
On the Complexity ofInteractive Proofs with Bounded CommunicationOded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.il Johan H�astadDepartment of Computer ScienceRoyal Institute of Technology10044 Stockholm, Sweden.johanh@nada.kth.seNovember 2, 1997AbstractWe investigate the computational complexity of languages which have interactive proof sys-tems of bounded message complexity. In particular, denoting the length of the input by n, weshow that� If L has an interactive proof in which the total communication is bounded by c(n) bits thenL can be recognized by a probabilistic machine in time exponential in O(c(n) + log(n)).� If L has a public-coin interactive proof in which the prover sends c(n) bits then L can berecognized by a probabilistic machine in time exponential in O(c(n) � log(c(n)) + log(n)).� If L has an interactive proof in which the prover sends c(n) bits then L can be recognized bya probabilistic machine with an NP-oracle in time exponential inO(c(n)�log(c(n))+log(n)).
�Work done while being on a sabbatical leave at LCS, MIT.0



1 IntroductionProof systems are de�ned in terms of their veri�cation procedures. The notion of a veri�cationprocedure assumes the notion of computation and furthermore the notion of e�cient computation.This implicit assumption is made explicit in the de�nition of NP, in which e�cient computation isassociated with (deterministic) polynomial-time algorithms. In light of the growing acceptabilityof randomized and distributed computations, it is only natural to associate the notion of e�cientcomputation with probabilistic and interactive polynomial-time computations. This leads to thenotion of an interactive proof system (cf., [9]) in which the veri�cation procedure is interactive andrandomized, rather than being non-interactive and deterministic. Intuitively, one may think of thisinteraction as consisting of \tricky" questions asked by the veri�er, to which the prover has to reply\convincingly". The last sentence, as well as the de�nition, makes explicit reference to a prover,whereas a prover is only implicit in the traditional de�nitions of proof systems (e.g., NP-proofs).The actual de�nition of interactive proof systems suggests probabilistic interpretations to thetraditional notions of completeness and soundness associated with any proof system. Speci�cally,statistical soundness requires that there exists no strategy which makes the veri�er accept false state-ments with probability greater than, say, 1=3. A further relaxation of this soundness condition isthe notion of computational soundness: Here it is only required that there exists no e�cient strategywhich makes the veri�er accept false statements with probability greater than 1=3. The di�erencebetween statistical soundness and computational soundness translates to a di�erence between inter-active proof systems as de�ned by Goldwasser, Micali and Racko� [9], and computationally-soundproof systems (aka argument systems) as de�ned by Brassard, Chaum and Cr�epeau [6].A signi�cant di�erence between interactive proof systems and computationally-sound proofsystems has been observed in the domain of zero-knowledge. On one hand, it is widely believedthat not all languages in NP have perfect zero-knowledge interactive proofs (cf., [7]).1 In particular,the negation of this conjecture implies the collapse of the polynomial-time hierarchy (cf., [5]). Onthe other hand, assuming that factoring is hard, all languages in NP have perfect zero-knowledgecomputationally-sound proofs [6].Our aim in this note is to point out another signi�cant di�erence between interactive proofsystems and computationally-sound proof systems. Speci�cally, we refer to the \expressive power"of the two types of proof systems when bounding their message complexity (i.e., the number of bitssent throughout the interaction). We will confront known positive results regarding the expressivepower of computationally-sound proof systems of bounded message complexity with new negativeresults regarding the expressive power of interactive proof systems of the same message complexity.Computationally-sound proofs of bounded message complexity: In 1992, Kilian demon-strated that computationally-sound proof systems may be able to recognize any language in NPwhile using only polylogarithmic message complexity [11]. Speci�cally, assuming the existenceof hashing functions for which collisions cannot be found by subexponential-size circuits, Kilianshowed that any language in NP has a computationally-sound proof system in which both the bi-directional message complexity and the randomness complexity are polylogarithmic. Furthermore,this proof system is in the public-coins (aka Arthur-Merlin) model of Babai [1].1 Perfect zero-knowledge is a strict variant of zero-knowledge. The above stated belief does not refer to the morerelaxed notion of zero-knowledge (aka computational zero-knowledge). In fact, assuming the existence of commitmentschemes, all languages in NP do have (computational) zero-knowledge interactive proofs [8].1



Interactive proofs of bounded message complexity: Our �rst observation indicates thatKilian's result (as stated above) is unlikely for interactive proof (rather than computationally-sound) systems. It shows that if we bound the message and randomness complexity as in Kilian'sresult (i.e., to be polylogarithmic), then interactive proofs may exist only for languages in the classQuasi-Polynomial Time (i.e., Dtime(2poly log(�)). We note that Quasi-Polynomial Time is widelybelieved not to contain NP .Theorem 1 (interactive proofs with bounded message and randomness complexities): Let c(�) bean integer function and L�f0; 1g�. Suppose that L has an interactive proof system in which both therandomness and communication complexities are bounded by c(�). Then L2Dtime(2O(c(�)) �poly(�)).Theorem 1 is the starting point of our investigation. Its proof is facilitated by the fact that thehypothesis contains a bound on the randomness complexity of the veri�er. However, what weconsider fundamental in Kilian's result is the low message complexity. Thus, we wish to waivethe extra hypothesis. In fact, waiving the bound on the randomness complexity, we obtain a verysimilar resultTheorem 2 (interactive proofs with bounded message complexity): Let c(�) be an integer functionand L � f0; 1g�. Suppose that L has an interactive proof system in which the communicationcomplexity is bounded by c(�). Then L2BPtime(2O(c(�)) � poly(�)).Theorem 2 refers to interactive proof systems in which the bi-directional communication complex-ity is bounded. However, it seems that the more fundamental parameter is the uni-directionalcommunication complexity in the prover-to-veri�er direction. In fact, waiving also the bound onthe veri�er's message length, we obtain a similar result for the special case of public-coin (Arthur-Merlin) interactive proof systems.2 Namely,Theorem 3 (public-coin interactive proofs with bounded prover-messages): Let c(�) be an integerfunction and L� f0; 1g�. Suppose that L has a public-coin interactive proof system in which thetotal number of bits sent by the prover is bounded by c(�). Then L2BPtime(2O(c(�) log c(�)) � poly(�)).Theorem 3 may not hold for general interactive proofs, and if it does this may be hard to establish.The reason being that supposedly hard languages such as Quadratic Non-Residuosity and GraphNon-Isomorphism have interactive proof systems in which the prover sends a single bit [9, 8]. Thus,we are currently content with a weaker result.Theorem 4 (interactive proofs with bounded prover-messages): Let c(�) be an integer functionand L�f0; 1g�. Suppose that L has an interactive proof system in which the total number of bitssent by the prover is bounded by c(�). Then L2BPtime(2O(c(�) log c(�)) � poly(�))NP .2 Formal TreatmentWe assume that the reader is familiar with the basic de�nitions of interactive proofs as introducedby Goldwasser, Micali and Racko� [9] and Babai [1]. Here we merely recall them, while focusingon some parameters. In particular, we use the (more liberal) two-sided error versions { this onlymakes our results stronger.2 Recall that Kilian's proof system is of the public-coin type.2



2.1 Interactive Proof Systems and ParametersDe�nition 1 (interactive proof systems):� An interactive proof system for a language L is a pair (P; V ) of interactive machines, so thatV is probabilistic polynomial-time, satisfying{ Completeness: For every x 2 L, the veri�er V accepts with probability at least 23 , afterinteracting with P on common input x.{ Soundness: For every x 62 L and every potential prover P �, the veri�er V accepts withprobability at most 13, after interacting with P � on common input x.An interactive proof system is said to be an Arthur-Merlin game if the veri�er's message ineach round consists of all coins it has tossed in this round.� Let m and r be integer functions. The complexity class IP(m(�); r(�)) (resp., AM(m(�); r(�))consists of languages having an interactive proof system (resp., an Arthur-Merlin proof sys-tem) in which, on common input x, the interaction consists of at most r(jxj) communicationrounds during which the total number of bits sent from the prover to the veri�er is boundedby m(jxj).2.2 Our ResultsFor an integer function t, we let BPtime(t(�)) (resp., BPtime(t(�))NP ) denote the class of languagesrecognizable by probabilistic t(�)-time machines (resp., oracle machines with access to an oracle setin NP) with error at most 1=3. Our main result isProposition 5 (interactive proofs with bounded message and round complexity):AM(m(�); r(�)) � BPtime(2O(m(�)+r(�) log r(�)) � poly(�)) (1)IP(m(�); r(�)) � BPtime(2O(m(�)+r(�) log r(�)) � poly(�))NP (2)Theorem 3 follows from Part (1) of Proposition 5, whereas Theorem 4 follows from Part (2).Theorems 1 and 2 will be proven directly before proving Proposition 5. The main ingredient inall our proofs are procedures for evaluating or approximating the value of the game tree of a proofsystem. This tree is de�ned next.2.3 The Game Tree of a Proof SystemFixing a veri�er V we consider its interaction with a generic prover on any �xed common input,denoted x. The veri�er's random choices can be thought of as corresponding to the contents of itsrandom-tape, called the random-pad. We assume without loss of generality that V sends the �rstmessage and that the prover sends the last one. In each round, V 's message is chosen depending onthe history of the interaction so far and according to some probability distribution induced by V 'slocal random-tape. The history so far corresponds to a �xed subset of possible random-pads and thepossible messages to be sent correspond to a partition of this subset. Thus, each possible messageis sent with probability proportional to its part in this subset. The above description correspondsto general interactive proofs. In case of Arthur-Merlin games the situation is simpler: V merely3



tosses a predetermined (by history) number of coins and sends the outcome to the prover.3 Asto the prover's messages, they are chosen arbitrarily (but are of length at most poly(jxj)). Theinteraction goes on, for at most poly(jxj) rounds at which point the veri�er stops outputting eitheraccept or reject. The messages exchanged till that point are called a transcript of the interactionbetween the prover and V .To simplify the exposition, we augment the transcript of the interaction by V 's random-pad.This way, V 's accept/reject decision is determined by the augmented transcript (and the input x).This convention is not needed for Arthur-Merlin games.The interaction between the prover and V on common input x may be viewed as a game inwhich the prover's objective is to maximize the probability that V accepts, and V 's strategy is�xed but mixed (i.e., probabilistic). It is useful to consider the corresponding game tree.De�nition 2 (the game tree and its value): Let V and x be �xed.� The tree Tx: The nodes in the tree, denoted Tx, correspond to possible pre�xes of the interac-tion of V with an arbitrary prover. The root represents the empty interaction and is de�nedto be at level 0. For every i = 0; 1::: the edges going out from each 2ith level node correspondto the messages V may send given the history so far. (We know that V selects one of theseedges/messages according to some predetermined by the node probability distribution.) Theedges going out from each (2i+1)st level node correspond to the messages a prover may sendgiven the history so far. (The prover may select an edge/message so to maximize the ac-cepting probability of V .) Nodes which correspond to an execution on which V stops have aschildren one or more leaves, each corresponding to a possible V 's random-pad which is con-sistent with the interaction represented in the father. Thus, leaves correspond to augmentedtranscripts as de�ned above.� The value of Tx: The value of the tree is de�ned bottom-up as follows. The value of a leafis either 0 or 1 depending on whether V accepts in the augmented transcript represented byit or not. The value of an internal node at level 2i is de�ned as the weighted average of thevalues of its children, where the weights correspond to the probabilities of the various veri�ermessages. (This de�nition holds also for the fathers of leaves, when viewing V 's random-padas an auxiliary, �ctitious message sent by V .) The value of an internal node at level 2i� 1 isde�ned as the maximum of the values of its children. This corresponds to the prover's strategyof trying to maximize V 's accepting probability. The value of the tree is de�ned as the valueof its root.To decide if x is in the language accepted by V , it su�ces to approximate the value of the tree Txde�ned above. The reason being that the value of Tx is a tight upper bound on the probability thatV accepts x when interacting with any prover strategy. (The bound is achievable by an optimalprover which indeed selects each message as to maximize V 's acceptance probability.) Thus, thevalue of Tx is at least 2=3 if x is in the language and at most 1=3 otherwise. Thus, it su�cesto approximate the value of Tx within an additive term of 0:16 < 16 . Below we present variousprocedures for obtaining such approximations. The more restrictions we have on the proof system,the simpler the procedure is.3 That is, we assume that, for every partial history of the interaction, the number of coins tossed by the veri�er ispredetermined (by the history of interaction so far). This assumption is more relaxed from what is typically assumedin the literature (i.e., typically it is assumed that the number of coin tosses may only depend on the round numberor even is �xed for the entire interactive proof). Our results can be easily extended to the general case where theveri�er may determine the number of coins tossed at each round depending on the outcome of previous coins tossedat this round. 4



Comment: It is easy to see that the optimal prover can be implemented in exp(poly(jxj))-time,since within this time one may construct the tree Tx as well as compute the value of all its nodes.In fact, it is a well-known folklore that the optimal prover can be implemented in polynomial-space.2.4 Proof of Theorem 1We start with the simplest case, where we have a bound c def= c(jxj) on both the randomness andmessage complexity of the interactive proof on input x. In this case the number of nodes in Txis at most 22c+1 (since the product of fan-out along any path from the root to a leaf is boundedby 2c � 2c, where the �rst factor is due to the actual transcript and the second to the number ofpossible random-pads augmenting any of these). Thus, we can construct Tx in time 22c+1 �poly(jxj)and compute the value of each of its nodes (within the same time). The theorem follows.2.5 Proof of Theorem 2Here we only have a bound c def= c(jxj) on the message complexity of the interactive proof on inputx. In this case the number of internal nodes in Tx is at most 2c+1 (since the product of fan-outalong any path from the root to a father of a leaf is bounded by 2c.) However, Tx itself may haveexponentially many leaves (i.e., each last-level internal node may have exp poly(jxj) many leavescorresponding to possible random-pads consistent with the transcript represented by this node).Our aim is to approximate the value of Tx in time poly(2cjxj), so we cannot a�ord to construct Tx.Instead, we take a sample of m def= �(2cc) random-pads, denoted R, and evaluate the residual treeTRx which results from Tx by omitting all nodes which are not consistent with some random-pad inR. (The weights in the tree TRx are those induced by the various subsets of R which are consistentwith the transcript represented by each node.) We will show that, with very high probability, thevalue of TRx approximates the value of Tx. We note that the value of TRx can be computed in timeproportional to its size (as done in previous subsection for Tx itself), and that the size of TRx isbounded by 2c � jRj = 2O(c). Thus, the theorem follows from the following lemma.Lemma 6 Let V; x, m, Tx and TRx be as above. Suppose that r1; :::; rm are uniformly and inde-pendently chosen random-pads for V (x) and let R denote the multi-set fr1; :::; rmg. Then, withprobability at least 0:99, the value of TRx is within 0:1 of the value of Tx, where the probability istaken uniformly over all possible choices of R.Proof: It is useful to consider a \veri�er"4, denoted V R, which selects its random-pad uniformlyin R and otherwise acts as V does. Clearly, the value of TRx represents a tight upper bound on theaccepting probability of V R interacting with any prover strategy on common input x.Fixing any prover strategy, denoted P , we consider the di�erence between the accepting prob-abilities of V R and V when each interacts with P on common input x. Denote this di�erence by�P (R). Using Cherno� Bound (see Appendix A), with probability at most 2�
(m) over the choicesof R, we have j�P (R)j > 0:1. Speci�cally, we consider random variables �1; :::�m, so that �i = 1if the ith random-pad in R (i.e., ri) makes V R accept x when interacting with P . Since each riis uniformly selected among all possible random-pads of V , the expected value of each �i equalsthe probability that V accepts x when interacting with P . Since the ri's are chosen independently,the �i's are independent random variables. Finally observe that the probability that V R accepts4 Such a \veri�er" is not a standard interactive machine as de�ned in De�nition 1, but rather one having accessto an oracle R. 5



x when interacting with P is a random variable which equals the average of the random variables�1; :::; �m. Thus, applying Cherno� Bound indeed yields that with probability at most 2�2�0:12�mover the choices of R, we have j�P (R)j > 0:1.Noting that provers are functions from histories to next-messages, we conclude that there areat most (2c)2c = 2c2c possible provers (as both histories and next messages are of length at mostc� 1 bits). Thus, the probability that there exists a prover, P , such that j�P (R)j > 0:1 is at most2c2c � 2�2�0:12�m < 2c2c�(c2c+10) < 0:01where the probability is taken uniformly over all choices ofR. (The �rst inequality usesm = 
(c2c).)The lemma follows.2.6 Proof of Proposition 5Here we only have a bound on the uni-directional communication from the prover to the veri�er.Speci�cally, let m def= m(jxj) be a bound on the total number of bits sent by the prover to V , oninput x, and r def= r(jxj) be a bound on the number of rounds in their interaction (on x). Our goalis to approximate the value of Tx within complexity related to m (and r). Thus, the approach ofthe previous subsection which used the assumption that Tx has relatively few internal nodes willnot do. Instead, we are going to construct a \representative subtree" of Tx which (typically) hasvery few of the internal nodes of Tx. (We comment that the tree TRx , considered in the previoussection, may have all internal nodes of Tx yet few of its leaves.)Motivation: The basic idea is that we do not need to consider all possible messages that V maysend at a particular point in the interaction. Considering a random sample of these messages shouldsu�ce, since with very high probability the average accepting-probability over this sample providesa good approximation to the (weighted) average over all possible messages. The latter assertionholds, provided we select the sample at random according to the weights assigned to the possiblemessages. Note that the argument holds with respect to V 's messages (as these are selected by Vat random), but cannot be applied to the prover's responses (which are selected to maximize V 'saccepting probability).Back to the actual proof: For each even-level node in Tx, we select a random sample of �(m4)children (representing possible V messages on the partial transcript associated with this node).The sample is selected according to the weights mentioned in De�nition 2 (i.e., the probabilities ofthe various V 's messages). Each sample point is selected independently of the others, and so thesample may contain several occurrences of the same node. At this point we ignore the question ofhow one may select such a sample. This is indeed easy if the interactive proof is of an Arthur-Merlintype, but in general this may be a hard task (and an NP-oracle will be used to carry it out).These samples (each per even-level node) de�nes an approximation tree, denoted Ax, in whicheach odd-level node has the same children as in Tx, whereas each even-level node has poly(m)children. The value of the approximation tree is de�ned recursively as in De�nition 2: Speci�cally,the leaves of Ax have the same value as in Tx, the value of odd-level nodes is the maximum ofthe value of their children, and the value of even-level nodes is the (unweighted) average of thevalues of their children. We stress that although the averages taken in the even-level nodes of Txmay be weighted, the averages taken in Ax are not. However these weights have their e�ect in therandomized construction of Ax (as described above). The following lemma shows that the value6



of Ax is a good approximation of the value of Tx. The lemma does not refer to the complexity ofconstructing Ax (considered below).Lemma 7 (the value of Ax): With probability at least 0:99, the value of the approximation tree Axis within 0:1 away from the value of the corresponding game tree Tx, where the probability is takenuniformly over the random choices in the construction of Ax.Proof: Let s = �(m4) be the size of the sample used for each even-level node. We consider r+2hybrid trees, denoted H0; :::; Hr+1, so that Hi consists of the �rst 2i+ 1 levels of Ax and the rest ofthe levels taken from Tx. That is, each 2ith level node of Hi is the root of the Tx-subtree rooted atthe corresponding node in Tx. Note that H0 � Tx and Hr+1 � Ax. The value of Hi is de�ned in thenatural manner; that is, the values of nodes at level below 2i are de�ned as in Tx (the correspondingedges going out of these even-level nodes have weights as in Tx), and the value of nodes in levels2i � 1 and less are de�ned as in Ax. We will show that for every i = 0; :::; r, with probability atleast 1� 0:01r+1 , the values of Hi and Hi+1 are within 0:1r+1 of one another.Let us �x i and consider any 2ith level node in Hi, denoted f . Denote the children of thisnode (in Hi) by c1; :::; ct, and the weights associated with the edges leading to them by w1; :::; wt.Denote the value of cj in Hi by vali(j). Then, by de�nition of values in Hi, the value of f in Hi isPtj=1wj �vali(j) (as in Tx). We may viewHi+1 as generated fromHi by taking a sample of s childrenof each 2ith level node in Hi. The children of the node corresponding to f in Hi+1 are selectedamong the nodes corresponding to the cj's according to the weights wj's. We represent these schoices by the random variables 1; :::; s distributed in f1; :::; tg. Note that Prob(k = j) = wj,for every j = 1; :::; t and k = 1; :::; s. As a function of each k, we consider the random variable�k def= vali(k). The expected value of each �k equals Ptj=1wj � vali(j). Thus, the value of thenode corresponding to f in Hi+1 is a random variable which is the sum of s = �(m4) independentrandom variables (i.e., the �k's). Applying Cherno� bound, we observe that with probability atleast 1 � 2 exp(� 2s(100(r+1))2 ) > 1 � 2�m2 the value of this node is within 0:1r+1 of its expected value(i.e.,Ptj=1wj �vali(j)). Since the number of 2ith level node in Hi is at most 2m �si = O(2m �m4r) <0:01r+1 � 2m2 , we conclude that with probability at least 1 � 0:01r+1 , the values of all corresponding 2ithlevel nodes of Hi and Hi+1 are within 0:1r+1 of one another. In such a case, the values of the (rootsof the) trees Hi and Hi+1 are within 0:1r+1 of one another. The lemma follows.The size of Ax: The total size of the approximation tree is2m � poly(m)r = poly(2m �mr) = poly(2m � rr)where the last equality is proven as follows: In case 2m � mr, we have 2m �mr � 22m = poly(2m �rr).Otherwise, we have 2m < mr and so m < r2 and 2m �mr < 2m � (r2)r = poly(2m � rr).Constructing Ax in case of an Arthur-Merlin veri�er: In this case it is easy to selectuniformly a sample of children of any even-level node in Tx (as this amount to selecting a sample ofthe veri�er next messages which are uniformly distributed in the set of strings of a predeterminedlength). Thus, we can construct Ax (top-down) probabilistically in time related to its size (i.e.,poly(2m �rr)), and compute its value (bottom-up) within this time bound. Using Lemma 7, Part (1)of Proposition 5 follows. 7



Constructing Ax in the general case: In this case we use a Uniform Generation procedure(see Appendix B). Loosely speaking, this procedure allows to uniformly select an NP-witness fora given input in an NP-language. The procedure runs in probabilistic polynomial-time using anNP-oracle. Here we use this procedure to uniformly select a random-pad (for V ) consistent with agiven partial transcript. (Note that the set of possible pairs (x; t), where t is a partial transcripts forV on input x, is an NP-language with the random-pads acting as NP-witnesses.) Thus, given anyeven-level node in Tx (partial transcript), we can uniformly select a consistent random-pad yieldinga veri�er next-message according to the right distribution. Thus, given access to an NP-oracle, wecan construct Ax (top-down) probabilistically in time related to its size (i.e., poly(2m � rr)). Oncewe have constructed Ax, we compute its value (bottom-up) as before. Using Lemma 7, Part (2) ofProposition 5 follows.3 Conclusions and Open ProblemsOur conclusion is that computationally-sound proof systems of low message complexity seem to bemuch more powerful than interactive proof systems of the same message complexity bound. Wewonder whether the results of Theorems 3 and 4 can be improved. In particular,Open Problem 1 (relatively minor): Can the running-time bounds of the decision proceduresprovided by Theorems 3 and 4 be improved?In particular, time bounds exponential in c(�) (rather than in c(�) log c(�))) seem a natural goal.Note that there is little hope to go below 2c(�)=O(1) time { this would imply algorithms for anyNP-complete problem operating in time which is subexponential in the length of the NP-witness(as each problem in NP has a trivial interactive proof in which the prover sends an NP-witness tothe veri�er). On the other hand, recall that for interactive proofs with O(c(�)= log c(�)) rounds, wedo have poly(2c(�))-time decision procedures (see Proposition 5).Open Problem 2 : Can the probabilistic NP-oracle machine of the conclusion of Theorem 4 bereplaced by a weaker process?There seems to be little hope to replace the probabilistic NP-oracle machine by an ordinary prob-abilistic (or non-deterministic) machine (of similar time-bounds), since languages for which thehypothesis of Theorem 4 holds with c � 1 include Quadratic Non-Residuosity (widely believed notto be in BPP) and Graph Non-Isomorphism (not known to be in NP). But it seems plausiblethat, for c(n) = O(logn= log logn), the class IP(c(�); c(�)) is contained in IP(poly(�); O(1)) (wherenotations are as in x 2.2). That is, we ask whether any language having an interactive proof systemin which the prover sends a total of O(logn= log logn) bits (but may have as many rounds), hasalso a constant-round interactive proof system. More generally, we ask whether IP(c(�); c(�)) iscontained in a generalization of constant-round interactive proofs in which the veri�er is allowedto run for 2O(c(�) log c(�)) � poly(�) time. On a slightly di�erent note, how aboutOpen Problem 3 : Can one provide evidence that NP is not contained in IP(c(�); c(�)) forsmall c? How about constant c?Clearly, such indication will have to assume that NP is not in BPP. But all we know underthat assumption is that NP is not contained in public-coin classes such as AM(log; O(1)) (sinceAM(c(�); O(1))� BPtime(2O(c(�))poly(�))). In the same vain, how about8



Open Problem 4 : Can one provide evidence that coNP is not contained in IP(c(�); c(�)) forsmall, non-constant, function c? How about c(n) = log logn?It is widely believed that coNP is not contained in IP(poly; O(1)) (or else, for example, thepolynomial-time hierarchy collapses [5]). Actually, stronger evidence for coNP 6� IP(O(1); O(1))will be of interest too.AcknowledgmentsWe are grateful to the anonymous referees for their helpful comments.References[1] L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421{429, 1985.(Publication [2] is considered the journal version.)[2] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchyof Complexity Classes. JCSS, Vol. 36, pages 254{276, 1988.[3] M. Bellare, O. Goldreich and E. Petrank. Uniform Generation of NP-witnesses using anNP-oracle. In preparation, 1997.[4] M. Bellare and E. Petrank. Making Zero-Knowledge Provers E�cient. In 24th STOC, pages711{722, 1992. See [3].[5] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? IPL,Vol. 25, pages 127{132, May 1987.[6] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. JCSS,pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27th FOCS, 1986.[7] L. Fortnow, The Complexity of Perfect Zero-Knowledge. Advances in Computing Research:a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 327{343,1989.[8] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pages691{729, 1991. Preliminary version in 27th FOCS, 1986.[9] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary versionin 17th STOC, 1985.[10] M. Jerrum, L. Valiant and V. Vazirani. Random Generation of Combinatorial Structuresfrom a Uniform Distribution. Theoretical Computer Science, Vol. 43, pages 169{188, 1986.[11] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages723{732, 1992.[12] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th STOC, pages 330{335, 1983. 9



[13] L. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118{126,1983.Appendix A: Cherno� BoundCherno� Bound: Let �1; :::; �m be independent random variables, each ranging in [0; 1] andhaving expected value �. Then,Prob ������� 1m mXi=1 �i����� > �! � 2 exp ��2�2m�Appendix B: The Uniform Generation ProcedureThe approximation algorithm presented in x2.6 uses a uniform generation procedure for selectinga NP-witness. Such a procedure originating in [12, 13, 10] has appeared in [4]. Here we follow therecent presentation of [3].De�nition 3 (uniform generation of NP-witnesses): Let R be an NP-witness relation associatedwith the NP-language LR def= fx : 9y s.t (x; y)2Rg. Let Rx def= fy : (x; y)2Rg denote the set ofwitness for membership of x in the language. A uniform generation procedure for R is a probabilisticmachine which given x 2 LR, with probability at least 1 � 2�jxj, outputs some witness for x (i.e.,a string y in Rx). Furthermore, all possible strings in Rx are output with the same probability.That is, for every y1; y2 2 Rx, the probability that the procedure (on input x) outputs y1 equals theprobability that it outputs y2.Clearly we cannot expect such a procedure to be weaker than NP itself. On the other hand,without loss of generality, we may assume that when not outputting an NP-witness the procedureoutputs a special symbol (e.g., ?). Note that the de�nition is robust with respect to the choice ofthe lower bound on the probability that the procedure outputs a witness: Any procedure in whichthis lower bound is at least 1=poly(jxj) can be converted to a procedure as above.Theorem 8 ([3]): Let R and LR be as above. Then there exists a probabilistic polynomial-timeoracle machine which when given oracle to NP (i.e., to an NP-complete language), constitutes auniform generation procedure for R.For sake of self-containment we present a sketch of the proof of this theorem. The proof is slightlydi�erent from what appears in any of the previous works. We start with a high level descriptionof the execution of the procedure on input x 2 LR. We assume, without loss of generality thatRx � f0; 1gn, where n = poly(jxj), and that n is polynomial-time computable from x. The uniformgeneration procedure for R works as follows:1. The procedure �nds an i such that jRxj < 2i+1 (and with probability at least 0:9 it holdsjRxj � 2i). In addition, in case i > ` def= 2dlog2 ne, the procedure also obtains (see detailsbelow) a hash function h : f0; 1gn 7! f0; 1gi�` so that for every � 2 f0; 1gi�`, we havejRx;h;�j < 2n2, where Rx;h;� def= fy 2Rx : h(y) = �g. Furthermore, with probability at least0:9, we have jRx;h;�j � n2=2, for every � 2 f0; 1gi�`.2. In case i � `, the procedure obtains Rx and stops uniformly outputting a member of Rx.10



3. Otherwise, using i and h found in Step 1, the procedure uniformly selects � 2 f0; 1gi�`, andobtains Rx;h;�. The procedure halts outputting each e 2 Rx;h;� with probability 1=2n2, andoutputting ? otherwise (i.e., with probability 1� jRx;h;�j2n2 ). (In particular, in case Rx;h;� = ;,the procedure always outputs ?.)It can be easily veri�ed that the above yields a uniform generation procedure for R. The questionis how to implement all of the above steps. To simplify the exposition, we assume n = jxj (ratherthan n = poly(jxj)), and that n2 = 2`.Checking if jRxj < 2n2: This is done using the NP-oracle by querying about membership of xin the language S1 def= fx0 : 9y1 < y2 < � � � < y2jx0j2 s.t. (x0; y1); :::; (x0; y2jx0j2)2RgFinding \good" i and h, in case jRxj � 2n2: Recall n = jxj. For each i, we use a familyof n-wise hashing functions mapping n-bit strings into (i� `)-bit strings (e.g., use polynomials ofdegree n�1 over GF(2n)). For i = log2 jRxj and h uniformly selected in this family, we have (usingthe nth moment method)Probh(9� s.t. jRx;h;�j < n2=2 or jRx;h;�j > 2n2) < 0:1We may verify that jRx;h;�j � 2n2 for all �'s, by checking with the NP-oracle that (x; h) in not inthe languageS2 def= f(x0; h0) : 9� 9y1 < y2 < � � �< y2jx0j2+1 s.t. (x0; yj) 2 R and h0(yj) = �, 8jgThus, trying i = `; :::; n� 1, we select for each i a random h and test the above condition. In casewe get to i = n, we set h to return the (n� `)-bit pre�x of the argument. Thus, we surely return apair (i; h) for which the condition holds and with probability at least 0:9 this pair will also satisfyjRx;h;�j � n2=2 for all �'s.Obtaining Rx or Rx;h;� in case they are small: For sake of simplicity, we consider here onlythe case jRxj � 2n2. Firstly, we use the NP-oracle to determine the size of Rx by testing themembership of each (x; 1); :::; (x; 12n2) in the setS3 def= f(x0; 1k) : 9y1 < y2 < � � � < yk s.t. (x0; y1); :::; (x0; yk)2RgOnce the cardinality of Rx, denoted s, is determined (and assuming s 6= 0), we �nd the jth bit ofthe ith element by testing the membership of (x; 1s; 1i; 1j) in the setS4 def= f(x; 1s0; 1i0; 1j0) : 9y1 < y2 < � � � < ys0 s.t. (x; y1); :::; (x; ys0)2R and the (j 0)th bit of yi0 is zerog
11


