
Non-Black-Box Techniques in
Cryptography

Thesis for the Ph.D. Degree

by

Boaz Barak

Under the Supervision of

Professor Oded Goldreich

Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science

Submitted to the Feinberg Graduate School of

the Weizmann Institute of Science

Rehovot 76100, Israel

January 5, 2004

ii

Abstract

The American Heritage dictionary defines the term “Black-Box” as

“A device or theoretical construct with known or specified performance characteristics
but unknown or unspecified constituents and means of operation.”

In the context of Computer Science, to use a program as a black-box means to use only its
input/output relation by executing the program on chosen inputs, without examining the actual
code (i.e., representation as a sequence of symbols) of the program.

Since learning properties of a program from its code is a notoriously hard problem, in most
cases both in applied and theoretical computer science, only black-box techniques are used. In
fact, there are specific cases in which it has been either proved (e.g., the Halting Problem) or is
widely conjectured (e.g., the Satisfiability Problem) that there is no advantage for non-black-box
techniques over black-box techniques.

In this thesis, we consider several settings in cryptography, and ask whether there actually is an
advantage in using non-black-box techniques over black-box techniques in these settings. Somewhat
surprisingly, our answer is mainly positive. That is, we show that in several contexts in cryptog-
raphy, there is a difference between the power of black-box and non-black-box techniques. Using
non-black-box techniques we are able to solve some problems in cryptography that were previously
unsolved. In fact, some of these problems were previously proven to be unsolvable using black-box
techniques.

The main results of this thesis are the following:

Software Obfuscation Informally speaking, an obfuscator is a compiler that takes a program
P as input and produces a new program P ′ that has the same functionality as P , and yet
is “unintelligible” in some sense. Ideally, a software obfuscator should ensure that the only
information leaked about P from the program P ′, is information that can be derived by
using only black-box access to P . Obfuscators, if they exist, would have a wide variety
of cryptographic and complexity-theoretic applications, ranging from software protection to
homomorphic encryption to complexity-theoretic analogues of Rice’s theorem.

In this thesis, we discuss how to formally define obfuscators, and whether or not such objects
exist. Our main result in this context is that even very weak forms of obfuscators do not
exist.

Zero-Knowledge The simulation paradigm, introduced by Goldwasser, Micali and Rackoff, has
had fundamental impact on cryptography. A simulator is an algorithm that tries to simulate
the interaction of the adversary with an honest party, without knowing the private input of
this honest party. Loosely speaking, the existence of such a simulator demonstrates that the
adversary did not gain any knowledge about the honest party’s input.

iii

iv

Almost all previously known simulators used the adversary’s algorithm as a black-box. We
present the first constructions of non-black-box simulators. Using these new non-black-box
techniques we obtain several results that were previously shown to be impossible to obtain
using black-box simulators.

Specifically, assuming the existence of collision-resistant hash functions, we construct a new
constant-round zero-knowledge argument system for NP that satisfies the following properties:

1. It remains zero knowledge even when composed concurrently n times, where n is the
security parameter.

2. It is an Arthur-Merlin (public coins) protocol.

3. It has a simulator that runs in strict probabilistic polynomial-time, rather than in ex-
pected probabilistic polynomial-time.

It is impossible to obtain a constant-round zero-knowledge argument (for a non-trivial lan-
guage) satisfying either Property 1 or Property 2 using black-box simulation (Canetti et
al., 2001), (Goldreich and Krawczyk, 1996). We show that it is also impossible to obtain a
constant-round zero-knowledge argument satisfying Property 3 using black-box simulation.

We use this protocol to obtain other new results in cryptography. These include a con-
struction of constant-round zero-knowledge proof of knowledge with a strict polynomial-time
knowledge extractor, a zero-knowledge resettably sound argument for NP, and a resettable
zero-knowledge argument of knowledge for NP. We show that all these applications are
impossible to obtain when restricted to black-box techniques.

Non-Malleability We construct the first constant round non-malleable commitment scheme and
the first constant-round non-malleable zero-knowledge argument system, as defined by Dolev,
Dwork and Naor (Siam J. Computing, 2000). Previous constructions either used a non-
constant number of rounds, or were only secure under stronger setup assumptions (such as
the availability of a public string that was chosen at random and published by a trusted third
party).

We obtain this result by using a non-black-box proof of security. That is, our proof uses the
code of the adversary in the security reduction.

As an intermediate step we define and construct a constant-round non-malleable coin tossing
protocol. This coin-tossing protocol may be of independent interest.

To summarize, in this thesis we show that, somewhat unintuitively, non-black-box techniques
sometimes have a significant advantage over black-box techniques in cryptography. From the point
of view of cryptographers, this result has both negative and positive applications. On the one hand,
it further stresses the point that it is unsafe to rely on the assumption that an adversary attacking
our schemes will use only black-box techniques. On the other hand, it means that when designing
and analyzing cryptographic schemes, we can use these non-black-box techniques to obtain useful
and important security goals that cannot be obtained using black-box techniques.

Origin of the term “Black-Box”

The term “black-box” has two common interpretations. One is a flight recorder on an airplane, that
records all information regarding the flight, and helps discover the reasons for a crash.1 Another
interpretation, which is the one we are interested in, is “A device or theoretical construct with
known or specified performance characteristics but unknown or unspecified constituents and means
of operation” [Ame00].

It seems that both interpretations have the same origin. In the second world war, “black-box”
was a slang word among the pilots of the British Royal Air-Force (RAF) for radar instruments
[Par90, Has03]. One reason was simply that these instruments were indeed enclosed in black boxes.
There are also sources that suggest that the pilots, who didn’t know how these instruments operated
(and in fact were not allowed to know this, since it was classified information) joked that they
operated on “black magic”.2 Indeed, this is probably the reason this term came to describe any
piece of mysterious electronics, which its users know (or at least have some clue as to) what it does,
but have no idea how it does it.

Although all sources seem to agree that the term originated from the RAF, there are earlier
examples of mysterious devices being placed in black boxes (c.f. [Vas96]). Perhaps the most notable
of these was the Oscilloclast (also called the ERA), invented by Dr. Albert Abrams in the beginning
of the 20th century (see [Sch01, Edw00, Vle99, Abr16]). The Oscilloclast was a black box that was
supposed to cure all sorts of various diseases. 3500 practitioners were using the Oscilloclast at the
height of its popularity in 1923. As in the case of modern software “black boxes”, the Oscilloclast,
which was leased for $200 down and $5 per month, was sealed and the lessee had to sign a contract
not to open it. Thousands of patients were diagnosed and cured by Abrams of bovine syphilis,
a disease whose existence was never established to the satisfaction of the medical profession. In
addition, when a blood sample from a healthy guinea-pig was sent to Abrams, it was diagnosed as
suffering general cancer and tuberculosis of the genito-urinary tract, another diagnosis of a drop
of sheeps blood came back as hereditary syphilis with an offer of a cure for $250. When physicists
and engineers opened the devices they found them to be essentially a jungle of electric wires.

Thanks to justaskscott-ga from the Google Answers website.
1Today these recorders are usually painted in a bright orange color.
2For example consider this quote from an RAF fighter pilot John Cunnigham expressing his frustration with the

early radar systems: “The magician was still kneeling on his prayer mat of blankets muttering to himself, the green

glow from the CRT flickered on his face. A witch doctor, I thought, a witch doctor and black magic – and just about

as useful.”. See http://www.vectorsite.net/ttwiz2.html.

v

vi

Acknowledgements

First and foremost, I want to thank my advisor, Oded Goldreich. Although it was certainly not
always easy, I think that I have evolved in the last four years, both as a scientist and as a person.
Oded, more than any other person, was instrumental in this evolution. It was mainly through
interaction with Oded that I shaped my understanding of my subject, of Computer Science at large,
and of being a scientist. (Although, of course, any errors in the end result are my responsibility...)
I feel very lucky to have had Oded as an advisor, and look forward to having more opportunities
to learn from and work with him in the future.

One of the many reasons I am grateful to Oded was his encouragement and support of my
meeting and working with other scientists. As a result, in a relatively short time, I have met,
interacted and worked with so many wonderful people, that I cannot mention all of them here.
However, I do want to mention two scientists Oded introduced me to, that meeting them has had
a particularly strong impact on me. Salil Vadhan was the first person I cooperated with other
than Oded, and since then I had the chance to work with Salil on several occasions. It is hard
to pinpoint exactly what makes talking with Salil so enjoyable, but I think that his ability to
understand everything I say (even when I don’t really understand it myself), has something to do
with it. Avi Wigderson hosted me during the summer of 2001 in the Institute for Advanced Study
in Princeton. I discovered there that it is nearly impossible to spend five minutes with Avi without
learning something new. Needless to say, I am looking forward to spending more time with him in
the (very near) future.

I would also like to thank Tal Rabin and all the members of the cryptography research group in
the IBM T.J.Watson research center – Ran Canetti, Rosario Gennaro, Shai Halevi, Hugo Krawczyk
and Yehuda Lindell – for hosting me during a fun and productive summer visit. The fact that Tal
is one of the nicest and most fun to be with persons I have ever met certainly didn’t hurt.

Like all the students I know, I am very happy I’ve had the chance to study Computer Science in
the Weizmann Institute. Our department has a unique atmosphere of academic excellence combined
with friendliness and openness that makes it a very special place to learn in. I greatly enjoyed the
interaction with quite a lot faculty members, postdocs and fellow students. This includes people I
wrote papers with such as Shafi Goldwasser, Yehuda Lindell, Ronen Shaltiel and Eran Tromer, and
people I “just” talked with such as Itai Binyamini, Uri Feige, Moni Naor, Ran Raz, Alon Rosen,
Adi Shamir and Amir Shpilka. I would also like to thank Shafi and Adi for serving on my thesis
committee. My time in the institute would have been much duller without my office and cubicle
mates Adi Akavia, Eran Ofek, Itsik Mantin, Eran Tromer, and (especially) Udi Wieder – thank
you!

Finally, I would like to thank my family, and especially my parents Dov and Judith, and my
sweet wife Ravit. They made completing this project possible and worthwhile.

vii

viii

Contents

Abstract . iii
Origin of the term “Black-Box” . v
Acknowledgements . vii

1 Introduction 1
1.1 Our Results . 2

1.1.1 Code Obfuscation . 2
1.1.2 Non-black-box Proofs of Security . 3
1.1.3 Non-Black-Box Simulation . 3

1.2 How to read this thesis. 5

2 Preliminaries and Definitions 7

2.1 Standard Notations . 7
2.2 Basic Cryptographic Primitives . 10

2.2.1 Hashing and Tree-Hashing . 12

2.3 Interactive Protocols, Interactive Proofs and Zero Knowledge 14
2.3.1 Protocols and interaction . 14
2.3.2 Interactive proof and argument systems . 15
2.3.3 Zero-knowledge . 16

2.3.4 Witness indistinguishability . 17
2.4 Universal Arguments . 18
2.5 Commit-with-Extract Schemes . 20

3 Software Obfuscation 23
3.1 Introduction . 23

3.1.1 Some Applications of Obfuscators . 25
3.1.2 Our Results . 26
3.1.3 Discussion : What do these Results Mean? 27
3.1.4 Additional Related Work . 29

3.1.5 Organization . 29
3.2 Definitions . 29

3.2.1 Preliminaries . 29

3.2.2 Obfuscators . 30
3.3 The Main Impossibility Result . 31

3.3.1 Obfuscating two TMs/circuits . 32
3.3.2 Obfuscating one TM/circuit . 34

3.4 Extensions . 39
3.4.1 Totally unobfuscatable functions . 39

ix

x CONTENTS

3.4.2 Approximate obfuscators . 40

3.4.3 Impossibility of the applications . 44

3.4.4 Obfuscating restricted circuit classes . 46

3.4.5 Relativization . 46

4 Non-Black-Box Zero Knowledge 53

4.1 Introduction . 53

4.1.1 Our Results . 55

4.1.2 Our approach . 55

4.1.3 Related Work . 56

4.1.4 Organization . 57

4.1.5 Computational Assumptions . 57

4.2 A Uniform Zero-Knowledge Argument . 57

4.2.1 FLS-type protocols . 57

4.2.2 A uniform-verifier generation protocol . 62

4.2.3 Summing up . 65

4.2.4 An Alternative Uniform-Verifier Generation Protocol 65

4.3 Coping with Non-Uniform Verifiers . 66

4.3.1 FLS’-type protocols . 66

4.3.2 Proof of Theorem 4.3.2 . 68

4.3.3 A Non-Uniform Verifier Generation Protocol 70

4.3.4 Proof of Theorem 4.3.6 . 71

4.4 Achieving Bounded-Concurrent Zero-Knowledge . 73

4.4.1 The Zero-Knowledge Argument . 75

4.4.2 Proof of Theorem 4.4.6 . 76

4.5 Obtaining a Zero-Knowledge Protocol Under Standard Assumptions. 80

4.6 Conclusions and future directions . 82

4.6.1 Reverse-engineering . 82

4.6.2 Black-box impossibility results and concurrent zero-knowledge 83

4.6.3 Arguments vs. proofs . 83

4.6.4 Fiat-Shamir heuristic . 83

4.6.5 Number of rounds . 84

4.6.6 Strict polynomial-time . 84

5 Applications of Non-Black-Box Zero Knowledge 85

5.1 Introduction . 85

5.1.1 The Resettable Model . 86

5.1.2 Strict Polynomial-Time Knowledge Extraction 87

5.1.3 Organization . 88

5.2 A Resettably-Sound Zero-Knowledge Argument . 88

5.3 A Resettable Zero-Knowledge Argument of Knowledge 90

5.3.1 Proof of Theorem 5.3.3 . 91

5.4 Strict Polynomial-Time Simulation and Extraction 96

5.4.1 Proof Sketch of Theorem 5.4.1 – Construction of a Zero-Knowledge Argument
of Knowledge with Strict Polynomial-Time Extraction 97

5.4.2 Proof Ideas for Theorems 5.4.2 and 5.4.3 – Black-Box Lower Bounds. 100

CONTENTS xi

6 Non-Malleable Cryptography 103
6.1 Introduction . 103

6.1.1 Overview . 103
6.1.2 Model and Basic Terminology . 104
6.1.3 The Shared Random String Model . 107
6.1.4 Non-malleable Coin-Tossing . 107
6.1.5 Our Results . 109
6.1.6 Organization . 109
6.1.7 Cryptographic assumptions. 110

6.2 A Uniform Non-Malleable Coin-Tossing Protocol . 110
6.2.1 Evasive Sets . 111
6.2.2 A Simple Simulation-Sound Proof System . 112
6.2.3 The Actual Construction . 114
6.2.4 Proof of Theorem 6.2.5 . 116
6.2.5 Proof of Theorem 6.2.5 Part 2 . 118
6.2.6 Proof of Theorem 6.2.5 Part 1 . 119

6.3 Dealing with Non-Uniform Adversaries . 121
6.3.1 Evasive Set Families . 121
6.3.2 The construction . 122
6.3.3 Proof of Theorem 6.3.5 . 125
6.3.4 Proof of Lemma 6.3.7 . 127

6.4 Applications of Non-Malleable Coin-Tossing . 130
6.4.1 Extractability in the MIM setting . 131
6.4.2 Constructing Extractable Protocols . 133
6.4.3 Extractable Schemes in the Modified Shared Random String Model 134
6.4.4 An Extractable Zero-Knowledge Argument in the Modified Shared Random

String Model . 134
6.5 Handling Non-Synchronizing Adversaries . 136

6.5.1 Proof of Theorem 6.5.1 . 137
6.5.2 The case of Zero-Knowledge . 144

6.6 Conclusions and Open Questions. 144

A Construction of Universal Arguments 147
A.1 Overview . 147
A.2 Proof of Theorem A.1.2 . 147

A.2.1 The PCP system in use . 149
A.2.2 The actual construction . 150
A.2.3 Establishing the weak proof-of-knowledge property 152

A.3 Making the Universal Arguments Zero Knowledge 156
A.4 Making the Universal Arguments Witness Indistinguishable 158

Bibliography 161

xii CONTENTS

List of Tables

Algorithm 4.2.3: A simulator for the FLS-type protocol FLSProt. 61
Protocol 4.2.4: A uniform-verifier generation protocol . 62
Algorithm 4.2.6: A simulator for Protocol 4.2.4. 64
Protocol 4.2.7: An alternative uniform-verifier generation protocol 65
Algorithm 4.3.4: A simulator for the FLS’-type protocol FLSProt. 70
Protocol 4.3.5: A non-uniform verifier generation protocol 71
Algorithm 4.3.7: A simulator for Protocol 4.3.5. 73
Protocol 4.4.3: A generation protocol for bounded concurrent zero-knowledge. 75
Protocol 4.4.5: A bounded-concurrent zero-knowledge protocol 76
Protocol 4.5.1: An alternative non-uniform verifier generation protocol 81

Protocol 5.3.5: A concurrent zero-knowledge protocol . 92
Protocol 5.3.6: A resettable zero-knowledge argument of knowledge 94
Protocol 5.4.5: A zero knowledge argument of knowledge with strict polynomial-time

extraction. 98
Protocol 5.4.6: A Commit-With-Extract Scheme . 99

Protocol 6.2.3: A Simulation-Sound Zero-Knowledge Protocol 113
Protocol 6.2.4: A non-malleable coin-tossing protocol for uniform adversaries 115
Protocol 6.3.4: A non-malleable coin-tossing protocol for non-uniform adversaries 124
Protocol 6.4.4: An extractable zero-knowledge argument in the modified shared random

string model . 135
Protocol 6.5.2: Π2: A commitment scheme strongly extractable with respect to non-

synchronizing adversaries. 139

Protocol A.2.4: Universal Arguments . 151
Protocol A.3.1: Zero-Knowledge Universal Arguments . 156
Protocol A.4.1: Witness-Indistinguishable Universal Arguments 159

xiii

xiv LIST OF TABLES

List of Figures

3.1 Winner of 1998 IOCCC . 24

4.1 A generic FLS-type zero-knowledge protocol . 58
4.2 A generic FLS’-type zero-knowledge protocol . 67

6.1 The MIM setting . 105
6.2 Non-malleability definition . 106
6.3 Synchronizing vs. non-synchronizing scheduling . 106
6.4 Execution of C in the man-in-the-middle setting . 115
6.5 Algorithm Ĉ ′ – simulation of C . 117
6.6 Algorithm Ĉ ′′ . 119
6.7 Execution of Cn.u. in the man-in-the-middle setting 125
6.8 Algorithm Ĉ ′

n.u. - simulation of Cn.u. 126
6.9 Algorithm Ĉ ′′

n.u. 128
6.10 Rewinding a non-synchronizing adversary . 137
6.11 Converting adversary C to an adversary C1 for the protocol Π1. 142

xv

xvi LIST OF FIGURES

Chapter 1

Introduction

A computer program (or equivalently, an algorithm) is a list of symbols – a finite string. When
we interpret a string Π as a program, we associate with this string a function that the string Π
computes. For example, if we interpret the string

int f(int x) {

return x+1;

}

as a program in the C programming language, then we associate with it the function f(·) where

f(x)
def
= x + 1 for any integer x. Given a program Π and a value x, it is possible to compute

f(x), where f(·) is the function associated with the program Π, by executing the program Π on a
computer. We sometimes call the string Π the representation or code of the function f(·).

Since a program is a string, it sometimes makes sense to use it as input to a different program.
Indeed, algorithms that take other programs as input are very common in Computer Science. In
most cases, these algorithms use their input program as a subroutine. By this we mean that, on
input a program Π, the algorithm’s operation does not depend on the particular representation of
the program Π, but rather, the algorithm only uses its input program Π to evaluate the function
that the program Π computes. That is, the algorithm only uses Π to obtain a “black box” for
computing f(·), such that the algorithm can feed inputs to and receive outputs from this box. We
call such an algorithm (that only uses black-box access to the program it gets as input) a black-box
algorithm.

As mentioned above, black-box algorithms are very popular in computer science. Many times,
when trying to solve a particular task, one would write an algorithm that solves the task if it is
given black-box access to programs that solve some simpler tasks, and then write programs that
solve these simpler tasks. This approach is a basic paradigm of software engineering, and almost
all programming languages implement mechanisms (such as function calls) to facilitate it.

Black-box algorithms are also very popular in the more theoretical aspects of Computer Science.
For example, when proving that a decision problem L is NP-complete, one needs to show the
existence of a black-box algorithm B (where B is usually called a reduction), such that if B
is given black-box access to an algorithm A that solves the problem L, then B can solve the
Satisfiability problem. Such reductions also appear in cryptography. For example, consider
the constructions of public key encryption schemes whose security can be reduced to the factoring
problem [Rab79, BG84]. This is shown by providing a black-box algorithm B, such that if B is given
black-box access to an algorithm A that compromises the security of the encryption scheme, then
B can solve the factoring problem.

1

2 CHAPTER 1. INTRODUCTION

Why are black-box algorithms so popular? The reason that black-box algorithms are so
popular is that it seems very hard to make use of the particular representation of a program as a
string. Understanding the properties of a function from the code of a program that computes it (also
known as reverse-engineering) is a notoriously hard problem. In fact, considerable efforts are made
at writing programs so they would be easy to understand. Programs written without such efforts,
or programs written or compiled to low level languages are considered to be quite incomprehensible.
In fact, in some cases it is either proven (e.g., the Halting problem, Rice’s theorem) or widely
conjectured (e.g., the Satisfiability problem) that when trying to learn properties of a function,
there is no significant advantage to getting its representation as a program, over getting black-box
access to it. Thus, a common intuition is the following:

The only useful thing one can do with a program is to execute it (on chosen inputs).

In this thesis, we test this intuition in several settings in cryptography. Somewhat surprisingly,
we find several cases in which it does not hold. That is, we find several cases in which it can be
shown that non-black-box algorithms have significantly more power than black-box algorithms. We
use this additional power of non-black box algorithms to obtain new results. Some of these results
were previously proven to be impossible to obtain when using only black-box techniques.

1.1 Our Results

The main theme of this thesis is that non-black-box techniques can indeed be more powerful than
black-box techniques in several interesting contexts in cryptography. Below, we elaborate more
on our specific results in particular contexts. We only mention here our results, and we do not
elaborate on the ideas and techniques used to obtain these results. Each chapter in this thesis has
its own introduction, which contains a much more detailed (but still high level) discussion on the
results of the chapter and on the ideas used in the proofs. We note that we present the results
here in a different order than the order of the chapters. This is because the results of Chapter 6
are somewhat easier to state than the results of Chapters 4 and 5, but the proofs of Chapter 6 are
actually more complicated and use some ideas from the previous chapters.

1.1.1 Code Obfuscation

Code obfuscation is about trying to make practical use of the difficulty of reverse-engineering
programs. Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that takes as
input a program Π and produces a new program O(Π) that has the same functionality as Π yet is
“unintelligible” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic
and complexity-theoretic applications, ranging from software protection to homomorphic encryption
to complexity-theoretic analogues of Rice’s theorem. Most of these applications are based on an
interpretation of the “unintelligibility” condition in obfuscation as meaning that O(Π) is a “virtual
black box,” in the sense that anything one can efficiently compute given O(Π), one could also
efficiently compute given black-box access to Π.

Several constructions of software obfuscators have been previously suggested (c.f., [CTL97] and
the references therein). However, no formal definition of obfuscation has been suggested, and so
in particular none of these candidates has been proven to meet some formal security definition. In
Chapter 3 of this thesis, we initiate a theoretical investigation of obfuscation. Our main result is
that, even under very weak formalizations, obfuscation is impossible. We prove this by constructing
a family of programs P that are inherently unobfuscatable in the sense that

1.1. OUR RESULTS 3

1. There is an efficient algorithm A such that for every program Π ∈ P and every program Π′

that computes the same function as Π, A(Π′) = Π. That is, for every possible obfuscator O,
A can recover the original source code of Π from O(Π).

but

2. When given only black box access to a program Π chosen at random from P, it is infeasible
to compute the program Π.

We extend our impossibility result in a number of ways, including even obfuscators that (a) are
not necessarily computable in polynomial time, (b) only approximately preserve the functionality,
and (c) only need to work for very restricted models of computation (TC0). We also rule out
several potential applications of obfuscators, by constructing “unobfuscatable” signature schemes,
encryption schemes, and pseudorandom function families.

1.1.2 Non-black-box Proofs of Security

A typical cryptographic theorem has the following form “Scheme X (e.g., a secure voting protocol)
is as secure as Problem Y (e.g., factoring random Blum integers)”. This statement means that if
there exists an efficient algorithm A that breaks the security of the scheme X, then there exists an
efficient algorithm B that can solve the problem Y . In all previous cases that we are aware of, such
statements were proven via black-box reductions. That is, to show that the statement is true, one
gave a construction of a generic algorithm B that takes as input both an instance of the problem Y
and uses black-box access to an algorithm A. Then, one proves that if A is an algorithm to break
the scheme X, then when given access to A, Algorithm B solves the problem Y .

A natural question is whether one can gain more power by using a non-black-box reduction.
That is, whether by considering also reductions that let the algorithm B use also the code of A one
can obtain new cryptographic schemes. In Chapter 6 we give a positive answer to this question.
We use there a non-black-box proof of security to construct the first constant round non-malleable
commitment scheme and the first constant-round non-malleable zero-knowledge argument system,
as defined by Dolev, Dwork and Naor [DDN91].

Non-malleability is a strengthened notion of security that is needed for some applications of
secure protocols. In particular, non-malleable commitment schemes capture better the intuitive
notion of “digital envelopes” in the sense that the committed value is not only hidden from the
receiver of such a commitment scheme but also the receiver cannot form a commitment to any
related value. In contrast, when using a standard (i.e., malleable) commitment scheme, it may be
the case that the receiver of a commitment to a value x, can form a commitment to a value related
to x (e.g., x + 1) even though he cannot learn x.

Previous constructions of non-malleable commitment schemes and zero-knowledge proofs either
used a non-constant number of rounds, or were only secure under stronger setup assumptions (such
as the availability of a public string that is chosen at random and published by a trusted third
party).

As an intermediate step we define and construct a constant-round non-malleable coin tossing
protocol. This coin-tossing protocol may be of independent interest.

1.1.3 Non-Black-Box Simulation

The simulation paradigm, introduced by Goldwasser, Micali, and Rackoff [GMR85], is one of the
most important paradigms in the definition and design of cryptographic primitives. For example,

4 CHAPTER 1. INTRODUCTION

this paradigm arises in a setting in which two parties, Alice and Bob, interact in some secure
protocol (e.g., a zero-knowledge proof) and Bob knows a secret. We want to make sure that Alice
hasn’t learned anything about Bob’s secret as the result of this interaction, and do so by showing
that Alice could have simulated the entire interaction by herself. Therefore, she has gained no
further knowledge as the result of interacting with Bob, beyond what she could have discovered by
herself.

Formally, this is shown by exhibiting a simulator. A simulator is an algorithm, that gets as
input an algorithm A∗ which describes Alice’s strategy in the protocol, and outputs a distribution
that is indistinguishable from the distribution of the messages that Alice sees in a real interaction
with Bob when she is using the strategy A∗. The existence of such a simulator demonstrates that
regardless of the strategy A∗ that Alice’s uses, she has not learned anything about Bob’s secret that
she couldn’t have learned by herself without having any interaction with Bob (by simply running
the simulator).

Almost all previously known simulators used only black-box access to the algorithm A∗ they
received as input.1 In Chapter 4, we present the first construction of a protocol with a non-black-
box simulator under standard assumptions. Using these new non-black-box techniques we obtain
several results that were previously shown to be impossible to obtain using black-box simulators.

Specifically, assuming the existence of collision-resistent hash functions, we construct a new zero-
knowledge argument (i.e., a computationally-sound proof) for any language in NP that satisfies
the following properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It remains zero-knowledge even if executed concurrently n times, where n is the security
parameter. We call a protocol that satisfies this property a bounded concurrent zero-knowledge
protocol.2

4. It is an Arthur-Merlin (public coins) protocol.

5. It has a simulator that runs in strict probabilistic polynomial-time, rather than expected
probabilistic polynomial-time.

The above protocol should be contrasted with the following impossibility results regarding black-
box zero-knowledge arguments for non-trivial languages: Goldreich and Krawczyk [GK90] showed
that such protocols cannot satisfy both Properties 2 and 4. Canetti, Kilian, Petrank and Rosen
[CKPR01] showed that such protocols cannot satisfy both Properties 2 and 3. In Chapter 4, we also
show that such protocols cannot satisfy Properties 2 and 5.

In addition, in Chapter 5 we use this zero-knowledge system to obtain other new results in
cryptography. These applications include (a) a construction of constant-round zero-knowledge
argument of knowledge with a strict polynomial-time knowledge extractor, (b) a zero-knowledge
resettably sound argument for NP, and (c) a resettable zero-knowledge argument of knowledge.
We show that all these three applications are impossible to obtain when restricted to black-box
techniques.

1One exception is the zero-knowledge proof system of [HT99]. However, that protocol was constructed under a
computational assumption that the authors themselves describe as unreasonable.

2The choice of n repetitions is quite arbitrary and could be replaced by any fixed polynomial (e.g. n3) in the
security parameter. This is in contrast to a standard concurrent zero-knowledge protocol [DNS98, RK99] that
remains zero-knowledge when executed concurrently any polynomial number of times.

1.2. HOW TO READ THIS THESIS. 5

We remark that application (b) in particular, is somewhat counter-intuitive, and demonstrates
well the power of non-black-box techniques. In particular it means that if you are given a device
(e.g., a smart-card) that proves some statement σ in this system then you are not able to learn
anything new about σ except its validity by “playing” with the device – feeding it with different
inputs, and examining its outputs. However you can still be certain that if you were to open the
device and examine its internal workings, you would be able to extract a witness for σ.

Relation to non-black-box proofs of security. We remark that in some sense non-black-box
simulation is a special case of non-black-box proofs of security. This is because one can view the
existence of a simulator as a proof that the protocol is secure, and so a non-black-box simulator can
be viewed as a non-black-box proof of security. Indeed, usually when a zero-knowledge protocol
is used as a component in a larger sub-protocol, the security reduction for the larger protocol
involves using the simulator for the zero-knowledge protocol. Thus, if the zero-knowledge protocol
used has a non-black-box simulator, then the security reduction for the larger protocols will be
non-black-box.

1.2 How to read this thesis.

One way to read this thesis is of course to read it sequentially, from cover to cover. Another way
to read it is to start by reading the introductions to Chapters 3–6, and then continue to the actual
contents. The introduction to each chapter contains also an organization section that specifies the
dependency structure of the individual sections within the chapter.

Dependency between chapters. The following information might be useful to readers that
want to read only individual chapters.

• Chapter 2 contains notations and definitions used throughout the thesis. Most readers can
probably read just the summary of this chapter, and return to specific definitions in it when
necessary.

• Chapter 5 depends on the results proven in Chapter 4 and thus should be read after Chapter 4.

• Although, technically Chapter 6 does not depend on the results of the previous chapters, it
uses similar ideas to Chapter 4 in a more complicated setting. Thus I recommend reading
Chapter 4 before Chapter 6.

• Universal arguments are used both in Chapter 4 and Chapter 6. Their definition is presented
in Chapter 2 and a construction is presented in Appendix A.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries and Definitions

Summary: This chapter contains the notations and basic definitions used throughout
this thesis. The reader may want to skim through this chapter, since in most cases
we follow the standard notations and definitions used in the literature (e.g., in [Gol01b,
Gol04]). Notable exceptions are the following:

1. We use the notion of a random-access hashing scheme (also known as tree hashing
or Merkle’s hash trees [Mer89]). Although similar notions have been used before,
the name and definition we use are somewhat different.

2. We use the notion of universal arguments, which are a cross between CS proofs
and argument systems. Our definition is taken from [BG01].

3. We use the notion of a commit-with-extract scheme. Similar concepts have been
used in the literature, but our definition is taken from [BL02].

4. We take a unified approach for defining zero knowledge and proofs of knowl-
edge. In both cases we define them as having a non-black-box universal sim-
lator/extractor. Most previous works defined zero-knowledge as having a non-
black-box non-universal simulator, and proofs of knowledge as having a black-box
universal knowledge extractor.

We refer the reader to Goldreich’s textbooks ([Gol01b, Gol04]) for a much more exten-
sive treatment of the concepts mentioned in this section, including discussions on the
motivations and context of these concepts.

2.1 Standard Notations

Functions. We use standard mathematical notations regarding functions. That is, if f is a
function that maps elements of a set X to elements of a set Y , then we denote this by f : X → Y .
We say that X is the domain of f and Y is the range of f . If A ⊆ X then f(A) denotes the set
{f(a) | a ∈ A} = ∪a∈A{f(a)}. If y ∈ Y then f−1(y) denotes the set {x ∈ X | f(x) = y}. If B ⊆ Y
then f−1(B) denotes the set ∪b∈Bf−1(b). We also use the standard O-notations (O,Ω, o, ω,Θ) to
denote order of growth of functions.

Distributions. For a finite set S ⊆ {0, 1}∗, we write x ←R S to say that x is distributed uniformly
over the set S. If D is a distribution, then we write x ←R D to say that x is a random variable

7

8 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

distributed according to D. We use Supp(D) to denote the support of a distribution D (i.e., the
set of all elements with non-zero probability). We denote by Un the uniform distribution over
the set {0, 1}n. A function µ(·), where µ : N → [0, 1] is called negligible if µ(n) = n−ω(1) (i.e.,
µ(n) < 1

p(n) for all polynomials p(·) and large enough n’s). We say that an event happens with

overwhelming probability if it happens with probability 1− µ(n) for some negligible function µ(·).
We will sometimes use neg to denote an unspecified negligible function. If α and β are strings, then
α ◦ β denotes the concatenation of α and β.

Computational models, encoding algorithms as strings. We assume the standard notions
of Turing machines and Boolean circuits. For all of the results of this thesis, details such as the
number of tapes of Turing machine, or the types of gates allowed in a Boolean circuit (as long as
they generate all Boolean functions), will not matter. We identify algorithms with their description
as either Turing machines or Boolean circuits in some canonical way (for the purposes of this thesis,
it does not matter which reasonable method one chooses to encode Turing machines or Boolean
circuits as strings). For example, A(A) denotes the output of the algorithm A, when given as input
the string that describes A. In some cases, for added clarity, we may denote the description of an
algorithm A by desc(A) (and thus, in the example above, one can denote the output of A when
given as input the description of A also by A(desc(A))). The size of an algorithm A is the length
of the string that describes it. A polynomial-sized circuit family is a sequence of circuit {Cn}n∈N

such that each circuit Cn is of size polynomial in n, has nΘ(1) input bits, and nO(1) output bits. We
also use the standard notions of oracle Turing machines and circuits with oracle gates. We denote
the execution of an algorithm A on input x with access to oracle O by AO(x). We will sometimes
use [A] to denote the (possibly partial) function that a an algorithm A computes.

Black-box subroutines. In many cases we will invoke an algorithm A with the description of
an algorithm B as part of its input. In such cases we say that A uses B as a black-box subroutine
if the only use A makes of the description B is to execute B on chosen inputs (i.e., A is essentially
an oracle algorithm that makes oracle calls to B). In such cases we may say that A is a black-box
algorithm.

Languages and witnesses. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. We define L(R)
def
=

{x | ∃y s.t. (x, y) ∈ R}. If x ∈ L(R) and y is a string such that (x, y) ∈ R then we say that y
is a witness for the fact that x ∈ L(R). We denote the set of witnesses to x by R(x). That is,
R(x) = {y | (x, y) ∈ R}. Let T : N → N be some function. We say that L ∈ Ntime(T (n)) if there
exists a relation R such that L = L(R) and a Turing machine M such that on input (x, y), the
machine M runs for at most T (|x|) steps and output 1 if (x, y) ∈ R and 0 otherwise.

Probabilistic algorithms. If A is a probabilistic algorithm, then we let A(x; r) denote the output
of A on input x and random-tape r. We let A(x) denote the random variable that represents A(x; r)
for a randomly chosen r of appropriate length.

Adversarial models. Our standard way to model an efficient adversary strategy will be a family
of polynomial-sized circuits. However, we also consider other models such as T (n)-sized circuits

for a super-polynomial function T : N → N (e.g., T (n) = nlog n or T (n) = 2n1/10
). We will also

sometimes consider uniform adversaries. That is, adversaries that are described using probabilistic
polynomial-time Turing machines. In fact, in some cases, we will also consider a “hybrid model”

2.1. STANDARD NOTATIONS 9

of adversaries with bounded non-uniformity. Such adversaries are described by a probabilistic
polynomial-time Turing machine that on inputs of size n gets an advice string of length l(n) where
l : N → N is some fixed function that is polynomially related to n. We stress that the running time
of such adversaries may be any polynomial and so in particular may be larger than l(n).

Note: In most cryptographic works, a proof of security for uniform adversaries, can be extended to
yield a proof of security for non-uniform adversaries (under appropriate complexity assumptions).
However, this is only because these works use black-box reductions in their proof of security. In
contrast, in this thesis we will often utilize non-black-box techniques. This means that our proofs
of security against uniform adversaries will often not extend automatically into proofs of security
against non-uniform adversaries. Indeed, we will often need to use more complicated proofs and
additional ideas to extends proofs from the uniform into the non-uniform setting.

Computational indistinguishability. Let X and Y be random variables over {0, 1}n and let
s ≥ n. We say that X and Y are indistinguishable by s-sized circuits if for every circuit D of size
s, it holds that |Pr[D(X) = 1]− |Pr[D(Y) = 1]| < 1

s . A probability ensemble is a sequence {Xi}i∈I

of random variables, where I is an infinite subset of {0, 1}∗ and Xi ranges over {0, 1}p(|i|) for some
polynomial p(·). We say that two probability ensembles {Xi}i∈I and {Yi}i∈I are computationally
indistinguishable, denoted by {Xi}i∈I ≡C {Yi}i∈I , if for every polynomial p(·) and every sufficiently
large i, Xi and Yi are indistinguishable by p(|i|)-sized circuits. An equivalent formulation is that
{Xi}i∈I and {Yi}i∈I are computationally indistinguishable if there exists a negligible function µ :
N → [0, 1] such that Xi and Yi are indistinguishable by 1

µ(|i|) -sized circuits. We will sometimes abuse
notation and say that the two random variables Xi and Yi are computationally indistinguishable,
denoted by Xi ≡C Yi, when each of them is a part of a probability ensemble such that these
ensembles {Xi}i∈I and {Yi}i∈I are computationally indistinguishable. We will also sometimes drop
the index i from a random variable if it can be inferred from the context. In most of these cases,
the index i will be of the form 1n where n is called the security parameter. We will use the following
basic facts regarding computational indistinguishability:

Proposition 2.1.1. Let M be a probabilistic polynomial-time Turing machine. If {Xi}i∈I and
{Yi}i∈I are computationally indistinguishable then so are {M(Xi)}i∈I and {M(Yi)}i∈I .

We call a probability ensemble {Xi}i∈I efficiently sampleable if there exists a probabilistic
polynomial-time Turing machine S and a polynomial p(·) such that Xi = S(i, Up(|i|)). We have the
following two facts about efficiently sampleable ensembles:

Proposition 2.1.2. Let {Xi}i∈I , {Yi}i∈I , {Ui}i∈I and {Ti}i∈I be four efficiently sampleable proba-
bility ensembles. If {Xi}i∈I is computaionally indistinguishable from {Yi}i∈I and {Ui}i∈I is compu-
tationally indistinguishable from {Ti}i∈I then the ensemble {(Xi, Ui)}i∈I is computationally indis-
tinguishable from the ensemble {(Yi, Ti)}i∈I , where (Xi, Ui) (resp. (Yi, Ti)) represents a pair (x, u)
(resp. (y, t)) such that x (resp. y) is sampled from Xi (resp. Yi) and u (resp. t) is independently
sampled from Ui (resp. Ti).

Proposition 2.1.3. Let {Xi}i∈I and {Yi}i∈I be two efficiently sampleable and computationally in-

distinguishable probability ensembles. Let p(·) be some polynomial. Then, the ensembles {(X(1)
i , . . . , X

(p(|i|))
i)}i∈I

and {(Y (1)
i , . . . , Y

(p(|i|))
i)}i∈I are computationally indistinguishable, where (X

(1)
i , . . . , X

(p(|i|))
i) (resp.

(Y
(1)
i , . . . , Y

(p(|i|))
i)) represents p(|i|) independent copies of Xi (resp. Yi).

10 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

2.2 Basic Cryptographic Primitives

In this section we define some basic cryptographic primitives. We define all of these to be secure
against polynomial-sized circuits, but analogous definitions can be obtained for other adversary
models. In particular, we will sometimes use variant of these definitions where security should hold
against T (n)-sized circuits, where T (n) is some fixed super-polynomial function (e.g., T (n) = 2nǫ

for some constant ǫ > 0).

One-way functions and permutations. One-way functions that are easy to compute but hard
to invert on random inputs. The formal definition is as follows:

Definition 2.2.1 (One-way function). Let f : {0, 1}∗ → {0, 1}∗. We say that f is a one-
way function if f is computable in polynomial-time, and for every polynomial-sized circuit family
{Cn}n∈N,

Pr
x←R{0,1}n

[Cn(f(x)) ∈ f−1(f(x))] < neg(n)

.

We say that f is a one-way permutation if f is a one-way-function, and for every n ∈ N, f
restricted to {0, 1}n is a permutation of {0, 1}n.

Pseudorandom generators. A pseudorandom generator is is an algorithm that allows to take
a small seed and expand it into a longer string that is computationally indistinguishable from the
uniform distribution. The formal definition is as follows:

Definition 2.2.2. Let l : N → N be a polynomial-time computable function such that l(n) > n.
A polynomial-time computable function G : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator with
expansion l, if for every string s ∈ {0, 1}∗, |G(s)| = l(|s|), and for every n ∈ N, the random variables
G(Un) and Ul(n) are computationally indistinguishable.

The fundamental theorem about pseudorandom generators is the following:

Theorem 2.2.3 ([HILL89]). Pseudorandom generators (with any polynomial expansion) exist if
and only if one-way functions exist.

Function ensembles and pseudorandom functions. We now define function ensembles and
pseudorandom functions.

Definition 2.2.4 (Efficiently computable function ensembles.). An function ensemble is a
family of functions {fα}α∈{0,1}∗ such that fα is a function from {0, 1}|α| to {0, 1}|α|.1 We say that a
function ensemble is efficiently computable if there exists a polynomial-time algorithm F such that
given α, x ∈ {0, 1}n, F (α, x) = fα(x).

The index α of a function ensemble is sometimes called the seed of the ensemble. We remark
that we may sometimes identify the seed α with the function fα. For example, we may say that a
party samples a random function f from the ensemble and outputs f(x), instead of saying that a
party samples a random string α, and outputs fα(x).

1One can also generalize the definition to allow α to belong to an arbitrary index set I ⊆ {0, 1}∗ (where there
is an efficient algorithm that given 1n, samples a random element out of I ∩ {0, 1}n), and we can also have fα be a
function from {0, 1}lin(|α|) to {0, 1}lout(|α|), where lin(n), lin(n) = nO(1).

2.2. BASIC CRYPTOGRAPHIC PRIMITIVES 11

Definition 2.2.5 (Pseudorandom functions). An efficiently computable function ensemble
{fα}α∈{0,1}∗ is called a pseudorandom function ensemble if for every polynomial-sized oracle circuit
family {Cn}n∈N, the following two random variables are computationally indistinguishable:

• Cfα(1n), where α ←R {0, 1}n

• CH(1n), where H is a function chosen at random from {0, 1}n → {0, 1}n.

We remark that one can view pseudorandom functions as a pseudorandom generator with
exponential expansion (with the seed to the generator being the choice of the member in the
family). The basic theorem about pseudorandom functions is the following:

Theorem 2.2.6 ([GGM86]). Pseudorandom function ensembles exist if and only if one-way func-
tions exist.

Trapdoor permutations. Loosely speaking, a trapdoor permutation ensemble is an efficiently
computable permutation ensemble that is easy to compute, hard to invert, but easy to invert if
you have additional trapdoor permutation. For simplicity, we define trapdoor permutations whose
domain and range are equal to {0, 1}n. However, for all our applications it actually suffices to
assume the existence of an enhanced family of trapdoor permutations [Gol01b, Appendix C.1].
Such a family can be constructed under either the RSA or factoring assumptions, see [ACGS84,
Section 6.2] and [Gol01b, Appendix C.1].

Definition 2.2.7 (Trapdoor permutations). A trapdoor permutation collection is a set of three
algorithms G, F, B (where G is probabilistic polynomial-time and F ,B are deterministic polynomial-
time) that satisfy:

• Let (f, b) ←R G(1n). Then, the function pf (x)
def
= F (f, x) is a permutation on {0, 1}n and

the function qb(x)
def
= B(b, x) is equal to p−1

f .

• For every polynomial-sized circuit family {Cn}n∈N,

Pr
(f,b)←R{0,1}n,x←R{0,1}n

[Cn(f, pf (x)) = x] < neg(n)

We say that the collection is certified if it possible to efficiently decide whether a string f was
output by G. That is, if the language L = {f | (f, b) ∈ Supp(G(1∗))} is in BPP.

Again, also in the case of trapdoor permutations, we will sometimes identify the function com-
puted with the seed value, and so say that a party samples two functions f, f−1 from a trapdoor
permutation collection, instead of saying that a party computes (f, b) ←R G(1n).

Simple commitment schemes. A commitment scheme allows a party to digitally commit to a
particular string/number, and then to reveal this value at a later time. It is a very useful building
block for constructing secure protocols. There are many variants of commitment schemes, and
some variants (such as interactive schemes, commit-with-extract, and non-malleable commitments)
will be used also in this thesis. However, we’ll start with defining the simplest notion, of a non-
interactive perfectly binding commitment scheme.

12 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Definition 2.2.8 (Simple commitment). A (non-interactive perfectly-binding computationally-
hiding) commitment schemes is a polynomial-time computable sequence of functions {Cn}n∈N where
Cn : {0, 1}n × {0, 1}p(n) → {0, 1}q(n), and p(·), q(·) are some polynomials, that satisfies:

Perfect Binding For every x 6= x′ ∈ {0, 1}n, C(x, {0, 1}q(n)) ∩ C(x′, {0, 1}q(n)) = ∅.

Computational Hiding For every x, x′ ∈ {0, 1}n, the random variables C(x, Un) and C(x′, Un)
are computationally indistinguishable.

The first input x of the commitment scheme is sometimes called the plaintext. The second input
is sometimes called the random coins.

We’ll usually omit all the qualifiers, and just call such a scheme a simple commitment scheme
(or sometimes, just a commitment scheme). A simple commitment scheme can be constructed
under the assumption that one-way permutations exist [Blu82] (using the generic hard-core bit of
[GL89]). Another construction, under incomparable assumptions, was given by [BOV03]. In all the
places we use simple commitment schemes in this thesis, we can also use instead the two-round
scheme of Naor [Nao89], which can be based on any one-way function.

We will sometimes denote a simple commitment scheme by Com. We will use the notation
Com(x) to denote the random variable that is the result of committing to the plaintext x (and
choosing the second input at random). We will also sometimes use the notion of a bit commitment
scheme, where one commits to a single bit (and the security of the scheme is thus related not to
the length of the plaintext but rather to an additional security parameter). Note that a string
commitment scheme can be obtained from a bit commitment scheme by using the bit-commitment
scheme to commit separately to each bit of the plaintext string.

2.2.1 Hashing and Tree-Hashing

We now define collision-resistant hash functions. It is reasonably conjectured that several efficient
functions, such as SHA-1 [Nat95], give rise to such an ensemble. One can also construct such
functions based on several natural hardness assumptions, such as the hardness of factoring [GMR84].

Definition 2.2.9. An efficiently computable function ensemble {hα}α∈{0,1}∗ , where hα : {0, 1}∗ →
{0, 1}|α| is called collision resistant if for every polynomial-sized circuit family {Cn}n∈N,

Pr
α←R{0,1}n

[Cn(α) = 〈x, y〉 s.t. x 6= y and hα(x) = hα(y)] < neg(n)

.

We defined hash functions as mapping strings of arbitrary length to n-bit long strings. One
can also define hash functions as mapping n-bit strings to n/2-bit strings, or n-bit strings to nǫ-
bit strings, where 1 > ǫ > 0 is some constant. It is not hard to see that a function ensemble
satisfying one of these variants can be used to construct function ensembles satisfying the other
variants. If {hα} is a collision-resistent hash function ensemble, we will sometimes denote the set
{hα | α ∈ {0, 1}n} by Hn, and identify the hash function with its seed. For example, if we say that
a party chooses a random h ∈ Hn and sends h, then we mean that this party chooses a random
α ←R {0, 1}n and sends α.

2.2. BASIC CRYPTOGRAPHIC PRIMITIVES 13

Random-access hashing. Note that a collision-resistent hash function allows one party (which
we’ll call the sender) to commit to a string x by providing another party (which we’ll call the
receiver) with the value y = h(x), where h : {0, 1}∗ → {0, 1}n is chosen by the receiver at random
from the collection. This is a commitment in the sense that with overwhelming probability, if the
sender sends a string y, then he can find at most one value x such that y = h(x).2 To decommit
to a string y, a sender will send the string x such that h(x) = y. Suppose now that the receiver
doesn’t care about the entire string x, and only wants to know if xi (i.e., the ith bit of x) is equal
to 0 or to 1. A random-access hashing scheme (also known as tree hashing or Merkle’s hash trees
[Mer89]) allows the sender to send a certificate to the value of xi, in a way that the certificate size
and time to verify it is polynomial in |y| and log |x|. This may be significantly shorter than simply
sending the entire string x to the verifier. We now present the formal definition:

Definition 2.2.10 (Random-access hashing). A random-access hashing collection is an ensem-
ble {〈hα, certα〉}α∈{0,1}∗ of pairs of efficiently computable functions, where hα : {0, 1}∗ → {0, 1}|α|
and certα takes two inputs x, i, where x ∈ {0, 1}∗ and |i| = log |x|, and a polynomial-time algorithm
V that satisfy the following properties:

Efficiency: |certα(x, i)| = poly(|α|, log |x|)
Completeness: For every α, x, Vα,hα(x)(i, xi, certα(x, i)) = 1.3

Binding (Soundness): For every polynomial-size circuit family {Cn}n∈N,

Pr
α←{0,1}n

[Cn(α) = 〈y, i, σ0, σ1〉 s.t. Vα,y(i, 0, σ0) = 1 and Vα,y(i, 1, σ1) = 1]

Note that if we ignore the second function then a random-access hashing ensemble is in particular
a collision-resistent hash function ensemble. Indeed, suppose that there is an algorithm that given α
obtains a collision with respect to hα (i.e., x 6= x′ such that hα(x) = hα(x′)). Then, we can convert
this algorithm to an algorithm contradicting the binding property of the random-access hashing
scheme. Indeed, there exists i such that (without loss of generality) xi = 0 and x′

i = 1. This means
that if we let y = hα(x) = hα(x′), σ0 = certα(x, i), and σ1 = certα(x′, i) then Vα,y(i, 0, σ0) = 1 and
Vα,y(i, 1, σ1) = 1.

Constructing a random-access hashing scheme using hash trees. There is a well known
construction due to Merkle of a random-access hash scheme based on any collision-resistent hash
function ensemble [Mer89]. Let {h′

α}α∈{0,1}∗ be a collision-resistent hash function ensemble, where

where h′
α : {0, 1}∗ → {0, 1}|α| (actually it is enough to use such a collection where h′

α : {0, 1}2|α| →
{0, 1}|α|). The random-access hashing scheme {hα, certα}α∈{0,1}∗ will be defined as follows:

The hash function hα: Given an input x, one pads x in some canonical way to a string of length
2dn. That is, we assume x = x1 · · ·x2d where xi ∈ {0, 1}n (and n = |α|). To compute hα(x),
we construct a depth-d complete binary tree, which we label iteratively, from the leaves to
the root. Each one of the 2d leaves is labeled with the corresponding block xi. We then
iteratively label each node in the tree with the hash of its children’s labels. That is, if we
denote the label of a node v by Lv, and we denote the left (resp. right) child of a node v by
left(v) (resp. right(v)), then Lv = h′

α(Lleft(v) ◦ Lright(v)) (where ◦ denotes concatenation). We
let hα(x) to be 〈|x|, L〉 where L is the label of the root of the binary tree.

2We say that a hash function is like a commitment only in the sense that it satisfies a computational binding
property. We do not make any secrecy/hiding requirements from the hash function.

3Note that we use subscript notation for the first two inputs to V .

14 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

The certification function certα(i, x): To compute certα(i, x) we compute the same labeled bi-
nary tree as in the computation of hα(x). Let i′ denote the index of the block of the padded
x that contains the ith bit of x. We define certα(x) to be the set of all labels of the nodes
along the path from the leaf corresponding to the block xi′ to the root, including the labels
for the immediate siblings of these nodes.

The verification algorithm V : Given a seed α, a value y (which supposed to be the label of the
root of the tree), an index i, a bit b ∈ {0, 1}, and a certificate σ (which contains a list of
labels), the verification algorithm is as follows: Initially V computes the index i′ of the block
that contains the ith bit of x. Then V checks that the bit corresponding to the ith bit of x
in the block xi′ (which is part of the certificate σ) is indeed equal to b (otherwise it outputs
0). Then, V verifies that for every non-leaf label Lv in the path between xi′ to the root, it
holds that Lv = h′

α(Lleft(v) ◦ Lright(v)) (note that the labels Lleft(v) and Lright(v) should indeed
be part of the certificate σ); otherwise V outputs 0. Finally, V verifies that the label for the
root in σ is indeed equal to y.

The completeness and efficiency conditions of this scheme are pretty self-evident. The reason
this scheme satisfies the binding condition is the following: if one compares a valid certificate for
xi = 0 and a valid certificate for xi = 1 (with respect to the same seed α and root label y),
then both these certificates contain labels for all the nodes in the path from the root to the block
xi′ . Because the label for the root is equal in both certificates, and the label for the leaf xi′ is
different, there must be some node v in the path such that Lv = L′

v but either Lleft(v) 6= L′
left(v)

or Lright(v) 6= L′
right(v) (where L denotes the label according to the first certificate and L′ denotes

the label according to the second certificate). We see that if we denote u = Lleft(v) ◦ Lright(v) and
u′ = L′

left(v) ◦ L′
right(v), then u 6= u′ but h′

α(u) = h′
α(u′): that is, one can derive a collision for h′

α

from these two certificates.

2.3 Interactive Protocols, Interactive Proofs and Zero Knowledge

2.3.1 Protocols and interaction

In many cases, we will be interested in this thesis in an interactive setting, where there are two or
more parties that are exchanging messages between them.4 We assume that the reader is familiar
with the notions of interactive algorithms and protocols, and thus our emphasis is on presenting the
notations that we will use. See [Gol01b] for more elaborate and precise descriptions of interactive
protocols and interactive Turing machines.

Next-message function, view and transcript. A view of a party in an interaction contains
the public input, the party’s private input and random-tape, and the list of messages that this
party received up to this step. The next-message function of a party is a function that maps a
view in a particular step of the protocol to the party’s message in the next step. An interactive
algorithm is an algorithm that computes the next-message function of a party. If I is an interactive
algorithm, and v is a view of the protocol up to a particular step s, then the residual algorithm
I with respect to the view v is the algorithm I with the view v “hardwired in”. That is, this is
a function that takes a list of messages sent after the step s, and computes I’s response to them,
assuming that the messages sent up to step s are as described in v. A transcript of an interaction

4Actually, we will almost always be interested in the case where there are exactly two parties.

2.3. INTERACTIVE PROTOCOLS, INTERACTIVE PROOFS AND ZERO KNOWLEDGE 15

consists of the public input and the list of all messages exchanged in the interaction (but does not
include the parties’ private inputs and random-tapes). That is, the transcript of an execution is
the public information seen by both parties in the execution. For any interactive algorithm I, and
any view v of I, the transcript τ of the protocol can always be computed from the view v. We say
in this case that the transcript τ is contained in the view v.

Notation. If A and B are interactive algorithms, then 〈A(y), B(z)〉(x) is a random variable
representing the execution of an interaction between A and B on public input x when A’s private
input is y and B’s private input is z. We let viewA〈A(y), B(z)〉(x) denotes A’s view in this execution,
and let outA〈A(y), B(z)〉(x) denotes A’s output at the end of the execution. We define viewB and
outB in the symmetric way. We let transcript〈A(y), B(z)〉(x) denote the transcript of the execution.

Prescribed versus cheating parties. A protocol is a set of interactive algorithms, which de-
termines the strategies that each player is supposed to use. We call these strategies the prescribed
or honest strategies. However, we will usually analyze the execution of the protocol also when one
of the parties may not be following its prescribed strategy. We will sometimes refer to such a party
as “cheating”. Part of the description of any protocol are conventions on who is the first party to
send a message and on the length of each message. We assume, without loss of generality, that
even “cheating” parties follow these conventions (e.g., if a party sends a message that is too short
or too long then we assume that it is padded or truncated to the proper length).

Hardwiring input convention. We will usually assume that cheating parties do not get any
private input. This will be without loss of generality because our adversarial model is non-uniform
circuits. Thus, any input that a cheating party may have can be considered as being “hardwired”
into it, and so part of its description as a Boolean circuit.

2.3.2 Interactive proof and argument systems

An interactive proof [GMR85] is a two-party protocol, where one party is called the prover and the
other party is called the verifier. We use the following definition:

Definition 2.3.1 (Interactive proofs). An interactive protocol (P, V) is called an interactive
proof system for a language L if the following conditions hold.

Efficiency: The number and total length of messages exchanged between P and V are polynomially
bounded and V is a probabilistic polynomial-time machine.

Perfect completeness: If x ∈ L, then Pr[outV 〈P, V 〉(x) = 1] = 1.

Soundness: If x /∈ L, then for every possible P ∗, Pr[outV 〈P ∗, V 〉(x) = 1] ≤ neg(n).

An interactive proof system is called Arthur-Merlin [BM88] (a.k.a. public-coins) if the verifier’s
messages consist only of random strings and acceptance is computed as a deterministic polynomial-
time function of the interaction’s transcript. An interactive proof system that is not Arthur-Merlin
is called private-coins.

The number of rounds in an interactive proof is the total number of messages exchanged in the
interaction (that is, both prover messages and verifier messages).

Let L ∈ NP, a proof system for L has an efficient prover strategy if the completeness property
of the system can be satisfied by a probabilistic polynomial-time algorithm that when proving that
x ∈ L gets as auxiliary input a witness to this fact.

16 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Let L ∈ NP, an interactive argument for L [BCC88] is the following variation on the definition
of an interactive proof:

• The soundness requirement is relaxed to quantify only over prover strategies P ∗ that can be
implemented by a polynomial-sized circuit.

• The system is required to have an efficient prover strategy.

Honest verifier conventions. We say that an execution of a two-party protocol is completed
successfully if no party aborted. For a proof (or argument) system, we assume that if a verifier
rejects the proof then it aborts, and so an execution of a proof system is completed successfully only
if the verifier accepts. If a proof system uses another proof system as a subprotocol, then we assume
that in case the verifier of the subprotocol rejects, then execution is aborted and thus the verifier for
the larger proof system will also reject. If we do not specify the verifier’s acceptance condition, then
it is assumed that the verifier accepts if and only if all the subprotocols were completed successfully.

2.3.3 Zero-knowledge

Informally, we say that a proof/argument system for L is zero-knowledge [GMR85] if after seeing a
proof that x ∈ L, the verifier does not learn anything about x that it didn’t know before. We require
this to hold even if the verifier does not follow its prescribed strategy for the proof system, as long
as its strategy can be implemented by an efficient algorithm. This is formalized by requiring that
there exists an efficient algorithm called the simulator, that given the verifier’s prior knowledge (i.e.,
the string x, the verifier’s strategy and private inputs) can compute (or closely approximate) the
verifier’s state after viewing a proof that x ∈ L. The formal definition is below. Note that we define
two variants of zero-knowledge: uniform and non-uniform, based on the classes of algorithms that
we allow the cheating verifier to employ. Note also that in our definition we require the simulator
to be universal. That is, the simulator is a single algorithm for all possible verifier’s strategies, that
gets the strategy as an additional input.

Definition 2.3.2 (Zero-knowledge). Let L = L(R) be some language and let (P, V) be an
interactive argument for L. We say that (P, V) is (non-uniform) zero-knowledge if there exists
a probabilistic polynomial-time algorithm S such that for every polynomial-sized circuit family
{V ∗

n }n∈N and every sequence {(xn, yn)}n∈N, where xn ∈ {0, 1}n ∩L and (xn, yn) ∈ R, the following
two probability ensembles are computationally indistinguishable:

•
{

viewV ∗
n
〈P (yn), V ∗

n 〉(xn)

}

n∈N

and

•
{

S(V ∗
n , xn)

}

n∈N

We say that (P, V) is uniform zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for every polynomial t(·), every probabilistic t(n)-time Turing machine V ∗

and every sequence {(xn, yn)}n∈N, where xn ∈ {0, 1}n ∩ L and (xn, yn) ∈ R the following two
probability ensembles are computationally indistinguishable:

•
{

viewV ∗〈P (yn), V ∗〉(xn)

}

n∈N

and

2.3. INTERACTIVE PROTOCOLS, INTERACTIVE PROOFS AND ZERO KNOWLEDGE 17

•
{

S(V ∗, 1t(n), xn)

}

n∈N

In either case we say that S is a black-box simulator if the only use it makes of its first input
(i.e., V ∗) is to call it as a subroutine.

We remark that we use a somewhat stronger definition than the standard definition of uniform
zero-knowledge [Gol93]: we allow both the input generation and the distinguisher to be non-uniform.

2.3.4 Witness indistinguishability

Like zero-knowledge, a witness-indistinguishable proof/argument system [FS90] also guarantees
some secrecy property to the prover, but it is a weaker property than zero-knowledge. In a witness-
indistinguishable proof system we do not require that the verifier does not learn anything about x
after seeing a proof that x ∈ L. Rather, we only require that if both y and y′ are witnesses that
x ∈ L, then it is infeasible for the verifier to distinguish whether the prover used y or y′ as auxiliary
input. The formal definition is below: (we only make the definition in the non-uniform setting)

Definition 2.3.3. Let L = L(R) be some language and let (P, V) be an interactive argument for L.
We say that (P, V) is witness-indistinguishable if for every polynomial-sized circuit family {V ∗

n }n∈N

and every sequence {(xn, yn, y′n)}n∈N, where xn ∈ {0, 1}n and (xn, yn), (xn, y′n) ∈ R the following
two probability ensembles are computationally indistinguishable:

•
{

viewV ∗
n
〈P (yn), V ∗

n 〉(xn)

}

n∈N

and

•
{

viewV ∗
n
〈P (y′n), V ∗

n 〉(xn)

}

n∈N

Witness indistinguishability is a weaker property than zero-knowledge. That is, if a protocol
is zero-knowledge then it is also witness-indistinguishable [FS90]. Also, under standard assump-
tions, there exist protocols that are witness-indistinguishable but not zero-knowledge (as a trivial
example, note that for any language L where each x ∈ L has a single witness, the trivial NP
proof system of sending the witness is witness-indistinguishable). Unlike zero-knowledge, witness
indistinguishability is known to be closed under concurrent (and in particular parallel) composition
[Fei90]. Using this fact, parallel repetition of the “basic protocol” of [GMW86], yields the following
theorem:

Theorem 2.3.4 ([FS90]). Suppose that one-way functions exist. Then, for every language L ∈ NP
there exist a constant-round Arthur-Merlin witness-indistinguishable proof system for L.

Proofs of knowledge

In a proof/argument system, the prover convinces the verifier that some string x is a member of
a language L. In a proof/argument of knowledge [FFS87, BG93, GMR85, TW87] the prover should
convince the verifier that it also knows a witness to the fact that x ∈ L. This is formalized by
requiring that if the verifier is convinced with some probability p by some (possibly cheating) prover
strategy, then by applying an efficient algorithm, called the knowledge extractor, to the cheating
prover’s strategy and private inputs, it is possible to obtain a witness to the fact that x ∈ L, with
probability (almost equal to) p. The formal definition is below:

18 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Definition 2.3.5. Let L = L(R) and let (P, V) be an argument system for L. We say that (P, V) is
an argument of knowledge for L if there exists a probabilistic polynomial-time algorithm E (called
the knowledge extractor) such that for every polynomial-sized prover strategy P ∗ and for every

x ∈ {0, 1}n, if we let p∗
def
= Pr[outV 〈P ∗, V 〉(x) = 1] then

Pr[E(P ∗, x) ∈ R(x)] ≥ p∗ − neg(n)

.

We say that an argument of knowledge has a black-box extractor if the knowledge extractor
algorithm E uses its first input (i.e., P ∗) as a black-box subroutine (i.e., oracle).

We will sometimes consider a generalized definition where we allow both the cheating prover
P ∗ and the extractor E to run in time T (n)O(1) where T (·) is some super-polynomial function.

2.4 Universal Arguments

Universal arguments are a variant of (interactive) CS proofs, as defined and constructed by Micali
[Mic94] and Kilian [Kil92]. Loosely speaking, a universal argument is an interactive argument of
knowledge for proving membership in NEXP. Note that all of the languages in NP can be reduced
to a language in NEXP via a reduction that preserves the length of the instance. Therefore,
an argument system for NEXP allows us to use a single protocol to prove membership in all
NP languages, rather than use a different protocol for each language; hence the name universal
arguments.

For sake of simplicity, we define and present universal argument systems only for the following
universal language LU :5 the tuple 〈M, x, t〉 is in LU if M is a non-deterministic machine that
accepts x within t steps. Clearly, every NP-language L is linear-time reducible to LU (i.e., via the
reduction x 7→ 〈ML, x, 2|x|〉, where ML is any fixed non-deterministic polynomial-time deciding L).
Thus, a proof system for LU allows us to handle all “NP-statements” (in a uniform manner); that
is, there exists a single polynomial p such that for every L ∈ NP, the complexity of verifying that
x ∈ L is bounded by p(|x|). In fact, LU is NE-complete (by an analogous linear-time reduction).6

We consider also the natural witness-relation for LU , denoted RU : the pair (〈M, x, t〉, w) is in RU

if M (viewed here as a two-input deterministic machine) accepts (x, w) within t steps.

We also require a universal argument system to satisfy a proof of knowledge property. However,
because we wish to have a polynomial-time knowledge extractor, but the witness size may be
exponential, the extractor may not be able to write down the witness. Thus, we only require the
extractor to output an implicit representation for the witness (i.e., a circuit that on input i outputs
the ith bit of the witness). We also relax the proof of knowledge property and not require the
knowledge extractor to output a witness with probability equal (or very close) to p∗, where p∗ is
the probability that the verifier is convinced to accept the proof. Rather, it is sufficient for our
purposes that the extractor outputs a witness with probability that is polynomially related to p∗.

Definition 2.4.1 (Universal arguments). A universal-argument system is a pair of strategies,
denoted (P, V), that satisfies the following properties:

5The nice aspect about LU is that it comes with a natural measure of complexity of instances: the complexity of
(M, x, t) is the actual time it takes M to accept x (when using either the best or a given sequence of non-deterministic
choices). Such a complexity measure is pivotal to the refined formulation of the prover complexity condition.

6Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU .

2.4. UNIVERSAL ARGUMENTS 19

Efficient verification: There exists a polynomial p such that for any y = 〈M, x, t〉, the total time
spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In
particular, all messages exchanged in the protocol have length smaller than p(|y|).

Completeness by a relatively-efficient prover: For every (〈M, x, t〉, w) in RU ,

Pr[〈P (w), V 〉(M, x, t) = 1] = 1

Furthermore, there exists a polynomial p such that the total time spent by P (w), on common
input 〈M, x, t〉, is at most p(TM (x, w)) ≤ p(t).

Computational Soundness: For every polynomial-size circuit family {P̃n}n∈N, and every 〈M, x, t〉 ∈
{0, 1}n \ LU ,

Pr[〈P̃n, V 〉(M, x, t) = 1] < neg(n)

A weak Proof of Knowledge Property: For every positive polynomial p there exists a positive
polynomial p′ and a probabilistic polynomial-time oracle machine E such that the following
holds:7

For every polynomial-size circuit family {P̃n}n∈N, and every sufficiently long y = 〈M, x, t〉 ∈
{0, 1}∗ if Pr[(P̃n, V)(y) = 1] > 1/p(|y|) then then

Pr[EP̃n(y) = C s.t. [C] ∈ RU (y)] >
1

p′(|y|)

(where [C] denotes the function computed by the Boolean circuit C).

The oracle machine E is called a (knowledge) extractor.

There are two differences between universal arguments and (interactive) CS-Proofs [Mic94]:

1. The computational soundness in CS-Proofs needs to hold for cheating provers of size poly(t).
In contrast, the computational soundness in universal arguments needs only to hold for ad-
versaries of size polynomial in the input length which is |M | + |x| + log(|t|).

2. We require that a universal argument satisfies a proof of knowledge condition. Note that we
allow the knowledge extractor only polynomial time in the input length which is |M |+ |x|+
log(|t|), while the size of the witness may be t which is may be exponentially larger than the
input length. Therefore, the knowledge extractor can output only an implicit representation
of the witness.

We will use the following (almost trivial) lemma:

Lemma 2.4.2. Fix f : N → N to be some super-polynomial function (e.g., f(n) = nlog n). Then,
there exists an extractor algorithm E′ that on input 〈M, x, t〉 and oracle access to a polynomial-sized
circuit P̃ that such that Pr[〈P̃n, V 〉(M, x, t) = 1] > 1

f(n) runs in time (f(n) · t)O(1) and outputs a

witness w ∈ RU (M, x, t) with probability 1 − neg(n).

Proof Sketch: Using t ·poly(n) steps, it is possible to convert an implicit representation of a witness
into an explicit one. Thus by invoking the extractor E from the proof of knowledge property n·f(n)
times and doing this conversion each time we can achieve the desired result.

7Indeed, the polynomial p′ as well as the (polynomial) running-time of E may depend on the polynomial p (which
defines the noticeable threshold probability above).

20 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Note: Lemma 2.4.2 implies that if we use the universal arguments system to prove statements
in Ntime(T (n)), where T (n) is some super-polynomial function, and we allow both the cheating
prover and the knowledge extractor to run in time T (n)O(1), then we get a stronger proof of
knowledge condition. That is, the knowledge extractor obtains a witness (and not just an implicit
representation of it) and can amplify the probability of extraction. In many places in this thesis,
where we assume that there our primitives are secure against T (n)-sized circuits, we will make use
of this implication.

The following theorem implies that universal arguments exist under standard assumptions:

Theorem 2.4.3 ([BG01]). Suppose that collision-resistent hash functions exist. Then there exists
a universal argument system.

And the following stronger variant.

Theorem 2.4.4 ([BG01]). Suppose that collision-resistent hash functions exist. Then for every
ǫ > 0, there exists a constant-round universal argument system in which the total size of the
messages exchanged when proving a statement of length n verifiable in time t is at most nǫpolylog(t).
Furthermore,

1. There exist such systems where the prover is zero-knowledge.

2. There exist such systems that are Arthur-Merlin (public-coins) and the prover is witness
indistinguishable (WI).

We prove Theorems 2.4.3 and 2.4.4 in Appendix A. We stress that these theorems only require
standard collision-resistent hash functions (i.e., secure against polynomial-sized circuits). However,
it is not hard to see that if we assume that there exist hash functions that are collision resistent
against T (n)O(1)-sized circuits, then there exists such systems in which the soundness, the proof of
knowledge and zero-knowledge property hold against T (n)-sized circuits.

2.5 Commit-with-Extract Schemes

Commit-with-extract schemes. Loosely speaking, a commit-with-extract scheme [BL02] is a
commitment scheme where the sender also proves the knowledge of the committed value. The
formal definition of commit-with-extract follows the definition of “witness-extended emulation”8

[Lin01] and requires that there exists an extractor that can simulate the view of the sender, and
output a committed value that is compatible with this view. (See [BL02] for more discussions about
the definition of commit-with-extract.) The resulting definition is the following:

Definition 2.5.1 (Interactive commitment scheme). A two-party protocol (S, R) and an
algorithm R′ (where S is called the sender and R is called the receiver) is a (statistically-binding)
computationally hiding) interactive commitment scheme if it satisfies the following properties:

Completeness with public decommitment Let τ be the transcript of an execution between S
and R, where S gets x ∈ {0, 1}n as a private input, R has no private input, and the public
input is 1n, and let rS be the randomness used by S in this execution. Then, R′(τ, x, rS) = 1
(which means that the receiver accepts rS as a valid decommitment for x).9

8A witness extended emulator is a knowledge extractor that outputs a simulated transcript along with the extracted
witness.

9Note that R′ does not need to see the randomness used by R in the execution, but only needs the public transcript
τ . This is why we call this condition “completeness with public decommitment”. All the commitment schemes in
this paper satisfy this condition.

2.5. COMMIT-WITH-EXTRACT SCHEMES 21

Computational hiding For every x, x′ ∈ {0, 1}n, the random variables viewR〈S(x), R〉(1n) and
viewR〈S(x′), R〉(1n) are computationally indistinguishable.

Statistical binding For every (possibly cheating) polynomial-sized S∗, if τ is the random variable
denoting an execution between S∗ and R on public input 1n, then the probability that there
exist x 6= x′ ∈ {0, 1}n and r, r′ ∈ {0, 1}∗ such that R′(τ, x, r) = 1 and R′(τ, x′, r′) = 1 is at
most neg(n).10

We will usually drop the qualifiers and simply call a scheme satisfying Definition 2.5.1 a com-
mitment scheme. Note that Definition 2.5.1 is a generalization of Definition 2.2.8 in the sense that
they are equivalent for non-interactive protocols (i.e., for the case where R doesn’t do anything and
S only sends one message).

The commitment value function. Let us fix a commitment scheme (S, R), R′. We define the
following (non-efficiently computable) function com-value: on input a transcript τ , com-value(τ)
returns the unique value x for which there exists r such that R′(τ, x, r) = 1 (if there is such a
unique x). If there exists no such value x or if there exists more than one such value x then we
define com-value(τ) to be equal to ⊥.

Definition 2.5.2 (commit with extract). A commitment scheme (S, R) , R′ is a commit-with-
extract scheme if there exists a probabilistic polynomial-time two-output algorithm CK (called the
commitment extractor) such that for every polynomial-sized (possibly cheating) sender S∗, if we
denote (V, X) = CK(S∗, 1n) then

Emulation The random variable V is computationally indistinguishable from the view of S∗ in
an interaction with the honest receiver R on public input 1n.

Extraction With probability at least 1 − neg(n), either com-value(T) = X or com-value(T) = ⊥,
where T is the transcript contained in the view V .

A commit-with-extract scheme is called liberal if the extractor CK runs in expected probabilistic-
polynomial-time. We say that CK is black-box if the only use it makes of its first input S∗ is to
call it as a black-box subroutine.

A constant-round liberal commit-with-extract scheme can be obtained based on any one-way-
function by sequentially executing first a standard commitment scheme and then a constant-round
zero-knowledge proof-of-knowledge for NP (e.g., the system of [FS89]) to prove knowledge of the
commitment value. The commitment extractor CK will use the knowledge extractor of the commit-
ment scheme. In this way, one obtains a black-box commitment extractor that rewinds the sender
A in order to obtain the committed value. In Chapter 5, we will present a different construction of
a commit-with-extract, that has a strict probabilistic polynomial-time non-black-box extractor.

10We call this property statistical binding even though it only holds with respect to efficient senders S∗ because,
after the interaction is finished, even an all powerful sender will only be able to cheat with negligible probability.

22 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Chapter 3

Software Obfuscation

Summary: Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that takes as
input a program (or circuit) P and produces a new program O(P) that has the same functionality
as P yet is “unintelligible” in some sense. Obfuscators, if they exist, would have a wide variety
of cryptographic and complexity-theoretic applications, ranging from software protection to
homomorphic encryption to complexity-theoretic analogues of Rice’s theorem. Most of these
applications are based on an interpretation of the “unintelligibility” condition in obfuscation
as meaning that O(P) is a “virtual black box,” in the sense that anything one can efficiently
compute given O(P), one could also efficiently compute given oracle access to P .

In this work, we initiate a theoretical investigation of obfuscation. Our main result is that, even
under very weak formalizations of the above intuition, obfuscation is impossible. We prove this
by constructing a family of functions F that are unobfuscatable in the following sense: there is
a property π : F → {0, 1} such that (a) given any program that computes a function f ∈ F ,
the value π(f) can be efficiently computed, yet (b) given oracle access to a (randomly selected)
function f ∈ F , no efficient algorithm can compute π(f) much better than random guessing.

We extend our impossibility result in a number of ways, including even obfuscators that (a) are

not necessarily computable in polynomial time, (b) only approximately preserve the functionality,

and (c) only need to work for very restricted models of computation (TC0). We also rule

out several potential applications of obfuscators, by constructing “unobfuscatable” signature

schemes, encryption schemes, and pseudorandom function families.

3.1 Introduction

The past two decades of cryptography research has had amazing success in putting most of the clas-
sical cryptographic problems — encryption, authentication, protocols — on complexity-theoretic
foundations. However, there still remain several important problems in cryptography about which
theory has had little or nothing to say. One such problem is that of program obfuscation. Roughly
speaking, the goal of (program) obfuscation is to make a program “unintelligible” while preserving
its functionality. Ideally, an obfuscated program should be a “virtual black box,” in the sense that
anything one can compute from it one could also compute from the input-output behavior of the
program.

The hope that some form of obfuscation is possible arises from the fact that analyzing programs
expressed in rich enough formalisms is hard. Indeed, any programmer knows that total unintel-

This chapter is based on the paper [BGI+01] which is joint work with Oded Goldreich, Russell Impagliazzo,
Steven Rudich, Amit Sahai, Salil Vadhan and Ke Yang. Note that the paper [BGI+01] contains some additional
results which are not included in this thesis.

23

24 CHAPTER 3. SOFTWARE OBFUSCATION

ligibility is the natural state of computer programs (and one must work hard in order to keep a
program from deteriorating into this state). Theoretically, results such as Rice’s Theorem and the
hardness of the Halting Problem and Satisfiability all seem to imply that the only useful
thing that one can do with a program or circuit is to run it (on inputs of ones choice). However,
this informal statement is, of course, highly speculative, and the existence of obfuscators requires
its own investigation.

To be a bit more clear (though still informal), an obfuscator O is an (efficient, probabilistic)
“compiler” that takes as input a program (or Boolean circuit) P and produces a new program O(P)
satisfying the following three conditions:

Functionality: O(P) computes the same function as P .

Efficiency: O(P) is at most polynomially slower than P .

“Virtual black box” property: “Anything that can be efficiently computed from O(P) can be
efficiently computed given oracle access to P .”

While there are heuristic approaches to obfuscation in practice (cf., Figure 3.1 and [CT00]),
there has been little theoretical work on this problem. This is unfortunate, since obfuscation, if it
were possible, would have a wide variety of cryptographic and complexity-theoretic applications.

#include<stdio.h> #include<string.h>

main(){char*O,l[999]="’‘acgo\177~|xp .

-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";

while(O=fgets(l+45,954,stdin)){*l=O[

strlen(O)[O-1]=0,strspn(O,l+11)];

while(*O)switch((*l&&isalnum(*O))-!*l)

{case-1:{char*I=(O+=strspn(O,l+12)

+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+

*I---’-’)<80);putchar(O&93?*I

&8||!(I=memchr(l , O , 44)) ?’?’:

I-l+47:32); break; case 1: ;}*l=

(*O&31)[l-15+(*O>61)*32];while(putchar

(45+*l%2),(*l=*l+32>>1)>35); case 0:

putchar((++O ,32));}putchar(10);}}

Figure 3.1: The winning entry of the 1998 International Obfuscated C Code Contest, an
ASCII/Morse code translator by Frans van Dorsselaer [vD98] (adapted for this paper).

In this chapter, we initiate a theoretical investigation of obfuscation. We examine various
formalizations of the notion, in an attempt to understand what we can and cannot hope to achieve.
Our main result is a negative one, showing that obfuscation (as it is typically understood) is
impossible. Before describing this result and others in more detail, we outline some of the potential
applications of obfuscators, both for motivation and to clarify the notion.

3.1. INTRODUCTION 25

3.1.1 Some Applications of Obfuscators

Software Protection. The most direct applications of obfuscators are for various forms of soft-
ware protection. By definition, obfuscating a program protects it against reverse engineering. For
example, if one party, Alice, discovers a more efficient algorithm for factoring integers, she may wish
to sell another party, Bob, a program for apparently weaker tasks (such as breaking the RSA cryp-
tosystem) that use the factoring algorithm as a subroutine without actually giving Bob a factoring
algorithm. Alice could hope to achieve this by obfuscating the program she gives to Bob.

Indeed, protecting software against reverse engineering has been the main application in mind
for the commercially produced obfuscators (c.f., [Clo03]). Many of these applications are related to
the area of Digital Rights Management (DRM). For example, obfuscation has been used (unsuc-
cessfully) for the CSS (Content Scrambling System) for copy-protecting DVDs.1 Also, recently the
United States Air Force Research Laboratories awarded a $1.8M contract for research in obfuscation
(among other software protection methods) [Net03].

Intuitively, obfuscators would also be useful in watermarking software (cf., [CT00, NSS99]). A
software vendor could modify a program’s behavior in a way that uniquely identifies the person to
whom it is sold, and then obfuscate the program to guarantee that this “watermark” is difficult to
remove.

Homomorphic Encryption. A long-standing open problem in cryptography is whether homo-
morphic encryption schemes exist (cf., [RAD78, FM91, DDN91, BL96, SYY99]). That is, we seek a
secure public-key cryptosystem for which, given encryptions of two bits (and the public key), one
can compute an encryption of any binary Boolean operation of those bits. Obfuscators would allow
one to convert any public-key cryptosystem into a homomorphic one: use the secret key to con-
struct an algorithm that performs the required computations (by decrypting, applying the Boolean
operation, and encrypting the result), and publish an obfuscation of this algorithm together with
the public key.2

Removing Random Oracles. The Random Oracle Model [BR93] is an idealized cryptographic
setting in which all parties have access to a truly random function. It is (heuristically) hoped that
protocols designed in this model will remain secure when implemented using an efficient, publicly
computable cryptographic hash function in place of the random function. While it is known that this
is not true in general [CGH98], it is unknown whether there exist efficiently computable functions
with strong enough properties to be securely used in place of the random function in various specific
protocols (e.g., in Fiat-Shamir type schemes for specific natural protocols [FS86]). One might hope
to obtain such functions by obfuscating a family of pseudorandom functions [GGM86], whose input-
output behavior is by definition indistinguishable from that of a truly random function.

1See, e.g., David Wagner’s declaration on DVD CCA v. McLaughlin, Bunner, et al. case [Wag00]. A particularly
relevant quote is the following: “My understanding is that the DVD security design relies in part on distributing
software in an ”obscured” form - hidden in locations that are not obvious. This cannot and does not prevent reverse
engineering; it can make the reverse engineering task more tedious, but it is widely known that such obfuscation can
be overcome by patience, talent, or sufficiently sophisticated reverse engineering tools.”

2There is a subtlety here, caused by the fact that encryption algorithms must be probabilistic to be semantically
secure in the usual sense [GM82]. However, both the “functionality” and “virtual black box” properties of obfus-
cators become more complex for probabilistic algorithms, so in this work, we restrict our attention to obfuscating
deterministic algorithms. This restriction only makes our main (impossibility) result stronger.

26 CHAPTER 3. SOFTWARE OBFUSCATION

Transforming Private-Key Encryption into Public-Key Encryption. Obfuscation can
also be used to create new public-key encryption schemes by obfuscating a private-key encryption
scheme. Given a secret key K of a private-key encryption scheme, one can publish an obfuscation
of the encryption algorithm EncK .3 This allows everyone to encrypt, yet only one possessing the
secret key K should be able to decrypt.

Interestingly, in the original paper of Diffie and Hellman [DH76], the above was the reason
given to believe that public-key cryptosystems might exist even though there were no candidates
known yet. That is, they suggested that it might be possible to obfuscate a private-key encryption
scheme.4

3.1.2 Our Results

The Basic Impossibility Result. Most of the above applications rely on the intuition that an
obfuscated program is a “virtual black box.” That is, anything one can efficiently compute from
the obfuscated program, one should be able to efficiently compute given just oracle access to the
program.

Our main result shows that it is impossible to achieve this notion of obfuscation. We prove this
by constructing (from any one-way function) a family F of functions that is unobfuscatable in the
sense that there is some property π : F → {0, 1} such that:

• Given any program (circuit) that computes a function f ∈ F , the value π(f) can be efficiently
computed;

• Yet, given oracle access to a (randomly selected) function f ∈ F , no efficient algorithm can
compute π(f) much better than by random guessing.

Thus, there is no way of obfuscating the programs that compute these functions, even if (a) the
obfuscation is meant to hide only one bit of information about the function (namely π(f)), and (b)
the obfuscator itself has unbounded computation time. In fact, we show that for these functions, it
is possible to efficiently reconstruct a canonical program for computing f from every program that
computes f . This means that an adversary can completely recover the source code for f given any
supposedly obfuscated program for computing f (see Section 3.4.1).

We believe that the existence of such functions shows that the “virtual black box” paradigm for
obfuscators is inherently flawed. Any hope for positive results about obfuscator-like objects must
abandon this viewpoint, or at least be reconciled with the existence of functions as above.

3This application involves the same subtlety pointed out in Footnote 2. Thus, our results regarding the
(un)obfuscatability of private-key encryption schemes (described later) refer to a relaxed notion of security in which
multiple encryptions of the same message are not allowed (which is consistent with a deterministic encryption algo-
rithm).

4From [DH76]: “A more practical approach to finding a pair of easily computed inverse algorithms E and D; such
that D is hard to infer from E, makes use of the difficulty of analyzing programs in low level languages. Anyone who
has tried to determine what operation is accomplished by someone else’s machine language program knows that E
itself (i.e. what E does) can be hard to infer from an algorithm for E. If the program were to be made purposefully
confusing through the addition of unneeded variables and statements, then determining an inverse algorithm could be
made very difficult. Of course, E must be complicated enough to prevent its identification from input-output pairs.
Essentially what is required is a one-way compiler: one which takes an easily understood program written in a high
level language and translates it into an incomprehensible program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but infeasible to reverse the process. Since efficiency in size
of program and run time are not crucial in this application, such compilers may be possible if the structure of the
machine language can be optimized to assist in the confusion.”

3.1. INTRODUCTION 27

Approximate Obfuscators. The basic impossibility result as described above applies to ob-
fuscators O for which we require that the obfuscated program O(P) computes exactly the same
function as the original program P . However, for some applications it may suffice that, for every
input x, the programs O(P) and P agree on x with high probability (over the coin tosses of O).
Using some additional ideas, our impossibility result extends to such approximate obfuscators.

Impossibility of Applications. To give further evidence that our impossibility result is not
an artifact of definitional choices, but rather that there is something inherently flawed in the
“virtual black box” idea, we also demonstrate that several of the applications of obfuscators are
also impossible. We do this by constructing unobfuscatable signature schemes, encryption schemes,
and pseudorandom functions. These are objects satisfying the standard definitions of security
(except for the subtlety noted in Footnote 3), but for which one can efficiently compute the secret
key K from any program that signs (or encrypts or evaluates the pseudorandom function, resp.)
relative to K. (Hence handing out “obfuscated forms” of these keyed-algorithms is highly insecure.)

In particular, we complement Canetti et. al.’s critique of the Random Oracle Methodology [CGH98].
They show that there exist (contrived) protocols that are secure in the idealized Random Oracle
Model (of [BR93]), but are insecure when the random oracle is replaced with any (efficiently com-
putable) function. Our results imply that for even for natural protocols that are secure in the
random oracle model (e.g., Fiat-Shamir type schemes [FS86]), there exist (contrived) pseudoran-
dom functions, such that these protocols are insecure when the random oracle is replaced with any
program that computes the (contrived) pseudorandom function.

Obfuscating restricted complexity classes. Even though obfuscation of general programs/circuits
is impossible, one may hope that it is possible to obfuscate more restricted classes of computations.
However, using the pseudorandom functions of [NR97] in our construction, we can show that the
impossibility result holds even when the input program P is a constant-depth threshold circuit (i.e.,
is in TC0), under widely believed complexity assumptions (e.g., the hardness of factoring).

3.1.3 Discussion : What do these Results Mean?

A natural criticism of this work is that we do not prove that any obfuscator will fail on all programs.
For example, Van Oorschot [VO03] presents the following critique of our results:

“While on the surface this result is quite negative for practitioners interested in software
obfuscation, upon deeper inspection this is not so ... the results simply arise from the
choice of definitions, model and question posed.

In practice, the non-existence of such a virtual black-box generator would appear to be
of little concern. Of greater interest are several different questions such as: to what
proportions of programs of practical interest does this result apply; do obfuscators
exist which are capable of obfuscating programs of practical interest; and can a more
practical model be defined, allowing some level of non-critical information to leak from
the execution of a program, provided it is not useful information to the attacker.”

We now discuss the meaning of our results, and why we disagree with the above criticism and do
think that our results have implications for practitioners interested in obfuscation. Our first point
is that, although we focus on a particular definition in this chapter, it seems that any definition for
a practical obfuscator O should satisfy the following properties:

28 CHAPTER 3. SOFTWARE OBFUSCATION

Functionality O(P) computes the same function as P .5

Efficiency O(P) is at most polynomially slower than P . (Note that in practice, one would want
O to satisfy an even stronger efficiency requirement - often even an overhead of a constant
multiplicative factor is too slow.)

Hiding There should be at least some partial information about P that is hidden by O(P), and
this should hold for all the programs that are contained in some class C of programs. In
particular, at the very least it should be the case that for all the programs P in the class C,
it is hard to recover P from O(P). (Note that recovering P means that an adversary is able
to completely reverse-engineer O(P) and obtain the entire source code.)

Why do practitioners need a security definition? One may argue that practitioners in
obfuscation do not need any sort of definition. Rather, their job is to come up with candidate
constructions which seem to be hard to break in practice. There is a problem with that approach:
it is one thing to say that practitioners do not need mathematical proofs for the security of their
constructions. It is a completely different matter to say that practitioners do not need a clearly
stated conjecture. If someone is going to be using a particular candidate obfuscator O in a setting
where the security of O is relied upon, then it seems that there should be at least a conjecture
that O satisfies some sort of a security definition (which is sufficient for the intended use), not to
mention some evidence that this conjecture is true.6

Thus, the question about the existence of practical obfuscators becomes the question of the
existence of some algorithm O that satisfies the conditions above. In particular, the result of this
chapter imply in order for practical obfuscators to exist there must exist an (efficiently decidable)
class C of programs such that:

1. C does not contain the counterexamples presented in this chapter.

2. C does contain a large fraction of the programs people wish to obfuscate in practice.

However, we are not aware of any natural candidates for such a class C. In particular, we
note that the programs people wish to obfuscate in practice include hash functions and pseudo-
random functions, whereas we present an example of unobfuscatable pseudorandom functions in
this chapter. This means that this class C should be able to distinguish between a program that
computes a “practical” pseudorandom function, and a program that computes “our” pseudoran-
dom function, even though that by virtue of their pseudorandomness, these two programs have an
indistinguishable input/output behavior.

It is important to note that in many cases, cryptographic applications that “seem” to require
obfuscation can actually be obtained using other means. Perhaps the best example for this is a
public-key encryption scheme, which Diffie and Hellman suggested to construct using obfuscation
(see Footnote 4), but later were obtained using completely different methods by Rivest, Shamir

5As we remark in the paper, one can think of meaningful obfuscators that do not satisfy this. However, it is still
a natural requirement. We also note that all the practical candidates for obfuscators we are aware of satisfy this
definition.

6It may be sometimes possible to use a candidate obfuscator O in a setting where the security of O is not relied
upon. For example, in some cases it may be possible to detect if O has been broken, and control the amount of
damage this break causes. In such cases it may indeed be reasonable to use obfuscators even without having a clearly
stated conjecture about their security properties.

3.2. DEFINITIONS 29

and Adelman [RSA78]. It is of course possible to view the construction of [RSA78] as a “special
purpose” obfuscation (for one particular function). However, when we discuss obfuscation in this
chapter, we refer to “general purpose” obfuscators (i.e., obfuscators that work for a large class of
functions).

Note: More discussion on the meaning of these results (albeit on an informal level) can be found
on the author’s web page on http://www.math.ias.edu/~boaz/Papers/obf_informal.html .

3.1.4 Additional Related Work

There are a number of heuristic approaches to obfuscation and software watermarking in the lit-
erature, as described in the surveys of Collberg and Thomborson [CT00] and Van Oorschot [VO03]
and the references therein. A theoretical study of software protection was previously conducted by
Goldreich and Ostrovsky [GO96], who considered hardware-based solutions.

Hada [Had00] gave some definitions for code obfuscators which are stronger than the definitions
we consider in this paper, and showed some implications of the existence of such obfuscators. (Our
result rules out also the existence of obfuscators according to the definitions of [Had00].) The results
of Chapters 4 and 5 of this thesis also imply that such stronger types of obfuscators do not exist.

We note that the paper [BGI+01] contains some additional results and open questions that are
not included in this chapter. These include discussion of several notions that related to obfuscators,
such as sampling obfuscators and watermarking schemes.

3.1.5 Organization

In Section 3.2, we give some basic definitions along with (very weak) definitions of obfuscators. In
Section 3.3, we prove the impossibility of obfuscators by constructing an unobfuscatable function
ensemble. In Section 3.4, we give a number of extensions of our impossibility result, including
impossibility results for obfuscators which only need to approximately preserve functionality, for
obfuscators computable in low circuit classes, and for some of the applications of obfuscators. We
also show that our main impossibility result does not relativize.

3.2 Definitions

3.2.1 Preliminaries

We use TM as shorthand for Turing machine, and PPT as shorthand for probabilistic polynomial-
time Turing machine.

If M is a TM then we denote by 〈M〉 the function 〈M〉 : 1∗ × {0, 1}∗ → {0, 1}∗ given by:

〈M〉(1t, x)
def
=

{
y M(x) halts with output y after at most t steps

⊥ otherwise

That is, oracle access to the function 〈M〉 allows a party to invoke M on any input for t steps,
where t should be given in unary notation. This ensure that access to such an oracle is not more
powerful than access to the description of the TM M .

30 CHAPTER 3. SOFTWARE OBFUSCATION

3.2.2 Obfuscators

In this section, we aim to formalize the notion of obfuscators based on the “virtual black box”
property as described in the introduction. Recall that this property requires that “anything that
an adversary can compute from an obfuscation O(P) of a program P , it could also compute given
just oracle access to P .” We shall define what it means for the adversary to successfully compute
something in this setting, and there are several choices for this (in decreasing order of generality):

(Computational indistinguishability) The most general choice is not to restrict the nature of
what the adversary is trying to compute, and merely require that it is possible, given just
oracle access to P , to produce an output distribution that is computationally indistinguishable
from what the adversary computes when given O(P).

(Satisfying a relation) An alternative is to consider the adversary as trying to produce an output
that satisfies an arbitrary (possibly polynomial-time) relation with the original program P ,
and require that it is possible, given just oracle access to P , to succeed with roughly the same
probability as the adversary does when given O(P).

(Computing a function) A weaker requirement is to restrict the previous requirement to rela-
tions which are functions; that is, the adversary is trying to compute some function of the
original program.

(Computing a predicate) The weakest is to restrict the previous requirement to {0, 1}-valued
functions; that is, the adversary is trying to decide some property of the original program.

Since we will be proving impossibility results, our results are strongest when we adopt the
weakest requirement (i.e., the last one). This yields two definitions for obfuscators, one for programs
defined by Turing machines and one for programs defined by circuits.

Definition 3.2.1 (TM obfuscator). A probabilistic algorithm O is a TM obfuscator if the fol-
lowing three conditions hold:

Functionality: For every TM M , the string O(M) describes a TM that computes the same
function as M .

Polynomial slowdown: The description length and running time of O(M) are at most polyno-
mially larger than that of M . That is, there is a polynomial p such that for every TM M ,
|O(M)| ≤ p(|M |), and if M halts in t steps on some input x, then O(M) halts within p(t)
steps on x.

“Virtual black box” property: For any PPT A, there is a PPT S such that for all TMs M
∣∣∣Pr [A(O(M)) = 1] − Pr

[
S〈M〉(1|M |) = 1

]∣∣∣ ≤ neg(|M |)

.

We say that O is efficient if it runs in polynomial time.

Definition 3.2.2 (circuit obfuscator). A probabilistic algorithm O is a (circuit) obfuscator if
the following three conditions hold:

Functionality: For every circuit C, the string O(C) describes a circuit that computes the same
function as C.

3.3. THE MAIN IMPOSSIBILITY RESULT 31

Polynomial slowdown: There is a polynomial p such that for every circuit C, |O(C)| ≤ p(|C|).

“Virtual black box” property: For any PPT A, there is a PPT S such that for all circuits C
∣∣∣Pr [A(O(C)) = 1] − Pr

[
SC(1|C|) = 1

]∣∣∣ ≤ neg(|C|)

.

We say that O is efficient if it runs in polynomial time.

We call the first two requirements (functionality and polynomial slowdown) the syntactic re-
quirements of obfuscation, as they do not address the issue of security at all.

There are a couple of other natural formulations of the “virtual black box” property. The
first, which more closely follows the informal discussion above, asks that for every predicate π, the
probability that A(O(C)) = π(C) is at most the probability that SC(1|C|) = π(C) plus a negligible
term. It is easy to see that this requirement is equivalent to the one above. Another formulation
refers to the distinguishability between obfuscations of two TMs/circuits: ask that for every C1

and C2, |Pr [A(O(C1)) = 1]−Pr [A(O(C2))] | is approximately equal to |Pr
[
SC1(1|C1|, 1|C2|) = 1

]
−

Pr
[
SC2(1|C1|, 1|C2)

]
|. This definition appears to be slightly weaker than the ones above, but our

impossibility proof also rules it out.
Note that in both definitions, we have chosen to simplify the definition by using the size of

the TM/circuit to be obfuscated as a security parameter. One can always increase this length by
padding to obtain higher security.

The main difference between the circuit and TM obfuscators is that a circuit computes a function
with finite domain (all the inputs of a particular length) while a TM computes a function with
infinite domain. Note that if we had not restricted the size of the obfuscated circuit O(C), then the
(exponential size) list of all the values of the circuit would be a valid obfuscation (provided we allow
S running time poly(|O(C)|) rather than poly(|C|)). For Turing machines, it is not clear how to
construct such an obfuscation, even if we are allowed an exponential slowdown. Hence obfuscating
TMs is intuitively harder. Indeed, it is relatively easy to prove:

Proposition 3.2.3. If a TM obfuscator exists, then a circuit obfuscator exists.

Thus, when we prove our impossibility result for circuit obfuscators, the impossibility of TM
obfuscators will follow. However, considering TM obfuscators will be useful as motivation for the
proof.

We note that, from the perspective of applications, Definitions 3.2.1 and 3.2.2 are already too
weak to have the wide applicability discussed in the introduction. The point is that they are
nevertheless impossible to satisfy (as we will prove).

3.3 The Main Impossibility Result

To state our main result we introduce the notion of unobfuscatable function ensemble.

Definition 3.3.1. An unobfuscatable function ensemble is an ensemble {Hk}k∈N of distributions
Hk on finite functions (from, say, {0, 1}lin(k) to {0, 1}lout(k)) satisfying:

Efficient computability: Every function f ←R Hk is computable by a circuit of size poly(k).
(Moreover, a distribution on circuits consistent with Hk can be sampled uniformly in time
poly(k).)

32 CHAPTER 3. SOFTWARE OBFUSCATION

Unobfuscatability: There exists a function π :
⋃

k∈N
Supp(Hk) → {0, 1} such that

1. π(f) is hard to compute with black-box access to f : For any PPT S

Pr
f←RHk

[Sf (1k) = π(f)] ≤ 1

2
+ neg(k)

2. π(f) is easy to compute with access to any circuit that computes f : There exists a PPT
A such that for any f ∈ ⋃

k∈N
Supp(Hk) and for any circuit C that computes f

A(C) = π(f)

Connection with learning. Note that an unobfuscatable function ensemble must correspond
to a concept class that is hard to exactly-learn with queries. Indeed, if given oracle access to any
f ∈ H one can efficiently find a circuit computing f , then items 1 and 2 in the unobfuscatability
condition would contradict each other.

We prove in Theorem 3.3.11 that, assuming one-way functions exist, there exists an unobfus-
catable function ensemble. This implies that, under the same assumption, there is no obfuscator
that satisfies Definition 3.2.2 (actually we prove the latter fact directly in Theorem 3.3.8). Since
the existence of an efficient obfuscator implies the existence of one-way functions (Lemma 3.3.9),
we conclude that efficient obfuscators do not exist (unconditionally).

However, the existence of unobfuscatable function ensemble has even stronger implications. As
mentioned in the introduction, these functions can not be obfuscated even if we allow the following
relaxations to the obfuscator:

1. As mentioned above, the obfuscator does not have to run in polynomial time — it can be any
random process.

2. The obfuscator has only to work for functions in Supp(Hk) and only for a non-negligible
fraction of these functions under the distributions Hk.

3. The obfuscator has only to hide an a priori fixed property π from an a priori fixed adversary
A.

Structure of the Proof of the Main Impossibility Result. We shall prove our result by
first defining obfuscators that are secure also when applied to several (e.g., two) algorithms and
proving that they do not exist. Then we shall modify the construction in this proof to prove
that TM obfuscators in the sense of Definition 3.2.1 do not exist. After that, using an additional
construction (which requires one-way functions), we will prove that a circuit obfuscator as defined
in Definition 3.2.2 does not exist if one-way functions exist. We will then observe that our proof
actually yields an unobfuscatable function ensemble (Theorem 3.3.11).

3.3.1 Obfuscating two TMs/circuits

Obfuscators as defined in the previous section provide a “virtual black box” property when a
single program is obfuscated, but the definitions do not say anything about what happens when
the adversary can inspect more than one obfuscated program. In this section, we will consider
extensions of those definitions to obfuscating two programs, and prove that they are impossible to
meet. The proofs will provide useful motivation for the impossibility of the original one-program
definitions.

3.3. THE MAIN IMPOSSIBILITY RESULT 33

Definition 3.3.2 (2-TM obfuscator). A 2-TM obfuscator is defined in the same way as a TM
obfuscator, except that the “virtual black box” property is strengthened as follows:

“Virtual black box” property: For any PPT A, there is a PPT S such that for all TMs M, N

∣∣∣∣Pr
[
A(O(M),O(N)) = 1

]
− Pr

[
S〈M〉,〈N〉(1|M |+|N |) = 1

]∣∣∣∣ ≤ neg(min{|M |, |N |})

Definition 3.3.3 (2-circuit obfuscator). A 2-circuit obfuscator is defined in the same way as a
circuit obfuscator, except that the “virtual black box” property is replaced with the following:

“Virtual black box” property: For any PPT A, there is a PPT S such that for all circuits C, D

∣∣∣∣Pr
[
A(O(C),O(D)) = 1

]
− Pr

[
SC,D(1|C|+|D|) = 1

]∣∣∣∣ ≤ neg(min{|C|, |D|})

Proposition 3.3.4. Neither 2-TM nor 2-circuit obfuscators exist.

Proof. We begin by showing that 2-TM obfuscators do not exist. Suppose, for sake of contradiction,
that there exists a 2-TM obfuscator O. The essence of this proof, and in fact of all the impossibility
proofs in this paper, is that there is a fundamental difference between getting black-box access to a
function and getting a program that computes it, no matter how obfuscated: A program is a succinct
description of the function, on which one can perform computations (or run other programs). Of
course, if the function is (exactly) learnable via oracle queries (i.e., one can acquire a program that
computes the function by querying it at a few locations), then this difference disappears. Hence, to
get our counterexample, we will use a function that cannot be exactly learned with oracle queries.
A very simple example of such an unlearnable function follows. For strings α, β ∈ {0, 1}k, define
the Turing machine

Cα,β(x)
def
=

{
β x = α

0k otherwise

We assume that on input x, Cα,β runs in 10 · |x| steps (the constant 10 is arbitrary). Now we
will define a TM Dα,β that, given the code of a TM C, can distinguish between the case that C
computes the same function as Cα,β from the case that C computes the same function as Cα′,β′ for
any (α′, β′) 6= (α, β).

Dα,β(C)
def
=

{
1 C(α) = β

0 otherwise

(Actually, this function is uncomputable. However, as we shall see below, we can use a modified
version of Dα,β that only considers the execution of C(α) for poly(k) steps, and outputs 0 if C does
not halt within that many steps, for some fixed polynomial poly(·). We will ignore this issue for
now, and elaborate on it later.) Note that Cα,β and Dα,β have description size Θ(k).

Consider an adversary A, which, given two (obfuscated) TMs as input, simply runs the second
TM on the first one. That is, A(C, D) = D(C). (Actually, like we modified Dα,β above, we also
will modify A to only run D on C for poly(|C|, |D|) steps, and output 0 if D does not halt in that
time.) Thus, for any α, β ∈ {0, 1}k,

Pr [A(O(Cα,β),O(Dα,β)) = 1] = 1 (3.1)

34 CHAPTER 3. SOFTWARE OBFUSCATION

Observe that any poly(k)-time algorithm S which has oracle access to Cα,β and Dα,β has only
exponentially small probability (for a random α and β) of querying either oracle at a point where
its value is nonzero. Hence, if we let Zk be a Turing machine that always outputs 0k, then for every
PPT S, ∣∣∣Pr

[
SCα,β ,Dα,β (1k) = 1

]
− Pr

[
SZk,Dα,β (1k) = 1

]∣∣∣ ≤ 2−Ω(k), (3.2)

where the probabilities are taken over α and β selected uniformly in {0, 1}k and the coin tosses of
S. On the other hand, by the definition of A we have:

Pr [A(O(Zk),O(Dα,β)) = 1] = 0 (3.3)

The combination of Equations (3.1), (3.2), and (3.3) contradict the fact that O is a 2-TM obfuscator.
In the above proof, we ignored the fact that we had to truncate the running times of A and Dα,β .

When doing so, we must make sure that Equations (3.1) and (3.3) still hold. Equation (3.1) involves
executing (a) A(O(Dα,β),O(Cα,β)), which in turn amounts to executing (b) O(Dα,β)(O(Cα,β)). By
definition (b) has the same functionality as Dα,β(O(Cα,β)), which in turn involves executing (c)
O(Cα,β)(α). Yet the functionality requirement of the obfuscator definition assures us that (c) has
the same functionality as Cα,β(α). By the polynomial slowdown property of obfuscators, execution
(c) only takes poly(10 · k) = poly(k) steps, which means that Dα,β(O(Cα,β)) need only run for
poly(k) steps. Thus, again applying the polynomial slowdown property, execution (b) takes poly(k)
steps, which finally implies that A need only run for poly(k) steps. The same reasoning holds for
Equation (3.3), using Zk instead of Cα,β .7 Note that all the polynomials involved are fixed once we
fix the polynomial p(·) of the polynomial slowdown property.

The proof for the 2-circuit case is very similar to the 2-TM case, with a related, but slightly
different subtlety. Suppose, for sake of contradiction, that O is a 2-circuit obfuscator. For k ∈ N

and α, β ∈ {0, 1}k, define Zk, Cα,β and Dα,β in the same way as above but as circuits rather than
TMs, and define an adversary A by A(C, D) = D(C). (Note that the issues of A and Dα,β ’s running
times go away in this setting, since circuits can always be evaluated in time polynomial in their
size.) The new subtlety here is that the definition of A as A(C, D) = D(C) only makes sense when
the input length of D is larger than the size of C (note that one can always pad C to a larger
size). Thus, for the analogues of Equations (3.1) and (3.3) to hold, the input length of Dα,β must
be larger than the sizes of the obfuscations of Cα,β and Zk. However, by the polynomial slowdown
property of obfuscators, it suffices to let Dα,β have input length poly(k) and the proof works as
before.

3.3.2 Obfuscating one TM/circuit

Our approach to extending the two-program obfuscation impossibility results to the one-program
definitions is to combine the two programs constructed above into one. This will work in a quite
straightforward manner for TM obfuscators, but will require new ideas for circuit obfuscators.

Combining functions and programs. For functions, TMs, or circuits f0, f1 : X → Y , define

their combination f0#f1 : {0, 1} × X → Y by (f0#f1)(b, x)
def
= fb(x). Conversely, if we are given

7Another, even more minor subtlety that we ignored is that, strictly speaking, A only has running time polynomial
in the description of the obfuscations of Cα,β , Dα,β , and Zk, which could conceivably be shorter than the original
TM descriptions. But a counting argument shows that for all but an exponentially small fraction of pairs (α, β) ∈
{0, 1}k × {0, 1}k, O(Cα,β) and O(Dα,β) must have description size Ω(k).

3.3. THE MAIN IMPOSSIBILITY RESULT 35

a TM (resp., circuit) C : {0, 1} × X → Y , we can efficiently decompose C into C0#C1 by setting

Cb(x)
def
= C(b, x); note that C0 and C1 have size and running time essentially the same as that of

C. Observe that having oracle access to a combined function f0#f1 is equivalent to having oracle
access to f0 and f1 individually.

Theorem 3.3.5. TM obfuscators do not exist.

Proof Sketch: Suppose, for sake of contradiction, that there exists a TM obfuscator O. For α, β ∈
{0, 1}k, let Cα,β , Dα,β , and Zk be the TMs defined in the proof of Proposition 3.3.4. Combining
these, we get the TMs Fα,β = Cα,β#Dα,β and Gα,β = Zk#Cα,β .

We consider an adversary A analogous to the one in the proof of Proposition 3.3.4, augmented
to first decompose the program it is fed. That is, on input a TM F , algorithm A first decomposes
F into F0#F1 and then outputs F1(F0). (As in the proof of Proposition 3.3.4, A actually should be
modified to run in time poly(|F |).) Let S be the PPT simulator for A guaranteed by Definition 3.2.1.
Just as in the proof of Proposition 3.3.4, we have:

Pr [A(O(Fα,β)) = 1] = 1 and Pr [A(O(Gα,β)) = 1] = 0∣∣∣Pr
[
SFα,β (1k) = 1

]
− Pr

[
SGα,β (1k) = 1

]∣∣∣ ≤ 2−Ω(k),

where the probabilities are taken over uniformly selected α, β ∈ {0, 1}k, and the coin tosses of A,
S, and O. This contradicts Definition 3.2.1.

There is a difficulty in trying to carry out the above argument in the circuit setting. (This
difficulty is related to (but more serious than) the same subtlety regarding the circuit setting
discussed earlier.) In the above proof, the adversary A, on input O(Fα,β), attempts to evaluate
F1(F0), where F0#F1 = O(Fα,β) = O(Cα,β#Dα,β). In order for this to make sense in the circuit
setting, the size of the circuit F0 must be at most the input length of F1 (which is the same as the
input length of Dα,β). But, since the output F0#F1 of the obfuscator can be polynomially larger
than its input Cα,β#Dα,β , we have no such guarantee. Furthermore, note that if we compute F0,

F1 in the way we described above (i.e., Fb(x)
def
= O(Fα,β)(b, x)) then we’ll have |F0| = |F1| and so

F0 will necessarily be larger than F1’s input length.

To get around this, we modify Dα,β in a way that will allow A, when given Dα,β and a circuit
C, to test whether C(α) = β even when C is larger than the input length of Dα,β . Of course, oracle
access to Dα,β should not reveal α and β, because we do not want the simulator S to be able to
test whether C(α) = β given just oracle access to C and Dα,β . We will construct such functions
Dα,β based on pseudorandom functions [GGM86].

Lemma 3.3.6. If one-way functions exist, then for every k ∈ N and α, β ∈ {0, 1}k, there is a
distribution Dα,β on circuits such that:

1. Every D ∈ Supp(Dα,β) is a circuit of size poly(k).

2. There is a polynomial-time algorithm A such that for any circuit C, and any D ∈ Supp(Dα,β),
AD(C, 1k) = 1 iff C(α) = β.

3. For any PPT S, Pr
[
SD(1k) = α

]
= neg(k), where the probability is taken over α, β ←R

{0, 1}k, D ←R Dα,β, and the coin tosses of S.

36 CHAPTER 3. SOFTWARE OBFUSCATION

Proof. Basically, the construction implements a private-key “homomorphic encryption” scheme.
More precisely, the functions in Dα,β will consist of three parts. The first part gives out an encryp-
tion of the bits of α (under some private-key encryption scheme). The second part provides the
ability to perform binary Boolean operations on encrypted bits, and the third part tests whether a
sequence of encryptions consists of encryptions of the bits of β. These operations will enable one
to efficiently test whether a given circuit C satisfies C(α) = β, while keeping α and β hidden when
only oracle access to C and Dα,β is provided.

We begin with any one-bit (probabilistic) private-key encryption scheme (Enc, Dec) that satisfies
indistinguishability under chosen plaintext and nonadaptive chosen ciphertext attacks. Informally,
this means that an encryption of 0 should be indistinguishable from an encryption of 1 even for
adversaries that have access to encryption and decryption oracles prior to receiving the challenge
ciphertext, and access to just an encryption oracle after receiving the challenge ciphertext. (See
[KY00] for formal definitions.) We note that such encryptions schemes exist if one-way functions
exist; indeed, the “standard” encryption scheme EncK(b) = (r, fK(r) ⊕ b), where r ←R {0, 1}|K|

and fK is a pseudorandom function, has this property.
Now we consider a “homomorphic encryption” algorithm Hom, which takes as input a private-

key K and two ciphertexts c and d (w.r.t. this key K), and a binary boolean operation ⊙ (specified
by its 2 × 2 truth table). We define

HomK(c, d,⊙)
def
= EncK(DecK(c) ⊙ DecK(d)).

It can be shown that such an encryption scheme retains its security even if the adversary is given
access to a Hom oracle. This is formalized in the following claim:

Claim 3.3.7. For every PPT A,

∣∣Pr
[
AHomK ,EncK (EncK(0)) = 1

]
− Pr

[
AHomK ,EncK (EncK(1)) = 1

]∣∣ ≤ neg(k).

Proof. Suppose there were a PPT A violating the claim. First, we argue that we can replace the
responses to all of A’S HomK-oracle queries with encryptions of 0 with only a negligible effect on A’s
distinguishing gap. This follows from indistinguishability under chosen plaintext and ciphertext
attacks and a hybrid argument: Consider hybrids where the first i oracle queries are answered
according to HomK and the rest with encryptions of 0. Any advantage in distinguishing two
adjacent hybrids must be due to distinguishing an encryption of 1 from an encryption of 0. The
resulting distinguisher can be implemented using oracle access to encryption and decryption oracles
prior to receiving the challenge ciphertext (and an encryption oracle afterward).

Once we have replaced the HomK-oracle responses with encryptions of 0, we have an adversary
that can distinguish an encryption of 0 from an encryption of 1 when given access to just an
encryption oracle. This contradicts indistinguishability under chosen plaintext attack.

Now we return to the construction of our circuit family Dα,β . For a key K, let EK,α be an
algorithm which, on input i outputs EncK(αi), where αi is the i’th bit of α. Let BK,β be an
algorithm which when fed a k-tuple of ciphertexts (c1, . . . , ck) outputs 1 if for all i, DecK(ci) = βi,
where β1, . . . , βk are the bits of β. A random circuit from Dα,β will essentially be the algorithm

DK,α,β
def
= EK,α#HomK#BK,β

(for a uniformly selected key K). One minor complication is that DK,α,β is actually a probabilistic
algorithm, since EK,α and HomK employ probabilistic encryption, whereas the lemma requires

3.3. THE MAIN IMPOSSIBILITY RESULT 37

deterministic functions. This can be solved in the usual way, by using pseudorandom functions.
Let q = q(k) be the input length of DK,α,β and m = m(k) the maximum number of random bits
used by DK,α,β on any input. We can select a pseudorandom function fK′ : {0, 1}q → {0, 1}m,
and let D′

K,α,β,K′ be the (deterministic) algorithm, which on input x ∈ {0, 1}q evaluates DK,α,β(x)
using randomness fK′(x).

Define the distribution Dα,β to be D′
K,α,β,K′ , over uniformly selected keys K and K ′. We argue

that this distribution has the properties stated in the lemma. By construction, each D′
K,α,β,K′ is

computable by circuit of size poly(k), so Property 1 is satisfied.

For Property 2, consider an algorithm A that on input C and oracle access to D′
K,α,β,K′ (which,

as usual, we can view as access to (deterministic versions of) the three separate oracles EK,α,
HomK , and BK,α), proceeds as follows: First, with k oracle queries to the EK,α oracle, A obtains
encryptions of each of the bits of α. Then, A uses the HomK oracle to do a gate-by-gate emulation
of the computation of C(α), in which A obtains encryptions of the values at each gate of C. In
particular, A obtains encryptions of the values at each output gate of C (on input α). It then feeds
these output encryptions to DK,β , and outputs the response to this oracle query. By construction,
A outputs 1 iff C(α) = β.

Finally, we verify Property 3. Let S be any PPT algorithm. We must show that S has only
a negligible probability of outputting α when given oracle access to D′

K,α,β,K′ (over the choice of
K, α, β, K ′, and the coin tosses of S). By the pseudorandomness of fK′ , we can replace oracle
access to the function D′

K,α,β,K′ with oracle access to the probabilistic algorithm DK,α,β with only a
negligible effect on S’s success probability. Oracle access to DK,α,β is equivalent to oracle access to
EK,α, HomK , and BK,β . Since β is independent of α and K, the probability that S queries BK,β at
a point where its value is nonzero (i.e., at a sequence of encryptions of the bits of β) is exponentially
small, so we can remove S’s queries to BK,β with only a negligible effect on the success probability.
Oracle access to EK,α is equivalent to giving S polynomially many encryptions of each of the bits
of α. Thus, we must argue that S cannot compute α with nonnegligible probability from these
encryptions and oracle access to HomK . This follows from the fact that the encryption scheme
remains secure in the presence of a HomK oracle (Claim 3.3.7) and a hybrid argument.

Now we can prove the impossibility of circuit obfuscators.

Theorem 3.3.8. If one-way functions exist, then circuit obfuscators do not exist.

Proof. Suppose, for sake of contradiction, that there exists a circuit obfuscator O. For k ∈ N and
α, β ∈ {0, 1}k, let Zk and Cα,β be the circuits defined in the proof of Proposition 3.3.4, and let Dα,β

be the distribution on circuits given by Lemma 3.3.6. For each k ∈ N, consider the following two
distributions on circuits of size poly(k):

Fk: Choose α and β uniformly in {0, 1}k, D ←R Dα,β . Output Cα,β#D.

Gk: Choose α and β uniformly in {0, 1}k, D ←R Dα,β . Output Zk#D.

Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.3.6, and consider a PPT
A′ which, on input a circuit F , decomposes F = F0#F1 and evaluates AF1(F0, 1

k), where k is the
input length of F0. Thus, when fed a circuit from O(Fk) (resp., O(Gk)), A′ is evaluating AD(C, 1k)
where D computes the same function as some circuit from Dα,β and C computes the same function
as Cα,β (resp., Zk). Therefore, by Property 2 in Lemma 3.3.6, we have:

38 CHAPTER 3. SOFTWARE OBFUSCATION

We now argue that for any PPT algorithm S
∣∣∣Pr

[
SFk(1k) = 1

]
− Pr

[
SGk(1k) = 1

]∣∣∣ ≤ 2−Ω(k),

which will contradict the definition of circuit obfuscators. Having oracle access to a circuit from Fk

(respectively, Gk) is equivalent to having oracle access to Cα,β (resp., Zk) and D ←R Dα,β , where
α, β are selected uniformly in {0, 1}k. Property 3 of Lemma 3.3.6 implies that the probability that
S queries the first oracle at α is negligible, and hence S cannot distinguish that oracle being Cα,β

from it being Zk.

We can remove the assumption that one-way functions exist for efficient circuit obfuscators via
the following (easy) lemma.

Lemma 3.3.9. If efficient obfuscators exist, then one-way functions exist.

Proof Sketch: Suppose that O is an efficient obfuscator as per Definition 3.2.2. For α ∈ {0, 1}k and
b ∈ {0, 1}, let Cα,b : {0, 1}k → {0, 1} be the circuit defined by

Cα,b(x)
def
=

{
b x = α

0 otherwise

Now define fk(α, b, r)
def
= O(Cα,b; r), i.e. the obfuscation of Cα,b using coin tosses r. We will argue

that f =
⋃

k∈N
fk is a one-way function. Clearly fk can be evaluated in time poly(k). Since the

bit b is information-theoretically determined by fk(α, b, r), to show that f is one-way it suffices to
show that b is a hard-core bit of f . To prove this, we first observe that for any PPT S,

Pr
α,b

[
SCα,b(1k) = b

]
≤ 1

2
+ neg(k).

By the virtual black box property of O, it follows that for any PPT A,

Pr
α,b,r

[A(f(α, b, r)) = b] = Pr
α,b,r

[A(O(Cα,b; r)) = b] ≤ 1

2
+ neg(k).

This demonstrates that b is indeed a hard-core bit of f , and hence that f is one-way.

Corollary 3.3.10. Efficient circuit obfuscators do not exist (unconditionally).

As stated above, our impossibility proof can be cast in terms of “unobfuscatable functions”:

Theorem 3.3.11 (unobfuscatable functions). If one-way functions exist, then there exists an
unobfuscatable function ensemble.

Proof. Let Fk and Gk be the distributions on functions in the proof of Theorem 3.3.8,and let Hk

be the distribution that, with probability 1/2 outputs a sample of Fk and with probability 1/2
outputs a sample of Gk. We claim that {Hk}k∈N is an unobfuscatable function ensemble.

The fact that {Hk}k∈N is efficiently computable is obvious. We define π(f) to be 1 if f ∈⋃
k Supp(Fk) and 0 otherwise (note that (

⋃
k Supp(Fk)) ∩ (

⋃
k Supp(Gk)) = ∅ and so π(f) = 0 for

any f ∈ ⋃
k Supp(Gk)). The algorithm A′ given in the proof of Theorem 3.3.8 shows that π(f) can

be computed in polynomial time from any circuit computing f ∈ Supp(Hk). Because oracle access
to Fk cannot be distinguished from oracle access to Gk (as shown in the proof of Theorem 3.3.8),
it follows that π(f) cannot be computed from an oracle for f ←R Hk with probability noticeably
greater than 1/2.

3.4. EXTENSIONS 39

3.4 Extensions

3.4.1 Totally unobfuscatable functions

Some of the extensions of our impossibility result require a somewhat stronger form of unobfus-
catable functions, in which it is not only possible to compute π(f) from any circuit for f , but
even to recover the “original” circuit for f . This can be achieved by a slight modification of our
construction. It will also be useful to extend the construction so that not only the one bit π(f) is
unpredictable given oracle access to f , but rather that there are many bits of information about
f which are completely pseudorandom. These properties are captured by the definition below. In
this definition, it will be convenient to identify the functions f in our family with the canonical
circuits that compute them.

Definition 3.4.1 (Totally unobfuscatable functions). A totally unobfuscatable function en-
semble is an ensemble {Hk}k∈N of distributions Hk on circuits (from, say, {0, 1}lin(k) to {0, 1}lout(k))
satisfying:

Efficient computability: Every circuit f ∈ Supp(Hk) is of size poly(k). Moreover, f ←R

Supp(Hk) can be sampled uniformly in time poly(k).

Unobfuscatability: There exists a poly-time computable function π :
⋃

k∈N
Supp(Hk) → {0, 1}∗,

such that

1. π(f) is pseudorandom given black-box access to f : For any PPT S

∣∣∣∣ Pr
f←RHk

[Sf (π(f)) = 1] − Pr
f←RHk,z←R{0,1}k

[Sf (z) = 1]

∣∣∣∣ ≤ neg(k)

2. f is easy to reconstruct given any other circuit for f : There exists a PPT A such that
for any f ∈ ⋃

k Supp(Hk) and for any circuit C that computes the same function as f

A(C) = f

,

Note that totally unobfuscatable functions imply unobfuscatable functions: given oracle access
to a totally unobfuscatable f , pseudorandomness implies that the first bit of π(f) cannot be com-
puted with probability noticeably more than 1/2, and given any circuit for f , one can efficiently
find the canonical circuit for f , from which one can compute π(f) (and in particular, its first bit).

Theorem 3.4.2 (totally unobfuscatable functions). If one-way functions exist, then there
exists a totally unobfuscatable function ensemble.

Proof Sketch: The first step is to observe that the ensemble Dα,β of Lemma 3.3.6 can be modified so
that Property 2 instead says AD(C, 1k) = α if C(α) = β and AD(C, 1k) = 0k otherwise. (To achieve
this, replace BK,β with B′

K,α,β which outputs α when fed a sequence of ciphertexts (c1, . . . , ck) whose

decryptions are the bits of β and outputs 0k otherwise.)

Now our totally unobfuscatable function ensemble Hk is defined as follows.

Hk: Choose α, β, γ uniformly in {0, 1}k, D ←R Dα,β . Output Cα,β#D#Cα,(D,γ).

40 CHAPTER 3. SOFTWARE OBFUSCATION

(Above, Cα,(D,γ) is the circuit which on input α outputs (D, γ), and on all other inputs outputs

0|(D,γ)|.)
Efficiency is clearly satisfied. For unobfuscatability, we define π(Cα,β#D#Cα,(D,γ)) = γ. Let’s

verify that γ is pseudorandom given oracle access. As in the proof of Theorem 3.3.11, it follows
from Property 3 of Lemma 3.3.6 that a PPT algorithm given oracle access to Cα,β#D#Cα,(D,γ).
will only query Cα,(D,γ) with negligible probability and hence γ is indistinguishable from uniform.

Finally, let’s show that given any circuit C ′ computing the same function as Cα,β#D#Cα,(D,γ),
we can reconstruct the latter circuit. First, we can decompose C ′ = C1#D′#C2. Since D′ computes
the same function as D and C1(α) = β, we have AD′

(C1) = α, where A is the algorithm from (the
modified) Property 2 of Lemma 3.3.6. Given α, we can obtain β = C1(α) and (D, γ) = C2(α),
which allows us to reconstruct Cα,β#D#Cα,(D,γ).

3.4.2 Approximate obfuscators

One of the most reasonable ways to weaken the definition of obfuscators, is to relax the condition
that the obfuscated circuit must compute exactly the same function as the original circuit. Rather,
we can allow the obfuscated circuit to only approximate the original circuit.

We must be careful in defining “approximation”. We do not want to lose the notion of an
obfuscator as a general purpose scrambling algorithm and therefore we want a definition of approx-
imation that will be strong enough to guarantee that the obfuscated circuit can still be used in
the place of the original circuit in any application. Consider the case of a signature verification
algorithm VK . A polynomial-time algorithm cannot find an input on which VK does not output
0 (without knowing the signature key). However, we clearly do not want this to mean that the
constant zero function is an approximation of VK .

Definition and Impossibility Result

In order to avoid the above pitfalls we choose a definition of approximation that allows the obfus-
cated circuit to deviate on a particular input from the original circuit only with negligible probability
and allows this event to depend on only the coin tosses of the obfuscating algorithm (rather than
over the choice of a randomly chosen input).

Definition 3.4.3. For any function f : {0, 1}n → {0, 1}k, ǫ > 0, the random variable C is called
an ǫ-approximate implementation of f if the following holds:

1. C ranges over circuits from {0, 1}n to {0, 1}k

2. For any x ∈ {0, 1}n , PrC [C(x) = f(x)] ≥ 1 − ǫ

Remark 3.4.4. As mentioned above, obfuscators that relax the functionality requirement to agree
with the input circuit on a uniformly distributed input, will not suffice for all possible applications.
Nonetheless, they may suffice for some applications, and so the existence of such obfuscators is a
very interesting question (which this work does not answer).

We then define a strongly unobfuscatable function ensemble to be an unobfuscatable function
ensemble where the hard property π(f) can be computed not only from any circuit that computes
f but also from any approximate implementation of f .

Definition 3.4.5. A strongly unobfuscatable function ensemble {Hk}k∈N is defined in the same way
as an unobfuscatable function ensemble, except that Part 2 of the “unobfuscatability” condition is
replaced with the following:

3.4. EXTENSIONS 41

2. π(f) is easy to compute with access to a circuit that approximates f : There exists a PPT A
and a polynomial p(·) such that for any f ∈ ⋃

n∈N
Supp(Hn) and for any random variable C

that is an ǫ-approximate implementation of f

Pr[A(C) = π(f)] ≥ 1 − ǫ · p(n)

Our main theorem in this section is the following:

Theorem 3.4.6. If one-way functions exist, then there exists a strongly unobfuscatable function
ensemble.

Similarly to the way that Theorem 3.3.11 implies Theorem 3.3.8, Theorem 3.4.6 implies that,
assuming the existence of one-way functions, an even weaker definition of circuit obfuscators (one
that allows the obfuscated circuit to only approximate the original circuit) is impossible to meet.
We note that it some (but not all) applications of obfuscators, a weaker notion of approximation
might suffice. Specifically, in some cases it suffices for the obfuscator to only approximately preserve
functionality with respect to a particular distribution on inputs, such as the uniform distribution.
(This is implied, but apparently weaker, than the requirement of Definition 3.4.3 — if C is an
ε-approximate implementation of f , then for for any fixed distribution D on inputs, C and f agree
on a 1−√

ε fraction of D with probability at least 1−√
ε.) We do not know whether approximate

obfuscators with respect to this weaker notion exist, and leave it as an open problem.

We shall prove this theorem in the following stages. First we will see why the proof of The-
orem 3.3.11 does not apply directly to the case of approximate implementations. Then we shall
define a construct called invoker-randomizable pseudorandom functions, which will help us modify
the original proof to hold in this case.

Generalizing the Proof of Theorem 3.3.11 to the Approximate Case

The first question is whether the proof of Theorem 3.3.11 already shows that the ensemble {Hk}k∈N

defined there is actually a strongly unobfuscatable function ensemble. As we explain below, the
answer is no.

To see why, let us recall the definition of the ensemble {Hk}k∈N that is defined there and uses
the distributions Fk and Gk that are defined in the proof of Theorem 3.3.8. The distribution Hk

is defined by taking an element from Fk or Gk, with probability 1/2 each. The distribution Fk is
defined by choosing α, β ←R {0, 1}k , a function D ←R Dα,β and outputting Cα,β#D. Similarly,
Gk is defined by choosing α, β ←R {0, 1}k , D ←R Dα,β and outputting Zk#D. The property π is
defined simply to distinguish functions in Fk from those in Gk.

That proof gave an algorithm A′ which computes π(f) given a circuit computing any function
f from H. Let us see why A′ might fail when given only an approximate implementation of f . On
input a circuit F , A′ works as follows: It decomposes F into two circuits F = F1#F2. F2 is used only
in a black-box manner, but the queries A′ makes to it depend on the gate structure of the circuit
F1. The problem is that a vicious approximate implementation for a function Cα,β#D ∈ Supp(Fk)
may work in the following way: choose a random circuit F1 out of some set C of exponentially many
circuits that compute Cα,β , and take F2 that computes D. Then see at which points A′ queries F2

when given F1#F2 as input.8 As these places depend on F1, it is possible that for each F1 ∈ C,
there is a point x(F1) such that A′ will query F2 at the point x(F1), but x(F1) 6= x(F ′

1) for any

8Recall that A′ is not some given algorithm that we must treat as a black-box but rather a specific algorithm that
we defined ourselves.

42 CHAPTER 3. SOFTWARE OBFUSCATION

F ′
1 ∈ C \ {F1}. If the approximate implementation changes the value of F2 at x(F1), then A′’s

computation on F1#F2 is corrupted.
One way to solve this problem would be to make the queries that A′ makes to F2 independent

of the structure of F1. If A′ had this property, then given an ǫ-approximate implementation of
Cα,β#D, each query of A′ would have only an ǫ chance to get an incorrect answer and overall A′

would succeed with probability 1 − ǫ · p(k) for some polynomial p(·). (Note that the probability
that F1(α) changes is at most ǫ.)

We will not be able to achieve this, but something slightly weaker that still suffices. Let’s look
more closely at the structure of Dα,β which is defined in the proof of Lemma 3.3.6. We defined
there the algorithm

DK,α,β
def
= EK,α#HomK#BK,β

and turned it into a deterministic function by using a pseudorandom function f ′
K and defining

D′
K,α,β,K′ to be the deterministic algorithm that on input x ∈ {0, 1}q evaluates DK,α,β(x) using

randomness fK′(x). We then defined Dα,β to be D′
K,α,β,K′ = E′

K,α,K′#Hom′
K,K′#BK,β for uni-

formly selected private key K and seed K ′.
Now our algorithm A′ (that uses the algorithm A defined in Lemma 3.3.6) treats F2 as three

oracles: E, H, and B , where if F2 computes D = E′
K,α,K′#Hom′

K,K′#BK,β then E is the oracle

to E′
K,α,K′ , H is the oracle to Hom′

K,K′ and B is the oracle to BK,β . The queries to E are at the
places 1, . . . , k and so are independent of the structure of F1. The queries that A makes to the H
oracle, however, do depend on the structure of F1.

Recall that any query A′ makes to the H oracle are of the form (c, d,⊙) where c and d are
ciphertexts of some bits, and ⊙ is a 4-bit description of a binary boolean function. Just for
motivation, suppose that A′ has the following ability: given an encryption c, A′ can generate a
random encryption of the same bit (i.e., distributed according to EncK(DecK(c), r) for uniformly
selected r). For instance, this would be true if the encryption scheme were “random self-reducible.”
Suppose now that, before querying the H oracle with (c, d,⊙), A′ generates c′, d′ that are random
encryptions of the same bits as c, d and query the oracle with (c′, d′,⊙) instead. We claim that
if F2 is an ǫ-approximate implementation of D, then for any such query, there is at most a 64ǫ
probability for the answer to be wrong even if (c, d,⊙) depend on the circuit F . The reason is that
the distribution of the modified query (c′, d′,⊙) depends only on (DecK(c), DecK(d),⊙), and there
are only 2 · 2 · 24 = 64 possibilities for the latter. For each of the 64 possibilities, the probability
of an incorrect answer (over the choice of F) is at most ǫ. Choosing (DecK(c), DecK(d),⊙) after F
to maximize the probability of an incorrect answer multiplies this probability by at most 64.

We shall now use this motivation to fix the function D so that A′ will essentially have this
desired ability of randomly self-reducing any encryption to a random encryption of the same bit.
Recall that Hom′

K,K′(c, d,⊙) = EncK(DecK(c) ⊙ DecK(d); fK′(c, d,⊙)). Now, a naive approach to
ensure that any query returns a random encryption of DecK(c)⊙DecK(d) would be to change the
definition of Hom′ to the following: Hom′

K,K′(c, d,⊙, r) = EncK(DecK(c) ⊙ DecK(d); r). Then we
change A′ to an algorithm A′′ that chooses a uniform r ∈ {0, 1}n and thereby ensures that the
result is a random encryption of DecK(c)⊙DecK(d). The problem is that this construction would
no longer satisfy Property 3 of Lemma 3.3.6 (security against a simulator with oracle access). This
is because the simulator could now control the random coins of the encryption scheme and use this
to break it. Our solution will be to redefine Hom′ in the following way:

Hom′
K,K′(c, d,⊙, r) = EncK(DecK(c) ⊙ DecK(d); fK′(c, d,⊙, r))

but require an additional special property from the pseudorandom function fK′ .

3.4. EXTENSIONS 43

Invoker-Randomizable Pseudorandom Functions

The property we would like the pseudorandom function fK′ to possess is the following:

Definition 3.4.7. A function ensemble {fK′}K′∈{0,1}∗ (fK′ : {0, 1}q+n → {0, 1}n , n ,q polyno-
mially related to |K ′|) is called an invoker-randomizable pseudorandom function ensemble if the
following holds:

1. {fK′}K′∈{0,1}∗ is a pseudorandom function ensemble

2. For any x ∈ {0, 1}q , if r is chosen uniformly in {0, 1}n then fK′(x, r) is distributed uniformly
(and so independently of x) in {0, 1}n.

Fortunately, we can prove the following lemma:

Lemma 3.4.8. If pseudorandom functions exist then there exist invoker-randomizable pseudoran-
dom functions.

Proof Sketch: Suppose that {gK′}K′∈{0,1}∗ is a pseudorandom function ensemble and that {pS}S∈{0,1}∗

is a pseudorandom function ensemble in which for any S ∈ {0, 1}∗ , pS is a permutation (the
existence of such ensembles is implied by the existence of ordinary pseudorandom function ensem-
bles [LR86]).

We define the function ensemble {fK′}K′∈{0,1}∗ in the following way:

fK′(x, r)
def
= pgK′ (x)(r)

It is clear that this ensemble satisfies Property 2 of Definition 3.4.7 as for any x, the function
r 7→ fK′(x, r) is a permutation.

What needs to be shown is that it is a pseudorandom function ensemble. We do this by showing
that for any PPT D, the following probabilities are identical up to a negligible factor.

1. PrK′ [DfK′ (1k) = 1] (where k = |K ′|).

2. PrG[D(x,R) 7→pG(x)(R)(1k) = 1], where G is a true random function.

3. PrP1,...,Pt [D
P1,...,Pt(1k) = 1], where t = t(k) is a bound on the number of queries that D makes

and each time D makes a query with a new value of x we use a new random function Pi.
(This requires a hybrid argument).

4. PrF [DF (1k) = 1], where F is a truly random function.

Finishing the Proof of Theorem 3.4.6

Now, suppose we use a pseudorandom function fK′ that is invoker-randomizable, and modify the
algorithm A′ so that all its queries (c, d,⊙) to the H oracle are augmented to be of the form
(c, d,⊙, r), where r is chosen uniformly and independently for each query. Then the result of each
such query is a random encryption of DecK(c)⊙DecK(d). Therefore, as argued above, A′ never gets
a wrong answer from the H oracle with probability at least 1 − p(k) · ǫ, for some polynomial p(·).
Indeed, this holds because aside from the first queries which are fixed and therefore independent
of the gate structure of F1, all other queries are of the form (c, d,⊙, r) where c and d are uniformly

44 CHAPTER 3. SOFTWARE OBFUSCATION

distributed and independent encryptions of some bits a and b, and r is uniformly distributed. Only
(a, b,⊙) depend on the gate structure of F1, and there are only 64 possibilities for them. Assuming
A′ never gets an incorrect answer from the H oracle, its last query to the B oracle will be a
uniformly distributed encryption of β1, . . . , βk, which is independent of the structure of F1, and so
has only an ǫ probability to be incorrect. This completes the proof.

One point to note is that we have converted our deterministic algorithm A′ of Theorem 3.3.11
into a probabilistic algorithm.

3.4.3 Impossibility of the applications

So far, we have only proved impossibility of some natural and arguably minimalistic definitions for
obfuscation. Yet it might seem that there’s still hope for a different definition of obfuscation, one
that will not be impossible to meet but would still be useful for some intended applications. We’ll
show now that this is not the case for many of the applications we described in the introduction.
Rather, any definition of obfuscator that would be strong enough to provide them, will be impossible
to meet.

Note that we do not prove that the applications themselves are impossible to meet. Indeed, it
is widely believed that public key cryptosystems do exist. Rather, we prove that there does not
exist an obfuscator9 that can be used to achieve these applications in the ways that are described
in Section 3.1.1. Our results in the section also extend to approximate obfuscators.

Consider, for example, the application to transforming private-key encryption to public-key
ones. The circuit Ẽk in the following definition can be viewed as an encryption-key in the corre-
sponding public-key encryption scheme.

Definition 3.4.9. A private-key encryption scheme (G, E, D) is called unobfuscatable if there exists
a PPT A such that

Pr
K←RG(1k)

[A(ẼK) = K] ≥ 1 − neg(k)

where ẼK is any circuit that computes the encryption function with private key K.

Note that an unobfuscatable encryption scheme is unobfuscatable in a very strong sense. An
adversary is able to completely break the system given any circuit that computes the encryption
algorithm.

We prove in Theorem 3.4.13 that if encryption schemes exist, then so do unobfuscatable en-
cryption schemes that satisfy the same security requirements.10 This means that any definition
of an obfuscators that will be strong enough to allow the conversion of private-key encryption
schemes into public-key encryption schemes mentioned in Section 3.1.1, would be impossible to
meet (because there exist unobfuscatable encryption schemes).

We present analogous definitions for unobfuscatable signature schemes, MACs, and pseudoran-
dom functions.

Definition 3.4.10. A signature scheme (G, S, V) is called unobfuscatable if there exists a PPT A
such that

Pr
(SK ,VK)←RG(1k)

[A(S̃SK) = SK] ≥ 1 − neg(k)

9By this, we mean any algorithm that satisfies the syntactic requirements of Definition 3.2.2 (functionality and
polynomial slowdown).

10Recall that, for simplicity, we only consider deterministic encryption schemes here and relaxed notions of security
that are consistent with them (cf., Footnote 3).

3.4. EXTENSIONS 45

where S̃SK is any circuit which computes the signature function with signing key SK .

Definition 3.4.11. A message authentication scheme (G, S, V) is called unobfuscatable if there
exists a PPT A such that

Pr
K←RG(1k)

[A(S̃K) = K] ≥ 1 − neg(k)

where S̃K is any circuit which computes the tagging function with tagging key K.

Definition 3.4.12. A pseudorandom function ensemble {hK}K∈{0,1}∗ is called unobfuscatable if
there exists a p.p.t A such that

Pr
K←R{0,1}k

[A(H̃K) = K] ≥ 1 − neg(k)

where H̃K is any circuit that computes hK .

One implication of the existence of unobfuscatable pseudorandom function ensembles is that
for many natural protocols that are secure in the random oracle model (such as the Fiat–Shamir
authentication protocol [FS86]), one can find a pseudorandom function ensemble {hk}k∈{0,1}∗ such
that if the random oracle is replaced with any circuit that computes hk, the protocol would not be
secure.11

Theorem 3.4.13. 1. If signature schemes exist, then so do unobfuscatable signature schemes.

2. If private-key encryption schemes exist, then so do unobfuscatable encryption schemes.

3. If pseudorandom function ensembles exist, then so do unobfuscatable pseudorandom function
ensembles.

4. If message authentication schemes exist, then so do unobfuscatable message authentication
schemes.

Proof Sketch: First note that the existence of any one of these primitives implies the existence
of one-way functions [IL89]. Therefore, Theorem 3.4.2 gives us a totally unobfuscatable function
ensemble H = {Hk}.

Now, we shall sketch the construction of the unobfuscatable signature scheme. All other con-
structions are similar. Take an existing signature scheme (G, S, V) (where G is the key generation
algorithm, S the signing algorithm, and V the verification algorithm). Define the new scheme
(G′, S′, V ′) as follows:

The generator G′ on input 1k uses the generator G to generate signing and verifying keys
(SK ,VK) ←R G(1k). It then samples a circuit f ←R Hℓ, where ℓ = |SK |. The new signing key
SK ′ is (SK , f) while the verification key VK ′ is the same as VK .

We can now define
S′

SK ,f (m)
def
= (SSK (m), f(m),SK ⊕ π(f)),

where π is the function from the unobfuscatability condition in Definition 3.4.1.

V ′
VK (m, (τ, x))

def
= VVK (m, τ)

11In contrast, the results of Chapter 4 and [GT03] imply the existence of particular (arguably “unnatural”)
protocols for which the Fiat-Shamir heuristic will fail if the random oracle is replaced with any efficiently computable
function.

46 CHAPTER 3. SOFTWARE OBFUSCATION

We claim that (G′, S′, V ′) is an unobfuscatable, yet secure, signature scheme. Clearly, given any
circuit that computes S′

SK ,f , one can obtain SK ⊕ π(f) and a circuit that computes the same
function as f . Possession of the latter enables one to reconstruct the original circuit f itself, from
which π(f) and then SK can be computed.

To see that scheme (G′, S′, V ′) retains the security of the scheme (G, S, V), observe that being
given oracle access to S′

SK ,f is equivalent to being given oracle access to SSK and f , along with
being given the string π(f) ⊕ SK . Using the facts that π(f) is indistinguishable from random
given oracle access to f and that f is chosen independently of SK , it can be easily shown that the
presence of f and π(f) ⊕ SK does not help an adversary break the signature scheme.

The construction of an unobfuscatable encryption scheme and pseudorandom function ensemble
is similar. The only detail is that when we construct the pseudorandom function ensemble, we need
to observe that Theorem 3.4.2 can be modified to give H which is also a family of pseudorandom
functions. (To do this, all places where the functions f in H were defined to be zero should instead
be replaced with values of a pseudorandom function.)

3.4.4 Obfuscating restricted circuit classes

Given our impossibility results for obfuscating general circuits, one may ask whether it is easier to
obfuscate computationally restricted classes of circuits. Here we argue that this is unlikely for all
but very weak models of computation.

Theorem 3.4.14. If factoring Blum integers is “hard”12 then there is a family Hk of unobfuscatable
functions such that every f ←R Hk is computable by a constant-depth threshold circuit of size
poly(k) (i.e., in TC0).

Proof Sketch: Naor and Reingold [NR97] showed that under the stated assumptions, there exists
a family of pseudorandom functions computable in TC0. Thus, we simply need to check that we
can build our unobfuscatable functions from such a family without a substantial increase in depth.
Recall that the unobfuscatable function ensemble Hk constructed in the proof of Theorem 3.3.11
consists of functions of the form Cα,β#D or Zk#D, where D is from the family Dα,β of Lemma 3.3.6.
It is easy to see that Cα,β and Zk are in TC0, so we only need to check that Dα,β consists
of circuits in TC0. The computational complexity of circuits in the family Dα,β is dominated
by performing encryptions and decryptions in a private-key encryption scheme (Enc, Dec) and
evaluating a pseudorandom function fK′ which is used to derandomize the probabilistic circuit
DK,α,β . If we use the Naor–Reingold pseudorandom functions both for fK′ and to construct the
encryption scheme (in the usual way, setting EncK(b) = (r, fK(r) ⊕ b)), then the resulting circuit
is in TC0.

3.4.5 Relativization

In this section, we discuss whether our results relativize. To do this, we must clarify the definition
of an obfuscator relative to an oracle F : {0, 1}∗ → {0, 1}∗. What we mean is that all algorithms in
the definition, including the one being obfuscated and including the adversary, have oracle access
to F . For a circuit, this means that the circuit can have gates for evaluating F . We fix an encoding
of (oracle) circuits as binary strings such that a circuit described by a string of length s can only
make oracle queries of total length at most s.

12This result is also implied if the Decisional Diffie–Hellman problem is “hard”; see [NR97] for precise statements
of these assumptions.

3.4. EXTENSIONS 47

By inspection, our initial (easy) impossibility results hold relative to any oracle, as the involve
only simulation and diagonalization.

Proposition 3.4.15. Proposition 3.3.4 (impossibility of 2-circuit obfuscators) and Theorem 3.3.5
(impossibility of TM obfuscators) hold relative to any oracle.

Interestingly, however, our main impossibility results do not relativize.

Proposition 3.4.16. There is an oracle relative to which efficient circuit obfuscators exist. Thus,
Theorem 3.3.8, Theorem 3.3.11, and Corollary 3.3.10 do not relativize.

This can be viewed both as evidence that these results are nontrivial, and as (further) evidence
that relativization is not a good indication of what we can prove.

Proof Sketch: The oracle F =
⋃

k Fk will consist of two parts Fk = Ok#Ek, where Ok : {0, 1}k ×
{0, 1}k → {0, 1}6k, and Ek : {0, 1}6k ×{0, 1}k → {0, 1}k. Ok is simply a uniformly random injective
function of the given parameters. Ek(x, y) is defined as follows: If there exists a (C, r) such that
Ok(C, r) = x, then Ek(x, y) = CF (y) (where C is viewed as the description of a circuit). Otherwise,
Ek(x, y) = ⊥. Note that this definition of Fk is not circular, because C can only make oracle queries
of size at most |C| = k, and hence can only query Fk′ for k′ ≤ k/2.

Now we can view x = Ok(C, r) as an obfuscation of C using coin tosses r. This satisfies
the syntactic requirements of obfuscation, since |x| = O(|C|) and the Ek allows one to efficiently
evaluate C(y) given just x and y. (Technically, we should define the obfuscation of C to be a circuit
which has x hardwired in and makes an oracle query to Ek.)

So we only need to prove the virtual black-box property. By a union bound over polynomial-
time adversaries A of description size smaller than k/2 and circuits C of size k, it suffices to prove
the following claim.13

Claim 3.4.17. For every PPT A there exists a PPT S such that for every circuit C of size k, the
following holds with probability at least 1 − 2−2k over F :

∣∣∣∣ Pr
r←R{0,1}k

[
AF (Ok(C, r)) = 1

]
− Pr

[
SF,C(1k) = 1

]∣∣∣∣ ≤ 2−Ω(k)

Fix a PPT A. We define the simulator S as follows. SF,C(1k) chooses x ←R {0, 1}6k and
simulates AF (x), using its own F -oracle to answer A’s oracle queries, except A’s queries to Ek′ for
k′ ≥ k. On A’s query (x′, y′) to Ek′ , S feeds A the response z computed as follows:

1. If x′ = x, then set z = C(y′) (computed using oracle access to C).

2. Else if x′ = Ok′(C ′, r′) for some previous query (C ′, r′) to the Ok′-oracle, then set z =
(C ′)F (y′) (computed recursively using these same rules).

3. Else set z = ⊥.

From the fact that a circuit of size s can only make oracle queries of total length s, it follows that
the recursive evaluation of (C ′)F (y) only incurs a polynomial overhead in running time. Also note
that S never queries the Ek′ oracle for k′ ≥ k.

13Note that we are only proving the virtual black-box property against adversaries of “bounded nonuniformity,”
which in particular includes all uniform PPT adversaries. Presumably it can also be proven against nonuniform
adversaries, but we stick to uniform adversaries for simplicity.

48 CHAPTER 3. SOFTWARE OBFUSCATION

Let us denote the execution of the above simulation for a particular x by SF,C(x). Notice that
when x = Ok(C, r) for some r, then SF,C(x) and AF (x) have exactly the same behavior unless
the above simulation produces some query (x′, y′) such that x′ ∈ Image(Ok′), x′ 6= x, and x′ was
not obtained by a previous query to Ok′ . Since O is a random length-tripling function, it follows
that the latter happens with probability at most poly(k) · 22k/26k, taken over the choice of F and
a random r (recall that x = Ok(C, r)).14 Thus, with probability at least 1 − 2−3k over the choice
of F , SF,C(Ok(C, r)) = AF (Ok(C, r)) for all but a 2−Ω(k) fraction of r’s.

Thus, proving Claim 3.4.17 reduces to showing that:

∣∣∣∣ Pr
r←R{0,1}k

[
SF,C(Ok(C, r)) = 1

]
− Pr

x←R{0,1}6k

[
SF,C(x) = 1

]∣∣∣∣ ≤ 2−Ω(k)

with high probability (say, 1 − 23k) over the choice of F .

In other words, we need to show that the function G(r)
def
= Ok(C, r) is a pseudorandom generator

against S. Since G is a random function from {0, 1}k → {0, 1}6k, this would be obvious were it not
for the fact that S has oracle access to F (which is correlated with G). Recall, however, that we
made sure that S does not query the Ek′-oracle for any k′ ≥ k. This enables us to use the following
lemma (proven below):

Lemma 3.4.18. There is a constant δ > 0 such that the following holds for all sufficiently large
K and any L ≥ K2. Let D be an algorithm that makes at most Kδ oracle queries and let G be a
random injective function G : [K] → [L]. Then with probability at least 1 − 2−Kδ

over G,

∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr

y∈[L]

[
DG(y) = 1

]∣∣∣∣ ≤
1

Kδ
(3.4)

Let us see how Lemma 3.4.18 implies what we want. Let K = 2k and associate [K] with {0, 1}k.
We fix all values of Ok′ for all k′ 6= k and Ek′ for all k′ < k. We also fix the values of Ok(C

′, r) for all

C ′ 6= C, and view G(r)
def
= Ok(C, r) as a random injective function from [K] to the remaining L =

K6−(K−1) ·K elements of {0, 1}6k. The only oracle queries of S that vary with the choice of G are
queries to Ok at points of the form (C, r), which is equivalent to queries to G. Thus, Lemma 3.4.18
implies that the output of G is indistinguishable from the uniform distribution on some subset of
{0, 1}6k of size L. Since the latter has statistical difference (K6 −L)/K6 < 1/K4 from the uniform
distribution on {0, 1}6k, we conclude that G is ε-pseudorandom (for ε = 1/Kδ + 1/K4 = 2−Ω(k))

against S with probability at least 1 − 2−Kδ
> 1 − 2−3k, as desired.

Proof of Lemma 3.4.18

We prove the lemma via a counting argument in the style of Gennaro and Trevisan’s proof that a
random permutation is one-way against nonuniform adversaries [GT00]. Specifically, we will show
that “most” G for which Inequality (3.4) fails have a “short” description given D, and hence there
cannot be too many of them.

Let G be the collection of G’s for which Inequality (3.4) fails (for a sufficiently small δ, whose
value is implicit in the proof below). We begin by arguing that, for every G ∈ G, there is a large
set SG ⊂ [K] of inputs on which D’s behavior is “independent,” in the sense that for x ∈ SG,
none of the oracle queries made in the execution of DG(G(x)) are at points in SG, yet D still has
nonnegligible advantage in distinguishing G(x) from random. Actually, we will not be able to afford

14Technically, this probability (and later ones in the proof) should also be taken over the coin tosses of A/S.

3.4. EXTENSIONS 49

specifying SG when we “describe” G, so we actually show that there is a fixed set S (independent of
G) such that for most G, the desired set SG can be obtained by just throwing out a small number
of elements from S.

Claim 3.4.19. There is a set S ⊂ [K] with |S| = K1−5δ, and G′ ⊂ G with |G′| = |G|/2 such that
for all G ∈ G′, there is a set SG ⊂ S with the following properties:

1. |SG| = (1 − γ)|S|, where γ = K−3δ.

2. If x ∈ SG, then DG(G(x)) never queries its oracle at an element of SG.

3.
∣∣Prx∈SG

[
DG(G(x)) = 1

]
− Pry∈LG

[
DG(y) = 1

]∣∣ > 1
2Kδ , where LG

def
= [L]\G([K]\SG). (Note

that LG contains more than a 1 − K/L fraction of L.)

Proof. First consider choosing both a random G ←R G and a random S (among subsets of [K]
of size K1−5δ). We will show that with probability at least 1/2, there is a good subset SG ⊂ S
satisfying Properties 1–3. By averaging, this implies that there is a fixed set S for which a good
subset exists for at least half the G ∈ G, as desired. Let’s begin with Property 2. For a random
G, S, and a random x ∈ S, note that DG(G(x)) initially has no information about S, which is a
random set of density K−5δ. Since D makes at most Kδ queries, the probability that it queries
its oracle at some element of S is at most Kδ · K−5δ = K−4δ. Thus, with probability at least 3/4
over G and S, DG(G(x)) queries its oracle at an element of S for at most a 4/K−4δ < γ fraction of
x ∈ S. Throwing out this γ fraction of elements of S gives a set SG satisfying Properties 1 and 2.

Now let’s turn to Property 3. By a Chernoff-like bound, with probability at least 1−exp(Ω(K1−5δ·
(K−δ)2)) > 3/4 over the choice of S,

∣∣∣∣ Pr
x∈S

[
DG(G(x)) = 1

]
− Pr

x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣ ≤
1

4Kδ
.

Then we have:
∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]∣∣∣∣

≥
∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr

y∈[L]

[
DG(y) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

x∈[S]

[
DG(G(x)) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
x∈S

[
DG(G(x)) = 1

]
− Pr

x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
y∈[L]

[
DG(y) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]∣∣∣∣

> 1/Kδ − γ − 1/4Kδ − K/L

> 1/2Kδ

Now we show how the above claim implies that every G ∈ G′ has a “small” description.

Claim 3.4.20. Every G ∈ G′ can be uniquely described by (log B)−Ω(K1−7δ) bits given D, where
B is the number of injective functions from [K] to [L].

50 CHAPTER 3. SOFTWARE OBFUSCATION

Proof. For starters, the description of G will contains the set SG and the values of G(x) for all
x /∈ SG. Now we’d like to argue that this information is enough to determine DG(y) for all y. This
won’t exactly be the case, but rather we’ll show how to compute MG(y) for some M that is “as
good” as D. From Property 3 in Claim 3.4.19, we have

Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]
>

1

2Kδ
.

(We’ve dropped the absolute values. The other case is handled analogously, and the only cost is one
bit to describe which case holds.) We will describe an algorithm M for which the same inequality
holds, yet M will only use the information in our description of G instead of making oracle queries
to G. Specifically, on input y, M simulates D(y), except that it handles each oracle query z as
follows:

1. If z /∈ SG, then M responds with G(z) (This information is included in our description of G).

2. If z ∈ SG, then M halts and outputs 0. (By Property 2 of Claim 3.4.19, this cannot happen
if y ∈ G(SG), hence outputting 0 only improves M ’s distinguishing gap.)

Thus, given SG and G|[K]\SG
, we have a function M satisfying

Pr
x∈SG

[M(G(x)) = 1] − Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(3.5)

To complete the description of G, we must specify G|SG
, which we can think of as first specifying

the image T = G(SG) ⊂ LG and then the bijection G : SG → T . However, we can save in our
description because T is constrained by Inequality (3.5), which can be rewritten as:

Pr
y∈T

[M(y) = 1] − Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(3.6)

Chernoff Bounds say that most large subsets are good approximators of the average of a boolean
function. Specifically, at most a exp(−Ω((1 − γ)K1−5δ · (K−δ)2)) = exp(−Ω(K1−7δ)) fraction of
sets T ⊂ LG of size (1 − γ)K1−5δ satisfy Equation 3.6.

Thus, using M , we have “saved” Ω(K1−7δ) bits in describing G(SG) (over the standard “truth-
table” representation of a function G). However, we had to describe the set SG itself, which would
have been unnecessary in the truth-table representation. Fortunately, we only need to describe

SG as a subset of S, and this only costs log
(

K1−5δ

(1−γ)K1−5δ

)
= O(H2(γ)K1−5δ) < O(K1−8δ log K) bits

(where H2(γ) = O(γ log(1/γ)) denotes the binary entropy function). So we have a net savings of
Ω(K1−7δ) − O(K1−8δ log K) = Ω(K1−7δ) bits.

From Claim 3.4.20, G′ can consist of at most an exp(−Ω(K1−7δ)) < K−δ/2 fraction of injective
functions [K] → [L], and thus G has density smaller than K−δ, as desired.

Bounded relativization.

While our result does not relativize in the usual sense, the proof does work for a slightly different
form of relativization, which we refer to as bounded relativization (and is how the Random Oracle
Model is sometimes interpreted in cryptography.) In bounded relativization, an oracle is a finite
function with fixed input length (polynomially related to the security parameter k), and all algo-
rithms/circuits in the protocol can have running time larger than this length (but still polynomial
in k). In particular, in the context of obfuscation, this means that the circuit to be obfuscated can
have size polynomial in this length.

3.4. EXTENSIONS 51

Proposition 3.4.21. Theorems 3.3.11 and 3.3.8 (one-way functions imply unobfuscatable func-
tions and impossibility of circuit obfuscators), and Corollary 3.3.10 (unconditional impossibility of
efficient circuit obfuscators) hold under bounded relativization (for any oracle).

Proof Sketch: The only modification needed in the construction is to deal with oracle gates in
the Hom algorithm in the proof of Lemma 3.3.6. Let’s call say the oracle F has input length
ℓ and output length 1 (without loss of generality). We augment the HomK to also take inputs
of the form (c1, . . . , cℓ, oracle) (where (c1, . . . , cℓ) are ciphertexts), on which it naturally outputs
EncK(F (DecK(c1), DecK(c2), . . . ,DecK(cℓ))). The rest of the proof proceeds essentially unchanged.

52 CHAPTER 3. SOFTWARE OBFUSCATION

Chapter 4

Non-Black-Box Zero Knowledge

Summary: The simulation paradigm is central to cryptography. A simulator is an
algorithm that tries to simulate the interaction of the adversary with an honest party,
without knowing the private input of this honest party. Almost all known simulators use
the adversary’s algorithm as a black-box. We present the first constructions of non-black-
box simulators. Using these new non-black-box techniques we obtain several results that
were previously shown to be impossible to obtain using black-box simulators.

Specifically, assuming the existence of collision-resistent hash functions, we construct a
new zero-knowledge argument system for NP that satisfies the following properties:

1. This system has a constant number of rounds with negligible soundness error.

2. It remains zero knowledge even when composed concurrently n times, where n is
the security parameter.

Simultaneously obtaining Properties 1 and 2 has been proven to be impossible to
achieve using black-box simulators.

3. It is an Arthur-Merlin (public coins) protocol.

Simultaneously obtaining Properties 1 and 3 has also been proven to be impossible
to achieve with a black-box simulator.

4. It has a simulator that runs in strict polynomial time, rather than in expected
polynomial time.

All previously known zero-knowledge arguments satisfying Property 1 utilized ex-
pected polynomial-time simulators. In Chapter 5, we show that simultaneously
obtaining Properties 1 and 4 is also impossible to achieve with a black-box simu-
lator.

4.1 Introduction

The simulation paradigm is one of the most important paradigms in the definition and design of
cryptographic primitives. For example, this paradigm arises in a setting in which two parties,
Alice and Bob, interact and Bob knows a secret. We want to make sure that Alice hasn’t learned
anything about Bob’s secret as the result of this interaction, and do so by showing that Alice could

This chapter is based on the paper [Bar01]. Section 4.5 is based on the paper [BG01], which is joint work with
Oded Goldreich.

53

54 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

have simulated the entire interaction by herself. Therefore, she has gained no further knowledge as
the result of interacting with Bob, beyond what she could have discovered by herself.

The canonical example of the simulation paradigm is its use in the definition of zero-knowledge
proofs, as presented by Goldwasser, Micali and Rackoff [GMR85]. Suppose that both Alice and
Bob know a public graph G, and in addition Bob knows a Hamiltonian cycle C in this graph. In
a zero-knowledge proof, Bob manages to prove to Alice that the graph G contains a Hamiltonian
cycle, and yet Alice has learned nothing about the cycle C, as she could have simulated the entire
interaction by herself.

A crucial point is that we do not want Alice to gain knowledge even if she deviates arbitrarily
from the protocol when interacting with Bob. This is usually formalized in the following way: for
every algorithm V ∗ that represents the strategy of the verifier (Alice), there exists a simulator M∗

that can simulate the entire interaction of the verifier and the honest prover (Bob) without access
to the prover’s auxiliary information (i.e., the Hamiltonian cycle). That is, the simulator only has
access to the public information (i.e., the graph) that was known to the verifier (Alice) before she
interacted with the prover (Bob).

Consider the simulator’s task even in the easier case in which Alice does follow her prescribed
strategy. One problem that the simulator faces is that, in general, it is impossible for it to generate
a convincing proof that the graph G is hamiltonian, without knowing a Hamiltonian cycle in the
graph. How then can the simulator generate an interaction that is indistinguishable from the actual
interaction with the prover? The answer is that the simulator has two advantages over the prover,
which compensate for the serious disadvantage of (the simulator’s) not knowing a Hamiltonian
cycle in the graph. The first advantage is that, unlike in the true interaction, the simulator has
access to the verifier’s random-tape. This means that it can actually determine the next question
that the verifier is going to ask. The second advantage is that, unlike in the actual interaction, the
simulator has many attempts at answering the verifier’s questions. This is because if it fails, it can
simply choose not to output this interaction but rather retry again and output only the “take” in
which it succeeds. This is in contrast to an actual proof, where if the party attempting to prove
failed even once to answer a question then the proof would be rejected. The difference is similar
to the difference between a live television show and a taped show. For example, if someone has a
10% probability of success in shooting a basketball, then he will probably never have 10 straight
hits in his life. In contrast, using video-editing, it is very easy to create a film where this person
has 10 straight hits. This second technique is called rewinding because the simulator that fails to
answer a question posed by the verifier, simply rewinds the verifier back and tries again.

All previously known zero-knowledge protocols made use of this rewinding technique in their
simulators. However this technique, despite all its usefulness, has some problems. These problems
arise mainly in the context of parallel and concurrent compositions. For example, using this tech-
nique it is impossible to show that a constant-round zero-knowledge proof1 remains zero-knowledge
under concurrent composition [CKPR01]. It is also impossible to construct a constant-round zero-
knowledge proof with a simulator that runs in strict polynomial time (rather than expected polyno-
mial running time) or a constant-round proof of knowledge with a strict polynomial time knowledge
extractor (see Chapter 5).

The reason that all the known simulators were “confined” to the rewinding technique is that it is
very hard to take advantage of the knowledge of the verifier’s random-tape when using the verifier’s
strategy as a black-box. Let us expand a little on what we mean by this notion. As noted above, to
show that a protocol is zero knowledge, one must show that a simulator exists for every arbitrary

1Here and throughout this paper, we only consider zero-knowledge proofs or arguments that have negligible
soundness error.

4.1. INTRODUCTION 55

algorithm V ∗ that represents the verifier’s strategy. Almost all the known protocols simply used a
single generic simulator that used the algorithm V ∗ as an oracle (i.e. as a black-box subroutine).
Indeed it seemed very hard to do anything else, as using V ∗ in any other way seemed to entail some
sort of “reverse-engineering” that is considered a very hard (if not impossible) thing to do.

It can be shown that for black-box simulators, the knowledge of the verifier’s random-tape does
not help the simulator, because a verifier can have its randomness “hardwired” into its algorithm
(for instance in the form of a description of a hash/pseudorandom function). Therefore, black-
box simulators are essentially restricted to using the rewinding technique, and so suffer from its
consequences. Indeed, as mentioned above, several negative results have been proved about the
power of black-box simulators, starting with the results of Goldreich and Krawczyk [GK90] regarding
non-existence of black-box 3-round zero-knowledge proofs and constant-round Arthur-Merlin zero-
knowledge proofs, to the recent result of Canetti, Kilian, Petrank and Rosen [CKPR01] regarding
impossibility of black-box constant-round concurrent zero-knowledge.

4.1.1 Our Results

We show that the belief that one can not construct non-black-box simulators is false. That is,
given the code of a (possibly cheating) efficient verifier as an auxiliary input, the simulator may
significantly use this code in other ways than merely running it, and so obtain goals that are
provably impossible to obtain when using the verifier only as a black-box. Specifically, assuming
the existence of collision-resistent hash functions, we construct a new zero-knowledge argument (i.e.,
a computationally-sound proof) for any language in NP that satisfies the following properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It remains zero-knowledge even if executed concurrently n times, where n is the security
parameter. We call a protocol that satisfies this property a bounded concurrent zero-knowledge
protocol.2

4. It is an Arthur-Merlin (public coins) protocol.

5. It has a simulator that runs in strict probabilistic polynomial-time, rather than expected
probabilistic polynomial-time.

The above protocol should be contrasted with the following impossibility results regarding black-
box zero-knowledge arguments for non-trivial languages: Goldreich and Krawczyk [GK90] showed
that such protocols cannot satisfy both Properties 2 and 4. Canetti, Kilian, Petrank and Rosen
[CKPR01] showed that such protocols cannot satisfy both Properties 2 and 3. In Chapter 5, we
show that such protocols cannot satisfy Properties 2 and 5.

4.1.2 Our approach

Our zero-knowledge argument is constructed using a technique, which we call the FLS technique,
that has been used before in the design of zero-knowledge arguments (its first explicit use was by

2The choice of n repetitions is quite arbitrary and could be replaced by any fixed polynomial (e.g. n3) in the
security parameter. This is in contrast to a standard concurrent zero-knowledge protocol [DNS98, RK99] that
remains zero-knowledge when executed concurrently any polynomial number of times.

56 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Feige, Lapidot and Shamir [FLS99]). In the FLS technique, we take an interactive proof/argument
for a language L and modify it so that if the prover knows some trapdoor information σ, then the
prover will be able to “cheat” and convince the verifier that any string x is in L, even without
knowing a witness for x and even when x is actually not in L. Naturally, to preserve soundness, one
must ensure that it is infeasible to obtain this trapdoor information σ when interacting with the
honest verifier. Although at first this may seem to make the modification pointless, this modification
is in fact crucial to obtaining the zero-knowledge property. The reason is that although the trapdoor
information σ is infeasible to obtain in an actual interaction with the verifier, one can construct
the protocol such that it will be easy to obtain by the simulator. This will allow the simulator
to produce a “real-looking” (and in particular accepting) proof, even though it does not get the
witness as input.

Protocols following the FLS technique are usually constructed to ensure that using black-box
access to the next-message function of the verifier (or in other words, using the power to “rewind”
the verifier) it would be easy to obtain the trapdoor information σ (e.g., this is the case in [FS89,
RK99, KP00]). Our protocol also uses the FLS technique but with a twist. We construct our protocol
in such a way that our trapdoor information σ will simply be the description of the verifier’s next-
message function (i.e., the verifier’s code). Thus a non-black-box simulator has (trivially) access to
this trapdoor information. Note that because the verifier’s next-message function may be a function
that is hard to learn (e.g., a pseudorandom function) it may be very hard for a black-box simulator
to obtain the trapdoor information. Indeed, our protocol will not be black-box zero-knowledge (as
mentioned above every argument system for a non-trivial language satisfying Properties 1–5 can
not be black-box zero-knowledge).

The techniques of Feige, Lapidot and Shamir [FLS99] allow to use as trapdoor information the
witness for any NP language. However, it turns out that for our purpose of making the trapdoor
information be the verifier’s code, this is not sufficient. Loosely speaking, the problem is that the
running time of the verifier is not a-priori bounded by any fixed polynomial. This problem is similar
to a problem that Canetti, Goldreich and Halevi [CGH98] encountered previously, when they tried
to construct a counter-example for the Random Oracle Methodology. We solve this problem in
a similar way to [CGH98], using universal arguments. Using universal arguments we are able to
extend the technique of [FLS99] and use as trapdoor information a witness for any Ntime(T (n))
language for some super-polynomial function T (·) (e.g., T (n) = nlog log n).

4.1.3 Related Work

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff in [GMR85]. Goldreich,
Micali and Wigderson [GMW86] gave a zero-knowledge proof for any language in NP, and showed
the wide applicability of such proofs to solving protocol problems. Constant-round zero-knowledge
arguments and proofs for any language in NP were first presented by Feige and Shamir [FS89],
Brassard , Crépeau and Yung [BCY89], and Goldreich and Kahan [GK96].

All of the above protocols utilized black-box simulators (see also [GO87]). Goldreich and
Krawczyk [GK90] showed that no language outside of BPP has a constant-round Arthur-Merlin
zero-knowledge proof or argument system with a black-box simulator. They also showed that no
language outside of BPP has a general (i.e., not necessarily Arthur-Merlin) three-round zero-
knowledge proof or argument system with a black-box simulator.

A non-black-box zero-knowledge argument was suggested by Hada and Tanaka [HT99]. However,
they used a highly non-standard assumption that in itself was of a strong “reverse-engineering”
flavor.

4.2. A UNIFORM ZERO-KNOWLEDGE ARGUMENT 57

Some of our techniques (i.e., the use of CS proofs for trapdoor information) were first used by
Canetti, Goldreich and Halevi [CGH98] for the purpose of constructing cryptographic schemes that
are secure in the Random Oracle Model [BR93] but are insecure under any implementation of this
model. CS proofs were defined and constructed by Kilian [Kil92, Kil95] and Micali [Mic94].

4.1.4 Organization

The construction of our zero-knowledge protocol is described in three stages. In Section 4.2, we
construct a zero-knowledge protocol satisfying Properties 2, 4 and 5 of the introduction. That
is, we construct a protocol that is constant-round Arthur-Merlin and has a strict polynomial-time
simulator. However, it will not be zero-knowledge with respect to auxiliary input (i.e., non-uniform
zero-knowledge). Rather, it will only be zero-knowledge with respect to verifiers whose strategy
can be implemented by a uniform probabilistic polynomial-time Turing machine. In Section 4.2.4
we present an alternative construction for a uniform-verifier generation protocol, which is the main
component in this construction. This alternative construction is somewhat simpler and more round-
efficient.

In Section 4.3, we modify the protocol of Section 4.2 and obtain a protocol that is zero-knowledge
with respect to non-uniform verifiers. In Section 4.4 we make yet another modification to obtain
a protocol that remains zero-knowledge under bounded-concurrent composition.

Section 4.6 contains conclusions and open problems.

4.1.5 Computational Assumptions

Throughout most of this chapter we will make the assumption that there exists a family of hash
functions that is collision-resistent against circuits of size nlog n where n is the security parameter.
The choice of nlog n is somewhat arbitrary and in fact all these results easily generalize to hold under
the weaker assumption that there exist hash functions that are collision-resistent against f(n)-sized
circuits for some function f(·) that is super-polynomial (i.e., f(n) = nω(1)) and polynomial-time
computable. In Section 4.5 we show that our result holds also under the weaker (and more standard)
assumption that that there exist hash functions that are collision-resistent against all polynomial-
sized circuits.

4.2 A Uniform Zero-Knowledge Argument

In this section we construct a constant-round Arthur-Merlin argument system for NP that is zero-
knowledge for uniform verifiers (i.e., verifiers whose strategy is implemented by a Turing machine
without advice). The protocol of this section will utilize a non-black-box simulator that runs in
strict probabilistic polynomial-time. This protocol falls short of satisfying all the properties 1–5
stated in Section 4.1.1 because it is only zero-knowledge against uniform verifiers and we do not
know whether or not it remains zero-knowledge under bounded concurrent composition. However,
it does illustrate the main ideas of our construction.

4.2.1 FLS-type protocols

In our construction, we use a general technique that has been used before in the design of zero-
knowledge protocols. We call this technique the FLS technique, since it was introduced in a paper
by Feige, Lapidot and Shamir [FLS99].

58 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

The FLS technique allows to reduce the problem of constructing a zero-knowledge proof (or argu-
ment) system to the problem of constructing two simpler objects: a witness-indistinguishable (WI)
proof/argument system and (what we call here) a generation protocol. Witness-indistinguishable
proof and argument systems are described in Section 2.3.4. Generation protocols are defined later
on (See Definition 4.2.1).

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (Generation protocol): Prover and verifier engage
in a generation protocol GenProt . We denote the transcript
of the execution by τ .

1n

↓

GenProt

↓
τ

Steps P,V2.x (WI Proof): Prover proves to verifier using its
auxiliary input w via a witness-indistinguishable (WI)
proof/argument system that either x ∈ L or τ ∈ Λ, where Λ is
a fixed language (which is part of the protocol’s specification).3

w
↓

x, τ
↓

WI-proof
x ∈ L
or τ ∈ Λ

↓

0/1

The verifier accepts if the WI proof of the second stage is completed
successfully (i.e., if the verifier algorithm for the WI proof accepts).

The right column contains a schematic description of the protocol as defined in the left column.

Figure 4.1: A generic FLS-type zero-knowledge protocol

We call a zero-knowledge protocol that is constructed using the FLS technique an FLS-type
protocol. Figure 4.1 describes a generic FLS-type zero-knowledge protocol. The general outline
of such a protocol is that when proving some statement of the form “x ∈ L” first the prover and
the verifier engage in a generation protocol. Then the prover proves to the verifier using a WI
system that either the statement “x ∈ L” is true, or a different statement about the transcript of
the generation protocol is true. To obtain a specific protocol one needs to specify the generation
protocol (GenProt) to be used in Steps P,V1.x, the language Λ, and the WI proof (or argument)
to be used in Steps P,V2.x. We stress that there are also black-box zero-knowledge arguments that
use the FLS technique (e.g., [RK99, KP00]).

Note that the generation protocol does not take the statement x as an input, and so honest
parties do not use x in computing their strategies for the first phase. (Although cheating parties
may choose to do so.) Intuitively, one may think of the generation protocol as a game that the
prover and verifier play. The prover’s objective in this game is to make the transcript τ of the
protocol in the language Λ, while the verifier’s objective is to ensure that τ will not be in Λ. By the
way an FLS-type protocol is set up, if the prover “wins” in the generation phase, then he doesn’t
need to prove that x ∈ L in the second phase. Thus, for the proof to be sound, it is important that
an honest verifier will win this game with high probability, no matter what strategy the prover may
use. However, we will need to require some additional properties from the generation protocol in
order to make it useful in this setting.4

3Formally, the prover proves that 〈x, τ〉 ∈ L′ where the language L′ is defined as follows: 〈x, τ〉 ∈ L′ if x ∈ L or
τ ∈ Λ.

4In particular, it will have the property, useful for demonstrating that the larger protocol is zero-knowledge, that

4.2. A UNIFORM ZERO-KNOWLEDGE ARGUMENT 59

Defining generation protocols. We now turn to formally defining what is a generation protocol.
Our definition is motivated by our intended application. Therefore, we make requirements from a
generation protocol that will ensure that when a generation protocol is plugged into the generic
construction of Figure 4.1, the result would be a zero-knowledge proof or argument system. We
define a uniform-verifier generation protocol since in this section we are only interested in obtaining
a protocol that is zero-knowledge against verifiers whose strategy can be implemented by a uniform
probabilistic polynomial-time Turing machine. The formal definition follows:

Definition 4.2.1 (Uniform-verifier generation protocol). Let GenProt be a two-party pro-
tocol where we call one party the prover and the other party the verifier. Let Λ ⊆ {0, 1}∗ be
some language in Ntime(T (n)) for some (polynomial-time computable) function T : N → N (e.g.,
T (n) = nlog log n or T (n) = n3). We say that GenProt is a (uniform-verifier) generation protocol
(with respect to the language Λ) if it satisfies the following two requirements:

Soundness (This requirement ensures that the protocol that GenProt will be plugged into will be sound.) Let
τ denote the transcript of the execution of GenProt. If the verifier follows its prescribed
strategy then, regardless of the prover’s (efficient or inefficient) strategy, it holds that Pr[τ ∈
Λ] < µ(n) for some negligible function µ : N → [0, 1].

Simulation of uniform verifiers (This requirement ensures that the protocol that GenProt will be plugged

into will be zero-knowledge against uniform verifiers.) There exists a simulator SGenProt that satisfies
the following:

Let V ∗ be an interactive strategy for the verifier that runs in polynomial-time and can be
described using less than 2n bits where n is the security parameter. Then on input the
description of V ∗, SGenProt runs for time polynomial in the running time of V ∗ and outputs
a pair (v, σ) such that:

1. v is computationally indistinguishable from the view of V ∗ in an execution of GenProt

with the prescribed prover algorithm.

2. Let τ denote the transcript that is contained in the view v. Then it holds that τ ∈ Λ
and σ is a witness to this fact. Furthermore, we require that the time to verify that σ is
a witness for τ is polynomial in the running time of V ∗.5

Note that the two requirements together imply that Λ is a hard language. This is because in a
real execution with the honest verifier it is almost always the case that the transcript τ is not in
Λ while in the computationally indistinguishable simulated execution it is always in Λ. Note also
that the simulator SGenProt is given the description of V ∗ as input and so may possibly make a
non-black-box use of this description.

We can now prove the main theorem that we need about the FLS technique:

Theorem 4.2.2. Let GenProt be a generation protocol with respect to an Ntime(T) language
Λ (where T : N → N is a polynomial-time computable function). Let WIProtbe a WI proof or
argument system for NP ∪ Ntime(T) languages. Let L be an NP language and let FLSProt be
the argument for L that is the result of plugging in GenProt and WIProt into the construction
of Figure 4.1. Then FLSProt is a uniform zero-knowledge argument for L.

if the prover knows the strategy and random tape of the verifier then he can always win the game.
5This requirement is important when considering Λ ∈ Ntime(T (·)) for a super-polynomial function T (·).

60 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Note that we deliberately stated Theorem 4.2.2 in a way that allows to treat in a uniform way
both the case that Λ ∈ NP and the case that Λ ∈ Ntime(T) \ NP for some super-polynomial
function T (·). In the former case it is sufficient to use a standard WI proof system for NP such as
the one of [FS90]. In the latter case one needs to use a WI universal argument (see Section 2.4). Note
that previous FLS-type protocols used languages Λ ∈ NP but we will need to use Λ ∈ Ntime(T (·))
for some super-polynomial T (·).

Proof sketch of Theorem 4.2.2

We only sketch the proof of Theorem 4.2.2 since it will be superseded by a non-uniform analogue
(Theorem 4.3.2). To show that FLSProt is a zero-knowledge argument one needs to show three
properties: completeness, soundness, and zero-knowledge.

Completeness. Completeness follows from the fact that if the public input x is in L then the
statement “x ∈ L or τ ∈ Λ” is true. Furthermore, the witness w for x can serve as a witness for this
statement. Therefore completeness follows from the completeness with efficient prover condition
of the WI proof/argument system. Note that since L ∈ NP, if x ∈ L then verifying that either
x ∈ L or τ ∈ Λ can be done in non-deterministic polynomial-time, even if deciding Λ takes non-
deterministic super-polynomial time. This is because the witness w for x is also a witness for the
combined statement.

Soundness. Suppose that x 6∈ L. Let τ denote the transcript of the first stage (Steps P,V1.x) of
FLSProt. By the soundness property of GenProt with very high probability τ 6∈ Λ. Therefore
the combined statement “x ∈ L or τ ∈ Λ” will be false with very high probability and so the prover
will not succeed in convincing the verifier by the soundness of the WI proof/argument system.

Uniform zero-knowledge. To show that FLSProt is zero-knowledge against uniform verifiers
one should exhibit a simulator. Algorithm 4.2.3 is such a simulator. The simulator’s operation can
be summarized as follows: it uses the simulator SGenProt of the generation protocol GenProt to
obtain both a simulation v for the first stage along with a witness σ that τ ∈ Λ where τ is the
transcript that v contains. Then, it uses the honest prover algorithm of the WI system WIProt

to prove the true statement “x ∈ L or τ ∈ Λ”, while using the witness σ as auxiliary input to the
prover algorithm of WIProt. The first stage (running the simulator SGenProt) can certainly be
done in time that is polynomial in the running time of V ∗. The second step (running the honest
prover algorithm) can be done in time that is a fixed polynomial in the size of the statement if
Λ ∈ NP. However, even if Λ 6∈ NP, this step cam still be performed in time polynomial in the
time to verify that σ is a witness that τ ∈ Λ (using the completeness with efficient property of
universal arguments, see Section 2.4). This is polynomial in the running time of V ∗ by Item 2 in
the uniform-verifier simulation condition of GenProt. Item 1 of the uniform-verifier simulation
condition of GenProt, along with the witness indistinguishability property of WIProt, ensure
that the output of our simulator will indeed be computationally indistinguishable from the view of
the verifier in a real interaction.

6Note that we do not need to assume that V ∗ is a completely uniform Turing machine but only that its description
is at most n-bits long.

4.2. A UNIFORM ZERO-KNOWLEDGE ARGUMENT 61

Input:

• x ∈ {0, 1}n: statement (simulate proof for “x ∈ L”)

• V ∗: description of the Turing machine of verifier.

Let V ∗∗ denote the verifier V ∗ with x “hardwired” into it. Note that
since V ∗ is a Turing machine we can assume that the description of V ∗∗

takes at most 2n bits.6

Simulated Steps P,V1.x (Simulated generation protocol):
Let (v, σ) ← SGenProt(V

∗∗) where SGenProt is the simulator
for the generation protocol GenProt. Let τ denote the
transcript contained in the view v. We let V ∗∗∗ denote the
residual verifier V ∗∗ with the view v hardwired in.

1n

↓

simulated
GenProt

↓
σ

↓
τ

↓
v

Simulated Steps P,V2.x (Honest WI Proof): Run an execu-
tion of WIProt between the verifier V ∗∗∗ and the honest
prover algorithm for the WI system WIProt the statement
proved is “x ∈ L or τ ∈ Λ” using the witness σ. Let v′ denote
V ∗∗∗’s view in this execution.

σ
↓

x, τ
↓

WI-proof
x ∈ L
or τ ∈ Λ

↓

v′

Output the combined view (v, v′) of the two stages
This is a non-interactive algorithm. The right side contains a schematic description of the steps simulated

in the left side.

Algorithm 4.2.3. A simulator for the FLS-type protocol FLSProt.

62 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Public input: 1n: security parameter
1n

↓

P V

Step P1 (Commitment to “junk”): Prover computes z ←R

Com(03n) and sends z to the verifier.
z = Com(03n)−−−−−−−−−−−−−→

Step V2 (Send random string): The verifier selects a string
r ←R {0, 1}n and sends it.

r ←R {0, 1}n

←−−−−−−−−−−−−

The transcript of the protocol is the pair τ = (z, r).

Protocol 4.2.4. A uniform-verifier generation protocol

4.2.2 A uniform-verifier generation protocol

Now that we have described the FLS technique we see that to describe our zero-knowledge pro-
tocol we should only specify the two components used (i.e., the WI system and generation pro-
tocol). Since we want the zero-knowledge to have a constant number of rounds and to be of the
Arthur-Merlin type we must ensure that both components are indeed constant-round and Arthur-
Merlin. For the WI system we will use the constant-round Arthur-Merlin WI universal argument
obtained from Theorem 2.4.4. We will use the universal arguments system to prove membership
in Ntime(nlog log n) languages. Thus, our main challenge is to construct a constant-round Arthur-
Merlin generation protocol with respect to some language Λ ∈ Ntime(nlog log n). We construct
such a generation protocol now. We remark that a reader that just want to get the flavor of our
techniques may want to look at Section 4.2.4, where we present a somewhat simpler generation
protocol. However, the current protocol generalizes more easily to the non-uniform case, which is
why we choose to focus on it.

Protocol 4.2.4 is our uniform-verifier generation protocol. It consists of two rounds where in
the first message the prover sends a commitment to a “junk” string (i.e., 03n) and in the second
message the verifier sends a random string of length n. However, to fully specify the generation
protocol one needs to specify the language Λ, which is what we do next.

Definition of the language Λ. We shall now specify the language Λ. Recall that for a string
y, Com−1(y) denotes the unique x such that y is a commitment to x or ⊥ if no such x exists. That
is x = Com−1(y) if there exists s such that Com(x; s) = y. We define Λ in the following way: let
τ = (z, r) is in Λ iff on input z, the Turing machine described by Com−1(z) halts and outputs r
within |r|log log |r|/5 steps.7 (If Com−1(z) = ⊥ or Com−1(z) does not describe a valid Turing machine
then τ = (z, r) 6∈ Λ.) In other words, Λ is defined as follows:

(z, r) ∈ Λ ⇐⇒ Π(z) outputs r within |r|log log |r|/5 steps, where Π = Com−1(z)

As a first observation, note that Λ ∈ Ntime(nlog log n). Indeed, using non-determinism it is
possible to obtain Π = Com−1(z) and then we have enough time to simulate the Turing machine
described by Π for nlog log n/5 steps.

We can now present the main theorem of this section:

7Again, we chose |r|log log |r|/5 rather arbitrarily. We just need to ensure that Λ will be in Ntime(nlog log n).

4.2. A UNIFORM ZERO-KNOWLEDGE ARGUMENT 63

Theorem 4.2.5. Protocol 4.2.4 is a uniform-verifier generation protocol (as per Definition 4.2.1).

To prove Theorem 4.2.5, one needs to prove that Protocol 4.2.4 satisfies both the soundness
and the uniform-verifier simulation properties. We start with the soundness:

Claim 4.2.5.1. Let P ∗ be any (possibly cheating) prover strategy for Protocol 4.2.4. Let τ denote
the transcript of P ∗’s execution with the honest verifier. Then Pr[τ ∈ Λ] ≤ 2−n.

Proof. For every first prover message z, we define f(z) to be the output of the Turing machine
described by Com−1(z) on input z after nlog log n/5 steps if Com−1(z) is a valid Turing machine that
on input z halts within this number of steps; otherwise, we define f(z) = ⊥. For every string z, if
f(z) = ⊥ then (z, r) 6∈ Λ for every r. If f(z) 6= ⊥, then (z, r) ∈ Λ iff r = f(z). yet, the probability
that a random r ←R {0, 1}n will be equal to f(z) is at most 2−n. Therefore, regardless of the
prover’s first message the probability that the transcript (z, r) will be in Λ is at most 2−n.

We now turn to the simulation condition:

Claim 4.2.5.2. There exists a simulator SGenProt for Protocol 4.2.4 such that for every proba-
bilistic polynomial-time verifier V ∗ whose description takes at most 2n bits, SGenProt(V

∗) = (v, σ)
such that

1. v is computationally indistinguishable from V ∗’s view in an execution of Protocol 4.2.4.

2. σ is a witness that the transcript τ contained in the view v is in Λ. Furthermore, it is possible
to verify that σ is such a witness in time that is polynomial in the running time of V ∗.

Proof. Algorithm 4.2.6 is a simulator for Protocol 4.2.4. The output of Algorithm 4.2.6 is a pair
(v, σ) such that v = (s, z) and σ contains Π such that Π(z) = V ∗

s (z) and a witness to the fact that
z = Com(Π).

The properties that we require from (v, σ) are:

1. v is computationally indistinguishable from V ∗’s view in a real execution. This follows from
the fact that PRG is a pseudorandom generator and so its output s is computationally
indistinguishable from V ∗’s random-tape in a real execution and from the fact that Com is a
commitment scheme and so Com(Π) is indistinguishable from Com(03n).

2. The transcript τ contained in v is in Λ and σ is a witness to this fact. The transcript
corresponding to v is (z, V ∗

s (z) = r). It is indeed in Λ because z = Com(Π) such that on
input z, Π outputs r within a polynomial (and therefore less than nlog log n/5) number of steps.
The string σ contains Π and the random coins of the commitment z and so is a witness to
this fact. Note that since Π is basically the verifier’s strategy V ∗ with some inputs hardwired
in, the fact that σ is a witness for τ can be verified in time that is a fixed polynomial in the
running time of V ∗.

Note that Algorithm 4.2.6 is a non-black-box simulator that takes the description of the verifier
as input and uses it in other ways than simply as a black-box or oracle. Note also that it runs in
strict probabilistic polynomial-time.

64 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Input:

• 1n: security parameter.

• V ∗: description of a probabilistic polynomial-time Turing ma-
chine. The length of V ∗ is at most 2n.

(Choose randomness for V ∗): Let m denote the number of ran-
dom bits V ∗ uses. Let PRG : {0, 1}n/2 → {0, 1}m be a pseudo-
random generator. Choose u ←R {0, 1}n/2 and let s = PRG(u).
We denote by V ∗∗ the residual verifier V ∗ with the randomness
s hardwired into it.

Simulated step P1 (Commitment to V ∗’s program): Let Π
denote the next message algorithm of V ∗∗. Note that Π can
be described using less than 3n bits (the description of V ∗, the
description of PRG and the seed u). Compute z ←R Com(Π).

z = Com(Π)−−−−−−−−−−−−→

Simulated Step V1 (Compute V ∗’s response): Compute the
verifier V ∗’s response with randomness s to the message z.
That is, r = Π(z).

r = Π(z) = V ∗∗(z)←−−−−−−−−−−−−−−−−−

The output of the simulator is the pair (v, σ) where v is the view (s, z)
and σ is the witness that (z, r) is in Λ (i.e., σ contains the program Π
and the coins used in computing the commitment z).

Algorithm 4.2.6. A simulator for Protocol 4.2.4.

4.2. A UNIFORM ZERO-KNOWLEDGE ARGUMENT 65

Public input: 1n: security parameter
1n

↓

P V

Step V1 (Send random string): The verifier selects a string
r ←R {0, 1}6n and sends it.

r ←R {0, 1}6n

←−−−−−−−−−−−−−

The transcript of the protocol is the string r.

Protocol 4.2.7. An alternative uniform-verifier generation protocol

4.2.3 Summing up

When we plug into the construction of Figure 4.1 our generation protocol (Protocol 4.2.4) and the
universal argument system for Ntime(nlog log n) obtained from Theorem 2.4.3, we obtain a zero-
knowledge argument system for NP. This system has a constant number of rounds and is of the
Arthur-Merlin type. The simulator of this zero-knowledge argument is a non-black-box simulator
that runs in strict probabilistic polynomial-time.

In fact, the protocol we obtain is not just zero-knowledge against fully uniform verifiers but
even against verifiers that have a bounded amount of non-uniformity. That is, verifiers that can
be described in n/2 bits where n is the security parameter.8 Note that although the results of
Goldreich and Krawczyk [GK90] are stated for non-uniform zero-knowledge, their proofs can be
extended for the case of bounded non-uniformity.9 Therefore any constant-round Arthur-Merlin
argument (such as ours) for a non-trivial language cannot be black-box zero-knowledge. This
means that our simulator is inherently a non-black-box simulator.

Thus, the protocol of this section is sufficient for the purpose of separating black-box from non-
black-box zero-knowledge. However, for other purposes, a uniform zero-knowledge protocol (or
even a bounded non-uniform zero-knowledge protocol) is not completely satisfactory. For example,
we don’t know how to prove a sequential composition theorem for uniform or even bounded-non-
uniformity zero-knowledge arguments [GK90]. In contrast, such a theorem is known to hold for
non-uniform (a.k.a. auxiliary input) zero-knowledge protocols. Thus, for many application it is
preferred to have such a protocol. In the next section we show how to modify our construction to
obtain a non-uniform zero-knowledge argument system for NP.

4.2.4 An Alternative Uniform-Verifier Generation Protocol

In this section, we sketch an alternative uniform-verifier generation protocol. This alternative
generation protocol, Protocol 4.2.7, has the advantage of being extremely simple and round efficient
(consisting of only a single round, in which the verifier sends a random string). However, it has
the disadvantage of being harder to generalize to the non-uniform case than Protocol 4.2.4. This
protocol is not used in any other place in this work.

Definition of the language Λ. To fully specify Protocol 4.2.7, one should also specify the
language Λ. Loosely speaking, we want Λ to be the language of strings with low Kolmogorov
complexity (i.e., strings can be computed by a Turing machine with small description). However,

8The value n/2 is quite arbitrary: by “scaling” the security parameter for every polynomial p(·) we can obtain an
argument system that is secure against verifiers that can be described using at most p(n) bits.

9This holds also for other black-box zero-knowledge lower bounds (e.g., [CKPR01, BL02]).

66 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

in order to make Λ decidable in time nlog log n, we will restrict ourselves to machines that on input
of size n, halt within nlog log n/5 steps. Formally, Λ is defined as follows:

r ∈ Λ ⇐⇒ ∃TM M s.t. |M | < |r|
2 and M() outputs r within |r|log log |r|/5 steps. 10

We now sketch why Protocol 4.2.7 is indeed a uniform-verifier generation protocol:

Soundness By a simple counting argument, it can be shown that a random string r has high (and

in particular higher than |r|
2) Kolmogorov complexity, and so r will not be a member of Λ

with very high probability.

Simulation of a uniform-verifier Let V ∗ be a possibly cheating verifier whose strategy can be
described in 2n bits, and suppose that V ∗ uses a random tape of size q(n). To simulate the
view of V ∗, the simulator will use a pseudorandom generator PRG : {0, 1}0.1n → {0, 1}q(n),
and compute s = PRG(u) where u ←R {0, 1}0.1n. It will then let r be V ∗’s output on input
security parameter 1n and random tape s. Because r can be computed in polynomial time
from a machine whose description is at most the sum of the description of V ∗, of PRG, and
of u, which is less than 3n, it follows that not only r ∈ Λ but also the simulator has a witness
to this fact. Furthermore, r is distributed in a computationally indistinguishable way from
the output of V ∗ in a real interaction.

4.3 Coping with Non-Uniform Verifiers

In this section we construct a non-uniform zero-knowledge argument with the properties of the
protocol of Section 4.2. That is, we construct an argument system for NP with the following
properties:

1. It is zero-knowledge with respect to non-uniform adversaries with auxiliary information.

2. It has a constant number of rounds and negligible soundness error.

3. It is an Arthur-Merlin (public coins) protocol.

4. It has a simulator that runs in strict polynomial-time, rather than expected polynomial-time.

That is, this protocol satisfies all the properties stated in Section 4.1.1 except for Property 3
(bounded concurrent zero-knowledge). A modification of this protocol that satisfies Property 3 is
described in Section 4.4.

4.3.1 FLS’-type protocols

Like the uniform-verifier protocol of Section 4.2, our non-uniform protocol will also use the FLS
technique. However, we will need a slight relaxation of the soundness condition of the generation
protocol (Definition 4.2.1). This time, we will allow the possibility that the transcript τ is in Λ
with non-negligible probability. However, we require that even in this case, it will be infeasible to
come up with a witness that τ is indeed in Λ. Such a generation protocol is sufficient to be plugged
in the construction of Figure 4.1, if we use a WI proof (or argument) of knowledge in the second

10We use M() to denote M executed on the empty input.

4.3. COPING WITH NON-UNIFORM VERIFIERS 67

stage (Steps P,V2.x), rather than just a proof of membership. In contrast, we will strengthen the
simulation condition of Definition 4.2.1 and require simulation even of non-uniform verifiers. We
will call a protocol that satisfies this modified definition a non-uniform verifier generation protocol,
although we will usually drop the qualifier and simply use the name generation protocol for the
non-uniform case.

We call a protocol that uses a generation protocol and a WI proof/argument of knowledge in
this way an FLS’-type protocol. For completeness, we include a description of FLS’-type protocols
in Figure 4.2.

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (Generation protocol): Prover and verifier engage
in a non-uniform verifier generation protocol GenProt . We
denote the transcript of the execution by τ .

1n

↓

GenProt

↓
τ

Steps P,V2.x (WI Proof of knowledge): Prover proves to veri-
fier using a witness-indistinguishable (WI) proof (or argument)
of knowledge system that either x ∈ L or τ ∈ Λ where Λ is
a fixed language, which is part of the protocol’s specification.
Verifier accepts if proof is completed successfully.

w
↓

x, τ
↓

WI-POK
x ∈ L
or τ ∈ Λ

↓

0/1

Figure 4.2: A generic FLS’-type zero-knowledge protocol

The formal definition of non-uniform generation protocols is as follows:

Definition 4.3.1 ((Non-uniform verifier) generation protocol). Let GenProt be a two-
party protocol where we call one party the prover and the other party the verifier. Let Λ ⊆ {0, 1}∗
be some language in Ntime(T (n)) for some (polynomial-time computable) function T : N → N.
We say that GenProt is a (non-uniform) generation protocol (with respect to the language Λ) if
it satisfies the following two requirements:

Computational soundness For every T (n)O(1)-sized (possibly cheating) prover P ∗ the following
holds: let τ denote the transcript of the execution of GenProtbetween P ∗ and the prescribed
verifier. The probability that P ∗ succeeds in outputting at the end of the interaction a witness
that τ ∈ Λ is negligible.

Simulation of a non-uniform verifier There exists a probabilistic polynomial-time simulator
SGenProt that satisfies the following:

Let V ∗ be a polynomial-sized verifier. Then on input the description of V ∗, SGenProt outputs
a pair (v, σ) such that:

1. v is computationally indistinguishable from the view of V ∗ in an execution of GenProt

with the prescribed prover algorithm.

2. Let τ denote the transcript that is contained in the view v. Then it holds that τ ∈ Λ
and σ is a witness to this fact. Furthermore, we require that the time to verify that σ is
a witness for τ is polynomial in the running time of V ∗.

68 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Note that the computational soundness requirement refers to T (n)O(1)-sized adversaries rather
than polynomial-sized adversaries. Indeed if Λ is in Ntime(T (n)) for a super-polynomial function
T (·) then it may take a super-polynomial number of steps just to write down a witness. Also note
that, unlike Definition 4.2.1, this definition does not imply that deciding Λ is hard but rather only
that the search problem corresponding to Λ (of coming up with a witness) is hard.

We now state and prove the non-uniform analogue of Theorem 4.2.2:

Theorem 4.3.2. Let GenProt be a non-uniform generation protocol with respect to the Ntime(T)
language Λ (where T : N → N is a polynomial-time computable function). Let WIProt be a WI
proof or argument system of knowledge for NP∪Ntime(T) languages. Let L be an NP language
and let FLSProt be the argument for L that is the result of plugging in GenProt and WIProt

into the construction of Figure 4.2. Then FLSProt is a non-uniform zero-knowledge argument
for L.

4.3.2 Proof of Theorem 4.3.2

The proof of Theorem 4.3.2 is similar to the proof of Theorem 4.2.2 sketched in Section 4.2.1.
To prove that FLSProt is a zero-knowledge argument one needs to prove three properties: com-
pleteness, soundness, and zero-knowledge. We will start with the soundness, since this is the main
difference between this proof and the proof of Theorem 4.2.2.

Soundness

Let PFLSProt be a polynomial-sized prover for FLSProt and suppose that for some x 6∈ L, the
execution of PFLSProt and the honest verifier is accepting with some probability ǫ. We will use
PFLSProt to construct a cheating prover PGenProt for the generation protocol GenProt that,
after interacting with the honest verifier, will be able to output a witness for the transcript with
probability that is polynomially related to ǫ. Thus, if ǫ is non-negligible then this contradicts the
computational soundness of GenProt.

The prover PGenProt works in the following way: when interacting with the verifier of protocol
GenProt, the prover PGenProt will use the strategy that the prover PFLSProt uses in the first
stage of FLSProt on input x. Let τ denote the transcript of this interaction and let v denote the
view of the prover in this interaction. After the interaction is completed, the prover PGenProt will
compute the residual prover PFLSProt with state v. We denote this residual prover by PWIProt

since it specifies a strategy for the second stage of FLSProt: the WI proof stage. The prover
PGenProt then applies the knowledge extractor of the WI system to the PWIProt. Note that this
takes T (n)O(1) steps. If the case the extraction is successful PGenProt will obtain a witness to the
statement “x ∈ L or τ ∈ Λ”. Since we assume that x 6∈ L this means that in this case we obtain a
witness to the fact that τ ∈ Λ.

We see that to get a contradiction to the computational soundness of GenProt, all we need
to show is that the extraction will be successful with probability that is polynomially related to
ǫ. (Where ǫ is the overall success of PFLSProt in an execution with the honest verifier.) Indeed,
for at least an ǫ/2 of the executions of the first stage, there is an ǫ/2 probability that the second
stage will finish successfully. This implies that with ǫ/2 probability, the computed prover PWIProt

will have ǫ/2 probability of convincing the verifier that “x ∈ L or τ ∈ Λ”. Yet when this happens,
by the proof of knowledge condition of WIProt, the knowledge extractor succeeds in extracting a
witness with probability very close to ǫ/2, and this finishes the proof.

4.3. COPING WITH NON-UNIFORM VERIFIERS 69

Remark 4.3.3. Note that we have actually proven that the resulting zero-knowledge system is
not only sound, but actually also satisfies a weak proof of knowledge property (in the sense that
if a cheating prover convinces the verifier to accept with some non-negligible probability ǫ then
one can extract with probability that is polynomially related to ǫ). We will use this observation in
Chapter 5.

Completeness

The proof for completeness follows the proof in the uniform case (See Section 4.2.1). Recall the
description of the honest prover’s algorithm on Figure 4.2. When given public input x and a
witness w to the fact that x ∈ L, the honest prover algorithm for FLSProt runs the honest prover
algorithm for GenProt and then runs the honest prover algorithm for the WI system to prove the
combined statement “x ∈ L or τ ∈ Λ” using the witness w. Note that the witness w serves also
as a witness for the combined statement, and this witness can be verifier in polynomial-time (since
L ∈ NP). Thus, by the completeness with efficient prover property of the WI system, the honest
prover algorithm runs in probabilistic polynomial-time.

Zero-Knowledge

The proof for zero-knowledge also follows the proof in the uniform case (See Section 4.2.1). The
simulator for GenProt is Algorithm 4.3.4. The simulator’s operation follows the simulator in
the uniform case (Algorithm 4.2.3). The simulator uses the simulator SGenProt of the generation
protocol GenProt to obtain both a simulation v for the first stage along with a witness σ that is
consistent with the transcript that v contains. Then, it uses the honest prover algorithm of the WI
system WIProt to prove the true statement “x ∈ L or τ ∈ Λ”. It uses the witness σ as auxiliary
input to the prover algorithm of WIProt.

What we need to prove is the following claim:

Claim 4.3.4.1. Let V ∗ be a polynomial-sized verifier for FLSProt. Let x ∈ L. Let (VR, V ′
R)

be the random variable that is the view of V ∗ when interacting with the honest prover on input x
(where VR is the view in the first stage and V ′

R is the view in the second stage, R stands for real
as opposed to simulated execution.) Let (VS , V ′

S) be the random variable that is the output of the
Algorithm 4.3.4 on input x. Then, (VR, V ′

R) and (VS , V ′
S) are computationally indistinguishable.

Proof. The proof follows from an hybrid argument. We will prove that both distributions are
computationally indistinguishable from the hybrid distribution (VS , V ′

R) where VS represents the
simulation of the first stage and V ′

R represents the real execution of the second stage. That is,
(VS , V ′

R) is the output of a “hybrid simulator” that uses the simulator of GenProt in the first
stage but uses the witness w for x (instead of the witness σ for τ) as input to the WI prover
algorithm in the second stage.

• The distribution (VS , V ′
R) is computationally indistinguishable from (VS , V ′

S) due to the WI
property of the WI system WIProt.
Indeed, if there there is an algorithm D that distinguishes between these two distributions
with probability ǫ then in particular there must exist a particular view v for the first stage such
that D distinguishes between (VS , V ′

R) and (VS , V ′
S) conditioned on VS = v with probability

ǫ. Let τ be the transcript contained in v and let σ be the witness for τ as provided by the
simulator. Let Dv be the distinguisher D with v hardwired as its first input and let V ∗

v be
the residual verifier V ∗ with the state v hardwired. Then, Dv can distinguish between an

70 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Input:

• x ∈ {0, 1}n: statement (simulate proof for “x ∈ L”)

• V ∗: description of a polynomial-sized verifier.

Let V ∗∗ denote the verifier V ∗ with x “hardwired” into it.

Simulated Steps P,V1.x (Simulated generation protocol):
Let (v, σ) ← SGenProt(V

∗∗) where SGenProt is the simulator
for the generation protocol GenProt. Let τ denote the
transcript contained in the view v. We let V ∗∗∗ denote the
residual verifier V ∗∗ with the view v hardwired in.

1n

↓

simulated
GenProt

↓
σ

↓
τ

↓
v

Simulated Steps P,V2.x (Honest WI Proof of knowledge):
Run an execution of WIProt between the verifier V ∗∗∗ and
the honest prover algorithm for the WI system WIProt the
statement proved is “x ∈ L or τ ∈ Λ” using the witness σ. Let
v′ denote V ∗∗∗’s view in this execution.

σ
↓

x, τ
↓

WI-POK
x ∈ L
or τ ∈ Λ

↓

v′

Output the combined view (v, v′) of the two stages

Algorithm 4.3.4. A simulator for the FLS’-type protocol FLSProt.

interaction of V ∗
v and the honest prover of the WI system that uses σ as auxiliary input and

an interaction of V ∗
v and the honest prover of the WI system that uses w (the witness for x)

as auxiliary input with probability ǫ. Thus, ǫ is negligible by the WI condition of WIProt.

• The distribution (VS , V ′
R) is computationally indistinguishable from (VR, V ′

R) due to the sim-
ulation condition of the generation protocol GenProt.
Indeed, suppose that there is an algorithm D that distinguishes between these two distribu-
tions with probability ǫ. Then we can construct a distinguisher D′ to contradict the simula-
tion condition of the generation protocol in the following way. The distinguisher D′ has the
witness w for x hardwired in. When it gets a string v as input, it runs the honest prover
algorithm of the WI proof for the statement “x ∈ L or τ ∈ Λ” (where τ is the transcript
contained in v) using the witness y. It plays the part of the verifier using the residual verifier
V ∗ with state v. Let v′ denote the view of the verifier in the WI proof. The distinguisher D′

returns D(v, v′). We see that D′ distinguishes between the view of V ∗ in a real interaction
of GenProt and the output of SGenProt(V

∗) with probability ǫ and so ǫ is negligible by the
simulation condition of GenProt.

4.3.3 A Non-Uniform Verifier Generation Protocol

Once we have Theorem 4.3.2, all that is left to do is to construct a non-uniform verifier generation
protocol with respect to some Ntime(nlog log n) language Λ. Our non-uniform verifier generation
protocol will be based on the uniform-verifier generation protocol of the previous section (Proto-
col 4.2.4).

4.3. COPING WITH NON-UNIFORM VERIFIERS 71

Public input: 1n: security parameter
1n

↓

P V

Step V1 (Choose hash-function): Verifier chooses a random
hash function h ←R Hn and sends h to prover.

h ←R Hn←−−−−−−−−−−
Step P2 (Commitment to hash of“junk”): Prover computes

z ←R Com(h(0n)) and sends z to verifier.
z = Com(h(0n)−−−−−−−−−−−−−−→

Step V3 (Send random string): The verifier selects a string
r ←R {0, 1}n and sends it.

r ←R {0, 1}n

←−−−−−−−−−−−−
The transcript of the protocol is the pair τ = (h, z, r).

Protocol 4.3.5. A non-uniform verifier generation protocol

Recall how we proved that Protocol 4.2.4 satisfies the uniform simulation condition. The first
message of the protocol was supposed to be a commitment to 03n. However, the simulator (Algo-
rithm 4.2.6) simulated this message by commitment z to the next-message function of the verifier.
This may be problematic if we try to use the same protocol and simulator in the non-uniform
setting. The problem is that since a commitment scheme is statistically binding, then it necessarily
holds that the length of the commitment z will be longer than the length of the description of the
next message function. However, once we consider non-uniform verifiers then we must allow for
the next-message function’s description to be of any polynomial length, and in particular it may be
larger than the communication complexity of our protocol. The solution is quite simple. Instead of
using a statistically binding commitment scheme, we will use a computationally binding commit-
ment scheme. A computationally binding commitment scheme that allows to commit to messages
that are longer than its output can be constructed by composing a standard, statistically binding
commitment scheme, with a collision-resistent hash function. One can see why we had to relax
the soundness condition of the definition of a generation protocol: once we use a computationally
binding commitment scheme, we will only be able to prove that are protocol is computationally
sound. This is the intuition that we follow in both the construction of the generation protocol and
the definition of the corresponding language Λ. Protocol 4.3.5 is our generation protocol.

Definition of the language Λ. We define the language Λ as follows: τ = (h, z, r) is in Λ if
there exists a program Π such that z = Com(h(Π)) and Π(z) outputs r within |r|log log |r|/5 steps.
This can be verified in Ntime(nlog log n/5). A witness that (h, z, r) ∈ Λ is a couple (Π, s) such that
z = Com(h(Π); s) and Π(z) outputs r within |r|log log |r|/5 steps. Note that it may be the case that Λ
is easy to decide (in fact it may be that Λ = {0, 1}∗) but the soundness condition of Definition 4.3.1
refers only to the infeasibility of coming up with a witness.

Theorem 4.3.6. Protocol 4.3.5 is a (non-uniform verifier) generation protocol with respect to the
language Λ (as per Definition 4.3.1).

4.3.4 Proof of Theorem 4.3.6

To prove that Protocol 4.3.5 meets Definition 4.3.1 we need to show that it satisfies two properties:
computational soundness and non-uniform simulation.

72 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Computational Soundness

Let P ∗ be a nO(log log n)-sized prover strategy for Protocol 4.3.5. Let τ denote the transcript of P ∗’s
execution with the honest verifier. We claim that the probability that P ∗ writes a witness that
τ ∈ Λ on its auxiliary tape is negligible.

Indeed, suppose otherwise that P ∗ manages to output a witness with non-negligible probability
ǫ. Then, for at least an ǫ/2 fraction of the h ∈ Hn, it holds that P ∗ manages to output a witness
for the transcript starting with h with probability ǫ/2. Fix such an h ∈ Hn. Since P ∗ is a non-
uniform algorithm, we can assume without loss of generality that P ∗ is deterministic. Thus the
message z, which is the prover P ∗’s response to h, is also fixed. By our assumption, if we choose
r ←R {0, 1}n, then with probability ǫ/2 the prover will be able to output a program Π such that z
is a commitment to h(Π) and Π(z) = r (within |r|log log |r|/5 steps). This means that if we choose
two independent r, r′ ←R {0, 1}n, then with probability ǫ2/4, we obtain two programs Π, Π′ such
that z is a commitment to both h(Π) and h(Π′) and Π(z) = r, Π′(z) = r′. Since Com(·) is a
statistically binding commitment scheme, it follows that h(Π) = h(Π′). Yet, since we can assume
that r 6= r′ (as this holds with 1 − 2−n probability), it follows that Π(z) 6= Π′(z) and so Π and
Π′ are different programs. This means that Π and Π′ are a collision for h. This means that we
have a nO(log log n)-sized algorithm that, for an ǫ/2 fraction of h ∈ Hn, obtains a collision for h with
probability O(ǫ2). This contradicts the collision-resistence against nlog n-sized adversaries of the
family Hn.

Simulation of a non-uniform verifier

The proof that Protocol 4.3.5 satisfies the simulation requirement is quite similar to its uniform
analog (Claim 4.2.5.2). What we need to show is that there exists a simulator SGenProt for Proto-
col 4.3.5 such that for every polynomial-sized verifier V ∗, SGenProt(V

∗) outputs a pair (v, σ) such
that v is computationally indistinguishable from V ∗’s view and σ is a witness that the transcript τ
compatible with v is in Λ.

Algorithm 4.3.7 is a simulator for Protocol 4.3.5. As we can see, when simulating an execution
with transcript (h, z, r), the output of Algorithm 4.3.7 is a pair (z, σ) and σ = (Π, s) is such that
z = Com(h(Π); s). The two properties that we require from (z, σ) are:

1. z is computationally indistinguishable from V ∗’s view in a real execution. In a real exe-
cution the verifier sees a single message which is Com(h(0n)). The message z is equal to
Com(h(Π)). Thus this property follows immediately from the computational hiding property
of the commitment scheme Com.

2. The transcript τ corresponding to v is in Λ and σ is a witness to this fact. The transcript
corresponding to v is (h, z, r) (where h = V ∗() and r = H(z)). The pair σ = (Π, s) is indeed
a witness that (h, z, r) ∈ Λ since z = Com(h(Π); s) and Π(z) outputs r in a polynomial (and
so less than |r|log log |r|/5) number of steps. Note that indeed the time to verify that σ is a
witness for τ is polynomial in the running time of V ∗.

Note that Algorithm 4.3.7, like Algorithm 4.2.6, is a non-black-box simulator. Note also that it
runs in strict probabilistic polynomial-time.

This finishes the proof of Theorem 4.3.6. By using this generation protocol in Theorem 4.3.2
we obtain a non-uniform zero-knowledge argument with all the desired properties.

4.4. ACHIEVING BOUNDED-CONCURRENT ZERO-KNOWLEDGE 73

Input:

• 1n: security parameter.

• V ∗: a polynomial-sized circuit (without loss of generality V ∗ is
deterministic).

Simulated Step V1 (Choose hash-function): Compute h: the
V ∗’s first message.

h = V ∗()←−−−−−−−−−
Simulated step P2 (Commitment to V ∗’s program): Let

Π denote the next message algorithm of V ∗. Compute
z = Com(h(Π); s) where s ←R {0, 1}poly(n) are coins chosen for
the commitment scheme.

z = Com(h(Π))−−−−−−−−−−−−−−→

Simulated Step V3 (Compute V ∗’s response): Compute the
verifier V ∗’s response to the message z. That is, r = Π(z).

r = Π(z) = V ∗(z)←−−−−−−−−−−−−−−−−
The output of the simulator is the pair (z, σ) where z is the simulated
verifier’s view and σ = (Π, s) is the witness that (h, z, r) is in Λ.

Algorithm 4.3.7. A simulator for Protocol 4.3.5.

4.4 Achieving Bounded-Concurrent Zero-Knowledge

The condition that a proof/argument system is zero-knowledge guarantees the prover that a possibly
malicious verifier will not be able to gain any new knowledge about the statement that is being
proved. However, somewhat surprisingly, it turns out that this may not be the case if the prover
is proving two or more related statements at the same time [GK90]. To guarantee security for
the prover in this (quite realistic) setting, one needs a stronger form of zero-knowledge. This
stronger form, called concurrent zero-knowledge, was introduced by Dwork, Naor and Sahai [DNS98].
Loosely speaking, a protocol is concurrent zero-knowledge if it remains zero-knowledge even when
any polynomial number of possibly related statements are being proved simultaneously, with the
scheduling of messages chosen (possibly in a malicious way) by the verifier.

Dwork et al.[DNS98] constructed a concurrent zero-knowledge argument for NP in the timing
model, which is a model that assumes a some known time bounds on the delivery of messages
in the communication network (See also [Gol01a]). Richardson and Kilian [RK99] were the first
to construct a concurrent zero-knowledge argument for NP in the standard (pure asynchronous)
model. Their protocol used a polynomial number of rounds. This was later improved by Kilian
and Petrank to a polylogarithmic number of rounds [KP00] and further improved by Prabhakaran,
Rosen and Sahai to a slightly super-logarithmic number of rounds [PRS92]. This is essentially the
best one can obtain using black-box simulation as shown by Canetti, Kilian, Petrank and Rosen
[CKPR01] (improving on [KPR98] and [Ros00]).

In this section, we show how to modify the zero-knowledge protocol of the last section as
to obtain a protocol that is bounded concurrent zero-knowledge. A zero-knowledge protocol is
bounded-concurrent zero-knowledge if it remains zero-knowledge when executed up to n times
concurrently, where n is the security parameter. Since the security parameter can be “scaled”, this
means that for every fixed polynomial p(·), we can construct a protocol that remains zero-knowledge
when executed p(n) times. However, this protocol will depend on p(·) and in particular it will have

74 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

communication complexity greater than p(n). This is in contrast with the notion of (unbounded)
concurrent zero-knowledge described above, where there is a single protocol that remains zero-
knowledge when executed p(n) times for every polynomial p(·). We stress that the negative results
of [CKPR01] regarding concurrent black-box zero-knowledge hold also for bounded concurrent zero-
knowledge. In particular, there does not exist a constant-round bounded-concurrent zero-knowledge
proof/argument (for a non-trivial language) that utilizes a black-box simulator.

Formally, we define bounded-concurrent zero-knowledge as follows:

Definition 4.4.1 (Concurrent execution). Let (P, V) be a two-party protocol. Let V ∗ be an
interactive machine. Let {(ai, bi)}t

i=1 be a set of t inputs to the protocol (P, V). A t-times concurrent
execution of (P, V) coordinated by V ∗ on inputs {(ai, bi)}t

i=1 is the following experiment:

1. Run t independent copies of P with the ith copy getting ai as input.

2. Provide V ∗ with the b1, . . . , bt.

3. On each step V ∗ outputs a message (i, m). The ith copy of P is given with the message m.
The verifier V ∗ is given the prover’s response.

Definition 4.4.2 (Bounded-concurrent zero-knowledge). Let (P, V) be an interactive proof
orargument system for a language L = L(R). We say that (P, V) is bounded-concurrent zero-
knowledge if there exists a probabilistic polynomial-time algorithm S such that for every polynomial-
sized V ∗, and every list {(xi, yi)}n

i=1 such that (xi, yi) ∈ R, the following two random variables are
computationally indistinguishable:

1. The view of V ∗ in an n-times concurrent execution of (P, V) with inputs {(xi, yi)}n
i=1.

2. S(V ∗, x1, . . . , xn)

Our protocol will be an FLS’-type protocol, and will use a (non-uniform verifier) generation
protocol which is very similar to Protocol 4.3.5. In fact, the only difference between the generation
protocol of this section and Protocol 4.3.5 will be that we will use a longer string r as the verifier’s
message (Step V2). That is, we will use r ←R {0, 1}n4

rather than r ←R {0, 1}n.11 Protocol 4.4.3
is the modified generation protocol.

Definition of the language Λ. We use a somewhat different language Λ that the one used in
the previous section. We define Λ as follows: τ = (h, z, r) is in Λ iff there exists a program Π such
that z = Com(h(Π)) and there exists a string y such that |y| ≤ |r|/2 and Π(z, y) outputs r within
|r|log log |r|/5 steps. This can be verified in Ntime(nlog log n/5). A witness that (h, z, r) ∈ Λ is a triple
(Π, s, y) such that z = Com(Π; s), |y| ≤ |r|/2 and Π(z, y) outputs r within |r|log log |r|/5 steps. That
is, we’ve changed the language so that the committed program Π that outputs r can get not only
z as input but is also allowed an additional input y, as long as it is not too long (i.e., as long as
|y| ≤ |r|/2).

The following theorem states that the modified protocol is still a generation protocol:

Theorem 4.4.4. Protocol 4.4.3 is a (non-uniform verifier) generation protocol with respect to Λ

11The value n4 is also somewhat arbitrary. We have not tried to optimize the relation between the communication
complexity and the number of concurrent sessions.

4.4. ACHIEVING BOUNDED-CONCURRENT ZERO-KNOWLEDGE 75

Public input: 1n: security parameter
1n

↓

P V

Step V1 (Choose hash-function): Verifier chooses a random
hash function h ←R Hn and sends h to prover.

h ←R Hn←−−−−−−−−−−
Step P2 (Commitment to hash of“junk”): Prover computes

z ←R Com(h(0n)) and sends z to verifier.
z = Com(h(0n)−−−−−−−−−−−−−−→

Step V3 (Send long random string): The verifier selects a
string r ←R {0, 1}n4

and sends it.
r ←R {0, 1}n4

←−−−−−−−−−−−−−
The transcript of the protocol is the pair τ = (h, z, r).

Protocol 4.4.3. A generation protocol for bounded concurrent zero-knowledge.

Proof Sketch: We only sketch the proof because it is almost identical to the previous section (the
proof of Theorem 4.3.6 in Section 4.3.4). The fact that the message r is longer does not change
anything in the proof, and so we only need to see that the modification to Λ did no harm.

Indeed, the proof of the non-uniform simulation requirement is unchanged, since the simulator
presented in the proof of Theorem 4.3.6 (Algorithm 4.3.7) is also a simulator for Protocol 4.4.3.
The witness this simulator outputs is a valid witness also for the modified language of this section
(it simply uses the empty word for the string y).

The proof of the computational soundness is slightly changed but still works. Recall that the
proof there (in Section 4.3.4) relied on converting a cheating prover into an algorithm to find
collision for the hash functions. We used there the following observation: if for some value z ,Π is
a program such that Π(z) = r and we choose a random r′ ←R {0, 1}n and obtain with probability
ǫ a program Π′ such that Π′(z) = r′, then Π will be different from Π′ with probability at least
ǫ − 2−n. We used this observation to show that we can use a cheating prover to obtain a collision
pair Π and Π′ for the hash function.

The key observation we need to use now is the following: if for some value z, Π is a program
such that ∃y∈{0,1}m/2Π(z, y) = r and we choose a random r′ ←R {0, 1}m and obtain with probability
ǫ a program Π′ such that ∃y′∈{0,1}m/2Π′(z, y′) = r′, then Π will be different from Π′ with probability

at least ǫ − 2−m/2. This is because if Π′ = Π then it must hold that r′ ∈ Π(z, {0, 1}m/2) which
happens with probability at most 2−m/2. Note that in our case m = n4 and so 2−m/2 is a negligible
quantity.

Using this observation, the proof of the soundness property follows the proof of Section 4.3.4.

4.4.1 The Zero-Knowledge Argument

Our bounded-concurrent zero-knowledge protocol for NP is Protocol 4.4.5. It is constructed by
plugging in the generation protocol of the previous section (Protocol 4.4.3) and the WI universal
argument system of Theorem 2.4.4 using the FLS’ paradigm (see Figure 4.2).

By the results of the previous sections, it satisfies the completeness, soundness and (standalone)
non-uniform zero-knowledge properties. It is also clearly a constant-round Arthur-Merlin proto-
col. Thus, all that remains is to prove that it remains zero-knowledge under bounded concurrent
composition. This is what we do in this section. Thus, our main theorem is the following:

Theorem 4.4.6. Protocol 4.4.5 is bounded-concurrent zero-knowledge.

76 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
Prover’s auxiliary input: w (a witness that x ∈ L)

w
↓

x
↓

P V

Steps P,V1.x: generation protocol

Step V1.1 (Choose hash-function): Verifier chooses a random
hash function h ←R Hn and sends h to prover.

h ←R Hn←−−−−−−−−−−
Step P1.2 (Commitment to hash of“junk”): Prover computes

z ←R Com(h(0n)) and sends z to verifier. (Short message.)
z = Com(h(0n))−−−−−−−−−−−−−−−→

Step V1.3 (Send long random string): The verifier selects a
string r ←R {0, 1}n4

and sends it.
r ←R {0, 1}n4

←−−−−−−−−−−−−−

The transcript of this stage is τ = (h, z, r).

Steps P,V2.1.x (WI universal argument): Prover proves to
verifier using a WI universal argument that either x ∈ L or
τ ∈ Λ. All prover’s messages here are short.

w
↓

x, τ
↓

WI-UARG
x ∈ L
or τ ∈ Λ

↓

0/1

Protocol 4.4.5. A bounded-concurrent zero-knowledge protocol

4.4.2 Proof of Theorem 4.4.6

Our proof that it is bounded concurrent zero-knowledge will not be as modular as our previous
proofs (see also Remark 4.4.8). That is, we will argue about the entire zero-knowledge argument
as a whole, rather than proving statements about its components.

Message lengths. We will need to consider the lengths of the messages sent by the prover. We
call messages that of length less than n2 bits “short”. We will make essential use of the observation
that all the prover’s messages of Protocol 4.4.5 are “short”. (Note that this is not the case for the
verifier’s messages since the message r of Step V1.3 is of length n4.) In the first stage, we can assume
that the prover’s message in Step PV1.2 (the commitment z = Com(h(0n))) is short, because there
are constructions of commitment schemes such that the commitment to a message of length n is
at most n2. In the second stage we will use the fact that by Theorem 2.4.4 for every ǫ > 0 there
exists a witness-indistinguishable universal argument system with communication complexity mǫ

where m is the instance length. Therefore, we can ensure that all prover’s messages in the second
stage will be of length at most n2. (Even though the length of the statement proven at this stage
is more than n4.)

Overview of the simulator

To prove that Protocol 4.4.5 is bounded-concurrent zero-knowledge, one needs to describe a simula-
tor for the protocol, and then analyze its output. We will start with an overview of the simulator’s
operation, and then provide a detailed description and analysis.

Let V ∗ be a polynomial-sized algorithm describing the strategy of a verifier in an n-times

4.4. ACHIEVING BOUNDED-CONCURRENT ZERO-KNOWLEDGE 77

concurrent execution of Protocol 4.4.5. Recall than an n-time concurrent execution of a protocol
involves an execution of n sessions, which are interleaved in a way chosen by the verifier. We
denote the jth overall prover message (in the entire execution) by mj . Each message mj belongs
to some session i (where 1 ≤ i ≤ n). Because the execution is concurrent it does not necessarily
hold that the messages of a particular session are consecutive, but they are always ordered (e.g.,
the first message of session i always comes before the second message of session i). The view of the
verifier in the execution is the sequence (m1, . . . , mcn), where c is the (constant) number of prover
messages in Protocol 4.4.5. The object of our simulator is to generate a sequence (m1, . . . , mcn)
that is indistinguishable from the view of the verifier in a real execution.

Our simulator will generate this sequence incrementally. That is, we will generate the message
mj only after we generated (m1, . . . , mj−1) and once we generated a message we will not “go back”
and change it. Therefore, it is possible (and useful) to think of our simulator as interacting with
the verifier V ∗. Of course, the difference between this interaction and a real interaction is that our
simulator has the “unfair” advantage of knowing V ∗’s code.

Notation. Throughout this section we will use i to index a session (i.e., 1 ≤ i ≤ n) and j and
k to index an overall prover message (i.e., 1 ≤ j, k ≤ cn). We will use subscript to denote the
overall index of a message (e.g., mj) and use parenthesized superscript to denote the session that
a message belongs to (e.g., r(i)). We will sometimes drop the session number when it is clear from
the context. We will sometime identify a prover or verifier message not by its overall index, but
rather by its session number and step number in Protocol 4.4.5. Thus we will say statements like
“let r = r(i) denote the verifier message of Step V.1.3 of the ith session”.

The naive simulator. The naive first attempt at a simulator would be to try to invoke the
standalone simulator of Protocol 4.4.5 n times independently. Let us see exactly where this naive
attempt fails. Suppose that we have to compute the kth prover message which is Step P1.2 of
some session i. On the previous step (Step V1.1), the verifier sent a hash function h = h(i) and on
Step P1.2 we need to compute a commitment z = z(i) to h(Π) where Π = Π(i) is some program.
If we follow the instruction of the standalone simulator, then we will let Π be simply the program
of the residual verifier V ∗ at this point. Suppose now that the verifier decides to schedule at this
point some other sessions (i.e., different than i). That is, the next messages mk+1, . . . , mj−1 the
verifier receives are part of sessions other than i (where mj is the next prover message after mk that
belongs to the ith session). Suppose that when the verifier sends the string r = r(i) corresponding
to Step V1.3 of the ith session, the verifier computes r as a function of the messages mk+1, . . . , mj−1

it received. Since Π was the residual verifier at point k, it is not the case that Π(z) = r. Thus it
will not hold that (h, z, r) ∈ Λ and we see that simply running the independent simulator will fail.

However, not all is lost: indeed it is the case that r = Π(z, mk+1, . . . , mj−1). That is, r is
V ∗’s response after it receives the messages m1, . . . , mj−1 where m1, . . . , mk−1 were already part of
Π’s description, and mk = z. The crucial observation here is that since all prover’s messages are
“short” (of length at most n2), and since there are at most cn messages (where c is the constant
number of rounds in Protocol 4.4.5) it holds that

|mk+1| + . . . + |mj−1| ≤ O(n3) <
n4

2
=

|r|
2

Yet this means that we have a witness to the fact that the transcript (h, z, r) is in Λ. This is
because, under the definition of Λ in this section, we don’t need to show that Π(z) = r but rather
only to show that Π(z, y) = r for some short string y (i.e. for y such that |y| < |r|/2).

78 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Therefore, we can continue the simulation at this point, and simply use in the session the honest
prover strategy for the WI universal argument, with Π, (mk+1, . . . , mj−1) and the coins used in
computing the commitment z.

Actual description of the simulator

Our simulator’s operation follows the above description. We now turn to formally describing the
simulator algorithm:

Algorithm Sim:

Input:

• x1, . . . , xn: the statement to be proved in the ith session is that xi ∈ L.

• V ∗: description of polynomial-sized verifier coordinating an n-time concurrent execution.

Initialization: The simulator will construct the a table A of length n. Initially the table A will
be empty. We will maintain the invariant that after we simulated Step P1.2 of the ith session and
computed a message z = z(i), A[i] will contain a pair (Π, s) = (Π(i), s(i)) such that z = Com(h(Π; s)
where h = h(i) is the hash function chosen by the verifier in Step V1.1 of the ith session. After the
simulator obtains the message r = r(i) of Step V1.3 from the verifier, it will add to A[i] a string
y = y(i) of length less than n4/2 such that Π(z, y) = r. That is, at this point A[i] contains a
witness (Π, s, y) for the fact that (h, z, r) ∈ Λ where h = h(i),z = z(i) and r = r(i) are respectively
the messages of Steps V1.1, P1.2, and V1.3 of the simulated ith session.

Simulating each step: For j = 1, . . . , cn the simulator computes the jth simulated prover mes-
sage mj in the following way:

Feed the previously computed messages (m1, . . . , mj−1) to V ∗ and obtain the jth verifier message
(i, m) (where i is the session the verifier’s message is intended to). Compute the message mj

according to the current step in the simulated proof of the ith session:

Step P1.2 - Commitment to program If the verifier’s message is for Step V1.1 of the ith ses-
sion, do the following:

• Let h = h(i) denote the verifier’s message.

• Compute the description of the following program Π:

Π(z,y) returns V ∗(m1, . . . , mj−1, z, y).

(Note that the values m1, . . . , mj−1 were previously computed.)

• z = Com(h(Π); s) where s is the randomness for the commitment.

• Store Π and s in A[i].

• The jth message mj will be z

Receiving message of Step V1.3 If the verifier’s message was for Step V1.3 of the ith message
then do as follows:

• Let r = r(i) denote the verifier’s message. Note that r = V ∗(m1, . . . , mj−1).

4.4. ACHIEVING BOUNDED-CONCURRENT ZERO-KNOWLEDGE 79

• Let k denote the overall index of prover’s message in Step P1.2 of the same session. That
is, mk was the message z of the same session.

• Let y = (y1, . . . , yj−k−1) denote the sequence (mk+1, . . . , mj−1). Note that since j ≤ cn
we have that |y| ≤ cn · 10n2 and so |y| < n4/2 (for sufficiently large n).

• Add y to the cell A[i]. Note that A[i] already contains (Π, s) such that z = Com(Π; s)
and Π(z, y) = r.

Steps P2.x - WI UARGS In these steps we simply follow the honest prover strategy of the WI
universal arguments to prove that either xi ∈ L or the transcript τ = τ (i) of the first stage of
the ith session is in Λ. Note that we can use A[i] as a witness that indeed the transcript of
the first stage is in Λ.

Analysis

The theorem we need to prove is the following:

Theorem 4.4.7. For every polynomial sized verifier v∗ and sequence {(xi, yi)}n
i=1 such that yi is

a witness that xi ∈ L, the following two random variables are computationally indistinguishable:

• The view of V ∗ in an n-times concurrent execution of Protocol 4.4.5 on inputs {(xi, yi)}n
i=1.

We denote this random variable by X.

• The output of Algorithm Sim (of Section 4.4.2) on input V ∗ and (x1, . . . , xn). We denote
this random variable by Y .

Proof. The proof is actually not complicated. We will use the hybrid argument to show that X and
Y are computationally indistinguishable. Let Sim′ be an algorithm that on input V ∗, {(xi, yi)}n

i=1

follows the same strategy as the simulator Sim on input V ∗ and (x1, . . . , xn), except that when
simulating the steps of the WI universal argument (Steps P2.x) in the ith session it will provide
yi as input the honest prover algorithm. Let Z denote the output of Sim′ on input V ∗ and
V ∗, {(xi, yi)}n

i=1. We will prove the theorem by showing that Z is computationally indistinguishable
from both X and Y . That is, we make the following two claims:

1. Z is computationally indistinguishable from Y :

Note that the only difference between Z and Y is the witness that is used as input to the WI
universal argument prover. Note also that the randomness used in running the WI prover is
never referred to or used again in any other part of the simulation. Thus, this claim basically
follows from the fact that WI is closed under concurrent composition. Still, as the protocol
contains also messages that do not belong to the WI universal arguments, we prove the claim
below.

Let us order the sessions according to the scheduling of the first step in their second stage
(the WI universal argument stage). Let Zi denote a distribution where in the first i sessions
we use follow the strategy for Sim and in the last n − i sessions we follow the strategy for
Sim′. Note that Z0 = Z and Zn = Y . It will be sufficient to prove that Zi is computationally
indistinguishable from Zi+1 for all 0 ≤ i < n.

Indeed, suppose that we have a distinguisher D that distinguishes between Zi and Zi+1 with
probability ǫ. Let us fix a choice of coins used in all sessions before the i + 1st such that D
distinguishes between Zi and Zi+1 conditioned on this choice with probability ǫ. Note that

80 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

the statement to be proved is now identical in Y and Z. Since the execution of all sessions
other than the ith is the same in Y and Z, and since the strategy for this execution is a
function of the inputs, the coins, and possibly the public messages of the ith session, the
distinguisher D can be turned into a distinguisher for the WI universal argument system.

2. Z is computationally indistinguishable from X:

The only difference between Z and X is that the commitment in Step P1.2 is for h(Π) instead
of h(0n). Note also that in both Z and X, the randomness used for this commitment is never
referred to or used again in any other part of the simulation (because the WI stage uses yi

as a witness). Again, we prove the claim below, even though it is basically implied by the
multiple-sample security of the commitment scheme.

We now order the sessions according to the order of the message in Step P1.2. We define
Xi to be a distribution where in the first i sessions we use Com(h(0n)) and in the last n − i
sessions we follow the strategy of Sim (i.e., use Com(h(Π))). Note that X0 = X and Xn = Z.

Suppose that there exists a distinguisher D that distinguishes between Xi and Xi+1 with
probability ǫ. Suppose we fix a choice of coins for all sessions except the ith such that
D distinguishes between Xi and Xi+1 conditioned on this choice with probability ǫ. The
distinguisher D can be converted to a distinguisher between a commitment to h(Π) and a
commitment to h(0n) by hardwiring all messages before the message of Step P1.2 of the ith

session, and since the later messages are a function of the input and the previous messages.

We now mention some remarks regarding the proof and the protocol.

Remark 4.4.8. It is possible to define a “bounded-concurrent generation protocol” and to prove
that Protocol 4.4.3 satisfies this definition. This, combined with the fact that WI is closed under
concurrent composition, may be used to give more a modular proof of Theorem 4.4.6.

Remark 4.4.9. As observed by Yehuda Lindell, the proof of Theorem 4.4.6 actually yields a
stronger statement than the theorem. For the purposes of the proof it does not matter if the
message history consists of messages from an execution of our protocol, or from other executions
of arbitrary protocol, as long as the history is short enough. Therefore, our protocol does not only
compose concurrently with itself, but also with other protocols, as long as we have a bound on the
total communication complexity of the other protocols. This property of our protocol was used in
a recent work by Lindell [Lin03a].

Also note that for the proof it is not necessary for the messages themselves to be short. Rather,
it is enough that they have a short description. To be more specific, for the proof to hold it is
not necessary to have a the entire message history h be of length shorter than n4/2. Rather, it
is sufficient that there will be a polynomial-time computable function F : {0, 1}n4/2 → {0, 1}∗ to
which the simulator can commit in advance such that there will exist an input x that satisfies
h = F (x). This input x will be the short explanation for h.

4.5 Obtaining a Zero-Knowledge Protocol Under Standard As-

sumptions.

In the previous sections, we have shown how to obtain non-black-box zero-knowledge arguments
under the assumption of existence of hash functions that are collision-resistent against circuits of

4.5. OBTAINING A ZERO-KNOWLEDGE PROTOCOL UNDER STANDARD ASSUMPTIONS.81

Public input: 1n: security parameter
1n

↓

P V

Step V1 (Choose random-access hash function): Verifier
chooses a random index α ←R {0, 1}n for a random-access
hash function ensemble {hα, certα}α∈{0,1}∗ .

α ←R {0, 1}n

←−−−−−−−−−−−−−

Step P2 (Commitment to hash of“junk”): Prover computes
z ←R Com(hα(0n)) and sends z to verifier.

z = Com(hα(0n)−−−−−−−−−−−−−−−→
Step V3 (Send random string): The verifier selects a string

r ←R {0, 1}n and sends it.
r ←R {0, 1}n

←−−−−−−−−−−−−
The transcript of the protocol is the pair τ = (α, z, r).

Protocol 4.5.1. An alternative non-uniform verifier generation protocol

some “nice” super-polynomial bound (e.g., nlog n). In this section, we show how we can relax the
assumption and obtain the same results under the more standard assumption that there exist hash
functions that are collision-resistent against polynomial-sized circuits. This section is based on the
paper [BG01], which is joint work with Oded Goldreich.

Error-correcting codes. We use ECC to denote an error correcting code. That is, ECC is a
polynomial-time computable function that satisfies the following:

Polynomial expansion: There exists some function ℓ(·) such that l(n) < nc for some constant
c > 0, and for every string x ∈ {0, 1}∗, |ECC(x)| = ℓ(|x|).

Constant distance: There exists some constant δ > 0 such that for every x 6= x′ ∈ {0, 1}n,
|{i | ECC(x)i 6= ECC(x′)i}| ≥ δ · ℓ(n).

We note that we only need error correcting codes with polynomial expansion, even though there
are known codes with linear expansion.12

Changing the definition of computational soundness. We make the following change in
Definition 4.3.1. We relax the computational soundness requirement as follows: the original re-
quirement required that the probability that a T (n)O(1)-sized cheating prover outputs a witness is
negligible. The relaxation we make is that we only require the soundness condition to hold against
polynomial-sized provers. However, we require that such provers cannot even output an implicit
representation of the witness (i.e., a circuit C such that [C] is a witness). This is still a relaxation
because in T (n)O(1) time it is possible to convert an implicit representation to an explicit repre-
sentation. Because of the weak proof of knowledge condition of the universal arguments system,
Theorem 4.3.2 still holds even if we use a generation protocol with this relaxed definition.

Our generation protocol. We now present a generation protocol that satisfies this relaxed
definition – Protocol 4.5.1. It is very similar to Protocol 4.5.1, with a small difference.

12There are rather simple constructions for binary codes with polynomial expansion. For example, such codes can
be obtained by concatenating the Reed-Solomon code with the Hadamard code (with the Hadamard code applied
individually to each symbol of the Reed-Solomon code).

82 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

Definition of the language Λ. The language Λ is a slight modification over the language Λ
defined in Section 4.3.3. We say that τ = (α, z, r) is in Λ if there exists a circuit Π of size at most
T = |r|log log |r|/5c such that z = Com(hα(ECC(Π))) and Π(z) = r (recall that |ECC(Π)| ≤ |Π|c). A
witness that (hα, z, r) ∈ Λ is a triple (F, y, s) with the following properties:

• z = Com(y; s).

• F is a certified version of ECC(Π) with respect to the hash value y. This means, that if
we let Π̃ = ECC(Π) and m = |Π̃|, then F is a function on [m] such that for every i ∈ [m],
F (i) = (Π̃i, σ), where σ is a certificate for Π̃i w.r.t. the random-access hashing scheme. More
formally, F passes verification if for every i ∈ [m], Vα,y(i, b, σ) = 1 where (b, σ) = F (i) and V
is the verification algorithm of the random-access hashing scheme.

• Using the decoding algorithm for the error-correcting code it is possible to recover Π =
ECC−1(F). To be a valid witness, it must hold that Π(z) = r

It can be seen that this is indeed a valid witness relation for the language Λ and that Λ ∈
Ntime(nlog log n). Thus, all that is left to prove is the following:

Claim 4.5.2. Protocol 4.5.1 (w.r.t. the language Λ defined above) satisfies the relaxed definition
of a generation protocol.

Proof. Proving the simulation condition is almost identical to the case of Protocol 4.3.5, and so
we will skip this part and prove only the computational soundness property. Suppose, towards a
contradiction, that P ∗ is a cheating prover that contradicts our relaxed soundness condition. In
the same way as the computational soundness proof of Section 4.3.4, we can use P ∗ to obtain in
polynomial-time two certified encoding F and F ′ of two different programs Π, Π′. Now, if we choose
i at random from [m], then with constant probability ECC(Π)i 6= ECC(Π′)i. This means that with
constant probability F (i) and F ′(i) yield two contradicting certificates for the same hash value,
contradicting the security of the random-access hash value.

Is is straightforward to generalize this protocol to obtain a concurrent zero-knowledge protocol
under standard assumptions. Indeed, the proof of the zero-knowledge property is virtually un-
changed, while the proof of the soundness condition follows the proof of Claim 4.5.2. Note also
that, as noted in Remark 4.3.3, the zero-knowledge protocol we obtain is not only sound but also
a weak proof of knowledge (in the sense that a knowledge extractor can obtain a witness with
probability that is polynomially related to the acceptance probability).

4.6 Conclusions and future directions

We have shown that (under standard complexity assumptions) there exists a protocol that can
be shown to be zero-knowledge using a non-black-box simulator, but cannot be shown to be zero-
knowledge using a black-box simulator. Moreover, we have shown that this protocol satisfies some
desirable properties that are impossible to obtain when restricted to black-box simulation.

4.6.1 Reverse-engineering

Arguably, our simulator does not “reverse-engineer” the verifier’s code, although it applies some
non-trivial transformations (such as a PCP reduction and a Cook-Levin reduction) to this code.

4.6. CONCLUSIONS AND FUTURE DIRECTIONS 83

Yet, we see that even without doing “true” reverse-engineering, one can achieve results that are
impossible in a black-box model. This is in a similar vein to Chapter 3, where the impossibility
of code obfuscation is shown without doing “true” reverse-engineering. One may hope to be able
to define a model for an “enhanced black-box” simulator that would be strong enough to allow all
the techniques we used, but weak enough to prove impossibility results that explain difficulties in
constructing certain objects. We are not optimistic about such attempts.

4.6.2 Black-box impossibility results and concurrent zero-knowledge

There are several negative results regarding the power of black-box zero-knowledge arguments. The
existence of non-black-box simulators suggests a re-examination of whether these negative results
holds also for general (non-black-box) zero-knowledge. Indeed, we have already shown in this work
that some of these results do not hold in the general setting. The case of concurrent composition
is an important example. The results of [CKPR01] imply that (for a constant-round protocol) it is
impossible to achieve even bounded concurrency using black-box simulation. We have shown that
this result does not extend to the non-black-box settings. However, it is still unknown whether
one can obtain a constant-round protocol that is (fully) concurrent zero-knowledge. This is an
important open question.

4.6.3 Arguments vs. proofs

Our protocol is an argument system for NP and not a proof system because it is only computation-
ally sound. However, we do not know whether there exists zero-knowledge proof for NP satisfying
Properties 1-5 of Section 4.1.1. In particular, it is not known whether there exists a constant-round
Arthur-Merlin (non-black-box) zero-knowledge proof system for NP.

4.6.4 Fiat-Shamir heuristic

The fact that we have shown a constant-round Arthur-Merlin zero-knowledge protocol, can be
viewed as some negative evidence on the soundness of the Fiat-Shamir heuristic [FS86]. This heuris-
tic converts a constant-round Arthur-Merlin identification scheme into a non-interactive signature
scheme. The prover/sender in the non-interactive scheme uses the same strategy as in the interac-
tive scheme, but the verifier/receiver’s messages are computed by applying a public hash function
to the message history, and so can be computed by the prover without any need for interaction.13

It is known that the resulting signature scheme will be totally insecure if the original protocol is
zero-knowledge [DNRS99]. Thus, the current work implies that there exist some constant-round
Arthur-Merlin protocols on which the Fiat-Shamir heuristic cannot be applied. In a recent work,
Goldwasser and Tauman [GT03] used our work to show a counter example for the Fiat-Shamir
heuristic on 3 rounds.

An open question (related to the previous section) is whether or not the Fiat-Shamir heuristic
is secure when applied to interactive proofs instead of arguments. In particular, an affirmative
answer would imply that there does not exist a constant-round Arthur-Merlin zero-knowledge proof
system for NP.

13This heuristic is usually applied to 3 round protocols, but it can be applied to any constant-round Arthur-Merlin
protocol.

84 CHAPTER 4. NON-BLACK-BOX ZERO KNOWLEDGE

4.6.5 Number of rounds

Goldreich and Krawczyck [GK90] have shown that no 3 round protocol can be black-box zero-
knowledge. We have presented several non-black-box zero-knowledge protocols, but all of them
have more than 3 rounds. It is an open question whether there exists a 3-round zero-knowledge
argument for a language outside BPP.

One bottleneck in reducing the number of rounds in our protocol is our use of a universal
argument scheme, for which the best known construction utilizes 4 rounds. Thus, a related open
question is whether or not there exist a non-interactive (or even two-round) universal argument
scheme. Micali [Mic94] presents a candidate for such a scheme.

4.6.6 Strict polynomial-time

We have shown the first constant-round zero-knowledge protocol with a strict polynomial-time
simulator, instead of an expected polynomial-time simulator. Another context in which expected
polynomial-time arises is in constant-round zero-knowledge proofs of knowledge (e.g., [Fei90, Chap. 3],
[Gol01b, Sec. 4.7.6.3]). In Chapter 5, we construct, using the protocol presented here, a constant-
round zero-knowledge argument of knowledge with a strict polynomial-time extractor. We also
show that non-black-box techniques are essential to obtain either a strict polynomial-time simula-
tor or a strict polynomial-time knowledge-extractor, in a constant-round protocol.

Chapter 5

Applications of Non-Black-Box Zero
Knowledge

Summary: We show three applications for the non-black-box zero-knowledge argument
of Chapter 4. We prove that all these applications can not be obtained using black-box
techniques.

The first application is a construction of a resettably-sound zero-knowledge argument.
Loosely speaking, an argument system is resettably-sound if it remains sound even when
the prover has the power of “rewinding” the verifier throughout their interaction. For
example, this can be the case if the verifier is implemented in a “smart card” and the
prover has the power to reset the card to its original factory settings. We also observe
there does not exist a resettably-sound argument system for a non-trivial language that
is zero-knowledge via a black-box simulator.

The second application is a construction of a resettable zero-knowledge argument of
knowledge. A proof system is said to be resettable zero-knowledge if it remains zero
knowledge even when the verifier has the power of “rewinding” the prover. It was
observed previously that a resettable zero-knowledge argument of knowledge for a non-
trivial can not have a black-box knowledge extractor.

The third application is a construction of a constant-round zero-knowledge argument
for NP with a strict probabilistic-polynomial-time knowledge extractor. All previous
such systems only possessed extractors that ran in expected probabilistic-polynomial-
time. Again, we show that no such system can have a black-box knowledge extractor.
In addition, we show that a constant-round zero-knowledge argument (for a non-trivial
language) can not have a strict polynomial-time simulator.

5.1 Introduction

In this chapter, we apply the non-black-box zero knowledge argument of the previous chapter to
obtain three new results. All these results are proven to be impossible to obtain using black-box
techniques. Thus, the results of this chapter serve as an additional demonstration of the usefulness
and importance of developing non-black-box techniques.

This chapter is based on the papers [BGGL01] and [BL02] which are joint works with Oded Goldreich, Shafi
Goldwasser, and Yehuda Lindell.

85

86 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

5.1.1 The Resettable Model

Two of the applications are for the resettable attack model introduced by Canetti, Goldreich,
Goldwasser and Micali [CGGM00]. Recall that the strategy of a party P in an interactive protocol
is specified by P ’s next message function. This is a function that, given the protocol’s inputs,
random tape, and list of messages that P received in the protocol up to a certain point, outputs
the next message that P is going to send. When P participates in a single interaction with some
party A, this means that A has very limited access to P ’s next-message function. This is because A
can only obtain the value of the next message function on the messages that appeared in this single
interaction. In particular, if A obtains the evaluation P ’s next-message function on the message
list 〈m1, m2〉, then it will not be able to obtain this evaluation also on a message list of the form
〈m1, m

′
2〉 where m2 6= m′

2.

In a resettable attack against a party P in an interactive protocol, we allow the adversary to
have the power to query the next-message function of some party P on inputs of its choice. That
is, we assume that the inputs to the protocol are fixed and that P ’s random tape is fixed, and allow
the adversary to obtain P ’s next message function evaluated on any message list of her choice. This
is a very strong form of attack and in particular it is stronger than previously considered attack
models such as sequential, parallel, and concurrent composition.1 The name “resettable” comes
from the fact that after interacting with a party and sending it some messages 〈m1, m2, . . . , mi〉
the adversary has the power to “reset” the verifier to its initial condition and send the verifier a
different list of messages.

The resettable model has both practical and theoretical motivations. On the practical side,
this models a situation where a cryptographic protocol is implemented on a device such as a smart
card, that doesn’t have an internal source of fresh randomness. In such a setting, it is possible that
when attacking the device an adversary will be able to reset the card back to its initial factory
settings many times. On the theoretical side, it is very interesting whether one can obtain security
against such strong attacks, especially since many of the known techniques for obtaining secure
protocols (and in particular for obtaining zero knowledge proof systems) completely break down
against a resettable attack. For more discussion on the resettable model, see the papers [CGGM00]
and [BGGL01].

Ressetably-sound zero-knowledge. Our first result in this model is a construction of a zero-
knowledge argument system for NP that is resettably sound. This means that this argument
system preserves soundness even when a cheating prover can launch a “reset attack” against the
honest verifier. We note that all previous constructions of zero knowledge systems were insecure
against such an attack.2 Indeed, intuitively, a black-box simulator is exactly an algorithm that
uses access to the verifier’s next-message function in order to prove possibly false statements to this
verifier. (We will later see how to turn this intuition into a formal proof that there does not exist a
resettably-sound zero-knowledge system with a black-box simulator for a non-trivial language.) Our
proof is obtained by observing that any constant-round Arthur-Merlin proof or argument system,
such as the zero-knowledge system constructed in the previous chapter, can be converted into a

1Loosely speaking, the difference between the resettable attack and all these attack modes (i.e., sequential ,
parallel, and concurrent composition) is that those attacks the adversary cannot query the next message function on
incompatible transcripts (e.g., 〈m1, m2〉 and 〈m1, m

′
2〉 where m2 6= m′

2) and the same random tape. Rather, in those
attack models the honest party can use fresh random coins for each individual session, thus making it harder for the
adversary to use what she learns in one session in order to attack a different session.

2We consider in this chapter only zero knowledge systems in the standard/plain model, without any setup as-
sumptions such as existence of a third trusted party or a shared trusted reference string.

5.1. INTRODUCTION 87

resettably-sound argument system in a simple way (by having the verifier use a pseudorandom
function). This result, along with the observations above, can be seen as an alternative proof to
the result of Goldreich and Krawczyk [GK90] that there does not exist a constant-round public-coin
zero-knowledge argument or proof system for a non-trivial language that has a black-box simulator.

Ressetable zero-knowledge proof of knowledge. Our second result is a construction of an
argument of knowledge for NP that is resettable zero-knowledge. That is, the argument system
preserves the zero-knowledge property even when a cheating verifier can launch a “reset attack”
against the honest prover. Our proof of knowledge has a non-black-box knowledge extractor. That
is, the knowledge extractor uses the code of a cheating prover in order to extract the witness.
Indeed, this is inherent as Canetti et al.[CGGM00] already observed that such a system cannot have
a black-box knowledge extractor. This was considered to be a pity, since a natural application for the
smart card setting are identification protocols, which often use zero-knowledge proofs of knowledge
(e.g., the Fiat-Shamir paradigm [FS86]). Thus our construction enables a smart card to prove
its identity using a proof of knowledge system that will remain zero-knowledge even under a reset
attack. This construction combines ideas from [CGGM00] with the resettably-sound zero-knowledge
system mentioned above.

5.1.2 Strict Polynomial-Time Knowledge Extraction

One of the properties of the zero-knowledge protocol of the previous chapter was that it is the first
constant-round zero-knowledge protocol to have a strict probabilistic-polynomial-time simulator
(i.e., the running time of its simulator is bounded by some polynomial in the security parameter). In
contrast, previous constant-round zero-knowledge systems only had simulators that ran in expected
polynomial-time. This means that if we consider the running time of the simulator as a random
variable (on the space of the simulator’s random tape) then the expectation of this random variable
is bounded by some polynomial in the security parameter. However, it may be the case that with
some probability the simulator runs in a super-polynomial number of steps.

Allowing the simulator to run in expected polynomial-time is somewhat undesirable for several
reasons, both “philosophical” and technical. The philosophical reasons are that it is not clear
that expected polynomial-time can be considered as an efficient computation, and also that it
seems contrary to the spirit of the zero-knowledge definition to allow the simulator to run in
expected polynomial-time, where the verifier must run in strict polynomial-time. The technical
problems arise from the fact that is less understood than the more standard strict polynomial-time,
which means that rigorous proofs of security of protocols that use zero-knowledge arguments with
expected polynomial-time simulators as components, tend to be more complicated (c.f., [Lin01]).3

In particular, expected polynomial-time simulation is not closed under composition, which can yield
to problems when one needs to design a simulator for a large protocol that uses a zero-knowledge
system as a sub-protocol. Also, the security reduction that is obtained by such protocols may be
weaker than is sometimes desired. For example, assume that a protocol’s security relies on a hard
problem that would take 100 years to solve, using the best known algorithm. Then, we would like
to prove that the probability that an adversary can successfully break the protocol is negligible,
unless it runs for 100 years. However, when expected polynomial-time simulation is used, we cannot

3Because of these technical problems with expected polynomial-time, Levin ([Lev86], see also [Gol97]) suggested
a different definition for expected polynomial-time that is more robust in some sense. However, even under Levin’s
definition, expected polynomial-time still has the mentioned drawbacks, and it still unclear whether it should be
considered as efficient computation.

88 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

rule out an adversary who runs for 1 year and succeeds with probability 1/100. See [BL02] for a
more thorough discussion on this matter.

Given the above discussion, a natural question (c.f., [Fei90, Sec. 3.2], [Gol01b, Sec. 4.12.3]) was
whether one can obtain a constant-round zero-knowledge protocol with a strict polynomial-time
simulator, and indeed this question is settled by the protocol of the previous chapter. However,
there is still an analogous question for the case of proofs of knowledge. Recall that In a proof of
knowledge, for every cheating prover P ∗ that manages to convince the honest verifier that some
statement x is in some NP-language L with probability p, there exists a knowledge extractor that
given access to this cheating prover P ∗, will output a witness to the fact that x ∈ L with probability
p. In previous constructions of constant-round zero-knowledge proofs of knowledge, this knowledge
extractor ran in expected polynomial-time.4 Thus, the analogous question is whether there exists a
constant-round zero-knowledge proof or argument system with a strict polynomial-time knowledge
extractor.

In this chapter we solve this question in the affirmative. That is, we construct (using the
protocol of the previous chapter) a constant-round zero-knowledge argument of knowledge for NP
with a strict polynomial-time knowledge extractor. This knowledge extractor is non-black-box in
the sense described above (i.e., it uses the code of the cheating prover to extract a witness). Indeed,
we show that it is impossible to obtain both strict polynomial-time simulation and strict-polynomial
extraction using black-box techniques.

5.1.3 Organization

Section 5.2 contains our construction for a resettably-sound zero-knowledge argument. Section 5.3
contains our construction for a resettable zero-knowledge argument of knowledge. This construction
uses the construction of Section 5.2 and so Section 5.3 should be read after Section 5.2. Section 5.4
contains our construction for a zero-knowledge argument of knowledge with a strict polynomial-
time knowledge extractor, along with the proof that strict polynomial-time knowledge extraction
or simulation require non-black-box techniques. This section does not use results from the previous
sections and so may be read independently of Sections 5.2 and 5.3.

Note. Throughout this chapter we focus on presenting these three applications, along with proof
sketches. For more discussion, related results, and the full proofs, see the papers [BGGL01] and
[BL02].

5.2 A Resettably-Sound Zero-Knowledge Argument

As mentioned above, a resettably-sound argument system is a system that preserves its soundness
even when the prover has black-box access to the verifier’s next-message functionality. The formal
definition is a little more complicated because we strengthen the basic notion by allowing the
adversary to choose several different statements on the fly.

4The way these previous knowledge extractors operated was roughly as follows: Let p be the probability that the
cheating prover convinces the honest verifier that x ∈ L, then with probability approximately 1 − p the extractor
does almost nothing, and with probability p, the extractor runs for time 1

p
q(n) (where q(·) is some polynomial) and

outputs a witness. Note that the expected running time of such an extractor is less than q(n). However 1/p may
much larger than q(n), and in this case if we halt this extractor after running q(n) steps (or even 100q(n) steps), it
will never output a witness (and thus it is not a strict polynomial-time extractor).

5.2. A RESETTABLY-SOUND ZERO-KNOWLEDGE ARGUMENT 89

Definition 5.2.1. Let (P, V) be a argument system for some language L, we say that (P, V) is
resettably-sound if for every polynomial t(·) and every polynomial-sized oracle machine A,

Pr[AV (·;r)(1n) = (x, τ) s.t. x 6∈ L and AcceptV (x, τ ; r) = 1] < neg(n)

Where the oracle V (·; r) denotes the next message function of the verifier V with security
parameter n, and a fixed random tape r (chosen at random from the set of strings of appropriate
length). We say that AcceptV (x, τ) = 1 if τ is a transcript that the verifier V accepts as a proof
that x ∈ L when using r for a random tape.

We note that a natural and seemingly stronger definition will allow the adversary to interact
with several copies of the verifier’s next message function, where each copy uses an independent
random tape. However, it can be shown that this seemingly stronger definition is in fact equivalent
to Definition 5.2.1.

It is not hard to see that the standard examples of zero-knowledge systems, such as the proof
system for 3-colorability of [GMW86], or the proof system for quadratic residuosity of [GMR85],
are not resettably-sound. In fact, the standard proofs that these systems are zero-knowledge also
imply the existence of a polynomial-time algorithm that can completely compromise the soundness
of these systems under a reset attack on the verifier. Indeed, this is not a coincidence, as every
black-box zero-knowledge system for a non-trivial language can not be resettably-sound. That is,
we have the following theorem:

Theorem 5.2.2. Suppose that (P, V) is a resettably-sound zero-knowledge argument system for a
language L that has a black-box simulator. Then L ∈ BPP.

Proof Sketch: Let (P, V) be an argument system for L satisfying the conditions of the theorem,
and let S be the black-box simulator for honest verifier of this system. For every x ∈ L, given
black-box access to the verifier’s next-message function, the simulator should output a transcript
that is indistinguishable from a transcript of an interaction with the honest prover. In particular,
this transcript will be an accepting transcript (i.e., a transcript that the honest verifier accepts
as a proof that x ∈ L). However, if x 6∈ L, then the resettably-sound condition implies that the
output of the simulator will not be an accepting transcript. Therefore, one can decide whether or
not x ∈ L by running the simulator and seeing whether or not it outputs an accepting transcript
for x.

Our main theorem of this section is the following:

Theorem 5.2.3. Suppose that there exist collision-resistent hash functions. Then, there exists
a resettably-sound zero-knowledge argument for NP. Furthermore, this argument system has a
constant number of rounds.

We prove Theorem 5.2.3 by showing a simple way to convert any constant-round public-coins ar-
gument system into a resettably-sound system. If the original argument system was zero-knowledge
then so will be transformed system. We thus obtain Theorem 5.2.3 by combining this transforma-
tion with the constant-round public-coins zero-knowledge argument system of the previous chapter.
We see that what we need is to prove the following lemma:

Lemma 5.2.4. Let (P, V) be a constant-round public-coins argument system for a language L that
satisfies a weak proof of knowledge property. Then, there is a proof system (P, V ′) for L that is
resettably-sound.

90 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

Notes: (1) Because only the verifier algorithm is changed in the new proof system, if the original
proof system was zero-knowledge then so will be the transformed system (2) The weak proof of
knowledge property is that if a prover P ∗ convinces the verifier to accept that a string x is in L with
some non-negligible probability ǫ, then, given access to P ∗, the knowledge extractor will obtain a
witness to x with non-negligible probability ǫ′. We call it a weak proof of knowledge property
because we don’t require ǫ′ to be negligibly close to ǫ. Note that the system of the previous chapter
does indeed satisfy this property (c.f., Remark 4.3.3).

Proof Sketch: Instead of the original public-coin verifier V , the transformed verifier V ′ will use a
pseudorandom function to compute its messages. That is, the random tape of V ′ will consist of a
seed s for a pseudorandom function family {fs}s∈{0,1}∗ , while the next-message function of V ′ will
simply be the function fs. That is, on input x, after receiving messages m1, . . . , mi, the verifier V ′

will respond with fs(x, m1, . . . , mi).

Now, in a reset attack of an adversary A against the verifier V ′, the oracle that the adversary
gets access to is indistinguishable from a random function. We will use this to convert A into a
cheating prover P ∗ for the original proof system (P, V) in the following way: Suppose that there
are c verifier messages in the original proof system, and that the adversary A makes q = q(n)
queries to its oracle. We assume w.l.o.g that A never repeats the same query twice, also that if
x, τ = 〈m1, . . . , mc〉 is the transcript that A outputs at the end, then A queried its oracle all the
prefixes x, 〈m1, . . . , mi〉 of this transcript in the course of the execution. (This is without loss of
generality since A can be modified to behave in this order without affecting its output distribution
and without incurring too much of a complexity overhead.)

The prover P ∗ for the system (P, V) will operate as follows: it will guess l1, . . . , lc ∈ [q]. Then
it will simulate the execution A in the following way: it will answer all of A’s queries with random
strings, except for queries number l1, . . . , lc. The prover P ∗ will forward these queries to the verifier
V , and return to A the response of V . We claim that if A had probability ǫ of success in its reset
attack, then P ∗ will have probability ǫ

qc − neg(n) (this is the probability that P ∗ “guessed” the
correct l1, . . . , lc – note that this is polynomially related to ǫ since c is constant) of cheating the
honest verifier V to accept x even though x 6∈ L.

This claim can be shown by first observing that if the verifier V ′ uses a truly random function
then P ∗’s simulation of A’s execution is perfect, and hence in this case P ∗ will guess correctly the
queries which correspond to A’s final output transcript with probability at least 1

qc . We then note
that if P ∗’s probability of convincing the verifier V is non-negligibly smaller than ǫ

qc then we can
turn it into a distinguisher for the pseudorandom function ensemble. To make this distinguisher
efficient one needs to use the knowledge extractor of the system (P, V) and this is where the weak
proof of knowledge property is used.

5.3 A Resettable Zero-Knowledge Argument of Knowledge

In this section we use the resettably-sound argument of Section 5.2 to construct a resettable zero-
knowledge argument of knowledge for NP. The resettable zero-knowledge property guarantees
that it is infeasible for an adversary to learn anything new about the statement proven even when
given black-box access to the prover’s next-message function. The argument of knowledge property
guarantees that if one is given the actual code of some prover’s next-message function, then it is in
fact possible to learn “everything” about the statement proven. That is, one can use this code to
efficiently extract a witness for the statement proven.

5.3. A RESETTABLE ZERO-KNOWLEDGE ARGUMENT OF KNOWLEDGE 91

We start with the formal definition of resettable zero-knowledge.5

Definition 5.3.1. Let (P, V) be an argument system for some NP language L with witness relation
RL. We say that P is resettable zero-knowledge if there exists a probabilistic polynomial-time Turing
machine S such that for every polynomial-sized oracle machine A and every (x, y) ∈ RL (where
x ∈ {0, 1}n) the following two random variables are computationally indistinguishable:

• AP (·;x,y,r)(1n).
P (·; x, y, r) denotes oracle access to the next-message function of P with fixed public input
x, auxiliary input y and random tape r (where r is chosen uniformly among all strings of the
appropriate length)

and

• S(A, x)

We note that it is impossible to construct a non-trivial resettable zero-knowledge argument of
knowledge with a black-box knowledge extractor.

Proposition 5.3.2. Let (P, V) be a resettable zero-knowledge argument for a language L that is
an argument of knowledge with a black-box knowledge extractor. Then L ∈ BPP.

Proof Sketch: Let E be the black-box knowledge extractor for (P, V). By the proof of knowledge
property, for every x ∈ L, if we execute E(x) with oracle access to the honest prover P (·; x, r)
(where r is a random tape for P) then E will output a witness for x with probability very close to
1. On the other hand, such an execution is exactly a “reset attack” on P , and therefore if we run
the simulator S on the description of E and x, we must still obtain a witness with probability close
to 1. We see that to decide whether x ∈ L or not, we can run S(E, x): if x ∈ L then we’ll obtain a
witness for x with probability close to 1. If x 6∈ L then we’ll certainly never obtain a witness for x
(since no such witness exists).

Our main theorem of this section is the following:

Theorem 5.3.3. Suppose that there exist one-way-permutations secure and collision-resistent hash
functions against 2nǫ

-sized circuits . Then, there exists a resettable zero-knowledge argument of
knowledge for every language in NP.

We note that the sub-exponential hardness assumption is not essential, and may be relaxed at
the expense of a more complicated proof. See the paper [BGGL01] for more details.

5.3.1 Proof of Theorem 5.3.3

To prove Theorem 5.3.3 we use the approach of [CGGM00], which showed a way to transform
(certain types of) concurrent zero-knowledge protocols into resettable zero-knowledge protocols.
The transformation of [CGGM00] is not known to yield a proof/argument of knowledge, even if the
original protocol had such a property. However, using the resettably-sound argument of Section 5.2,

5We note that our definition is slightly weaker (and simpler) than the definition of [CGGM00] since we allow the
adversary to attack only one copy of the prover’s next-message function, whereas [CGGM00] allowed the adversary
access to several copies of the prover’s next-message function (each with independent random tapes). Unlike in
the case of soundness, in the case of zero-knowledge these two variants are not equivalent. However, our weaker
and simpler definition does seem to capture the essence of resettable zero-knowledge and indeed all of our results
generalize easily to the stronger definition. See [BGGL01] for more details.

92 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
Prover’s auxiliary input: w (a witness that x ∈ L)

w
↓

x
↓

P V

Step V0 (Verifier’s commitment): Verifier sends commitments
(using COM) to x1, . . . , xk ←R {0, 1}n, where k = k(n) is some
unspecified function of n.

COM(x1) · · ·COM(xk)←−−−−−−−−−−−−−−−−−−−−

RK iterations:
The following is performed k times for i = 1, . . . , k:

Step Pi.1 (Prover’s commitment): Prover selects x̃i ←R {0, 1}n

and sends com(x̃i) to the verifier.
com(x̃i)−−−−−−−−→

Step Vi.2 (Verifier’s decommitment): Verifier sends to prover
the string xi along with the decommitment information for xi

xi, d-info(xi)←−−−−−−−−−−−−

Steps P,Vk + 1 . . . k + 3 (WI proof): Prover proves to verifier us-
ing the parallel-Hamiltonicity WI system that either x ∈ L or
that for some i ∈ [k], one the prover’s committed values x̃i was
equal to xi. The prover uses com as the commitment scheme
for the Hamiltonicity proof system.

w
↓

x, τ
↓

WIP
x ∈ L
or ∃ix̃i = xi

↓

0/1

Protocol 5.3.5. A concurrent zero-knowledge protocol

we will show a variant of this transformation that does preserve the proof of knowledge property.
To keep the exposition simple, we will present a particular concurrent zero-knowledge argument
and show how to transform this argument into a resettable zero-knowledge argument of knowledge
(rather than showing a generic transformation, as is done in [CGGM00] and [BGGL01]).

The Concurrent Zero-Knowledge Protocol

We let com and COM to be two non-interactive perfectly binding and computationally hiding
commitment schemes such that com can be completely broken in time 2nǫ/2

(where n is the security
parameter and ǫ > 0 is some constant) but COM is secure even against 2nǫ

-sized circuits. Note
that under our assumptions, such commitment schemes can be constructed using the scheme of
[Blu82] with appropriately scaled security parameters. Our starting point is Protocol 5.3.5, which
is a concurrent zero-knowledge argument for a language L ∈ NP.

Protocol 5.3.5 is a variant of the concurrent zero-knowledge protocol of Richardson and Kilian
[RK99], whose analysis was improved by Kilian and Petrank [KP00] and by Prabhakaran, Rosen
and Sahai [PRS92]. We will use the following result of [PRS92]:

Theorem 5.3.4 ([PRS92]). For every polynomial-time computable function k such that k(n) =
ω(log n) it holds that Protocol 5.3.5 which uses k iterations is a concurrent zero-knowledge argument.

We remark that Protocol 5.3.5 is an argument of knowledge. This can be shown using the fact
that the parallel-Hamiltonicity proof system is a proof of knowledge and using the fact that for

5.3. A RESETTABLE ZERO-KNOWLEDGE ARGUMENT OF KNOWLEDGE 93

every polynomial-sized prover P ∗ the probability that in an execution between P ∗ and the honest
verifier it will be the case for some i that x̃i = xi is negligible (as otherwise we can turn P ∗ into
an 2o(nǫ)-time algorithm that breaks the commitment scheme COM). Note that the knowledge
extractor for Protocol 5.3.5 is a black-box knowledge extractor.

The Resettable Zero-Knowledge Protocol.

Protocol 5.3.5 is certainly not a resettable zero-knowledge protocol as it is a proof of knowledge
with a black-box knowledge extractor. Intuitively, the problem seems to be the verifier’s query in
the WI proof system phase. The verifier can run the same interaction up to the WI system phase
and then use two different queries in this phase to obtain the witness for the statement proven.
One way to ensure that the verifier cannot perform this attack is to force the verifier to commit
in the beginning of the protocol to the query that it is going to use in the WI stage. Indeed, this
can be done to obtain a resettable zero-knowledge protocol (if the prover uses as randomness a
pseudorandom function applied to the verifier’s first message). Unfortunately, it seems that by
doing this modification we lose the proof of knowledge property of the original protocol.

To obtain our resettable zero-knowledge argument of knowledge we use a variant of this modi-
fication. The verifier does indeed commit to its query q at the beginning of the protocol. However,
the verifier never reveals the decommitment information for q in the course of the protocol. In-
stead, after sending q as its query in the WI proof, the verifier proves that this is the same string
it committed to initially using the resettably-sound zero-knowledge argument of Section 5.2. An-
other modification is that the prover’s random tape will be a seed for a pseudorandom function,
and it will apply this function to the verifier’s first message to obtain the random choices for the
rest of the protocol. The modified protocol is Protocol 5.3.6. We shall now sketch the proof that
Protocol 5.3.6 is a resettable zero-knowledge argument of knowledge.

Lemma 5.3.7. Protocol 5.3.6 is an argument of knowledge (with a non-black-box knowledge ex-
tractor).

Proof Sketch: Let P ∗ be some (possibly cheating) prover that manages to convince the honest
verifier that x ∈ L with some non-negligible probability p. By the properties of the parallel-
Hamiltonicity protocol, to extract a witness for x it is enough for the verifier to obtain two responses
γ, γ′ to two different queries q 6= q′ for the same prover initial message α.

The knowledge extractor obtains the first such response by simply executing internally a normal
interaction between the honest verifier and the prover P ∗. After simulating this interaction the
knowledge extractor rewinds the prover P ∗ to the point just after the prover sent the first message
α of the WI proof system. The extractor then sends a new random query q′, uses the simulator to
prove the (false) statement that q′ is consistent with initial commitment. If the extractor obtains a
response then it can compute a witness. Otherwise it continues until such a response is obtained.6

The zero-knowledge property and the computational hiding property of the commitment scheme
ensure that the prover will not be able to distinguish between the “fake” and “real” executions,
and so the extractor will have the same success probability as the prover’s probability of convincing
the verifier in a real interaction.

Lemma 5.3.8. Protocol 5.3.6 is resettable zero-knowledge.

6Actually, one needs to introduce a timeout mechanism to ensure that it runs in expected polynomial-time. We
note that the formal analysis is somewhat easier for an extractor that uses the simulator and a random (inconsistent)
query also in the initial execution.

94 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
Prover’s auxiliary input: w (a witness that x ∈ L)

w
↓

x
↓

P V

Modification: Prover’s random tape is s ←R {0, 1}n - a random
seed for a pseudorandom function ensemble {fs}s∈{0,1}∗ and u ←R

{0, 1}n – a random tape for the verifier algorithm of the resettably-
sound zero-knowledge argument of Section 5.2

Step V0 (Verifier’s commitment): Verifier sends commitments
(using COM) to x1, . . . , xk ←R {0, 1}n, where k = k(n) is some
unspecified function of n. Modification: (1) In addition the
verifier commits to a random string q ←R {0, 1}n (which will
serve as the verifier’s query in the WI proof stage). (2) The
prover uses for the rest of the protocol as a random tape for
the prover of Protocol 5.3.5 the value r = fs(m) where m is the
verifier’s message.

COM(x1) · · ·COM(xk), COM(q)←−−−−−−−−−−−−−−−−−−−−−−−−−−−

RK iterations:
The following is performed k times for i = 1, . . . , k:

Step Pi.1 (Prover’s commitment): Prover selects x̃i ←R {0, 1}n

and sends com(x̃i) to the verifier.
com(x̃i)−−−−−−−−→

Step Vi.2 (Verifier’s decommitment): Verifier sends to prover
the string xi along with the decommitment information for xi

xi, d-info(xi)←−−−−−−−−−−−−

Steps P,Vk + 1 . . . k + O(1) (WI proof): Prover proves to verifier
using the parallel-Hamiltonicity WI system that either x ∈ L or
that for some i ∈ [k], one the prover’s committed values x̃i was
equal to xi. The prover uses com as the commitment scheme for
the Hamiltonicity proof system. Modification: The verifier
uses the string q as its query in this system. However, the
verifier does not send the deccommitment information for q but
rather proves that q is consistent with the initial commitment
using a resettably sound zero-knowledge argument. The prover
uses u as the random tape for the verifier in this proof. In the
schematic description we denote by α and γ the prover’s first
and last messages of the WI proof system.

α−−−→
q←−−−

r-sound ZKA
q consistent

γ−−−→

Protocol 5.3.6. A resettable zero-knowledge argument of knowledge

5.3. A RESETTABLE ZERO-KNOWLEDGE ARGUMENT OF KNOWLEDGE 95

Proof Sketch: We note some properties of Protocol 5.3.6 that will be useful for us in the analysis.

• Note that the honest prover algorithm never uses its private random tape when deciding
whether or not to abort the execution. Also the decision whether to abort or not does not
depend on previous messages of the prover but rather it can be computed efficiently from the
list of verifier messages sent so far in the execution.

• We note that the particular commitment scheme COM that is used (i.e., Blum’s scheme
[Blu82]) has the property that not only the plain-text message but also the decommitment
information is uniquely determined by the commitment string.

Let V ∗ be a cheating verifier that launches a reset attack against the prover of Protocol 5.3.6.
We will show how can transform the verifier V ∗ into a verifier Ṽ that launches a concurrent attack
on the concurrent zero-knowledge Protocol 5.3.5 such that the outputs of the two verifiers are
indistinguishable. Thus, we can use the concurrent simulator for Protocol 5.3.5 to simulate the
resetting verifier V ∗.

The verifier Ṽ run an internal copy of V ∗ and will operate as follows: (We will sometimes refer
to Ṽ as the external verifier)

• Recall that the internal verifier V ∗ is an oracle machine that makes queries of the form
〈m1, . . . , mi〉 (for i ≤ l) to its oracle, where the oracle’s response should be the prover’s
response in a session where the first i verifier messages are m1, . . . , mi. We will make some
assumptions on the internal verifier V ∗’s behavior. These assumptions are without loss of gen-
erality since we can always modify V ∗’s behavior (without changing its output distribution)
so that it satisfies them.

1. We assume without loss of generality that the verifier V ∗ does not ask its oracle a
query for which the answer is obviously “abort”. Because the prover’s choice to abort
can always be publicly computed from the transcript, we can assume that the internal
verifier V ∗ never asks a query for which the answer is “abort”.

2. We assume without loss of generality that the internal verifier V ∗ never asks the same
query twice.

3. We assume that the internal verifier V ∗ never asks a query 〈m1, . . . , mi〉 of its oracle
without asking before it all prefixes of this query (i.e. all queries of the form 〈m1, . . . , mj〉,
where j < i).

• We are now ready to describe the operation of the external verifier Ṽ :

1. The verifier Ṽ uses a random u ←R {0, 1}n for a random tape.

2. If the internal verifier V ∗ sends a sequence containing only the initial message m1 =
COM(x1), . . . ,COM(xk), COM(q) the external verifier starts a new concurrent session
with the prover and sends the prover the message COM(x1), ldots, COM(xk). It forwards
the prover’s response to the internal verifier. We call the message m1 (which uniquely
identifies the session) the key of this session.

3. If the internal verifier V ∗ sends a sequence 〈m1, . . . , mi〉, then under our assumptions
it has previously sent the sequence 〈m1, . . . , mi−1〉 in the session keyed by m1. The
external verifier’s behavior differs according to the step in the protocol mi belongs to:

96 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

(a) If mi is a message of the form xi, d-info(xi) (where by non-abort assumption this
message is determined by the commitment in message m1) then the external verifier
sends mi to the prover in the session keyed by m1 and forwards the prover’s response
to the internal verifier.

(b) If mi is the query q of the WI system stage, then the external verifier does not for-
ward q to the prover. Rather, it answers the query itself, by using the honest verifier
algorithm for the resettably-sound zero-knowledge argument with random tape u.
This is what the external verifier does also if mi is any intermediate message of the
resettably-sound zero-knowledge argument (i.e., it does not forward anything to the
external prover but answers using the honest verifier algorithm for the resettably-
sound protocol).

(c) If mi is the last message of the resettably-sound argument (and by our non-abort
assumption the verification of the argument passed successfully) then the external
verifier send the query q contained in the sequence 〈m1, . . . , mi〉 to the prover in
the session keyed by m1 and forwards the prover’s response to the internal verifier.
Note that by the resettable soundness of the zero-knowledge argument system we
can assume that in this case q is indeed the value committed to in the message m1

(since this will be false only with negligible probability).

4. Note that we will not get “stuck” and try to send to the prover two different ith messages
in the same session, since all messages we forward are completely determined by the first
message m1.

• At the end of the execution, the external verifier Ṽ outputs whatever the internal V ∗ does.

We claim that the output of Ṽ in a concurrent execution is indistinguishable from the output
of V ∗ in a reset attack. Indeed, we can see that Ṽ always responds to a query its internal V ∗

makes with the honest prover’s next-message function applied to this query. The only difference
is that in the concurrent setting, in each concurrent session the honest prover uses a fresh and
independent random tape. However, because each concurrent session is keyed by the verifier’s
initial message, this is exactly the same as if the prover used as a random tape the result of a
random function applied to the verifier’s initial message. This is computationally indistinguishable
from the execution of V ∗ in a reset attack, where the prover uses a pseudorandom function.

5.4 Strict Polynomial-Time Simulation and Extraction

The zero-knowledge argument system constructed in Chapter 4 was the first constant-round system
to have a strict probabilistic polynomial-time knowledge extractor. In this section, we use that
scheme to construct a constant-round zero-knowledge argument of knowledge that has a strict
probabilistic polynomial-time knowledge extractor. We also show that both these applications are
impossible to obtain using black-box techniques. To summarize, this section contains the following
theorems:

Theorem 5.4.1. Suppose that there exist trapdoor permutations over {0, 1}n and collision-resistant
hash functions. Then, there exists a constant-round zero-knowledge argument of knowledge for NP
with a strict polynomial-time knowledge extractor and a strict polynomial-time simulator.

Theorem 5.4.2. There do not exist constant-round zero-knowledge proofs or arguments with strict
polynomial-time black-box simulators for any language L 6∈ BPP.

5.4. STRICT POLYNOMIAL-TIME SIMULATION AND EXTRACTION 97

Theorem 5.4.3. There do not exist constant-round zero-knowledge proofs or arguments of knowl-
edge with strict polynomial-time black-box knowledge extractors for any language L 6∈ BPP.

In this section we provide merely the main ideas behind the proofs of these theorems. The full
proofs can be found in the paper [BL02].

5.4.1 Proof Sketch of Theorem 5.4.1 – Construction of a Zero-Knowledge Ar-
gument of Knowledge with Strict Polynomial-Time Extraction

Recall the definition of a commit-with-extract scheme (c.f. Section 2.5). The following proposition
allows us to reduce proving Theorem 5.4.1 to the problem of constructing a constant-round commit-
with-extract scheme with a strict polynomial-time commitment extractor.

Proposition 5.4.4. Suppose that there exists a constant-round commit-with-extract scheme with
a strict polynomial-time extractor and a constant-round zero-knowledge argument system for NP.
Then, there exists a constant-round zero-knowledge argument of knowledge for NP with a strict
polynomial-time knowledge extractor.

Indeed Proposition 5.4.4 reduces the problem of constructing a zero-knowledge argument of
knowledge with a strict polynomial-time extractor to the problem of constructing:

1. A constant-round zero-knowledge argument system for proving membership (not knowledge)
in NP language. For this we can use the argument system of Chapter 4.7

2. A constant-round commit-with-extract scheme with a strict probabilistic polynomial-time
commitment extractor.

Proof sketch of Proposition 5.4.4. Assuming we have these two components, our construction for a
zero-knowledge argument of knowledge is depicted in Protocol 5.4.5. Basically, the protocol works
by the prover first committing to a witness using the commit-with-extract scheme, and then using
the zero-knowledge proof of membership to prove that the committed string is indeed a witness.

Loosely speaking , the simulator for this protocol will work by committing to a “junk” string
(e.g., the all-zeroes string) in the first step, and then using the simulator for the membership proof
in the second step. The extractor for this scheme will work by running the extractor for the commit-
with-extract scheme. The soundness of the zero-knowledge membership proof system of the second
phase will ensure that the extracted string is indeed a witness.

Construction of a Commit-With-Extract Scheme.

The “heart” of the proof of Theorem 5.4.1 is the construction of a constant-round commit-with-
extract scheme with a strict probabilistic polynomial-time knowledge extractor. This construction
is depicted in Protocol 5.4.6.9

7Alternatively, if we are willing to allow the simulator of the resulting zero-knowledge argument of knowledge to
run in expected polynomial-time (while still requiring that the knowledge extractor runs in strict polynomial-time),
then we can also use any other constant-round zero-knowledge argument for NP, such as the argument system of
Feige and Shamir [FS89].

8We note that we assume that the commit-with-extract scheme satisfies the public decommitment property, and
so this is indeed a valid NP statement.

9For simplicity, we present the construction of a bit commitment scheme, the extension to n-bit strings can be
done by committing to each individual bit in parallel, assuming that the zero-knowledge system used is n-time
parallel-zero-knowledge (which is a weaker condition than bounded concurrent zero-knowledge).

98 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
Prover’s auxiliary input: w (a witness that x ∈ L)

w
↓

x
↓

P V

Steps P,V1.x (Commit to witness): Prover commits to the wit-
ness w using a commit-with-extract scheme. (Actually, the
commit-with-extract scheme is an interactive protocol, and
so this step will take a (constant) number of communication
rounds.)

z = Comm-Ext(w)−−−−−−−−−−−−−−−−→

Steps P,V2.x (ZK membership proof): Prover proves to veri-
fier using a ZK membership proof that the string committed
to in the previous step is a witness for x.8

ZKP
Comm-Ext−1(z) ∈
R(x)

Protocol 5.4.5. A zero knowledge argument of knowledge with strict polynomial-time extraction.

We now sketch why Protocol 5.4.6 is indeed a commit-with-extract scheme.

Perfect binding. Since we assume that the permutation ensemble is certified, we may assume
that the function f is a permutation (as otherwise the receiver would abort). Given that, and for
any particular execution transcript containing f, r1, r2, τ , there exist only one r and σ such that
f(r) = r1 ⊕ r2 and h(r) ⊕ σ = τ .

Computational hiding. Intuitively, because r2 is chosen at random, the string r1⊕r2 is uniform,
and so distinguishing between a commitment to 0 and a commitment to 1 entails distinguishing
between f(Un), h(Un) and f(Un), h(Un)⊕1. Thus one can reduce the hiding property of this commit-
ment scheme to the hiding property of Blum’s commitment scheme (i.e., Com(σ; r) = f(r), h(r)⊕σ)
[Blu82]. This intuition is indeed behind the proof that this commitment scheme satisfies the binding
property, but there are some complications in the proof, see [BL02] for more details.

Commitment extractor. Recall that a commitment extractor is given a (possibly cheating)
sender algorithm S∗ and needs to output a simulated interaction between the sender S∗ and the
honest receiver, along with the value of the bit that was committed in this interaction. The
extractor for the commitment works in the following way. It executes internally an interaction with
the sender plays the part of the receiver, but instead of sending a commitment to r1 in Step R2, it
sends a commitment to a “junk” string (e.g., the all-zeros string). Then, after seeing r2, it chooses
r at random and lets r1 = f(r)⊕r2. It then sends to S∗ the string r1, and uses the simulator of the
zero-knowledge system to simulate a proof of the (false) statement that r1 is the string it committed
to in Step R2. Once S∗ sends τ , the extractor computes its auxiliary output σ = τ ⊕ h(r). Note

10Recall that a permutation ensemble is certified, if it is possible for the verifier to make sure that the function f is
indeed a permutation. We can also use a non-certified trapdoor permutation ensemble, by having the sender prove
in zero-knowledge that f was chosen from ensemble after Step S1.

5.4. STRICT POLYNOMIAL-TIME SIMULATION AND EXTRACTION 99

Public input: 1n (security parameter)
w
↓

x, r
↓

S R
Sender’s auxiliary input: σ ∈ {0, 1} (bit to be committed to)

Choose trapdoor permutation

Step S1 (Choose trapdoor function): Sender chooses a trap-
door permutation f , along with its associated trapdoor f−1

and sends f to the receiver. We assume that f is certified.10
f−−−→

Coin-tossing

Step R2 (Choose r1): Receiver chooses r1 ←R {0, 1}n, and sends
a commitment to r1, using a standard (perfect binding, com-
putationally hiding) commitment scheme Com. That is, it
chooses random coins s for the commitment scheme and sends
z = Com(r1; s) to the sender.

z = Com(r1; s)←−−−−−−−−−−−−−−

Step S3 (Choose r2): Sender chooses r2 ←R {0, 1}n and sends r2

to receiver.
r2−−−−→

Step R4 (Reveal r1): Receiver sends r1 to the sender but with-
out sending also the decommitment information s. Rather, it
proves in zero-knowledge that the sent value is indeed the value
committed to in Step R2. The zero-knowledge system used in
this phase has a strict polynomial-time simulator.

r1←−−−−

z, r1
↓

s
↓

ZKP
r1 = Com−1(z)

↓

0/1

Commitment

Step S5 (Commitment): Sender computes r = f−1(r1 ⊕ r2) and
sends τ = h(r) ⊕ σ to the receiver, where h(·) is a hard-core
predicate of f .

τ = h(f−1(r1 ⊕ r2)) ⊕ σ−−−−−−−−−−−−−−−−−−−−−→

To decommit, sender sends r and σ, the receiver verifies that f(r) = r1 ⊕ r2 and h(r) ⊕ σ = τ .

Protocol 5.4.6. A Commit-With-Extract Scheme

100 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

that for this extractor to run in strict polynomial-time it is clear that the zero-knowledge system
used in Step R4 has a strict polynomial-time simulation.

Combined with Proposition 5.4.4, the construction of this commit-with-extract scheme com-
pletes the proof of Theorem 5.4.1.

5.4.2 Proof Ideas for Theorems 5.4.2 and 5.4.3 – Black-Box Lower Bounds.

In this section, we show the ideas behind the proofs of Theorems 5.4.2 and 5.4.3. That is, we
show that there does not exist a constant-round zero-knowledge argument (resp., argument of
knowledge), with a black-box simulator (resp., extractor) that runs in strict polynomial-time.

Before presenting the proofs, we motivate why it is not possible to obtain strict polynomial-
time black-box extraction for constant-round protocols. First, consider a very simple (cheating)
prover P ∗ who at every step either aborts or sends the honest prover message. Furthermore, the
probability that it does not abort at any given step is ǫ = ǫ(n). Then, black-box extractors for
constant-round protocols would typically extract a witness using the following strategy: Invoke an
execution with P ∗ and if P ∗ aborts, then also abort. However, if P ∗ does not abort (and thus
sends a prover message in some crucial round), then continually rewind P ∗ until another prover
message is obtained for this round. Obtaining two (or possibly more) different prover messages
then suffices for extracting the witness. Now, this second case (where P ∗ does not abort) occurs
with probability only ǫ. However, this means that the expected number of rewinding attempts by
the extractor equals 1/ǫ. Therefore, the overall expected amount of work is bounded. However,
since ǫ can be any non-negligible function, we cannot provide any strict polynomial upper-bound
on the running time of the simulator.

This idea underlies our lower bounds. Specifically, we show that by carefully choosing the
abort probabilities, it is possible to achieve the following effect: A strict polynomial-time black-box
extractor will not have “time” to obtain two non-abort responses from the prover P ∗ in any given
round. (By “not having time”, we mean that with noticeable probability, the extractor will have
to wait longer than the bound on its running-time in order to see a second non-abort response.)
Essentially, this means that the extractor cannot “rewind” the prover. This suffices for proving the
lower bound because, informally speaking, black-box extractors must be able to rewind in order
to extract. The same argument also holds for strict polynomial-time simulation of constant-round
zero-knowledge proofs.

Outline of the proofs. As we have mentioned above, the underlying idea behind the proofs
of both Theorem 5.4.2 and Theorem 5.4.3 is the same. We will explain the intuition behind this
idea in the context of knowledge extraction (i.e., in the context of the proof of Theorem 5.4.3)
and then describe how this intuition generalizes also to the context of simulation (for the proof of
Theorem 5.4.2).

Theorem 5.4.3 is proven by showing that if a language L has a constant-round zero-knowledge
protocol (P, V) with a black-box strict polynomial-time knowledge extractor, then there exists a
cheating verifier strategy V ∗, such that for every x ∈ L, if V ∗ interacts with the honest prover P ,
then with noticeable probability, V ∗ will obtain a witness w for x from the interaction with P . Of
course, the ability to do this contradicts the zero-knowledge property of the protocol, unless the
verifier V ∗ could anyway obtain a witness by itself. Since V ∗ runs in probabilistic polynomial-time,
it must therefore be the case that L ∈ BPP (because that’s the only way that V ∗ could obtain a
witness by itself).

5.4. STRICT POLYNOMIAL-TIME SIMULATION AND EXTRACTION 101

We construct this verifier V ∗ from the black-box knowledge extractor of the system (P, V).
Loosely speaking, this is done in the following way:

1. We let x ∈ L and consider a cheating prover strategy P ∗ which is of the following form: P ∗

behaves exactly as the honest prover P behaves on input x, except that in each round of
the proof, it may choose to abort the execution with some probability. We will choose these
probabilities so that P ∗ will still have a noticeable probability to convince the honest verifier
to accept x.11

2. Consider an execution of the knowledge extractor when it is given black-box access to P ∗.
Every query that the extractor makes to the black-box is a list of messages (α1, . . . , αi), and
the reply received by the extractor is what P ∗ would send in a real execution when the first
i verifier messages were α1, . . . , αi. Thus, if P ∗ would abort in the real execution then the
extractor receiver ⊥. Note that at the end of the execution the knowledge extractor should
output a witness for x with some noticeable probability.

We show that it is possible to choose P ∗’s abort probabilities in such a way, that if we run
the knowledge extractor with black-box access to P ∗ then with very high probability, the
extractor will get at most c non-abort replies, where c is the number of verifier messages in
the protocol.

Furthermore, these replies will correspond to i queries (where i ≤ c) of the form (α1), (α1, α2),
. . ., (α1, . . . , αi) where α1, . . . , αi are some strings. That is, all these queries are prefixes of a
single sequence (α1, . . . , αi).

3. We then implement a verifier strategy V ∗ that sends these messages α1, . . . , αi when it in-
teracts with the prescribed prover P . Basically, the verifier works by internally running the
knowledge extractor. When the extractor makes a query, the verifier either answers it with
⊥ or forwards the query to the prover, and then returns the prover’s reply to the knowledge
extractor. We show that the verifier has a noticeable probability of perfectly simulating P ∗

to the knowledge extractor. In the case that this happens, the verifier will be able to obtain
a witness for x with noticeable probability, which is what we wanted to prove.

Choosing the abort probabilities. We’ll use the following choice for the prover P ∗’s
abort probability. After receiving the ith verifier message, the prover P ∗ will continue
(i.e., not abort) with probability ǫ2

c−i
. Where ǫ = ǫ(n) will be chosen to be an inverse

polynomial smaller than 1
t(n)3

, where t is the number of queries the knowledge extractor

makes to its oracle. The decision to continue or abort would be based on a random tape
obtained by applying a t-wise independent hash function to the current message history,
for each query of the knowledge extractor, the decision of P ∗ whether to answer this
query with ⊥ (i.e., abort) will be independent. One can see that in a real interaction,
the prover P ∗ will convince the verifier with probability

p∗ = ǫ2
c−1

ǫ2
c−2 · · · ǫ20

= ǫ
∑c−1

j=0 2j

= ǫ2
c−1

11We will use a strategy for P ∗ that causes it to abort with quite high probabilities. In particular, P ∗ will abort in
each round with probability greater than 1/2 (and even greater than 1−1/n). Note however that since the number of
rounds in the protocol is constant, this does not preclude P ∗ from causing the honest verifier to accept with noticeable
probability.

102 CHAPTER 5. APPLICATIONS OF NON-BLACK-BOX ZERO KNOWLEDGE

On the other hand, the probability that the extractor gets two non-⊥ replies to two dis-
tinct queries that are not prefixes of one another is significantly lower. That is, the prob-
ability that the extractor gets two non-⊥ replies to queries of the form 〈α1, . . . , αi−1, αi〉
and 〈α1, . . . , αi−1, α

′
i〉, where αi 6= α′

i is at most

ǫ2
c−1

ǫ2
c−2 · · · ǫ2c−i

ǫ2
c−i

= ǫ2
c

which is a factor ǫ less than p∗. Even if we take a union bound over all the t2 possible
query pairs of the extractor, this is still noticeably less than p∗. This means that there
is a noticeable probability that the extractor succeeds in obtaining a witness in an
execution where it did not obtain non-⊥ replies to two queries that are not prefix of
one another.

As mentioned above, in the simulation case (i.e., when proving Theorem 5.4.2) we use a similar
technique. Basically, we prove Theorem 5.4.2 by showing that if L has a constant-round zero-
knowledge proof or argument system (P, V) with a black-box strict polynomial-time simulator, then
there exists a cheating prover strategy P ∗ that does not have any auxiliary input (like a witness),
and yet for every x ∈ L causes the honest verifier V to accept x with noticeable probability.
We stress that, unlike the honest prover, this cheating strategy P ∗ does not get a witness for x
as auxiliary input. It is not hard to show that the existence of such a strategy P ∗ implies that
L ∈ BPP.

In summary, both impossibility results are due to the following two facts:

1. Intuitively, in order to successfully extract or simulate, the extractor/simulator must see at
least two different continuations of the same transcript. That is, it must get meaningful
replies to queries of the form (α1, . . . , αi−1, αi) and (α1, αi−1, α

′
i) where α′

i 6= αi. Otherwise
the extractor/simulator does not have any advantage over the interactive verifier/prover.
(Informally speaking, “rewinding” is essential for black-box simulation and extraction.)

2. For any strict polynomial-time extractor or simulator, there exist provers/verifiers for which
the time needed to obtain meaningful (i.e., non-abort) replies to two different continuations
is beyond the scope of the extractor’s/simulator’s running-time.

Chapter 6

Non-Malleable Cryptography

Summary: We construct the first constant-round non-malleable commitment scheme
and the first constant-round non-malleable zero-knowledge argument system, as defined
by Dolev, Dwork and Naor. Previous constructions either used a non-constant number
of rounds, or were only secure under stronger setup assumptions. An example of such an
assumption is the shared random string model where we assume all parties have access
to a reference string that was chosen uniformly at random by a trusted dealer.

We obtain these results by defining an adequate notion of non-malleable coin-tossing,
and presenting a constant-round protocol that satisfies it. This protocol allows us to
transform protocols that are non-malleable in (a modified notion of) the shared random
string model into protocols that are non-malleable in the plain model (without any
trusted dealer or setup assumptions). Observing that known constructions of a non-
interactive non-malleable zero-knowledge argument systems in the shared random string
model are in fact non-malleable in the modified model, and combining them with our
coin-tossing protocol we obtain the results mentioned above.

The techniques we use are different from those used in previous constructions of non-
malleable protocols. In particular our protocol uses diagonalization and a non-black-box
proof of security (in a sense similar to the zero-knowledge argument of Chapter 4).

6.1 Introduction

6.1.1 Overview

In the man-in-the-middle (MIM) attack on a cryptographic two-party protocol, the adversary has
complete control over the communication channel between two honest parties. The adversary has
the power not only to read all messages sent between the parties, but also actively change, erase
or insert its own messages into the channel. This attack can be very relevant in many practical
settings, and thus designing protocol secure against such an attack is an important task.

Dolev, Dwork and Naor [DDN91] considered the MIM attack and defined a protocol to be non-
malleable if it remains secure under such attack.1 In the plain model (where there are no setup as-
sumptions such as a public key infrastructure or a shared random string), [DDN91] constructed non-
malleable protocols for the fundamental cryptographic tasks of commitment and zero-knowledge.

This chapter is based on the paper [Bar02].
1The definition of non-malleability is usually described in somewhat different terms. See also Remark 6.1.1

103

104 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

However, the protocols of [DDN91] took a non-constant number of communication rounds (logarith-
mic in the security parameter). In this work, we focus on the task of constructing constant-round
protocols for these tasks.

The shared random string model. Unlike the case in the plain model, in the shared random
string model, introduced by Blum, Feldman and Micali [BFM88], one assumes that there exists a
trusted party that chooses a string uniformly at random and sends it to all parties (including the
adversary) before the protocol is executed. This setup assumption enables the construction of much
more round efficient protocols. In fact, Sahai [Sah99] constructed a 1-round (i.e., non-interactive)
non-malleable zero-knowledge argument for NP in this model, whereas Di Crescenzo, Ishai and
Ostrovsky [DIO98] constructed a 1-round non-malleable commitment scheme in this model (see
Section 6.1.3 for details on other constructions and related works in this model).

Our results and techniques. In this paper we give the first construction of constant-round
non-malleable commitment and zero-knowledge schemes in the plain model, without any setup
assumption. Our approach is to first construct a non-malleable coin-tossing protocol. We then use
this coin-tossing protocol in order to transform a non-malleable protocol (such as a zero-knowledge
proof or a commitment scheme) from the shared random string model into the plain model.

The techniques utilized in the construction of the non-malleable coin-tossing protocol are dif-
ferent from those used in previous works in non-malleable cryptography. In particular our proof of
security involves a diagonalization argument and a non-black-box use of the code of the adversary’s
algorithm. Similar techniques were first used in [Bar01] in the context of zero-knowledge systems.
This works demonstrates that these techniques are applicable also in other settings in cryptography.

6.1.2 Model and Basic Terminology

In this work we are only interested in two-party protocols. We will denote the two parties by the
letters L and R (L stands for left, R for right). Two examples that are worth keeping in mind are
commitment schemes and zero-knowledge proofs. In a commitment scheme the left player L is the
sender that wants to commit to a value, while the right player R is the receiver that receives the
committed value. In a zero-knowledge proof the left player L is the prover that wants to convince
the right player R (called the verifier) that some statement is true.

In the man-in-the-middle setting (MIM), as depicted in Figure 6.1, there is a third party denoted
by C (C can stand for either center or channel, we will typically call C the adversary). All the
communication between L and R is done through C. Thus, both players L and R only talk to C
and cannot communicate directly with each other. The adversary C can decide to simply relay
the messages each party sends to the other party, but it can also decide to block, delay, or change
messages arbitrarily. Thus, if L and R wish to run a two-party protocol Π in the MIM setting,
then we can think of the protocol Π as being executed in two concurrent sessions. In one session
L plays the left side and the adversary C plays the right side, and in the second session C plays
the left side and R plays the right side. We assume that the adversary C controls the scheduling
of messages in both sessions. We call the first session (where L interacts with C) the left session,
and the second session (where C interacts with R) the right session.

Unavoidable strategies.

There are two strategies that the adversary C can always use without being detected. One strategy
is the relaying strategy in which the only thing C does is relay the messages between L and R. In

6.1. INTRODUCTION 105

L

−−−−→
←−−−−
−−−−→

C

−−−−→
←−−−−
−−−−→

R

Left session Right session

Figure 6.1: The MIM setting: all communication between L and R is done through the adversary
C.

this case C is transparent and this is equivalent to a single execution of the protocol Π between L
and R. The other unavoidable strategy is the blocking strategy in which C plays its part in each
session completely independent of the other session. In each session, C uses the honest strategy
to play its part (i.e., in the left session C uses the strategy of the honest right player and in the
right session C uses the strategy of the honest left player.) Clearly, regardless of the protocol Π,
it is impossible to prevent the adversary from using one of these two strategies. Therefore, we call
the relaying and blocking strategies the unavoidable strategies. Intuitively, the goal in designing
protocols for the man-in-the-middle setting, is to design protocols that force C to use one of the two
unavoidable strategies (or such that it could not be advantageous to C to use any other strategy).2

For example, consider the case of a commitment scheme. When executed in the man-in-the-
middle setting, in the left session the player L commits to a value α to C that plays the receiver,
whereas in the right session C plays the sender and commits to a value α̃.3 If C uses the relaying
strategy then it holds that α = α̃. On the other hand, if C uses the blocking strategy then it holds
that α̃ is independent of α. Indeed, loosely speaking, the goal in non-malleable commitments is to
design a commitment scheme such that regardless of the strategy C uses, it will hold that either α̃
is equal to α or that α̃ is independent of α.4

Remark 6.1.1 (Comparison with [DDN91]). Dolev et al.[DDN91] used different notations to
describe essentially the same setting. They considered four parties P1, P2, P3, P4 that execute a two-
party protocol in two concurrent sessions (see Figure 6.2). The left session is between P1 and P2, and
the right session is between P3 and P4. Both P2 and P3 are controlled by an adversary, whereas P1

and P4 are honest and follow the protocol (and thus, P1 is oblivious to the (P3, P4) interaction and
P4 is oblivious to the (P1, P2) interaction). This means that P2 and P3 combined correspond to the
adversary C in our notation, and that P1 corresponds to L in our notation, where P4 corresponds
to R in our notation. Previous works also used somewhat different emphasis in presenting the
goal of non-malleable protocols. For example, the goal of a non-malleable commitment scheme is
usually described as to ensure that the committed values in both sessions are independent (i.e.,
that the adversary is using the blocking strategy). The possibility of the values being identical (i.e.,
that the adversary will use the relaying strategy) is also allowed because it is unavoidable, but
it is considered to be an uninteresting special case. In contrast, we treat both strategies equally.
Note also that in this work we only consider protocols that are non-malleable with respect to
themselves (as defined by [DDN91]), where [DDN91] defined also non-malleability with respect to
general protocols.

2Actually, the adversary can always use also a “mixed” strategy in which it follows the relaying strategy with
probability p, and the blocking strategy with probability 1 − p, for some p ∈ [0, 1].

3We only consider statistically binding commitment schemes, and so the committed value is determined uniquely
by the transcript of the session.

4Actually, one needs to define an appropriate notion of “computational independence”, as is done in [DDN91].
See also Section 6.4.

106 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

P1

−−−−→
←−−−−
−−−−→

P2 ↔ P3

−−−−→
←−−−−
−−−−→

P4

Left session Right session

Figure 6.2: Non-malleability, as defined by [DDN91] : P2 and P3 are controlled by the adversary

(a) (b)

L C R

−−−−→ −−−−→←−−−−←−−−−−−−−→ −−−−→←−−−−←−−−−

L C R

−−−−→ −−−−→←−−−−−−−−→←−−−−←−−−−−−−−→←−−−−

Figure 6.3: Two different scheduling strategies: (a) The man in the middle applies the “synchro-
nizing” strategy. (b) The man in the middle does not wait for L’s reply before answering R’s
message.

Scheduling strategies

The adversary in the MIM model can control not only what is written in the messages sent but
also decide when to send them. That is, the adversary has complete control over the scheduling
of the messages. An important example of a scheduling strategy is the synchronizing scheduling.
In this scheduling, the adversary synchronizes the two executions by immediately sending the ith

message in the right session after it receives the ith message in the left session and vice versa (i.e.,
it sends the jth message in the left session immediately after it received the jth message in the right
session). We call an adversary that always uses this scheduling a synchronizing adversary. We
call an adversary that uses a different scheduling a non-synchronizing adversary. The difference
between a synchronizing and a non-synchronizing adversary is illustrated in Figure 6.3. Note that
even when restricted to the synchronizing scheduling, it is still possible for the adversary to use
either the blocking or the relaying strategies. Thus, these strategies remain unavoidable even when
restricting to synchronizing adversaries.

Unlike other settings in cryptography, such as concurrent zero-knowledge [DNS98, RK99, CKPR01,
PRS92], in our setting the ability to control the scheduling does not add much power to the ad-
versary. In fact, as we will show in Section 6.5, it is possible to transform any non-malleable
commitment or zero-knowledge scheme that is secure against synchronizing adversaries, into a
scheme secure against general (possibly non-synchronizing) adversary. Therefore, in most of this
paper we will restrict ourselves into dealing only with synchronizing adversaries.5 As mentioned
above, in Section 6.5 we will show how to overcome this restriction.

5In some sense, the synchronizing scheduling is the hardest schedule to deal with when designing a non-malleable
protocol. In fact, one intuition behind the non-malleable commitment protocol of [DDN91] (and also an earlier work
in a different model by Chor and Rabin [CR87]) is that the protocol is designed to force the adversary to use a
non-synchronizing strategy.

6.1. INTRODUCTION 107

6.1.3 The Shared Random String Model

In the shared random string model [BFM88], we assume the existence of a third trusted party called
the dealer. Before a protocol is executed in this model, the dealer picks a string r uniformly at
random and sends it to all the parties. The string r is called the reference string, and is given as
an additional public input to the protocol. In the setting we are interested in (the MIM setting for
a two-party protocol), this means that in a preliminary phase, the dealer sends the string r to L,
R and C. After this phase, the protocol is executed in both the left and right sessions, with r as
the public reference string.

Previous works. As mentioned above, unlike the case in the plain model, there are several
round-efficient non-malleable protocols known in the shared random string model. Sahai [Sah99]
constructed a single-round (i.e., non-interactive) non-malleable zero-knowledge proof system in
this model. This scheme was improved by De Santis, Di Crescenzo, Ostrovski, Persiano and Sahai
[DDO+01]. Di Crescenzo, Ishai and Ostrovsky [DIO98] constructed in the shared random string
model a non-interactive commitment scheme that is non-malleable in a weaker sense than [DDN91]
(“non-malleable w.r.t. opening” [FF00]). Di Crescenzo, Katz, Ostrovski, and Smith [DKOS01,
Sec. 3] constructed in the shared random string model6 a non-interactive commitment satisfying
the stronger notion of non-malleability (i.e., “non-malleable w.r.t. committing”) defined in [DDN91].
Canetti and Fischlin [CF01] constructed in the shared random string model7 non-interactive uni-
versally composable commitments which is a stronger notion than non-malleability. Interestingly,
it is impossible to construct universally composable commitments in the plain model [CF01].

6.1.4 Non-malleable Coin-Tossing

The goal of this paper is to convert two-party protocols that are secure against a MIM attack in
the shared random string model, into protocols that are secure against such an attack in the plain
model. Toward this end we will want to construct a non-malleable coin-tossing protocol (in the
plain model). Once we have such a coin-tossing protocol, we will convert a two-party protocol ΠRef

with a reference string that is secure in the shared random string model into a protocol ΠPlain in
the plain model in the following way:

Construction 6.1.2 (Composition of a coin-tossing protocol with a reference string pro-
tocol).

Phase 1: Run the coin-tossing protocol. Let r denote the result of this execution.

Phase 2: Run the protocol ΠRef using r as the common reference string.

Loosely speaking, our goal is to construct a coin-tossing protocol such that whenever ΠRef was
secure in the shared random string model, the protocol ΠPlain will be secure in the plain man-in-
the-middle model (with no shared string).

6 Their construction is in the common reference string (CRS) model which is a slight generalization of the shared
random string model. However they remark that under standard assumptions (e.g., hardness of factoring), their
construction can be implemented in the shared random string model.

7Footnote 6 (Yehuda Lindell, personal communication, April 2002).

108 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

The modified shared random string model

Suppose that we execute the protocol ΠPlain, as constructed in Construction 6.1.2, in the man-in-
the-middle setting. Let r denote the result of Phase 1 (the coin-tossing protocol) in the left session
and let r̃ denote the result of Phase 1 in the right session. If we wish to emulate exactly the shared
random string model then we want to ensure that r = r̃. Indeed, this will be the case if C will act
transparently (i.e., use the relaying strategy, as described in Section 6.1.2). However, we have no
guarantee that C will indeed use this strategy. In fact, C can always ensure that r̃ is independent
of r, by using the blocking strategy.

The above problem motivates us in defining (for the MIM setting) a new ideal model called
the modified shared random string model. In this model, the trusted dealer generates two random
strings r(1) and r(2) uniformly and independently of one another. Then r(1) is used in the left
session (between L and C), but the adversary C is allowed to choose whether it wants to use
the same string r(1) also in the right session (between C and R), or whether it wants to use the
new independent string r(2). We allow the adversary to view the two strings before it makes this
decision.8

Intuitively, it seems that the ability to choose that the strings used in both sessions will be
independent should not help the adversary. Rather, it will only make the information that the
adversary receives in the left session useless in the right session, and vice versa. Indeed, it turns out
that many known protocols that are secure in the shared random string model, are also secure in the
modified shared random string model. Thus we set our goal to constructing a coin-tossing protocol
that would allow us to convert any protocol ΠRef secure in the modified shared random string model
into a protocol ΠPlain secure in the plain MIM setting. We provide an adequate definition, which
we call non-malleable coin-tossing protocol, that indeed achieves this goal.

Definition of non-malleable coin-tossing

A non-malleable coin-tossing protocol is a protocol that implements the ideal functionality of the
modified shared random string model, in the real (or plain) model, where there is no trusted third
party. The formal definition is as follows:

Definition 6.1.3 (Non-malleable coin-tossing). Let Π = (L, R) be a (plain) two-party proto-
col. We say that Π is a non-malleable coin-tossing protocol if the following holds. For any efficient
algorithm C there exists an efficient algorithm Ĉ such that the following random variables are
computationally indistinguishable:

1. output(L,R,C),Π(1n) where this denotes the triplet of outputs of L,R and C when executing Π
in two concurrent sessions.

2. (r(1), r(b), τ) where this triplet is generated by the following experiment: first r(1), r(2) are
chosen uniformly and independently in {0, 1}n. Then we let (b, τ) ← Ĉ(r(1), r(2)).

Definition 6.1.3 follows the paradigm of simulating an adversary C in the real model (i.e., the
plain MIM setting) by an ideal adversary Ĉ in the ideal model (i.e., the modified shared random
string model). Indeed, Item 1 corresponds to the output of all parties in when the coin-tossing
protocol is executed in the plain MIM model with adversary C, while Item 2 is the output of all
parties when they interact with the trusted dealer of the modified shared random string model with
adversary Ĉ.

8We do not know whether or not it is unavoidable to allow the adversary to view both strings or at least one of
them, if we want a model that can be simulated in the plain MIM setting.

6.1. INTRODUCTION 109

6.1.5 Our Results

Our main result is the following:

Theorem 6.1.4. Suppose that there exist hash functions that are collision-resistent against 2nǫ
-

sized circuits for some ǫ > 0. Then, there exists a constant-round non-malleable coin-tossing
protocol.

By following Construction 6.1.2, and composing the coin-tossing protocol of Theorem 6.1.4
with a non-malleable protocol in the shared random string model, such as the non-interactive
zero-knowledge of [DDO+01],9 we obtain the following theorem:

Theorem 6.1.5. Suppose that there exist trapdoor permutations and collision-resistent hash func-
tions strong against 2nǫ

-sized circuits for some ǫ > 0. Then:

1. There exists a constant-round non-malleable zero-knowledge argument system for NP.

2. There exists a constant-round non-malleable (statistically binding) commitment scheme.

Remarks. We note that our result can be obtained also somewhat weaker complexity assump-
tions. Note also that the non-malleable commitment scheme we obtain is non-malleable with re-
spect to committing non-malleable with respect to committing (as the definition of [DDN91], which
stronger than the definition of [DIO98], see [FF00]). We also note that, like the previous protocols
of [DDN91], our schemes are liberal non-malleable in the sense that our simulator runs in expected
polynomial-time. However, we believe that one can obtain the stronger notions using the techniques
of Barak and Lindell [BL02]. See Section 6.6 for more discussion and details.

General theorems. It would have been nice if we proved two general statements of the form
(1) “every protocol that is secure in the shared random string model is also secure in the modified
shared random string model” and (2) “for every protocol that is secure in the modified shared
random string model, its composition using Construction 6.1.2 with a non-malleable coin-tossing
protocol yields a protocol that is secure in plain MIM setting”. However this is problematic, not so
much because Definition 6.1.3 is too weak, but mainly because the notion of “security” for protocols
is not well-defined and depends on the particular application. We do however prove more general
statements than Theorem 6.1.5: see Section 6.4 for more details.

6.1.6 Organization

In Section 6.2 we construct a non-malleable coin-tossing protocol that is secure against uniform
polynomial-time adversaries. In Section 6.3 we show how to modify the construction to obtain se-
curity against non-uniform adversaries. In Section 6.4 we show how we can use our non-malleable
coin-tossing protocol to obtain a non-malleable zero-knowledge and commitment schemes. In Sec-
tion 6.5 we show how we can convert a non-malleable zero-knowledge or commitment scheme that
is secure against adversaries that use the synchronizing scheduling, into a scheme that is secure
general adversaries, that may use different scheduling strategies. Section 6.6 contains some remarks
on the constructions and open questions.

9Actually, we will use a variation of this protocol, which will be interactive (but constant-round), in order to avoid
assuming the existence of dense cryptosystems.

110 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

We note that if one wants just to “get a taste” of our techniques and constructions, it is
possible to read just Sections 6.2.1 and 6.2.2 to see a simple construction of a simulation sound
zero-knowledge system secure against uniform adversaries. Simulation soundness is an important
relaxation of non-malleability, and this construction illustrates some of the ideas used in the other
sections.

6.1.7 Cryptographic assumptions.

For the purposes of this chapter, we will assume the existence of collision-resistant hash functions
that are secure against circuits of sub-exponential size (i.e. 2nǫ

for some fixed ǫ > 0).10 Using
an appropriate setting of the security parameter we will assume that all cryptographic primitives
we use are secure against 2n5

-sized circuits, where n is the security parameter for our protocol.11

In contrast we aim to prove that our protocol is secure only against adversaries that use uniform
probabilistic polynomial-time algorithms.12

6.2 A Uniform Non-Malleable Coin-Tossing Protocol

In this section we will construct a non-malleable coin-tossing protocol. The protocol of this section
has two limitation: The first limitation is that our protocol will only secure against adversaries
that use uniform probabilistic polynomial-time algorithms (rather than polynomial-sized circuits
or equivalently, polynomial-time algorithms with auxiliary input). The second limitation is that
our protocol will only be secure against adversaries that use the synchronizing scheduling. As
mentioned in Section 6.1.5, constructing a non-malleable coin-tossing protocol against synchronizing
adversaries is sufficient for our desired applications (since in Section 6.5 we show how to transform
a non-malleable zero-knowledge or commitment scheme secure against synchronizing adversaries
into a scheme secure against general adversaries.)

Therefore it is the first limitation (security only against uniform adversaries) that is actually
more serious. Note that usually in cryptography, it is possible to derive security against non-
uniform adversaries from a security proof against uniform adversaries. This is because most proofs
of security use only black-box reductions. However, this is not the case here, since we will use some
diagonalization arguments in our proof of security that do not carry over to the non-uniform case.
Nonetheless, in Section 6.3 we do construct a different non-malleable coin-tossing protocol that is
secure against non-uniform adversaries.

Rough outline of proof structure. The general form of our non-malleable coin-tossing protocol
is similar to previous (malleable) coin-tossing protocols. In fact, it is quite similar to a coin-tossing
protocol of Lindell [Lin01], except for the following modification: The modification is that while the
protocol of [Lin01] involves a zero-knowledge proof that some condition X occurs, in our protocol
we prove that either X or Y occurs, where Y is some “bogus” condition that almost always will not

10As mentioned in Section 6.1.5, our protocol can be proven secure under somewhat weaker assumptions at the
cost of a more complicated analysis, see Section 6.6.

11For example, if we have a primitive that is secure against 2mǫ

sized circuit with security parameter m, then when
given the security parameter n as input, we will invoke the primitive with m = n5/ǫ.

12The main limitation of the current protocol is that it is only secure against uniform adversaries rather than

the quantitative difference (2n5

vs. polynomial-time) between the hardness assumption and the adversary’s running

time. Indeed, our protocol is in fact secure against uniform 2nδ

-time algorithms for some δ > 0. However, for the
sake of clarity, we chose to model the adversary as a uniform probabilistic polynomial-time algorithm. The protocol

of Section 6.3 is also in fact secure against 2nδ

-sized circuits for some δ > 0.

6.2. A UNIFORM NON-MALLEABLE COIN-TOSSING PROTOCOL 111

be satisfied in a real execution. This is a technique that originated in the work of Feige, Lapidot
and Shamir [FLS99], and has been used in several places since (see also Chapter 4). When this
technique is used it is usually the case that one can ensure that Condition Y occurs if one has the
power to “rewind” the adversary. Thus, it is usually the case that the adversary simulator ensures
that Condition Y occurs in the simulation.13 This will not be the case here. Although we do need
to provide an adversary simulator (or equivalently, an ideal adversary) Ĉ to satisfy Definition 6.1.3,
our simulator will not use the bogus Condition Y and in fact Condition Y will not occur even in
the simulation. In fact, Condition Y will be of a form that no polynomial-time algorithm will be
able to ensure it occurs, even with the use of rewinding. If we’re not using this condition, then what
do we need it for? The answer is that we will use this condition in the security proof. In order to
show that our actual simulator Ĉ does satisfy the conditions of Definition 6.1.3 we will construct an
“imaginary simulator” Ĉ ′′. This “imaginary simulator” will run in time that is super-polynomial
and will use this long running time instead of rewinding to ensure that Condition Y occurs.14 Using
the output of this “imaginary simulator” as an intermediate hybrid we will be able to prove that
our actual simulator satisfies the conditions of Definition 6.1.3.

6.2.1 Evasive Sets

We will need to use the existence of an (exponential-time constructible) set R ⊆ {0, 1}∗ that is
both pseudorandom and hard to hit in the following sense:15

Definition 6.2.1 (Evasive set). Let R ⊆ {0, 1}∗. For any n ∈ N denote Rn
def
= R ∩ {0, 1}n. We

say that R is evasive if the following conditions hold with respect to some negligible function µ(·):

Constructibility: For any n ∈ N, the set Rn can be constructed in time 2n3
. That is, there exists a

2n3
time Turing machine MR that on input 1n outputs a list of all the elements in the set Rn.

In particular this means that deciding whether or not r ∈ R can be done in time 2|r|
3
.

Pseudorandomness: The set R is pseudorandom against uniform probabilistic polynomial-time
algorithms. That is, for all probabilistic polynomial-time Turing machines M , it holds that

∣∣∣∣ Pr
r←RRn

[M(r)=1]− Pr
r←R{0,1}n

[M(r)=1]

∣∣∣∣ < neg(n)

.

Evasiveness: It is hard for probabilistic polynomial-time algorithms to find an element in Rn.
Furthermore, even when given an element r ∈ Rn, it is hard for such algorithms to find a
(different) element in Rn. Formally, for any probabilistic polynomial-time Turing machine M
and for any r ∈ Rn,

Pr[M(r) ∈ Rn \ {r}] < neg(n)

Sets with very similar properties have been shown to exist by Goldreich and Krawczyk [GK92].
Using similar methods we can prove

Theorem 6.2.2. Suppose that 2nǫ
-strong one-way-functions exist, then there exists an evasive set.

13This is the case also in Chapter 4, although there the simulator used the knowledge of the adversary’s code
instead of rewinding to ensure that Condition Y occurs.

14In the non-uniform version of our protocol, the “imaginary simulator” will need to use also the knowledge of the
adversary’s code (in addition to a longer running time) to ensure that this condition occurs. See Section 6.3.

15For simplicity we “hardwired” into Definition 6.2.1 the constants and time-bounds required for our application.

112 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Proof. First note that when constructing the set Rn it is enough to ensure that Rn satisfies the
pseudorandomness and evasiveness properties only for probabilistic Turing machines whose descrip-
tion is of size at most log n and whose running-time16 is at most nlog n. This will ensure that the
set R = ∪n∈NRn will be pesudorandom and evasive for all probabilistic polynomial-time Turing
machines. We denote the set of Turing machines that have size at most log n and running time
halted at nlog n by Mn. Note that |Mn| ≤ n.

We fix f : N → N be a (polynomial-time computable) function such that f(·) is super-polynomial
and f(n) = 2o(nǫ). For concreteness, we will set f(n) = nlog n. Suppose that we choose at
random a subset S = {x1, . . . , xf} of size f(n) (That is, x1, . . . , xf are chosen uniformly and

independently in {0, 1}n). Let µ(n)
def
= f(n)−1/3. Note that µ(·) is a negligible function. By

the chernoff inequality, for every Turing machine M , the probability (over the choice of S) that

|Ex←R{0,1}n [M(x)] − Ex←RS [M(x)]| > µ(n) is extremely low (2−Ω(f(n)1/3)). Thus with high proba-
bility S is pseudorandom for all the machines M ∈ Mn.

Let i 6= j ∈ [f] and let M ∈ Mn. The probability over S that Pr[M(xi) = xj] > µ(n) is at

most 2−n

µ(n) (where µ(·), as before is defined by µ(n)
def
= f(n)−1/3). By taking a union bound over

all possible such pairs (i, j) we see that with the overwhelming probability of at least 1− 2−nf(n)2

µ(n) ,
the set S will be evasive for all the machines M ∈ Mn.

Under our assumptions, there exists a generator G : {0, 1}polylog(n) → {0, 1}nlog n
such that

G(Un) is pseudorandom for circuits of size at most nlog2 n. That is, for any circuit with input

m = m(n) and size at most 2nǫ′

,

‖Pr[C(Um) = 1] − Pr[C(G(Un)) = 1]‖ < n− log2 n

.

Given a set S ⊆ {0, 1}n of size f(n) we can use this generator to verify in deterministic 2polylog(n)-
time that it is indeed satisfies the pseudorandomness and evasiveness properties for the machines
in Mn. Indeed, this can be done by using the generator to decrease the number of coin tosses
of all Turing machines in Mn to polylog(n) and then simulating all machines in Mn in time
2polylog(n) (since enumerating all possible polylog(n) coin tosses for each machine can be done in
time 2polylog(n)). This means that we have a deterministic 2logc(n)-time test T (for some constant
c > 0) such that given a set S = {x1, . . . , xf}, if T outputs 1 then S is evasive, and Pr[T (Un·f(n) =
1] > 1 − µ′(n) for some negligible function µ′(·).

Under our assumptions, there exists also a pseudorandom generator G′ : {0, 1}polylog(n) →
{0, 1}2logc(n)

. We use this generator G′ to find a set S that satisfies these properties in time
2polylog(n) (which is at most 2O(n)) in the following way: go over all possible seeds and stop at the
lexicographically first seed s such that T (G(s)) = 1.

Note that for our purposes it is enough to use a pseudorandom generator that runs in time
that is exponential in its seed length. Such generators exist under weaker conditions than the ones
stated in the theorem [NW88, IW97].

6.2.2 A Simple Simulation-Sound Proof System

In this section, we sketch the construction and proof of a simple simulation sound proof system
that is based on the notion of evasive sets. Loosely speaking, a proof system is simulation sound

16We can assume that all Turing machines are “clocked”. That is, they are of the form that first computes 1t and
then runs for at most t steps.

6.2. A UNIFORM NON-MALLEABLE COIN-TOSSING PROTOCOL 113

Public input: 1n: security parameter, x ∈ {0, 1}nǫ
(statement to be

proved is “x ∈ L”)

w
↓

x
↓

P V

Prover’s auxiliary input: w (a witness that x ∈ L)

Step P1 (Send r): Prover sends to verifier a random string r of
length n − nǫ

r ← {0, 1}n−nǫ

−−−−−−−−−−−−−−→

Steps P,V2.x (ZK Proof): Prover proves to verifier using its in-
put w via a zero knowledge universal argument that either
x ∈ L or that x ◦ r ∈ R where R is the evasive set. Verifier
accepts if proof is completed successfully.

w
↓

x, r
↓

ZK-proof
x ∈ L or
x ◦ r ∈ R

↓

0/1

Protocol 6.2.3. A Simulation-Sound Zero-Knowledge Protocol

[Sah99] if even when simulating a man-in-the-middle adversary, we still are ensured (with very high
probability) that if the adversary’s proof in the simulated right session passes verification, then
either statement is a copy of the statement proven in the left session, or the statement is true. This
should hold even if the statement proven in the simulated left session is false. Note that if we use
a standard (i.e., standalone) zero-knowledge proof system in the man-in-the-middle setting, it may
be that when we simulate the left session, the adversary manages to prove a false statement in the
right session. Simulation soundness is a weaker condition than non-malleability, but it is sufficient
for some applications (e.g., [Sah99, DDO+01, Lin03b]). The protocol of this section is not used in
any other place of this work. We include it here because it is a simple protocol that demonstrates
our techniques. Its main drawback is that we do not know a simple generalization for it to the non-
uniform model. Another small drawback is that it uses the subexponential hardness assumption in
a much more essential way than our other constructions.

In this subsection (and only in this subsection) we will assume that there exists an evasive set
R with the following additional property: there exists some ǫ > 0 such that for every x ∈ {0, 1}nǫ

,
the uniform distribution on x◦{0, 1}n−nǫ ∩Rn is computationally indistinguishable from x◦Un−nǫ ,
where Rn denotes R ∩ {0, 1}n and ◦ denotes the string concatenation operator. Note that under
suitable assumptions, a variant of the construction of the previous section satisfies this additional
property. (Since a random dense enough subset of {0, 1}n will satisfy this property.)

Protocol 6.2.3 is our simulation-sound zero-knowledge proof system. We now sketch its analysis.
Firstly, we note that, unlike all other proof systems considered in this work, the soundness condition
of this system does not hold with respect to non-uniform polynomial-sized cheating provers. This
might have an element x◦r ∈ R with x 6∈ L “hardwired” into it. However this system is sound with
respect to uniform polynomial-time provers, since such provers cannot sample an element from R.

Let C be a man-in-the-middle adversary for Protocol 6.2.3 that utilizes the synchronizing
scheduling. To simulate C we will simply use the simulator for the zero-knowledge proof in the
obvious way. That is, the simulator will simulate the first step by following the honest left strategy
(i.e., send a random r ←R {0, 1}n−nǫ

) and then treat the adversary C and the right party as one
combined verifier, and simulate the zero-knowledge proof with respect to this verifier. The output
of this simulator will be indistinguishable from the view of C in a real interaction. However, because
this simulator effectively “rewinds” the right party, it is not at all clear that soundness of the right
session is preserved. To show that this is the case we construct an “auxiliary simulator”. On input

114 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

x, this “auxiliary simulator” will run in super-polynomial time to compute a random r such that
x ◦ r ∈ R. It will then use the honest prover algorithm to prove that either x ∈ L or x ◦ r ∈ R.
The simulation soundness property holds for this “auxiliary simulator” because of the evasiveness
property of the set R: if the adversary does not copy exactly x and r to the right session, then
since it cannot find another x̃, r̃ such that x̃ ◦ r̃ is in the set R, and since no rewinding of the right
party is done during the simulation, it is forced to choose a statement x̃ such that x̃ ∈ L. Now
the output of the auxiliary simulator is indistinguishable from the output of the real simulator by
2nδ

-time algorithm for some δ > 0. If we scale the security parameter appropriately, we can ensure
that deciding membership in L can be done in time less than 2nδ

and therefore the simulation
soundness condition must also hold for the real simulator.

Reflection. It is not hard to construct simulation-sound (or even non-malleable) zero-knowledge
in a setting where all parties have access to some public trusted verification key of some signature
scheme.17 However, in our setting we obviously do not have access to any such key. In some sense
one may view the construction of this section as bypassing this difficulty by using some form of a
“keyless signature scheme”. That is, one can view a string r such that x ◦ r ∈ R as a signature on
the string x. Like a (one-time) signature, given a signature x ◦ r ∈ R it is hard to come up with a
different signature x′ ◦ r′ ∈ R. However, unlike standard signature schemes, the signing algorithm
does not use knowledge of a private key (since no such key exists) but rather uses super-polynomial
time.

6.2.3 The Actual Construction

Our non-malleable coin-tossing protocol is Protocol 6.2.4 (See Page 115).

As a first observation, note that Rn is a set that is hard to hit by probabilistic polynomial-time
algorithms. Therefore for any such algorithm that plays the left side, with overwhelming probability,
it will not be the case that r ∈ Rn. Thus when the right side is honest, the soundness of the zero-
knowledge argument guarantees that with high probability r = r1 ⊕ r2.

19 The reason that we need
to use a universal argument (rather than a standard zero-knowledge proof or argument system
for NP) is that we are not guaranteed by Theorem 6.2.2 that R ∈ NP, but rather only that
R ∈ Dtime(2n3

).

It is not hard to verify that the strategies for both the left and right parties can be carried out
by probabilistic polynomial-time algorithms. (Note that we use here the prover efficiency condition
of universal arguments , inherited from CS proofs.)

In order to show that Protocol 6.2.4 is a secure non-malleable coin-tossing protocol as per Defi-
nition 6.1.3, one needs to show that for every adversary C (that uses the synchronizing scheduling)
there exists an ideal adversary Ĉ that simulates the execution of C in a MIM attack. Indeed, let
C be a probabilistic polynomial-time algorithm, and consider the execution of Protocol 6.2.4 in
the man-in-the-middle setting where C plays the part of the channel. This execution is depicted
in Figure 6.4 (Page 6.4). Note that we use the tilde (i.e., ˜) symbol to denote the messages of
the right session. The messages sent by the right and left parties are computed according to the
protocol while the messages sent by the channel are computed by C who may use any (efficiently
computable) function of the previous messages.

17Indeed, see Protocol 6.4.4 for such a construction.
18This is similar to the coin-tossing protocol of [Lin01].
19Note that this will not be true if we allow the adversary to be a polynomial-sized circuit, that may have an

element of Rn hardwired into it.

6.2. A UNIFORM NON-MALLEABLE COIN-TOSSING PROTOCOL 115

Public input: 1n: security parameter
1n

↓

L R

Steps L,R1.x (Commitment to r1): Left party selects r1 ←R

{0, 1}n and commits to it using a perfectly-binding commit-
with-extract scheme. We denote the transcript of the commit-
ment by τ1. We let s1 denote the randomness used by left party
during this step.

Comm-Ext(r1; s1) ⇒

Step R2 (Send r2): The right party selects a string r2 ←R {0, 1}n

and sends it.
r2 ←R {0, 1}n

←−−−−−−−−−−−−−
Step L3 (Send r): The left party sends the value r = r1 ⊕ r2. We

stress that the left party does not reveal the decommitment of
τ1.

18)

r = r1 ⊕ r2−−−−−−−−−−−−−→

Steps L,R4.x (Prove that r = r1 ⊕ r2): The left party proves, us-
ing a zero-knowledge universal-argument (ZKUARG), that ei-
ther r = r1 ⊕ r2 (where r1 is the unique string committed to by
the transcript τ1) or r ∈ Rn.

ZKUARG
r = r1 ⊕ r2

or r ∈ Rn

⇒

The result of the protocol is the string r. We will use the convention
that if one of the parties aborts (or fails to provide a valid proof) then
the other party determines the result of the protocol.

The right column contains a schematic description of the protocol as defined in the left column.

Protocol 6.2.4. A non-malleable coin-tossing protocol for uniform adversaries

L C R

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→

r̃2 ←R {0, 1}n

←−−−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r1 ⊕ r2−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−−→

ZKUARG
r = r1 ⊕ r2

or r ∈ Rn

⇒
ZKUARG
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn

⇒

Figure 6.4: Execution of C in the man-in-the-middle setting

116 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

We need to simulate C by an “ideal” adversary Ĉ. The ideal adversary Ĉ gets as input r(1), r(2)

and should have two outputs (b, τ). Recall that b ∈ {1, 2} and τ is a string simulating the output of
C. Without loss of generality we can assume that τ should simulate the view of C in the execution.
Clearly this view includes the strings r, r̃ where r is the result of the coin-tossing protocol in the
left session and r̃ is the result of the coin-tossing protocol in the right session. For the simulation
to be successful, it must hold that r = r(1) and r̃ is either equal to r(1) or to r(2). If this holds
then we can decide by examining τ whether b should equal 1 or 2 based on whether r̃ = r(1) or
r̃ = r(2). We see that the output b is redundant and that to prove that Protocol 6.2.4 is a secure
non-malleable coin-tossing protocol it is enough to prove the following theorem:

Theorem 6.2.5. Suppose that C is a probabilistic polynomial-time algorithm describing the strategy
for a synchronizing adversary for Protocol 6.2.4, then there exists an algorithm Ĉ ′ (computable by a
probabilistic expected polynomial-time Turing machine with oracle access to C) with a single output
such that, if r(1), r(2) are chosen uniformly and independently in {0, 1}n then,

1. Ĉ ′(r(1), r(2)) is computationally indistinguishable from the view of C in a real execution of
Protocol 6.2.4 in the man-in-the-middle setting.

2. Let r, r̃ be the result of the coin-tossing algorithm in the left and right sessions recorded in the
transcript Ĉ ′(r(1), r(2)). Then, with overwhelming probability it is the case that r = r(1) and
r̃ ∈ {r(1), r(2)}.

6.2.4 Proof of Theorem 6.2.5

Let C be a probabilistic polynomial-time algorithms representing the strategy of a synchronizing
adversary for Protocol 6.2.4. In order to prove Theorem 6.2.5 we need to construct an algorithm
Ĉ ′ that simulates C. Figure 6.5 (Page 117) contains a schematic description of Algorithm Ĉ ′.

Operation of Algorithm Ĉ ′. Algorithm Ĉ ′ gets as input two strings r(1), r(2) that were chosen
uniformly and independently at random and in addition it gets black-box access to algorithm C.
Algorithm Ĉ ′ emulates C’s execution by running the honest left and right strategy, with some
modifications as described below.

Algorithm Ĉ ′ departs from the honest strategy in the right session (Steps L,R1.x) where it uses
the commitment extractor of the commit-with-extract scheme Comm-Ext to simulate the execution
of this phase, while also obtaining the value r̃1 committed to by C. Note that in order to do that,
Ĉ ′ needs to treat both C and the left party L as a single combined sender for the commitment
scheme and rewind them both at the same time.

The next modification is that instead of choosing r̃2 to be a random string as is done by the
honest right party, Algorithm Ĉ ′ uses r̃2 = r̃1⊕r(2). Note however that this is still a uniform string
because r(2) is uniformly distributed. In the left session in Step L3 Ĉ ′ sends r = r(1) instead of
r = r1 ⊕ r2. This means that with high probability the statement r = r1 ⊕ r2 is false. Also, with
high probability it also holds that r 6∈ Rn. However, Ĉ ′ uses the simulator for the ZKUARG in
order to simulate a proof for the false statement r = r1 ⊕ r2 or r ∈ Rn. Similarly to the case when
using the commitment extractor, Algorithm Ĉ ′ will need to treat the adversary C and the honest
right party as one combined verifier algorithm. Thus Algorithm Ĉ ′ will also rewind the honest right
party in this step. Note that all this can be carried out in expected polynomial-time.20 Note that

20Actually we can also have a strict polynomial-time non-black-box simulator by using the protocols of [Bar01]
and [BL02].

6.2. A UNIFORM NON-MALLEABLE COIN-TOSSING PROTOCOL 117

Input: r(1), r(2)

Simulated L Simulated C Simulated R

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→ © Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r(1)
−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−→

Simulate
proof ª

Simulated
ZKUARG
r = r1 ⊕ r2

or r ∈ Rn

⇒
ZKUARG
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn

⇒

Rewinding points are marked by circular arrows ª, ©

Figure 6.5: Algorithm Ĉ ′ – simulation of C

118 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Algorithm Ĉ ′ would not be well-defined if we needed to invoke the simulator and extractor at the
same time, since it would mean that algorithm Ĉ ′ would be rewinding itself. However, this can not
happen since we assume the synchronizing scheduling.

Now that algorithm Ĉ ′ is specified all that is left is to prove the two parts of Theorem 6.2.5. It
turns out that Part 1 can be proven using the standard hybrid argument (relying on the security
of the commitment scheme and zero-knowledge simulator). In contrast, the proof of Part 2 is much
more complicated and it is for proving this part that we needed to introduce the evasive set R in
the first place. We start with the proof of the more complicated part.

6.2.5 Proof of Theorem 6.2.5 Part 2

From a first impression, by looking at Figure 6.5 one may think that Part 2 of Theorem 6.2.5
should be easy to prove. After all, in the left session it is certainly the case that r = r(1) and
the soundness of the universal-argument system used in the right session should ensure us that
r̃ = r̃1 ⊕ r̃2 = r(2) (because it is unlikely that C can select r̃ ∈ Rn). However, there is a caveat in
this reasoning. The problem is that soundness is only ensured in an interactive setting where the
prover only has access to a single interaction with the honest verifier. However, since Algorithm
Ĉ ′ is using the simulator in the left session, it will actually rewind also the verifier algorithm of
the right party. he fact that Algorithm Ĉ ′ gets the ability to rewind the verifier algorithm ruins
our ability to argue about the soundness of the universal-argument system. Indeed, this problem
is real (i.e., the soundness of the system may indeed be compromised). For example, consider an
adversary that uses the relaying content strategy (i.e., copies all messages from the left session to
the right session and vice versa). In an execution with such an adversary, it will be the case that
r̃ = r and the proof in the right session will pass verification (since for such an adversary, the right
session is identical to the left session). Because of the indistinguishability of our simulator, when
we simulate the relaying adversary with Algorithm Ĉ ′, also in the simulated transcript it holds
that r̃ = r = r(1). However, since r(1) is chosen at random, with overwhelming probability, it will
not be the case that r̃ = r̃1 ⊕ r̃2. Therefore, in the simulated transcript, the statement proven
by the adversary in the right session will be false. Of course, this does not mean that Part 2 of
Theorem 6.2.5 is false. Indeed, in the case of the relaying adversary it holds r̃ = r(1) which is also
allowed by the statement of Part 2. It just means that the naive approach to proving this part
fails. We now turn to the actual proof.

We assume, for the sake of contradiction, that there exists a probabilistic polynomial-time
algorithm C such that with non-negligible probability the corresponding ideal adversary Ĉ ′ outputs
a transcript where the result of right session r̃ is neither r(1) nor r(2). Note that in this case it must
hold that the proof in the right session passes verification (or otherwise by our convention the right
party can simply choose r̃ = r(2)). We consider the following 2O(n3)-time algorithm Ĉ ′′ (depicted
in Figure 6.6). Algorithm Ĉ ′′ behaves almost exactly as Ĉ ′ with two differences:

1. In the left session (in Step L3) it chooses r ←R Rn instead of choosing r = r(1) (where
r(1) ←R {0, 1}n). (This takes 2O(n3) steps using the constructibility property of R.)

2. Then, in the ZKUA phase (Steps L,R4.x) Algorithm Ĉ ′′ does not use the zero-knowledge
simulator but rather the honest prover algorithm of the universal argument to prove the true
statement that either r = r1 ⊕ r2 or r ∈ Rn. (This takes 2O(n3) steps.)

The output of Ĉ ′′ is computationally indistinguishable (by uniform algorithms) from the output
of Ĉ ′, even if the distinguisher is given r(2) (but not r(1)). Indeed, this follows from the pseudoran-
domness of Rn and the zero-knowledge property of the universal-argument. Yet, combined with

6.2. A UNIFORM NON-MALLEABLE COIN-TOSSING PROTOCOL 119

Input: r(2)

Simulated L Simulated C Simulated R

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→ © Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

Use 2O(n3) steps
r ←R Rn−−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−→

Use 2O(n3) steps

ZKUA
r = r1 ⊕ r2

or r ∈ Rn
√ ⇒

ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rn

⇒

Figure 6.6: Algorithm Ĉ ′′

the hypothesis that in the output of Ĉ ′ with non-negligible probability r̃ 6∈ {r(1) = r, r(2)}, this
implies that in the output of Ĉ ′′, with non-negligible probability it is the case that the following
three conditions hold simultaneously:

1. r̃ 6= r

2. r̃ 6= r(2) = r̃1 ⊕ r̃2

3. The proof that either r̃ = r̃1 ⊕ r̃2 or r̃ ∈ Rn passes verification.

Now the soundness property of the universal arguments holds against 2n5
-sized circuits. Since

we are using less time than this and no rewinding/simulation is done during the relevant time21 by
Ĉ ′′ it can only be with negligible probability that the proof passes verification and the statement
is false. This means that with non-negligible probability it will be the case that r̃ 6= r and r̃ ∈ Rn

(since r̃ 6= r̃1⊕ r̃2). Now suppose that we halt the execution of Ĉ ′′ at the point where r̃ is computed.
Up to this point Ĉ ′′ only needs to use a polynomial number of steps if it is given as input a random
element r ←R Rn. This means that we have a probabilistic polynomial-time algorithm that gets a
string r ←R Rn and outputs a string r̃ that with non-negligible probability will be both different
from r and a member of Rn. But this is clearly a contradiction to the evasiveness property of the
set Rn.

6.2.6 Proof of Theorem 6.2.5 Part 1

We will now prove Part 1 of Theorem 6.2.5. That is, we prove the following claim:

21Ĉ′′ does use rewinding in the extraction stage but this is done before the ZKUA phase. Also in the extraction
phase Ĉ′′ only needs to rewind the honest left algorithm and not the honest right algorithm.

120 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Claim 6.2.6. Let C be a probabilistic polynomial-time adversary strategy for Protocol 6.2.4. Let Ĉ ′

be the simulator for C, as described in Section 6.2.4. Then, Ĉ ′(r(1), r(2)), where r(1), r(2) ←R {0, 1}n,
is computationally indistinguishable from the view of C in a real execution of Protocol 6.2.4 in the
man-in-the-middle setting.

We prove the claim using the hybrid argument. We let H0 be the view of C in a real execution,
and we let H4 be Ĉ ′(r(1), r(2)), where r(1), r(2) ←R {0, 1}n. We prove that H0 ≡C H4 by showing
three intermediate random variables H1,H2,H3 such that

H0 ≡C H1 ≡C H2 ≡C H3 ≡C H4

We now describe these intermediate random variables, and show that indeed for every 1 ≤ i ≤ 4,
Hi is computationally indistinguishable from Hi−1. To describe the random variable Hi, we will
describe the differences between it and the variable Hi−1, and then show that the two variables are
indistinguishable.

Hybrid H1: Simulated ZKUA. The difference between H1 and H0 is that in H1 we use the
simulator of the zero-knowledge universal argument of Steps L,R4.x to simulate the view of
the adversary C in these steps in the left session. Note that the verifier that is simulated is
the combined strategy of C and the honest Right algorithm in these steps. The two random
variables are indistinguishable by the zero-knowledge condition of the universal argument.

Hybrid H2: Choose r = r(1). The difference between H2 and H1 is that in H2 we choose the
string r sent by the Left party in Step R2 of the left session to be r(1), where r(1) is chosen at
random from {0, 1}n, instead of choosing r to be equal to r1 ⊕ r2. The distributions H2 and
H1 are computationally indistinguishable by the security of the commitment scheme used in
Steps L,R1.x. (Note that in both hybrids, the coins used in the commitment scheme of these
steps are not used anywhere else in the execution.)

Hybrid H3: Extract commitment. The difference between H3 and H2 is that in H3 we use
the commitment extractor of the commit-with-extract scheme of Steps L,R1.x to simulate
the view of the adversary C in these steps in the right session. Note that the sender that is
simulated is the combined strategy of C and the honest Left algorithm in these steps. The
two random variable are indistinguishable by the simulation condition of the commit-with-
extract scheme (see Definition 2.5.2). Note that in addition to outputting a simulated view,
the commitment extractor also outputs as an auxiliary outputs the value r̃1 that is committed
to by the adversary in this simulated view.

Hybrid H4: Send r̃2 = r̃1 ⊕ r(2). The difference between H4 and H3 is that in H4, in Step R2
of the right session, we choose r̃2 to be r̃1 ⊕ r(2), where r̃1 is the value extracted by the
commitment extractor, and r(2) is chosen at random. We note that even though we now
choose r̃2 in a different way, its distribution is still the uniform distribution (since r(2) is
chosen at random). Therefore, the two variables H4 and H3 are identically distributed.

The proof is finished by observing that H4 is indeed the random variable Ĉ ′(r(1), r(2)), where
r(1), r(2) ←R {0, 1}n.

6.3. DEALING WITH NON-UNIFORM ADVERSARIES 121

6.3 Dealing with Non-Uniform Adversaries

In this section, we show how to modify Protocol 6.2.4 to obtain security even against adversaries
that use non-uniform algorithms. Specifically, under the same assumptions we will construct a non-
malleable coin-tossing protocol secure against polynomial-sized circuits (rather than probabilistic
polynomial-time uniform algorithms ,as was done in Section 6.2). The protocol and its simulator
will be quite similar to the uniform case. However, our proof of security will be somewhat different
and will involve a non-black-box use of the adversary’s code.

6.3.1 Evasive Set Families

An important component in our construction is a generalization of evasive sets as defined in Sec-
tion 6.2.1, called evasive set family. Roughly speaking, an evasive set family is a family of sets
indexed by strings, where each set is evasive (in the sense of Definition 6.2.1) with respect to
algorithms that get its index as an advice string. The formal definition follows:22

Definition 6.3.1 (Evasive set family). Let {Rα}α∈{0,1}∗ be family of sets, where for any α ∈
{0, 1}∗, Rα ⊆ {0, 1}∗. Denote Rα,n

def
= Rα ∩ {0, 1}n. We say that the family {Rα}α∈{0,1}∗ is an

evasive set family if the following conditions hold with respect to some negligible function µ(·):

Constructibility: There exists a Turing machine M such that M(1n, α) runs for |α|2n3
steps and

outputs a list of all the elements in the set Rα,n. In particular this means that deciding

whether or not r ∈ Rα,n can be done in time |α|2|r|3 .

Pseudorandomness: The set Rα,n is pseudorandom against uniform probabilistic nO(log n)-time
algorithms with advice α. That is, for any probabilistic polynomial-time Turing machine M
it holds that

∣∣∣∣ Pr
r←RRα,n

[M(α, r) = 1] − Pr
r←R{0,1}n

[M(α, r) = 1]

∣∣∣∣ < µ(n)

Evasiveness: For any probabilistic nO(log n)-time Turing machine M and for any r ∈ Rα,n,

Pr[M(α, r) ∈ Rα,n \ {r}] < µ(n)

Equivalent strings. Intuitively, we say that two strings α, α′ are equivalent if each string can
be computed from the other string by a uniform “efficient”23 algorithms. More precisely, we define
the notion of equivalence as follows:

Definition 6.3.2 (Equivalent strings). Let µ : N → [0, 1] be some function. Two strings
α, α′ ∈ {0, 1}∗ are µ-equivalent if there exist two probabilistic algorithms M and M ′ with description
size at most log µ(n) and running-time at most 1

µ(n) (where n = |α| + |α′|) such that both

Pr[M(α) = α′] > µ(n)

22 We have chosen to define evasive set families with respect to nO(log n)-time algorithms instead of polynomial-time.
This change somewhat simplifies our exposition but is not really significant. In particular, we could have used any
other fixed super-polynomial function.

23For convenience, we define “efficient” in this section as running in time nO(log n). See Footnote 22.

122 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

and

Pr[M ′(α′) = α] > µ(n)

hold.

We say that α and α′ are equivalent if they are n− log2 n-equivalent. We say that an evasive set
family is nice if Rα = Rα′ whenever α and α′ are equivalent.

As in the case of evasive sets, under the assumptions of this paper there exists an evasive set
family. That is, we have the following theorem:

Theorem 6.3.3. Suppose that 2nǫ
-strong one-way functions exist, then there exists an evasive set

family. Furthermore, this family is nice.

Proof Sketch: The proof of Theorem 6.3.3 is almost identical to the proof of Theorem 6.2.2, since
once a string α is fixed, one can enumerate and execute in npolylog(n) time all Turing machines of
log3 n-sized description and nlog3 n probabilistic running time that get α as an advice string. Using
this, one can construct for each α, a set Rα that is evasive and pseudorandom with respect to such
machines.

We can transform a family {Rα} to a family {Rα′} that is nice in the following way. To compute
Rα′ we first find in npolylog(n)-time the lexicographically first string α such that α is equivalent to
α′ and then compute Rα.24

6.3.2 The construction

Protocol 6.3.4 is our non-malleable coin-tossing protocol for non-uniform adversaries. It is very
similar to the non-malleable coin-tossing protocol for uniform adversaries (Protocol 6.2.4). In fact,
there are only two main changes:

First modification (adding a preliminary stage). We add a preliminary stage (Steps L,R
0.x) where each party sends a commitment to a hash of the all-zeros string and prove that it knows
the hashed value using a zero-knowledge universal argument (ZKUA).25

Step L0.1.x - left commitment The left player commits to a hash of the all-zeros string and
proves knowledge of the hashed value.

Step R0.1.1 (Right sends hash): Right party chooses a random
collision-resistent hash function h1 and sends it to the left party.

Step L0.1.2 (Left commits): The left party a commitment to
h1(0

n). That is, it chooses a string s1 (random coins for the
commitment) and sends y1 = Com(h1(0

n); s1)

24There is a slight subtlety here. When testing equivalence between α and α′ we will need to use a pseudorandom

generator to check the condition that Pr[M(α) = α′] > n− log2 n for all machines M of appropriate description and
running time. This means that we cannot compute exactly whether two strings are equivalent. To fix this, we will
consider strings as equivalent as long as the probability estimated using the pseudorandom generator is at least

n− log3 n. This will ensure that if α′ and α′′ are equivalent as per Definition 6.3.2, then the lexicographically first
string α we find will be identical for both of them.

25We do not use a commit-with-extract scheme here because we need to prove knowledge of the hash’s preimage
and not knowledge of the value that is committed to.

6.3. DEALING WITH NON-UNIFORM ADVERSARIES 123

Steps L,R0.1.2.x (Left proves knowledge): The left party
proves using a ZKUA that it knows a string α (where
|α| ≤ nlog n) and a string s1 such that y1 = Com(h1(α); s1)
where y1 is the commitment sent at Step L0.1.1

Note: We stress that since we use a universal argument the length of the string α is not
bounded by any fixed polynomial in the security parameter. However for convenience, we will
require that |α| ≤ nlog n. Note that if the left party follows the protocol then it would be the
case that α = 0n.

Steps L,R0.2.x - right commitment These steps are almost a “mirror image” of Steps L,R0.1.x
(with one slight difference). That is, the Right player now commits to a hash of the all-zeros
string and proves knowledge of the hashed value.

Step R0.2.1 (Right commits): The right party chooses a ran-
dom collision resistant hash function h2 and sends h2 along
with a commitment to h2(0

n). That is, it chooses a string s2

(random coins for the commitment) and sends h2 and y2 =
Com(h2(0

n); s2).
26

Steps L,R0.2.2.x (Right proves knowledge): The right party
proves using a ZKUA that it knows a string β (where |β| ≤
nlog n) and a string s2 such that y2 = Com(h2(α); s2) where y2

is the commitment sent at Step R0.2.1

Second modification (modifying the ZKUA). In Step 5, the left party proves using the
zero-knowledge universal-argument that either r = r1 ⊕ r2 or r ∈ Rα◦β,n where α is such that
y1 = Com(h1(α), s1) for some s1 and β is such that y2 = Com(h2(β), s2) for some s2. (Recall that
α ◦ β denotes the concatenation of α and β.)

By applying these changes we obtain Protocol 6.3.4 (see Page 124).

As in the uniform case (i.e., of Protocol 6.2.4), what we need to prove is the following Theorem
(which is the non-uniform analog of Theorem 6.2.5):

Theorem 6.3.5. Let Cn.u. be a polynomial-sized circuit (representing the adversary’s strategy for
Protocol 6.3.4). Then, there exists an algorithm Ĉ ′

n.u. (that can be computed in expected probabilistic
polynomial-time algorithm with oracle access to Cn.u.) such that if r(1), r(2) are chosen uniformly
and independently in {0, 1}n then:

1. Ĉ ′
n.u.(r

(1), r(2)) is computationally indistinguishable from the view of Cn.u. in a real execution
of Protocol 6.3.4 with the honest left and right parties.

2. Let r, r̃ be the result of the coin-tossing protocol in the left and right sessions of the view
Ĉ ′

n.u.(r
(1), r(2)). Then, with overwhelming probability it is the case that r = r(1) and r̃ ∈

{r(1), r(2)}.
26Note that this step is not an exact mirror image of the previous step since the Right party, that is the sender of

the commitment, is choosing the hash function.

124 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Public input: 1n: security parameter
1n

↓

L R

Steps L,R0.1.x (Left commits to α): Right party chooses and
sends a hash h1. Left sends y1 = Com(h1(0

n)) and then
proves using a ZKUA that it knows a value α such that
y1 = Com(h1(α)) (where |α| ≤ nlog n).

h1←−−−−
h1, y1 = Com(h1(0

n))−−−−−−−−−−−−−−−−−−−→
ZKUA of α, s s.t.
y1 = Com(h1(α), s)

⇒

Steps L,R0.1.x (Right commits to β): Right party chooses a
hash h2, and sends h2 and y2 = Com(h2(0

n)). It then proves us-
ing a ZKUA that it knows a value β such that y2 = Com(h2(β))
(where |β| ≤ nlog n).

h2, y2 = Com(h2(0
n))←−−−−−−−−−−−−−−−−−−−

⇐ ZKUA of β, s s.t.
y2 = Com(h2(β), s)

Continue as in Protocol 6.2.4 (The only change is in Steps L,R4.x)

Steps L,R1.x (Commitment to r1): (unchanged) Left party se-
lects r1 ←R {0, 1}n and commits to it using a perfectly-binding
commit-with-extract scheme. We denote the transcript of the
commitment by τ1. We let s1 denote the randomness used by
left party during this step.

Comm-Ext(r1; s1) ⇒

Step R2 (Send r2): (unchanged) The right party selects a string
r2 ←R {0, 1}n and sends it.

r2 ←R {0, 1}n

←−−−−−−−−−−−−−
Step L3 (Send r): (unchanged) The left party sends the value r =

r1 ⊕ r2 (without revealing the decommitment of τ1).
r = r1 ⊕ r2−−−−−−−−−−−−−→

Steps L,R4.x (Prove that r = r1 ⊕ r2): The left party proves us-
ing a zero-knowledge universal-argument (ZKUA) that either
r = r1 ⊕ r2 or r ∈ Rα◦β,n, where y1 = Com(h1(α)) and
y2 = Com(h2(β)).

ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n

⇒

The result of the protocol is the string r. We will use the convention
that if one of the parties aborts (or fails to provide a valid proof)
then the other party determines the result of the protocol.

Protocol 6.3.4. A non-malleable coin-tossing protocol for non-uniform adversaries

6.3. DEALING WITH NON-UNIFORM ADVERSARIES 125

L Cn.u. R

h1←−
y1 =Com(h1(0

n))−−−−−−−−−−−−→
ZKUA know

α s.t.
y1 =Com(h1(α))

⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))−−−−−−−−−−−→

ZKUA know
α̃ s.t.
ỹ1 =Com(h̃1(α̃))

⇒

h2, y2 =Com(h2(β))←−−−−−−−−−−−−−−

⇐
ZKUA know

β s.t.
y2 =Com(h2(β))

h̃2, ỹ2 =Com(h̃2(0
n))←−−−−−−−−−−−−−−−

⇐
ZKUA know

β̃ s.t.
ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→

r̃2←−−−−−−−−−−−−−− r̃2 ←R {0, 1}n

r2←−−−−−−−−−−−−−−
r = r1 ⊕ r2−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→

ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n

⇒
ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n

⇒

Figure 6.7: Execution of Cn.u. in the man-in-the-middle setting

6.3.3 Proof of Theorem 6.3.5

To prove Theorem 6.3.5, consider a polynomial-sized circuit Cn.u. and consider the execution of
Protocol 6.3.4 with Cn.u. playing the part of the channel. Such an execution is depicted in Figure 6.7.

We will use a simulator Ĉ ′
n.u. that is very similar to the simulator used in the uniform case (see

Section 6.2.4). In fact, the only change will be that we need to simulate also the preliminary steps
(Steps L,R0.x). To simulate these steps, algorithm Ĉ ′

n.u. will simply follow the honest left and right
strategy (i.e., commit to a hash of the all zeros string). To simulate the other steps, we will follow
the same strategy as the simulator Ĉ ′, as described in Section 6.2.4 (see also Figure 6.5). That is,
we will use the commitment extractor to extract r̃1, choose r̃2 to be r̃1⊕ r(2), and use the simulator
of the zero-knowledge universal-argument to simulate Steps L,R4.x. Figure 6.8 (Page 126) contains
a schematic description of the resulting algorithm Ĉ ′

n.u..
As in the uniform case, to prove Theorem 6.3.5, we need to prove two Lemmas analogous to Parts 1
and 2 of Theorem 6.2.5:

126 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Input: r(1), r(2)

L Cn.u. R

h1←−
y1 =Com(h1(0

n))−−−−−−−−−−−−→
ZKUA know

α s.t.
y1 =Com(h1(α))

⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))−−−−−−−−−−−→

ZKUA know
α̃ s.t.
ỹ1 =Com(h̃1(α̃))

⇒

h2, y2 =Com(h2(β))←−−−−−−−−−−−−−−

⇐
ZKUA know

β s.t.
y2 =Com(h2(β))

h̃2, ỹ2 =Com(h̃2(0
n))←−−−−−−−−−−−−−−−

⇐
ZKUA know

β̃ s.t.
ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→ © Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

r = r(1)
−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→

Simulate
proof ª

Simulated
ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n

⇒
ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n

⇒

Figure 6.8: Algorithm Ĉ ′
n.u. - simulation of Cn.u.

6.3. DEALING WITH NON-UNIFORM ADVERSARIES 127

Lemma 6.3.6. For r(1), r(2) ←R {0, 1}n, Ĉ ′
n.u.(r

(1), r(2)) is computationally indistinguishable from
the view of Cn.u. when executing Protocol 6.3.4 with the honest L and R in the man-in-the-middle-
setting.

Lemma 6.3.7. For r(1), r(2) ←R {0, 1}n, with overwhelming probability Ĉ ′
n.u.(r

(1), r(2)) is a view of
an execution of Protocol 6.3.4 where the result r of the left session is r(1) and the result r̃ of the
right session is either r(1) or r(2).

The proof of Lemma 6.3.6 is obtained by fairly standard hybrid arguments, and is almost
identical to the proof of Theorem 6.2.5 Part 1.27 Thus we omit this proof here. In contrast, the
proof of Lemma 6.3.7 is more complicated and involves a non-black-box use of the code of the
adversary Cn.u..

6.3.4 Proof of Lemma 6.3.7

The general outline proof of Lemma 6.3.7 follows the proof of Theorem 6.2.5 Part 2 (see Sec-
tion 6.2.5). We assume, for the sake of contradiction, that there exists a polynomial-sized circuit
Cn.u., such that with non-negligible probability in the transcript Ĉ ′

n.u.(r
(1), r(2)) it is the case that

r̃ 6∈ {r(1), r(2)} (where r̃ denotes the result string in the right session).28 We now construct a
2O(n3)-time algorithm Ĉ ′′

n.u. with one input that will have the following two properties:

1. For randomly chosen r(2) ←R {0, 1}n, the random variable (r(2), Ĉ ′′
n.u.(r

(2))) is computation-
ally indistinguishable by uniform algorithms from the random variable (r(2), Ĉ ′

n.u.(r
(1), r(2))),

where r(1), r(2) ←R {0, 1}n.

2. With overwhelming probability it is the case that in the output of Ĉ ′′
n.u.(r

(2)) either r̃ = r or
r̃ = r(2), where r and r̃ denote the result of the coin-tossing protocol in the left and right
session, respectively.

As in Section 6.2.5, the existence of an algorithm Ĉ ′′
n.u. satisfying these two properties directly

leads to a contradiction. This is because they imply that also in the transcript Ĉ ′
n.u.(r

(1), r(2)) it is
the case that with overwhelming probability r̃ ∈ {r, r(2)} (note that this condition can be tested
by a uniform algorithm). Since we know that in the transcript Ĉ ′

n.u.(r
(1), r(2)) it holds that r = r(1)

we get that r̃ ∈ {r(1), r(2)} and so the contradiction follows.
What remains to be done is to describe the algorithm Ĉ ′′

n.u. and prove that it satisfies the
two properties. Algorithm Ĉ ′′

n.u. is described in Figure 6.9 (Page 128); It follows the operation of
Algorithm Ĉ ′

n.u. with the following changes:

1. In Steps L,R0.1.x of the left session, Algorithm Ĉ ′′
n.u. sets the hashed string α to be the

description of Cn.u.’s code instead of α = 0n, which is what is done by the honest left party
L and by Algorithm Ĉ ′

n.u..

2. In Steps L,R0.2.x of the right session, Algorithm Ĉ ′′
n.u. follows the “mirror image” of the

previous steps. That is, Algorithm Ĉ ′′
n.u. will set the hashed string β̃ to be the description

of Cn.u.’s code instead of β̃ = 0n (as is done by the honest right party R and by Algorithm
Ĉ ′

n.u.).

27This is due to the fact that the only difference between the simulator Ĉ′
n.u. we present here and the simulator Ĉ′

of Section 6.2.4 is that Algorithm Ĉ′
n.u. needs to simulates also the preliminary phase of Steps L,R0.x. However, in

these steps it uses the same strategy as used by the honest parties.
28Note that by the definition of Algorithm Ĉ′

n.u. it is always the case that r = r(1), where r denote the result string
of the left session in Ĉ′

n.u.(r
(1), r(2)).

128 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Input: r(2)

L Cn.u. R
Let α = desc(Cn.u.)
h1←−
y1 =Com(h1(0

n))−−−−−−−−−−−−→
ZKUA of α s.t.
y1 =Com(h1(α))

⇒

h̃1←−
ỹ1 =Com(h̃1(α̃))−−−−−−−−−−−→
ZKUA of α̃ s.t.
ỹ1 =Com(h̃1(α̃))

⇒
ª Extract α̃

Extract β ª

h2, y2 =Com(h2(β))←−−−−−−−−−−−−−−
⇐ ZKUA of β s.t.

y2 =Com(h2(β))

Let β̃ = desc(Cn.u.)
h̃2, ỹ2 =Com(h̃2(0

n))←−−−−−−−−−−−−−−−
⇐ ZKUA of β̃ s.t.

ỹ2 =Com(h̃2(β̃))

r1←R {0, 1}n Comm-Ext(r1)−−−−−−−−−−−−−−−−−→
Comm-Ext(r̃1)−−−−−−−−−−−−−−−−−→ © Extract r̃1

r̃2 = r̃1 ⊕ r(2)

←−−−−−−−−−−−−−−
r2←−−−−−−−−−−−−−−

Use 2O(n3) steps
r ←R Rα◦β,n−−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→

Use 2O(n3) steps

ZKUA
r = r1 ⊕ r2

or r ∈ Rα◦β,n
√ ⇒

ZKUA
r̃ = r̃1 ⊕ r̃2

or r̃ ∈ Rα̃◦β̃,n

⇒

Figure 6.9: Algorithm Ĉ ′′
n.u.

6.3. DEALING WITH NON-UNIFORM ADVERSARIES 129

3. In the corresponding steps (Steps L,R0.2.x) of the left session, Algorithm Ĉ ′′
n.u. uses the

extractor of the universal argument (this may take up to nO(log n) steps) and extract a string
β of length up to nlog n and a string s such that Com(h̃2(β), s) = y2.

4. In Step L4 of the left session, algorithm Ĉ ′′
n.u. chooses r as a random element of the set Rα◦β,n,

using 2O(n3) steps. (Recall that Ĉ ′
n.u. used in this step r = r(1)).

5. In Steps L,R5.x of the right session, algorithm Ĉ ′′
n.u. follows the honest prover algorithm for

the ZKUA system, and runs in 2O(n3) time to prove the true statement that r ∈ Rα◦β,n.

(Recall that Ĉ ′ used in this step the simulator for the ZKUA system.)

Now that we described Algorithm Ĉ ′′, we need to show that it satisfies both Properties 1
and 2 mentioned above. We start with proving that it satisfies Property 2, since this is the more
interesting part.

Property 2 We need to show is that with overwhelming probability it is the case that in the
transcript Ĉ ′′

n.u.(r
(2)), r̃ ∈ {r, r(2)}. Suppose that this is not the case. This means that with non-

negligible probability r̃ 6∈ {r, r̃1 ⊕ r̃2} (since it r̃1 ⊕ r̃2 = r(2)). Firstly, note that since we are using
2O(n3) = 2o(n5) time, and we are doing using no rewinding in Steps L,R5.x, the soundness of the
ZKUA used in these steps in the right session, ensures us that with overwhelming probability either
r̃ = r̃1 ⊕ r̃2 or r̃ ∈ Rα̃◦β̃,n. This means that with non-negligible probability it holds that r̃ 6= r but

r̃ ∈ Rα̃′◦β̃′,n for some α̃′, β̃′ such that y1 = Com(h1(α̃′)), y2 = Com(h2(β̃′)).

We note that with overwhelming probability β̃′ = β̃ = desc(Cn.u.). Indeed, otherwise (using the
extractor for the universal argument) we would have a 2O(n3)-time algorithm for breaking the hash
function. We also note that the string α̃′ can be computed with at least n− log n probability from the
string desc(Cn.u.) in nO(logn)-time by applying the extractor to the ZKUA of Steps L,R0.1.3.x. (This
procedure will indeed get the same string α′, as otherwise, using also the knowledge extractor for
the universal argument of Step L,R4.x, we would have a 2O(n3)-time algorithm that finds collisions
in the hash function with non-negligible probability.)

Because the string β extracted by Algorithm Ĉ ′′
n.u. is also computed in time nO(log n) from

desc(Cn.u.) and because α = β̃ = desc(Cn.u.), we get that the strings α ◦β and α̃′ ◦ β̃′ are equivalent.
Therefore, Rα◦β,n = Rα̃′◦β̃′,n.

We see that if we halt the algorithm Ĉ ′
n.u. after Step L3 we get a nO(log n)-time algorithm with

advice α ◦ β that given an element r ∈ Rα◦β,n manages to output an element r̃ ∈ Rα◦β,n \ {r}. By
this we obtain a contradiction to the evasiveness property of this set family.

We note that since the set Rα◦β is only evasive with respect to machines that get α◦β as advice,

it is crucial that Algorithm Ĉ ′′
n.u. used the description of the code of the adversary Cn.u. as α and β̃

in Steps L,R0.1,2.x.

Property 1. We now prove that the random variable (r(2), Ĉ ′′
n.u.(r

(2))) (where r(2) ←R {0, 1}n) is
computationally indistinguishable by uniform algorithms from the random variable (r(2), Ĉ ′

n.u.(r
(1), r(2)))

(where r(1), r(2) ←R {0, 1}n). Intuitively, this follows from the secrecy of the commitment scheme,
the pseudorandomness of the set Rα◦β,n, and the zero-knowledge property of the ZKUA. The
actual proof, which utilizes the hybrid argument, follows.

We denote by H0 the random variable (r(2), Ĉ ′
n.u.(r

(1), r(2))) and by H4 the random variable
(r(2), Ĉ ′′

n.u.(r
(2))). We prove our claim by showing random variables H1,H2,H3 such that for ev-

130 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

ery 1 ≤ i ≤ 4, the variables Hi and Hi−1 are computationally indistinguishable by probabilistic
polynomial-time uniform algorithms.

We now describe these intermediate random variables, and show that indeed for every 1 ≤ i ≤ 4,
Hi is computationally indistinguishable from Hi−1. To describe the random variable Hi, we will
describe the differences between it and the variable Hi−1, and then show that the two variables
are indistinguishable by a class that is at least as strong as probabilistic polynomial-time uniform
algorithms.

Hybrid H1: Commit to Cn.u.’s code. The difference between H1 and H0 is that in H1, the hon-
est left and right parties commit to the code of Cn.u., instead of committing to the all zeros
strings. That is, in our notation, α = β̃ = desc(Cn.u.). The variables H1 and H0 are compu-
tationally indistinguishable by polynomial-sized circuits by the security of the commitment
scheme.

Hybrid H2: Extract β. The variable H2 is distributed identically to H1. However, in H2, after
running the honest verifier in Steps L,R0.2.x of the left session, we use nO(log n) time to run
the knowledge extractor of the universal argument. We thus β that corresponds to the values
hashed and committed to by the adversary the left session.

Hybrid H3: Choose r ←R Rα◦β,n. The difference between H3 and H2 is that in H3, the Left
party chooses r ←R Rα◦β,n instead of choosing r = r(1). The two hybrids are indistinguishable
by probabilistic nO(log n)-time uniform algorithms by the pseudorandomness property of the
evasive set family. Indeed, note that all the elements of these two random variable can be
sampled using nO(log n)-time and using the description of Cn.u. as an advice string. This
means that a nO(log n)-time uniform distinguisher between H3 and H2 can be converted into
a nO(log n)-time with advice Cn.u. machine that distinguishes a random element of Rα◦β,n

from the uniform distribution on {0, 1}n. This is a contradiction to the pseudorandomness
property of the evasive set family because Rα◦β,n = Rdesc(Cn.u.),n. (This is due to the fact that

the family is nice and β is computed nO(log n)-time computation from desc(Cn.u.), and hence
α ◦ β is equivalent to desc(Cn.u.).)

Hybrid H4: Use real and not simulated proof in Steps L,R4.x. The difference between H4

and H3 is that in H4, the left party follows the honest prover algorithm (that takes 2O(n3)

time) to prove the true statement that either r = r1⊕ r2 or r ∈ Rα◦β,n. The two variables are
computationally indistinguishable by the zero-knowledge property of the universal argument.

The proof is finished by observing that H4 is in fact the random variable (r(2), Ĉ ′′
n.u.(r

(2))).

6.4 Applications of Non-Malleable Coin-Tossing

In this section we construct a constant-round non-malleable commitment scheme and a constant-
round non-malleable zero-knowledge argument system. This improves over the previously known
schemes of [DDN91] that utilized a logarithmic number of rounds. The protocols of this section are
only shown to be secure against man-in-the-middle adversaries that use the synchronizing schedul-
ing. However, in Section 6.5 we show a generic way to transform such protocols into protocols that
are secure also against non-synchronizing adversaries, thus finishing the proof of Theorem 6.1.5.
We remark that our approach to proving Theorem 6.1.5 favors modularity and simplicity of pre-
sentation, at the expense of the resulting protocols’ efficiency.

6.4. APPLICATIONS OF NON-MALLEABLE COIN-TOSSING 131

Our building blocks are our non-malleable coin-tossing protocol (which is secure in the plain
model, without any setup assumption) and a non-malleable zero-knowledge argument in the shared
random string model. This latter argument is a variant of the argument system of De Santis et
al.[DDO+01].29 As noted in Section 6.1.5, the proof of Theorem 6.1.5 will go as follows: First we
prove that the composition (using Construction 6.1.2) of a (plain model) non-malleable coin-tossing
protocol with a (shared random string model) non-malleable zero-knowledge yields a non-malleable
interactive zero-knowledge argument in the plain model. Then, we show how to use such an
argument to obtain also a (plain model) non-malleable commitment scheme. In the course of the
proof we will define and use a stronger form of non-malleability that we call extractability in the
MIM setting. We believe that this notion (that appears already implicitly in [DDN91] and more
explicitly in [DDO+01]) is interesting in its own right.

6.4.1 Extractability in the MIM setting

Recall that the idea behind non-malleability is that an adversary in the MIM attack will not be
able to utilize his interaction in one session to gain something in the other session. For example,
consider the case of zero-knowledge proof systems. In such systems the left party plays the part
of the prover and the right party plays the part of the verifier. We assume that in the left session
the honest prover proves a statement x to the adversary, while in the right session the adversary
proves a (possible related) statement x̃ to the honest verifier. We require that, unless x = x̃, if the
adversary convinces the verifier then it could have done so even without interacting with the honest
prover in the left session. In the non-interactive setting, [DDO+01] makes a stronger requirement.
They require that if the adversary can convince the verifier of the statement x̃ then the adversary
can in fact output a witness for x̃. What this actually means is that in a non-malleable zero-
knowledge system it is possible to simulate the left session using the zero-knowledge simulator and
at the same time extract a witness in the right session using the knowledge extractor.

This paradigm of “simulate from the left, extract from the right” also makes sense in other
contexts. Consider commitment schemes, where the left party is the sender and the right party is
the receiver. We would want to be able to simulate the left session, without knowing the sender’s
input,while at the same time extracting the committed value of the right session. In fact, although
Dolev et al. [DDN91] do not make this extraction requirement part of their definition for non-
malleable commitment scheme, they note that their construction for commitment-scheme has this
property. As they note, this fact is important when they use their commitment scheme to construct
a non-malleable zero-knowledge proof system.

We now provide a formal definition for extractability in the MIM setting. Intuitively, a protocol
is extractable in the MIM setting if it can be “simulated from the left and extracted from the
right”. We assume that for any protocol a function (or relation) val is defined. This function
takes a transcript and returns the “intended value” consistent with this transcript. For example, in
the case of a (perfectly binding) commitment scheme, val(σ) is the unique value that is consistent
with the transcript σ. In the case of a zero-knowledge system, val will be a relation rather than a
function such that y ∈ val(σ) if y is a witness for the statement x proved in the transcript σ. In
both cases we will let val(σ) = ⊥ if σ is an invalid or aborting transcript. We assume that given a
transcript σ and a value y it is easy to determine whether y ∈ val(σ).30

29We could also have used directly the system of [DDO+01]. However, we choose to use a variant of that system
that is secure under possibly weaker assumptions (does not assume the existence of dense cryptosystems). We remark
that in contrast to the system of [DDO+01], our zero-knowledge system is interactive (although still uses only a
constant number of rounds).

30This obviously holds in the case of zero-knowledge systems. In the case of commitment schemes we can ensure

132 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

We will assume that our protocols have a determining message. This is one message in the
protocol that determines the value of the intended value. For example, in the case of a zero-
knowledge system the determining message will be the statement x. In the case of a commitment
scheme the determining message will be a message that determines the committed value uniquely.
We now define a function (or relation) i-value that takes as input a transcript of two concurrent
sessions τ . Let τL and τR denote the transcripts of the left and right sessions in τ . We define
i-value(τ) = val(τR) if the determining message in τR is not an exact copy of the determining
message in τL. Otherwise, (if the determining messages are equal) we let i-value(τ) = ⊥.

To simplify notations, we will assume that in our protocols only the left party gets an input
(x, y). In commitment schemes this is always the case. In zero-knowledge systems we will assume
that the left party gets (x, y) where y is a witness for x, and sends x as its first message. This
allows to incorporate into the definition the ability of the adversary to choose the statement he will
prove in the right session, based on information he gets in the left session. We assume that x is
the public part of the input and y is the secret part of the input (e.g., in the case of commitment
schemes x is empty). We will also assume that the adversary does not get an input, as this can be
taken care of by non-uniformity.

We can now give a formal definition for extractability in the MIM setting:

Definition 6.4.1. Let Π = (L, R) be a two party protocol with an intended value function i-value

defined as above. We say that Π is extractable in the MIM setting if for any polynomial-sized MIM
adversary C there exists a (standalone) simulator with 2-outputs Ĉ such that for any inputs (x, y)
to the honest left party:

1. If (τ ′, y′) ← Ĉ(x) then with overwhelming probability either i-value(τ ′) = ⊥ or y′ ∈ i-value(τ ′).

2. Let τ denote C’s view when interacting with L(x, y) and R, and let τ ′ denote the first output
of Ĉ(x). Then τ and τ ′ are computationally indistinguishable.

If i-value is a function (and not a relation) then we can make the following stronger requirement
in addition to Items 1 and 2: We say that an extractable scheme Π is strongly extractable (in the
MIM setting) if the distribution (τ, i-value(τ)) conditioned on i-value(τ) 6= ⊥ is computationally
indistinguishable from the distribution (τ ′, y′) conditioned on i-value(τ ′) 6= ⊥, where τ is C’s view
when interacting with L(x, y) and R and (τ ′, y′) ← Ĉ(x). (Note that the fact that a protocol is
extractable does not imply immediately that it is strongly extractable: it may be the case that τ is
indistinguishable from τ ′ but i-value(τ) is in fact distinguishable from i-value(τ ′) since i-value is not
an efficiently computable function.) Note that in both variants, we allow the simulator to output
an arbitrary value as its second output, if its first output τ ′ satisfies that i-value(τ ′) = ⊥.

Since we only deal with the MIM setting from now on we will use the names extractable and
strongly extractable and drop the qualifier “in the MIM setting”. We say that Π is extractable
(resp. strongly extractable) with respect to non-synchronizing adversaries if the extractibility con-
dition (resp. strong extractibility condition) holds only against MIM adversaries C that use the
synchronizing scheduling.

Relationship with non-malleability definition. As mentioned above, the condition of ex-
tractiblity is stronger than the notion of non-malleability as defined originally in [DDN91]. Dolev et

this holds by appending val(σ) with some auxiliary information

6.4. APPLICATIONS OF NON-MALLEABLE COIN-TOSSING 133

al.defined a non-malleable protocol as a protocol where an MIM adversary cannot succeed in caus-
ing a non-trivial31 relation between the left party’s input and the intended value of the right session,
more than can a simulator that only receives the public information. An extractable protocol is
non-malleable because its second output will hit the relation with probability at most negligibly
smaller than the adversary’s. We note that latter works (such as [DDO+01] in the common reference
string model) chose to use the condition of extractiblity as the definition of non-malleability, since
this stronger condition is often needed in applications.

6.4.2 Constructing Extractable Protocols

Our approach to constructing an extractable zero-knowledge scheme and a strongly extractable
commitment scheme is the following:

1. Reduce the problem to constructing only an extractable zero-knowledge scheme.

2. Show that our non-malleable coin-tossing protocol allows us to reduce the problem to the
problem of constructing such a scheme in the modified shared random string model.

3. Give a simple construction of an extractable zero-knowledge scheme in the modified shared
random string model

4. Show (in Section 6.5) that for both commitment and zero-knowledge schemes, one can trans-
form an extractable protocol secure against synchronizing adversaries into a protocol secure
also against non-synchronizing adversaries.

The following lemma handles Step 1 of this outline. That is, it says that in order to obtain both
extractable commitments and zero-knowledge schemes, it is enough to construct the latter. We
state and prove the lemma only for the case of syncrhonizing adversaries since this is the version
we need in this section.

Lemma 6.4.2. If there exists a standard (non-interactive) perfectly binding commitment scheme
Com and a zero-knowledge argument that is extractable w.r.t. synchronizing adversaries then there
exists a commitment scheme that is strongly extractable w.r.t. synchronizing adversaries.

Proof Sketch: To commit to a value y, run the following protocol:

Step L1 Left sends Com(y).

Step L,R2.x Left proves to right knowledge of the committed value using an extractable zero-
knowledge argument.

For a synchronizing adversary C, denote by α̃ = Com(ỹ) the random variable representing C’s
first message in the right session. Suppose that use the simulator of the zero-knowledge scheme to
simulate the proof of Steps L,R2.x (but still commit to y in Step L1). Since C is synchronizing,
the distribution of α̃ is unchanged. Yet, now we are able to extract ỹ.

Now, suppose that we use Com(0n) instead of Com(y) in the first step. No noticeable change
should occur in the joint distribution of the transcript and ỹ, since otherwise we would contradict the
semantic security of the commitment scheme Com. Therefore our simulator will use a commitment
to 0n in the first step, and the simulator for the zero-knowledge argument in the second step.

31In this context, we’ll say that a relation R is non-trivial if (x, x) 6∈ R for every x. This condition is required to
rule out the trivial adversary that uses the relaying strategy in order to hit the relation.

134 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Note that the commitment scheme constructed has the property that the first message sent is
from the sender to the receiver and that this message completely determines the committed value.
We say that such a scheme has a determining first message.

6.4.3 Extractable Schemes in the Modified Shared Random String Model

We now define extractable and strongly extractable protocols in the modified shared random string
model. The only difference is that we assume that (r(1), aux(1)) and (r(2), aux(2)) are generated
independently by a generator algorithm (where r is random or pseudorandom), and then C chooses
whether r(1) or r(2) will be used in the right session. The simulator will get aux(1), aux(2) as an
additional input. We note that the resulting definition for extractable zero-knowledge schemes is
almost identical to the definition of (single theorem) non-malleable NIZK [DDO+01]. The following
theorem says that a non-malleable coin-tossing algorithm can indeed be used to “compile” a protocol
secure in the modified shared random string model to a protocol secure in the plain model. Again,
we state and prove the theorem only for the case of synchronizing adversaries.

Theorem 6.4.3. Let Π be a non-malleable coin-tossing protocol and let ΠRef be a protocol with a
reference string that is extractable (w.r.t. synchronizing adversaries) in the modified shared random
string model. Let Π ◦ ΠRef be the composition of Π and ΠRef using Construction 6.1.2, then ΠRef

is extractable (w.r.t. synchronizing adversaries) in the plain model.

Proof. Let C be an adversary for the combined protocol Π ◦ ΠRef . Suppose that C is synchroniz-
ing. Then we can separate C into C1, C2 where C1 is the adversary’s strategy for the first phase
(coin-tossing) and C2 is the adversary’s strategy for the second phase (running Π). We will pick
(r(1), aux(1)) and (r(2), aux(2)) using the generator and then simulate C1 using the simulator of the
coin-tossing protocol ,where we give it r(1), r(2) as input. Let s denote the simulated output. Now,
we can look at C2 with the state s hardwired into it as an adversary for the extractable protocol
Π in the modified shared random string model and we can simulate it using the simulator Π and
obtain (τ ′, y′) such that y′ ∈ i-value(τ ′). Yet τ ′ must be computationally indistinguishable from the
output of C in an execution of Π ◦ ΠRef , and so we’re done.

6.4.4 An Extractable Zero-Knowledge Argument in the Modified Shared Ran-
dom String Model

We now show a simple protocol for an extractable zero-knowledge argument in the modified shared
random string.

Outline of the zero-knowledge argument. Our zero-knowledge argument is specified in Pro-
tocol 6.4.4. It has the following form: to prove that x ∈ L when given a reference string r, the prover
treats r as a verification key of some signature scheme, and proves (using a standard constant-round
interactive zero-knowledge proof of knowledge)32 that either x ∈ L or that it knows a signature on
x w.r.t. this verification key.

We see that our protocol requires a signature scheme that has a uniformly distributed public
key. Fortunately, we only need a one-time length restricted signature scheme and so we can use
the simple and well-known construction due to Lamport [Lam79], instantiating it with a one-way
permutation.33

32Actually, it is enough to use a witness indistinguishable argument of knowledge.
33That is, the public key is a list yσ

i where i ∈ [n] and σ ∈ {0, 1}, and to sign a message m = m1, . . . , mn ∈ {0, 1}n,

6.4. APPLICATIONS OF NON-MALLEABLE COIN-TOSSING 135

Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”), r ∈
{0, 1}l(n): the reference string

w
↓

x, r
↓

P V

Prover’s auxiliary input: w (a witness that x ∈ L)

Steps P,V1.x (WI Proof): Prover proves to verifier using its in-
put w via a witness-indistinguishable (WI) proof/argument of
knowledge that either x ∈ L or it knows a signature on x w.r.t.
r where r is considered to be the public-key of a fixed one-
time length-n message-size signature scheme (G, S, V). Verifier
accepts if proof is completed successfully.

w
↓

x, r
↓

WI-proof
x ∈ L or
know σ s.t.
Vr(x, σ) = 1

↓

0/1

Protocol 6.4.4. An extractable zero-knowledge argument in the modified shared random string
model

The theorem that we need to prove is the following:

Theorem 6.4.5. Let (G, S, V) be a one-time length-n message signature scheme whose public key
is a distributed uniformly in {0, 1}l(n). Then, the instantiation of Protocol 6.4.4 with (G, S, V) is
an extractable zero-knowledge argument in the modified shared random string model.

Proof. Let C be an MIM adversary for Protocol 6.4.4. We construct a simulator Ĉ for C in the
following way:

1. Let r(1) = G(aux(1)) and r(2) = G(aux(2)) where G is the key generation algorithm of the
signature scheme (G, S, V) and aux(1), aux(2) are two independently chosen random coin-
tosses for G.

2. The simulator invokes C(r(1), r(2)) and obtains a number b ∈ {1, 2} such that if b = 1 then
r(1) will be used as the reference string in the right session, and if b = 2 then r(2) will be used
as this string.

3. The simulator computes a signature σ on x with respect to r(1) using aux(1). Using this
signature σ, it construct a left-side strategy Lσ for the left side that uses the honest prover
algorithm of the WI system to prove the true statement that either x ∈ L or it knows a
signature σ on x with respect to r(1).

4. The simulator simulates an interaction between Lσ, the adversary C, and the right side R.
Let τ = (τL, τR) be the resulting view of the adversary, where τL (resp. τR) denotes the view
of the adversary in the left (resp. right) session. We denote the statement proven by the
adversary in the right session by x̃.

5. If in the view τR the verifier accepted the proof given by the adversary C, then the simulator
will treat Lσ and C as a combined prover algorithm for the WI system and use the extractor
of the WI system to either a witness ỹ that x̃ ∈ L or a signature σ̃ on x̃ w.r.t. r(2).34

one sends xmi

i = f−1(ymi

i) for all i ∈ [n], where f(·) is the one-way permutation.
34One needs to introduce a time-out mechanism in order to make sure this procedure runs in expected polynomial-

time, in a similar way to [Lin01]. In fact, one can use directly a witness-extended emulator [BL02, Lin01] instead of
a knowledge extractor. However, it seems that describing the simulator that uses the knowledge extractor is slightly
simpler.

136 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

6. The simulator outputs the view τ . In addition, if it obtained in the previous step a witness
ỹ that x̃ ∈ L then it outputs this witness. Otherwise, its second output is ⊥

By the WI condition, the simulator’s first output is indeed indistinguishable from the view of
C in a real interaction. Also, by the proof of knowledge condition, if the proof in the right session
passes verification, then the simulator will indeed obtain either a witness ỹ for x̃ or a signature σ̃ on
x̃ with respect to r(2). Thus, all that is left is to show that if x̃ 6= x, then the second case (i.e., that
the simulator obtains a signature) happens with negligible probability. To show this, one needs to
observe that in Steps 4 and 5, the only secret information that the simulator uses is σ, which is a
signature on x w.r.t. r(1). In particular, the simulator does not use either aux(1) or aux(2) in these
steps. Therefore, if it managed to obtain a signature for any message x̃ 6= x w.r.t. r(1) in these
steps that would contradict the existential unforgeability of the signature scheme (G, S, V) after
seeing a single signature. If it managed to obtain a signature on any message (even on x) w.r.t.
r(2) that would mean that it managed to forge even without seeing a single signature.

6.5 Handling Non-Synchronizing Adversaries

Throughout this paper, we have always concentrated on the case of adversaries that use the syn-
chronizing scheduling. In this section, we justify this, by showing a way to transform protocols that
are secure against synchronizing adversaries, into protocols that are secure against adversaries that
may also use a non-synchronizing scheduling. (See Section 6.1.2 and Figure 6.3 for the definition
of the synchronizing and non-synchronizing scheduling.)

Outline of our approach. The underlying observation behind the transformation of this section
is that in some sense the synchronizing scheduling is the hardest schedule to deal with. To illustrate
this, consider a malleable zero-knowledge proof of knowledge (P, V). We know that (P, V) is
malleable, but it is still instructive to try to prove that it is non-malleable and see exactly in what
place the proof fails. Suppose that we are trying to prove that (P, V) is extractable (in the sense
of the previous section). The natural approach for a simulator would be to try to invoke the stand-
alone simulator of (P, V) to simulate the left session, and the stand-alone extractor of (P, V) to
extract a witness from the right session. The problem with this approach is that when simulating
the left-session, one needs to combine both the adversary C and the right party R and to treat them
as one single verifier algorithm. The problem is that when simulating a proof for this combined
verifier, the simulator needs to rewind it in the process. This means that the simulator rewinds not
only the adversary, but also the right party. As a consequence, when will fail when we try to run
the knowledge extractor to extract the witness in a right session. Technically, the reason is that
to run the extractor one needs to treat the simulator and the adversary as one combined prover
algorithm for the proof system of the right session. However, because the simulator has the power
to rewind the right party, it is not a “legitimate” interactive prover, and therefore the knowledge
extractor cannot be applied to it.

We saw that we got intro trouble when we tried to simulate the left session and rewind the
adversary, but needed to rewind the right party along with it. However, this is not necessarily
the case if the adversary uses a non-synchronizing strategy. As can be seen in Figure 6.5, in this
case there will be at least one point in the left session in which the adversary will return a message
immediately to the left party, without any interaction with the right party (in Figure 6.5, this point
is marked with a ª). If it happens to be the point at which the simulator needs to rewind, then
the simulator can rewind “safely” without having to rewind also the right party at the same time.

6.5. HANDLING NON-SYNCHRONIZING ADVERSARIES 137

L C R

−−−−−−−−−−−−−−→
−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

ª ←−−−−−−−−−−−−−−

Figure 6.10: A non-syncrhonizing adversary: It is “safe” to rewind at the point marked by ª.

The question that remains is how to make sure that the point at which the adversary deviates
from the synchronizing scheduling will be the same point in which the simulator needs to rewind.
To do so, we follow the Richardson-Kilian [RK99] approach of multiple rewinding opportunities (See
also [GL00, PRS92]).35 That is, we will make essentially every point in the protocol a possible
rewinding point. Therefore, whenever the adversary deviates from the synchronizing scheduling,
we’ll be able to use this to simulate it, and in fact have a simpler simulation, compared to the
simulators for synchronizing adversaries of the previous sections.

We now turn to the formal statement and proof of the theorem. We will start with the case
of commitment schemes, and then describe how the proof can be modified for the case of zero-
knowledge argument.

Theorem 6.5.1. Suppose that there exists a constant-round strongly extractable commitment scheme
with respect to synchronizing adversaries and that there exist perfectly hiding commitment schemes.
Then, there exists a constant-round strongly extractable commitment scheme (with respect to ad-
versaries that use arbitrary scheduling).

6.5.1 Proof of Theorem 6.5.1

Let Π1 = (L, R) be a commitment scheme satisfying the conditions of the theorem. (That is, it
is strongly extractable with respect to synchronizing adversaries.) We will prove Theorem 6.5.1 in
the following way:

1. First, we will show a relatively simple construction of a commitment scheme Π2 that is
strongly extractable with respect to non-synchronizing adversaries. That is, for every MIM
adversary C, there exist a 2-output simulator for C as long as C utilizes a non-synchronizing
scheduling (but may fail if the adversary uses a synhcronizing scheduling).36 The existence
of such a scheme Π2 lies behind our intuition that the synchronizing scheduling is the harder
case to deal with. The construction of Π2 will follow the Richardson-Kilian [RK99] paradigm
of multiple rewinding points.

2. Secondly, we will construct a protocol Π which is a combination of Π1 and Π2. Roughly
speaking, when committing to a string y, the first message of Π will be a two commitments

35We note that this approach was already used implicitly in a context similar to ours by the earlier paper [DDN91].
36Strictly speaking, the simulator will be slightly weaker than this, since we will allow it to fail also if the adversary

utilizes an “almost synchronizing” scheduling, where this term will be defined below.

138 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

to two random strings y1 and y2 such that y1⊕y2 = y. Then, we’ll run Π1 (committing to y1)
and Π2 (committing to y2) in parallel. That is, each message of Π will consist of one message
from Π1 and one message of Π2.

3. We will then show that Π is a strongly extractable commitment scheme with respect to
adversaries that utilize any scheduling strategy. Loosely speaking, for every adversary C, if
C uses a synchronizing scheduling then we’ll simulate it using the simulator of Π1, and if C
uses a non-synchronizing scheduling, then we’ll simulate it using the simulator of Π2.

Residual strategies. Before continuing with the proof, we recall the notion of residual strate-
gies that will be useful for us later on. Recall that an interactive algorithm A is an algorithm
that computes a next-message function. That is, given a random-tape r, and a list of messages
m1, . . . , mi, Algorithm A computes the next message m that it would send in an execution in which
it has r as the random tape and received from the other party the messages m1, . . . , mi. We use
the notation m = A(m1, . . . , mi; r). If A is some interactive strategy and v = 〈r, m1, . . . , mj〉 is a
partial view of A, then the residual strategy of A with v fixed, is the next-message function that
is obtained by “hardwiring” into A the view v. That is, this is the function that given a list of
messages mj+1, . . . , mi (where i ≥ j + 1) outputs A(m1, . . . , mj , mj+1, . . . , mi; r). In the following
sections, we will often consider an execution of an interactive algorithm A up to some point in a
protocol, and then consider the residual algorithm A, which has the view up until that point fixed.

Construction of the scheme Π2.

We now describe the construction of a commitment scheme Π2 that will be secure with respect to
non-synchronizing adversaries.

RK-iterations. To describe the scheme Π2, we introduce a notion from [RK99], which we call
an RK-iteration. An RK-iteration is a three round subprotocol α, β, γ, where the first and last
messages are from the right party to the left party. Loosely speaking, we will define a condition
under the left party is said to win an RK-iteration. The property that we require from an RK-
iteration is that the probability that the left party wins in a normal interaction is negligible, but if
the left party has the power to rewind the right party at the point β (i.e., get an additional reply γ′

to some query β′ 6= β) then it will be able to win with probability 1. To make this more concrete,
we use the following implementation for an RK-iteration:

Let (G, S, V) denote a one-time length-restricted signature scheme. (Note that under the con-
ditions of the theorem there exist one-way functions, and therefore there also exist such signature
schemes [Lam79].) We use the following RK-iteration protocol:

Step R1 (Send VK): Right party runs G(1n) and obtains a verifi-
cation and signing key-pair 〈α = V K, SK〉 = 〈G1(1

n), G2(1
n)〉.

It sends the verification key, which we denote by α, to the left
party.

α = G1(1
n)←−−−−−−−−−−−

Step L2 (Send message): Left party chooses a message β ←R

{0, 1}n and sends it to the right party.
β ←R {0, 1}n

−−−−−−−−−−−−→
Step R3 (Send signature): Right party computes a signature γ

on the message β using the signing key, and sends it to the left
party. If the right party does not send a valid signature at this
step then we consider it as aborting the protocol.

γ = SSK(β)←−−−−−−−−−−−−

6.5. HANDLING NON-SYNCHRONIZING ADVERSARIES 139

Public input: 1n (the plaintext string that will be committed to is of
length n)

w
↓

x, r
↓

L R

Left’s (Sender’s) auxiliary input: y ∈ {0, 1}n (plaintext to be
comitted to)

Step L1 (Standard commitment): Left sends to right a commit-
ment to y using a standard (possibly malleable) non-interactive
commitment Com

Com(y)−−−−−−−−→

Steps L,R2 · · · 2c + 2 (RK-iterations): Left and right perform c
RK-iterations. Note that we can combine the first step of each
iteration with the last step of the previous one.

Repeat c times:
α←−−−
β−−−→
γ←−−−

Steps L,R2c + 3 · · · 2c + 5 (WI Proof): Left proves to right using
a perfect-WI argument of knowledge that it either knows the
value y committed to in Step L1 or that it won one of the
RK-iterations (i.e., for some RK-iteration 〈α, β, γ〉 it knows a
signature δ w.r.t. α on some message β′ 6= β). Right accepts if
proof is completed successfully.

Perfect
WIPOK
know y or
∃ RK-iteration
〈α, β, γ〉
s.t. know δ, β′

s.t.
β′ 6= β and
Vα(β′, δ) = 1

Protocol 6.5.2. Π2: A commitment scheme strongly extractable with respect to non-synchronizing
adversaries.

We say that the left party wins the iteration if it knows (i.e., can output on an auxiliary tape)
a valid signature with respect to the verification key α on some message β′ 6= β. Clearly, the
probability that an efficient left party wins an RK-iteration is negligible.

Description of the scheme Π2. Let c denote the number of left party messages in the scheme
Π1.

37 The scheme Π2 consists of the following: to commit to a value y, the left party sends a
standard non-interactive commitment to y, and then the left and right parties perform c RK-
iterations. After this, the left party proves using a perfectly witness-indistinguishable proof of
knowledge that either it knows the value it committed to, or that it won one of the RK-iterations.
For completeness, we provide a more formal description in Protocol 6.5.2.

Notation. Consider the left-party messages of the scheme Π2 (Protocol 6.5.2). Note that c of
these messages consist of a second message β of some RK-iteration. We call these messages the core
of the scheme Π2. We say that an MIM adversary C for Π2 uses an almost synchronizing scheduling
if it’s scheduling is synchronized with respect to all messages in the core. The scheduling of the
other messages may be unsynchronized. More formally, let us number all the messages of the
protocol from 1 to 2c + 5 (and so the left-party messages get odd numbers and the right-party

37Since we can always add “dummy” messages to Π1, we assume without loss of generality that the left party sends
the first and last message in Π1 and so the number of rounds in Π1 is 2c − 1.

140 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

messages get even numbers). We see that the set of core messages consists of all odd numbers
between 3 and 2c + 1. We say that a scheduling for Π2 is almost synchronizing if for every i in the
core, the ith (left-party) message is sent in the right session before the i+1th (right-party) message
is sent in the left session. We note that we only refer to the scheduling of messages sent by the
adversary since we can always assume without loss of generality that the honest parties send their
messages immediately after they receive the previous message from the adversary. If a schedule is
not almost-synchronizing then there exists a smallest i in the core for which the i+1th (right-party)
message is sent in the left session before the ith (left-party) message is sent in the right session. We
call this i the first unsynchronized core message and we denote the RK-iteration that this message
is part of as the first unsynchronized RK-iteration.

We have the following proposition:

Proposition 6.5.3. The Scheme Π2 is strongly extractable with respect to any adversary that uses
a scheduling that is not almost-synchronizing.

Proof. Let C be an adversary for Π2 that utilizes a scheduling that is not almost-synchronizing. To
show that Π2 is strongly extractable we need to exhibit a simulator S for C. For every y ∈ {0, 1}n,
the simulator S needs to simulate both the view of the adversary and the distribution of the value
committed to by the adversary in the right session, when the adversary interacts with L(y) and
R (where L(y) denotes the strategy of the left party when committing to input y). However, the
simulator does not get y as an input, but only 1n. Initially, we will construct a simulator S′ that
gets as input a string e = Com(y) as an input. Later, we will show how to get rid of this assumption,
and obtain a simulator S satisfying the desired properties.

This simulator S′ will work in the following way. The simulator will run internally an execution
between the adversary C and the parties L and R. Note that the simulator can send e = Com(y) as
its first message, and does not need to know y until the WI proof stage of the execution. Therefore,
it can simulate perfectly the left party’s strategy until that stage.

Since the adversary is not using an almost synchronizing strategy, at some point in the execution
there will be a first unsyncrhonized core message i, as defined above. This is some point in which the
left party sent its message of step i (which is the second step β of some RK-iteration) and obtained
from the adversary a response γ immediately, without any interaction between the adversary and
the right party taking place between the left party’s message and the adversary’s response. At this
point, the simulator will run the following experiment: it will rewind the adversary to the point
just before the ith message was sent by the left party, and query the adversary with a new random
message β′. The simulator will repeat this until the adversary again responds immediately to some
β′ with some answer γ′. (The overall number of steps will be expected polynomial number of times,
since with probability p the simulator runs in 1

ppoly(n) steps.)

The simulator will then record β′ and γ′, and continue to run the execution. However, it will
now use a different residual strategy for the left party. Instead of using L, which is the honest left
strategy, the simulator will use the strategy L′ which when it gets to the WI proof stage, does not
use the knowledge of the committed string, but rather uses its knowledge of β′ and γ′ to prove
that it “won” some RK iteration. The simulator will continue the execution, and the view τ of the
adversary in this execution will be the simulator’s first output. Note that this view τ is distributed
identically to the view of an adversary in a real execution because of the perfect WI condition.

Recall that the simulator needs also to output the message committed in the right session of
τ , the simulator will rewind the parties L′, R and the adversary C to the point in τ just before
the adversary makes its proof of knowledge to the right party. It will then combine the adversary
with the residual left strategy L′ to obtain a prover algorithm for this system. The simulator then

6.5. HANDLING NON-SYNCHRONIZING ADVERSARIES 141

uses this prover as input to the knowledge extractor of the system and obtains either the message
committed to by the adversary or a signature w.r.t. a verification key of some RK-iteration in
the right session, which is on a message different from the message β of that iteration. However,
because no rewinding of the right party at any of the RK iterations is done, the probability of the
latter event is negligible (or otherwise we would have a forging algorithm for the signature scheme)
and therefore with very high probability the simulator obtains the committed string that it needs
as its second output.

Note that the distribution on the pair of the simulator’s outputs is statistically indistinguishable
from the distribution of the adversary’s view and adversary’s committed value in a real execution.
Therefore, this simulator S′ satisfies the strong extractability condition. To obtain a simulator S
that does not get a e = Com(y) as an additional input, we simply have S(1n) = S′(Com(0n)). By the
indistinguishability of the commitment scheme Com, the pair output by S will be computationally
indistinguishable from the pair output by S′.

Remark 6.5.4. Note that the proof of Proposition 6.5.3 actually shows a somewhat stronger
condition than the statement. Not only does the simulator computes a view and witness pair (τ, y),
but it also computes the left strategy L′ that when executed with the adversary yields the view τ .
We will later use this property of the simulator.

Construction and analysis of the scheme Π.

Now that we have a scheme Π1 that is secure against adversaries that utilize the synchronizing
scheduling, and a scheme Π2 that is secure against adversaries that utilize a non-synchronizing
scheduling, we are ready to construct our scheme Π which will be secure against adversaries that
use arbitrary scheduling.

Properties of the Scheme Π1. We note that we may assume that the scheme Π1 has a deter-
mining first message,38 as one can convert a scheme without this property into a scheme with this
property by adding an initial message in which the left party sends a standard commitment to the
right party. We also note that, as an extractable commitment scheme, the scheme Π1 satisfies a
standalone extraction property (or equivalently, it is a commit-with-extract scheme). That is, if we
consider a standalone (not man-in-the-middle) execution of the scheme Π1, where the left party is
possibly cheating, then we can both simulate such an execution and obtain the string committed to
by the left party. This is because one can regard the cheating left party as a degenerate man-in-the-
middle adversary that does not use the messages it sees in the left session in its interaction in the
right session. Such a degenerate adversary can without loss of generality use any scheduling (and
in particular the synchronizing scheduling) and therefore we can use the simulator for Π1 to obtain
a simulated transcript of the right session along with the value committed to in this transcript.

The scheme Π. As outlined above, the combined scheme Π will be as follows:

1. The left and right parties run both protocols Π1 and Π2 in parallel to commit to y1 and y2

respectively. Note that Π2 has more rounds than Π1. We align the rounds of Π1 to the core
rounds of Π2. That is, along with each of the c messages of the form β in rounds 3 · · · 2c + 1
of Π2, the left party sends a message that belongs to Π1.

38Recall that this means that first message in the protocol determines the possible value for the commitment.

142 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

R1L1(y1) C1C1

CC

-

R2R2-
-

--

¾¾

¾¾

¾¾

¾¾

--

--

--

--

¾¾

--

¾¾

--

¾¾

--

-

-
-

? ?

L2(y2)

τ ỹ2

Figure 6.11: Converting adversary C to an adversary C1 for the protocol Π1.

We claim that Π is a strongly extractable commitment scheme. Indeed, let C be an adversary
for the scheme Π, we now describe a simulator S for C:

Sampling The simulator executes internally an execution of the protocol Π with C as a man-
in-the-middle, where the left party commits to the value 0n. The simulator then checks
whether the scheduling of the adversary was almost synchronizing or not. That is, whether
all messages in the core of Π2 (and thus all messages of Π1) are scheduled in a synchronized
way.

The almost-synchronized case Suppose that in the sampled execution the adversary C used
an almost synchronizing scheduling. In this case the simulator will use the simulator for Π1.
To do so, the simulator converts the adversary C into an adversary C1 for the protocol Π1.
See Figure 6.11 for a schematic description of the adversary C1. The adversary C1 chooses a
string y2 ←R {0, 1}n, and runs an internal copy of C and an internal copy of the left strategy
(committing to y2) and right strategy for the protocol Π2. When the adversary C1 plays
man-in-the-middle in the execution of Π1 it forwards the messages it receives to its internal
copy of C. Recall that since C is an adversary for Π, it also expects messages that belong to
Π2. To obtain these messages, the adversary C1 uses its internal copy of the left and right
strategy for Π2. The adversary C1 will be a synchronizing adversary for the protocol Π1. This
means that if its internal copy of C tries to schedule a message of Π1 (or equivalently, a core
message of Π) in a non-synchronized way then adversary C1 will abort and output a special
fail symbol. Otherwise, it will continue until the end of the protocol Π1. Note that after the
protocol Π1 is finished, C1’s internal copy of adversary C will still not finish the last part of
protocol Π (which consists of the proof of knowledge phase of Protocol Π2). Adversary C1

will simulate this part internally and use the knowledge extractor to obtain the string ỹ2 that

6.5. HANDLING NON-SYNCHRONIZING ADVERSARIES 143

C committed to in the right session.39 The output of adversary C1 is the view of its internal
copy of the adversary C, along with the string ỹ2 committed by this internal adversary.

Note that if y1 = y ⊕ y2 then (conditioned on being different from fail) the output of the
adversary C1 is identical to the view of the adversary C in an execution of Π. The simulator
S now runs simulates C1 using the simulator for Π1 to obtain a pair (τ, ỹ2, ỹ1) where τ, ỹ2 is
computationally indistinguishable from C1’s output40 and ỹ1 is the value committed by the
adversary in the right session of the execution corresponding to τ . (If the simulator outputs a
pair where τ = fail then we repeat the experiment until we get a non-fail output.) Therefore,
the pair (τ, ỹ1oplusỹ2) is computationally indistinguishable from the view and committed
value of C in a real execution of Protocol Π.

The non-synchronizing case Suppose that in the sampled execution the adversary C did not
use an almost-synchronized scheduling. In this case, we will use the simulator of Π2 in an
analogous way to the way we used the simulator of Π1 in the previous step. That is, we will
construct an adversary C2 for the protocol Π2 that has an internal copy of C inside it. The
adversary C2 will forward to C all the messages that it receives from the parties L2 and R2

in the protocol Π1. In addition, it will execute internal copies of the honest left and right
parties L1 and R1 of the protocol Π1 (where it will provide L1 with y1 that is chosen at
random in {0, 1}n). It will use these internal copies to supply the internal adversary C with
the messages that it expects that come from the protocol Π1. At the end of the protocol, the
adversary C2 outputs the view of its internal copy of C. As in a previous case, the output of
C2 after interacting with L2(y2 ⊕ y) and R2 is identically distributed to the view of C after
interacting with L(y) and R. Therefore, if we simulate C2, we obtain a pair of a transcript
τ and the value ỹ2 committed to in the right session of Π2 that indistinguishable from a
transcript/value pair in a real execution of Π. The only thing that is missing is to obtain
the value ỹ1 corresponding to this execution. However, this can be done using the fact that
the simulator for protocol Π2 constructed in the proof of Proposition 6.5.3 actually supplied
us with a residual strategy for the left party L2 that yields the transcript τ . Therefore, we
can combine this left party L2 with the adversary C to obtain a standalone adversary for
the commitment scheme Π1. Then, we can use the standalone extraction property of Π1 to
obtain the desired value ỹ1.

We see that both in the synchronized and unsynchronized case, the simulator S outputs a
transcript/value pair that is indistinguishable from the transcript/value pair of a real execution
of the adversary C. Intuitively, if we let p be the probability that C uses an almost synchronized
scheduling, then the expected running time of the simulator will be p1

ppoly(n)+(1−p) 1
(1−p)poly(n)

which is equal to some polynomial q(n) (Because, the simulator S will need to invoke the simulators
for Π1 and Π2 a number of times that depends on 1

p until it gets another sample with the same
property). However, because the probabilities in the simulation may have a negligible difference
from the sampled probabilities, this is actually not the case, and we need to use the standard trick
of [GK96] (see also [Lin01]) and introduce a timeout mechanism. That is, in the sampling stage,
the simulator will actually sample many times an execution until it has an estimate p̃ for p that is
within a factor 2 of p with probability 1 − 2−n2

(this will mean that with probability p we sample

39Actually, the proof of knowledge may also yield a witness that C won one of the RK-iterations in the right
session. However, because no rewinding of the right party is performed during the simulation, this can only happen
with negligible probability.

40Formally, the simulator outputs a simulation of C1’s view, but C1’s output can be computed from its view.

144 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

poly(n)
p number of times). The simulator will then use T = 4

p̃q(n) as a timeout value. That is, if

the simulation takes more than T steps (which will happen with probability less than 1
2) then the

simulator, will restart from the beginning, where it will use at most n restarts. This will ensure
expected polynomial-time simulation, and only introduce a negligible statistical bias.

6.5.2 The case of Zero-Knowledge

The analog for zero knowledge of Theorem 6.5.1 is the following:

Theorem 6.5.5. Suppose that there exists a constant-round zero-knowledge proof for NP that is
extractable with respect to synchronizing adversaries. Then, there exists a constant-round zero-
knowledge proof for NP that is extractable with respect to adversaries that use arbitrary scheduling.

The proof of Theorem 6.5.5 follows the proof of Theorem 6.5.1, and in fact is somewhat easier
because we don’t need to obtain a strongly extractable scheme in the case of zero-knowledge. As
in the case of commitment schemes, we assume that there exists a c round zero-knowledge scheme
Π1 that is extractable w.r.t. synchronizing adversaries and we construct a c + O(1)-round zero
knowledge proof system Π2 that is extractable with respect to non-synchronizing adversaries. The
scheme Π2 will just be a variant of the [RK99] proof system, where when proving that some x is in
some language M , the left and right party perform c RK-iterations and then the left party proves
to the right party in WI that either x ∈ M or that it won one of the RK-iterations. We’ll combine
the two schemes using a scheme Π. In the scheme Π the first message from the left party to the
right party will be a string y = Com(b) for some b ∈ {1, 2}. The left and right party will then run
the schemes Π1 and Π2 in parallel, where the left will prove to the right in the scheme Πb that
either x ∈ M or y = Com(b). We omit the full details and proof , since they are nearly identical
to the case of commitment schemes. We note that one can also use the constructions of [DDN91]
to reduce the problem of constructing a zero-knowledge scheme to the problem of constructing a
commitment scheme and vice versa.

6.6 Conclusions and Open Questions.

We have shown a coin-tossing protocol that allows to transform many protocols secure in the shared
random string model to protocols that are secure in the plain man-in-the-middle model. Using this
coin-tossing protocol, we gave a constant-round non-malleable non-malleable commitment scheme
and a constant-round non-malleable zero-knowledge argument system. It seems that our coin-
tossing protocol can be applied in other settings in the man-in-the-middle model. In particular,
it may be that it can be used to give a protocol for general 2-party secure computation in the
man-in-the middle setting.

Complexity assumptions. Throughout this chapter, we have used a subexponential hardness
assumption (namely, that there exist some cryptographic primitives secure against 2nǫ

-sized circuits,
where n is the security parameter). However note that we have not used the “complexity leveraging”
technique [CGGM00] in this work, and hence in some sense this assumption is not inherent. The
place where we used our assumption is in the construction of evasive sets, which we needed to be
more efficient than the hardness assumption. However, in this construction the assumption was
used for the purpose of derandomizing probabilistic machines. Thus it was sufficient to use any
hardness bound s(·) such that under the assumption that s(n)-strong one-way functions exist, there

6.6. CONCLUSIONS AND OPEN QUESTIONS. 145

is a pseudorandom generator mapping o(log s(n)) bits to n bits (and hence one can derandomize
polynomial-time algorithms in time s(n)o(1)). Although any subexponential function satisfies this
condition, one can use slower growing functions such as “half exponential” functions.41 It is also
known that for the purpose of derandomization it is sufficient to assume worst-case hardness (e.g.,
[NW88, IW97]). Thus, one can obtain the same result by assuming an exponential worst-case
assumption (that implies that BPP = P) along with a “nice” super-polynomial hardness bound
on the cryptographic primitives (e.g., nlog n). An open question is to construct constant-round non-
malleable protocols under the standard assumption of hardness against polynomial-sized circuits.

Strict polynomial time. The simulators presented in this work run in expected probabilis-
tic polynomial-time. We believe that one can obtain simulators that run in strict probabilistic
polynomial-time by using the commit-with-extract and proof of knowledge of Chapter 5. However,
this will result in (an even more) complicated non-black-box simulator, and thus we have chosen
not to pursue this path.

Generalization to more parties. In this work we limited ourselves to a setting with two honest
parties and one adversary. A natural question is whether these results generalize to a more general
setting in which there are more honest parties communicating through an adversarial channel. The
most general setting is when the number of honest parties is an arbitrary polynomial in the security
parameter. A less general setting is when the number of honest parties is some fixed polynomial in
the security parameter.

Another direction is to try to apply our techniques (diagonalization combined with universal
arguments/CS proofs, non-black-box proofs of security) to other problems in cryptography.

41A function f(·) is half-exponential if f(f(n)) > 2n.

146 CHAPTER 6. NON-MALLEABLE CRYPTOGRAPHY

Appendix A

Construction of Universal Arguments

Summary: We present a construction of a universal argument scheme based on the
existence of collision-resistent hash functions. We also show how to convert this scheme
to a zero-knowledge or an Arthur-Merlin witness-indistinguishable scheme.

A.1 Overview

In this appendix, we prove the following theorem

Theorem A.1.1 (Theorem 2.4.4, restated). Suppose that collision-resistent hash functions
exist. Then for every ǫ > 0, there exists a constant-round universal argument system in which
the total size of the messages exchanged when proving a statement of length n is at most nǫ.
Furthermore,

1. There exist such systems where the prover is zero-knowledge.

2. There exist such systems that are Arthur-Merlin (public-coins) and the prover is witness
indistinguishable (WI).

We start by proving the following theorem:

Theorem A.1.2. Suppose that collision-resistent hash functions exist. Then for every ǫ > 0, there
exists a constant-round Arthur-Merlin universal argument system in which the total size of the
messages exchanged when proving a statement of length n verifiable in time t is at most nǫpolylog(t).

We will later show how one can convert the system obtained from Theorem A.1.2 into a system
satisfying either one of the properties of Theorem A.1.1.

A.2 Proof of Theorem A.1.2

Our construction of universal arguments adapts Kilian’s construction [Kil92] in a straightforward
manner. Our contribution is in the analysis of this construction. Unlike in the previous analysis
(as in [Kil92] and [Mic94]), in establishing computational-soundness via contradiction, we cannot
afford to derive a collision-forming circuit of size that is (at least) polynomial in the complexity

This appendix is based on the paper [BG01], which is joint work with Oded Goldreich.

147

148 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

of the designated prover (which may be exponential in the input length).1 We need to derive
collision-forming circuit of size that is polynomial in the input length. Indeed, doing so allows us
to use standard collision-free hashing (rather than strong ones).

The analysis is further complicated by our desire to establish the “weak proof of knowledge”
property, which is needed in for our main application.

Motivation. In order to explain the difficulty and its resolution, let us recall the basic construc-
tion of Kilian [Kil92] (used also by Micali [Mic94]), as adapted to our setting.

Our starting point is a PCP[poly, poly] system for LU ∈NEXP, which is used in the universal-
argument system as follows. The verifier starts by sending the prover a hashing function. The prover
constructs a PCP-proof/oracle (corresponding to the common input and its own auxiliary input),
places the bits of this oracle at the leaves of a polynomial-depth full binary tree, and places in each
internal node the hash-value obtained by applying the hashing function to the labels of its children.
The prover sends the label of the root to the verifier, which responses by sending a random tape of
the type used by the PCP-verifier. Both parties determine the queries corresponding to this tape,
and the prover responds with the values of the corresponding leaves along with the labels of the
vertices along the paths from these leaves to the root (as well as the labels of the siblings of these
vertices). The verifier checks that this sequence of labels matches the corresponding applications of
the hashing function, and also emulates the PCP-verifier. Ignoring (for now) the issue of prover’s
complexity, the problem is in establishing computational-soundness.

The naive approach is to consider what the prover does on each of the possible random-tapes
sent to it. In case it answers consistently (i.e., with leaves labels that depend only on the leave
location), we obtain a PCP-oracle and soundness follows by the soundness of the PCP scheme. On
the other hand, inconsistent labels for the same leaf yield a (hashing) collision somewhere along
the path to the root. However, in order to find such a collision, we must spend time proportional
to the size of the tree, which yields contradiction only in case the hashing function is supposed to
withstand adversaries using that much time. In case the tree is exponential (or even merely super-
polynomial) in the security parameter, we derive contradiction only when using hashing functions
of subexponential (respectively, super-polynomial) security.

The approach taken here is to consider each leaf separately rather than all leaves together.
That is, the naive analysis distinguishes the case that the prover answers inconsistently on some
leaf from the case it answer consistently on all leaves. Instead, we consider each leave separately,
and distinguishes the case that the prover answers inconsistently on this leaf from the case it answer
consistently on this leaf. Loosely speaking, we call a leaf good if the prover answers consistently on
it, and observe that if a big fraction of the leaves are good then soundness follows by the soundness
of the PCP scheme. In case sufficiently many leaves are not good, we obtain a collision by picking
a random leave (hoping that it is not good) and obtaining inconsistent labels for it. This requires
being able to uniformly select a random-tape that makes the PCP-verifier make the corresponding
query, a property which is fortunately enjoyed by the relevant PCP systems.

We warn that the above is merely a rough description of the main idea in our analysis. Further-
more, in order to establish the proof-of-knowledge property of our construction, we need to rely
on an analogous property of the PCP system (which again happens to be satisfied by the relevant
PCP systems).

1Specifically, Kilian’s construction [Kil92] uses a PCP system, and the contradiction hypothesis is shown to yield
a collision-forming circuit that is always bigger than the size of the relevant PCP proof/witness. Instead, we show
how to obtain a collision-forming circuit that is smaller than the relevant PCP-proof.

A.2. PROOF OF THEOREM A.1.2 149

A.2.1 The PCP system in use

We first recall the basic definition of a PCP system. Loosely speaking, a probabilistically checkable
proof (PCP) system consists of a probabilistic polynomial-time verifier having access to an oracle
which represents a proof in redundant form. Typically, the verifier accesses only few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin tosses. It is
required that if the assertion holds then the verifier always accepts (i.e., when given access to an
adequate oracle); whereas, if the assertion is false then the verifier must reject with high probability
(as specified in an adequate bound), no matter which oracle is used. The basic definition of the
PCP setting is given in Item (1) below. Typically, the complexity measures introduced in Item (2)
are of key importance, but not so in this work.

Definition A.2.1 (PCP – basic definition). 1. A probabilistic checkable proof system (PCP)
with error bound ǫ :N→ [0, 1] for a language L is a probabilistic polynomial-time oracle ma-
chine (called verifier), denoted V , satisfying

Completeness: For every x ∈ L there exists an oracle πx such that V , on input x and access
to oracle πx, always accepts x.

Soundness: For every x 6∈ L and every oracle π, machine V , on input x and access to oracle
π, rejects x with probability at least 1 − ǫ(|x|).

2. Let r and q be integer functions. The complexity class PCPǫ[r(·), q(·)] consists of languages
having a PCP system with error bound ǫ in which the verifier, on any input of length n,
makes at most r(n) coin tosses and at most q(n) oracle queries.

Note that if L has a PCP system with error bound ǫ then L ∈ PCPǫ[p(·), p(·)], for some
polynomial p. Here we will only care that LU ∈ NE has a PCP system with and exponentially
decreasing error bound (i.e., ǫ(n) = 2−n). Instead of caring about the refine complexity measures
(of Item 2), we will care about the following additional properties satisfied by this specific PCP
system, where only some of these properties were explicitly considered before (see discussion below).

Definition A.2.2 (PCP – auxiliary properties:). Let V be a PCP verifier with error ǫ :N→
[0, 1] for a language L ∈ NEXP, and let R be a corresponding witness relation. That is, if
L ∈ Ntime(t(·)), then we refer to a polynomial-time decidable relation R satisfying x ∈ L if and
only if there exists w of length at most t(|x|) such that (x, w) ∈ R. We consider the following
auxiliary properties:

Relatively-efficient oracle-construction: This property holds if there exists a polynomial-time
algorithm P such that, given any (x, w) ∈ R, algorithm P outputs an oracle πx that makes
V always accept (i.e., as in the completeness condition).

Non-adaptive verifier: This property holds if the verifier’s queries are determined based only on
the input and its internal coin tosses, independently of the answers given to previous queries.
That is, V can be decomposed into a pair of algorithms, Q and D, such that on input x and
random-tape r, the verifier makes the query sequence Q(x, r, 1), Q(x, r, 2), ..., Q(x, r, p(|x|)),
obtains the answers b1, ..., bp(|x|), and decides by according to D(x, r, b1 · · · bp(|x|)).

Efficient reverse-sampling: This property holds if there exists a probabilistic polynomial-time
algorithm S such that, given any string x and integers i and j, algorithm S outputs a uniformly
distributed r that satisfies Q(x, r, i) = j, where Q is as above.

150 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

A proof-of-knowledge property: This property holds if there exists a probabilistic polynomial-
time oracle machine E such that the following holds:2 for every x and π, if Pr[V π(x) = 1] >
ǫ(|x|) then there exists w = w1 · · ·wt such that (x, w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds
for every i.

Non-adaptive PCP verifiers were explicitly considered in several works, all popular PCP systems
use non-adaptive verifiers, and in fact in some sources PCP is defined in terms of non-adaptive
verifiers. The oracle-construction and proof-of-knowledge properties are implicit in some works,
and are known to hold for most popular PCP systems (although to the best of our knowledge a
proof of this fact has never appeared). To the best of our knowledge, the reverse-sampling property
was not considered before. Nevertheless it can be verified that any L ∈ NEXP has a PCP system
satisfying all the above properties.

Theorem A.2.3. For every L ∈ NEXP and for every ǫ : N → [0, 1] such that ǫ(n) > 2−poly(n),
there exist a PCP system with error ǫ for L that satisfies all properties in Definition A.2.2.

Proof sketch: For L ∈ Ntime(t(·)), we consider a PCP1/2[O(log t(·)), poly(·)] system as
in [BFLS91](i.e., the starting point of [AS92, ALM+98]). (We stress that this PCP system, unlike the
one of [FGL+91], uses oracles of length polynomial in t.)3 This PCP system is non-adaptive and is
well-known to satisfies the oracle-construction property. It is also known (alas less well-known) that
this PCP system satisfies the proof-of-knowledge property. Finally, it is easy to see that this PCP
system (as any reasonable PCP system we know of) also satisfies the reverse-sampling property.4

Error reduction is obtained without effecting the oracle, and so it is easy to see that the amplified
PCP preserves all the auxiliary properties.

A.2.2 The actual construction

The construction is an adaptation of Kilian’s construction [Kil92] (used also by Micali [Mic94]). Us-
ing Theorem A.2.3, we start with a PCP system with error ǫ(n) = 2−n for LU that satisfies the aux-
iliary properties in Definition A.2.2. Actually, the corresponding witness relation will not be RU as
defined in Section 2.4, but rather a minor modification of it, denoted R′

U : the pair ((M, x, t), (w, 1t′))
is in R′

U if M accepts (x, w) in t′ ≤ t steps. (The purpose of this padding of the witness is to ob-
tain a relation that is decidable in polynomial-time, as required in Definition A.2.2.) Let VPCP

denote the above PCP system (or its verifier), and PPCP, QPCP, DPCP, SPCP, EPCP denote the auxil-
iary algorithms (or machines) guaranteed by Definition A.2.2 (e.g., PPCP is the oracle-constructing
procedure, QPCP determines the verifier’s queries, and SPCP provides reverse-sampling).

A second ingredient used in the construction is a random-access hashing scheme (see Sec-
tion 2.2.1). The basic idea is to have the prover use a random access hashing scheme to commit to
the PCP proof. The construction of a universal argument scheme is depicted Protocol A.2.4.

Protocol A.2.4 is a constant-round Arthur-Merlin protocol. Clearly, Protocol A.2.4 satisfies
the first two requirements of Definition 2.4.1; that is, the verifier’s strategy is implementable in
probabilistic polynomial-time, and completeness holds with respect to a prover strategy that (given
y = (M, x, t) and w as above) runs in time polynomial in TM (x, w). Furthermore, the communi-
cation complexity of this protocol only depends on the security parameter of the hashing function

2For negligible ǫ (as used below) this proof-of-knowledge property is stronger than the standard proof-of-knowledge
property (as in [BG93] and [Gol01b, Sec. 4.7]).

3Moving to a non-binary encoding of objects seems important for achieving this.
4This property follows from the structure of the standard PCP systems. In our case, the system consists of a

sum-check (a la Lund et al. [LFKN90]), and a low-degree test. In both tests, the queries are selected in a very simple
manner, and what is complex (at least in the case of low-degree tests) is the analysis of the test.

A.2. PROOF OF THEOREM A.1.2 151

Public input: 〈M, x, t〉 (statement to be proved is “∃w s.t. M(x; w)
outputs 1 within t steps”)
Prover’s auxiliary input: w (a witness that M(x) = 1)

w
↓

M, x, t
↓

P V

Preliminary action by the prover.
The prover invokes M on input (x, w), and obtains t′ = tM (x, w). As-
suming that (y, w) ∈ RU and letting w′ = (w, 1t′), the prover obtains an
R′

U -witness; that is, (y, w′) ∈ R′
U . Invoking PPCP on (y, w′), the prover

obtains π = PPCP(y, w′).

Step V1 (Choose hash-function): Verifier chooses a random
seed α for a random access hash function collection
{hα, certα}α∈{0,1}∗ , and sends α to the prover.

α ←R {0, 1}n

←−−−−−−−−−−−−−

Step P2 (Commit to PCP proof): Prover computes z = hα(π)
and sends it to the verifier.

z = hα(π)−−−−−−−−−−→
Step V3 (Choose PCP random tape): The verifier uniformly

selects a random-tape r for the PCP system, and sends r to
the prover.

r ←R {0, 1}r(n)

←−−−−−−−−−−−−−−

Step P4 (Send PCP answers): The prover provides the corre-
sponding (PCP) answers, augmented by proofs of consistency
of these answers with the hash value provided in Step P2:
First, invoking QPCP, the prover determines the sequence of
queries that the PCP system makes on random-tape r. That
is, for i = 1, ..., m, it computes qi = QPCP(y, r, i), where

m
def
= poly(n) is the number of queries made by the system.

Then, for i = 1, ..., m, the prover sends the qth
i bit of π, along

with certα(π, i).

{πqi , certα(π, qi)}m
i=1−−−−−−−−−−−−−−−−−−→

Verifier decision
The verifier checks that the answers provided by the prover would
have been accepted by the PCP-verifier, and that the corresponding
proofs of consistency are valid. That is, if we denote the prover’s mes-
sage by b1, σ1, . . . , bm, σm, then by invoking DPCP, the verifier checks
whether, on input y and random-tape r, the PCP-verifier would have
accepted the answer sequence b1, . . . , bm. That is, check whether
DPCP(y, r, b1, . . . , bm) = 1. Then, the verifier checks the consistency
of the responses. That is, the verifier computes qi = QPCP(y, r, i) for
i = 1, . . . , m, and runs Vα,z(qi, bi, σi), where V is the verification algo-
rithm of the random access hashing scheme. The verifier accepts if and
only if the prover’s message passes all these checks.

Protocol A.2.4. Universal Arguments

152 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

(along with a logarithmic dependence on the witness size), and thus by scaling this parameter
appropriately, we can ensure that this complexity is at most nǫpolylog(t) for every fixed ǫ > 0.
We thus focus on establishing the two last requirements of Definition 2.4.1. In fact, computational
soundness follows from the weak proof-of-knowledge property (because whenever some adversary
can convince the verifier to accept with non-negligible probability the extractor outputs a valid
witness for membership in LU). Thus, it suffices to establish the latter.

A.2.3 Establishing the weak proof-of-knowledge property

This subsection contains the main technical contribution of the current analysis over the previous
analysis of Kilian and Micali [Kil92, Mic94]. The novel aspect in the analysis is the “local definition
of a conflict” (i.e., a conflicting oracle-bit rather than a conflicting pair of oracles), and the fact that
reverse-sampling can be used to derive (in polynomial-time) hashing-collisions (given a conflicting
oracle bit-position).

Lemma A.2.5. Protocol A.2.4 satisfies the weak proof-of-knowledge property of Definition 2.4.1,
provided that the family {hα, certα}α∈{0,1}∗ is indeed a random access hashing scheme.

Combining Lemma A.2.5 with the above discussion, we derive Theorem A.1.2.

Proof of Lemma A.2.5.

Fixing any polynomial p, we present a probabilistic polynomial-time knowledge-extractor that ex-
tracts witnesses from any feasible prover strategy that makes V accept with probability above the
threshold specified by p. Specifically, for any family of (deterministic) polynomial-size circuits rep-
resenting a possible cheating prover strategy and for all sufficiently long y’s, if the prover convinces
V to accept y with probability at least 1/p(|y|) then, with noticeable probability (i.e., 1/p′(|y|)),
the knowledge-extractor (given oracle access to the strategy) outputs the bits of a corresponding
witness.

We fix an arbitrary family, {P̃n}n∈N, of (deterministic) polynomial-size circuits representing
a possible cheating prover strategy, and a generic n and y ∈ {0, 1}n such that Pr[(P̃n, V)(y) =

1] > ε
def
= 1/p(n). We consider a few key notions regarding the interaction of P̃n and the desig-

nated verifier V on common input y. First we consider notions that refer to a specific interaction
(corresponding to a fixed sequence of verifier coins):

• The ith query in such interaction is qi = QPCP(y, r, i), where r is the value sent by the verifier
in Step V3.

• The ith answer supplied by (the prover) P̃n is the but bi it supplied its message of Step P4,
that is, bi is supposed to equal πqi . The corresponding authentication is the corresponding
certificate σi.

• The ith answer supplied by P̃n is said to be proper if the corresponding authentication passes
the verifier’s test.

Next, we consider the probability distribution induced by the verifier’s coins. Note that these
coins consist of the pair of choices (α, r) that the verifier took in Steps V1 and V3, respectively.
Fixing any α ∈ {0, 1}n, we consider the conditional probability, denoted py,α, that the verifier
accepts when choosing α is Step V1. Clearly, for at least a ε/2 fraction of the possible α’s it holds

A.2. PROOF OF THEOREM A.1.2 153

that py,α ≥ ε/2. We fix any such α for the rest of the discussion. We now consider notions that refer
to the probability space induced by a uniformly chosen r ∈ {0, 1}poly(n) (selected by the verifier in
Step V3).

• For any query q∈{0, 1}d, a query index i∈{1, ..., m}, possible answer b∈{0, 1}, and δ∈ [0, 1],
we say that b is δ-strong for (i, q) if, conditioned on the ith query being q, the probability that
P̃n properly answers the ith with b is at least δ. That is,

Pr
r

[bi = b is proper | qi = Q(y, r, i)] ≥ δ

When i and q are understood from the context, we just say that b is a δ-strong answer.

• We say that a query q ∈ {0, 1}d has δ-conflicting answers if there exist i and j (possibly i = j)
such that 0 is δ-strong for (i, q) and 1 is δ-strong for (j, q).

We stress that throughout the rest of the analysis we consider a fixed α ∈ {0, 1}n and a uniformly
distributed r ∈ {0, 1}poly(n).

Claim A.2.6. The probability that the verifier accepts while receiving only δ-strong answers is at
least py,α − mδ.5

Thus, picking δ = py,α/2m, we may confine ourselves to the case that all the prover’s answers
are δ-strong.

Proof of Claim A.2.6. The key observation is that whenever the verifier accepts, all
answers are proper. Intuitively, answers that are not δ-strong (i.e., are rarely proper) are
unlikely to appear in such interactions. Specifically, we just upper bound the probability
that, for some i ∈ {1, ..., m}, the answer ℓ′qi

is proper but not δ-strong for (i, qi), where
qi = Q(y, r, i). Fixing any i and any possible value of qi = Q(y, r, i), by definition (of
being proper but not δ-strong), the corresponding event occurs with probability less
than δ. Averaging over the possible values of qi = Q(y, r, i) we are done.

Claim A.2.7. There exist a probabilistic polynomial-time oracle machine that, given α and oracle
access to P̃n, finds two conflicting certificates to the random-access hashing scheme with probability
that is polynomially related to δ/n and to the probability that the verifier makes a query that has
δ-conflicting answers. Specifically, letting η denote the latter probability, the probability of finding
a collision is at least ηδ2/m3.

Thus, on a typical α, the probability η must be negligible (because otherwise we derive a
contradiction to the security of the family {hα, certα}α∈{0,1}∗). Consequently, for δ = py,α/2m >
1/poly(n), we may confine ourselves to the case that the prover’s answers are not (δ/2)-conflicting.

Proof of Claim A.2.7. We uniformly select r ∈ {0, 1}poly(n) and i ∈ {1, ..., m}, hoping
that qi = Q(y, r, i) is δ-conflicting (which is the case with probability at least η/m).
Uniformly selecting i′, i′′ ∈ {1, ..., m}, and invoking the reverse-sampling algorithm SPCP

on inputs (y, i′, qi) and (y, i′′, qi), respectively, we obtain uniformly distributed r′ and
r′′ that satisfy qi = Q(y, r′, i′) and qi = Q(y, r′′, i′′). We now invoke P̃n twice, feeding it
with α and r′ (resp. α and r′′) in the first (resp., second) invocation. With probability
at least (δ/m)2 both answers to qi will be proper but with opposite values.

5Recall that m is the number of queries asked by the PCP verifier VPCP.

154 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

Suppose for a moment, that (for δ = py,α/2m) all the prover’s answers are δ-strong but not
(δ/2)-conflicting. Then, we can use the prover’s answers in order to construct (and not merely claim
the existence of) an oracle for the PCP system that makes it accept with probability at least py,α/2.
Specifically, let the qth bit of the oracle be b if and only if there exists an i such that b is δ-strong
for (i, q). The setting of the oracle bits can be decided in probabilistic polynomial-time by using
the reverse-sampling algorithm SPCP to generate multiple samples of interactions in which these
specific oracle bits are queried. That is, to determine the qth bit, we try i = 1, ..., m, and for each
value of i generate multiple samples of interactions in which the ith oracle query equals q. We will
use the gap provided by the hypothesis that for some i there is an answer that is δ-strong for (i, q),
whereas (by the non-conflicting hypothesis) for every j the opposite answer is not (δ/2)-strong for
(j, q).

In general, in contrary to the simplifying assumption above, some queries may either have no
strong answers or be conflicting. The procedure may indeed fail to recover the corresponding entries
in the PCP-oracle, but this will not matter because with sufficient high probability the PCP verifier
will not query these badly-recovered locations.

The oracle-recovery procedure: We present a probabilistic polynomial-time oracle machine
that on input (y, α) and q ∈ {0, 1}d and oracle access to the prover P̃n, outputs a candidate for the

qth bit of a PCP-oracle. The procedure operates as follows, where T
def
= poly(n/δ) and δ = ε/4m:

1. For i = 1, ..., m and j = 1, ..., T , invoke SPCP on input (y, i, q) and obtain ri,j .

2. For i = 1, ..., m and j = 1, ..., T , invoke P̃n feeding it with α and ri,j , and if the ith answer is
proper then record (i, j) as supporting this answer value.

3. If for some i ∈ {1, ..., m}, there are (2δ/3) · T records for the form (i, ·) for value b ∈ {0, 1}
then define b as a candidate. That is, b is a candidate if there exists an i and at least (2δ/3) ·T
different j’s such that the ith answer of P̃n(α, ri,j) is proper and has value b.

4. If a single value of b ∈ {0, 1} is defined as a candidate then set the qth bit accordingly.
(Otherwise, do whatever you please.)

We call the query q good if it does not have (δ/2)-conflicting answers and there exists an
i ∈ {1, ..., m} and a bit value that is δ-strong for (i, q). For a good query, with overwhelmingly high
probability, the above procedure will define the latter value as a unique candidate. (The expected
number of (i, ·)-supports for the strong value is at least δ · T , whereas for the opposite value the
expected number of (i′, ·)-supports is less than (δ/2)·T , for every i′.) Let use denote the PCP-oracle
induced by the above procedure by π.

Claim A.2.8. Let δ = ε/4m and recall that py,α ≥ ε/2. Suppose that the probability that V makes
a query that has (δ/2)-conflicting answers is at most py,α/4. Then, with probability at least 1−2−n

taken over the reconstruction of π, the probability that VPCP
π(y) accepts is lower bounded by py,α/4.

Proof of Claim A.2.8. Combining the hypothesis (regarding (δ/2)-conflicting answers)
with Claim A.2.6, we conclude that with probability at least (py,α − mδ) − (py,α/4) ≥
py,α/4 the verifier (of the interactive argument) accepts while making only good queries
and receiving only δ-strong answers. However, in this case, with probability at least
1 − 2−n, the answers of P̃n equal the corresponding bits in π. (This is because for
a good query, with overwhelmingly high probability, the answer that is δ-strong will

A.2. PROOF OF THEOREM A.1.2 155

be the only candidate determined by the procedure.) Since the (interactive argument)
verifier is accepting after invoking VPCP on the answers it obtained, it follows that in
this case VPCP accepts too.

The weak proof-of-knowledge property (of the interactive argument) now follows from the corre-
sponding property of the PCP system. Specifically, we combine the PCP extractor with the above
oracle-recovery procedure, and obtain the desired extractor.

Extractor for the argument system: On input (y, i) and access to a prover strategy P̃n, the
extractor operates as follows (using δ = ε/4m):

1. Uniformly select α ∈ {0, 1}n, hoping that α is typical (with respect to collision-freeness) and
that py,α > ε/2 (which hold with probability at least (ε/2) − µ(n) > ε/3).

By saying that α is typical with respect to collision-freeness we mean that in the corresponding
conditional probability space (of α being chosen in Step V1), the probability that the verifier
makes a query that has (δ/2)-conflicting answers is less than py,α/4, which in turn is at least
ε/8. By Claim A.2.7, there exists a probabilistic polynomial-time machine that, given any
untypical α (and access to P̃n), finds conflicting certificates for hα, certα with probability at
least (py,α/4) · (δ/2)2/m3 = Ω(ε3/m5) = 1/poly(n), because ε = 1/p(n). It follows that the
fraction of untypical α’s must be negligible.

2. Uniformly select coins ω for the oracle-recovery procedure, and fix ω for the rest of the
discussion.

Note that the oracle-recovery procedure (implicitly) provides oracle access to a PCP-oracle
π, where (by Claim A.2.8) with probability at least 1 − 2−n (over the choice of ω), this π
convinces VPCP with probability at least py,α/4 > ε/8 > 2−n.

3. Invoke EPCP(y, i) providing it with oracle access to π. This means that each time EPCP(y, i)
makes a query q, we invoke the oracle-recovery procedure on input (y, q) (and with α and ω
as fixed above), and obtain the qth bit of π, which we return as answer to EPCP(y, i). When
EPCP(y, i) provides an answer (supposedly the ith bit of a suitable witness w), we just output
this answer.

Let us call α useful if it is typical w.r.t collisions and py,α > ε/2. We say that ω is α-useful

if when used as coins for the oracle-recovery procedure (which gets main-input (y, α)) yields an
oracle that convinces VPCP with probability at least 2−n. Recall that at least a ε/3 fraction of
the α’s are useful, and that for each useful α at least a 1 − 2−n fraction of the ω’s are α-useful.
By the proof-of-knowledge property of the PCP system, if α is useful and ω is α-useful then with
probability at least 2/3 (over the coins of EPCP), the output of EPCP (and thus of our extractor)
will be correct. By suitable amplification, we can obtain the correct answer with probability at
least 1− 2−2n (over the coins of EPCP), pending again on α and ω being useful. Denoting the coins
of the amplified EPCP by ρ, we conclude that for at least a fraction 1 − t · 2−2n ≥ 1 − 2−n of the
possible ρ’s, the amplified EPCP provides correct answers for all t bit locations. We call such ρ’s
(α, ω)-useful.

Let us denote the above extractor by E. The running-time of E is dominated by the running-
time of the oracle-recovery procedure, whereas the latter is dominated by the poly(n/ε) invoca-
tions of P̃n (during the oracle-recovery procedure). Using ε = 1/p(n), it follows that E runs in
polynomial-time. The random choices of E correspond to the above three steps; that is, they consist

156 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

Public input: 〈M, x, t〉 (statement to be proved is “∃w s.t. M(x; w)
outputs 1 within t steps”)
Prover’s auxiliary input: w (a witness that M(x) = 1)

w
↓

M, x, t
↓

P V

Steps P,V1.x (“Encrypted” UA proof): The prover and the
verifier engage in the universal argument for 〈M, x, t〉 using the
system of Protocol A.2.4. However, the prover does not send its
messages in the clear, but rather only sends a commitment to
these messages, using a simple commitment Com. The verifier
sends its messages in the clear (note that since Protocol A.2.4
an Arthur-Merlin protocol, the verifier can compute its mes-
sages without knowing the prover’s messages). We denote the
transcript of this execution by τ , and the coins used by the
prover in constructing the commitment by d.

w
↓

〈M, x, t〉
↓

“Encrypted” UA
〈M, x, t〉 ∈ LU

↓
τ

Steps P,V2.x (Zero-knowledge proof of knowledge): The
prover proves to the verifier using a zero-knowledge proof (or
argument) of knowledge for NP that the transcript τ contains
commitments to an accepting transcript for the universal
argument system. Note that, unlike “〈M, x, t〉 ∈ LU”, this is in
NP statement and so can be proven using the zero-knowledge
system.

d
↓

τ
↓

ZKPOK
Com−1(τ)
is accepting.

↓

0/1

Protocol A.3.1. Zero-Knowledge Universal Arguments

of α, ω and ρ. Whenever they are all useful (i.e., α is useful, ω is α-useful, and ρ is (α, ω)-useful),
the extractor E recovers correctly all bits of a suitable witness (for y). The event in the condition
occurs with probability at least (ε/3) · (1−2−n) · (1−2−n) > ε/4 = 1/4p(n). Letting p′(n) = 4p(n),
Lemma A.2.5 follows.

A.3 Making the Universal Arguments Zero Knowledge

We now use Theorem A.1.2 to prove Item 1 of Theorem A.1.1. That is, we show how to convert
a universal argument systems into a proof system, where the prover is zero-knowledge, using any
zero-knowledge proof of knowledge for NP. The transformation follows the ideas of a similar
transformation by Kilian [Kil92].

Clearly Protocol A.3.1 satisfies the verifier efficiency and completeness with a relatively efficient
prover requirements of Definition 2.4.1. Also, because the communication complexity of the second
stage has a fixed polynomial dependence on the communication complexity of the first stage, we
can ensure that the total communication complexity is at most nǫpolylog(t). Note also that the
total number of communication rounds of Protocol A.3.1 is constant.

We will now sketch why Protocol A.3.1 satisfies the zero-knowledge and weak proof of knowledge

A.3. MAKING THE UNIVERSAL ARGUMENTS ZERO KNOWLEDGE 157

properties.

Zero Knowledge The simulator for the system works by sending commitments to “junk” mes-
sages (e.g., the all-zeros string) in the first stage, and then using the simulator for the NP
zero-knowledge system in the second stage. One can prove that the output of this simulator
is indeed indistinguishable from the verifier’s view in a real interaction using the hybrid ar-
gument. That is, we consider a “hybrid simulator” which uses the honest universal argument
prover in the first stage (instead of committing to “junk” messages) but uses the simulator
(and not the honest prover) in the second stage. The security of the commitment scheme,
along with the hiding property of the simple commitment scheme, ensure that both the actual
simulator’s output, and the real view of the verifier are indistinguishable from the output of
the hybrid simulator.

Weak proof of knowledge To prove the weak proof of knowledge property, we show the follow-
ing: for every (possibly cheating) prover P ∗ that causes the honest verifier of Protocol A.3.1
to accept with probability ǫ, there exists a prover P ∗∗ that causes the honest verifier of the
original universal argument system (i.e., Protocol A.2.4) to accept with probability ǫ′ which
is polynomially related to ǫ. Transforming the prover P ∗ into the prover P ∗∗ can be done in
probabilistic polynomial-time. The idea behind this transformation is that P ∗∗ will execute
an internal copy of P ∗, and will attempt to simulate the execution of P ∗ in the first stage,
except that P ∗∗ will need to send the prover messages in the clear, whereas P ∗∗ sends only
commitments to these messages. However, P ∗∗ can use the knowledge extractor of the second
stage system to obtain the plaintext for these messages. Because the number of rounds in the
universal arguments system is constant, it is actually not hard to show that P ∗∗ will indeed
succeed with probability at least ǫc for some constant c.

To be a little more detailed, let P ∗ denote a cheating prover strategy that causes the honest
verifier of Protocol A.3.1 to accept with probability ǫ. Using a Markov argument, we see that
for at least an ǫ/2 fraction of the choices for verifie’s first message m1 for the first round, the
acceptance probability conditioned on the verifier’s first message being m1 is at least ǫ/2. We
call all such choices for the verifier’s first message good. Similarly, conditioned on m1 being a
good verifier message, for an ǫ/4 fraction of the choices for the verifier’s second message m2,
the probability of acceptance conditioned on the first two verifier messages being 〈m1, m2〉
is at least ǫ/4. We call these choices for the verifier’s second message m1-good or, when m1

is clear from the context, simply good. We can continue in a similar way to define what it
means for a choice of message of any round to be good. We say that a transcript 〈m1, . . . , ml〉
of all the verifier messages in the proof system is good if for every i, the message mi is
〈m1, . . . , mi−1〉-good. Note that, because the number of rounds in Protocol A.3.1 is constant,
there is at least an ǫΩ(1) probability for a transcript to be good, if all verifier’s messages are
chosen according to the honest verifier strategy. We’ll now assume for simplicity that the zero-
knowledge proof system for NP has the property that given the prover’s accepting answers for
two verifier’s message sequence of the form 〈m1, . . . , mi−1, mi〉 and 〈m1, . . . , mi−1, m

′
i〉 (with

mi 6= m′
i) one can obtain a witness for the NP statement (there are zero-knowledge systems

for NP with this property). Now, given any prefix of good verifier messages, the verifier has
ǫΩ(1) probability to be able to complete this prefix to two such continuations. We can now
see how the external prover P ∗∗ will behave: Whenever P ∗ receives such a message, it will
feed this message to the internal prover P ∗ and obtain a commitment z to a prover answer
in the original UA system. P ∗ will then try to compute two continuations of the form above
to that message, and feed these two continuations to the internal prover P ∗, to obtain the

158 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

plaintext of the commitment z. It will then send this plaintext to the verifier. Assuming that
all the verifier’s messages and all the continuations are good (which will happen with ǫΩ(1)

probability, because the number of rounds is constant), the external prover P ∗∗ will convince
the honest verifier of the original UA system to accept.

A.4 Making the Universal Arguments Witness Indistinguishable

Protocol A.3.1 is a zero-knowledge universal arguments, and so in particular it is a witness-
indistinguishable universal argument. However, to prove Item 2 of Theorem A.1.1, we need to
construct a (constant-round) Arthur-Merlin witness-indistinguishable proof system. Protocol A.3.1
would indeed satisfy this condition if the zero-knowledge proof for NP used in its second stage is
constant-round Arthur-Merlin. Indeed, we show such a system exists in Chapter 4. However, we
can not use this system in proving Theorem A.1.1, since this theorem is used in the construction
of the system. Thus, we need a direct way to use a witness-indistinguishable proof of knowledge
for NP to convert the universal argument system of Protocol A.2.4 to a witness-indistinguishable
universal argument. This transformation is quite similar (but not identical) to the transformation
we used in the previous section (Section A.3). It is presented in Protocol A.4.1. The main idea is
to have the prover use an “encrypted” universal arguments twice, and then to prove using a WI
system for NP that in one of these times the transcript was valid.

All properties of this system are the same as Protocol A.3.1, thus the only property we need
to prove is the witness indistinguishability property.6 We will only sketch why it holds. Let
u = 〈M, x, t〉 be a statement and let w1 and w2 be two witnesses that u ∈ LU . We need to show
that the verifier’s view when the prover uses w1 as auxiliary input is indistinguishable from its view
when the prover uses w2. We do so by considering several intermediate hybrids:

Hybrid H1: The first hybrid we consider, H1, is the verifier’s view in a real interaction with the
prover, when the prover uses w1 as auxiliary input.

Hybrid H2: The second hybrid we consider, H1, is the verifier’s view in an interaction where
the prover uses the second witness w2 in the second execution of the “encrypted” universal
argument stage. This is indistinguishable from H1 by the hiding property of the commitment
scheme.

Hybrid H3: In H3, we change the view from H2 by having the prover use the decommitment
information for the second execution in the WI NP proof of the second stage. This is
indistinguishable from H2 by the WI property of the WIPOK for NP.

Hybrid H4: In H4, we change the view from H3 by having the prover use w1 for both the first
and second executions of the “encrypted” universal argument stage. This is indistinguishable
from H3 by the hiding property of the simple commitment scheme.

Hybrid H5: In H5, we change the view from H4 by having the prover use the decommitment
information from the first execution in the WIPOK of the second stage. This is indistin-
guishable from H4 by the WI property of the WIPOK for NP. However, this is exactly the
verifier’s view in an interaction with the prover when the prover uses w2 as auxiliary input.

6The only difference between this case and the proof sketched in Section A.3 gis that when proving the proof of
knowledge, the external prover P ∗∗ will need to “guess” which of the two encrypted proofs is the valid one. However,
it will guess correctly with probability 1

2
.

A.4. MAKING THE UNIVERSAL ARGUMENTS WITNESS INDISTINGUISHABLE 159

Public input: 〈M, x, t〉 (statement to be proved is “∃w s.t. M(x; w)
outputs 1 within t steps”)
Prover’s auxiliary input: w (a witness that M(x) = 1)

w
↓

M, x, t
↓

P V

Steps P,V1.x (“Encrypted” UA proof): The prover and the
verifier engage twice the universal argument for 〈M, x, t〉 us-
ing the system of Protocol A.2.4. However, the prover does not
send its messages in the clear, but rather only sends a commit-
ment to these messages, using a simple commitment Com. The
verifier sends its messages in the clear. We denote the tran-
script of the first (resp. second) execution by τ1 (resp. τ2), and
the coins used by the prover in constructing the commitments
of the first (resp. second) execution by d1 (resp. d2).

w
↓

〈M, x, t〉
↓

“Encrypted”
UA
〈M, x, t〉 ∈
LU

↓

d1
↓
τ1

w
↓

〈M, x, t〉
↓

“Encrypted”
UA
〈M, x, t〉 ∈
LU

↓

d2
↓
τ2

Steps P,V2.x (Witness-indistinguishable proof.): The prover
proves to the verifier using a witness-indistinguishable proof of
knowledge for NP that either the transcript τ1 contains com-
mitments to an accepting transcript for the universal argument
system, or the transcript τ2 contains such commitments. The
prover uses d1 (the coins used in the first execution) to prove
the statement.

d1, d2
↓

τ1, τ2
↓

WIPOK
Com−1(τ1)
or
Com−1(τ2)
is accept-
ing.

↓

0/1

Protocol A.4.1. Witness-Indistinguishable Universal Arguments

160 APPENDIX A. CONSTRUCTION OF UNIVERSAL ARGUMENTS

This completes the proof of Theorem A.1.1. We note that if one wants to conserve rounds, then
it is possible to run the two executions of the “encrypted” universal argument stage in parallel.

Why use two encrypted proofs? One can see that we need to use two encrypted proofs to
make the current hybrid argument work. We do not know whether this protocol will be witness
indistinguishable even if we use a single encrypted proof. We do know that this protocol will be
secure if the proof system for NP used in the second stage satisfies a stronger notion than witness
indistinguishability that is called strong witness indistinguishability (sWI) [Gol01b, Sec 4.6]. Indeed,
in the extended abstract presenting this transformation [BG01], we used a single encrypted proof and
an sWI proof for NP to obtain a WI universal argument. However, it turns out that, unlike stated
in [Gol01b, Sec 4.6], sWI is not closed under parallel composition, see the errata for Goldreich’s
book [Gol04, App C].7 This implies that, unlike claimed in [BG01], the parallel versions of the well-
known 3-round zero-knowledge arguments for 3-coloring and Hamiltonicity are not known to be
strong-WI. We do not know of a constant-round Arthur-Merlin strong-WI proof or argument for
NP other than the argument that is obtained from Chapter 4, and this is why we use the current
construction, with two encrypted proofs.

7This errata is also available on http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html\#err .

Bibliography

[Ame00] Entry: black box. In J. P. e. a. Pickett, editor, The American Heritage Dictionary of
the English Language, 4th Edition. Boston: Houghton Mifflin Company, 2000. http:

//www.bartleby.com/61/.

[Abr16] A. Abrams. New Concepts in Diagnosis and Treatment. 1916. See http://www.

meridianinstitute.com/eaem/abrams1/abr1cont.html.

[ACGS84] W. Alexi, B. Z. Chor, O. Goldreich, and C.-P. Schnorr. RSA and Rabin Functions:
Certain Parts are as Hard as the Whole. SIAM J. Comput., 17(2):194–209, Apr. 1988.
Preliminary version in FOCS’ 84.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and the
Hardness of Approximation Problems. Journal of the ACM, 45(3):501–555, May 1998.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs; a new characterization of NP.
In Proc. 33rd FOCS, pages 2–13. IEEE, 1992.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking Computations in Poly-
logarithmic Time. In Proc. 22nd STOC, pages 21–31. ACM, 1991.

[BM88] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a
Hierarchy of Complexity Classes. J. Comput. Syst. Sci., 36:254–276, 1988.

[Bar01] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS,
pages 106–115. IEEE, 2001. Preliminary full version available on http://www.math.

ias.edu/~boaz.

[Bar02] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the
Shared Random String Model. In Proc. 43rd FOCS. IEEE, 2002. Preliminary full
version available on http://www.math.ias.edu/~boaz.

[BG01] B. Barak and O. Goldreich. Universal Arguments and their Applications. Cryptology
ePrint Archive, Report 2001/105, 2001. Extended abstract appeared in CCC’ 2002.

[BGGL01] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-Sound Zero-
Knowledge and its Applications. Record 2001/063, Cryptology ePrint Archive, Aug.
2001. Preliminary version appeared in FOCS’ 01.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahay, S. Vadhan, and K. Yang.
On the (Im)possibility of Obfuscating Programs. In Crypto ’01, 2001. LNCS No. 2139.

161

162 BIBLIOGRAPHY

[BL02] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. Cryp-
tology ePrint Archive, Report 2002/043, 2002. Extended abstract appeared in STOC’
02.

[BOV03] B. Barak, S. J. Ong, and S. Vadhan. Derandomization in Cryptography, 2003.

[BG93] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Lecture Notes in
Computer Science, 740:390–420, 1993.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the First Annual Conference on Computer and
Communications Security. ACM, November 1993.

[Blu82] M. Blum. Coin Flipping by Phone. In Proc. 24th IEEE Computer Conference (Comp-
Con), pages 133–137, 1982. See also SIGACT News, Vol. 15, No. 1, 1983.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and Its Appli-
cations (Extended Abstract). In Proceedings of 20th STOC, pages 103–112, 2–4 May
1988.

[BG84] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme
which Hides All Partial Information. In Crypto ’84, pages 289–299, 1984. LNCS No.
196.

[BL96] D. Boneh and R. Lipton. Algorithms for Black-Box Fields and their Applications to
Cryptography. In Crypto ’96, pages 283–297, 1996. LNCS No. 1109.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge.
J. Comput. Syst. Sci., 37(2):156–189, Oct. 1988.

[BCY89] G. Brassard, C. Crépeau, and M. Yung. Everything in NP Can Be Argued in Perfect
Zero-Knowledge in a Bounded Number of Rounds. In Eurocrypt ’89, pages 192–195,
1989. LNCS No. 434.

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. Report 2001/055,
Cryptology ePrint Archive, July 2001. Extended abstract appeared in CRYPTO 2001.

[CGGM00] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge.
In Proc. 32th STOC, pages 235–244. ACM, 2000.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited.
In Proc. 30th STOC, pages 209–218. ACM, 1998.

[CKPR01] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge
Requires Ω̃(log n) Rounds. Record 2001/051, Cryptology ePrint Archive, June 2001.
Extended abstract appeared in STOC’ 01.

[CR87] B. Chor and M. O. Rabin. Achieving independence in logarithmic number of rounds.
In Proc. 6th ACM PODC, pages 260–268. ACM, 1987.

[Clo03] CloakWare Corporation. Introduction to CloakWare/Transcoder, Version 2.0, 2003.
Available on http://206.191.60.52/products/transcoder.html, last visited on De-
cember 2003.

BIBLIOGRAPHY 163

[CT00] C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation –
Tools for Software Protection. Technical Report TR00-03, The Department of Com-
puter Science, University of Arizona, Feb. 2000.

[CTL97] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating Trans-
formations. Technical Report 148, University of Auckland, July 1997. See also
http://www.cs.arizona.edu/~collberg/Research/Obfuscation/index.html.

[DDO+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
Non-interactive Zero Knowledge. In CRYPTO ’ 2001, pages 566–598, 2001.

[DIO98] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable com-
mitment. In Proc. 30th STOC, pages 141–150. ACM, 1998.

[DKOS01] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and Non-Interactive
Non-Malleable Commitment. Report 2001/032, Cryptology ePrint Archive, Apr. 2001.
Preliminary versoin in EUROCRYPT 2001.

[DH76] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, Nov. 1976.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437 (electronic), 2000. Preliminary version in STOC 1991.

[DNRS99] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. In Proc. 40th
FOCS, pages 523–534. IEEE, 1999.

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero Knowledge. In Proc. 30th STOC,
pages 409–418. ACM, 1998.

[Edw00] H. Edwards. Radionics, Good for Everything. In The Skeptic Journal, volume 13. Aus-
tralian Skeptic Society, 2000. http://www.skeptics.com.au/journal/radionics.

htm.

[FLS99] Feige, Lapidot, and Shamir. Multiple Noninteractive Zero Knowledge Proofs Under
General Assumptions. SIAM J. Comput., 29, 1999.

[Fei90] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis, De-
partment of Computer Science and Applied Mathematics, Weizmann Institute of Sci-
ence, Rehovot, Israel, 1990.

[FFS87] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology,
1(2):77–94, 1988. Preliminary version in STOC 1987.

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive Proofs and the
Hardness of Approximating Cliques. J. ACM, 43(2):268–292, Mar. 1996. Preliminary
version in STOC 1991.

[FS89] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. In
Crypto ’89, pages 526–545, 1989. LNCS No. 435.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In
Proc. 22nd STOC, pages 416–426. ACM, 1990.

164 BIBLIOGRAPHY

[FM91] J. Feigenbaum and M. Merritt. Distributed computing and cryptography: proceedings
of a DIMACS Workshop, October 4–6, 1989, volume 2 of DIMACS series in discrete
mathematics and theoretical computer science. 1991.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Crypto ’86, pages 186–194, 1986. LNCS No. 263.

[FF00] M. Fischlin and R. Fischlin. Efficient Non-malleable Commitment Schemes. Lecture
Notes in Computer Science, 1880:413–430, 2000. Extended abstract in CRYPTO’ 2000.

[GT00] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proc. 41st FOCS, pages 305–313. IEEE, 2000.

[Gol97] Goldreich. Notes on Levin’s Theory of Average-Case Complexity. In ECCCTR: Elec-
tronic Colloquium on Computational Complexity, technical reports, 1997. ECCC Report
TR97-058.

[Gol93] O. Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-Knowledge.
J. Cryptology, 6(1):21–53, 1993.

[Gol01a] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. Technical Report
2001/104, Cryptology ePrint Archive, Nov. 2001. Extended abstract in STOC’ 02.

[Gol01b] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
2001. See also lecture notes available on http://www.wisdom.weizmann.ac.il/~oded/

frag.html .

[Gol04] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Univer-
sity Press, 2004. To appear in Spring 2004, draft available on http://www.wisdom.

weizmann.ac.il/~oded/foc-vol2.html#err .

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986. Preliminary version in FOCS’ 84.

[GK96] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. J. Cryptology, 9(3):167–189, Summer 1996.

[GK92] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles. Random Struc-
tures and Algorithms, 3(2):163–174, 1992.

[GK90] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Comput., 25(1):169–192, Feb. 1996. Preliminary version appeared in ICALP’
90.

[GL89] O. Goldreich and L. A. Levin. A Hard-Core Predicate for All One-Way Functions. In
Proc. 21st STOC, pages 25–32. ACM, 1989.

[GL00] O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords Only. Re-
port 2000/057, Cryptology ePrint Archive, Nov. 2000. Extended abstract in CRYPTO
2001.

BIBLIOGRAPHY 165

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their Valid-
ity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM, 38(3):691–
729, July 1991. Preliminary version in FOCS’ 86.

[GO87] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Sys-
tems. J. Cryptology, 7(1):1–32, Winter 1994. Preliminary version in FOCS’ 87.

[GO96] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 43(3):431–473, 1996.

[GM82] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Comput. Syst. Sci.,
28(2):270–299, Apr. 1984. Preliminary version appeared in STOC’ 82.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989. Preliminary version in STOC’
85.

[GMR84] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, Apr. 1988. Pre-
liminary version in FOCS’ 84.

[GT03] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm.
Cryptology ePrint Archive, Report 2003/034, 2003. Extended abstract appeared in
FOCS’ 03.

[Had00] S. Hada. Zero-Knowledge and Code Obfuscation. In AsiaCrypt ’00, pages 443–457,
2000. LNCS No. 1976.

[HT99] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols.
Cryptology ePrint Archive, Report 1999/009, 1999. http://eprint.iacr.org/.

[Has03] F. Haslam, editor. Code Names & RAF Vocabulary. 2003. http://www.associations.
rafinfo.org.uk/code_names.htm.

[HILL89] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. Preliminary versions
appeared in STOC’ 89 and STOC’ 90.

[IL89] R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity Based
Cryptography (Extended Abstract). In Proc. 30th FOCS, pages 230–235. IEEE, 1989.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma. In Proc. 29th STOC, pages 220–229. ACM, 1997.

[KY00] J. Katz and M. Yung. Complete Characterization of Security Notions for Private-Key
Encryption. In Proc. 32th STOC, pages 245–254. ACM, 2000.

[Kil92] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In Proc. 24th STOC, pages 723–732. ACM, 1992.

[Kil95] J. Kilian. Improved Efficient Arguments (Preliminary version). In Crypto ’95, pages
311–324, 1995. LNCS No. 963.

166 BIBLIOGRAPHY

[KP00] J. Kilian and E. Petrank. Concurrent Zero-Knowledge in Poly-logarithmic Rounds.
Cryptology ePrint Archive, Report 2000/013, 2000. Extended abstract appeared in
STOC’ 01.

[KPR98] J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge on the Internet.
In Proc. 39th FOCS, pages 484–492. IEEE, 1998.

[Lam79] L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical
Report CSL-98, SRI International, Oct. 1979.

[Lev86] L. A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–
286, 1986.

[Lin01] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.
In Crypto ’01, pages 171–189, 2001. LNCS No. 2139.

[Lin03a] Y. Lindell. Bounded-concurrent secure Two-party Computation without Setup As-
sumptions. In Proc. 35th STOC. ACM, 2003.

[Lin03b] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption Under
General Assumptions. pages 241–254, 2003. LNCS No. 2656.

[LR86] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput., 17(2):373–386, 1988. Preliminary version in
STOC’ 86.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. In Proc. 31st FOCS, pages 2–10. IEEE, 1990.

[Mer89] R. C. Merkle. A certified digital signature. In Crypto ’89, pages 218–238, 1989. LNCS
No. 435.

[Mic94] S. Micali. CS proofs. In Proc. 35th FOCS, pages 436–453. IEEE, 1994.

[NSS99] D. Naccache, A. Shamir, and J. P. Stern. How to Copyright a Function? pages 188–196,
1999. LNCS No. 1560.

[Nao89] M. Naor. Bit Commitment Using Pseudorandomness. J. Cryptology, 4(2):151–158,
1991. Preliminary version in CRYPTO’ 89.

[NR97] M. Naor and O. Reingold. Number-theoretic Constructions of Efficient Pseudo-random
Functions. In Proc. 38th FOCS, pages 458–467. IEEE, 1997.

[Nat95] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Stan-
dard. National Institute for Standards and Technology, Apr. 1995.

[Net03] Network Associates Inc. $1.8 Million Awarded to Network Associates Laboratories to
Develop New Technologies for Protection of Critical Software, 2003. Press statement
available from Network Associate’s website on http://www.networkassociates.com/

us/about/press/corporate/2003/20030121%.htm .

[NW88] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci.,
49(2):149–167, Oct. 1994. Preliminary version in FOCS’ 88.

BIBLIOGRAPHY 167

[Par90] E. Partridge. Dictionary of RAF Slang. Pavilion Books, 1990. First edition printed in
1945.

[PRS92] M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero Knowledge with Logarith-
mic Round-Complexity. In Proc. 33rd FOCS. IEEE, 1992.

[Rab79] M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factor-
ization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology,
Jan. 1979.

[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. In Eurocrypt ’99, 1999. LNCS No. 1592.

[RAD78] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of secure computation (Workshop, Georgia Inst. Tech.,
Atlanta, Ga., 1977), pages 169–179. Academic, New York, 1978.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,
Feb 1978.

[Ros00] A. Rosen. A Note on the Round-Complexity of Concurrent Zero-Knowledge. In Crypto
’00, 2000. LNCS No. 1880.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In Proc. 40th FOCS, pages 543–553. IEEE, 1999.

[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive Cryptocomputing for NC1. In
Proc. 40th FOCS, pages 554–566. IEEE, 1999.

[Sch01] P. Scholten. An Historical Prespective: Albert Abrams, The Physician Who Made
Millions Out of Electricity. San Francisco Medicine, 74(5), 2001. Available on http:

//www.sfms.org/sfm/sfm501k.htm.

[TW87] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive
Proofs of Possession of Information. In Proc. 28th FOCS, pages 472–482. IEEE, 1987.

[vD98] F. van Dorsselaer. Obsolescent Feature. Winning entry for the 1998 International
Obfuscated C Code Contest, 1998. http://www.ioccc.org/.

[VO03] P. C. Van Oorschot. Revisiting Software Protection. In 6th International Information
Security Conference (ISC 2003), pages 1–13, 2003. Springer LNCS 2851. Available
from http://www.scs.carleton.ca/~paulv/ .

[Vas96] G. Vassilatos. “Nicola Tesla’s Black-Box”: excerpt from “Secrets of Cold War Tech-
nology”, volume Adventures Unlimited, pages 86–93. 1996. See http://www.frank.

germano.com/blackbox.htm.

[Vle99] R. V. Vleck. The Electronic Reactions of Albert Abrams. American Artifacts, 39, 1999.
http://www.americanartifacts.com/smma/abrams/abrams.htm.

168 BIBLIOGRAPHY

[Wag00] D. Wagner. Declaration of David Wagner In Opposition to Order to
Show Cause, 2000. Available on http://www.eff.org/IP/Video/DVDCCA_case/

20000107-pi-motion-wagnerdec.ht%ml .

[Wil03] D. Wilton. Word Origins Web-Site: Letter B, 2003. http://www.wordorigins.org/

wordorb.htm.

