanced RMB test and its passing probability.The following corollary is immediate from Part (2) of Lemma 3.19.Corollary 5.1 (analysis of the Enhanced Monomial-Basis Test): Let A; ~A: Fl ! � with A satisfyingA(f +�1) = A(f)+1 for all f and ~A linear but not respecting the monomial basis. Let x = Dist(A; ~A).Then 1�EMBPass(A) � 34 � (1� 2x)The following lemma is analogous to Lemma 4.1. Loosely speaking, it considers three possible strategiesof a \dishonest" prover and indicates the probability with which the veri�er detects an error.Lemma 5.2 (soundness of V2inner): Let �1; �2 > 0, 0 � p � 1 and l; l1 2 Z+. Then the (l; l1)-canonicalinner veri�er V2inner (with parameter p) is (�; �1; �2)-good, where 1� � = min(T1; T2; T3) and(1) T1 def= (12 � �1) � p(2) T2 def= p �min x�1=2��1 [max(�lin(x) ; 34 � (1� 2x))](3) T3 def= min x�1=2��1 [p � �lin(x) + (1� p) � (12 � �2)(1� 2x)].Proof: The analysis is broken up into several cases as in the proof of Lemma 4.1. Let x = Dist(A(h;0);(�1;1);Lin).Case 1: x � 1=2 � �1. Lemma 3.15 implies that 1 � LinPass(A(h;0);(�1;1)) � �lin(x) � x � 1=2 � �1.Since V2inner performs the atomic linearity test with probability p, we have in this case1� ACC [V A;A12inner(�; h)]� p � (1=2� �1)Case 2: x < 1=2� �1. Again, Lemma 3.15 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) and1� ACC [V A;A12inner(�; h)] � p � �lin(x)follows. Now let ~A be a linear function such that Dist(A(h;0);(�1;1); ~A) = x. We consider the followingsub-cases.

64Case 2.1: ~A does not respect the monomial basis. In this case Corollary 5.1 implies that 1 �EMBPass(A(h;0);(�1;1)) � 34(1 � 2x). So the probability that V2inner rejects is at least p � 34(1 � 2x).Combining the two lower bounds on 1� ACC [V A;A12inner(�; h)], we get1� ACC [V A;A12inner(�; h)] � p �max(�lin(x); 34(1� 2x))Case 2.2: ~A respects the monomial basis. By Proposition 3.2, ~A is an evaluation operator. So thereexists a 2 �l such that ~A = Ea. So Dist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into twofurther sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2� �2. By Lemma 3.21 we have 1 �ProjPass�(A(h;0);(�1;1); A1) �d � (1 � 2x) � (1=2� �2) � (1 � 2x). So the probability that V2inner performs the projection test andrejects is at least (1� p) � (1=2� �2)(1� 2x). To this we add the probability of the exclusively disjointevent in which the veri�er performs the Linearity Test and rejects, obtaining1� ACC [V A;A12inner(�; h)] � p � �lin(x) + (1� p) � (1=2� �2)(1� 2x)Case 2.2.2: Else, we have x = Dist(A(h;0);(�1;1); Ea) < 1=2� �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.9.Similarly to the proof of Lemma 4.1, we infer that the lower bound on 1 � � is as claimed and thelemma follows.We now simplify the soundness bound of the lemma. The proof of the �rst item uses the fact that�lin(x) � 45=128 for all x � 1=4. The second item uses the fact that �lin(x) � x for all x � 1=2.The two free-bit inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�erhas access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes a parameterp 2 [0; 1].Pick q R [0; 1].Case: q � p :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).EMBTest(A(h;0);(�1;1); f1; f2).Case: q > p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access to A(h;0);(�1;1)(f) is implemented by accessing either A(f) or A(f + h) orA(f + �1) or A(f + h+ �1).Figure 13: The two free-bit inner veri�er V2inner

65Claim 5.3 :(1) min x�1=2��1 [max(�lin(x) ; 34(1� 2x))] � 45128.(2) min x�1=2��1 [p � �lin(x) + (1� p) � (12 � x)] � 12 �min(p ; 1� p).(3) Let T1; T2 and T3 be as in Lemma 5.2. Thenmin(T1; T2; T3) � min� 45128 � p ; 12 � (1� p)��max(�1; �2)Interestingly, the lower bound provided by Item (3) is tight. Optimization calls for setting 45128 � p =12 �(1�p), which yields p = 64109 and a soundness bound of 1� 45128p+max(�1; �2) = 1� 45218+max(�1; �2).Proof: Towards proving Part (1) we consider two cases.Case 1.1: x � 1=4. In this case, by de�nition of �lin , we havemax(�lin(x) ; 34(1� 2x)) � �lin(x) � 45128Case 1.2: x � 1=4. In this case we havemax(�lin(x) ; 34(1� 2x)) � 34(1� 2x) � 38 > 45128This establishes Part (1). Towards proving Part (2) we consider two di�erent cases.Case 2.1: p � (1� p). In this casep � �lin(x) + (1� p) � (12 � x) � p � x+ p � (12 � x) = p2Case 2.2: p � (1� p). In this casep � �lin(x) + (1� p) � (12 � x) � (1� p) � x + (1� p) � (12 � x) = 1� p2This establishes Part (2). To prove Part (3) use Parts (1) and (2) to lower bound T2 and T3, respectively,and get min(T1; T2; T3) � min�(12 � �1) � p ; 45128 � p ; 12 �min(p ; 1� p)� �2�� min� 45128 � p ; 12 � (1� p)��max(�1; �2)The claim follows.Composing the above inner veri�er with an adequate outer veri�er, we getTheorem 5.4 NP � FPCP1;s[log; 2], and furthermore, there is a constant q such that NP � PCP1;s[coins =log ; free = 2 ; query = q], for any s > 173218 � 0:79357798.Proof: Let � = s� 173218 , �1 = �2 = �=3 and � = �3 �16�21�22 = 16�5243 . Now, let l and l1 be integers such thatthe outer veri�er, Vouter, guaranteed by Lemma 3.8, is (l; l1)-canonical and �-good for L 2 NP. Considerthe (l; l1)-canonical inner veri�er V2inner working with parameter p = 64=109. Using Lemma 5.2 andClaim5.3, we conclude that V2inner is (�; �; �)-good for � = 1� 45218 + max(�1; �2).

66Composing Vouter and V2inner we obtain a veri�er, V2free, which by Theorem 3.12 has soundness errorbounded above by 173218 +max(�1; �2) + �16�21�22 = s, as required. Furthermore, V2free uses logarithmicallymany coins. We claim that V2free has query complexity 2l + 2 and free-bit complexity 2. The claim isobvious in case V2inner performs the Projection test. Otherwise, V2inner performs a Linearity Test withparameters f1 and f2 and an enhanced RMB Tests with the same parameters. Clearly, the answerson f1 and f2 determine the acceptable (by Linearity Test) answer on f1 + f2. The key observation isthat the former two answers also determine all 2l acceptable answers in the enhanced RMB test (i.e.,for every f 2 Fl, the answer on f 01 � f + f2 should equal the answer on f2, where f 01 = f1 if the answeron f1 is zero and f 01 = f1 + �1 otherwise).By repeating the above proof system three times, we obtainCorollary 5.5 NP � FPCP1;1=2[log; 6].Furthermore, there is a constant q such that NP � PCP1;1=2[coins = log ; free = 6 ; query = q].Proof: There exists � > 0 such that �173218 + ��3 � 12 .5.2 Hardness of vertex coverRefer to Section 2.4 for the de�nition of the MinVC problem and the associated gap problem Gap-MinVCc;s,and to Section 2.4.3 for status and previous work.Going from Free bits to VC. Instead of reducing from Max3SAT, we �rst use Theorem 5.4 toget gaps in Clique size, and then apply the standard reduction.Proposition 5.6 FPCPc;s[log; f] �KD Gap-MinVCc0;s0 for s0 = 1� 2�fc and c0s0 = 1 + c�s2f�c .Proof: The FGLSS reduction says that FPCPc;s[log; f] �KD Gap-MaxCliquec00;s00 where c00 = 2�f � cand s00 = 2�f � s. (See Section 2.4 for de�nition of Gap-MaxClique.) Now we apply the standardKarp reduction (of MaxClique to MinVC) which maps a graph G to its complement G, noting thatMinVC(G) = 1 �MaxClique(G). Thus Gap-MaxCliquec00;s00 �KD Gap-MinVC1�s00;1�c00. Now set c0 =1� s00 and s0 = 1� c00 and notec0s0 = 1� s001� c00 = 1� s2�f1� c2�f = 1 + c� s2f � c :This completes the proof.Our results. We obtain the �rst explicit and reasonable constant factor non-approximability resultfor MinVC. A consequence of the following theorem is that, assuming P 6= NP there is no polynomialtime algorithm to approximate MinVC within a factor of 1:0688.Theorem 5.7 Gap-MinVCc;s is NP-complete for some c; s satisfying c=s � 1:0688 > 16=15. Moreovers = 3=4.Proof: Follows immediately from Proposition 5.6 and Theorem 5.4. Namely, for any s0 > 173=218,NP � FPCP1;s0[log; 2] �KD Gap-MinVCc;s for s = 1 � 2�2 = 34 and cs = 1 + 1�s022�1 = 1 + 1�s03 . Thus,cs = 1 + 15218 � �3 > 1:068807� �3 , where � def= s0 � 173218.

67We remark that a special case of Proposition 5.6 in which the statement is restricted to f = 0would have su�ced for proving the above theorem. The reason being that we could have appliedProposition 11.8 to Theorem 5.4 and obtained NP � FPCP1=4;s=4[log; 0], for s = 0:7936, which bythe special case of Proposition 5.6 is reducible to Gap-MinVCc0;s0 with s0 = 1 � 14 = 34 and c0s0 =1+ (1=4)�(s=4)1�(1=4) = 1+ 1�s3 (as above). Interestingly, the special case of Proposition 5.6 can be \reversed":namely, Gap-MinVCc0;s0 is reducible to FPCPc;s[log; 0] with s = 1 � c0, c = 1 � s0 and cs = 1�s01�c0(which reverses c0s0 = 1�s1�c = 1+ c�s1�c). The key fact in proving this \reverse reduction" is Corollary 8.5which asserts that Gap-MaxCliquec;s �KD FPCPc;s[log; 0]. However, we do not know if it is possibleto \reverse" the other step in the alternative proof; namely, whether FPCPc;s[log; 0] is reducible toFPCP4c;4s[log; 2] (our reverse transformation is weaker { see Proposition 11.6).6 Minimizing the number of queries for soundness 0.5The problem we consider here is to minimize the values of q (and qav) for which we can constructPCPs for NP using q queries in the worst case (and qav on the average) to achieve a soundness errorof 1=2. We allow only logarithmic randomness. See Section 2.2.3 for description of past records.Sources of our improvements. The principal part of our improvement comes from the use of thenew long code based inner veri�er, the atomic tests and their analysis in Section 3.5, and the new ideaof folding. By repeating the proof system of Theorem 4.5 �ve times, we obtain that Eq. (4) holds forq = 15. (Note that 5 = minfi 2 N : 0:85i < 0:5g.) A straightforward implementation of the recyclingtechnique of [BGLR] yields that Eq. (4) holds for q = 12 and qav = 11:74. Using, a more carefulimplementation of this technique, we reduce the query complexity by an additional bit.6.1 The PCP inner veri�erOur result is based on the construction of the (l; l1)-canonical inner veri�er VPCPinner depicted inFigure 14. In addition to its standard inputs h; � it takes parameters p1; p2; p3 � 0 so that p1+p2+p3 =1. The inner veri�er VPCPinner combines the atomic tests in three di�erent ways.(1) Some tests are performed independently (i.e., the main steps in Figure 14);(2) Some tests are performed while re-using some queries (i.e., the tests in Step (2) re-use f3);(3) Some tests are performed in a mutual exclusive manner (i.e., the tests in Step (3));As in previous sections, the tests are executed on the function A(h;0);(�1;1) to which the veri�er has ane�ective oracle access given his access to A. By inspection it is clear that the total number of accessesto the oracles for A and A1 is 3+5+3 = 11 (whereas the free-bit complexity is 2+3+2 = 7). We nowexamine the goodness of VPCPinner. Recall the de�nitions of the functions �lin(x) (from Lemma 3.15)and �RMB(x) = 38(1� 2x) (from Lemma 3.19).Lemma 6.1 (soundness of VPCPinner): For any 0 < �1; �2 < 0:1 and any l; l1; p1; p2 and p3, satisfyp1 + p2 + p3 = 1 and 5p1 = 2p2, the (l; l1)-canonical inner veri�er VPCPinner is (�; �1; �2)-good, where1� � is the minimum of the following three quantities(1) 12 + p110 � �1;(2) 1� (11=14)3 � p31�p3 > 0:51494168� p31�p3 ;(3) minf12 + p320 � �2 ; 1� (0:55218507+ �2) � (1� 45128p1)gFurthermore, if p1 > 10�1, p3 > 20�2 and p3 � 0:01 then 1� � > 12 .Proof: We split the analysis into several cases based on the value of x = Dist(A(h;0);(�1;1);Lin).

68Case 1: x � 12 � �1. Lemma 3.15 implies that LinPass(A(h;0);(�1;1)) � 1 � �lin(x) � 1 � x � 12 + �1.Thus, in this caseACC [V A;A1PCPinner(�; h)] � �1 def= (1� p1) � �12 + �1�+ p1 � �12 + �1�2 < 12 + �1 � p110(The last inequality is due to �1 < 0:1.) Using p1 > 10�1 we get �1 < 1=2.Case 2: x < 12 � �1. Let ~A: Fl ! � be a linear function such that Dist(A(h;0);(�1;1); ~A) = x. The proofsplits into two subcases.Case 2.1: ~A does not respect the monomial basis. In this case, by Lemmas 3.15 and 3.19 we haveACC [V A;A1PCPinner(�; h)] � (1� �lin(x)) � (1� �RMB(x)) � (1� p1�lin(x)� p2�RMB(x))< (1� �lin(x)) � (1� �RMB(x))��1� p1p1 + p2 � �lin(x)� p2p1 + p2 � �RMB(x) + p31� p3�< � � � � [q�+ (1� q)�] + p31� p3The PCP inner veri�er. This (l; l1)-canonical inner veri�er is given functions h 2 Fland �: �l ! �l1 , and has access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition ittakes three non-negative parameters p1; p2 and p3 which sum-up to 1.Pick functions f1; : : : ; f8 R Fl and g1; g2 R Fl1 .Step 1: Linearity TestLinTest(A(h;0);(�1;1); f1; f2).Step 2: Combined RMB and Projection TestMBTest(A(h;0);(�1;1); f3; f4; f5).ProjTest�(A(h;0);(�1;1); A1; f3; g1).Step 3: Invoking VSNPinner with parameters p1; p2; p3.Pick p R [0; 1].Case p � p1 : LinTest(A(h;0);(�1;1); f6; f7).Case p1 < p � p1 + p2 : MBTest(A(h;0);(�1;1); f6; f7; f8).Case p1 + p2 < p : ProjTest�(A(h;0);(�1;1); A1; f6; g2).Accept i� all the above tests accept.Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 14: The PCP inner veri�er VPCPinner

69where q def= p1p1+p2 , � = 1� �lin(x) and � = 1� �RMB(x). Using p � x+ (1� p) � y � xp � y1�p, we showthat � � � � [q�+ (1� q)�] � [1+q3 �+ 2�q3 �]3. Speci�cally,�1 + q3 �+ 2� q3 ��3 = �23 � (12�+ 12�) + 13 � (q�+ (1� q)�)�3� �12� + 12��23 �3 � (q�+ (1� q)�) 13 �3= �12 � � + 12 � ��2 � (q�+ (1� q)�)� � � � � (q�+ (1� q)�)Combining the above with Claim 4.2 (i.e., the lower bound on T2), we obtain (for every x < 1=2)ACC [V A;A1PCPinner(�; h)] < �1� 1 + q3 � �lin(x)� 2� q3 � �RMB(x)�3 + p31� p3� �1�min�1 + q6 ; 2� q8 ��3 + p31� p3Observe that min(1+q6 ; 2�q8) is maximized at q = 2=7 where its value is 3=14. Indeed this value of q isconsistent with p1 = 27 � (p1 + p2) and so, in this case, we getACC [V A;A1PCPinner(�; h)] � �2 def= �1114�3 + p31� p3 < 0:48505832+ p31� p3Using p3 � 0:01 we get �2 < 1=2.Case 2.2: ~A respects the monomial basis. By Proposition 3.2, ~A is an evaluation operator. So thereexists a 2 �l such that ~A = Ea. So Dist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into twofurther sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2 � �2. By Lemma 3.21 we have ProjPass�(A(h;0);(�1;1); A1) �1� d � (1� 2x) < 12 + x+ �2. Letting �PRJ(x) def= 12 � x� �2, we get in this caseACC [V A;A1PCPinner(�; h)] � �3 def= (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x)� p3�PRJ(x))We upper bound �3 by considering three sub-cases (corresponding to the segments of �lin).Case 2.2.1.1: x � 1=4. In this case we use �lin(x) � 3x(1� 2x) and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p3�PRJ(x))< (1� 3x(1� 2x)) � (12 + x+ �2) � (1� p310)< 12 � �1� x+ 12x3� � �1� p310�+ �2� 12 � �1� p310�+ �2where the last inequality uses the fact that the function x�12x3 is non-negative in the interval [0; 1=4].Using p3 > 20�2 we obtain �3 < 1=2.

70Case 2.2.1.2: x � 1=4 and x � 45=125. In this case we use �lin(x) � 45=128 = �lin(45=128) and�PRJ(x) � �PRJ(45=128) and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x))� (1� �lin(45=128)) � (1� �PRJ(45=128)) � (1� p1�lin(45=128))< 83128 � �109128 + �2� � �1� p1 45128�< (0:55218507+ �2) � �1� p1 45128�Using �2 < p310 < 0:001 and p1 � 27 � 0:99 > 0:28, we obtain �3 < 0:5532 � 0:902 < 0:499.Case 2.2.1.3: x � 45=128. In this case we use �lin(x) � x � 45=128 and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x))< (1� x) � (12 + x+ �2) � (1� p1 45128)The latter expression decreases in the interval [45128 ; 12] and is hence maximized at x = 45=128. Thuswe obtain the same expression as in Case 2.2.1.2, and the bound on �3 follows identically.We conclude that in Case (2.2.1) we have�3 < max �12 � p320 + �2 ; (0:55218507+ �2) � (1� p1 45128)�and under the hypothesis regarding p1; p3 and �2, we always have �3 < 0:5.Case 2.2.2: Else, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2� �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy the properties required in conditions (2.1) and (2.2) of De�nition 3.9.Let � def= maxf�1; �2; �3g. We conclude that the only case which allows ACC [V A;A1PCPinner(�; h)] > � isCase (2.2.2) which also satis�es conditions (2.1) and (2.2) of De�nition 3.9. Thus, VPCPinner satis�escondition (2) of De�nition 3.9. Clearly, VPCPinner also satis�es condition (1) of De�nition 3.9, and thusthe lemma follows.6.2 The new proof systemCombining the above inner veri�er with an adequate outer veri�er, we obtain a pcp system for NPwith query complexity 11.Theorem 6.2 NP = PCP1;1=2[coins = log ; query = 11 ; queryav = 10:89 ; free = 7].Proof: We consider a canonical (l; l1)-inner veri�er VPCPinner with parameters p3 = 0:001, p1 = 27 �0:999 and p2 = 57 � 0:999. By Lemma 6.1, VPCPinner is (�; �1; �2)-good for �1 = �2 = 0:00001 and� = 0:49999. We now choose an appropriate outer veri�er. Let � = 16 � (0:5 � �)�21�22 . Lemma 3.8provides us with l and l1 such that an �-good (l; l1)-canonical outer veri�er Vouter with randomnessO(logn) exists. Let V = hVouter; VPCPinneri be the composition of Vouter and VPCPinner according to thede�nitions in Section 3.4. This veri�er has randomness O(logn). Apply Theorem 3.12 to see thatV has completeness parameter 1 and soundness parameter � + �=(16�21�22) = 1=2. The query (andfree-bit) complexity of V is the same as that of VPCPinner above (i.e., 11 and 7, respectively).

71To obtain the bound on the average query complexity, we observe that we can a�ord not to perform theRMB test with some small probability. Speci�cally, Case (2.1) in the proof of Lemma 6.1, which is theonly case where the RMB test is used, yields error of 0:48505832+ p31�p3 . Thus, if we modify VPCPinnerso that, whenever the RMB test is invoked it is performed only with probability 0:973, we get thatCase (2.1) detects violation with probability at least (1� 0:48505832� 0:0010011) � 0:973 > 0:50006.Consequently, the modi�ed inner veri�er errs with probability bounded away from 1=2 and so does thecomposed veri�er. The modi�cation decreases the average query complexity by (1�0:973)�(2+p2�3) >0:027�4:12 > 0:11. (The reduction is both from Step (2) and the second case in Step (3).) The theoremfollows.7 Amortized free-bits and MaxClique hardness7.1 The iterated testsThe \iterated tests" will be used in the next section to derive a proof system for NP having amortizedfree-bit complexity � 2. Intuitively, we will be running each of the atomic tests many times, but, tokeep the free-bit count low, these will not be independent repetitions. Rather, following [BeSu], wewill run about 2O(m) copies of each test in a way which is pairwise, or \almost" pairwise independent,to lower the error probability to O(2�m). This will be done using 2m free-bits. Speci�cally, we willselect uniformly m functions in Fl (and m functions in Fl1) and invoke the atomic tests with functionsresulting from all possible linear combinations of the selected functions.7.1.1 Linearity and randomnessWe begin with some observations relating stochastic and linear independence. Note that Lm is asub-vector-space of Fm, and in particular a vector space over � in its own right. So we can discuss thelinear independence of functions in Lm. We say that ~L = (L1; : : : ; Lk) 2 Lkm is linearly independentif L1; : : : ; Lk are linearly independent. Furthermore we say that ~L1 = (L1;1; : : : ; L1;k) and ~L2 =(L2;1; : : : ; L2;k) aremutually linearly independent if the 2k functions L1;1; L2;1; : : : ; L1;k; L2;k are linearlyindependent.Lemma 7.1 For ~L = (L1; : : : ; Lk) 2 Lkm let J~L: Fml ! Fkl be de�ned by J~L(~f) = (L1 � ~f; : : : ; Lk � ~f),for ~f = (f1; :::; fm). Fix ~L and consider the probability space de�ned by having f1; :::; fm be uniformlyand independently distributed over Fl. Regard the J~L's as random variables over the above probabilityspace. Then(1) If ~L is linearly independent then J~L is uniformly distributed in Fkl .(2) If ~L1; ~L2 are mutually linearly independent then J~L1 and J~L2 are independently distributed.The proof of this lemma is quite standard and thus omitted: It amounts to saying that linearly indepen-dent combinations of stochastically independent random variables result in stochastically independentrandom variables.The analysis of the Iterated Projection test (see Figure 15) can be done relatively straightforwardly,given the above, because the invoked projection test uses a single linear combination of each sequenceof random functions, rather than several such combinations (as in the other iterated tests). Thus webegin with the iterated projection tests. The analysis of the other iterated tests, where the atomictests are invoked on two/three linear combinations of the same sequence of random function, requireslightly more care. The corresponding lemmas could have been proven using the notion of \weakpairwise independence" introduced in [BeSu]. However, we present here an alternative approach.

727.1.2 Iterated projection testThe iterated projection test described in Figure 15 takes as input vectors ~f;~g 2 Fml and also a linearfunction L 2 Lm. Note that f = L � ~f is in Fl, and g = L � ~g is in Fl1 . The test is just the atomicprojection test on f and g. The following lemma says that if the passing probability ProjPassmA (),representing 2m invocations of the atomic projection test, is even slightly signi�cant and if A is closeto Ea, then A1 is close to the encoding of the projection of a.Lemma 7.2 There is a constant c3 such that the following is true. Let �: �l ! �l1 be a function.Let a 2 �l be such that Dist(Ea; A) � 1=4, and let a1 = �(a) 2 �l1 . If ProjPassm� (A;A1) � c3 � 2�mthen Dist(Ea1 ; A1) � 0:1.Proof: The proof is similar to that of [BeSu, Lemma 3.5]. Let �1 = Dist(A1; Ea1) and assume it is atleast 0:1. We show that there is a constant c3 such that ProjPassmh (A) < c3 � 2�m.Let N = jL�mj = 2m � 1. For L 2 L�m let XL: Fml �Fml1 ! � be de�ned byXL(~f;~g) def= ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g) :Regard it as a random variable over the uniform distribution on Fml � Fml1 . Let X = PL2L�m XL. Itsu�ces to show that Pr [X = 0] � O(1=N).Lemma 7.1 implies that fXLgL2L�m are pairwise independent, identically distributed random variables.Let L 2 L�m and let p = E[XL]. Again using Lemma 7.1 we havep = Pr~f R Fml ; ~g R Fml1 hProjTest�(A;A1;L � ~f ; L � ~g) = 1i= Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 1] :But by Lemma 3.21, p is at least �1(1� 2�) � 0:05, since � def= Dist(Ea; A) � 1=4. We can conclude byapplying Chebyshev's inequality. Namely,Pr [X = 0] � Pr [jX �Npj � Np] � Np(Np)2 � 20Nas desired.7.1.3 Technical claimFor analyzing the other two tests we will use the following simple claim.Claim 7.3 Let k � 1 and N = 2m. Then Lkm contains a subset S of cardinality N22k such that every~L1 6= ~L2 2 S are mutually linearly independent.Proof: Let ~L 2 Lkm be linearly independent. Then, the probability that L chosen uniformly in Lm islinearly independent of ~L is 1� 2kN . Thus, the probability that a uniformly chosen ~L0 2 Lkm is mutuallylinearly independent of ~L is greater than 1�Pki=1 2k+i�1N > 1� 22kN . Now, consider a graph with vertexset Lkm and edges connecting pairs of mutually linearly independent sequences (i.e., ~L1 and ~L2 areconnected if and only they are mutually linearly independent). This graph has Nk vertices and everyvertex which is linearly independent has degree greater than (1� 22kN) �Nk. Clearly this graph has aclique of size N22k (e.g., consider a greedy algorithm which picks a vertex of maximal degree among allvertices connected to the previously selected vertices). Noting that a clique corresponds to a set ofmutually linear independent sequences, we are done.

73The Iterated Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested. Thetests also take additional inputs or parameters: below ~f 2 Fml ; ~g 2 Fml1 ; L; L1; L2; L3 2 Lm;and �: �l ! �l1 . The tests are speci�ed in terms of the atomic tests of Figure 8.LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f).MBTestm(A; ~f; L1; L2; L3) =MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f).ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g).The Passing Probabilities. These are the probabilities we are interested in:LinPassm(A) = Pr~f R Fml h 8 L1; L2 2 Lm : LinTestm(A; ~f; L1; L2) = 0iMBPassm(A) = Pr~f R Fml h 8 L1; L2; L3 2 Lm : MBTestm(A; ~f; L1; L2; L3) = 0iProjPassm� (A;A1) = Pr~f R Fml ; ~g R Fml1 h 8 L 2 Lm : ProjTestm� (A;A1; ~f;~g; L) = 0iFigure 15: The iterated tests and their passing probabilities.7.1.4 Iterated linearity testThe iterated linearity test described in Figure 15 takes as input a vector ~f 2 Fml and also linearfunctions L1; L2 2 Lm. Note that f1 = L1 � ~f and f2 = L2 � ~f are in Fl. The test is just the atomiclinearity test on these inputs. The following lemma says that if the passing probability is even slightlysigni�cant, then A is almost linear.Lemma 7.4 There is a constant c1 such that if LinPassm(A) � c1 � 2�m then Dist(A;Lin) � 0:1.Proof: Assume that � def= Dist(A;Lin) � 0:1. We show that there is a constant c1 such thatLinPassm(A) < c1 � 2�m. For ~L = (L1; L2) 2 L2m let X~L: Fml ! � be de�ned byX~L(~f) def= LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Let S � L2m be a set as guaranteedby Claim 7.3 and X = P~L2S X~L. It su�ces to show that Pr [X = 0] � O(2�m). (Thus our analysisof LinPassm(A) is based only on a small fraction of all possible invocations of the iterated linear test;yet, this small fraction corresponds to a su�ciently large number of invocations.)Using Lemma 7.1, it follows that the random variables fX~Lg~L2S are pairwise independent and thatfor every ~L 2 S p def= Pr~f R Fml hX~L(~f) = 1i = Prf1 ;f2 R Fl [LinTest(A; f1; f2) = 1] :

74By Lemma 3.15, p � �lin(�) and so p � 3� � 6�2 if � � 1=4 and p � 45=128 otherwise. In either case,for � � 0:1, we get p > 0:2. Now by Chebyshev's inequality we havePr [X = 0] � Pr [jX �N 0pj � N 0p] � 1N 0p < 5N 0where N 0 def= jSj = 2m=22�2 = 2m=16. The lemma follows.7.1.5 Iterated RMB testThe iterated respect of monomial basis test in Figure 15 takes an input ~f and also three linear functionsL1; L2; L3 2 Lm. For simplicity of exposition, we assume that A is folded over (�1; 1). (This assumptionis justi�ed by our usage of the test { see next subsection.) If the probabilityMBPassm(A) is signi�cant,we can conclude that the linear function close to A respects the monomial basis.Lemma 7.5 There is a constant c2 such that the following is true. Let A: Fl ! � so that A(f +�1) =A(f) + 1, for every f 2 Fl. Let � � 0:1 so that A is �-close to a linear function ~A and suppose thatMBPassm(A) � c2 � 2�m. Then ~A respects the monomial basis.Proof: Assume that ~A is linear but does not respect the monomial basis. We will show that there isa constant c2 such that MBPassm(A) < c2 � 2�m.For ~L = (L1; L2; L3) 2 L3m let X~L: Fml ! � be de�ned byX~L(~f) def= MBTestm(A; ~f; L1; L2; L3) = MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Again, let S � L3m be a setas guaranteed by Claim 7.3 (in this case jSj = 2m=22�3), and X = P~L2S X~L. It su�ces to show thatPr [X = 0] � O(2�m).Using Lemma 7.1, it follows that the random variables fX~Lg~L2S are pairwise independent and thatfor every ~L 2 Sp def= Pr~f R Fml hX~L(~f) = 1i = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 1] :By Lemma 3.19, p � 3=8�7�=4+5�2=2� �3. Using � � 0:1, it follows that p > 0:2. Using Chebyshev'sinequality, as in the previous proof, we are done.Remark 7.6 For general A's (which are not folded over (�1; 1)), a similar result can be proven byaugmenting the iterated RMB test so that on input A, ~f and ~L = (L1; L2; L3) it also checks if A((L1 �~f) + �1) = A(L1 � ~f) + 1.7.1.6 Putting some things togetherThe last two lemmas above allow us to conclude that if A(h;0);(�1;1) passes the �rst two tests with anysigni�cant probability then A(h;0);(�1;1) is close to some evaluation operator Ea so that h(a) = 0. Thus,again, there is no need for a \circuit test".

75Corollary 7.7 There is a constant c such that the following is true. Let A: Fl ! �, and supposeLinPassm(A(h;0);(�1;1)) � c � 2�m and MBPassm(A(h;0);(�1;1)) � c � 2�m. Then there is a string a 2 �lsuch that Dist(Ea; A(h;0);(�1;1)) � 0:1 and h(a) = 0.Proof: Let c be the larger of the constants from Lemmas 7.4 and 7.5. By the �rst lemma there isa linear ~A such that Dist(A(h;0);(�1;1); ~A) < 0:1. Now the second lemma implies that ~A respects themonomial basis (using the fact that A(h;0);(�1;1)(f+�1) = A(h;0);(�1;1)(f)+1 for all f 's). So Proposition 3.2says that ~A is an evaluation function. Finally, by Proposition 3.6, we have h(a) = 0.7.2 NP in amortized free-bit complexity 2Sources of our improvementsWe adopt the basic framework of the construction of proof systemswith low free-bit complexity as presented in [BeSu]. Our improvement comes from the use of thenew long code instead of the Hadamard code as a basis for the construction of inner veri�ers. Thisallows us to save one bit in the amortized free-bit complexity. The reason being that the long codecontains explicitly all functions of the encoded string whereas the Hadamard code contains only linearcombinations of the bits of the string. Typically, we need to check that the veri�er accepts a string andthis condition is unlikely to be expressed by a linear combination of the bits of the string. Thus, oneneeds to keep also the linear combinations of all two-bit products and using these extra combinations(via self-correcting) increases the amortized free-bit by one. Instead, as seen above, the long codeallows us to directly handle any function. The fact that we take linear combinations of these functionsshould not confuse the reader; these are linear combinations of random functions rather than beinglinear combinations of random linear functions (as in [BeSu]).Our construction of a proof systems with amortized free-bit complexity of two bits is obtained bycomposing the (l; l1)-canonical outer veri�er of Lemma 3.8 with a (l; l1)-canonical inner veri�er, denotedVfree-in, which is depicted in Figure 16. The inner veri�er Vfree-in consists of invoking the three iteratedtests of Figure 15. In addition, Vfree-in also applies the linearity test to the oracle A1. This is notdone in order to improve the rejection probability of Vfree-in (in case the oracles A and A1 are far fromThe free inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er has accessto oracles for A: Fl ! � and A1: Fl1 ! �. It also takes an integer parameter m.Random choices: ~f R Fml ; ~g R Fml18 L1; L2 2 Lm : LinTestm(A(h;0);(�1;1); ~f; L1; L2)8 L1; L2; L3 2 Lm : MBTestm(A(h;0);(�1;1); ~f; L1; L2; L3)8L 2 Lm : ProjTestm� (A(h;0);(�1;1); A1; ~f;~g; L)8 L1; L2 2 Lm : LinTestm(A1;~g; L1; L2)Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 16: The free inner veri�er Vfree-in

76being �ne), but rather in order to decrease the number of accepting con�gurations (and consequentlythe free-bit complexity). We also remark that Vfree-in invokes the iterated tests while providing themwith access to a double folding of A (i.e., A(h;0);(�1;1)) rather than to A itself. This eliminates theneed for checking that A encodes a string which evaluates to zero under h and simpli�es the iteratedRMB test (see remark at the end of subsection 7.1.5). However, unlike in previous subsections, thesesimpli�cations do not buy us anything signi�cant (here), since the additional testing could have beendone without any additional cost in free-bits.Lemma 7.8 There exists a constant c such that the following is true. Let l; l1; m be integers. Thenthe (l; l1)-canonical inner veri�er Vfree-in with parameter m is (�; �1; �2)-good, where � = c � 2�m and�i = 0:4, for i = 1; 2.Proof: Here the analysis can be less careful than in analogous statements such as in Lemmas 4.1and 5.2. Using Corollary 7.7, with respect to the oracle A(h;0);(�1;1), we conclude that if A(h;0);(�1;1)passed both the iterated Linearity and RMB Tests with probability at least c � 2�m then there exists astring a 2 �l such that Dist(Ea; A(h;0);(�1;1)) � 0:1 = 12 � �1 < 1=4 and h(a) = 0. Using Lemma 7.2, weconclude that if (A(h;0);(�1;1); A1) passed the iterated Projection Test, with probability at least c3 � 2�m,then Dist(E�(a); A1) < 0:1 = 12 � �2. Setting � = c0 � 2�m, where c0 = maxfc; c3g, we conclude thatVfree-in satis�es condition (2) of De�nition 3.9. Clearly, Vfree-in also satis�es condition (1) and thelemma follows.Proposition 7.9 Let l; l1; m be integers. Then the (l; l1)-canonical inner veri�er Vfree-in with param-eter m uses 2m free-bits.Proof: We consider only accepting computations of Vfree-in. We start by observing that all oraclevalues obtained from A, during the iterated Linearity Test (on A(h;0);(�1;1)), are determined by thevalues of A in locations f 01; f 02; :::; f 0m, where each f 0i is one of the four functions fi; fi + h; fi + �1 andfi+ h+�1. Likewise, all oracle values obtained from A, during the iterated RMB Test, are determinedby the values of A in these locations f 01; f 02; :::; f 0m. Finally, all oracle values obtained from A, duringthe iterated Projection Test, are determined by the values of A1 in locations L �~g (for all L's) and thevalues of A in the locations f 01; f 02; :::; f 0m.Now we use the fact that Vfree-in applies an iterated Linearity Test to the oracle A1. It follows that alloracle values obtained from A1, in accepting computations of Vfree-in, are determined by the values ofA1 in locations g1; g2; :::; gm.We conclude that, in accepting computations of Vfree-in, all values obtained from the oracles aredetermined by 2m bits (i.e., A(f 01); :::; A(f 0m) and A1(g1); :::; A1(gm)).Composing the canonical outer veri�er of Lemma 3.8 and the canonical inner veri�er Vfree-in, we getthe followingTheorem 7.10 For any � > 0 it is the case that NP � FPCP[log; 2 + �].Proof: Given an NP language L and an integer m (see below), we use Lemma 3.8 to construct a 2�m-good outer veri�er, denoted Vouter, for L. Recall that this outer veri�er uses logarithmic randomness(actually the randomness depends linearity on m which is a constant). Next, compose Vouter with the(c � 2�m; 0:4; 0:4)-good inner veri�er, Vfree-in, guaranteed by Lemma 7.8, where Vfree-in uses m as itsinteger parameter. The composed veri�er has free-bit complexity 2m (as inherited from Vfree-in byProposition 7.9). By Theorem 3.12 the soundness error of the composed veri�er is at most c�2�m+2�m.Selecting m to be su�ciently large (i.e., m = 2+�� � log2(c+ 1)), the theorem follows.

777.3 Hardness of MaxCliqueRefer to Section 2.4 for de�nitions of the MaxClique and ChromNum problems and their associated gapproblems, and to Section 2.4.3 for a description of previous work. Using the FGLSS-transformation,we getTheorem 7.11 For any � > 0(1) NP �KR Gap-MaxCliquec;s for s(N) = N �=N and c(N) = N1=3=N .(2) NP �KD Gap-MaxCliquec;s for s(N) = N �=N and c(N) = N1=4=N .Proof: For Part (1) we use Corollary 11.3 (below), with r = O(logn) and k = r� . We get that NPis randomly reducible to a pcp system with randomness r + k + O(1), free-bit complexity (2 + �)kand error probability 2�k. The FGLSS-graph corresponding to the resulting pcp system has sizeN = 2(r+k+O(1))+(2+�)k and a gap in clique size of factor 2k, which can be rewritten as N1=(1+2+2�).The clique size in case of input not in the language is 2r which can be rewritten as N �. Substituting� for �=2, the claim of Part (1) follows. For Part (2) we use Corollary 11.5, and get a pcp system forNP with randomness r + (2 + �)k, free-bit complexity (2 + �)k and error probability 2�k. Using theFGLSS-construction on this system, the claim of Part (2) follows.Combining the above with a recent reduction of F�urer [Fu], we getTheorem 7.12 For any � > 0(1) NP �KR Gap-ChromNumc;s for c(N)=s(N) = N 15��.(2) NP �KD Gap-ChromNumc;s for c(N)=s(N) = N 17��.

78Part IIProofs and Approximation: Potential andLimitations8 The reverse connection and its consequencesFeige et al. [FGLSS] describe a procedure which takes a veri�er V , and an input x and constructsa graph, which we denote GV (x), whose vertices correspond to possible accepting transcripts in V 'scomputation and edges corresponding to consistent/non-conicting computations. They then showthe following connection between the maximum (over all possible oracles) acceptance probability ofthe veri�er and the clique size in the graph. Recall that ACC [V (x)] = max� PrR [V �(x;R) = 0] is themaximum accepting probability. Also recall that MaxClique(G) is the maximum clique size.Theorem 8.1 ([FGLSS]) If, on input x, a veri�er V tosses r coins then the following relationshipholds: ACC [V (x)] = MaxClique(GV (x))2r :In this section we essentially show an inverse of their construction.8.1 The Clique-Gap Veri�erWe stress that by the term graph we mean an undirected simple graph (i.e., no self-loops or paralleledges).Theorem 8.2 (Clique veri�er of ordinary graphs): There exists a veri�er, denoted W , of logarithmicrandomness-complexity, logarithmic query-length and zero free-bit complexity, that, on input an N -node graph G, satis�es ACC [W (G)] = MaxClique(G)N :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, given aproof/oracle � we can construct in polynomial-time a clique of size pN in G, where p is the probabilitythat W accepts G with oracle access to �.Proof: On input a graph G on N nodes, the veri�er W works with proofs of length �N2 � � jE(G)j.The proof � is indexed by the edges in G (i.e., non-edges in G). For clarity we assume that the binaryvalue �(fu; vg) is either u or v. This is merely a matter of encoding (i.e., consider a 1-1 mapping ofthe standard set of binary values, f0; 1g, to the set fu; vg). On input G and access to oracle �, theveri�er W acts as follows:Picks uniformly a vertex u in the vertex set of G.For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Clearly, W tosses log2N coins. Also, once W picks a vertex u, the only pattern itmay accepts is (u; u; : : : ; u). Thus the free-bit complexity of W is 0. To analyze the probability thatW accepts the input G, when given the best oracle access, we �rst prove the following:Claim. The graphs GW (G) and G are isomorphic.

79Proof. The proof is straightforward. One needs �rst to choose an encoding of accepting transcripts ofthe computation of W on input G. We choose to use the \full transcript" in which the random coinsas well as the entire sequence of queries and answers is speci�ed. Thus, a generic accepting transcripthas the form Tu def= (u; (fu; v1g; u); :::; (fu; vdg; u))where u is the random vertex selected by the veri�er and fv1; :::; vdg the set of non-neighbors of u. Westress that Tu is the only accepting transcript in which the veri�er has selected the vertex u. Also, foreach vertex u, the transcript Tu is accepting. Thus, we may consider the 1-1 mapping, �, that mapsTu to u. We claim that � is an isomorphism between GW (G) and G.Suppose that Tu and Tv are adjacent in GW (G). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. It follows that the same query can not appear in both (accepting) transcripts(otherwise it would have been given conicting answers). By de�nition of W we conclude that (u; v)is not a non-edge; namely, (�(Tu); �(Tv)) = (u; v) 2 E(G). Suppose, on the other hand, that (u; v) 2E(G). It follows that the query fu; vg does not appear in either Tu or Tv. Since no other query mayappear in both transcripts, we conclude that the transcripts are consistent and thus Tu and Tv areadjacent in GG(W). 2By Theorem 8.1 it now follows that the probability that W accepts on input G, given the best oracle,is MaxClique(GW (G))=N which by the above equals MaxClique(G)=N . Furthermore, given a proof �which makes W accept G with probability p, the accepting random strings of W constitute a clique ofsize pN in GW (G). These accepting random strings can be found in polynomial-time and they encodevertices of G (which form a clique in G).We now generalize the above construction to get veri�ers which indicate the existence of large cliquesin layered graphs. An (L;M;N)-layered graph is an N -vertex graph in which the vertices are arrangedin L layers so that there are no edges between vertices in the same layer and there are at most Mvertices in each layer. We use a convention by which, whenever a layered graph is given to somealgorithm, a partition into layers is given along with it (i.e., is implicit in the encoding of the graph).Theorem 8.3 (Clique veri�er for layered graphs): There exists a veri�er, denoted W , of logarithmicrandomness-complexity and logarithmic query-length that, on input an (L;M;N)-layered graph G hasfree-bit complexity log2M , average free-bit complexity log2(N=L) and satis�esACC [W (G)] = MaxClique(G)=L :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, given aproof/oracle � we can construct in polynomial-time a clique of size pL in G, where p is the probabilitythat W accepts G with oracle access to �.Proof: On input a (L;M;N)-layered graph G, the veri�er W works with proofs consisting of twoparts. The �rst part assigns every layer (i.e., every integer i 2 [L]) a vertex in the layer (i.e., again weuse a redundant encoding by which the answers are vertex names rather then an index between 1 andthe number of vertices in the layer). The second part assigns pairs of non-adjacent (in G) vertices, abinary value, which again is represented as one of the two vertices. On input G and access to oracle�, the veri�er W acts as follows:Picks uniformly a layer i in f1; :::; Lg.Queries � at i and obtains as answer a vertex u. If u is not in the ith layer of G then the veri�errejects. (Otherwise, it continues as follows.)

80 For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.(Actually, it is not needed to query the oracle on pairs of vertices belonging to the same layer.)If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Here W tosses log2L coins. Once the �rst query of W is answered, specifying avertex u, the only pattern it may accept in the remaining queries is (u; u; : : : ; u). Thus, the free-bit complexity of W is log2M , accounting for the �rst query which may be answered arbitrarily inf1; :::; mg, wherem �M is the number of vertices in the chosen layer. The average free-bit complexityis log2(N=L) (as N=L is the average number of vertices in a layer of the graph G). Again, we canprove that GW (G) = G and the theorem follows.Proof. Here, the accepting transcripts of W , on input G, correspond to a choice of a layer, i, and avertex in the ith layer (since once a vertex is speci�ed by the �rst answer there is only one acceptingway to answer the other queries). Thus, a generic accepting transcript has the formTu def= (i; (i; u); (fu; v1g; u); :::; (fu; vdg; u))where i is the layer selected by the veri�er, u is a vertex in the ith layer of G and fv1; :::; vdg the setof non-neighbors of u. Again, Tu is the only accepting transcript in which the veri�er has selected thevertex u, and for each vertex u, the transcript Tu is accepting. Again, we consider the 1-1 mapping,�, that maps Tu to u, and show that it is an isomorphism between GW (G) and G.Suppose that Tu and Tv are adjacent in GG(W). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. We �rst note that u and v cannot appear in the same layer of G (otherwisethe �rst query in the transcript would yield conicting answers). Again, the same two-vertex querycan not appear in both (accepting) transcripts, and we conclude that (�(Tu); �(Tv)) = (u; v) 2 E(G).Suppose, on the other hand, that (u; v) 2 E(G). Clearly, u and v belong to di�erent layers and asbefore the query (u; v) does not appear in either Tu or Tv. Since no other two-vertex query may appearin both transcripts, we conclude that the transcripts are consistent and thus Tu and Tv are adjacentin GG(W). 2The theorem follows as before.Remark 8.4 The clique veri�er W is adaptive: the answer to its �rst query determines (all) theother queries. We wonder if it is possible to construct a non-adaptive clique veri�er with properties asclaimed in Theorem 8.3.8.2 Reversing the FGLSS reductionWe are interested in problems exhibiting a gap in Max-Clique size between positive and negativeinstances. Recall that MaxClique(G) = MaxClique(G)=N is the fraction of nodes in a maximumclique of N -node graph G. Also recall from Section 2.4 that the Gap-MaxCliquec;s promise problemis (A;B) where A is the set of all graphs G with MaxClique(G) � c(N), and B is the set of all graphsG with MaxClique(G) < s(N). The gap of this problem is de�ned to be c=s. As a direct consequenceof Theorem 8.2, we getCorollary 8.5 For all functions c; s: Z+ ! [0; 1] we have Gap-MaxCliquec;s 2 FPCPc;s[log; 0; poly].

81The above corollary transforms the gap in the promise problem into a gap in a pcp system. However,the accepting probabilities in this pcp system are very low (also on yes-instances). Below, we useTheorem 8.3 to obtain pcp systems with perfect (resp., almost-perfect) completeness for this promiseproblem. We start by presenting two randomized reductions of the promise problem to a layer version.Alternative methods are presented in Section 11 (cf., Theorem 11.6).Proposition 8.6 (Layering the clique promise problem):(1) (Obtaining a perfect layering): There exists a polynomial-time randomized transformation, T , ofgraphs into layered graphs so that, on input a graph G, integers C and L, the transformationoutputs a subgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) < L] < L � 2� C2LFurthermore, with probability 1� L � 2�N=3L, no layer of H contains more than 2 � NL nodes.(2) (Using logarithmic randomness): There exists a polynomial-time randomized transformation, T ,of graphs into layered graphs so that, on input a graph G, integers C and L, the transformationoutputs a subgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) � (1� �) � L] < L�Cfor every � 2 [0; 1]. Furthermore, the transformation uses logarithmically many coins. Also, withprobability 1� L�N , at most �L layers of H contains more than 2 � NL nodes.Proof: The �rst transformation consists of assigning to each vertex of G a randomly chosen layerof H . Namely, we construct the graph H which is a subgraph of G by uniformly selecting for eachvertex v a layer l(v) 2 [L] and copying only the edges of G which connect vertices placed in di�erentlayers (of H). The construction can be carried out in random polynomial-time and we show that ifthe original graph has a clique of size C then with high probability the resulting graph has a clique ofsize L, provided L� C2 log2L.Claim 1. Suppose that G has a clique of size C, denoted S. Then, the probability that all vertices inS were placed in less than L layers is at most L � 2� C2L .Proof. We start by bounding, for each i, the probability that no vertex of S is placed in the ith layer.For each v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if v is placed in the ith layer(i.e., l(v) = i) and �v = 0 otherwise. Let t def= C=L. Then, E[Pv2S �v] = t. Using a multiplicativeCherno� bound [MoRa], we getPr [8v 2 S : l(v) 6= i] = Pr"Xv2S �v = 0 #< 2� t2Call the ith layer bad if no vertex of S is placed in it. By the above, the probability that there existsa bad layer is smaller than L � 2�t=2, and the claim follows. 2It is left to bound the probability that a particular layer contains more than twice the expected numberof vertices. Using again a multiplicative Cherno� bound, this probability is at most 2�N=3L and the�rst part of the proposition follows.The second transformation consists of selecting randomly a Universal2 Hashing function (a.k.a., pair-wise independent hash function) mapping the vertices of the graph G into the layer-set [L]. Namely,

82suppose that the function h was chosen, then we construct the graph H which is a subgraph of G byplacing a vertex v (of G) in layer h(v) of H , and copying only the edges of G which connect verticesplaced in di�erent layers (of H). The construction can be carried out in polynomial-time using onlylogarithmic randomness (for the selection of the hashing function). We show that if the original graphhas a clique of size C then with high probability the resulting graph has a clique of size almost L,provided L� C.Claim 2. Suppose that G has a clique of size C, denoted S. Then, the probability that all vertices inS were placed in less than (1� �) � L layers is at most L�C .Proof. Again, we bound, for each i, the probability that no vertex of S is placed in the ith layer. Foreach v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if h(v) = i and �v = 0 otherwise.Let t def= C=L and � def= Pv2S �v. Then, E[�] = t (which is greater than 1, otherwise the claim holdsvacuously). Using the pairwise independence of h and Chebyshev's inequality, we getPr [8v 2 S : h(v) 6= i] = Pr [� = 0]� Var[Pv2S �v]t2< C=Lt2 = 1tCall the ith layer bad if no vertex of S is placed in it. By the above, the expected number of bad layersis smaller than L � 1t , so by Markov inequality the probability that more than �L layers are bad is atmost 1=�t. The claim follows. 2Again, it is left to bound the probability that a particular layer contains more than M def= 2N=L.Using Chebyshev's inequality again, this probability is at most L=N . Thus, the expected number oflayers having more than M vertices is at most L2=N and it follows that the probability that �L layerscontain more than M vertices each is at most L2=N�L = L�N . The second part of the proposition follows.Combining Theorem 8.3 and Proposition 8.6, we obtain the following. (Refer to Section 2.3 for whatit means for a promise problem to reduce to a complexity class.)Proposition 8.7 (Reversing the FGLSS-reduction, general form:) For any polynomial-time com-putable, positive functions c; s; �: Z+ ! [0; 1] we have(1) (Randomized reduction to a pcp with perfect completeness):Gap-MaxCliquec;s �KR FPCP1;s0[log; f 0]where f 0(N) def= log2(1=c(N))+ log2 log2N + 2 and s0(N) def= 2 log2N � s(N)c(N) .(2) (A pcp with almost-perfect completeness):Gap-MaxCliquec;s 2 FPCP1�4�;s0[log; f 0]where f 0(N) def= 1 + log2(1=c(N)) + 2 log2(1=�(N)) and s0(N) def= 1�(N)2 � s(N)c(N) .Proof: For the second part, we construct a veri�er for the promise problem as follows. On input anN -vertex graph G, the veri�er computes C def= N � c(N), � def= �(N) and L def= �2C. It invokes the secondtransformation of Proposition 8.6, obtaining a (L;N;N)-layered graph H = T (G;C; L). (We stressthat this transformation requires only logarithmically many coin tosses.) Next, the veri�er modi�es

83H into H 0 by omitting (the minimum number of) vertices so that no layer of H 0 has more than 2N=Lvertices. Finally, the veri�er invokes the clique-veri�er W of Theorem 8.3 on input H 0.The free-bit complexity of the veri�er constructed above is log2(2N=L) = 1+log2(1=c(N))+2 log2(1=�(N)).Suppose that G is a no-instance of the promise problem. Using MaxClique(H 0) � MaxClique(G) andTheorem 8.3, it follows that the constructed veri�er acceptsG with probability at most MaxClique(H0)L �s(N)�2(N)�c(N) . Suppose, on the other hand, that G is a yes-instance of the promise problem. Then, withprobability at least 1� L�C = 1� � we have MaxClique(H) � (1� �) �L, and with probability at least1� L�N > 1� � we have MaxClique(H 0) � MaxClique(H)� �L. Thus, with probability at least 1� 2�,we have MaxClique(H 0) � (1�2�) �L. It follows that the constructed veri�er, when given oracle accessto an appropriate proof, accepts G with probability at least 1� 4�.For the �rst part, we de�ne a promise problem which refers to gaps in cliques of layered graphs.Speci�cally,De�nition. For any function ` : Z+ ! Z+ and s : Z+ ! [0; 1], we de�ne the promise problemGap�LG`;s be the pair (A;B), where{(1) A is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) = `(N), and(2) B is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) < s(N) � `(N).The gap of this problem is de�ned to be 1=s.Using the �rst transformation of Proposition 8.6, we obtain Gap-MaxCliquec;s �KR Gap�LG`;s0,where `(N) = c(N)�N2 log2N and s0(N) = s(N)�N`(N) = 2 log2N � s(N)c(n) . On the other hand, Theorem 8.3 as-serts that Gap�LG`;s0 2 FPCP1;s0[log; f 0], where f 0(N) def= log2(2N=`(N)). Observing that f 0(N) =1 + log2 2 log2 Nc(N) (which equals log2(1=c(N))+ log2 log2N + 2), the proposition follows.Each of the two parts of Proposition 8.7 shows that the well-known method of obtaining clique-approximation results from e�cient pcp systems (cf., [FGLSS, BeSc, Zuc, FeKi1, BeSu]) is \complete"in the sense that if clique-approximation can be shown NP-hard then this can be done via this method.The precise statement is given in Theorems 8.10 and 8.11 (below). As a preparatory step, we �rstprovide an easier-to-use form of the above proposition. The restriction that f be a constant is onlyfor notational simplicity (as otherwise, given f as a function of N = kGk, one needs to repharse it asa function of n = jxj).Proposition 8.8 (Reversing the FGLSS-reduction, easy to use form:) Let f > 0 be a constant andc; s: Z+ ! [0; 1] be polynomial-time computable so thatc(N)s(N) � N 11+fThen, for every � > 0,(1) (Randomized reduction to a pcp with perfect completeness):Gap-MaxCliquec;s �KR FPCP[log; f + �](2) (A pcp with almost-perfect completeness):Gap-MaxCliquec;s 2 FPCP1�o(1)[log; f + �]

84Proof: We merely invoke Proposition 8.7, and calculate the amortized free-bit complexity of theresulting veri�er. We may assume that s(N) � 1=N . Thus (using c(N)=s(N) � N 11+f), we havec(N) � N 11+f =N = N �f1+f and 1=c(N) � N f1+f .For Part 1, we let �(N) def= 2 log2N , and set f 0(N) def= log2(1=c(N)) + log2 �(N) and s0(N) def= �(N) �s(N)c(N) . By invoking Proposition 8.7 (Part 1) we �nd that Gap-MaxCliquec;s �KR FPCP1;s0 [log; f 0] andGap-MaxCliquec;s �KR FPCP[log; f 0], for f 0 = f 0log(1=s0) , follows. It now remains to argue that for any� > 0, f 0 � f + �.Using the lower bounds on c(N) and c(N)=s(N), we obtain f 0(N) � f1+f log2N + log2 �(N) andlog(1=s0(N)) � 11+f � log2N � log2 �(N). Selecting a su�ciently small � > 0 and using log2 �(N) <� � log2N , we get f 0 � f1+f log2N + log2 �(N)11+f log2N � log2 �(N)< f1+f + �11+f � �and so Part 1 follows. For Part 2, we let � be a slowly decreasing function s.t. �(N) = o(1) butlog2(1=�(N)) = o(logN). We set f 0(N) def= log2(1=c(N))+2 log2(1=�(N)) and s0(N) def= 1�(N)2 � s(N)c(N) . Byinvoking Proposition 8.7 (Part 2) we get Gap-MaxCliquec;s 2 FPCP1��;s0[log; f 0]. Since �(N) = o(1),we conclude that Gap-MaxCliquec;s 2 FPCP1�o(1)[log; f 0] for f 0 = f 0log2(1=s0) . Again, it remains toargue that for any � > 0, f 0 � f + �. Using the lower bound on c(N) and c(N)=s(N), we obtainf 0(N) � f1+f log2N�2 log2 �(N) and log2(1=s0(N)) = 2 log2 �(N)+ 11+f log2N . Selecting a su�cientlysmall � > 0 and using log2(1=�(N)) < � � log2N , we getf 0 � f1+f log2N + 2 log2(1=�(N))11+f log2N � 2 log2(1=�(N))< f1+f + �11+f � �and Part 2 follows.8.3 Main ConsequencesLet us �rst state the FGLSS-reduction.Theorem 8.9 (The FGLSS-reduction, revisited:) Let f > 0 be a constant and c; s: Z+ ! [0; 1].Then, for every � > 0, FPCP1�o(1)[log; f] �KR Gap-MaxCliquec;swhere c(N)=s(N)� N1=(1+f+�). Furthermore, in case the proof system is of perfect completeness, wehave c(N) = N�f=(1+f+�) and s(N) = N�(1+f)=(1+f+�).Proof: We �rst amplify the gap of the pcp-veri�er (cf., Corollary 11.3) and then by apply the bareFGLSS-reduction (see Theorem 8.1 and [FGLSS]) to the ampli�ed veri�er. Speci�cally, for any problem� in FPCP[log; f], we �rst obtain � �KR FPCP1;2�t[(1 + �) � t; f � t], where t(n) = log2 n (with theconstant determined by the constant � > 0). The FGLSS-reduction now yields a graph of size

85N def= 2(1+�+f)�t(n) with gap 2t(n) (which can be written as N 11+�+f). Speci�cally, the clique size for ayes-instance (resp., no-instance) is at least 2(1+�)�t(n) = N 1+�1+�+f (resp., at most 2��t(n) = N �1+�+f).A similar procedure may be applied for any � in FPCP1�o(1)[log; f]. Speci�cally, by de�nition, for somefunction m, � 2 FPCPc;2�m�c[log; m�f], for c(n) = 1�o(1) (but we are not going to use the bound on c).Using Proposition 11.1 and Proposition 11.2 (Part 2), we �rst obtain � �KR FPCPc0;2�t�c0 [(1+�)�t; f �t],where c0(n) = c(n)t(n)=m(n) and t(n) = log2 n (with the constant determined by the constant � > 0).The FGLSS-reduction now yields a graph of size N def= 2(1+�+f)�t(n) with gap 2t(n) as above.Interestingly, the gap (for MaxClique) created by FGLSS-reduction is independent of the location ofthe gap in the pcp system. The main result of this section is {Theorem 8.10 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-MaxCliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP[log; f + �].In both items the reduction is randomized. Furthermore the equivalence holds both for Karp and forCook reductions.Proof: The direction (2)) (1) follows again by Theorem 8.9. The reverse direction follows by Part 1of Proposition 8.8.An alternative statement is provided by the following theorem. Here the second item (existence of pcpsystems with certain parameters) is weaker than in the previous theorem, but this allows the (1)) (2)direction to be proven via a deterministic reduction (instead of the randomized reduction used in theanalogous proof above). Recall that FPCP1�o(1)[�; f] is the class of problems having a proof systemwith almost-perfect completeness (i.e., c = 1� o(1)) and amortized free-bit complexity f .Theorem 8.11 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-MaxCliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP1�o(1)[log; f + �].In both items the reduction is randomized and the equivalence holds both for Karp and for Cookreductions. Furthermore, if Item (1) holds with respect to deterministic reductions so does Item (2).Thus, if Item (1) holds with a deterministic Karp reduction then NP � FPCP1�o(1)[log; f + �].Proof: The direction (2)) (1) follows by applying Theorem 8.9. The reverse direction follows byPart 2 of Proposition 8.8.8.4 More ConsequencesThe equivalence between clique and FPCP described above turns out be a useful tool in the studyof the hardness of the clique and chromatic number problems. Here we describe some applications.The �rst application is merely a rephrasing of the known reductions from the Max Clique problem tothe Chromatic number problem in a simpler and more convenient way. The remaining applicationsuse the fact that the equivalence between FPCP and Max Clique allows us to easily shift gaps, in theMax Clique problem, from one place to another. Loosely speaking, these applications use the factthat the complexity of the promise problem Gap-MaxCliquec;s remains unchanged when changing theparameters c and s so the log2 c(N)log2 s(N) remains invariant. We stress that the ratio c(N)s(N) does not remaininvariant.

86Rephrasing reductions from Max Clique to Chromatic Number. Starting with the work ofLund and Yannakakis [LuYa], there have been several works on showing the hardness of approximatingthe Chromatic number, which reduce the Max Clique problem to the Chromatic number problem:see Section 2.4.3 for a description. Yet none of these results could be stated cleanly in terms of areduction from Max Clique to Chromatic Number without loss of e�ciency - i.e., the theorems couldnot be stated as saying \If approximating Max Clique to within a factor of N� is NP-hard, thenapproximating Chromatic Number to within a factor of Nh(�) is NP-hard." The reason for the lackof such a statement is that these reductions use the structure of the graph produced by applying anFGLSS-reduction to a FPCP result, and are hence really reductions from FPCP to Chromatic Numberrather than reductions from Max Clique to Chromatic Number. However now we know that FPCPand Max Clique are equivalent, so we can go back and rephrase the old statements. Thus results of[LuYa, KLS, BeSu, Fu] can be summarized as:For every �; �; > 0, Gap-MaxCliqueN��1 ;N��1 �KR Gap-ChromNumN�(�+) ;N�h(�) , where(1) h(�) = minf16 ; �5�4�g [LuYa].(2) h(�) = minf 111 ; �5+�g [KLS].(3) h(�) = minf14 ; �3�2�g [BeSu].(4) h(�) = minf13 ; �2��g [Fu].We note that it is an open problem whether one can get a reduction in which h(�)! 1 as �! 1. Wealso note that F�urer's reduction is randomized while the rest are deterministic.Reductions among Max Clique Problems. Next we present an invariance of the Gap Cliqueproblem with respect to shifting of the gaps. The following result has also been independently observedby Feige [Fe1], where he uses a randomized graph product to show the result. Our description usesthe properties of fpcp and its equivalence to clique approximation.Theorem 8.12 Let k; �1; �2 be real numbers such that k � 1 and 0 � �1 < �2 � 1. Then the followinghold:(1) Gap-MaxCliqueN��2 ;N�k�2 �KD Gap-MaxCliqueN��1 ;N�k�1 . (Deterministic reduction.)(2) Gap-MaxCliqueN��1 ;N�k�1 �KR Gap-MaxClique 12 �N��2 ;2�N�k�2 .Proof: Part (1) is proved via a well-known graph theoretic trick. LetG be an instance ofGap-MaxCliqueN��2 ;N�k�2with N nodes. We take the graph-product of G with a complete graph on m nodes, to get a graphH on M = mN nodes. (By a graph-product of two graphs G1(V1; E1) and G2(V2; E2) we mean agraph with vertex set V1 � V2 where vertices (u1; u2) and (v1; v2) are connected i� (ui; vi) 2 Ei forboth i = 1; 2.) We choose m so that if G has a clique of size N1��2, then H has a clique of size M1��1.Speci�cally, setting m = N �2��1�1 , the requirement is satis�ed (as a clique of size N1��2 in G yields aclique of size m �N1��2 = N �2��1�1 +1��2 =M �1�2 � �2(1��1)�1 in H .) Under this choice of m we will show thatif G has no cliques of size N1�k�2 then H has no cliques of size M1�k�1. This will complete the proofof part (1).Suppose H has a clique of size M1��1. Then, by construction, G must have a clique of sizeM1��1m = N1��1m�1= N1��1� �2��1�1 ��1and the claim follows.

87For part (2) we use the equivalence between FPCP and gaps in MaxClique and apply ampli�cationproperties of FPCP. Let c(N) = N��1 and s(N) = N�k�1. Then, using Corollary 8.5 (for line 1 below),Proposition 11.1 (for line 2) and Part (2) of Proposition 11.2 (for line 3), we getGap-MaxCliqueN��1 ;N�k�1 2 FPCPc;s[log2N; 0; N2]� FPCPct;st[t � log2N; 0; N2] (for any integer constant t � 1.)�KR FPCP12 �ct;2�st[log2(N2=st); 0; N2]The choice of the integer t will be determined later.Now, we go back to the clique-gap promised problem. Applying the FGLSS-reduction to the pcp classFPCP12 �ct;2�st[log2(N2=st); 0; N2] we obtain an instance of Gap-MaxClique 12N��1t;2N�k�1t on anM -vertexgraph, where M = N2st = N2+k�1t. To clarify the last assertion and the rest of the proof, we introducethe notation Gap-MaxClique�(N);�(N)(N) which makes explicit the size parameter to which the promiseproblem refers. Thus, letting def= t2+tk�1 , we have obtainedGap-MaxCliqueN��1 ;N�k�1 (N) �KR Gap-MaxClique 12M��1 ;2M�k��1 (M)(withM polynomial inN). Now, part (2) follows by setting t so that = t2+tk�1 � �2�1 and t = d 2�2(1�k�2)�1 ewill do. (Actually, we get Gap-MaxCliqueN��1 ;N�k�1 (N) �KR Gap-MaxClique 12M��02 ;2M�k�02 (M), for �02 ��2, but this can be corrected by invoking item (1).)The following theorem was �rst shown by Blum [Bl], using the technique of randomized graph products.It essentially uses the gap-shifting idea to show that a seemingly very weak approximator to the clique(say, N1��-approximation algorithm for some � > 0), can be used to obtain a very good approximatorto the clique number in graphs which are guaranteed to have very large cliques. In particular, usingsuch an algorithm, if a graph has a clique of size Nk , then a clique of size Nk 1� can be found in sucha graph in polynomial time. As observed by Blum, this can be translated into signi�cantly betteralgorithms for approximate coloring of a three colorable graph than known currently (see Item (1)in Corollary 8.15 below). Here we derive the theorem using FPCP and the gap-shifting techniques.The parameters are generalized so as to be able to conclude, say, that even if we have a N2plog2 N -approximation (for Max Clique), then we can obtain non-trivially good algorithms for 3-coloring (seeItem (2) in Corollary 8.15).Theorem 8.13 Let � 2 [0; 1], � 2 [0; 1=2) and k > 1. De�ne � : Z+ ! R+, c 2 R+ and g : Z+ ! R+so that �(N) = �log�2 Nc = 2log2 kand log2 g(N) = c� log2 k� !1=(1��) log�=(1��)2 N:Then there is a randomized poly(N2+c log2 g(N))-time reduction of instances of Gap-MaxClique1=k;1=g toM -vertex instances of Gap-MaxClique 12M��(M);2M�1+�(M) .Remark 8.14 Observe that g(N) = N o(1). Also, for � = 0 we have �(N) = � and g(N) = k 1� . Thus,the theorem states that given a 14M1�2� approximator for clique one can solve Gap-MaxClique1=k;1=k0in polynomial-time, where k0 = k1=�.

88Proof: As usual we �rst reduce Gap-MaxClique to FPCP and then amplify.Gap-MaxClique1=k;1=g 2 FPCP1=k;1=g[log2N; 0; N2]� FPCP(1=k)t;(1=g)t[t log2N; 0; N2] (for any function t : Z+ ! Z+.)�KR FPCP12 (1=k)t;2(1=g)t[log2N2gt; 0; N2]We now show that by setting t = c log2N and using the FGLSS-reduction, the above reduces inpoly(M)-time to Gap-MaxClique 12M��;2M��+1 in an M vertex graph, where M = N2g(N)t.In case the graph is a no-instance the size of the clique is most 2(1=g(N))t �M = 2N2. In the casethe graph is a yes-instance then the clique size is at least 12(1=k)t �M . Thus it su�ces to show that2N2 � 2M �(M) and 2kt � 2M �(M), respectively. Taking logs in both cases it su�ces to show that2 log2N � �(M) log2M (16)t log2 k � �(M) log2M (17)We �rst lower bound the right hand side of both equations.�(M) log2M = � log1��2 M� � log1��2 (g(N)t)� �t1�� log1��2 g(N)= � � (c log2N)1�� � �c� log2 k� log�2 N�= c log2N log2 kInequality (16) now follows from the fact that and c log2 k = 2. Inequality (17) follows from the factthat t = c log2N .The following result was derived as a corollary by Blum [Bl] and shows the application of the abovetheorem to coloring graphs with low-chromatic number with relatively small number of colors. Wewarn the reader that the corollary does not follow directly from the above theorem; this is because ituses a Levin-reduction9 from the search version of chromatic number to the search version of the cliqueproblem. However, it is possible to de�ne search versions of all the gap problems above appropriatelyand verify that all the reductions work for the search problems as well (i.e., they are in fact Levin-reductions). Thus the following can be derived as a corollary to the above.Corollary 8.15 Let k <1.(1) For � > 0, given an N1�� approximator to the clique, one can color any k-colorable graph on Mnodes with O(k1=� logM) colors in polynomial time.(2) For �(N) = !((logN)�1=2), given an N1��(N) approximator to the clique, one can color anyk-colorable graph on M nodes with M o(1)-colors in time MO(logM).9A Levin-reduction is a polynomial-time many-to-one reduction which is augmented by corresponding polynomial-timewitness transformations.

899 On the Limitations of Some Common ApproachesIn this section we provide lower bounds on the free-bit complexity of two tasks which are central toall existing (\low-complexity") probabilistically checkable proofs. Speci�cally, we consider the task ofchecking that a string (given by oracle access) is \close" to a valid codeword and the task of checkingthat one oracle is an encoding of a projection of a string encoded by a second oracle. Here a string isconsidered close to the code if its distance from some codeword is less than half the distance of thecode. Loosely speaking, we show that each of these tasks has amortized free-bit complexity of at leastone (and this is tight by the codes and tests presented in Section 7). Furthermore, we show that theamortized free-bit complexity of performing both tasks (with respect to the same given oracles) is atleast two (and also this is tight by Section 7).Our original motivation in proving these lower bounds was to indicate that a paradigm shift isrequired in order to improve over our PCP systems of amortized free-bit complexity 2 (for NP). Inretrospect, the paradigm shifts have amounted to the relaxation of the codeword test in [H1] and to therelaxation of the projection test in [H2]. Thus, our lower bounds may be considered as a justi�cationfor these (somewhat unnatural) relaxations.In particular, the lower bound on the complexity of the codeword test relies on the particularinterpretation of `closeness' used above (i.e., being at distance less than half the distance of the code).This requirement is not essential as can be seen in Section 3.4, where we show that also relaxedcodeword tests, in which closeness means approximately the distance of the code, su�ce. H�astad'srelaxation of the codeword test is di�erent, yet it also su�ces for the purpose of constructing PCPsystems of amortized free-bit complexity 1 (for NP) [H1]. The lower bound on the complexity of theprojection test seems more robust. Yet, as shown by H�astad in [H2], the projection requirements canbe by-passed as well, yielding pcp systems of amortized free-bit complexity tending to 0.9.1 The tasksOur de�nitions of the various tasks/tests are quite minimal and do not necessarily su�ce for PCPapplications. However, as we are proving lower bounds this only makes our results stronger.Loosely speaking, the �rst task consists of testing that an oracle encodes a valid codeword, oris \close" to a valid codeword, with respect to an error-correcting code of non-trivial distance (i.e.,distance greater than 1). The condition regarding the distance of the code is essential since thetask is easy with respect to the identity map (which is a code of distance 1). We remark thattesting \closeness" to codewords with respect to codes of large distance is essential in all known pcpconstructions [BFLS, FGLSS, ArSa, ALMSS, BGLR, FeKi1, BeSu].The absolute distance between two words w; u 2 f0; 1gn, denoted �(w; u), is the number of bitson which w and u disagree. We say that the code E : f0; 1g� 7! f0; 1g� has absolute distance d if forevery m and every x 6= y 2 f0; 1gm the absolute distance between E(x) and E(y) is at least d(m).The absolute distance between a word w and a code E, denoted �E(w), is de�ned as the minimumabsolute distance between w and a codeword of E.De�nition 9.1 (Codeword test): Let E : f0; 1gm ! f0; 1gn be a code of absolute distance d > 1. Acodeword test (with respect to E) is an oracle machine, T , such that TE(a)(R) accepts for all a;R. Theerror probability of T is de�ned as the maximum accepting probability of T over oracles A of absolutedistance at least bd=2c from the code E; namely,maxA2f0;1gn s.t. �E(A)�bd=2c �PrR �TA(R) accepts�	(Nothing is required with respect to non-codewords which are \close" to the code.)

90 The second task is de�ned with respect to a \projection function" � and a pair of codes, E1 and E2.Loosely speaking, the task consists of checking if the string E1-encoded by the �rst oracle is mappedby � to the string that is E2-encoded by the second oracle.De�nition 9.2 (projection test): Let E1: f0; 1gm ! f0; 1gn and E2: f0; 1gk ! f0; 1gn0 be two codesand let � : f0; 1gm! f0; 1gk be a function. A projection test (with respect to the above) is a two-oraclemachine, T , such that TE1(a);E2(�(a))(R) accepts for all a;R. The error probability of T is de�ned asthe maximum accepting probability of T over oracles pairs (E1(a); E2(b)) where b 6= �(a); namely,maxa;b s.t. �(a)6=bnPrR hTE1(a);E2(b)(R) acceptsio(Nothing is required with respect to non-codewords.)Finally, we consider a test T which combines the two tests above; namely, T takes two oracles Aand B and performs a codeword test on A and a projection test on the pair (A;B).De�nition 9.3 (combined test): Let E1: f0; 1gm! f0; 1gn be a code of absolute distance d > 1 andE2: f0; 1gk ! f0; 1gn0 be two codes and let � : f0; 1gm ! f0; 1gk be a function. A combined testfor (E1; E2; �) is a two-oracle machine T such that TE1(a);E2(�(a))(R) accepts on all a;R. The errorprobability of T is de�ned as the maximum accepting probability of T over oracles pairs (A;B) whereeither �E1(A) � bd=2c or A = E1(a), B = E2(b) but �(a) 6= b; namely,max(A;B)2S �PrR �TA;B(R) accepts�	 :where S def= f(A;B) : (�E1(A) � bd=2c) or (9a; b s.t. A = E1(a) and B = E2(b) and �(a) 6= b)g.(Nothing is required with respect to non-codeword pairs, (A;B), which are \close" to some pair(E1(a); E2(b)) with �(a) 6= b.)Conventions and NotationsThe pattern of test T on access to oracle A (resp., oracles A and B) when using coin-sequence Rconsists of (R and) the sequence of queries and answers made by T . Namely, this pattern, denotedpatternT (A;R)g (resp., patternT (A;B;R)g), is de�ned as the sequence (R; q1; a1; :::; qt; at) where qi isthe ith query made by T on coin-sequence R and after receiving the answers a1; :::; ai�1. We include thequeries in the pattern for sake of clarity (but they can be easily reconstructed from the coin-sequenceand the answers). In case T uses two oracles, we may assume that the queries specify to which oraclethey are addressed. For simplicity, we assume in the rest of this subsection that the test has access toone oracle, denoted A.The set AccT (R) is de�ned to be the set of accepting patterns of T on coin-sequence R. Clearly,AccT (R) = fpatternT (A;R) : TA(R) acceptsgRecall that T is said to have free-bit complexity f if for each possible coin-sequence R it holds thatjAccT (R)j � 2f . We say that T has average free-bit complexity fav if ER [jAccT (R)j] � 2fav , when theexpectation is taken uniformly over all possible coin-sequences. The amortized free-bit complexity ofa test is de�ned as favlog2(1=�) , where fav is the average free-bit complexity of the test and � is its errorprobability.

919.2 Lower Bound for the Codeword TestProposition 9.4 For any code of absolute distance greater than 1, the Codeword Test has amortizedfree-bit complexity of at least 1� o(1).The amortization in the above proposition is to be understood as taking place on a �xed numberof free-bits whereas the length of the oracle grows. Actually, we can allow both the oracle-length andthe free-bit count to grow, provided that the logarithm of the number of codewords grows faster thanthe free-bit complexity. Alternatively, we can consider a �xed oracle length and a �x bound on thenumber of free-bits. Actually, this is done in the following technical lemma from which the aboveproposition follows.Lemma 9.5 Let E : f0; 1gm 7! f0; 1gn be a code of absolute distance d > 1, and let T be a codewordtest with respect to E having average free-bit complexity fav. Then, T has error probability at leastmax(2� 2fav ; 1F � 1M), where F = 2fav and M = 2m.In particular, if fav = 0 then the error is 1, and for fav � 1 the error is at least 1F � 1M .Proof: Fix an arbitrary coin-sequence R, and let FR denote the cardinality of the set AccT (R).Let a1; a2 be selected independently and uniformly in f0; 1gm, and consider the codewords E(a1) andE(a2). With probability 1M we have a1 = a2 and otherwise �(E(a1); E(a2)) � d. From a1 and a2,we construct an oracle A(a1; a2) as follows: If a1 = a2, then A = E(a1). Otherwise, we constructA(a1; a2) so that it agrees with the value of the bits of both E(ai)'s whenever they are the same andis at distance dd=2e from E(a1). This can be done as follows: let S be the set of positions on whichE(a1) and E2(a2) disagree and let S0 be a subset of S of cardinality dd=2e. Then A(a1; a2) equalsE(a1) on all positions not in S 0 (and equals E(a2) on the positions in S 0).We claim that, when a1 6= a2, the oracle A def= A(a1; a2) is at distance at least bd=2c from the code(i.e., �E(A) � bd=2c). This can be proved as follows: Consider any a 2 f0; 1gm and observe that bythe triangle inequality�(A;E(a))� �(E(a1); E(a))��(E(a1); A) � d� dd=2e = bd=2cWe now claim that Pra1 ;a2 hTA(a1;a2)(R) acceptsi � 1FRwhere the probability is taken uniformly over all possible choices of a1; a2 2 f0; 1gm. The key ob-servation is that if patternT (E(a1);R) equals patternT (E(a2);R), then patternT (A(a1; a2);R) will beequal to patternT (E(a1);R) (since no query of T (R) falls in the set S { de�ned above). Thus,since TE(a1)(R) accepts, TA(a1;a2)(R) must accept too. This suggests to lower bound the probabil-ity that TA(a1;a2)(R) accepts by the probability that patternT (E(a1);R) = patternT (E(a2);R). Con-sider an enumeration, �1; :::; �FR, of the patterns in AccT (R) and denote by pi the probability thatpatternT (E(a);R) equals the ith pattern in this enumeration, when a is uniformly selected in f0; 1gm(i.e., pi def= Pra [patternT (E(a);R) = �i]). Thus, when a1 and a2 are picked at random, the probabilitythat patternT (E(a1);R) = patternT (E(a2);R) is PFRi=1 p2i . Subject to the condition Pi pi = 1, thequantity PFRi=1 p2i is lower bounded by 1FR (with an equality occurring when the pi's are equal).The following observations now bound the error of T :Pra1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � Pra1;a2 hTA(a1 ;a2)(R) acceptsi� Pra1;a2 [a1 = a2]� 1FR � 1M

92All the above holds for any coin-sequence R. Now, we let R be uniformly chosen and getPrR;a1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � ER � 1FR �� 1M� 1F � 1M(The last inequality follows by Jensen's inequality.) Thus there must exist oracles a1 and a2 witha1 6= a2 such that PrR hTA(a1;a2)(R) acceptsi � 1F � 1MBut the oracle A(a1; a2) above satis�es �E(A(a1; a2)) � bd=2c implying that the error of T is at least1F � 1M .To prove that the error is at least 2� 2fav , we observe that if FR = 1 for some coin-sequence R thenpatternT (E(a1);R) = patternT (E(a2);R), for every two a1; a2 2 f0; 1gm. It follows that, for everya1 6= a2, given access to the oracle A(a1; a2) and using coin-sequence R, the test T accepts (and iswrong in doing so). Thus, for every a1 6= a2,PrR hTA(a1;a2)(R) acceptsi � PrR [FR = 1] = 1� PrR [FR > 1]and the error bound follows by using PrR [FR � 1 > 0] � ER [FR � 1] = F � 1.Proof of Proposition 9.4: Let T be a test for the code E : f0; 1g�! f0; 1g� so that E maps m-bitstrings into n(m)-bit strings. Suppose that T has average free-bit complexity f(m) and error �(m), asa function of m (the length of strings encoded by the oracle). We �rst assume that f(m) � 1. UsingLemma 9.5 (and letting �(m) def= 2f(m)�m), we lower bound the amortized free-bit complexity of T asfollows f(m)log2(1=�(m)) � f(m)� log2(12f(m) � 12m)= f(m)f(m)� log2(1� �(m))> f(m)f(m) + �(m)> 1� �(m)(For the last inequality, we have assumed f(m) � 1.) Thus, for this case, the proposition follows by ourconvention that the number of codewords (denoted 2m) grows faster than exponential in the free-bitcomplexity f(m) (i.e., �(m) = 2f(m)2m ! 0 with n!1). Finally, we need to address the case in whichf(m) � 1 does not hold. We consider two sub-cases. In the �rst sub-case, we assume that f(m)! 0for some subsequence of the m's. For these m's, we use Lemma 9.4's assertion that �(m) � 2� 2f(m).Setting g(m) def= 2f(m) � 1, we lower bound the amortized free-bit complexity byf(m)log2(1=�(m)) � log2(1 + g(m))� log2(1� g(m))! g(m)g(m)For the other sub-case, we have f(m) � t, for some constant t > 0. Applying T for t times we get atest T 0 with average free-bit complexity t � f(m) � 1 and error �0(m) = �(m)t, which maintains theamortized free-bit complexity of T (since f(m)� log2 �(m) = t�f(m)� log2 �0(m)). Applying the above analysis to T 0,the proposition follows.

939.3 Lower Bound for the Projection TestA projection function is a function � : f0; 1g� 7! f0; 1g� having the property that for every m thereexists a k so that � maps f0; 1gm onto f0; 1gk.Proposition 9.6 For any pair of codes used in the two oracles and any projection function, theProjection Test has amortized free-bit complexity of at least 1� o(1).Again, the proposition is proved by a technical lemma. Actually, the lemma refers to any function� : f0; 1gm 7! f0; 1gk and its conclusion depends on the cardinality of the range of � (which in case ofa projection function equals 2k). Abusing notations we let �(S) def= f�(a) : a2Sg.Lemma 9.7 Let E1 : f0; 1gm 7! f0; 1gn, E2 : f0; 1gk 7! f0; 1gn0 and � : f0; 1gm 7! f0; 1gk be as inDe�nition 9.2, and T be a projection test with respect to them having average free-bit complexity fav.Then, T has error probability at least 1F � 1K , where K = j�(f0; 1gm)j and F = 2fav . Furthermore, ifK > 1 then T has error probability at least 2� 2fav .Proof: Fixing an arbitrary coin-sequence R, let FR def= jfAccT (R)gj. We consider the behavior ofthe test T when given oracle access to a pair of randomly and independently selected codewords.Speci�cally, let S � f0; 1gm be a set of K strings such that for every b 2 �(f0; 1gm) there exists ana 2 S satisfying �(a) = b. We consider the behavior of T when given access to the oracles E1(a) andE2(�(a0)), where a and a0 are independently and uniformly selected in S. With probability 1K , wehave �(a) = �(a0). On the other hand we claim that, given access to such pair of random oracles, Taccepts with probability at least 1FR . Once the claim is proven, the lemma follows (as in the proof ofthe previous lemma).Consider the set of all FR possible accepting patterns of T on access to oracles, E1(a) and E2(�(a)),where a 2 S. Each such pattern consists of a pair (�; �), where � (resp., �) denotes the transcript ofthe test's interaction with E1(a) (resp., E2(�(a))). Enumerating all possible FR patterns, we denote bypi the probability that the ith pattern occurs, when T is given access to the oracle-pair (E1(a); E2(�(a))where a is uniformly selected in S. Namely,pi def= Pra2S [patternT (E1(a); E2(�(a));R) = (�i; �i)]where (�i; �i) is the ith accepting pattern for T (R). Clearly,Pra;a02S [patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R) = (�i; �i)] = p2i (18)We now claim that the probability that a pair of independently chosen random oracles (i.e., (E1(a); E2(b))selected by uniformly selecting a; a0 2 S and setting b = �(a0)) leads to the ith pattern is at least p2i ;namely, Pra;a02S [patternT (E1(a); E2(�(a0));R) = (�i; �i)] � p2i (19)Eq. (19) is proven by a cut-and-paste argument: Suppose p def= patternT (E1(a); E2(�(a));R) equalsp0 def= patternT (E1(a0); E2(�(a0));R) and consider a computation of TE1(a);E2(�(a0))(R). Proceeding byinduction, and assuming that the �rst t queries are answered as in p, we conclude that the t + 1stquery (in our \mixed" computation) is identical to the t + 1st query in p = p0. If this query isdirected to the �st oracle then it is answered by E1(a) (as in p) and otherwise it is answered byE2(�(a0)) (as in p0). In both cases the answer matches the t + 1st answer in p = p0. We concludethat whenever p = p0, the computation of TE1(a);E2(�(a0))(R) encounters the same pattern (p). Thus,the probability that the computation of TE1(a);E2(�(a0))(R) encounters the ith pattern is lower bounded

94by the expression in Eq. (18), and Eq. (19) follows. (We remark that for non-adaptive tests, theprobability that the ith pattern is encountered equals PFRi=1 p0ip00i , where p0i (resp., p00i) is the sum of allpj's satisfying �j = �i (resp., �j = �i). Actually, the same holds for any test which selects its queriesfor each oracle independently of answers obtained from the other oracle.)Using Eq. (19), we getPra;a02S [patternT (E1(a); E2(�(a0));R) 2 AccT (R)] � FRXi=1 p2i� 1FRand the main part of the lemma follows. Again, the furthermore part follows by observing for FR = 1,patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R), for every two a; a0 2 f0; 1gm. Again,this implies that, for every a1 6= a2, given access to the oracle-pair (E1(a); E2(�(a0))) and using coin-sequence R, the test T (wrongly) accepts.9.4 Lower Bound for the Combined TestProposition 9.8 For any pair of codes used in the two oracles, so that the �rst code has absolutedistance greater than 1, and for any projection function, the Combined Test has amortized free-bitcomplexity of at least 2� o(1).Again, the proposition is proved by a technical lemma. Loosely speaking, the lemma asserts that acombined test of free-bit complexity 2f must have error probability at least 18 � 2�f . The lower boundextends to the case where 2f is a bound on the average free-bit complexity; the error probability inthis case can be lower bounded by 364 � 2�f { see details below. It follows that the amortized free-bit complexity of such a test must be at least 2ff+5 � 2 (for large f 's). The restriction to large f 'sdoes not really weaken the result. Suppose on the contrary that there exists a test with amortizedfree-bit complexity fam. Then, for any su�cient large t, we can obtain a test with free-bit complexity2f def= t � fam and error 2�t. By the above t�famt � 2ff+5 � 2 (as f is now large).Lemma 9.9 Let E1 : f0; 1gm 7! f0; 1gn be a code of absolute distance greater than 1, E2 : f0; 1gk 7!f0; 1gn0, and � : f0; 1gm 7! f0; 1gk be a projection function. Suppose that T is a combined codewordand projection test with respect to the above having free-bit complexity 2f . Then, T has errorprobability at least 18F � 12K � 14M , where K = 2k, F = 2f , and M is the minimum, over all b 2 f0; 1gk,of the number of a 2 f0; 1gm projected by � to b (i.e.,M def= minb2f0;1gkfjfa : �(a)=bgjg). Furthermore,if 2f < 1 and maxfM;Kg > 1 then T has error probability 1.Proof: The \furthermore" part follows immediately by any of the furthermore parts of Lemma 9.5or Lemma 9.7 (as 22f must be an integer and so 2f < 1 implies f = 0). The proof of the mainpart of the lemma uses both strategies employed in the proofs of Lemmas 9.5 and 9.7. We considertwo cases. The �rst case is that for some E2(b), half of the possible (coin-sequences) R's have atmost F accepting patterns with respect to the coin-sequence R and second oracle B = E2(b). Inthis case we employ the strategy used in the proof of Lemma 9.5, restricted to oracles constructed bycombining two uniformly selected codewords E1(ai)'s satisfying �(ai) = b. The second case is that forevery b 2 f0; 1gk, for half of the possible (coin-sequences) R's, the number of accepting patterns withrespect to the coin-sequence R and second oracle B = E2(b) is at least F . In this case we show thatmany possible B's must �t into fewer than F2F accepting patterns and we may employ the strategyused in the proof of Lemma 9.7. Details follow.

95In the sequel � 2 [0; 1] is a constant to be determined later. (In the above motivating discussion wehave used � = 12 but a better bound follows by letting � be larger.)Case 1: there exists b 2 f0; 1gk so that for at least (1 � �) fraction of the possible (coin-sequences)R's, hereafter called good, the number of accepting patterns with respect to the coin-sequence R andsecond oracle (�xed to) B = E2(b) is at most F .Fixing this b, we consider M possible a's satisfying �(a) = b. Employing the argument of Lemma 9.5,we get that for each of these good R's, a random oracle A (constructed using two uniformly chosen a'sas above) is wrongly accepted with probability at least 1F � 1M . By an averaging argument, it followsthat there exists a pair of oracles (A;B) on which T errs with probability at least(1� �) � � 1F � 1M � (20)Case 2: for every b 2 f0; 1gk, for at least a � fraction of the possible (coin-sequences) R's, the numberof accepting patterns with respect to the coin-sequence R and second oracle B = E2(b) is at least F .Let < � be a parameter to be determined later. By a counting argument, for at least a ��1� fractionof the possible R's, hereafter called good, there exists a set, denoted �R, of at least � 2k possibleb 2 f0; 1gk so that there are at least F accepting patterns which are consistent with coin-sequenceR and second oracle �xed to B = E2(b). (Namely, let g denote the fraction of good R's. Theng + (1� g) � � � and g � ��1� follows.)Let S � f0; 1gm be a set of 2k strings, de�ned as in the proof of Lemma 9.7, so that � maps Sonto f0; 1gk. Fixing a good coin-sequence R, we adapt the strategy used in the proof of Lemma 9.7as follows. We consider a set SR � S of j�Rj strings so that � maps SR onto �R, and enumeratethe accepting patterns which occur when the test, using coins R, is given access to a oracle-pair(E1(a); E2(�(a))), where a is uniformly chosen in SR. We �rst claim that there are at most F suchpatterns. Namely,Claim: For any good R, jfpatternT (E1(a); E2(�(a));R) : a 2 SRgj � F .Proof: By de�nition of �R, for each b 2 �R, there are at least F accepting patterns consistent withthe coin-sequence R and the second oracle E2(b) (and out of them only one �ts the �rst oracle E1(a)where a 2 SR and �(a) = b). By a cut-and-paste argument, if (R; �; �) and (R; �0; �) are acceptingpatterns for second-oracle E2(b) and if (R; �; �) is an accepting pattern for second-oracle E2(b0) then(R; �0; �) is also an accepting pattern for second-oracle E2(b0). It follows that the accepting patternsof two E2(b)'s either collide or do not intersect. Thus, the number of accepting patterns for the various(E1(a); E2(�(a)))'s, where a 2 SR, is at most F2F = F and the claim follows. 2Now we consider what happens if one selects independently and uniformly a; a0 2 S. Following theproof of Lemma 9.7, with probability 1K , we have �(a) = �(a0) (and otherwise �(a) 6= �(a0)). Onthe other hand, given access to such pair of random oracles, the test accepts with probability at least2 � 1F . (The 2 factor is due to the probability that a; a0 2 SR, whereas the 1F factor corresponds tothe analysis which supposes that a and a0 are uniformly selected in SR).The above analysis holds for any good coin-sequence R. Using the lower bound on the fraction of goodR's, it follows that for a ��1� fraction of the R's, the probability that the test errs, on coin-sequence Rwhen given access to a random pair of oracles (selected as above), is at least 2F � 1K . By an averagingargument, there exists a pair of oracles for which the test errs with probability� � 1� � �2F � 1K� (21)

96Setting � = 34 and = 12 we lower bound the expressions in Eq. (20) and (21) by 14F � 14M and 18F � 12K ,respectively, and the lemma follows.To prove a bound for the case of average free-bit complexity 2f , we �rst apply Markov's Inequalityand conclude that all but an � fraction of the coin-sequences have at most G2 def= F2� accepting patterns(in which this �xed coin-sequence appears). (We can use any 0<�<1.) We then consider only thosecoin sequences (and apply the same argument as above to each of them). The averaging argument atthe end of the above proof then yields that there exists an oracle-pair on which T errs on at least a18G � 12K � 14M fraction of these coin-sequences. It follows that this oracle makes T err with probabilityat least (1� �) � (18G � 12K � 14M) (which equals (1� �) � (p�8F � 12K � 14M)). Using � = 14 , we get a lowerbound of 364F � 38K � 316M .

97Part IIIPCP: Properties and Transformations10 The Complexity of PCP and FPCPIn this section we present several results regarding the complexity of languages acceptable by proba-bilistically checkable proofs having, respectively, small query complexity, small amortized-query com-plexity and small free-bit complexity. Thus, in the current section, notations such as PCPc;s[r; q]stand for classes of languages. The results can be extended to classes of promise problems having suchprobabilistically checkable proofs.In this section, MIPc;s[r; p] denotes the class of languages accepted by a (one-round) p-proverinteractive proof system in which r is the randomness complexity, c is a lower bound on the probabilityof accepting yes-instances and s is an upper bound on the probability of accepting no-instances. Thecorresponding class for probabilistically checkable proofs is PCPc;s[r; q], where q denotes the numberof queries. In both classes only binary queries are allowed (indeed this is less standard for MIP).10.1 MIP versus PCPThe �rst part of the following lemma is folklore and is stated here for sake of completeness.Lemma 10.1 For all admissible functions c; s; r; p.(1) MIPc;s[r; p]� PCPc;s[r; p].(2) MIPc;s[r; p]� MIPc;2s[r; p� 1].Proof: Part (1) follows from the de�nition of PCP and MIP. Part (2) is shown as follows. Let V bean (r; p)-restricted MIP veri�er. We de�ne V 0 { an (r; p�1)-restricted veri�er who on input x behavesas follows:� V 0 tosses coins c for V .� V 0 refers the �rst p� 1 queries of V to the corresponding p� 1 provers obtaining answers (bits)a1; : : : ; ap�1, respectively.� V 0 accepts if and only if there exists ap 2 f0; 1g such that V would accept answers a1; : : : ; ap oninput x and random string c.Suppose that provers P1; : : : ; Pp convince V to accept x with probability �. Then, the proversP1; : : : ; Pp�1 convince V 0 to accept x with probability at least � (because if V (x) accepts the transcript(c; a1; :::; ap) then V 0(x) will accept the transcript (c; a1; :::; ap�1)). This justi�es the bound on thecompleteness probability of V 0. Suppose, on the other hand, that provers P1; : : : ; Pp�1 cause V 0 to ac-cept x with probability �. Consider a uniformly selected strategy for another prover, denoted Pp (i.e.,choose a random response for every question). Then, the probability that provers P1; : : : ; Pp cause Vto accept input x is at least 12 � � (because if V 0(x) accepts the transcript (c; a1; :::; ap�1) then thereexists a value ap 2 f0; 1g so that V (x) will accept the transcript (c; a1; :::; ap) and with probability onehalf Pp answer equals this ap). This justi�es the bound on the soundness probability of V 0.Containments of PCP systems in MIP systems are more problematic. The reader is referred to a paperby Ta-Shma [Ta-S]. That paper also contains a proof of the following result due to Bellare, Goldreichand Safra: PCPc;s(log; q) � MIPc;qq�s(log; q)Here we only consider the non-adaptive case, and obtain a di�erent bound on the soundness parameter:

98Proposition 10.2 Suppose L 2 PCPc;s(r; q) with a non-adaptive veri�er. Then L 2 MIPc0;s0(r +O(log q); q), where c0 = c+ p � (1� c), s0 = s+ p � (1� s) for any p � bq=2c=(1 + bq=2c).For q = 3, we may set p = 0:5 and obtain c0 = (c+ 1)=2 and s0 = (s+ 1)=2.Proof: We start with a non-adaptive PCP veri�er of q queries and construct a q-prover system asfollows. First we uniformly select coin tosses for the PCP veri�er, which de�nes q queries (here iswhere we use non-adaptivity). Next,� With probability p we select a query uniformly among these q queries, and forward it to all qprovers. We accept i� all provers answer in the same manner.� With probability 1� p we simulate the PCP system as follows. We uniformly select i 2 [q] andrefer the jth query of the veri�er to the (i + j)th prover. We accept i� the PCP veri�er wouldhave acceptedClearly, by setting all MIP-provers to equal the good oracle (of the PCP system), inputs in the languageare accepted with probability at least p � 1 + (1� p) � c = c+ p � (1� c).We now bound the acceptance probability of the MIP system for an input not in the language. Fixan arbitrary sequence of MIP-provers. Let � denote the probability, taken over the queries selectedby the PCP-veri�er as above, that the MIP-provers di�er on a random query. De�ne an oracle sothat on each query it equals the majority of the prover's answers (ties, in case of even q are brokenarbitrarily). Then, the probability that the MIP system accepts is bounded above byp � (1� �) + (1� p) � (s + bq=2c � �) (22)To justify the second term consider the simulation of the PCP system (which takes place with prob-ability 1 � p). In case the answers given by all MIP-provers equal the corresponding answers of thePCP-oracle (de�ned above), we bound the acceptance probability by soundness of the PCP system.Otherwise, there must be a query on which the relevant MIP-prover di�ers from the PCP-oracle. Foreach query this happens with probability at most bq=2cq (as, by de�nition, only a minority of proversdi�er from the oracle). Using the Union Bound, Eq. (22) follows. Using the de�nition of p, we havep � (1� �) + (1� p) � (s+ bq=2c � �) = p+ (1� p) � s � � � (p� (1� p) � bq=2c)� s + p � (1� s)and the proposition follows.10.2 Query complexity and amortized query complexityThe following proposition explores the limitations of probabilistically checkable proof systems whichuse logarithmic randomness and upto three queries. Some of the qualitative assertions are well-known;for example, when considering perfect completeness, 3 queries are the minimum needed (and su�cient[ALMSS]) to get above P.Proposition 10.3 (PCP systems with logarithmic randomness and at most 3 queries):(1) (PCP with 1 query is weak): For all admissible functions s; c : Z+ ! [0; 1], so that s is strictlysmaller than c, PCPc;s[log; 1] = P.(2) (One-sided error pcp with 2 queries is weak): For all admissible functions s : Z+ ! [0; 1] strictlyless than 1, PCP1;s[log; 2] = P.

99(3) (Two-sided error pcp with 2 queries is not weak): There exists 0 < s < c < 1 so that PCPc;s[log; 2] =NP. Furthermore, this holds for some c > 0:9 and s < 7374c.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:85+�[log; 3] = NP, 8� > 0.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 0:18, PCP1;s[log; 3] = P. Fur-thermore, 8s � 0:299, naPCP1;s[log; 3] = P, where naPCP is a restriction of PCP in which theveri�er is required to be non-adaptive.We remark that PCP1;0:8999[log; 3] = NP with a non-adaptive veri�er was presented in an earlierversion of this paper [BGS2]. Using Proposition 10.2, we have MIP1;0:95[log; 3] = NP.Proof of Proposition 10.3, Part (1): An oracle � maximizing the acceptance probability canbe constructed by scanning all possible random pads (random strings) and setting �(q) so that it\satis�es" the majority of random-pads for which the veri�er makes query q.Proof of Proposition 10.3, Part (2): The folklore proof commonly deals only with the non-adaptive case. In general, the veri�er V , demonstrating that L 2 PCP1;s[log; 2], may be adaptive.We assume, without loss of generality, that V always makes at least one query. Thus, after makingthe �rst query, V decides whether to accept, reject or make an additional query and accept only aspeci�c answer for it. Thus, the computation of V on input x, random pad c and access to a genericoracle can be captured by two Horn clauses, each corresponding to a di�erent answer-value for the�rst query. Speci�cally, suppose that V queries the oracle at location i and upon receiving value �accepts i� location j have value � . Then, we write the Horn clause ��i ! ��j . (In case V alwaysaccepts (resp., rejects) after obtaining value � from oracle location i, we write the clause ��i ! T(resp., ��i ! F).) In addition, for every i, we write the Horn clauses �0i ! (:�1i) and (:�0i) ! �1i .Thus, the computation of V on input x and access to a generic oracle can be captured by a Hornformula, denoted �x, in which Horn clauses correspond to the various (polynomially many) possible(random-pad,�rst-answer) pairs. Furthermore, �x can be constructed in polynomial-time given x (andV). Using a (polynomial-time) decision procedure for satis�ability of Horn Formulae, we are done.(Alternatively, we can use the linear-time decision procedure for 2-SAT due to Even et. al. [EIS].)Proof of Proposition 10.3, Part (4): To see that PCP1;s[log; poly] � NP, for every s < 1,consider a non-deterministic machine which tries to guess an oracle which makes the veri�er (of theabove system) always accept. The other direction (of Part (4)) is shown in Theorem 4.5.Proof of Proposition 10.3, Part (3): To see that PCPc;s[log; poly] � NP, for every s < c,consider a non-deterministic machine which tries to guess an oracle which makes the veri�er acceptwith probability at least c. The NP � PCPc;s[log; 2] result follows from the hardness of approximatingMax2SAT. Speci�cally, suppose that L �KD Gap-2SATc;s. Then we can present a PCPc;s[log; 2] systemfor L as follows. On input x, the veri�er in this system performs the reduction (of L to the promiseproblem) obtaining a 2CNF formula �x. Next it uniformly selects a clause of �x and queries the oraclefor the values of the variables in this clause (accepting accordingly). Using Theorem 4.6 (Part 3),NP �KD Gap-2SATc;s for some c > 0:9 and s < 7374 � c, and NP � PCPc;s[log; 2] follows.Remark 10.4 The ratio c=s has been subsequently increased to (10=9)��, for any � > 0 (cf., [TSSW,H3]).Proof of Proposition 10.3, Part (5): The result for general veri�ers follows from Lemma 4.11 andthe fact that MaxSAT can be approximated to within a 0:795 = 0:75+ 0:184 factor in polynomial-time

100(cf., [TSSW]). The (tedious) proof of the non-adaptive case can be found in earlier versions of thispaper [BGS2]. The paper of Trevisan et. al. [TSSW] contains a stronger result which holds for allveri�ers; that is, PCP1;0:367[log; 3] = P.The latter result (i.e., PCP1;0:367[log; 3] = P) is weaker than what can be proven for MIP proof systems(see next corollary). This contrast may provide a testing ground to separate PCP from MIP, a questionraised by [BGLR].Corollary 10.5 For s < 1=2, MIP1;s[coins = log; provers = 3] = P.Proof: Combining (the two parts of) Lemma 10.1 and (Part 2 of) Proposition 10.3, we have MIP1;s[log; 3] �MIP1;2s[log; 2] � PCP1;2s[log; 2] � P.A general result which relates the query complexity of a probabilistically checkable proof system andthe ratio between the acceptance probabilities of yes-instances and no-instances, follows {Lemma 10.6 For all admissible functions c; s; q; r; l such that cs > 2q,PCPc;s[r; q] � RTIME�poly� nc� 2qs��Furthermore, PCPc;s[r; q] � PSPACE, and if r and q are both logarithmically bounded then PCPc;s[r; q] =P.Proof: Let L 2 PCPc;s[r; q] and V be a veri�er demonstrating this fact. Observe that for x 2 L, theprobability that V accepts x, given access to a random oracle, is at least c2q . On the other hand, forx 62 L, the probability that V accepts x, given access to any oracle, is at most s < c2q . Thus, we candecide if x is in L by simulating the execution of V with access to a random oracle and estimating theacceptance probability, over V 's random choices and all possible oracles. In particular, we can estimatethis probability upto an � def= 12 � (s� c2q) additive term, with very high probability, by taking poly(1=�)samples. Alternatively, we can compute this probability in polynomial-space. Finally, in case r and qare both logarithmically bounded, we can (exactly) compute the probability that V accepts x, givenaccess to a random oracle. To this end we loop through all possible random-pads for V and for eachpad consider all possibilities of setting the oracle bits examined by V . Thus, for s < c2q , we get adeterministic polynomial-time decision procedure.The last assertion in the above lemma (i.e., PCPc;s[log; q] = P for cs > 2q) cannot be strengthen byomitting the (logarithmic) bound on q since NP = PCP1;0[0; poly]. On the other hand, recalling thede�nition of PCP we immediately getCorollary 10.7 Let � : Z+ ! [0; 1] be an admissible function strictly greater than 0. Then, for everyadmissible function c : Z+ ! [0; 1], PCPc[log; 1� �] = PIn particular, this holds for c = 1.Proof: L 2 PCPc[log; 1 � �] implies that for some logarithmically bounded function m, we haveL 2 PCPc;2�m�c[log; (1� �) �m] and the corollary follows.PCP with super-logarithmic randomness. The above results are focused on pcp systems withlogarithmic randomness. Proof systems with unrestricted randomness (as considered in the nextproposition) may also provide some indication to the e�ect of very low query complexity. The resultswe obtain are somewhat analogous to those of Proposition 10.3. Recall that PCP1;12 [poly; poly] equalsNEXPT (Non-deterministic exponential time) [BFL]. Thus, the power of pcp systems with polynomialrandomness has to be compared against NEXPT.

101Proposition 10.8 (general PCP systems with at most 3 queries):(1) (PCP with 1 query is relatively very weak): For all admissible functions s; c : Z+ ! [0; 1], so thatc(n)� s(n) is non-negligible10 PCPc;s[poly; 1] � AMwhere AM is the class of languages having one-round Arthur-Merlin proof systems (cf., [Bab]).(2) (One-sided error pcp with 2 queries is relatively weak): For all admissible functions s : Z+ ! [0; 1]strictly less than 1, PCP1;s[poly; 2] � PSPACE.(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < c < 1so that PCPc;s[poly; 2] = NEXPT.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:85+�[poly; 3] = NEXPT, 8� > 0.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 18 , PCP1;s[poly; 3] = PSPACE.Furthermore, 8s � 0:299, naPCP1;s[poly; 3] = PSPACE.The �rst part of the proposition may be hard to improve since, as indicated in Proposition 10.9Part (6), Graph Non-Isomorphism is in PCP1;12 [poly; 1].Proof of Proposition 10.8, Part (1): We �rst observe that a 1-query pcp system is actually aone-round interactive proof system (cf., [GMR]). (The completeness and soundness bounds are as inthe pcp system.) Using well-known transformations we obtain the claimed result. Speci�cally, we�rst reduce the error of the interactive proof by parallel repetition, next transform it into an Arthur-Merlin interactive proof [GS], and �nally transform it into an Arthur-Merlin interactive proof of perfectcompleteness [FGMSZ]. We stress that all the transformations maintain the number of rounds upto aconstant and that the constant-round Arthur-Merlin hierarchy collapses to one-round [Bab].Proof of Proposition 10.8, Parts (3) and (4): For these parts we observe that the proof systemsused in the corresponding parts of the proof of Proposition 10.3, do \scale-up". Speci�cally, it iseasy to see that the outer veri�er used for all proof systems in this paper does scale-up, yieldinga canonical outer veri�er of randomness complexity O(log(T (n)) for any language in Ntime(T (n)),provided n < T (n) < 2poly(n). Furthermore, all inner-veri�ers used in the paper operate on constantsized oracles and so the composed veri�er maintains the time and randomness complexities of theouter veri�er. In particular, the veri�er used for establishing Theorem 4.5 can be scaled-up to yieldPart (4). The same holds for the veri�er used for establishing Part (3) of Proposition 10.3. (Note thatalthough the exposition of the proof in Proposition 10.3 is in terms of reducing NP to Max2SAT, whatactually happens is that the veri�er used to establish the NP-hardness of Max2SAT (cf., Section 4.2)is implemented by a veri�er which makes only two queries (out of a constant number of possibilities).)Proof of Proposition 10.8, Part (2): Following the strategy of the proof of the analogous part inProposition 10.3, we obtain a polynomial-space reduction of L 2 PCP1;s[poly; 2] to the set of satis�able2-Horn formulae (i.e., Horn formulae in which each clause has at most 2 literals). Namely, on inputx, the reduction uses space poly(jxj) and produces a Horn formula �x (of size exponential in jxj) sothat x 2 L i� �x is satis�able. Using a poly-logarithmic decision procedure for satis�ability of 2-Hornformulae11, we can decide if �x is satis�able using poly(jxj)-space.10A function f : Z+ ! Z+ is called non-negligible if there exists a positive polynomial p so that 8n : f(n) > 1p(n) .11For example, consider the following procedure. Given a 2-Horn formula, we construct a directed graph in which thevertices are the literals of the formula and there is an directed edge from literal x to literal y if the formula containsthe clause x! y. One can easily verify that the formula is not satis�ed i� there exists a variable for which every truthassignment yields a contradiction (i.e., \forcing paths" to contradicting values { cf., [EIS]). Thus, a non-deterministic

102Proof of Proposition 10.8, Part (5): The result for non-adaptive veri�ers follows from Part (2) byusing the same strategy as in the analogous proof in Proposition 10.3. The result for general veri�ersfollows by the Furthermore-part of Lemma 10.6 (i.e., PCPc;s[poly; q] = PSPACE for cs > 2q).10.3 Free-bit complexityThe class FPCPc;s[r; f] is de�ned analogously to the class PCPc;s[r; q], except that we consider thefree-bit complexity (denoted f) instead of the query complexity (denoted q). The following propositiondemonstrates the limitations of probabilistically checkable proof systems with free-bit complexitybounded by 1. We do not believe that similar limitations hold for amortized free-bit complexity.12The �rst three items refer to proof systems with logarithmic randomness. The second item showsthat such systems with perfect completenss and free-bit complexity 1 only exists for P (and are henceweak). In contrast, the �rst item shows the crucial role of perfect completeness in the former negativeresult: Speci�cally, proof systems with two-sided error (non-perfect completeness) having free-bitcomplexity zero su�ce for NP . The third item asserts that the second item cannot be strengthenedwith respect to increasing the free-bit complexity. Proof systems with unrestricted randomness (asconsidered in the last 3 items) may also provide some indication to the e�ect of very low free-bitcomplexity. The last item can be viewed as (weak) evidence that the result in the fourth item cannotbe \drastically improved" (e.g., to yield FPCP1;s[poly; 0] � BPP).We make essential use of the ability to e�ciently generate accepting computations, and the resultsmay not hold otherwise.13Proposition 10.9 (PCP systems with low free-bit complexity): Let s : Z+ ! [0; 1] be an admissiblefunction strictly smaller than 1. Then,(1) (PCP with logarithmic randomness and 0 free-bit):There exists s < 0:794 so that NP � FPCP14 ; s4 [log; 0]. Thus, NP = FPCP14 [log; 0].For every � > 0, NP � FPCP1��;1�1615 ��[log; 0].For every � > 0, FPCP1��;1�2��[log; 0] � P.(2) (Limitations of PCP with logarithmic randomness and 1 free-bit):FPCP1;s[log; 1] = P. Also, FPCP1;1�(1=poly)[coins = poly ; free = 1 ; pen = poly] � BPP.(3) (\Tightness" of Item 2): There exists s < 0:794 so thatNP � FPCP1;s[log; 2];NP � FPCP1; 1+s2 [log; f] where f = log2 3 (i.e., 2f = 3);NP � FPCP12 ; s2 [log; 1].(4) (General pcp with 0 free-bit): FPCP1;s[poly; 0] � coNP.(5) (general pcp with 1 free-bit): FPCP1;s[poly; 1] � PSPACE.(6) (Examples for pcp with 0 free-bit): Graph Non-Isomorphism, GNI, has a PCP system with perfectcompleteness and soundness bound 12 , in which the veri�er makes a single query and this queryis free. Namely, GNI 2 FPCP1; 12 [coins = poly ; free = 0 ; query = 1]logspace machine can guess this variable and check that both possible truth assignments (to it) yield contradictions. Thelatter checking reduces to guessing the variable for which a conicting assignment is implied and verifying the conict vias-t directed connectivity. Since the latter task is in NL, we are done. (Actually, 2SAT is complete for coNL; see [JLL].)12 The conjecture was stated for systems with perfect completeness, and has been subsequently proven by H�astad [H2](who proved that NP = FPCP1[log; �], for every � > 0). For systems with two-sided error probability, we knew thatthey can recognize NP languages using zero free-bits { see below.13 We note, however, that the more relaxed notion of free-bits may be less relevant to proving hardness of approximationresults.

103The same holds for QNR (\Quadratic Non-Residuosity" (cf., [GMR])) the set of integer pairs (x;N)so that x is a quadratic non-residue modulo N .Proof of Proposition 10.9, Part (3): The �rst claim of Part 3 is justi�ed by Theorem 5.4.Applying Proposition 11.9 to this veri�er (which indeed satis�es the condition of this proposition),yields the second claim of Part 3. Applying Proposition 11.8 to the same veri�er (with k = 1 < f = 2),the third claim of Part 3 follows.Proof of Proposition 10.9, Part (1): Applying Proposition 11.8 (with k = f = 2) to thethe veri�er of Theorem 5.4, the �rst claim of Part 1 follows. To prove the second claim, we applyProposition 11.10 to the �rst claim and obtain NP � FPCP1���(1�0:25);1���(1�0:2)[log; 0] (which holdsfor any �). Substituting � = 43�, the second claim follows.The last claim follow by the relationship between the Minimum Vertex Cover problem and the classFPCPc;s[log; 0] { see proof of Proposition 5.6. Speci�cally, consider the FGLSS reduction/graph ofa proof system witnessing L 2 FPCP1��;1�2�[log; 0] (actually consider the complement graph whereone asks about the size of the independent set). Then, for each x 2 L this graph has a vertex coverof density at most �, whereas for x 62 L this graph has no vertex cover of density 2�. Using Gavril'sapproximation algorithm (cf. [GJ2]), these two cases are distinguishable in polynomial-time and sothe third claim follows.Proof of Proposition 10.9, Part (4): Let L 2 PCP1;s[poly; 0] and V be a veri�er demonstratingthis fact. By de�nition, for every possible sequence of coin tosses for V , there exists at most oneaccepting con�guration (of oracle answers to the queries made by V). Furthermore, by de�nition,this accepting con�guration (if it exists) can be generated in polynomial time, from the coin-sequence.Following is a non-deterministic procedure that accepts L. It starts by guessing two sequences ofcoin tosses for V , generating the corresponding accepting con�gurations and checking whether theyare consistent. (The input is accepted by this non-deterministic procedure i� the two coin-sequencesguessed yield conicting con�gurations.) Clearly, if x 2 L then, for all possible pairs of coin-sequences,accepting con�gurations exist and are consistent (since an oracle which always makes V accept x doesexist). Thus, x 2 L is never accepted by the non-deterministic procedure. On the other hand, if allpairs of coin-sequences yield accepting and mutually consistent con�gurations then an oracle whichalways makes V accept x emerges. Thus, for every x 62 L there exists a guess which makes thenon-deterministic procedure accept x.Proof of Proposition 10.9, Parts (2) and (5): Here we consider proofs with free-bit complexity1. Thus, for each possible sequence of coin tosses, there exist at most two accepting con�gurations(which again can be e�ciently found given the coin-sequence). We refer to these two possible acceptingcon�guration as to the 1-con�guration and the 2-con�guration of the coin-sequence. In case a speci�ccoin-sequence has less than two accepting con�gurations, we introduce dummy con�gurations so thatnow each coin-sequence has two associated con�gurations. Given an input x to such a pcp system,we consider the following 2CNF formula representing all possible computations of the veri�er with ageneric oracle. For each possible sequence of coin tosses, c, we introduce a pair of Boolean variables, �1cand �2c , representing which of the two associated con�gurations is encountered (e.g., �1c = T means thatthe 1-con�guration is encountered). To enforce that a single accepting con�guration is encounteredwe introduce the clauses (�1c _ �2c) and ((:�1c)_ (:�2c)). In addition, in case the �-con�guration of c isnot accepting (but rather a dummy con�guration) we introduce the clause (:��c) thus \disallowing" acomputation in which it is encountered. Finally, for each pair of coin-sequences we introduce clausesdisallowing inconsistencies. Namely, suppose that the �-con�guration of c is inconsistent with the

104� -con�guration of c0, then we introduce the clause ((:��c) _ (:��c0)), which is logically equivalent to:(��c ^ ��c0). The resulting 2CNF formula, �x, is satis�able if and only if there exists an oracle whichcauses V to accept x with probability 1. Thus, given x, we need to test if �x is satis�able. We considertwo cases.(1) In case V uses logarithmically many coins, the 2CNF formula �x can be generated from x inpolynomial-time. Using a polynomial-time decision procedure for satis�ability of 2CNF formu-lae, we conclude that FPCP1;s[log; 1] = P. Furthermore, using Proposition 11.2, we can ran-domly reduce FPCP1;1�(1=poly)[poly; free = 1; pen = poly] to FPCP1;1�(1=poly)[log; free = 1], andFPCP1;1�(1=poly)[poly; free = 1; pen = poly] � BPP follows. This establishes Part (2).(2) In general (V may make polynomially many coin tosses), the 2CNF formula �x may have ex-ponential (in jxj) length. Yet, it can be generated from x in polynomial-space. Using a poly-logarithmic-space decision procedure for satis�ability of 2CNF formulae14, we can decide if �x issatis�able using poly(jxj)-space. Part (5) (i.e., FPCP1;s[poly; 1] � PSPACE) follows.Proof of Proposition 10.9, Part (6): We merely note that the interactive proof presentedin [GMW] for Graph Non-Isomorphism15 constitute a 1-query pcp system with perfect complete-ness and soundness bound 12 . Furthermore, the query made by the verify has a unique acceptableanswer and thus the free-bit complexity of this system is zero. The same holds for the interactiveproof presented in [GMR] for Quadratic Non-Residuosity QNR, which is actually the inspiration to theproof in [GMW].10.4 Query complexity versus free-bit complexityThe following proposition quanti�es the intuition that not all queries are \undetermined" (i.e., thatthe free-bit complexity is lower than the query complexity). Furthermore, as a corollary we obtain thatthe amortized (average) free-bit complexity is at least 1 unit less than the amortized query complexity.Proposition 10.10 For admissible functions c; s; r; q such that r(n); q(n) = O(logn).PCPc;s[r; q]� PCPc;s[coins = r ; freeav = q � log2(1=s)] (23)Furthermore, for every admissible function t, PCPc;s[r; q] � FPCPc;(2t+1)�s[r; q� t]:Proof: Let L 2 PCPc;s[r; q] and let V be the veri�er demonstrating this. Fix an input x 2 �n, and letr = r(n); q = q(n); s = s(n). For a random string R 2 f0; 1gr, let F xR denote the number of acceptingpatterns of V , i.e., F xR = jpatternV (x;R)j. We �rst claim that if ER [F xR] > 2q � s, then x 2 L. This istrue since a random oracle � is accepted with probability at least ER [F xR � 2�q], and so if the claim werenot to hold we would have reached contradiction to the soundness condition (i.e., x 62 L is acceptedwith probability strictly larger than s).We now construct a veri�er, denoted V 0, witnessing L 2 FPCPavc;s[r; q � log2(1=s)]: On input x, theveri�er �rst computes ER [F xR] (by scanning all possible R's and generating all accepting patterns foreach of them). If ER [F xR]) > 2q � s, then V 0 accepts x (without querying the oracle). Otherwise (i.e.,14For example, note that 2CNF formulae can be written in Horn form and use the procedure described in the proof ofProposition 10.8 Part (2).15On input a pair of graphs, G0 and G1, the veri�er uniformly selects i 2 f0; 1g and generates a random isomorphiccopy of Gi, denoted H. This graph H is the single query made by the veri�er, which accepts if and only if the answerequals i.

105if ER [F xR]) � 2q � s), then V 0 simulates V and accepts if V accepts. It follows that the average free-bitcomplexity of V 0 on input x equals the corresponding quantify for V , provided the latter is at mostq � log2(1=s), and equals zero otherwise. The �rst part of the proposition follows.To establish the second part, for some t = t(n), we construct a veri�er V 00 which, on input x, proceedsas follows. First, V 00 computes q def= ER [F xR] and accepts if q > s2q (just as V 0). In case q � s2q, thenew veri�er proceeds di�erently: It randomly selects R as V does and computes F xR. If F xR > 2q�t thenV 00 accepts and otherwise it invokes V on input x and coins R. Clearly, this guarantees that the free-bitcomplexity of V 00 is at most q � t. To analyze the soundness of V 00, note that when ER [F xR] � s2q , itfollows that PrR [F xR > 2q�t] � 2t � s (Markov Inequality). Thus, the soundness error of V 00 is at mosts+ 2ts and the second part follows.By computing the amortized average free-bit complexity of the class of languages in the right handside of Eq. (23) above, we obtain the following consequence.Corollary 10.11 For admissible functions c; r; q with r(n); q(n) = O(logn),PCPc[r; q] � FPCPavc [r; q � 1]:where FPCPav� [�; f] denotes a class analogous to FPCP�[�; f] in which average free-bit complexity ismeasured instead of (worst-case) free-bit complexity.Proof: For some function m, we havePCPc[r; q] � PCPc;c�2�m [r; qm]� FPCPavc;c�2�m [r; qm�m] � FPCPavc [r; q � 1]:where the second inclusion is due to Eq. (23).The above corollary clinches the argument that the amortized query complexity is incapable of captur-ing the approximability of the clique function. Previously we had argued thus based on the assumptionthat the clique number may be hard to approximate to within N 12 (i.e., establishing such a clique NP-hardness would require showing that NP � PCP[log; 1� �], for every � > 0, which is impossible16 aswe've shown that PCP[log; 1 � �] � P). Now, we can remove this assumption also.17 Suppose that,for some g (e.g., g = 32), MaxClique is NP-hard to approximate to within a N1=(1+g) factor, but it canbe approximated to within a N1=(1+g��) factor in polynomial-time, for every � > 0 (actually, it su�cesto postulate that MaxClique can be approximated to within a N1=g factor in polynomial-time). Fur-thermore, supposed that the hardness result is demonstrated by showing that NP � PCP[log; g� �],for every � > 0. Then, using the above corollary, we get NP � FPCPav[log; g � 1 � �], for every� > 0, and an NP-hardness result of clique approximation18 upto a N1=(1+(g�1��)+�) = N1=g follows,in contradiction to our hypothesis that such approximations could be achieved in polynomial time.To summarize, attempts to establish the factor N1=(g+1) for which it is NP-hard to approximate Max-Clique via amortized query complexity will always fall at least one unit away from the truth; whereasamortized free-bit complexity will yield the right answer.16The entire discussion assumes P 6= NP. The discussion is anyhow moot otherwise.17In retrospect, there is no reason to remove this assumption as it has been proven to hold in [H2]. However, this wasnot known at the time the current work was done.18 Here we use the observation that the FGLSS-reduction works also for amortized average free-bit complexity.

10611 Transformations of FPCP SystemsWe present several useful transformations which can be applied to pcp systems. These fall into twomain categories:(1) Transformations which amplify the (completeness versus soundness) gap of the proof system,while preserving (or almost preserving) its amortized free-bit complexity.(2) Transformations which move the gap location (or, equivalently, the completeness parameter).The gap itself is almost preserved but the moving it changes the free-bit complexity (and thusthe amortized free bit complexity is not preserved). Speci�cally, moving the gap `up' requiresincreasing the free-bit complexity, whereas moving the gap `down' allows to decrease the free-bitcomplexity.Most of these transformations are analogous to transformations which can be applied to graphs withrespect to the Max-Clique approximation problem. In view of the relation between FPCP and theclique promise problem (shown in Section 8), this analogy is hardly surprising.In this section, we use a more extensive FPCP notation which refers to promise problems (ratherthan to languages) and introduce an additional parameter { the proof length. Speci�cally, FPCPc;s[r; f; l]refers to randomness complexity r, free-bit complexity f and proof-length l.11.1 Gap ampli�cations maintaining amortized free-bit complexityWe start by stating the simple fact that the ratio between the completeness and soundness bounds(also referred to as gap) is ampli�ed (i.e., raise to the power k) when one repeats the pcp system (ktimes). Note, however, that if the original system is not perfectly complete then the completenessbound in the resulting system gets decreased.Proposition 11.1 (simple gap ampli�cation): For all c; s : Z+ ! [0; 1] and k : Z+ ! Z+,FPCPc;s[r; f; l]� FPCPck;sk [kr; kf; l]:Proof: Let (Y;N) 2 FPCPc;s[r; f; l] and let V be a veri�er witnessing this with query complexityq : Z+ ! Z+. Given k : Z+ ! Z+, we de�ne a veri�er V (k) as follows: On input x 2 f0; 1gn, letr = r(n); k = k(n); f = f(n); l = l(n) and q = q(n).� V (k) picks k random strings c(1); : : : ; c(k) uniformly and independently in f0; 1gr.� For i = 1 to k, veri�er V (k) simulates the actions of V on input x and random string c(i). Veri�erV (k) accepts if V accepts on each of these k instances.Clearly, V (k) tosses kr coins and examines the l-bit long oracle in at most kq bits, where at most kf ofthese are free. For every x, if the probability that V accepts x, given access to oracle �, is p then theprobability that V (k) accepts x, given access to � is exactly pk. Thus, (Y;N) 2 FPCPck;sk [kr; kf; l],and oracles can be transformed (by identity) from one pcp system to the other.Next, we show that in some sense the randomness-complexity of a proof system need not be higherthan logarithmic in the length of the proofs/oracles employed. Speci�cally, we show how to randomlyreduce languages proven by the �rst kind of systems into languages proven by the second kind. Thus,whenever one is interested in the computational complexity of languages proven via pcp systems,one may assume that the system is of the second type. Recall that �KR denotes a randomized Karpreduction.

107Proposition 11.2 (reducing randomness): There exists a constant > 0 so that(1) (for perfect completeness): For every two admissible functions s; � : Z+ ! [0; 1],FPCP1;s[r; f; l] �KR FPCP1;s0[r0; f; l]where s0 = (1 + �) � s and r0 = + log2(l=�2s).(2) (for two-sided error): For every four admissible functions c; s; �1; �2 : Z+ ! [0; 1],FPCPc;s[r; f; l] �KR FPCPc0;s0 [r0; f; l]where c0 = 1� (1 + �1) � (1� c) � c� �1, s0 = (1 + �2) � sand r0 = +maxf� log2(�21(1� c)) ; log2(l)� log2(�22s)g.Proof: The proof is reminiscent of Adleman's proof that RP � P= poly [Ad]. Suppose we are givena pcp system for which we want to reduce the randomness complexity. The idea is that it su�ces tochoose the random pad for the veri�er out of a relatively small set of possibilities (instead than from all2r possibilities). Furthermore, most small sets (i.e., sets of size linear in l) are good for this purpose.This suggest randomly mapping an input x for the original pcp system into an input (x;R) for thenew system, where R is a random set of m = O(l) possible random-pads for the original system. Thenew veri�er will select a random-pad uniformly in R, thus using only log2 jRj random coins, and runthe original veri�er using this random-pad. Details follow.We start with the simpler case stated in Part (1). Let (Y;N) 2 FPCP1;s[r; f; l] and V be a veri�erdemonstrating this fact. The random reduction maps x 2 f0; 1gn to (x;R), where R is a uniformlychosen m-multi-subset of f0; 1gr for l def= l(n), r def= r(n), s def= s(n), � def= �(n) and m def= l�2s . (Theconstant is chosen to make the Cherno� bound, used below, hold.) On input (x;R), the new veri�erV 0 uniformly selects c 2 R and invokes V with input x and random-pad c. Clearly, the complexitiesof V 0 are as claimed above. Also, assuming that V always accepts x, when given access to an oracle �then, for every possible pair (x;R) to which x is mapped, V 0 always accepts (x;R) when given accessto the oracle �. It remains to upper bound, for each x 62 L and most R's, the probability that V 0accepts (x;R) when given access to an arbitrary oracle.Fixing any x 62 L and any oracle �, we bound the probability that V 0, give access to �, accepts (x;R)for most R's. A set R is called bad for x with respect to � if for more than a s0 fraction of the c 2 R theveri�er V accepts x when given access to � and random-pad c. Let R = (r(1); :::; r(m)) be a uniformlyselected multi-set. For every i 2 [m] (a possible random choice of V 0), we de�ne a 0-1 random variable�i so that it is 1 i� V on random-pad r(i) and access to oracle � accepts the input x. Clearly, the �i'sare mutually independent and each equals 1 with probability � � s. Using a multiplicative Cherno�Bound (cf. [MoRa, Theorem 4.3]), the probability that a random R is bad (for x w.r.t. �) is boundedby Pr" mXi=1 �i � (1 + �) �ms # < 2�
(�2�ms)Thus, by the choice of m, the probability that a random R is bad for x, with respect to any �xedoracle, is smaller than 14 � 2�l. Since they are only 2l relevant oracles, the �rst part of the propositionfollows.For the second part of the proposition, we repeat the same argument, except that now we need totake care of the completeness bound in the resulting pcp system. This is done similarly to the waywe dealt with the soundness bound, except that we do not need to consider all possible oracles { itsu�ces to consider the best oracle for any x 2 Y . When applying the multiplicative Cherno� boundit is important to note that, since we are interested in the rejection-event, the relevant expectation is

108m � (1� c) (and not m � c). Thus, as long as m � 2�21(1�c) , at least 34 of the possible sets R cause V 0 toaccept x 2 Y with probability at least 1 � (1 + �1) � (1 � c) = c� (1 � c)�1. The second part of theproposition follows.Combining Propositions 11.1 and 11.2, we obtain a randomized reduction of pcp systems which yieldsthe e�ect of Proposition 11.1 at much lower (and in fact minimal) cost in the randomness complexity ofthe resulting pcp system. This reduction is analogous to the well-known transformation of Berman andSchnitger [BeSc]. The reduction (in either forms), plays a central role in deriving clique approximationresults via the FGLSS method: applying the FGLSS-reduction to proof systems obtained via the seconditem (below), one derives graphs of size N def= 2(1+�+f)�t with clique-gap 2t (which can be rewritten asN1=(1+f+�)). For sake of simplicity, we only state the case of perfect completeness.Corollary 11.3 (probabilistic gap ampli�cation at minimal randomness cost):(1) (Combining the two propositions): For every admissible k : Z+ ! Z+,PCP1;1=2[coins = r ; query = q ; free = f ; pen = l] �KR FPCP1;2�k+1 [r+ log2 q+O(1)+ k; kf; l] :(2) (using amortized free-bit complexity): For every � > 0, there exists a constant c so thatFPCP[log; f; l] �KR FPCP1;2�t[(1 + �) � t; f � t; l]where t(n) = c log2 n.Proof: Suppose that (Y;N) 2 FPCP1;1=2[r; f; l]. Clearly, l � 2r � q, where q(n) = poly(n) is thequery complexity of the veri�er. Then, applying Proposition 11.1, we get (Y;N) 2 FPCP1;1=2k[kr;kf; 2r � q]. Applying Part (1) of Proposition 11.2, we obtain (Y;N) �KR FPCP1; 12k�1 [r0; kf], wherer0 = O(1) + log2(2rq=2�k) = O(1) + r + k + log2 q. The �rst part of the corollary follows.Suppose now that a language L has a proof system as in the hypothesis of the second part. Then, thereexists a logarithmically bounded function m so that L 2 FPCP1;1=2m[r;mf; l], where r(n) � � � log2 nand l(n) � n� for some constants � and �. Invoking a similar argument (to the above), we getL �KR FPCP1; 12km�1 [r0; k �mf], where r0(n) = O(1) + km+ (�+ �) � log2 n. Now, setting k(n) so thatk(n) �m(n) � �+�� � log2 n, and the corollary follows.An alternative gap ampli�cation procedure which does not employ randomized reductions is presentedbelow. This transformation increases the randomness complexity of the pcp system more than therandomized reduction presented above (i.e., r0 � O(r) + 2k rather than r0 � r + k as in Item (1) ofCorollary 11.3). The transformation is used to obtain in-approximability results under the assumptionP 6= NP (rather than under NP 6� BPP). Again, we only state the case of perfect completeness.Proposition 11.4 (deterministic gap ampli�cation at low randomness cost): For every �; s > 0 andevery admissible function k :Z+!Z+FPCP1;s[r; f; l]� FPCP1;sk[O(r) + (2 + �) � k � log(1=s); (1+ �) � kf; l]:Actually, the constant in the O-notation is minf1; 2+(4=�)log2(1=s)g.We use random walks on expander graphs for error reduction (cf., [AKS, CW]). The value of theconstant multiplier of k log(1=s) in the randomness complexity of the resulting pcp system, dependson the expander graph used. Speci�cally, using a degree d expander graph with second eigenvalue �

109yields a factor of log2 d1+log2 � . Thus, it is essential to use Ramanujan graphs [LPS] in order to obtain theclaimed constant of 2 + �.Proof of Proposition 11.4: For simplicity assume s = 1=2. The idea is to use a \pseudorandom"sequence generated by a random walk on an expander graph in order to get error reduction at moderaterandomness cost. Speci�cally, we will use a Ramanujan expander graph of constant degree d andsecond eigenvalue � � 2pd (cf., [LPS]). The constant d will be determined so that d > 24+ 8� (andd < 26+8�). It is well-known that a random walk of length t in an expander avoids a set of density �with probability at most (�+ �d)t (cf., [AKS, Kah]). Thus, as a preparation step, we reduce the errorprobability of the pcp system to p def= �d = 2pd (24)This is done using the trivial reduction of Proposition 11.1. We derive a proof system with errorprobability p, randomness complexityr0 def= r � log2(1=p) = r � log2(pd=2) = O(r) (25)and free-bit complexity f 0 def= f � log2(1=p) = f � log2(pd=2) (26)(In case we start with soundness error s, where s > p, the multiplier will be log1=s(1=p) instead oflog2(1=p).) Now we are ready to apply the expander walk technique. Using an expander walk of lengtht, we transform the proof system into one in which the randomness complexity is r0+(t�1) � log2 d, thefree-bit complexity is tf 0 = tf � log2(pd=2) and the error probability is at most (2p)t = (4=pd)t = 2�k,where k def= t � log2(pd=4). Using log2 d > 8� + 4, we can bound the randomness complexity byr0 + t log2 d = r0 + log2 d12 � (log2 d)� 2 � k< r0 + (2 + �) � kand the free-bit complexity by tf � log2(pd=2) = 12 � (log2 d)� 112 � (log2 d)� 2 � kf< (1 + �) � kfThe proposition follows.Using Proposition 11.4, we obtain the following corollary which is used in deriving clique in-approximability results under the P 6= NP assumption, via the FGLSS method: applying the FGLSS-reduction to proof systems obtained via this corollary, one derives graphs of size N def= 2(2+�+f)�t withclique-gap 2t (which can be rewritten as N1=(2+f+�)).Corollary 11.5 For every � > 0 there exists a constant c so thatFPCP[log; f; l] � FPCP1;2�t[(2 + �) � t; (1 + �)f � t; l]where t(n) = c log2 n.

11011.2 Trading-o� gap location and free-bit complexityThe following transformation is analogous to the randomized layering procedure for the clique promiseproblem (i.e., Proposition 8.6). The transformation increases the acceptance probability bounds atthe expense of increasing the free-bit complexity.Proposition 11.6 (increasing acceptance probabilities and free-bit complexity):(1) (using a randomized reduction which preserves the randomness of the proof system): For alladmissible functions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f] �KR FPCPc0;s0 [r; f + log2m]where c0 = 1� 4(1� c)m and s0 = m � s. In case c0 > 1� 2�r, we have then c0 = 1.(2) (inclusion which moderately increases the randomness of the proof system): For all admissiblefunctions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f] � FPCPc0;s0 [r0; f + log2m]� where if m � 1=c then r0 = 2 �maxfr; logmg, c0 = m2 � c and s0 = m � s;� and otherwise (i.e., form > 1=c), r0 = O(maxfr; logmg+mc), c0 = 1�2��(mc) and s0 = m�s.Proof: Suppose we are given a pcp system for which we want to increase the acceptance probabilitybound in the completeness condition. The idea is to allow the new veri�er to select m random-pads forthe original veri�er and query the oracle as to which pad to use. A straightforward implementation ofthis idea will increase the randomness complexity of the veri�er by a factor of m. Instead, we use twoalternative implementations, which yield the two parts of the proposition. In both implementationsthe free-bit complexity increases by log2m and the soundness bound increases by a factor of m.The �rst implementation employs a technique introduced by Lautemann (in the context of BPP) [Lau].Using a randomized reduction, we supply the new veri�er with a sequence of m possible \shifts" thatit may e�ect. The new veri�er selects one random-pad for the original veri�er and generates m shiftsof this pad. Now, the new veri�er queries the oracle as to which of these shifts it should use as arandom-pad for the original veri�er. Details follow.We �rst present a random reduction mapping x 2 f0; 1gn to (x; S), where S is a uniformly chosen m-multi-subset of f0; 1gr, for r def= r(n). On input (x; S), the new veri�er V 0 uniformly selects c 2 f0; 1grand queries the oracle on (x; c) receiving an answer i 2 [m]. Intuitively, V 0 asks which shift of therandom-pad to use. Finally, V 0 invokes V with input x and random-pad c � si, where si is the ithstring in S. Clearly, the complexities of V 0 are as claimed above. Also, assuming that V accepts xwith probability �, we get that, for every S, veri�er V 0 accepts (x; S) with probability at most m � �.On the other hand suppose that, when given access to oracle �, veri�er V accepts x with probability �.It follows that there exists a set R of �2r random-pads for V so that if V uses any c 2 R (and queriesoracle �) then it accepts x. Fixing any c 2 f0; 1gr, we ask what is the probability, for a uniformlychosen S = fsi : i � mg, that there exists an i 2 [m] so that c � si 2 R. Clearly, the answer is1� (1� �)m. Thus, for uniformly chosen S 2 (f0; 1gr)m and c 2 f0; 1gr,Pr [9i 2 [m] s.t. c� si 2 R] = 1� (1� �)mBy Markov Inequality, with probability at least 34 , a uniformly chosen S = fsig has the property thatfor at least 1� 4 � (1� �)m of the c's (in f0; 1gr) there exists an i 2 [m] so that c� si 2 R. Part (1) ofthe proposition follows.

111To prove Part (2) of the proposition, we use an alternative implementation of the above idea, whichconsists of letting the new veri�er V 0 generate a \pseudorandom" sequence of possible random-pads byitself. V 0 will then query the oracle as to which random-pad to use, in the simulation of V , and completeits computation by invoking V with the speci�ed random-pad. To generate the \pseudorandom"sequence we use the sampling procedure of [BGG]. Speci�cally, for m � 1=c this merely amounts togenerating a pairwise independent sequence of uniformly distributed strings in f0; 1gr, which can bedone using randomness maxf2r; 2 log2mg. Otherwise (i.e., for m > 1=c) the construction of [BGG]amounts to generating �(cm) such related sequences, where the sequences are related via a randomwalk on a constant degree expander. Part (2) follows.The following corollary exempli�es the usage of the above proposition. In case c(n) = n�� andr(n) = O(logn), the gap is preserved (upto a logarithmic factor) and the free-bit complexity in-creases by a log2 1=c additive term. Thus, the corollary provides an alternative way of deriving thereverse-FGLSS transformation (say, Proposition 8.7) from the simple clique veri�er of Theorem 8.2.Speci�cally, one may apply the following corollary to the simple clique veri�er of Theorem 8.2, in-stead of combining the layered-graph veri�er19 (of Theorem 8.3), and the graph-layering process ofProposition 8.6.Corollary 11.7 For all admissible r; f : Z+ ! Z+, so that 8n : r(n) � 2,FPCPc;s[r; f] �KR FPCP1;r� sc [r; f + log2 r + log2(1=c)](Compare to Item (1) of Proposition 8.7.)We conclude this subsection with another transformation which is reminiscent to an assertion madein Section 8. The following transformation has an opposite e�ect than the previous one, reducing thefree-bit complexity at the expense of lowering the bounds on acceptance probability.Proposition 11.8 (decreasing acceptance probabilities and free-bit complexity): For all admissiblefunctions c; s : Z+ ! [0; 1], and r; f; k : Z+ ! Z+ so that k � f , if L 2 FPCPc;s[r; f] then L 2FPCP c2k ; s2k [r+k; f�k]. Furthermore, in case each random-pad in the original pcp system has at least2k accepting con�gurations, the average free-bit complexity of the resulting system is fav � k, wherefav is the average free-bit complexity of the original system.Proof: Let V be a veri�er satisfying the condition of the proposition. We construct a new veri�erV 0 that on input x 2 f0; 1gn, setting r = r(n), k = k(n) and f = f(n), acts as follows. Veri�er V 0uniformly selects a random-pad c 2 f0; 1gr for V , and generates all possible accepting con�gurationswith respect to V (x) and random-pad c. In case there are less than 2k accepting con�gurations we adddummy con�gurations to reach the 2k count. We now partition the set of resulting con�gurations (whichare accepting and possibly also dummy) into 2k parts of about the same size (i.e., some parts mayhave one con�guration more than others). Actually, if we only care about average free-bit complexitythen any partition of the accepting con�gurations into 2k non-empty parts will do. The new veri�er,V 0, uniformly selects i 2 [2k] thus specifying one of these parts, denoted Ai. Next, V 0 invokes V withrandom-pad c and accepts if and only if the oracle's answers form an accepting con�guration which isin Ai (i.e., resides in the selected portion of the accepting con�gurations). (We stress that in case c hasless than 2k accepting con�gurations and the selected Ai does not contain any accepting con�gurationthen V 0 rejects on coins (i; c).) Clearly, the randomness complexity of the new veri�er is r+ k.To analyze the other parameters of V 0, we �x any x 2 f0; 1gn. For sake of simplicity, we �rst assumethat the number of accepting con�gurations of V for any random-pad is a power of 2. Then the19which generalizes the simple clique veri�er

112number of accepting con�gurations of V 0 for any random-pad (c; i) 2 f0; 1gr � [2k] is 2m�k, where 2mis the number of accepting con�gurations of V on random-pad c. Thus, the free-bit complexity of V 0 isf � k. Finally, we relate the acceptance probability of V 0 to that of V . This is done by reformulatingthe execution of V 0 with oracle � as consisting of two steps. First V 0 invokes V with access to �. If Vreaches a rejecting con�guration then V 0 rejects as well; otherwise (i.e., when V reaches an acceptingcon�guration), V accepts with probability 2�k (corresponding to uniformly selecting i 2 [2k]). Itfollows that on input x and access to oracle �, the veri�er V 0 accepts with probability �2k , where �denotes the probability that V accepts input x when given access to oracle �.In general, our simplifying assumption that the number of accepting con�gurations of V is a power of2, may not hold and the analysis becomes slightly more cumbersome. Firstly, the number of acceptingcon�gurations of V 0 for a random-pad (c; i) is either dM=2ke or bM=2kc, where M is the number ofaccepting con�gurations of V on random-pad c. Thus, in the worse-case the number of acceptingcon�gurations for V 0 (on random-pad (c; i)) is dM=2ke and it follows that the free-bit complexity ofV 0 is log2d2f=2ke = f � k. Furthermore, the expected number of accepting con�gurations (for a �xedc and uniformly chosen i 2 [2k]) is exactly M=2k (even if M < 2k). Thus, if the extra condition holdsthen the free-bit complexity of V 0 equals fav � k. Finally, observe that the argument regarding theacceptance probabilities remains unchanged (and actually it does not depend on the partition of theaccepting con�gurations into 2k non-empty parts). The proposition follows.11.3 Other e�ects on acceptance probabilities and free-bit complexityFollowing is an alternative transformation which reduces the free-bit complexity. However, unlikeProposition 11.8, the following does not decrease the acceptance parameters. Furthermore, the trans-formation increases the soundness parameter and so does not preserve the gap (between the complete-ness and soundness parameters).Proposition 11.9 (decreasing free-bit complexity without decreasing acceptance probabilities): Letc; s : Z+ ! [0; 1] be admissible functions and r; f; k : Z+ ! Z+. Suppose L 2 FPCPc;s[r; f] witha veri�er for which the �rst k oracle-answers for each random-pad allow at most 2f�k acceptingcon�gurations. Then L 2 FPCPc0;s0 [r+ k; f 0], where c0 = 1� 1�c2k , s0 = 1� 1�s2k , and f 0 = log2(2f�k +2k � 1).The above can be further generalized; yet the current paper only utilizes the special case in whichc = 1 (speci�cally, in the proof of Part 3 in Proposition 10.9, we use f = 2 and k = 1 obtainingf 0 = log2 3, c0 = 1 and s0 = 1+s2).Proof: The proof is similar to the proof of Proposition 11.8. Again, we consider a veri�er V asguaranteed by the hypothesis and let Ai be the set of (at most 2f�k) accepting con�gurations whichare consistent with the ith possibility of k oracle-answers to the �rst k queries. Denote the ith possibilityby �i (i.e., all con�gurations in Ai start with �i). We construct a new veri�er, V 0, which uniformlyselects a random-pad c for V and i 2 [2k] (specifying a part Ai as above). The veri�er V 0 makesthe �rst k queries of V and if the answers di�er from �i then V 0 halts and accepts.20 Otherwise, V 0continues the emulation of V and accepts i� V accepts.Clearly, V 0 uses r + k coin-tosses. The accepting con�gurations of V 0 on random-pad (c; i) are thosein Ai as well as the \truncated V con�gurations" �j , for j 6= i. Thus, there are at most 2f�k + 2k � 1accepting con�gurations. Suppose V �(x) accepts with probability p, then V 0 accepts input x withoracle access to � with probability (1� 2�k) + 2�k � p = 1� 1�p2k . The proposition follows.20 In contrast, the veri�er constructed in the proof of Proposition 11.8, rejects in case of such a mismatch.

113Finally, we present a simpli�ed version of the above transformation. Here the acceptance probabilitiesare increased without a�ecting the free-bit complexity (either way).Proposition 11.10 (increasing acceptance probabilities while preserving free-bit complexity): Letc; s; � : Z+ ! [0; 1] be admissible functions and r; f : Z+ ! Z+. ThenFPCPc;s[r; f]� FPCPc0;s0 [r+ log(1=�); f]where c0 = 1� � � (1� c) and s0 = 1� � � (1� s).Proof: Let V be a veri�er for L 2 FPCPc;s[r; f]. We construct a new veri�er, V 0, which withprobability � invokes V and otherwise accepts regardless of the input. The proposition follows.

114References[Ad] L. Adleman. Two theorems on random polynomial time. Proceedings of the 19th Sym-posium on Foundations of Computer Science, IEEE, 1978, pp. 75{83.[AKS] M. Ajtai, J. Komlos and E. Szemeredi. Deterministic Simulation in Logspace. Pro-ceedings of the 19th Annual Symposium on the Theory of Computing, ACM, 1987, pp. 132{140.[AFWZ] N. Alon, U. Feige, A. Wigderson, D. Zuckerman. Derandomized Graph Products.Computational Complexity, Vol. 5, No. 1, 1995, pp. 60{75.[ASE] N. Alon, J. Spencer and P. Erdos. The Probabilistic Method. John Wiley and Sons,1992.[AmKa] E. Amaldi and V. Kann. The complexity and approximability of �nding maximum fea-sible subsystems of linear relations. Theoretical Computer Science, Vol. 147, 1995, pp 181{210.[Ar] S. Arora. Reductions, Codes, PCPs and Inapproximability. Proceedings of the 36thSymposium on Foundations of Computer Science, IEEE, 1995, pp. 404{413.[ABSS] S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximate optimain lattices, codes and systems of linear equations. Journal of Computer and System Sciences,Vol. 54, No. 2, 1997, pp. 317{331.[ALMSS] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof veri�cationand intractability of approximation problems. Proceedings of the 33rd Symposium onFoundations of Computer Science, IEEE, 1992, pp. 14{23.[ArSa] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.Proceedings of the 33rd Symposium on Foundations of Computer Science, IEEE, 1992,pp. 2{13.[Bab] L. Babai. Trading Group Theory for Randomness. Proceedings of the 17th Annual Sym-posium on the Theory of Computing, ACM, 1985, pp. 421{429.[BFL] L. Babai, L. Fortnow and C. Lund. Non-deterministic Exponential time has two-prover interactive protocols. Computational Complexity, Vol. 1, 1991, pp. 3{40. (See alsoaddendum in Vol. 2, 1992, pp. 374.)[BFLS] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-logarithmic time. Proceedings of the 23rd Annual Symposium on the Theory of Computing,ACM, 1991, pp. 21{31.[BaEv1] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weightedvertex cover problem. Journal of Algorithms, Vol. 2, 1981, pp. 198{201.[BaEv2] R. Bar-Yehuda and S. Even. A local ratio theorem for approximating the weightedvertex cover problem. In Analysis and Design of Algorithms for Combinatorial Problems,Vol. 25 of Annals of Discrete Math, Elsevier, 1985.[BaMo] R. Bar-Yehuda and S. Moran. On approximation problems related to the independentset and vertex cover problems. Discrete Applied Mathematics, Vol. 9, 1984, pp. 1{10.

115[Be] M. Bellare. Interactive proofs and approximation: reductions from two provers in oneround. Proceedings of the Second Israel Symposium on Theory and Computing Systems,IEEE, 1993, pp. 266{274.[BCHKS] M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi and M. Sudan. Linearity testingin characteristic two. IEEE Transactions on Information Theory Vol. 42, No. 6, November1996, pp. 1781{1795.[BGG] M. Bellare, O. Goldreich and S. Goldwasser. Randomness in interactive proofs.Computational Complexity, Vol. 3, No. 4, 1993, pp. 319{354.[BGS1] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability| Towards Tight Results. Extended abstract of this paper, Proceedings of the 36th Sym-posium on Foundations of Computer Science, IEEE, 1995, pp. 422{431.[BGS2] M. Bellare, O. Goldreich and M. Sudan. Free Free Bits, PCPs and Non-Approximability | Towards Tight Results. Preliminary versions of this paper. TR95-024 of ECCC, the Electronic Colloquium on Computational Complexity. May 1995 (revisedSept. 1995, Jan. 1996, Dec. 96). See http://www.eccc.uni-trier.de/eccc/.[BGLR] M. Bellare, S. Goldwasser, C. Lund and A. Russell. E�cient probabilisticallycheckable proofs and applications to approximation. Proceedings of the 25th Annual Sym-posium on the Theory of Computing, ACM, 1993, pp. 294{304. (See also Errata sheet inProceedings of the 26th Annual Symposium on the Theory of Computing, ACM, 1994,pp. 820{820).[BeRo] M. Bellare and P. Rogaway. The complexity of approximating a quadratic program.Journal of Mathematical Programming B, Vol. 69, No. 3, September 1995, pp. 429{441.Also in Complexity of Numerical Optimization, Ed. P. M. Pardalos, World Scienti�c, 1993.[BeSu] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings of the26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 184{193.[BGKW] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover interac-tive proofs: How to remove intractability assumptions. Proceedings of the 20th AnnualSymposium on the Theory of Computing, ACM, 1988, pp. 113{131.[BeSc] P. Berman and G. Schnitger. On the complexity of approximating the independent setproblem. Information and Computation, Vol. 96, 1992, pp. 77{94.[Bl] A. Blum. Algorithms for approximate graph coloring. Ph. D Thesis, Dept. of ComputerScience, MIT, 1991.[BLR] M. Blum, M. Luby and R. Rubinfeld. Self-testing/correcting with applications tonumerical problems. Journal of Computer and System Sciences, Vol. 47, 1993, pp. 549{595.[BrNa] J. Bruck and M. Naor. The hardness of decoding with preprocessing. IEEE Transactionson Information Theory, Vol. 36, No. 2, 1990, pp. 381{385.[BoHa] R. Boppana and M. Hald�orsson. Approximating maximum independent sets by ex-cluding subgraphs. BIT, Vol. 32, No. 2, 1992.

116[CrKa] P. Crescenzi and V. Kann. A compendium of NP optimization problems. TechnicalReport, Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza",SI/RR-95/02, 1995. The list is updated continuously. The latest version is available viahttp://www.nada.kth.se/~viggo/problemlist/compendium.html.[CST] P. Crescenzi, R. Silvestri and L. Trevisan. To weight or not to weight: where is thequestion? Proceedings of the Fourth Israel Symposium on Theory and Computing Systems,IEEE, 1996.[CW] A. Cohen and A. Wigderson. Dispersers, deterministic ampli�cation, and weak randomsources. Proceedings of the 30th Symposium on Foundations of Computer Science, IEEE,1989, pp. 14{19.[Con] A. Condon. The complexity of the max word problem and the power of one-way interactiveproof systems. Computational Complexity, Vol. 3, 1993, pp. 292{305.[Coo] S. Cook. The complexity of theorem-proving procedures. Proceedings of the 3rd AnnualSymposium on the Theory of Computing, ACM, 1971, pp. 151{158.[EIS] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicommodityow problems. SIAM J. on Computing, Vol. 5, 1976, pp. 691{703.[ESY] S. Even, A. Selman and Y. Yacobi. The complexity of promise problems with applica-tions to public-key cryptography. Information and Control, Vol. 2, 1984, 159{173.[Fe1] U. Feige. Randomized graph products, chromatic numbers, and the Lov�asz theta function.Proceedings of the 27th Annual Symposium on the Theory of Computing, ACM, 1995,pp. 635{640.[Fe2] U. Feige. Set Cover. A threshold of ln n for approximating set cover. In Proceedings of theTwenty-Eighth Annual ACM Symposium on Theory of Computing, pages 314{318, 1996.[FeGo] U. Feige and M. Goemans. Approximating the value of two prover proof systems, withapplication to Max-2SAT and Max-DICUT. Proceedings of the Third Israel Symposium onTheory and Computing Systems, IEEE, 1995, pp. 182{189.[FGLSS] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Interactive proofsand the hardness of approximating cliques. Journal of the ACM, Vol. 43, No. 2, 1996,pp. 268{292.[FeKi1] U. Feige and J. Kilian. Two prover protocols { Low error at a�ordable rates. Proceedingsof the 26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 172{183.[FeKi2] U. Feige and J. Kilian. Zero-knowledge and the chromatic number. Proceedings of the11th Annual Conference on Computational Complexity, IEEE, 1996.[FeLo] U. Feige and L. Lov�asz. Two-prover one round proof systems: Their power and theirproblems. Proceedings of the 24th Annual Symposium on the Theory of Computing, ACM,1992, pp. 733-744.[FRS] L. Fortnow, J. Rompel and M. Sipser. On the power of multiprover interactive pro-tocols. Theoretical Computer Science, Vol. 134, No. 2, 1994, pp. 545{557.

117[Fu] M. F�urer. Improved hardness results for approximating the chromatic number. Proceed-ings of the 36th Symposium on Foundations of Computer Science, IEEE, 1995, pp. 414{421.[FGMSZ] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completenessand soundness in interactive proof systems. In Advances in Computing Research: a researchannual, Vol. 5 (Randomness and Computation, S. Micali, ed.), 1989, pp. 429{442.[GJ1] M. Garey and D. Johnson. The complexity of near optimal graph coloring. Journal ofthe ACM, Vol. 23, No. 1, 1976, pp. 43{49.[GJ2] M. Garey and D. Johnson. Computers and Intractability: A guide to the theory ofNP-completeness. W. H. Freeman and Company, 1979.[GJS] M. Garey, D. Johnson and L. Stockmeyer. Some simpli�ed NP-complete graph prob-lems. Theoretical Computer Science, Vol. 1, 1976, pp. 237{267.[GoWi1] M. Goemans and D. Williamson. New 3/4-approximation algorithms for the maximumsatis�ablity problem. SIAM Journal on Discrete Mathematics, Vol. 7, No. 4, 1994, pp. 656{666.[GoWi2] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cutand satis�ability problems using semide�nite programming. Journal of the ACM, Vol. 42,No. 6, 1995, pp. 1115{1145.[GMW] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but theirvalidity, or all languages in NP have zero-knowledge proof systems. Journal of the ACM,Vol. 38, No. 1, July 1991, pp. 691{729.[GMR] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactiveproofs. SIAM J. Computing, Vol 18, No. 1, 1989, pp. 186{208.[GS] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proofsystems. Proceedings of the 18th Annual Symposium on the Theory of Computing, ACM,1986, pp. 59{68.[H1] J. H�astad. Testing of the long code and hardness for clique. Proceedings of the 28thAnnual Symposium on the Theory of Computing, ACM, 1996, pp. 11{19.[H2] J. H�astad. Clique is hard to approximate within n1��. Proceedings of the 37th Symposiumon Foundations of Computer Science, IEEE, 1996, pp. 627{636.[H3] J. H�astad. Getting optimal in-approximability results. Proceedings of the 29th AnnualSymposium on the Theory of Computing, ACM, 1997, pp. 1{10.[Hoc] D. Hochbaum. E�cient algorithms for the stable set, vertex cover and set packing prob-lems. Discrete Applied Mathematics, Vol 6, 1983, pp. 243{254.[ImZu] R. Impagliazzo and D. Zuckerman. How to recycle random bits. Proceedings of the30th Symposium on Foundations of Computer Science, IEEE, 1989, pp. 248{253.[JLL] N. Jones, Y. Lien and W. Laaser. New problems complete for non-deterministic logspace. Math. Systems Theory, Vol. 10, 1976, pp. 1{17.

118[Kah] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM, Vol. 42,No. 5, 1995, pp. 1091{1106.[KKLP] V. Kann, S. Khanna, J. Lagergren and A. Panconesi. On the hardness of approxi-mating MAX k-CUT and its dual. Technical Report of the Department of Numerical Anal-ysis and Computing Science, Royal Institute of Technology, Stockholm, TRITA-NA-P9505,1995.[KMS] D. Karger, R. Motwani and M. Sudan. Approximate graph coloring by semide�niteprogramming. Proceedings of the 35th Symposium on Foundations of Computer Science,IEEE, 1994, pp. 2{13.[KaZw] H. Karloff and U. Zwick. A 7/8-eps approximation algorithm for MAX 3SAT? Toappear in Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE,1997.[Kar] R. Karp. Reducibility among combinatorial problems. Complexity of Computer Compu-tations, Miller and Thatcher (eds.), Plenum Press, New York, 1972.[KLS] S. Khanna, N. Linial and S. Safra. On the hardness of approximating the chromaticnumber. Proceedings of the Second Israel Symposium on Theory and Computing Systems,IEEE, 1993, pp. 250{260.[LaSh] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-time.Proceedings of the 32nd Symposium on Foundations of Computer Science, IEEE, 1991,pp. 13{18.[Lau] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,Vol. 17, No. 4, 1983, pp. 215{217.[Lev] L. Levin. Universal'ny��e pereborny��e zadachi (universal search problems : in russian).Problemy Peredachi Informatsii, Vol. 9, No. 3, 1973, pp. 265{266.[LPS] A. Lubotzky, R. Phillips and P. Sarnak. Explicit Expanders and the RamanujanConjectures. Proceedings of the 18th Annual Symposium on the Theory of Computing,ACM, 1986, pp. 240{246.[LuYa] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.Journal of the ACM, Vol. 41, No.5, 1994, pp. 960{981.[LFKN] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for InteractiveProof Systems. Journal of the ACM, Vol. 39, No. 4, 1992, pp 859{868.[McSl] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland,1981.[MoRa] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,1995.[MoSp] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithmfor the vertex cover problem. Acta Informatica, Vol. 22, No. 1, 1985, pp. 115{123.[PaYa] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexityclasses. Journal of Computer and System Sciences, Vol. 43, 1991, pp. 425{440.

119[Pet] E. Petrank. The Hardness of Approximations: Gap Location. TR{754, Department ofComputer Science, Technion { Israel Institute of Technology, 1992.[PoSp] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs. Proceedings ofthe 26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 194{203.[Raz] R. Raz. A parallel repetition theorem. Proceedings of the 27th Annual Symposium on theTheory of Computing, ACM, 1995, pp. 447{456.[SaGo] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the ACM,Vol. 23, 1976, pp. 555{565.[Sha] A. Shamir. IP=PSPACE. Journal of the ACM, Vol. 39, No. 4, 1992, pp. 869{877.[Tar] G. Tardos. Multi-prover encoding schemes and three prover proof systems. Journal ofComputer and System Sciences, Vol. 53, No. 2, October 1996, pp. 251{260.[Ta-S] A. Ta-Shma. A Note on PCP vs. MIP. Information Processing Letters, Vol. 58, No. 3,1996, pp. 135{140.[TSSW] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson. Gadgets, approximation andlinear programming. Proceedings of the 37th Symposium on Foundations of ComputerScience, IEEE, 1996, pp. 617{626.[Yan] M. Yannakakis, On the approximation of maximum satis�ability. Journal of Algorithms,Vol. 17, 1994, pp. 475{502.[Zuc] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM J. on Com-puting, Vol. 25, No. 6, 1996, pp. 1293{1304.

120A The coding theory boundWe provide here the coding theory bound used in the proof of Lemma 3.11. It is a slight extension ofbounds in [McSl, Ch. 17] which consider only vectors of weight exactly w rather than at most w. Forsake of completeness, we include a proof of this bound. In discussing binary vectors, the weight is thenumber of ones in the vector and the distance between two vectors is the number of places in whichthey disagree.Lemma A.1 Let B = B(n; d; w) be the maximum number of binary vectors of length n, each withweight at most w, and any two being distance at least d apart. Then B � (1 � 2�)=(4�2 � 2�),provided �2 > �=2, where � = (1=2)� (w=n) and � = (1=2)� (d=n).Proof: Consider an arbitrary sequence, v1; :::; vM, of n-vectors which are at mutual distance at leastn=2. Let us denote by vi;j the jth entry in the ith vector, by wi the weight of the ith vector, and by wthe average value of the wi's. De�ne S def= MXi=1 MXj=1 nXk=1 vi;kvj;kThen, on one hand S = MXi=1 nXk=1 v2i;k + X1�i 6=j�M nXk=1 vi;kvj;k� Xi wi + X1�i 6=j�M wi + wj � d2= Mw +M(M � 1) � (w � (d=2))where the inequality follows from observing that, for i 6= j,wi + wj = 2jfk : vi;k=vj;k=1gj+ jfk : vi;k 6= vj;kgj� 2 nXk=1 vi;kvj;k + dOn the other hand S =Pnk=1 jfi : vi;k=1gj2. This allows to lower bound S by the minimum of Pk x2ksubject to Pk xk = Mw. The minimum is obtained when all xk's are equal and yieldsS � n ��Mwn �2Confronting the two bounds, we getM � w2n �M � w � (M � 1) � (d=2)which yields (w2n � w + d2)M � d2 . Letting � = (1=2)� (w=n) and using �2 � �2 > �=2, we getM � 1� 2�4�2 � 2�and the lemma follows by observing that the bound maximizes when � = �.

