Computational Complexity

Oded Goldreich Avi Wigderson
Department of Computer Science School of Mathematics
Weizmann Institute of Science Institute for Advanced Study
Rehovot, ISRAEL. Princeton, NJ, USA.
oded.goldreich@vweizmann.ac.il avi@ias.edu

October 3, 2004

Abstract

The strive for efficiency is ancient and universal, as time is always short for humans. Com-
putational Complexity is a mathematical study of the what can be achieved when time (and
other resources) are scarce.

In this brief article we will introduce quite a few notions: Formal models of computation,
and measures of efficiency; the P vs. NP problem and NP-completeness; circuit complexity and
proof complexity; randomized computation and pseudorandomness; probabilistic proof systems,
cryptography and more. A glossary of complexity classes is included in an appendix. We highly
recommend the given bibliography and the references therein for more information.

Contents

1 Introduction 1
2 Preliminaries 1
2.1 Computability and Algorithms 1
2.2 Efficient Computability and the class P oo o oo 2

3 The P versus NP Question 3
3.1 [Efficient Verification and the class NP o oL 3
3.2 The Big Conjecture e 4
3.3 NP versus coNP o o 4

4 Reducibility and NP-Completeness 5
5 Lower Bounds 6
5.1 Boolean Circuit Complexity L 7
5.1.1 Basic Results and Questions 8

5.1.2 Monotone Circuits L e 8

5.1.3 Bounded-Depth Circuits 9

5.1.4 Formula Size 9

5.1.5. Why Is It Hard to Prove Lower Bounds? 10

5.2 Arithmetic Circuits L e e e 10
5.2.1 Univariate Polynomials e 11

5.2.2 Multivariate Polynomialso 11

5.3 Proof Complexity L 12
5.3.1 Logical Proof Systems 13

5.3.2 Algebraic Proof Systems 14

5.3.3 Geometric Proof Systems oL 14

6 Randomized Computation 15
6.1 Counting at Random e 15
6.2 Probabilistic Proof Systems e 16
6.2.1 Interactive Proof Systems 16

6.2.2 Zero-Knowledge Proof Systems L 17

6.2.3 Probabilistically Checkable Proof systems 17

6.3 Weak Random Sources e 18

7 The Bright Side of Hardness 18
7.1 Pseudorandommness L e 19
7.1.1 Hardness versus Randomness 20

7.1.2 Pseudorandom Functions L 20

7.2 Cryptography L e e 21

8 The Tip of an Iceberg 22
8.1 Relaxing the Requirements L 22
8.1.1 Average-Case Complexity 22

8.1.2 Approximation e e e e e e e e e e e e e e 22

8.2 Other Complexity Measures 0 i e e e e e e e e 22
8.3 Other Notions of Computation 22

9 Concluding Remarks 23
Bibliography 24
Appendix: Glossary of Complexity Classes 25
A.1 Algorithm-based classes L e 25

A.2 Circuit-based classes e e e 26

1 Introduction

Computational Complexity (or Complexity Theory) is a central subfield of the theoretical founda-
tions of Computer Science. It is concerned with the study of the intrinsic complexity of computa-
tional tasks. This study tends to aim at generality: it focuses on natural computational resources,
and considers the effect of limiting these resources on the class of problems that can be solved.
It also tends to asymptotics: studying this complexity as the size of data grows. Another related
subfield (represented in this volume) deals with the design and analysis of algorithms for specific
(classes of) computational problems that arise in a variety of areas of mathematics, science and
engineering.

The (half-century) history of Complexity Theory has witnessed two main research efforts (or
directions). The first direction is aimed towards actually establishing concrete lower bounds on
the complexity of problems, via an analysis of the evolution of the process of computation. Thus,
in a sense, the heart of this direction is a “low-level” analysis of computation. Most research in
circuit complexity and in proof complexity falls within this category. In contrast, a second research
effort is aimed at exploring the connections among computational problems and notions, without
being able to provide absolute statements. This effort may be viewed as a “high-level” study of
computation. The theory of NP-completeness, the study of probabilistic proof systems as well as
pseudorandomness and cryptography all falls within this category.

2 Preliminaries

This exposition considers only finite objects, encoded by finite binary sequences, called strings. For
a natural number n, we denote by {0,1}" the set of all binary sequences of length n, hereafter
referred to as n-bit strings. The set of all strings is denoted {0,1}*; that is, {0,1}* = U,en{0, 1}™.
For = € {0,1}*, we denote by |z| the length of z (i.e., € {0,1}*). At times, we associate
{0,1}*x{0,1}* with {0,1}*. Natural numbers will be encoded by their binary expansion.

2.1 Computability and Algorithms

We are all familiar with computers, and the ability of computer programs to manipulate data.
But how does one capture all computational processes? Before being formal, we offer a loose
description, capturing many artificial as well as natural processes, and invite the reader to compare
it with physical theories.

A computation is a process that modifies an environment via repeated applications of a prede-
termined rule. The key restriction is that this rule is simple: in each application it depends and
affects only a (small) portion of the environment, called the active zone. We contrast the a-priori
bounded size of the active zone (and of the modification rule) with the a-priori unbounded size of
the entire environment. We note that, although each application of the rule has a very limited
effect, the effect of many applications of the rule may be very complex. The computation rule
(especially when designed to effect a desired computation) is often referred to as an algorithm.

Such processes naturally compute functions, and their complexity is naturally captured by the
number of steps they apply. Let us elaborate.

We are interested in the transformation of the environment effected by the computational pro-
cess. Typically, the initial environment to which the computation is applied encodes an input string,
and the end environment (i.e., at termination of the computation)! encodes an output string. We

!We assume that, when invoked on any finite initial environment, the computation halts after a finite number of

consider the mapping from inputs to outputs induced by the computation; that is, for each possible
input z, we consider the output y obtained at the end of a computation initiated with input x, and
say that the computation maps input x to output y. We also consider the number of steps (i.e.,
applications of the rule) taken by the computation for each input. The latter function is called
the time complexity of the computational process. While time complexity is defined per input, one
often considers it per input length, taking the maximum over all inputs of the same length.

To define computation (and computation time) rigorously, one needs to specify some model of
computation; that is, provide a concrete definition of environments and a class of rules that may
be applied to them. Such a model corresponds to an abstraction of a real computer (be it a PC,
mainframe or network of computers). One simple abstract model that is commonly used is that
of Turing machines (see, e.g., [17]). Thus, specific algorithms (and their complexity) are typically
formalized by corresponding Turing machines. We stress however that most results in the Theory of
Computation hold regardless of the specific computational model used, as long as it is “reasonable”
(i.e. satisfies the aforementioned simplicity condition).

The above discussion has implicitly referred to computations and Turing machines as a means of
computing functions. Specifically, a Turing machine M computes the function fp;:{0,1}* —{0,1}*
defined by fy/(z)=y if, when invoked on input x, machine M halts with output y. (For example,
we may refer to the computation of the integer multiplication function, which given an encoding of
two integers returns the encoding of their product.) However, computations can also be viewed as a
means of “solving problems” or “making decisions”, which are captured (respectively) by relations
and sets.

Search problems are captured by binary relations RC{0,1}* x{0,1}*, with the semantics that
y is called a (valid) solution for problem instance x if and only if (x,y) € R. Machine M solves the
search problem R if (x, fas(z)) € R whenever a solution for x exists; that is, given an instance z
that has a valid solution, machine M finds some valid solution for z. (For example, we may refer
to a machine that, given a system of polynomial equations, returns a valid solution.)

Decision problems are captured by sets S C {0,1}*, with the semantics that S is the set of
“yes-instances” (of the problem). We say that M solves the decision problem S if it holds that
fu(z) =1 if and only if x € S; that is, given an instance x, machine M determines whether or
not x € S. (For example, we may refer to a machine that, given a natural number, determines
whether or not it is prime.) At times, it will be convenient to view decision problems as Boolean
functions defined on the set of all strings (i.e., S:{0,1}* — {0,1}) rather than as sets of strings
(i.e., SC{0,1}*).

In the rest of this exposition we associate the machine M with the function fj; computed by
it; that is, we write M (x) instead of fy(z).

2.2 Efficient Computability and the class P

So far we have mathematically defined all tasks that can be computed n principle, and the time
such computations take. Now we turn to define what can be computed efficiently, and then discuss
the choices made in this definition.

We call an algorithm efficient if it terminates within time that is polynomial in the length of
its inputs. Understanding the class of problems (called P below) that have such algorithms is the
major goal of Computational Complexity Theory.

Definition 1 (the complexity class P) A decision problem S C {0,1}* is solvable in polynomial

steps.

time if there ezists a (deterministic) polynomial-time Turing machine M such that M (x) =1 if and
only if © € S. The class of decision problems that are solvable in polynomaial time is denoted P.

The asymptotic analysis of running-time (i.e., considering running-time as a function of the
input length) turned out to be crucial for revealing structure in the theory of efficient computation.
The choice of polynomial time may seem arbitrary (and theories could be developed with other
choices), but again proved itself right. Polynomials are viewed as the canonical class of slowly
growing functions that enjoy closure properties relevant to computation. Specifically, the class is
closed under addition, multiplication and composition. The growth rate of polynomials allows us
to consider as efficient essentially all problems for which practical computer programs exist, and
the closure properties of polynomials guarantee robustness of the notion of efficient computation.
Finally, while n'%-time algorithms are called efficient here despite their blatant impracticality,
one rarely discovers even an n'l-time algorithm for a natural problem (and when this happens,
improvements to n® or n?-time, which border on the practical, typically follow).

It is important to contrast P to the class EAXP, of all problems solvable in time exponential in
the length of their inputs. Exponential running time is considered blatantly nefficient, and if the
problem has no faster algorithm, then it is deemed intractable. It is known (via a basic technique
called diagonalization that P # EXP; furthermore, some problems in EXP do require exponential
time. We note that almost all problems and classes considered in this paper will be in EXP via
trivial, “brute force” algorithms, and the main question will be if much faster algorithms can be
devised for them.

Note that so far we restricted computation to be a deterministic process. In Section 6 we pursue
the important relaxation of allowing randomness (coin tosses) in computation, and its impact on
efficiency and other computational notions.

3 The P versus NP Question

In a nutshell, the P versus NP question is whether creativity can be automated. This applies to all
tasks for which a successful completion can be easily recognized. A particular special case, which
is in fact quite general and has natural appeal to Mathematicians, is the task of determining if a
mathematical statement is true. Here successful completion is a proof, so the P versus NP Question
can be informally stated as whether verifying proofs (which we view as a mechanical process) is,
or is not, much easier than finding a proof (which we view as creative). In general, the class NP
captures all problems for which an adequate solution (when given) can be efficiently verified, while
the class P captures all problems that can be solved efficiently (without such external help). We
now turn to formally define these notions.

3.1 Efficient Verification and the class NP

The fundamental class NP of decision problems consists of the class of sets S for which there exist
short proofs that « € S of membership, that which can be efficiently verified. These two ingredients
are captured by two properties of an auxiliary binary relation Rg € P in which all y for which
(z,y) € Rg have polynomial (in |z|) length, and such a “proof” y exists iff x € S (thus certifying,
or witnessing, or proving this fact).?

2The acronym NP stands for Non-deterministic Polynomial-time, where a non-deterministic machine is a fictitious
computing device used in an alternative definition of the class NP. The non-deterministic moves of such a machine
correspond to guessing a “proof” in Definition 2.

Definition 2 (the complexity class N'P) A binary relation R C {0,1}*x{0,1}* is called poly-
nomially bounded if there exists a polynomial p such that |y| < p(|x|) holds for every (x,y) € R. A
decision problem S is in NP if there ewists a polynomially bounded binary relation Rg such that
Rs is in P and x € S if and only if there exists y such that (x,y) € Rg. Such a y is called a proof
(or witness) of membership of z € S.

We note that trivially NP C EXP, since we can go over all possible y’s in exponential time.
Can this trivial algorithm be improved? Since P is the class of sets for which membership can be
efficiently decided (without being given a proof), it follows that P CNP. Thus, the P versus NP
Question can be cast as follows: does the existence of an efficient verification procedure for proofs
of membership in a certain set imply the ability to efficiently decide membership in the same set?

Open Problem 3 Is NP equal to P?

Natural search problems arise from every polynomially bounded relation R € P; namely, given
x, find any y for which (z,y) € R (if such a solution exists). Note that the polynomial bound on
the length of y guarantees that the search problem is not trivially intractable (as would be the case
if all solutions had length that is super-polynomial in the length of the instance). Furthermore,
R € P implies that the search problem is natural in the sense that one can (efficiently) recognize
the validity of a solution to a problem instance. One often views NP as the class of all such search
problems; that is, the class of search problems referring to relations R € P that are polynomially
bounded. The search analog of the P versus NP question is whether the efficient verification of
candidate solutions necessarily entails that valid solutions are easy to find. Indeed, the search and
decision versions of the P versus NP question are equivalent.

3.2 The Big Conjecture

It is widely believed that P # NP. Settling this conjecture is certainly the most important open
problem in Computer Science, and among the most significant in Mathematics. The P # NP
Conjecture is supported by our strong intuition, developed over centuries in a variety of human
activities, that finding solutions is far harder than verifying their adequacy. Further empirical
evidence in favor of the conjecture is given by the fact that literally thousands of NP problems, in a
wide variety of mathematical and scientific disciplines, are not known to be solvable in polynomial
time, in spite of extensive research attempts aimed at providing efficient procedures for solving
them. One famous example is the Integer Factorization problem: given a natural number, find its
prime factorization.

The section on Circuit Complexity (Section 5.1) is devoted to attempts to prove this conjecture,
discussing some partial results and limits of the techniques used so far.

3.3 NP versus coNP

Assuming that P # NP, it is unclear whether the existence of an efficient verification procedure for
proofs of membership in a set implies the existence of an efficient verification procedure for proofs
of non-membership in that set. Let coNP denote the class of sets that are complements of sets in

NP (ie., coNP L€ {{0,1}\ 5 : 5 € NP}).

Open Problem 4 Is NP equal to coN'P?

It is widely believed that coNP # AN'P. (Indeed, this implies P # NP). Here again intuition
from Mathematics is extremely relevant: to verify that a set of logical constraints is mutually
inconsistent, that a family of polynomial equations have no common root, that a set of regions
in space has empty intersection, seems far harder to prove than their complements (exhibiting the
consistent valuation, root, point resp.). Indeed, only when (rare) extra mathematical structure is
available do we have duality theorems, or complete systems of invariants, implying (computational)
equivalence of the set and its complement. The section on Proof Complexity (Section 5.3) deals
further with this conjecture, and attempts to resolve it.

4 Reducibility and NP-Completeness

In this section we attempt to identify the “hardest” problems in NP. For this we shall define a
natural partial order on decision problems, called polynomial-time reducibility, and define maximal
elements in NP under this order to be “complete”. We note that reductions and completeness are
key concepts in Complexity Theory.

A general notion of (polynomial-time) reducibility among computational problems is obtained
by considering a (polynomial-time) machine for solving one problem (e.g., computing a function f)
that may issue queries to another problem (e.g., to a function g)®. Thus, if the latter problem can
be solved efficiently then so can the former. One restricted notion of a reduction, which refers to
decision problems, requires the reduction machine to issue a single query and output the answer it
obtains. In this case, a simpler formulation follows:

Definition 5 (Polynomial-time Reducibility) A set S is polynomial-time reducible to the set
T if there exist polynomial-time computable function h such that x € S if and only if h(x) € T.

Definition 6 (NP-Completeness) A decision problem S is NP-complete if S is in N'P and every
decision problem in NP is polynomial-time reducible to S.

Thus, NP-complete (decision) problems are “universal” in the sense that providing a polynomial-
time procedure for solving any of them will immediately imply polynomial-time procedures for
solving all other problems in NP (and in particular all NP-complete decision problems). Further-
more, in a sense, each of these (NP-complete) problems “efficiently encodes” all the other problems
and, in fact, all NP search problems. For example, the Integer Factorization problem can be “effi-
ciently encoded” in any NP-complete problem (which may have nothing to do with integers). Thus,
at first glance, it seems very surprising that NP-complete problems exist at all.

Theorem 7 There exist NP-complete decision problems. Furthermore, the following decision prob-
lems are NP-complete:

SAT: Given a propositional formula, decide whether or not it is satisfiable.*

3-Coloring: Given a planar map, decide whether or not it is 3-colorable.’

3Such a machine is called an oracle machine, and in the above case we say that it computes the function f by
issuing queries to the oracle (function) g such that for query g the answer is g(gq).

“The problem remains NP-complete even when instances are restricted to be in Conjunctive Normal Form (CNF),
and even when each clause has exactly three literals. These formulae are said to be in 3CNF form, and the set of
satisfiable 3CNF formulae is denoted 3SAT.

®Recall that the celebrated 4-color Theorem asserts that 4 colors always suffice. In contrast to the NP-completeness
of deciding 3-colorability, it is easy to decide 2-colorability of arbitrary graphs (and in particular of planar maps).

Subset Sum: Given a sequence of integers ay, ...,a, and b, decide whether or not there exists a set
I such that) ;. a; =b.

The decision problems mentioned above are but three examples among literally thousands of natural
NP-complete problems, from a wide variety of mathematical and scientific disciplines. Hundreds
of such problems are listed in [5].

Assuming that P # NP, no NP-complete problem has a polynomial-time decision procedure.
Consequently, the corresponding NP search problems cannot be solved in polynomial time. Thus,
proofs of NP-completeness are often taken as evidence to the intrinsic difficulty of a problem.

Positive applications of NP-completeness are also known: in some cases a claim regarding
all NP-sets is proved by establishing the claim only for some NP-complete set (and noting that
polynomial-time reductions preserve the claimed property). Famous examples include the existence
of Zero-Knowledge proofs, established first for 3-coloring (see Section 6.2.2), and the PCP Theorem,
established first for 3-SAT (see Section 6.2.3).

We note that almost every natural problem in AP ever considered turns out to be either NP-
complete or in P. Curiously, only a handful of natural problems, including Integer Factorization
and Graph Isomorphism, are not known to belong to either of these classes (and indeed there is
strong evidence they don’t).

5 Lower Bounds

In this section we survey some basic attempts at proving lower bounds on the complexity of natural
computational problems. In the first part, Circuit Complexity, we describe lower bounds for the
size of circuits that solve natural computational problems. This can be viewed as a program whose
long-term goal is proving that P # ANP. In the second part, Proof Complexity, we describe lower
bounds on the length of propositional proofs of natural tautologies. This can be viewed as a
program whose long-term goal is proving that NP # coANP. Both models refer to the finite model
of directed acyclic graphs (DAGs), which we define next.

A DAG G(V, E) cousists of a finite set of vertices V', and a set of ordered pairs called directed
edges £ CV xV, in which there are no directed cycles. The vertices with no incoming edges are
called the inputs of the DAG G, and the vertices with no outgoing edges are called the outputs. We
will restrict ourselves to DAGs in which the number of incoming edges to every vertex is at most
2. If the number of outgoing edges from every node is at most 1, the DAG is called a tree. Finally,
we assume that every vertex can be reached from some input via a directed path. The size of a
DAG will be its number of edges.

To make a DAG into a computational device (or a proof), each non-input vertex will be marked
by a rule, converting values in its predecessors to values at that vertex. It is easy to see that the
vertices of every DAG can be linearly ordered, such that predecessors of every vertex (if any) appear
before it in the ordering. Thus, if the input vertices are labeled with some values, we can label the
remaining vertices (in that order), one at a time, till all vertices (and in particular all outputs) are
labeled.

For computation, the non-input vertices will be marked by functions (called gates) which make
the DAG a circuit. If we label the input vertices by specific values from some domain, the outputs
will be determined by them, and the circuit will naturally define a function (from input values to
output values).

For proofs, the non-input vertices will be marked by sound deduction (or inference) rules, which
make the DAG a proof. If we label the inputs by formulae that are axioms in a given proof system,

the output again will be determined by them, and will yield the tautology proved by this proof.

We note that both settings fit the paradigm of simplicity shared by computational models
discussed in the previous section; the rules are simple by definition — they are applied to at most
2 previous values. The main difference is that this model is finite — each DAG can compute only
functions/proofs with a fixed input length. To allow all input lengths, one must consider families
of DAGs, one for each, thus significantly extending the power of the computation model beyond
that of the notion of algorithm defined earlier. However, as we are interested in lower bounds
here, this is legitimate, and one can hope that the finiteness of the model will potentially allow for
combinatorial techniques to analyze its power and limitations. Furthermore, these models allow for
the introduction (and study) of meaningful restricted classes of computations.

We use the following asymptotic notation: For f,g:N—N, by f = O(g) (resp., f = Q(g)) we
mean that there exists a constant ¢ > 0 such that f(n) < c¢-g(n) (resp., f(n) > c¢-g(n)) for all
neN.

5.1 Boolean Circuit Complexity

In Boolean circuits all inputs, outputs, and values at intermediate nodes of the DAG are bits. The
set of allowed gates is naturally taken to be a complete basis — one that allows the circuit to compute
all Boolean functions. The specific choice of a complete basis hardly effects the study of circuit
complexity. A typical choice is the set {A,V, =} of (respectively) conjunction, disjunction (each on
2 bits) and negation (on 1 bit).

Definition 8 Denote by S(f) the size of the smallest Boolean circuit computing f.

We will be interested in sequences of functions {f,}, where f,, is a function on n input bits, and
will study the complexity S(f,) asymptotically as a function of n. With some abuse of notation,

for f(x) Aot fiz|(7), we let S(f) denote the integer function that assigns to n the value S(fy).

We note that different circuits (in particular having a different number of inputs) are used for
each f,. Still there may be a simple description of this sequence of circuits, say, an algorithm that
on input n produces a circuit computing f,. In case such an algorithm exists and works in time
polynomial in the size of its output, we say that the corresponding sequence of circuits is uniform.
Note that if f has a uniform sequence of polynomial-size circuits then f € P. On the other hand, it
can be shown that any f € P has (a uniform sequence of) polynomial-size circuits. Consequently,
a super-polynomial circuit lower-bound on any function in AP would imply that P # NP.

But Definition 8 makes no reference to “uniformity” and indeed the sequence of smallest circuits
computing {f,} may be highly “nonuniform”. Indeed, non-uniformity makes the circuit model
stronger than Turing machines (or, equivalently, than the model of uniform circuits): there exist
functions f that cannot be computed by Turing machines (regardless of their running time), but
do have linear-size circuits. So isn’t proving circuit lower bounds a much harder task than we need
to resolve the P vs. NP question?

The answer is that there is a strong sentiment that the extra power provided by non-uniformity
is irrelevant to the P vs. NP question; that is, it is conjectured that NP-complete sets do not
have polynomial-size circuits. This conjecture is supported by the fact that its failure will yield
an unexpected collapse in the complexity of standard computations. Furthermore, the hope is
that abstracting away the (supposedly irrelevant) uniformity condition will allow for combinatorial
techniques to analyze the power and limitations of polynomial-size circuits (w.r.t NP-sets). This
hope has materialized in the study of restricted classes of circuits (see Sections 5.1.2 and 5.1.3).

We also mention that Boolean circuits are a natural computational model, corresponding to
“hardware complexity”, and so their study is of independent interest. Moreover, some of the
techniques for analyzing Boolean functions found applications elsewhere (e.g., in computational
learning theory, combinatorics and game theory).

5.1.1 Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits, in particular the fact that
they can efficiently simulate Turing Machines. The next basic fact is that most Boolean functions
require exponential size circuits, which is due to the gap between the number of functions and the
number of small circuits.

So hard functions for circuits (and hence for Turing machines) abound. However, the hardness
above is proved via a counting argument, and thus supplies no way of putting a finger on one
hard function. Using more conventional language — we cannot prove such hardness for any ezplicit
function f (e.g., for an NP-complete function like SAT or even for functions in EAXP). The situation
is even worse — no nontrivial lower-bound is known for any explicit function. Note that for any
function f on n bits (which depends on all its inputs), we trivially must have S(f) > n, just to
read the inputs. The main open problem of circuit complexity is beating this trivial bound.

Open Problem 9 Find an explicit Boolean function f (or even a length-preserving function f)
for which S(f) is not O(n).

A particularly basic special case of this problem, is the question whether addition is easier to per-
form than multiplication. Let ADD: {0, 1}"x{0,1}"™ —{0,1}"*! and MULT: {0, 1}"x{0,1}"* — {0, 1}?",
denote, respectively, the addition and multiplication functions on a pair of integers (presented in
binary). For addition we have an optimal upper bound; that is, S(ADD) = O(n). For multiplication,
the standard (elementary school) quadratic-time algorithm can be greatly improved (via Discrete
Fourier Transforms) to slightly super-linear, yielding S(MULT) = O(n - (log n)?). Now, the question
is whether or not there exist linear-size circuits for multiplication (i.e., is S(MULT) = O(n))?

Unable to prove any nontrivial lower bound, we now turn to restricted models. There has been
some remarkable successes in developing techniques for proving strong lower bounds for natural
restricted classes of circuits. We describe the most important ones.

General Boolean circuits, as described above, can compute every function and can do it at least
as efficiently as general (uniform) algorithms. Restricted circuits may be only able to compute a
subclass of all functions (e.g., monotone functions). The restriction makes sense when either the
related classes of functions or the computations represented by the restricted circuits are natu-
ral, from a programming or a mathematical viewpoint. The models discussed below satisfy this
condition.

5.1.2 Monotone Circuits

An extremely natural restriction comes by forbidding negation from the set of gates, namely allowing
only {A,V}. The resulting circuits are called monotone circuits and it is easy to see that they can
compute every function f:{0,1}" — {0,1} that is monotone with respect to the standard partial
order on n-bit strings (x <y iff for every bit position ¢ we have z; < y;).

It is as easy to see that most monotone functions require exponential size monotone circuits.
Still, proving a super-polynomial lower bound on an explicit monotone function was open for over
40 years, till the invention of the so-called approzximation method.

Let CLIQUE be the function that, given a graph on n vertices (by its adjacency matrix), outputs
1 iff it contains a complete subgraph of size (say) y/n (namely, all pairs of vertices in some /n
subset are connected by edges). This function is clearly monotone. Moreover, it is known to be
NP-complete.

Theorem 10 There are no polynomial-size monotone circuits for CLIQUE.

We note that similar lower-bounds are known for functions in P.

5.1.3 Bounded-Depth Circuits

The next restriction is structural: we allow all gates, but limit the depth of the circuit. The depth
of a DAG is simply the length of the longest directed path in it. So in a sense, depth captures the
parallel time to compute the function: if a circuit has depth d, then the function can be evaluated
by enough processors in d phases (where in each phase many gates are evaluated at once). Parallel
time is another important computational resource.

We will restrict d to be a constant, which still is interesting not only as parallel time, but
also due to the relation of this model to expressibility in first order logic as well as to complexity
classes above NP called the Polynomial-time Hierarchy (see section III). In the current setting (of
constant-depth circuits), we allow unbounded fan-in (i.e., A-gates and V-gates taking any number
of incoming edges), as otherwise each output bit can depend only on a constant number of input
bits.

Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (for majority) be
1 iff there are more 1’s than 0’s among the input bits. The invention of the random restriction
method led to the following basic result.

Theorem 11 For all constant d, PAR and MAJ have no polynomial size circuit of depth d.

Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits) even if the circuits
are also allowed (unbounded fan-in) PAR-gates (this result is based on yet another proof technique:
approzimation by polynomials). However the “converse” does not hold, and the class of constant-
depth polynomial-size circuits with MAJ-gates seems quite powerful.

5.1.4 Formula Size

The final restriction is again structural — we require the DAG to be a tree. Intuitively, this forbids
the computation from reusing a previously computed partial result (and if it is needed again, it has
to be recomputed). The resulting circuits are simply formulae, which are natural not only for their
prevalent mathematical use, but also since their size can be related to the memory requirements of
a Turing machine. Here we go back to the standard basis of negation, and 2-bit input A, V gates.

One of the oldest results on Circuit Complexity, is that PAR and MAJ are nontrivial in this model.
The proof follows a simple combinatorial (or information theoretic) argument.

Theorem 12 Boolean formuale for n-bit PAR and MAJ require size Q(n?) size.

This should be contrasted with the linear-size circuits that exist for both functions. We comment
that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.

Can we give super-polynomial lower bounds on formula size? One of the cleanest methods sug-
gested is the communication complexity method, which we demonstrate informally with an example.

Counsider two players, the first having a prime number < 2™, and the second having a composite
number y < 2". Clearly, any two such numbers must differ on at least one bit position in their
binary expansion (i.e., there exists an 7 s.t. x; # y;), and it is the goal of the parties to find such
an 4. To that end, the party exchange messages, according to a pre-determined protocol, and the
question is what is the communication complexity (in terms of total number of bits exchanged on
the worst-case input pair) of the best such protocol. Proving a super-logarithmic lower-bound will
establish (the widely believed conjecture) that testing primality has no polynomial size formulae.
Note that a lower bound of purely information theoretic nature (no computational restriction were
paced on the parties) implies a computational one!

5.1.5 Why Is It Hard to Prove Lower Bounds?

The failure to obtain (nontrivial) lower bounds for general circuit in a span of 60 years raises
the question of whether there is a fundamental reason for this failure. The same may be asked
about any long standing mathematical problem (e.g. the Riemann Hypothesis), and the typical
(vague!) answer would be that, probably, the current tools and ideas (which may well have been
successful at attacking related, easier problems) do not suffice. Complexity Theory can make this
vague statement into a theorem! Thus we have a “formal excuse” for our failure so far: we can
classify a general set of ideas and tools, which are responsible for virtually all restricted lower
bounds known, yet must necessarily fail for proving general ones. This introspective result suggests
a framework called Natural Proofs, which encapsulates all known lower bound techniques. It shows
that natural proofs of general circuit lower bounds for explicit functions surprisingly imply (...)
efficient algorithms of a type conjectured not to exist (e.g., for integer factoring).

One interpretation of the aforementioned result, is an “independence result” of general circuit
lower bounds from a certain natural fragment of Peano Arithmetic.5 This may hint that the P
vs. NP problem may be independent from PA or even Set Theory, although few believe the latter
to be the case.

5.2 Arithmetic Circuits

We now leave the Boolean rind, and discuss circuits over general fields. Fix any field F. The gates
of the DAG will now be the standard + and x operations in the field. This requires two immediate
clarifications. First, to allow using constants of the field, one adds a special input vertex whose
value is the constant ‘1’ of the field. Moreover, multiplication by any field element (e.g., —1) is
free. Second, one may wonder about division. However, we will be mainly interested in computing
polynomials, and for computing polynomials (over infinite fields) division can be efficiently emulated
by the other operations.

Now the inputs of the DAG will hold elements of the field F', and hence so will all computed
values at vertices. Thus an arithmetic circuit computes a polynomial map p : F™ — F™, and every
such polynomial map is computed by some circuit. We denote by Sg(p) the size of a smallest circuit
computing p (when no subscript is given, F' = Q the field of rational numbers). As usual, we’ll be
interested in sequences of polynomials, one for every input size, and will study size asymptotically.

It is easy to see that over any fized finite field, arithmetic circuits can simulate Boolean circuits
on Boolean inputs with only constant factor loss in size. Thus the study of arithmetic circuits
focuses more on infinite fields, where lower bounds may be easier to obtain.

This result as the aforementioned one rely on the existence of one-way functions, see Section 7.

10

As in the Boolean case, the existence of hard functions is easy to establish (via dimension
considerations, rather than counting argument), and we will be interested in ezplicit (families of)
polynomials. However, the notion of explicitness is more delicate here (e.g., allowing polynomials
with algebraically independent coefficients would yield strong lower bounds, which are of no interest
whatsoever). Very roughly speaking, polynomials are called explicit if the mapping from monomials
to (a finite description of) their coefficients has an efficient program.

An important parameter, which is absent in the Boolean model, is the degree of the polynomial(s)
computed. It is obvious, for example, that a degree d polynomial (even in one variable, i.e., n = 1)
requires size at least logd. We briefly consider the univariate case (in which d is the only measure of
input size), which already contains striking and important problems. Then we move to the general
multivariate case, in which as usual n, the number of inputs will be the main parameter.

5.2.1 Univariate Polynomials

How tight is the logd lower bounds for the size of an arithmetic circuit computing a degree d
polynomial? A simple dimension argument shows that for most degree d polynomials p, S(p) =
Q(d). However, we know of no explicit one:

Open Problem 13 Find an explicit polynomial p of degree d, such that S(p) is not O(log d).

Two concrete examples are illuminating. Let p(z) = 29, and ¢(z) = (z + 1)(z +2)--- (x + d).
Clearly S(p) < 2logd (via repeated squaring), so the trivial lower bound is tight. On the other
hand, it is a major open problem to determine S(g), and the conjecture is that S(g) > (log d)°™).
To realize the importance of this question, we state the following fact: If S(¢) < (log d)°®), then
Integer Factorization can be done in polynomial-time.

5.2.2 Multivariate Polynomials

We are now back to polynomials with n variables. To make n our only input size parameter, it is
convenient to restrict ourselves to polynomials whose total degree is at most n.

Once again, almost every polynomial p in n variables requires size S(p) > exp(n/2), via a
dimension argument, and we seek explicit polynomial (families) that are hard. Unlike in the
Boolean world, here there are slightly nontrivial lower bounds (via elementary tools from algebraic
geometry).

Theorem 14 S(z} + % + -+ a) = Q(nlogn).

The same techniques extend to prove a similar lower-bound for other natural polynomials such
as the symmetric polynomials and the determinant. Establishing a stronger lower-bound for any
explicit polynomial is a major open problem. Another is obtaining a super-linear lower bound for
a polynomial map of constant (even 1) total degree. Outstanding candidates for the latter are the
linear maps computing the Discrete Fourier Transform over the Complex numbers, or the Walsh
transform over the Rationals (for both O(nlogn) algorithms are known, but no super-linear lower
bounds).

We now focus on specific polynomials of central importance. The most natural and well studied
candidate for the last open problem is the matrix multiplication function MM: let A, B be two
m X m matrices of variables over F, and define MM(A, B) to be the n = m? entries of the matrix
A x B. Thus, MM is a set of n explicit bilinear forms over the 2n input variables. It is known that
Sar(2) (MM) > 3n. On the other hand, the obvious m? = n3/2 algorithm can be improved.

11

Theorem 15 For every field F, Sp(MM) = O(n'19).

So what is the complexity of MM (even if one counts only multiplication gates)? Is it linear or
almost-linear or is it the case that S(MM) > n® for some a > 17 This is indeed a famous open
problem.

We next consider the determinant and permanent polynomials (DET and PER, resp.) over the
n = m? variables representing an m xm matrix. While DET plays a major role in classical mathemat-
ics, PER is somewhat esoteric (though it appears in Statistical Mechanics and Quantum Mechanics).
In the context of complexity theory both polynomials are of great importance, because they capture
natural complexity classes. DET has relatively low complexity (and is closely related to the class of
polynomials having polynomial-sized arithmetic formulae), whereas PER seems to have high com-
plexity (and it is complete for the counting class #P which contains A'P). Thus, it is conjectured
that PER is not polynomial-time reducible to DET. A specific type of reduction that makes sense in
this algebraic context is by projection.

Definition 16 Let X and Y be two disjoint finite sets of variables. Let p € F[X] and g € F[Y] be
two polynomials. We say that there is a projection from p to g over F', denoted p < q if there exists
a function h: X — Y UF such that p(Z) = q(h(Z)).

Clearly, if p o< ¢ then Sp(p) < Sp(q). Let DET,, and PER,, denote these functions restricted to
m-by-m matrices. It is known that PER,, oc DET3=, but to yield a polynomial-time reduction one
would need a projection of PER,, to DET o1y (m)- It is conjectured that no such projection exists.

Open Problem 17 Is PER,, o« DET, o) ?

5.3 Proof Complexity

The concept of proof is what distinguishes the study of Mathematics from all other fields of human
inquiry. Mathematicians have gathered millennia of experience to attribute such adjectives to proofs
as “insightful, original, deep” and most notably, “difficult”. Can one quantify, mathematically, the
difficulty of proving various theorems? This is exactly the task undertaken in Proof Complexity. It
seeks to classify theorems according to the difficulty of proving them, much like Circuit Complexity
seeks to classify functions according to the difficulty of computing them. In proofs, just like
in computation, there will be a number of models, called proof systems capturing the power of
reasoning allowed to the prover.

We will consider only propositional proof systems, and so our theorems will be tautologies. We
will see soon why the complexity of proving tautologies is highly nontrivial and amply motivated.

The formal definition of a proof system spells out what we take for granted: the efficiency of
the verification procedure.”

Definition 18 A (propositional) proof system is a polynomial-time Turing machine M with the
property that T is a tautology if and only if there exist a (“proof”) 7 such that M(m,T) = 1.8

"Here efficiency of the verification procedure refers to its running-time measured in terms of the total length of
the alleged theorem and proof. In contrast, in Sections 3.1 and 6.2, we consider the running-time as a function of the
length of the alleged theorem.

8In agreement with standard formalisms (see below), the proof is seen as coming before the theorem.

12

Note that the definition guarantees completeness and soundness, as well as verification efficiency
of the proof system. It judiciously ignores the size of the proof = (of the tautology 7'), which is
a measure of how complex it is to prove 7" in the system M. For each tautology T, let sy (T)
denote the size of the shortest proof of T in M (i.e., the length of the shortest string 7 such that M
accepts (m,T)). Abusing notation, we let sps(n) denotes the maximum sp;(7") over all tautologies
T of length n.

The following simple observation provides a basic connection of this concept with computational
complexity, and the major question of Section 3.3.

Theorem 19 There exists a proof system M such that sy; 18 polynomial if and only if NP = coN'P.

It is natural to start attacking this formidable problem by considering first simple (and thus
weaker) proof systems, and then move on to more and more complex ones. Moreover, natural
proof systems, capturing basic (restricted) types and “primitives” of reasoning, as well as natural
tautologies, suggest themselves as objects for this study. In the rest of this section we focus on such
restricted proof systems.

Different branches of Mathematics such as logic, algebra and geometry provide different such
systems, often implicitly. A typical system would have a set of axioms, and a set of deduction
rules. A proof would proceed to derive the desired tautology in a sequence of steps, each producing
a formula (often called a line of the proof), which is either an axiom, or follows from previous
formulae via one of the deduction rules. (Clearly, a Turing machine can easily verify the validity
of such a proof).

This perfectly fit our DAG model.” The inputs will be labeled by the axioms, the internal
vertices by deduction rules, which in turn “infer” a formula for that vertex from the formulae at
the vertices pointing to it.

There is an equivalent and somewhat more convenient view of (simple) proof systems, namely
as (simple) refutation systems. First, recalling that 3SAT is NP-complete (see Footnote 4), note
that every (negation of a) tautology can be written as a conjunction of clauses, with each clause
being a disjunction of only 3 literals (variables or their negation). Now, if we take these clauses as
axioms, and derive (using the rules of the system) a contradiction (e.g., the negation of an axiom,
or better yet the empty clause), then we have proved the tautology (since we have proved that
its negation yields a contradiction). We will use the refutation viewpoint throughout, and often
exchange “tautology” and its negation, “contradiction”.

So we turn to study the proof length s;(7") of tautologies T' in proof systems II. The first
observation, revealing a major difference between proof complexity and circuit complexity, is that
the trivial counting argument fails. The reason is that, while the number of functions on n bits is
22" there are at most 2" tautologies of this length. Thus in proof complexity, even the ezistence
of a hard tautology, not necessarily explicit, would be of interest. As we shall see, however, most
known lower bounds (in restricted proof systems) apply to very natural tautologies.

The rest of this section is divided to three parts, on logical, algebraic and geometric proof
systems. We will briefly describe important representatives and basic results in each.

5.3.1 Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulae, and the differences
will be in the structural limits imposed on these formulae.

9General proof systems as in Definition 18 can also be adapted to this formalism, by considering a deduction rule
that corresponds to a single step of the machine M. However, the deduction rules considered below are even simpler,
and more importantly they are natural.

13

The most basic proof system, called Frege system, puts no restriction on the formulae manipu-
lated by the proof. It has one derivation rule, called the cut rule: AV C,BV—-C F AV B (adding
any other sound rule, like modus ponens, has little effect on the length of proofs in this system).
Frege systems are basic in the sense that they (in several variants) are the most common in Logic,
and in that polynomial length proofs in these systems naturally corresponds to “polynomial-time
reasoning” about feasible objects.

The major open problem in proof complexity is to find any tautology (as usual we mean a
family of tautologies) that has no polynomial-size proof in the Frege system.

As lower bounds for Frege are hard, we turn to subsystems of Frege which are interesting and
natural. The most widely studied system is Resolution, whose importance stems from its use by
most propositional (as well as first order) automated theorem provers. The formulae allowed in
Resolution refutations are simply clauses (disjunctions), and so the derivation cut rule simplifies to
the “resolution rule”: AV z, BV -~z F AV B, for clauses A, B and variable .

An example of a tautology that is easy for Frege and hard for Resolution, is the pigeonhole
principle, PHP", expressing the fact that there is no one-to-one mapping of m pigeons to n < m
holes.

Theorem 20 sF\rege(PHPZ“) = nOW) pyt SResolution (PHP? 1) = 282(n)

5.3.2 Algebraic Proof Systems

Just as a natural contradiction in the Boolean setting is an unsatisfiable collection of clauses, a
natural contradiction in the algebraic setting is a system of polynomials without a common root.
Moreover, CNF formulae can be easily converted to a system of polynomials, one per clause, over
any field. One often adds the polynomials 27 — x; which ensure Boolean values.

A natural proof system (related to Hilbert’s Nullstellensatz, and to computations of Grobner
bases in symbolic algebra programs) is Polynomial Calculus, abbreviated PC. The lines in this
system are polynomials (represented explicitly by all coefficients), and it has two deduction rules:
For any two polynomials g, h, the rule g,h - g + h, and for any polynomial ¢ and variable z;, the
rule g, z; - ;9. Strong size lower bounds (obtained from degree lower bounds) are known for this
system. For example, encoding the pigeonhole principle as a contradicting set of constant degree
polynomials, we have

Theorem 21 For every n and every m > n, spc(PHP]'') > 27/2 over every field.

5.3.3 Geometric Proof Systems

Yet another natural way to represent contradictions is a by a set of regions in space that have
empty intersection. Again, we care mainly about discrete (say, Boolean) domains, and a wide
source of interesting contradictions are Integer Programs from Combinatorial Optimization. Here,
the constraints are (affine) linear inequalities with integer coefficients (so the regions are subsets
of the Boolean cube carved out by halfspaces). The most basic system is called Cutting Planes
(CP). Its lines are linear inequalities with integer coefficients. Its deduction rules are (the obvious)
addition of inequalities, and the (less obvious) dividing the coefficients by a constant (and rounding,
taking advantage of the integrality of the solution space).

While PHP]" is easy in this system, exponential lower bounds are known for other tautologies.
We mention that they are obtained from the monotone circuit lower bounds of Section 5.1.2.

14

6 Randomized Computation

As hinted in Section 3, until now we restricted computations to (repeatedly) executing a deter-
ministic rule. A more liberal approach pursued in this section considers computing devices that
use a probabilistic (or randomized) rule. We still focus on polynomial-time computations, but
these are probabilistic (i.e., can “toss coins”). Specifically, we allow probabilistic rules that choose
uniformly among two outcomes. We comment that probabilistic computations are believed to take
place in real-life algorithms that are employed in a variety of applications (e.g., random sampling,
Monte-Carlo simulations, etc.).!?

Rigorous models of probabilistic machines are defined by natural extensions of the basic model,
yielding probabilistic Turing machines. For a probabilistic machine M and string = € {0,1}*, we
denote by M (x) the distribution of the output of M when invoked on input z, where the probability
is taken over the machine’s random moves. Counsidering decision problems, we want this distribution
to yield the correct answer with high probability for every input. This leads to the definition of
BPP (for Bounded error, Probabilistic Polynomial time):

Definition 22 (BPP) A Boolean function f is in BPP if there exists a probabilistic polynomial-
time machine M such that for every x € {0,1}*, Pr[M(z) # f(x)] < 1/3.

The error bound 1/3 is arbitrary; for any & = poly(|z|), the error can be reduced to 2% by invoking
the program O(k) times and taking a majority vote of the answers. We stress that the random
moves in the different invocations are independent.

Again, it is trivial that BPP C EXP, via enumerating all possible outcomes of coin tosses
and taking a majority vote. The relation of BPP to NP is not known, but it is known that if
NP = P then also BPP = P. Finally, non-uniformity can replace randomness: every function in
BPP has polynomial-size circuits. But the fundamental question is whether or not randomization
adds computing power over determinism (for decision problems).

Open Problem 23 Does P = BPP?

While quite a few problems'' are known to be in BPP but not known to be in P, there is
overwhelming evidence that the answer to the question above is positive (namely, randomization
does not add extra power in the context of decision problems): we elaborate a bit in Section 7.1.

6.1 Counting at Random

One important question regarding NP search problems is that of determining how many solutions
a specific instance has. This captures a host of interesting problems from various disciplines, e.g.
counting the number of solutions to a system of multivariate polynomials, counting the number of
perfect matchings of a graph, computing the volume of a polytope (given by linear inequalities) in
high dimension, computing various parameters of physical systems, etc.

In most of these problems, even approximate counting would suffice. Clearly, approximate
counting allows one to determine whether a solution exists at all. For example, counting the
number of satisfying assignments for a given propositional formula (even approximately) allows
one to determine whether the formula is satisfiable. Interestingly, the converse is also true.

The sense in which these applications actually utilize random moves is a different question. The point is that
one analyzes these computations as though they are taking random moves.

A central example is Identity Testing: given an arithmetic circuit over Q, decide if it computes the identically
zero polynomial.

15

Theorem 24 There exists a probabilistic polynomial-time oracle machine' that, on input a for-
mula ¢ and oracle access to SAT, outputs an integer that with probability at least % s within a factor
of 2 of the number of satisfying assignments for 1.

We comment that an analogous statement holds for any NP-complete problem.

The approximation factor can be reduced to 1 + |¢|~¢, for any fixed constant ¢. However, it
is believed that an ezact count cannot be obtained via a probabilistic polynomial-time oracle with
oracle access to SAT. We mention that computing the aforementioned quantity (or computing the
number of solutions to any NP-search problem) is polynomial-time reducible to computing the
permanent of positive integer matrices.'3

For some of the problems mentioned above, approximate counting can be done without the SAT
oracle: There are polynomial-time probabilistic algorithms for approximating the permanent of
positive matrices, approximating the volume of polytopes, and more. These follow a connection
of approximate counting to the related problem of uniform generation of solutions, and the con-
struction and analysis of adequate Markov chains for solving the related sampling problems (see
[9, Chap. 12]).

6.2 Probabilistic Proof Systems

The glory attributed to the creativity involved in finding proofs, makes us forget that it is the less
glorified process of verification that defines proof systems.

The notion of a verification procedure presupposes the notion of computation'# and furthermore
the notion of efficient computation (because verification, unlike coming up with proofs, is supposed
to be easy). It will be convenient here to view a proof system for a set S (e.g., of satisfiable
formulae) as a game between an all-powerful prover and an efficient verifier: Both receive an input
x, and the prover attempts to convince the verifier that z € S. Completeness dictates that the
prover succeeds for every « € S, and soundness dictates that any prover fails for every = ¢ S.

When taking the most natural choice of efficiency requirement, namely restricting the verifier
to be a deterministic polynomial-time machine, we get back the definition of the class NP (slightly
rephrased): a set S is in NP if and only if membership in S can be verified by a deterministic
polynomial-time machine when given an alleged proof of polynomial length (i.e., polynomial in |z|).

Now we relax the efficiency requirement, and let the verifier be a probabilistic polynomial-time
machine, allowing it to “rule by statistical evidence” and hence to err (with low probability, which
is explicitly bounded and can be reduced via repetitions). This relaxation is not suggested as a
substitute to the notion Mathematical truth; however, as we shall below, it turns out to yield
enormous advance in computer science.

6.2.1 Interactive Proof Systems

When the verifier is deterministic, we can always assume that the prover simply sends it a single
message (the purported “proof”), and based on this message the verifier decides whether to accept
or reject the common input « as a member of the target set S.

When the verifier is probabilistic, interaction may add power. We thus consider a (randomized)
interaction between the parties, which may be viewed as an “interrogation” by a persistent student,

128ee Footnote 3. Here, upon issuing any query 1’ the machine is told whether or not ¢’ is satisfiable.

13We stress that this reduction does not preserve the quality of an approximation.

M This may explain the historical fact that notions of computation were first rigorously formulated in the context
of logic.

16

asking the teacher “tough” questions in order to be convinced of correctness.'® Since the verifier
ought to be efficient (i.e., run in time polynomial in |z|), this interaction is bounded to have at
most these many rounds. The class ZP (for Interactive Proofs) contains all sets S for which there
is a verifier that accepts every x € S with probability 1 (after interacting with an adequate prover),
but rejects any = ¢ S with probability at least 1/2 (no matter what strategy is employed by the
prover).

A major result asserts that interactive proofs exists for every set in PSPACE (i.e., having a
decision procedure that uses a polynomial amount of memory, but possibly working in exponential-
time).

Theorem 25 ZP = PSPACE.

While it is not known if NP # PSPACE, it is widely believed to be the case, and so it seems
that interactive proofs are more powerful than standard non-interactive and deterministic proofs
(i.e., NP-proofs). In particular, since coN'P C PSP.ACE, Theorem 25 implies that there are such
interactive proofs for every set in coNP (e.g., the set of propositional tautologies), whereas some
coNP-sets are believed not to have NP-proofs.

6.2.2 Zero-Knowledge Proof Systems

Here the thrust is not to prove more theorems, but rather to have proofs with additional properties.
Randomized and interactive verification procedures as in Section 6.2.1 allow the (meaningful) in-
troduction of zero-knowledge proofs, which are proofs that yield nothing beyond their own validity.
Such proofs seem counter-intuitive and undesirable for educational purposes, but they are very
useful in cryptography.

For example, a zero-knowledge proof that a certain propositional formula is satisfiable does
not reveal a satisfying assignment to the formula nor any partial information regarding such an
assignment (e.g., whether the first variable can assume the value true). In general, whatever the
verifier can efficiently compute after interacting with a zero-knowledge prover, can be efficiently
reconstructed from the assertion itself (without interacting with anyone).

Clearly, any set in BPP has a zero-knowledge proof, in which the prover says nothing (and the
verifier decides by itself). What is surprising is that zero-knowledge proofs seem to exist also for
sets that are not in BPP. In particular:

Theorem 26 Assuming the existence of one-way functions (see Section 7), every set in NP has
a zero-knowledge proof system.

6.2.3 Probabilistically Checkable Proof systems

Let us return to the non-interactive mode, in which the verifier receives a (alleged) written proof.
But now we restrict its access to the proof so as to read only a small part of it (which may be
randomly selected). An excellent analogy is to imagine a referee trying to decide the correctness of
a long proof by sampling a few lines of the proof. It seems hopeless to detect a single “bug” unless
the entire “proof” is read; but this intuition is valid only for the “natural” way of writing down
proofs and fails when “robust” formats of proofs are used and one is willing to settle for statistical
evidence.

Y5Interestingly, it turns out that asking “tough” questions is not better than asking random questions!

17

Such “robust” proof systems are called PCPs (for Probabilistically Checkable Proofs). Loosely
speaking, a PCP system for a set S consists of a probabilistic polynomial-time verifier having access
to an oracle that represents a proof in redundant form, where (as in case of NP-proofs) the length
of the proof is polynomial in the length of the input. The verifier accesses only a constant number
of the oracle bits, and accepts every = € S with probability 1 (when given access to an adequate
oracle), but rejects any « ¢ S with probability at least 1/2 (no matter to which oracle it is given
access).

Theorem 27 (The PCP Theorem) Each set in NP has a PCP system. Furthermore, there
exists a polynomial-time procedure for converting any NP-proof to the corresponding PCP-oracle.

Indeed, the proof of the PCP Theorem suggests a new way of writing “robust” proofs, in which any
bug must “spread” all over'®. One important application of the PCP Theorem (and its variants) is
the connection to the complexity of combinatorial approximation. For example, it is NP-complete
to decide if, for a given linear system of equations over GF(2), the fraction of mutually satisfiable
equations is greater than 99% or smaller than 51%.

6.3 Weak Random Sources

We now return to the question of how to obtain the assumed randomness for all the probabilistic
computations discussed in this section. Although randomness seems to be present in the world (e.g.,
the perceived randomness in the weather, Geiger counters, Zener diodes, real coin flips, etc.), it does
not seem to be in the perfect form of unbiased and independent coin tosses (as postulated above).
Thus, to actually use randomized procedures, we need to convert weak sources of randomness
into almost perfect ones. Very general mathematical models capturing such weak sources have
been proposed. Algorithms converting the randomness in them into a distribution that in close
to uniform (namely unbiased, independent stream of bits) are called randomness extractors, and
near optimal ones have been constructed. This large body of work is surveyed, e.g., in [16]. We
mention that this question turned out to be related to certain types of pseudorandom generators
(cf. Section 7.1) as well as to combinatorics and coding theory.

7 The Bright Side of Hardness

The Big Conjecture according to which P # AP means that there are computational problems of
great interest that are inherently intractable. This is bad news, but there is a bright side to the
matter: computational hardness (alas in a stronger form than known to follow from P # N'P) has
many fascinating conceptual consequences as well as important practical applications. Specifically,
in accordance with our intuition, we shall assume that not all efficient processes can be efficiently
reversed (or inverted). Furthermore, we shall assume that hardness to invert is a typical (rather
than pathological) phenomenon for some efficiently computable functions. That is, we assume that
one-way functions exist.

Definition 28 (One-Way Functions) A function f:{0,1}* — {0,1}* is called one-way if the
following two conditions hold

1. easy to compute: the function f is computable in polynomial time.

1The analogy to error correcting codes is indeed in place, and the cross fertilization between these two areas has
been very significant.

18

2. hard to invert: for every probabilistic polynomial-time machine, M, every positive polynomial
p(+), and all sufficiently large n

r n xT -1 T L
Pr, [M" f@)efH(f@)] < o

where x is uniformly distributed in {0,1}".

For example, the widely believed conjecture according to which integer factorization is intractable
(for a noticeable fraction of the instances) implies the existence of one-way functions. On the other
hand, if P = AP then no one-way functions exist. One important open problem is whether P # NP
implies the existence of one-way functions.

Below, we discuss the connection between computational difficulty (in the form of one-way
functions) on the one hand, and two important computational theories on the other hand: the
theory of Pseudorandomness and the theory of Cryptography.

One fundamental concept, which is pivotal to both these theories, is the concept of computational
indistinguishability. Loosely speaking, two objects are said to be computationally indistinguishable
if no efficient procedure can tell them apart. Here objects will be probability distributions (on
finite binary sequences). We actually consider probability ensembles, where an ensemble is a family
of distributions, each on strings of different length (e.g., the uniform ensemble is the family {U, }.en,
where U, is the uniform distribution on all n-bit strings).

Definition 29 (Computational Indistinguishability) The probability ensembles { P, },en and
{Qn}nen are called computationally indistinguishable if for every probabilistic polynomial-time ma-
chine, M, every positive polynomial p(-), and all sufficiently large n
1
|Pr[M (1", P,)=1] — Pr[M(1",Q,)=1]| < M .

Computational indistinguishability is a (strict) coarsening of statistical indistinguishability. We
focus on the non-trivial cases of pairs of ensembles that are computationally indistinguishable
although they are statistically very different. It is easy to show that such pairs do exist, but we
further focus on pairs of such ensembles that are efficiently samplable!”. Interestingly, such pairs
exists if and only if one-way functions exist.

7.1 Pseudorandomness

We call an ensemble pseudorandom if it is computationally indistinguishable from the random
(i.e., uniform) ensemble. A pseudorandom generator is an efficient (deterministic) procedure that
stretches short random strings into longer pseudorandom strings.

Definition 30 (Pseudorandom Generators) A deterministic polynomial-time machine G 1is
called a pseudorandom generator if there exists a monotonically increasing function, £:N— N, such
that the probability ensembles {Uy) tnen and {G(Un)}nen are computationally indistinguishable.'®
The function £ is called the stretch measure of the generator, and the n-bit input of the generator
15 called its seed.

"The ensemble {Pp.}nen is efficiently samplable if there exists a probabilistic polynomial-time machine M such
that M (1™) and P, are identically distributed, for every n.

8Recall that U,, denotes the uniform distribution over {0,1}™. Thus, G(U,) is defined as the output of G on a
uniformly selected n-bit input string.

19

That is, pseudorandom generators yield a particularly interesting case of computational indistin-
guishability: the distribution G(U,,), which is efficiently samplable using only n truly random coins
(and so has entropy n), is computationally indistinguishable from the uniform distribution over
£(n)-bit long strings (having entropy #(n) > n). The major question which we turn to deal with is
of course: do pseudorandom generators exist?

7.1.1 Hardness versus Randomness

By its very definition, the notion of a pseudorandom generator is connected to computational
difficulty (i.e., the computational difficulty of determining that the generator’s output is not truly
random). It turns out that the connection between the two notions is even stronger.

Theorem 31 Pseudorandom generators exist if and only if one-way functions exist. Furthermore,
if pseudorandom generators exist then they exist for any stretch measure that is a polynomaial.

Theorem 31 converts computational difficulty (hardness) into pseudorandomness, and vice versa.
Furthermore, its proof links computational indistinguishability to computational unpredictability,
hinting that computational difficulty (of predicting an information theoretically determined event)
is linked to randomness (or to the appearance of being random).

Pseudorandom generators allow for a drastic reduction in the amount of “true randomness” used
in any efficient randomized procedure. Rather than using independent coin tosses, such procedures
can use the output of a pseudorandom generator, which in turn can be generated deterministically
based on many fewer coin tosses (used to select the generator’s seed). The effect of this replacement
on the behavior of such procedures will be negligible. In algorithmic applications, where it is
possible to invoke the same procedure many times and rule by a majority vote, one can derive
deterministic procedures by trying all possible seeds. In particular, using a seemingly stronger
notion of pseudorandom generators (which work in time exponential in their seeds and produce
sequences that look random to tests of a fixed polynomial-time complexity), allows to convert
any probabilistic polynomial-time algorithm into a deterministic one (implying that BPP = P).
Such pseudorandom generators exist under plausible conjectures regarding computational difficulty
which seem far weaker than the existence of one-way functions. Thus for example:

Theorem 32 If, for some constant € > 0, S(SAT) > 2" then BPP = P. Moreover, SAT can be
replaced by any problem computable in 200" -time.

7.1.2 Pseudorandom Functions

Pseudorandom generators allow for the efficient generation of long pseudorandom sequences from
short random seeds. Pseudorandom functions are even more powerful: they allow for efficient
direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). That is,
pseudorandom functions are efficiently computable (ensembles of) functions that are indistinguish-
able from truly random functions by any efficient procedure that can obtain the function values at
arguments of its choice. We refrain from presenting a precise definition, but do mention a central
result: pseudorandom functions can be constructed given any pseudorandom generator. We also
mention that pseudorandom functions have many applications (most notably in cryptography).

20

7.2 Cryptography

Cryptography has existed for millennia. However, in the past it was focused on one basic problem —
that of providing secret communications. By contrast, the modern computational theory of cryp-
tography is interested in all tasks involving several communicating agents in which the following
(often conflicting) desires are crucial: privacy, namely the protection of secrecy, and resilience,
namely the ability to withstand malicious behavior of participants. Perhaps the best example to
illustrate these difficulties is playing a game of Poker over the telephone (i.e., the “new age” players
cannot rely on physical implements such as cards dealt from a deck that is visible by all play-
ers). In general, cryptography is concerned with the construction of schemes that maintain any
desired functionality under malicious attempts aimed at making these schemes deviate from their
prescribed functionality.

As with pseudorandomness, there are two key assumptions underlying the new theory. First,
that all parties (including the adversary) are computationally limited: they are modeled as prob-
abilistic polynomial-time machines and hence computationally indistinguishable distributions are
equivalent as far as these parties are concerned. Second, that a certain type of computationally
hard problem exists, namely, one-way functions and in some cases stronger versions called trapdoor
permutations, which in turn are implied by the hardness of integer factorization. In fact, all the
results mentioned below hold if trapdoor permutations exist, and cannot hold if one-way functions
do not exist.

Starting with the traditional problem of providing secret communication over insecure channels,
we note that pseudorandom functions (which can be constructed based on any one-way function)
provide a satisfactory solution for this problem: The communicating parties, sharing a pseudoran-
dom function, may exchange information in secrecy by masking it with the values of the function
evaluated at adequately selected arguments (which may be agreed-upon a priori or transmitted in
the clear). That is, the parties use a pseudorandom function as a secret key in (predetermined)
encryption and decryption procedures. Still, the communicating parties have to agree on this key
beforehand (or transmit this key through an auxiliary secret channel).

The need for a priori agreement on a secret key is removed when using “public-key” encryption
schemes, in which the key used for encryption can be made public while only the (different) key used
for decryption is kept secret. In particular, in such schemes, it is infeasible to recover the decryption-
key from the encyption-key, although such random pairs of keys can be generated efficiently. Secure
public-key encryption schemes (i.e., providing for secret communication without any prior secret
agreement) can be constructed based on trapdoor permutations.

A general framework for casting cryptographic problems consists of specifying a random process
which maps m inputs to m outputs. The inputs to the process are to be thought of as local inputs of
m parties, and the m outputs are their corresponding local outputs. The random process describes
the desired functionality. That is, if the m parties were to trust each other (or trust some outside
party), then they could each send their local input to the trusted party, who would compute the
outcome of the process and send each party the corresponding output. Loosely speaking, a secure
implementation of such a functionality is an m-party protocol in which the impact of malicious
parties is effectively restricted to application of the prescribed functionality to inputs chosen by the
corresponding parties. One major result in this area is the following.

Theorem 33 Assuming the existence of trapdoor permutations, any efficiently computed function-
ality can be securely implemented.

21

8 The Tip of an Iceberg

Even within the topics discussed above, many important notions and results have not been dis-
cussed for space reasons. Furthermore, other important topics and even wide areas have not been
mentioned at all. Here we briefly discuss some of these topics and areas.

8.1 Relaxing the Requirements

The P vs. NP Question, as well as most of the discussion so far, focuses on a simplified view of the
goals of (efficient) computations. Specifically, we have insisted on efficient procedures that always
give the exact answer. In practice, one may be content with efficient procedures that “typically”
give an “approximate” answer. Indeed, both terms in quotation marks require clarification.

8.1.1 Average-Case Complexity

One may consider procedures that answer correctly on a large fraction of the instances. But this
assumes that all instances are equally interesting in practice, which is typically not the case. On
the other hand, demanding success under all input distributions gives back worst-case complexity.
A very appealing theory of average-case complexity (cf. [6]) demands success only for the family of
all input distributions that can be efficiently sampled.

8.1.2 Approximation

What do we mean by an approximation to a computational problem? There are many possible an-
swers, and their significance depends on the specifics of the application. For optimization problems,
the answer is obvious: we’d like to get “close” to the optimum (see [9]). For search problems, we
may be satisfied with a solution that is close in some metric to being valid. For decision problems
(i.e., determining set membership), we may ask how close the input is (under some relevant distance
measure) to an instance in the set (cf. [15]).

8.2 Other Complexity Measures

Until now, we have focused on the running time of procedures, which is arguably the most impor-
tant complexity measure. However, other complexity measures such as the amount of work-space
consumed during the computation are also important (cf. [17]). Another important issue is the
extent to which a computation can be performed in parallel; that is, speeding-up the computation
by splitting the work among several computing devices, which are viewed as components of the
same (parallel) machine and they are provided with direct access to the same memory module. In
addition to the parallel time, a fundamentally important complexity measure in such a case is the
number of (parallel) computing devices used (cf. [10]).

8.3 Other Notions of Computation

Following are a few of the computational models we did not discuss. Models of distributed comput-
ing refer to distant computing devices, each given a local input (which may be viewed as a part of
a global input). In typical studies one wishes to minimize the amount of communication between
these devices (and certainly avoid the communication of the entire input). In addition to measures
of communication complexity, a central issue is asynchrony (cf. [1]). We note that the communica-
tion complezity of two-argument (and many-argument) functions is studied as a measure of their

22

“complexity” (cf. [13]), but in these studies communication proportional to the length of the input
is not ruled out (but rather appears frequently). While being “information theoretic” in nature,
this model has many connections to complexity theory. Altogether different types of computational
problems are investigated in the context of computational learning theory (cf. [11]) and the study
of on-line (cf. [2]). Finally, Quantum Computation investigates the possibility of using quantum
mechanics to speed up computation (cf. [12]).

9 Concluding Remarks

We hope that this ultra-brief survey conveys the fascinating flavor of the concepts, results and open
problems that dominate the field of computational complexity. One important feature of the field
we did not do justice to, is the remarkable web of (often surprising) connections between different
subareas, and its impact on progress. For further details on the material discussed in Sections 2—4,
the reader is referred to standard textbooks such as [5, 17]. For further details on the material
discussed in Sections 5.1, 5.2 and 5.3, the reader is referred to [4], [18] and [3], respectively. For
further details on the material discussed in Sections 6 and 7, the reader is referred to [7] (and also
to [8] for further details on Section 7.2).

23

References

1]

2]

[3]

[4]
[5]

8]

[9]
[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simulations and Advanced Topics,
McGraw-Hill, 1998.

A. Borodin and R. El-Yaniv: On-line Computation and Competitive Analysis, Cambridge Uni-
versity Press, 1998.

P. Beame and T. Pitassi: Propositional Proof Complexity: Past, Present, and Future, in
Bulletin of the EATCS, Vol. 65, June 1998.

R. Boppana and M. Sipser: The complexity of finite functions, in [14].

M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, 1979.

O. Goldreich: Notes on Levin’s Theory of Average-Case Complexity, In ECCC, TR97-058, 1997.

O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms
and Combinatorics series (Vol. 17), Springer, 1999.

O. Goldreich: Foundation of Cryptography (in two volumes: Basic Tools and Basic Applications),
Cambridge University Press, 2001 and 2004.

D. Hochbaum (ed.): Approximation Algorithms for NP-Hard Problems, PWS, 1996.
R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared-Memory Machines, in [14].

M.J. Kearns and U.V. Vazirani: An introduction to Computational Learning Theory, MIT Press,
1994.

A. Kitaev, A. Shen, M Vyalyi: Classical and Quantum Computation, AMS, 2002.
E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge University Press, 1996.

J. van Leeuwen (ed.): Handbook of Theoretical Computer Science, Vol A: Algorithms and Com-
plexity, MIT Press/Elsevier, 1990.

D. Ron: Property Testing (A Tutorial), in Handbook on Randomized Computing (Volume IT),
Kluwer Academic Publishers, 2001.

R. Shaltiel: Recent Developments in Explicit Constructions of Extractors, in Bulletin of the
EATCS, Vol. 77, 2002.

M. Sipser: Introduction to the Theory of Computation, PWS, 1997.

V. Strassen: Algebraic Complexity Theory, in [14].

24

Appendix: Glossary of Complexity Classes

Complexity classes are sets of computational problems, where each class contains problems that
can be solved with specific computational resources. Examples of such classes (e.g., P and N'P)
are presented in the essay “Computational Complexity” (Sec. IV) and the reader is referred there
for further discussion of the notions of computation and complexity.

To define a complexity class one specifies a model of computation, a complexity measure (like
time or space), and a bound on it. The prevailing model of computation is that of Turing machines,
which in turn capture the notion of (uniform) algorithms. Another important model is the one of
non-uniform circuits. The term uniformity refers to whether the algorithm is the same one for
every input length or whether a different “algorithm” (or rather a “circuit”) is considered for each
input length. Recall (from Sec. IV) that complexity is always measured as a function of the input
length.

We focus on natural complexity classes, obtained by considering natural complexity measures
and bounds, which contain natural computational problems. Furthermore, almost all of these
classes can be “characterized” by natural problems, which capture every problem in the class.
Such problems are called complete for the class, which means that they are in the class and every
problem in the class can be “easily” reduced to them, where “easily” means that the reduction takes
less resources than what each of the problems seems to require individually. We stress the fact that
complete problem not only exist, but rather are natural and make no reference to computational
models or resources. Efficient algorithm for a complete problem implies an algorithm of similar
efficiency for all problems in the class.

A.1 Algorithm-based classes

The two main complexity measures considered in the context of (uniform) algorithms are the num-
ber of steps taken by the algorithm (i.e., its time complexity) and the amount of "memory” or
“work-space” consumed by the computation (i.e., its space complexity). In our Sec. IV essay, we de-
fine the time-complexity classes P and NP (cf. Sec. 3.1), coN'P (cf. Sec. 3.4), and BPP (cf. Sec. 5).
In addition, we mention a couple of other classes associated with probabilistic polynomial-time:

e The set S is in RP if there exists a probabilistic polynomial-time machine M such that x € S
implies Pr[M(z)=1] > %, while 2 ¢ S implies Pr[M(z)=1] = 0. Also, coRP = {{0,1}*\S :
S €RP}. The latter class contains the problem of deciding whether a given arithmetic circuit
over Q computes the identically zero polynomial.

e The decision problem S:{0,1}*—{0,1} is in ZPP if there exists a probabilistic polynomial-
time machine M such that for every x it holds that M (x)€{S(z), L} and Pr[M (z)=S(z)] >
%, where L s a special failure symbol. Equivalently, ZP7P is the class of all sets which have
a probabilistic algorithm which always returns the correct andswer, and runs in ezpected
polynomial time.

Clearly, ZPP = RPNcoRP C RP C NP NBPP.

When defining space-complexity classes, one counts only the space consumed by the actual
computation, and not the space occupied by the input and output. This is formalized by postulating
that the input is read from a read-only device (resp., the output is written on a write-only device).
Four important classes of decision problems are:

e The class £ consists of problems solvable in logarithmic space. That is, a set S is in £ if there
exists a standard (i.e., deterministic) algorithm of logarithmic space-complexity for deciding

25

membership in S. This class contains some simple computational problems (e.g., matrix
multiplication), and arguably captures the most space-efficient computations.

e The class RL counsists of problems solvable by a randomized algorithm of logarithmic space-
complexity. This class contains the problem of deciding whether a given undirected graph is
connected. This problem is not known to be in L.

e The class N L is the non-deterministic analogue of £, and is traditionally defined in terms
of non-deterministic machines of logarithmic space-complexity. Alternatively, analogously to
the definition of NP, a set S is in N'L if there exists a polynomially bounded binary relation
Rg € L such that z € S if and only if there exists y such that (z,y) € Rg. The class N'C
contains the problem of deciding whether there exists a directed path between two given
vertexes in a given directed graph. In fact, the latter problem is complete for the class (under

logarithmic-space reductions). Interestingly, coN L o {{0,1}*\ S: SENL} equals N L.

e The class PSPACE cousists of (decision) problems solvable in polynomial space. This class
contains very difficult problems, including the computation of winning strategies for any
efficient 2-party games (as discussed below).

Clearly, LC RLCNLC P and NP C PSPACE.

Turning back to time-complexity, we mention the classes £ and EAXP corresponding to problems
that can be solved (by a deterministic algorithm) in time 20(m) and 2P (") respectively, for n-bit
long inputs. Clearly, PSPACE C EXP.

Two classes related to the class NP are the “counting class” #P and the Polynomial-time
hierarchy. Functions in #P count the number of solutions to an NP-type search problem (e.g..
compute the number of satisfying assignments of a given formula). Formally, a function f is in #P
if there exists an NP-type relation R such that f(z) = |{y : (z,y) € R}|. Clearly, #P problems
are solvable in polynomial space. Surprisingly, the permanent of positive integer matrices is #P-
complete (i.e., it is in #P and any function in #P is polynomial-time reducible to it).

The Polynomial-time hierarchy, PH, consists of sets S such that there exists a constant k£ and
a (k + 1)-ary polynomially bounded relation Rg € P such that x €S if and only if Jy;Vys3ysVyy...
such that (z,y1, 92,93, Y4, ..., yr) € Rg. Indeed, NP corresponds to the special case where k = 1.
Interestingly, P'H is polynomial-time reducible to #P.

Sets in the Polynomial-time hierarchy and in the class PSPACE capture the complexity of
finding winning strategies in certain effictent 2-party game. In such games, the two players compute
their next move (from any given position) in polynomial time (in terms of the initial position) and
a winning position can be recognized in polynomial-time. For example, a set S as above can be
viewed via a k-move game in which, starting from a given position x, the first party takes the first
move Y1, the second responds with ys, etc, and the winner is determined by whether or not the
transcript (z,y1,- - - yr) of the game is in Rg. That is, z € S if, starting at the initial position z, the
first party has a winning strategy in the k-move game determined by Rg. Thus, sets in PH (resp.,
PSPACE) corresponds to games with a constant number of (resp., polynomailly many) moves.

A.2 Circuit-based classes

See Sec. IV for discussion of circuits as computing devices. The two main complexity measures
considered in the context of (non-uniform) circuits are the number of gates (or wires) in the circuit
(i.e., the circuit’s size) and the length of the longest directed path from an input to an output (i.e.,
the circuit’s depth).

26

ed's Note:
1 prefer to
omit the
next
paragraph.

The main motivation for the introduction of complexity classes based on circuits is the devel-
opment of lower-bounds. For example, the class of problems solvable by polynomial-size circuits,
denoted P/poly, is a super-set of P (because it clearly contains P as well as any subset of {1}*,
whereas there exists such sets that represents decision problems that are not solvable (i.e., by any
uniform algorithm)). Thus, showing that AP is not contained in P/poly would imply P # NP.
For further discussion see Sec. I'V.

The class AC’, discussed in our Sec. IV article (cf. Sec. 5.1.3), consists of sets recognized by
constant-depth polynomial-size circuits of unbounded fan-in. The analogue class that allows also
(unbounded fan-in) majority-gates (or, equivalently, threshold-gates) is denoted 7C". For any non-
negative integer k, the class of sets recognized by polynomial-size circuits of bounded fan-in (resp.,

unbounded fan-in) having depth O(log® n), where n is the input length, is denoted N'C* (resp.,

ACF). Clearly, NCF C ACK € NC*! and NC & Upen N CF.

We mention that the class NC? D NL is the habitat of most natural computational problems
of Linear Algebra: solving a linear system of equations as well as computing the rank, inverse and
determinant of a matrix. The class N'C! contains all symmetric functions, regular languages as
well as word problems for finite groups and monoids. The class AC® contains all properties of finite
objects expressible by first-order logic.

27

