A brief overview of Complexity Theory

The following brief overview is intended as a teaser for students in an introductory
course on Complexity Theory.

Out of the tough came forth sweetness'

Judges, 14:14

Complexity Theory is concerned with the study of the intrinsic complexity of com-
putational tasks. Its “final” goals include the determination of the complexity of
any well-defined task. Additional “final” goals include obtaining an understand-
ing of the relations between various computational phenomena (e.g., relating one
fact regarding computational complexity to another). Indeed, we may say that the
former type of goals is concerned with absolute answers regarding specific compu-
tational phenomena, whereas the latter type is concerned with questions regarding
the relation between computational phenomena.

Interestingly, the current success of Complexity Theory in coping with the latter
type of goals has been more significant. In fact, the failure to resolve questions of
the “absolute” type, led to the flourishing of methods for coping with questions
of the “relative” type. Putting aside for a moment the frustration caused by the
failure, we must admit that there is something fascinating in the success: in some
sense, establishing relations between phenomena is more revealing than making
statements about each phenomenon. Indeed, the first example that comes to mind
is the theory of NP-completeness. Let us consider this theory, for a moment, from
the perspective of these two types of goals.

Complexity theory has failed to determine the intrinsic complexity of tasks such
as finding a satisfying assignment to a given (satisfiable) propositional formula or
finding a 3-coloring of a given (3-colorable) graph. But it has established that
these two seemingly different computational tasks are in some sense the same (or,
more precisely, are computationally equivalent). The author finds this success
amazing and exciting, and hopes that the reader shares his feeling. The same
feeling of wonder and excitement is generated by many of the other discoveries of
Complexity theory. Indeed, the reader is invited to join a fast tour of some of the
other questions and answers that make up the field of Complexity theory.

We will indeed start with the “P versus NP Question”. Our daily experience is
that it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely
a coincidence or does it represent a fundamental fact of life (or a property of the
world)? Could you imagine a world in which solving any problem is not significantly
harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world?
The denial of the plausibility of such a hypothetical world (in which “solving” is
not harder than “checking”) is what “P different from NP” actually means, where

OWritten by Oded Goldreich (2005).

IThe quote is commonly used to mean that benefit arose out of misfortune.



P represents tasks that are efficiently solvable and NP represents tasks for which
solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs. Indeed,
finding proofs is a special type of the aforementioned task of “solving a problem”
(and verifying the validity of proofs is a corresponding case of checking correctness).
Again, “P different from NP” means that there are theorems that are harder to
prove than to be convinced of their correctness when presented with a proof. This
means that the notion of a proof is meaningful (i.e., that proofs do help when
trying to be convinced of the correctness of assertions). Here NP represents sets
of assertions that can be efficiently verified with the help of adequate proofs, and
P represents sets of assertions that can be efficiently verified from scratch (i.e.,
without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is
a fundamental scientific question of far-reaching consequences. The fact that this
question seems beyond our current reach led to the development of the theory of
NP-completeness. Loosely speaking, this theory identifies a set of computational
problems that are as hard as NP. That is, the fate of the P-versus-NP Question
lies with each of these problems: if any of these problems is easy to solve then
so are all problems in NP. Thus, showing that a problem is NP-complete provides
evidence to its intractability (assuming, of course, “P different than NP”). Indeed,
demonstrating NP-completeness of computational tasks is a central tool in indicat-
ing hardness of natural computational problems, and it has been used extensively
both in computer science and in other disciplines. NP-completeness indicates not
only the conjectured intractability of a problem but rather also its “richness” in the
sense that the problem is rich enough to “encode” any other problem in NP. The
use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn is based on establishing relations between different computational
problems (without referring to their “absolute” complexity).

The foregoing discussion of the P-versus-NP Question also hints to the impor-
tance of representation, a phenomenon that is central to complexity theory. In
general, complexity theory is concerned with problems the solutions of which are
implicit in the problem’s statement. That is, the problem contains all necessary
information, and one merely needs to process this information in order to supply
the answer.? Thus, complexity theory is concerned with manipulation of informa-
tion, and its transformation from one representation (in which the information is
given) to another representation (which is the one desired). Indeed, a solution to
a computational problem is merely a different representation of the information
given; that is, a representation in which the answer is explicit rather than implicit.
For example, the answer to the question of whether or not a given Boolean for-
mula is satisfiable is implicit in the formula itself (but the task is to make the
answer explicit). Thus, complexity theory clarifies a central issue regarding rep-

2In contrast, in other disciplines, solving a problem may require gathering information that is
not available in the problem’s statement. This information may either be available from auxiliary
(past) records or be obtained by conducting new experiments.



resentation; that is, the distinction between what is explicit and what is implicit
in a representation. Furthermore, it even suggests a quantification of the level of
non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers. Examples include the aforementioned
concepts of proofs and representation as well as concepts like randomness, knowl-
edge, interaction, secrecy and learning. We next discuss some of these concepts
and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: they asked “what is randomness” and wondered
whether it exist at all (or is the world deterministic). The perspective of complexity
theory is behavioristic: it is based on defining objects as equivalent if they cannot
be told apart by any efficient procedure. That is, a coin toss is (defined to be) “ran-
dom” (even if one believes that the universe is deterministic) if it is infeasible to
predict the coin’s outcome. Likewise, a string (or a distribution of strings) is “ran-
dom” if it is infeasible to distinguish it from the uniform distribution (regardless of
whether or not one can generate the latter). Interestingly, randomness (or rather
pseudorandomness) defined this way is efficiently expandable; that is, under a rea-
sonable complexity assumption (to be discussed next), short pseudorandom strings
can be deterministically expanded into long pseudorandom strings. Indeed, it turns
out that randomness is intimately related to intractability. Firstly, note that the
very definition of pseudorandomness refers to intractability (i.e., the infeasibility
of distinguishing a pseudorandomness object from a uniformly distributed object).
Secondly, as hinted above, a complexity assumption that refers to the existence of
functions that are easy to evaluate but hard to invert (called one-way functions) im-
ply the existence of deterministic programs (called pseudorandom generators) that
stretch short random seeds into long pseudorandom sequences. In fact, it turns
out that the existence of pseudorandom generators is equivalent to the existence
of one-way functions.

Complexity theory offers its own perspective on the concept of knowledge (and
distinguishes it from information). It views knowledge as the result of a hard
computation. Thus, whatever can be efficiently done by anyone is not considered
knowledge. In particular, the result of an easy computation applied to publicly
available information is not considered knowledge. In contrast, the value of a
hard to compute function applied to publicly available information is knowledge,
and if somebody provides you with such a value then it has provided you with
knowledge. This discussion is related to the notion of zero-knowledge interactions,
which are interactions in which no knowledge is gained. Such interactions may
still be useful, because they may assert the correctness of specific data that was
provided beforehand.

The foregoing paragraph has explicitly referred to interaction. It has pointed
one possible motivation for interaction: gaining knowledge. It turns out that in-
teraction may help in a variety of other contexts. For example, it may be easier to
verify an assertion when allowed to interact with a prover rather than when reading
a proof. Put differently, interaction with some teacher may be more beneficial than



reading any book. We comment that the added power of such interactive proofs is
rooted in their being randomized (i.e., the verification procedure is randomized),
because if the verifier’s questions can be determined beforehand then the prover
may just provide the transcript of the interaction as a traditional written proof.

Another concept related to knowledge is that of secrecy: knowledge is some-
thing that one party has while another party does not have (and cannot feasibly
obtain by itself) — thus, in some sense knowledge is a secret. In general, complexity
theory is related to Cryptography, where the latter is broadly defined as the study
of systems that are easy to use but hard to abuse. Typically, such systems involve
secrets, randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its pre-
scribed behavior. Thus, much of Cryptography is based on complexity theoretic
assumptions and its results are typically transformations of relatively simple com-
putational primitives (e.g., one-way functions) into more complex cryptographic
applications (e.g., a secure encryption scheme).

We have already mentioned the context of learning when referring to learning
from a teacher versus learning from a book. Recall that complexity theory provides
evidence to the advantage of the former. This is in the context of gaining knowledge
about publicly available information. In contrast, computational learning theory
is concerned with learning objects that are only partially available to the learner
(i.e., learning a function based on its value at a few random locations or even at
locations chosen by the learner). Complexity theory sheds light on the intrinsic
limitations of learning (in this sense).

Complexity theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or “finding
solutions”) and making decisions (e.g., regarding the validity of assertion). We
have also hinted that in some cases these two types of tasks can be related. Now
we consider two additional types of tasks: counting the number of solutions and
generating random solutions. Clearly, both the latter tasks are at least as hard as
finding arbitrary solutions to the corresponding problem, but it turns out that for
some natural problems they are not significantly harder. Specifically, under some
natural conditions on the problem, approximately counting the number of solutions
and generating an approximately random solution is not significantly harder than
finding an arbitrary solution.

Having mentioned the notion of approzimation, we note that the study of the
complexity of finding approximate solutions has also received a lot of attention.
One type of approximation problems refers to an objective function defined on the
set of potential solutions. Rather than finding a solution that attains the optimal
value, the approximation task consists of finding a solution that attains an “almost
optimal” value, where the notion of “almost optimal” may be understood in dif-
ferent ways giving rise to different levels of approximation. Interestingly, in many
cases even a very relaxed level of approximation is as difficult to achieve as the
original (exact) search problem (i.e., finding an approximate solution is as hard
as finding an optimal solution). Surprisingly, these hardness of approximation re-
sults are related to the study of probabilistically checkable proofs, which are proofs



that allow for ultra-fast probabilistic verification. Amazingly, every proof can be
efficiently transformed into one that allows for probabilistic verification based on
probing a constant number of bits (in the alleged proof). Turning back to approx-
imation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. An-
other natural relaxation is the study of average-case complexity, where the “aver-
age” is taken over some “simple” distributions (representing a model of the prob-
lem’s instances that may occur in practice). We stress that, although it was not
stated explicitly, the entire discussion so far has referred to “worst-case” analysis of
algorithms. We mention that worst-case complexity is a more robust notion than
average-case complexity. For starters, one avoids the controversial question of what
are the instances that are “important in practice” and correspondingly the selection
of the class of distributions for which average-case analysis is to be conducted. Nev-
ertheless, a relatively robust theory of average-case complexity has been suggested,
albeit it is far less developed than the theory of worst-case complexity.

In view of the central role of randomness in complexity theory (as evident, say,
in the study of pseudorandomness, probabilistic proof systems, and cryptography),
one may wonder as to whether the randomness needed for the various applications
can be obtained in real-life. One specific question, which received a lot of atten-
tion, is the possibility of “purifying” randomness (or “extracting good randomness
from bad sources”). That is, can we use “defected” sources of randomness in or-
der to implement almost perfect sources of randomness. The answer depends, of
course, on the model of such defected sources. This study turned out to be related
to complexity theory, where the most tight connection is between some type of
randomness extractors and some type of pseudorandom generators.

So far we have focused on the time complexity of computational tasks, while
relying on the natural association of efficiency with time. However, time is not
the only resource one should care about. Another important resource is space:
the amount of (temporary) memory consumed by the computation. The study
of space complexity has uncovered several fascinating phenomena, which seem to
indicate a fundamental difference between space complexity and time complexity.
For example, in the context of space complexity, verifying proofs of validity of
assertions (of any specific type) has the same complexity as verifying proofs of
invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of
some mountain tops, and dizziness is to be expected. Needless to say, the rest of
the course will be in a totally different style. We will climb some of these mountains
by foot, step by step, and will stop to look around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-
sults are not known for many of the “big questions” of complexity theory (most
notably the P-versus-NP Question). However, several highly non-trivial absolute
results have been proved. For example, it was shown that using negation can
speed-up the computation of monotone functions (which do not require negation



for their mere computation). In addition, many promising techniques were intro-
duced and employed with the aim of providing a low-level analysis of the progress
of computation. However, the focus of this course is elsewhere.



