
Resettable Zero-Knowledge�Ran Canettiy Oded Goldreichz Sha� Goldwasserx Silvio Micali{January 11, 2000AbstractWe introduce the notion of Resettable Zero-Knowledge (rZK), a new security measure forcryptographic protocols which strengthens the classical notion of zero-knowledge. In essence,an rZK protocol is one that remains zero knowledge even if an adversary can interact with theprover many times, each time resetting the prover to its initial state and forcing it to use thesame random tape.Under general complexity assumptions, which hold for example if the Discrete LogarithmProblem is hard, we construct� (non-constant round) Resettable Zero-Knowledge proof-systems for NP� constant-round Resettable Witness-Indistinguishable proof-systems for NP� constant-round Resettable Zero-Knowledge arguments for NP in the public key model:where veri�ers have �xed, public keys associated with them.In addition to shedding new light on what makes zero knowledge possible (by constructingZK protocols that use randomness in a dramatically weaker way than before), rZK has greatrelevance to applications. Firstly, we show that rZK protocols are closed under parallel andconcurrent execution and thus are guaranteed to be secure when implemented in fully asyn-chronous networks, even if an adversary schedules the arrival of every message sent. Secondly,rZK protocols enlarge the range of physical ways in which provers of ZK protocols can be se-curely implemented, including devices which cannot reliably toss coins on line, nor keep statebetween invocations. (For instance, because ordinary smart cards with secure hardware areresettable, they could not be used to implement securely the provers of classical ZK protocols,but can now be used to implement securely the provers of rZK protocols.)
Keywords: Zero-Knowledge, Concurrent Zero-Knowledge, Public-Key Cryptography, Witness-Indistinguishable Proofs, Smart Cards, Identi�cation Schemes, Commitment Schemes, DiscreteLogarithm Problem�A subset of this work is included in patent application [27].yIBM Research, Yorktown Height NY 10598; canetti@watson.ibm.comzDept. of Computer Science, Weizmann Institute of Science, Rehovot, Israel; oded@wisdom.weizmann.ac.ilxLaboratory for Computer Science, MIT, Cambridge, MA02139; shafi@theory.lcs.mit.edu{Laboratory for Computer Science, MIT, Cambridge, MA02139; silvio@theory.lcs.mit.edu

Contents1 Introduction 32 Overview 62.1 The notion of resettable zero-knowledge : 62.2 NP has constant-round resettable-WI : 82.3 NP has resettable-ZK proofs : 92.4 The Public-Key model : 93 Preliminaries 12I The Vanilla Model 134 De�nitional Issues 134.1 The actual de�nition : 134.2 Relationship among the variants : 155 How to construct resettable protocols 175.1 The Class of Admissible Protocols : 185.2 The Transformation { A Warm-up : 195.3 The Actual Transformation : 225.4 Deriving a constant-round rWI proof for NP : 275.5 Deriving a resettable zero-knowledge proof for NP : : : : : : : : : : : : : : : : : : : 28II The Public-Key Model 326 Discussion and De�nition 327 Constant-round RZK for NP in the public-key model 337.1 RZK for NP in the preprocessing model : 337.2 Back to the bare public-key model : 367.3 Almost constant-round RZK under weaker assumptions : : : : : : : : : : : : : : : : 417.4 An alternative presentation of resettable zero-knowledge systems : : : : : : : : : : : 42Bibliography 43III Appendices 46Appendix A: Commitment Schemes 46A.1 The Strong DLP Intractability Assumption : 46A.2 Standard Commitment Schemes : 46A.3 Perfect Commitment Schemes : 47
1

Appendix B: Blum's Proof of Knowledge 48B.1 Proofs of Knowledge : 49B.2 Blum's Protocol : 50

2

1 IntroductionThe notion of a zero-knowledge interactive proof was put forward and �rst exempli�ed by Gold-wasser, Micali and Racko� [28]. The generality of this notion was demonstrated by Goldreich, Micaliand Wigderson [24], who showed that any NP-statement can be proven in zero-knowledge, providedthat commitment schemes exist.1 Subsequently, related notions have been proposed; in particu-lar, zero-knowledge arguments [7], witness indistinguishability [15], and zero-knowledge proofs ofknowledge [28, 35, 14]. By now, zero-knowledge is the accepted way to de�ne and prove securityof various cryptographic tasks; in particular, as proposed by Fiat and Shamir [16], it provides thebasis for many proofs of identity.A basic question about zero-knowledge. A zero-knowledge proof of a non-trivial languageis possible only if the Prover tosses coins.2 But:Is zero-knowledge possible if the prover uses the same coins in more than one execution?For zero-knowledge proofs of knowledge (and thus for all proofs of identity �a la Fiat-Shamir [16]),by de�nition, the answer is NO: if the veri�er can force the prover to use the same coins for apolynomial number of executions, then even the honest veri�er can easily extract the very samesecret which the prover is claiming knowledge of.3For zero-knowledge proofs (of language membership), the answer also appeared to be negative:all known examples of zero-knowledge proofs (including the 3-Coloring protocol of [24]) are triviallybreakable if the prover is \reset" (to his initial state) and forced to use the same coins in futureinteractions, even if these interactions are with the honest veri�er.Example. For instance, to prove that z = x2 mod n is quadratic residue mod n, in [28] thefollowing basic protocol is repeated: the prover randomly chooses r 2 Z�n and sends r2 mod n tothe veri�er; the veri�er sends a random bit b to the prover; and the prover sends back r if b = 0,and xr mod n if b = 1. Assume now that the prover is forced to execute twice with the same coins rthe basic protocol. Then, by sending b = 0 in the �rst execution and b = 1 in the second execution,the veri�er learns both r and xr and thus trivially extract x, a square root of z mod n.A New Notion. In this paper we extend the classical notion of zero-knowledge by introducing thenotion of Resettable Zero-Knowledge (rZK for short).4 In essence, a rZK proof is a zero-knowledgeproof in which a veri�er learns nothing (except for the verity of a given statement) even if he caninteract with the prover polynomially many times, each time restarting the prover with the samecon�guration and coin tosses.In other words, a polynomial-time veri�er learns nothing extra even if it can \clone" the prover,with the same initial con�guration and random tape, as many times as it pleases, and then interactwith these clones in any order and manner it wants. In particular, it can start a second interactionin the middle of a �rst one, and thus choose to send a message in the second interaction as afunction of messages received in the �rst. We stress that, in each of these interleaved interactions,the prover (i.e., each prover clone) is not aware of any other interaction, nor of having been cloned.1 Or, equivalently [33, 30], that one-way functions exist.2 Zero-knowledge proofs in which the prover is deterministic exist only for BPP languages (cf., [25]).3 For instance, in [16] it su�ces to repeat the protocol twice with the same prover-coins to be able to extract theprover's secret.4 In a preliminary version of this work [20], the same notion was referred to by the names rewind zero-knowledgeand interleaved zero-knowledge. 3

Resettability can be incorporated in the various variants of zero knowledge. In particular in thiswork we will pay close attention to Resettable Zero-Knowledge proofs, Resettable Zero-Knowledgearguments, and Resettable Witness-IndistinguishableProofs (rWI for short).Informally, in all of the above cases (i.e., ZK proofs, arguments, and WI proofs) the securityrequirement is maintained even if the prover is forced to use the same coin tosses in repeatedexecutions.The Importance of the New Notion. Resettable zero knowledge sheds new light on what isit that make secure protocol possible. In particular, constructing such protocols, makes a muchweaker use of randomness than previously believed necessary. Moreover, resettable zero knowledgeis a powerful abstraction which yields both theoretical and practical results in a variety of settings.In particular,� rZK enlarges the number of physical ways in which zero-knowledge proofs may be imple-mented, while guaranteeing that security is preserved.As we have said, previous notions of zero knowledge were insecure whenever an enemy couldreset the device implementing the prover to its initial conditions (which include his randomtape). Unfortunately, for example, this class of implementations includes ordinary smartcards. In fact, without a built-in power supply or without a re-writable memory that isnot only tamper-proof, but also non-volatile, these cards can be reset by disconnecting andreconnecting the power supply.� rZK proofs, rWI proofs and rZK arguments are guaranteed to preserve security when executedconcurrently in an asynchronous network like the Internet.� rZK proofs, rWI proofs and rZK arguments provide much more secure ID schemes; that is,ID schemes that preserve security under circumstances as above.NewResults. We show that, under standard complexity assumptions, Resettable Zero-Knowledgeexists. Let us quickly state our assumptions and main results.Assumptions. All our protocols are based on the existence of certain types of commitmentschemes. Some of these schemes may be implemented under traditional complexity assumptions,such as the hardness of the Discrete Log Problem (DLP), and for some we use stronger assumptionssuch that the existence of strong trapdoor claw-free pairs of permutations.5 For the purposes ofthe current write-up, we renounce to some generality, and rely directly on two forms of the DLPassumption: Informally, denoting by DLP (k) the task of solving DLP for instances of length k, wehave Strong DLP Assumption: DLP (k) is not solvable in time 2k� , for some � > 0.Weak DLP Assumption: DLP is not solvable in polynomial time.Main Results. We prove the following theorems:5 \Strong" refers to those in which the claw-free property should hold also with respect to subexponential-sizecircuits (i.e., circuits of size 2n� , where n is the input length and � > 0 is �xed), rather than only with respect topolynomial-size circuits, and \trapdoor" refers to the fact that these pairs that can be generated along with auxiliaryinformation which allows to form (random) claws. 4

Theorem 1: Under the weak DLP assumption, there is a (non-constant round) rZK proof for NP.Theorem 2: Under the weak DLP assumption, there is a constant-round rWI proof for NP.Theorem 3: Under the strong DLP assumption, there is a constant-round rZK argument for NPin the Public-Key Model.By the public-key model, we mean that a veri�er has a public key that has been registered |i.e.,�xed| prior to his interaction with the prover. We stress that we only assume that public-keyscan be registered in the literal sense of the word. Registration does not have to include interactionwith a trusted system manager that may verify properties of the registered public-key (e.g., thatit valid or even that the user registering it knows a corresponding secret key). We also stress thatthe prover does not need a public key.6 (As we shall point out later on, this quite standard modelof �xing a key before interaction starts can be further relaxed.)Consequences for concurrent zero knowledge. With the rise of the internet, the importanceof concurrent execution of zero-knowledge protocols emerged. In a concurrent setting, many execu-tions of protocols can be running at the same time, involving many veri�ers which may be talkingwith the same (or many) provers simultaneously. This presents the new risk of an overall adversarywho controls the veri�ers, interleaving the executions and choosing veri�ers queries based on otherpartial executions. This risk is made even more challenging by the fact that it is unrealistic for thehonest provers to coordinate their action so that zero-knowledge is preserved in this setting. Thus,we must assume that in each prover-veri�er pair the prover acts independently.A recent approach for solving the concurrent execution problem has been suggested by Dwork,Naor and Sahai [12], assuming that a certain level of synchronization is guaranteed: the so-calledtiming assumption. Under this assumption, (1) there are a-priori known bounds on the delays ofmessages with respect to some ideal global clock, and (2) each party uses a local clock whose rateis within a constant factor of the rate of the ideal clock. Under the timing assumption (and somestandard intractability assumption), constant-round, ZK arguments for NP were presented in [12].In a later paper, Dwork and Sahai [11] show how the push up the use of the timing assumptionto a pre-processing protocol, to be executed before the concurrent executions of protocols. Morerecent work by Ransom and Kilian [34] does not use the timing assumption, alas their protocolsare either not constant-round or only simulatable in quasi-polynomial time. We stress that noneof these concurrent ZK protocols is rZK.Because secure concurrent executability is critical for protocols to be played over the internet,and because the number of rounds is an important resource for internet protocols, establishingwhether constant-round concurrent ZK protocols exist is a critical problem. Theorem 3 providesan answer to this question by means of the followingCorollary 4: Under the strong DLP assumption, there exists a constant-round, concurrent ZKarguments for NP in the public-key model.The importance of this corollary stems from the fact that the public-key model is quite stan-dard whenever cryptography is used, speci�cally it underlies any public-key encryption or digital6 Note that the fact that only the veri�er requires a public key is especially suitable when extending rZK proofsto rZK proofs of identity. In the latter case, in fact, the veri�er usually guards a resource and needs to identify theidentity of the user (the prover) attempting to use the resource. In this scenario, it is reasonable to expect (the few)veri�ers to have public key accessible by all users, and it useful that the (many) provers may implemented by cheap,resettable devices which do not have any registered public keys.5

signature scheme. Note, that this model may indeed be both simpler, and more realistic than thetiming assumption of [12, 11]. Even if one thinks of the public-key model as a mild form of prepro-cessing, Corollary 5 directly improves on Dwork and Sahai's protocol based on pre-processing withthe timing assumption. In fact, we would just rely on the existence of a pre-processing step, whilethey do rely on the existence of a pre-processing step in which the timing assumption holds. Thus,the theory of rZK protocols yields a constant-round solution to the important (and extensivelyinvestigated) concurrent ZK problem.Consequences for proofs of identity. Fiat and Shamir in [16] introduced a paradigm for IDschemes based on the notion of Zero Knowledge Proof of Knowledge. In essence, a prover identi�eshimself by convincing the veri�er of knowledge of some secret (e.g. in the original [16] it wasknowing a square root of a given square mod n). All subsequent ID schemes follow this paradigm,and are traditionally implemented by the prover being a smart card (as suggested in [16]). However,Zero Knowledge Proof of Knowledge are impossible in a resettable setting (i.e., they exist only ina trivial sense7), and thus all Fiat-Shamir like ID schemes fail to be secure whenever the prover isresettable.Instead, an alternative paradigm emerges for constructing ID schemes so that the resultingschemes are secure when the identi�cation is done by a device which can be reset to its initial statesuch as a smart card. The new paradigm consists of viewing the ability to convince the veri�er thata �xed input is in a \hard" NP-language as a proof of identity, and employing an rZK proof to doso. We will elaborate further about the notion of Resettable Proofs of Identity and speci�c imple-mentations of it in a separate paper.2 OverviewDue to length of this write-up we provide an overview of our work. Details are found in subsequentsections.2.1 The notion of resettable zero-knowledgeFor sake of simplicity, we present here a simple de�nition of resettable zero-knowledge. Thisde�nition captures the most important aspects of the more general de�nition that is actually used.Given a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y maybe an NP-witness for x being in some NP-language), we consider polynomially-many sequentialinteractions with the residual deterministic prover strategy Px;y;! determined by uniformly selectingand �xing P 's coins, !. That is, ! is uniformly selected and �xed once and for all, and the adversarymay sequentially invoke and interact with Px;y;! polynomially-many times. In each such invocation,Px;y;! behaves as P would have behaved on common input x, auxiliary-input y, and random-tape!. Thus, the adversary and Px;y;! engage in polynomially-many interactions; but whereas Px;y;!'sactions in each interaction are independent of prior interactions (since Px;y;! mimics the \singleinteraction strategy" P), the actions of the adversary in the current interaction may depend onprior interactions. In particular, the adversary may repeat the same messages sent in a prior7 It can be shown that if, on input x, one can provide an rZK proof of knowledge of y so that (x; y) is in somepolynomial-time recognizable relation, then it is possible given x to �nd such a y in probabilistic polynomial-time.Thus, such a proof of knowledge is useless, since by de�nition (of knowledge) anybody who gets input x knows sucha y. 6

interaction, resulting in an identical pre�x of an interaction (since the prover's randomness is�xed). Furthermore, by deviating in the next message, the adversary may obtain two di�erentcontinuations of the same pre�x of an interaction. Viewed in other terms, the adversary may\e�ectively rewind" the prover to any point in a prior interaction, and carry-on a new continuation(of this interaction pre�x) from this point.De�nition 2.1 (resettable security { simple case { vanilla model): A prover strategy P is saidto be resettable zero-knowledge (on L) if for every probabilistic polynomial-time adversary V � asbelow there exists a probabilistic polynomial-time simulator M� so that the following distributionensembles, indexed by a common input x 2 L and a prover auxiliary input y, are computationallyindistinguishable (cf., [26, 36]):Distribution 1 is de�ned by the following random process that depends on P and V �.1. Randomly select and �x a random-tape, !, for P , resulting in a deterministic strategyP 0 = Px;y;! de�ned by Px;y;!(history) = P (x; y; !; history).2. Machine V � is allowed to initiate polynomially-many sequential interactions with P 0.The actions of V � in the ith interaction with P 0 may depend on previous interactions,but the ith interaction takes place only after the i� 1st interaction was completed.More formally, V � sends whatever message its pleases, yet this message is answeredas indicated above. That is, suppose P 0 expects to get t messages per interaction.Then, for every i � 1 and j = 1; :::; t, the (i � 1)t + jth message sent by V � istreated as the jth message in the ith interaction of P 0, and accordingly the responseis P 0(msg(i�1)t+1; :::; msg(i�1)t+j), where msgk is the kth message sent by V �.3. Once V � decides it is done interacting with P 0, it (i.e., V �) produces an output based onits view of these interactions (which, as usual, includes the internal coin-tosses of V �).Distribution 2: The output of M�(x).We note that all known zero-knowledge protocols are not resettable zero-knowledge. (Furthermore,they are even not resettable witness indistinguishable.) For example, ability to \rewind" theoriginal zero-knowledge proof for 3-Colorability [24], allows the adversary to fully recover the 3-coloring of the input graph used by the prover: The adversary merely invokes the proof systemmany times, and asks the prover to reveal a uniformly selected edge in each invocation. Since theprover's randomness is �xed in all these invocations, it will commit to the same coloring of thegraph, and reveal the values (w.r.t this �xed coloring) of two adjacent vertices in each invocation.Thus, after polynomially-many invocations,8 the adversary will obtain the values of all vertices w.r.tone �xed coloring. (Recall that in the standard zero-knowledge model the adversary will merelyobtain in each invocation two di�erent values w.r.t an independently chosen random coloring.)In Section 4, the above de�nition is generalized by allowing the adversary to interleave thevarious executions (rather than execute them sequentially one after the other). Interestingly, thisdoes not change the power of the model: every protocol that is resettable zero-knowledge in thenon-interleaved model is also resettable zero-knowledge in the interleaved model. This equivalenceis important since it allows us to analyze protocols in the simpler non-interleaved model and infertheir security in the general (interleaved) model for free. (We use this fact to simplify the expositionof the analysis of our various protocols.) Another extension (to Def. 2.1) is to allow the adversary to8 Actually, a linear (in the number of vertices) number of invocations su�ces.7

interact (many times) with several random independent incarnations of P (rather than with a singleone). That is, rather than interacting many times with one Px;y;!, where ! is randomly selected,the adversary many interact many times with each Pxi;yi;!j , where the !j's are independently andrandomly selected. Intuitively, this should not add power to the model either.Note that the general de�nition (i.e., the one allowing polynomially-many independent incar-nations of the prover) implies concurrent zero-knowledge. In fact, concurrent zero-knowledge is(syntactically) a very restricted case of resettable zero-knowledge (in which one may interact onlyonce with each of these polynomially-many incarnations).For further details see Section 4.2.2 NP has constant-round resettable-WIThe notion of Witness Indistinguishability (WI) was introduced by [15] as a relaxation of the zero-knowledge requirement which could be still suitable in many applications and may be achieved withgreater ease and e�ciency. For example, all witness indistinguishable protocols are closed underparallel composition and concurrent execution.Resettable-WI (resettable witness indistinguishable) relates to resettable zero-knowledge asstandardWI relates to ZK. Informally, in a resettable witness indistinguishable protocol a polynomial-time veri�er can still not distinguish between two di�erent witnesses for an NP statement used bythe prover, even if it can \clone" the prover (each time with the same initial con�guration, randomtape included) as many times as it pleases, and then interact with these clones in any order andmanner it wants. More formally, instead of requiring that Distribution 1 (in Def. 2.1 above) be sim-ulatable by a probabilistic polynomial-time machine, we require that instances of Distribution 1 {induced by the prover using di�erent NP-witnesses { be computationally-indistinguishable.We stress that all existing WI protocols are not rWI protocols. (Even the honest veri�er caneasily extract the entire witness |let alone distinguish between witnesses| when the protocol isexecuted polynomially many times with a prover using the same coins.) In contrast, as stated inTheorem 2, we can achieve constant-round rWI interactive proofs.To build resettable witness indistinguishable proof-systems for NP, we start with a ZK proof-system for NP. Traditionally, the latter proof-systems rely on the randomized nature of the proverstrategy (in a sense, this is essential |cf., [25]). In our context, the prover's randomization oc-curs only once and is �xed for all subsequent interactions. So the idea is to utilize the initialrandomization (done in the very �rst invocation of the prover) in order to randomize all subse-quent invocations. The natural way of achieving this goal is to use a pseudorandom function, asde�ned and constructed in [19]. However, just \using a pseudorandom function" does not su�ce.The function has to be applied to \crucial steps" of the veri�er; that is, exactly the steps thatthe veri�er may want to alter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof system for 3-Colorability of [24] is not an adequate starting-point (since therethe prover's randomization takes place before a crucial step by the veri�er). Instead, we start withthe zero-knowledge proof system of Goldreich and Kahan [21]: In that proof system, the veri�er�rst commits to a sequence of edge-queries, then the prover commits to random colorings, andthen the veri�er reveals its queries and the prover reveals the adequate colors. Starting with thisproof system, we replace the prover's random choices (in its commitment) by the evaluation of apseudorandom function (selected initially by the prover) on the veri�er commitment. The resultingproof system can be shown to be resettable witness indistinguishable.An indication of the non-triviality of the result is given by the fact that we don't know whetherthe resulting protocol is resettable zero-knowledge. The key observation regarding the speci�c8

protocol sketched above is that, in each single execution of it, all the veri�er steps following its�rst message (i.e., its commitment message) are \essentially determined." The only choice left tothe veri�er is whether to reveal the correct value (i.e., properly decommit) or refuse to continue(i.e., send an invalid decommitment message). This limited level of freedom allows to prove thatthe protocol is resettable witness indistinguishable (however, it prevents us from proving that theprotocol is resettable zero-knowledge): intuitively, if the veri�er's subsequent steps are determined(except for the abort possibility) then its only real freedom is in selecting its �rst message. Now, if itselects the same �rst message as in a prior interaction, it will only get the same interaction transcriptagain (which being easily simulatable by mere copying is quite useless). If, on the other hand, theveri�er selects as �rst message a string di�erent from the one used as �rst message in all priorinteractions then the prover's actions in the current interaction will be independent of its actions inprior interactions (since the prover's actions are determined by applying a pseudorandom function tothe veri�er's �rst message). So in this case the veri�er obtains no more than in standard sequentialcomposition of zero-knowledge protocols (which are well-known to remain zero-knowledge).We warn that the explanation provided above ignores several important issues. For furtherdetails see Section 5.2.3 NP has resettable-ZK proofsWe show how to construct resettable zero-knowledge proof systems for any language in NP. Ourstarting point is a concurrent zero-knowledge proof system of Ransom and Kilian [34]. We modifythis proof system using the techniques discussed above (i.e., determining the prover's actions byapplying a pseudorandom function to suitable transcripts of the interaction so far), and replace theconcurrent witness indistinguishable (concurrent-WI) proof system employed by [34] with our reset-table witness indistinguishable proof system. Whereas any WI proof (cf. [15]) is also concurrent-WI(cf. [13]), let us stress again that all previously known WI proofs are not resettable witness indis-tinguishable. Thus, our resettable witness indistinguishable proof system plays a major role inshowing that NP has resettable zero-knowledge proofs.It is easy to show that the protocol resulting from the above sketched transformation remainsa proof system for the same language. The tricky part is to show that it is indeed resettable zero-knowledge (and not merely zero-knowledge in the standard sense, which is obvious). Our originalproof, which can be found in [8], adapts the simulation argument of [34], extending it from theirconcurrent model to our stronger resettable model. The proof presented in this version9 refersto a slight modi�cation of the above protocol. Very loosely speaking, it consists of showing that,for any protocol in which the veri�er's actions are essentially determined by its �rst message (asin the case of the modi�ed protocol), if the protocol is concurrent zero-knowledge then (by usingpseudorandom functions as above) it can be modi�ed to become resettable zero-knowledge.Again, we warn that the explanation provided above ignores several important issues. Forfurther details see Section 5.2.4 The Public-Key modelSo far in this overview (and the corresponding Part I of this work), no set-up assumptions havebeen made. This is indeed the \simplest" model used for two-party and multi-party computation.Another model, used routinely in the di�erent context of providing privacy and/or authenticity ofmessages, is the public-key model, which instead relies on a set-up stage in which public-keys are9 A variant of this alternative proof can also be found in our original technical report [8].9

registered. One crucial aspect of our work consists of using the public-key model for tasks totallyunrelated to privacy and authenticity.10In the mildest form of the latter model, users are assumed to have deposited a public-key in apublic �le that is accessible by all users at all times. Access to this �le may be implementable byeither providing access to several identical servers, or by providing users with certi�cates for theirdeposited public-keys. The only assumption about this �le is that it is guaranteed that entriesin it were deposited before any interaction among the users takes place. No further assumptionabout this �le is made. In particular, an adversary may deposit in it arbitrarily many public-keys,including public key are are \non-sensical" or \bad" (e.g., for which no corresponding secret keyexist or are known).We use such a public-�le simply for limiting the number of di�erent identities that a potentialadversary may assume { it may indeed try to impersonate any registered user, but it cannot acton behalf of a non-registered user. This fact plays a key role in our main result for this model:Under the strong DLP assumption, we show how to construct constant-round resettablezero-knowledge arguments for NP in the public-key model.Recall that arguments (a.k.a computationally-sound proofs) [7] are a weaker notion than interactiveproofs [28]: it is infeasible rather than impossible to fool the veri�er to accept wrong statementswith non-negligible probability. Since concurrent zero-knowledge are a special case of resettablezero-knowledge, we obtain:constant-round concurrent zero-knowledge arguments for NP in the public-key model,under the strong DLP assumption.We stress that unlike [12], the above stated result does not use any timing assumption.Our construction uses a technique which may be of independent interest. We use two secureschemes, one with security parameterK and the other with a smaller security parameter k. Supposethat, for some � > 0, the security of the �rst scheme (with security parameter K) is maintainedagainst adversaries running in time 2K� ,11 and that instances of the second scheme (with securityparameter k) can be broken in time 2k. Then setting k = K�=2 guarantees both security of thesecond scheme as well as \non-malleability" (cf. [10]) of the �rst scheme in presence of the secondone. The reason for the latter fact is that breaking the second scheme can be incorporated intoan adversary attacking the �rst scheme without signi�cantly e�ecting its running-time: Such anadversary is allowed running-time 2K� which dominates the time 2k = 2K�=2 required for breakingthe second scheme. This \telescopic" usage of intractability assumptions can be generalized to acase in which we have a lower and upper bound on the complexity of some problem; speci�cally,we need a lower bound L(n) on the average-case of solving n-bit long instances, and an upper-bound U(n) � L(n) on the corresponding worst-case complexity. Suppose that we can choosepolynomially-related security parameters k and K so that L(k) is infeasible and U(k) � L(K)(i.e., L(k) is infeasible and U(k) � L(poly(k))). Then the above reasoning still holds. (Above weused L(n) = 2n� and U(n) = 2n.)For further details see Sections 6 and 7.Related work. Using weaker assumptions but a stronger public-key model, Damgard has in-dependently shown that NP has constant-round concurrent zero-knowledge arguments [9]. His10 A similar use was independently suggested by Damgard [9] (see discussion below).11 The strong DLP assumption is used to guarantee security against adversaries running in time 2K� (rather thanin polynomial-time). 10

public-key model postulates that the public-keys deposited in the public-�le are legal, and further-more that the user (or somebody else) knows the corresponding private-key. We stress that ourpublic-key model is much milder (see above).More on the model. A possible critique the public-key model (even in our mild form) is thatthis model postulates that registration takes place before any interaction between users may takeplace. One may claim that in some settings this is not desirable, as one may want to allow users tojoin-in (i.e., register) also during the active life-time of the system. It is indeed desirable to allowparties to register at all times. Note, however, that such a exible model requires some restriction(as otherwise it coincides with the \vanilla" model{ that is, the model in which no set-up stage orspecial stage or model is used). We thus suggest two intermediate models in which we can obtainour result.1. One possibility is to postulate that a prover will not interact with a veri�er unless the ver-i�er's public-key was registered a su�ciently long time before the interaction starts, where\su�ciently long" ensures that whatever sessions were in progress before registration haveterminated by now. Namely, parties need be able to distinguish between some predeterminedlarge delay (that all newly registered public-keys must undergo before being used) and a smalldelay (that upper bounds the communication delays in actual interaction). Making such adistinction is quite reasonable in practice (e.g., say that a user in nowadays internet may startusing its key a couple of days after registration, whereas each internet session is assumed tobe completable within a couple of hours).Notice that, unlike usage of timing in [12], our usage of timing here does not a�ect typicalinteractions, which can be and actually are completed much faster than the conservativeupper bound (of message delay) being used. In contrast, in [12] each user delays each criticalmessage by an amount of time that upper bounds normal transmission delay. This meansthat all communication is delayed by this upper bound. Thus, in their case, this always causessigni�cant delays: in fact the upper bound should be conservative enough so to guaranteethat communication by honest users are rarely rejected.2. A di�erent possibility is to require newly registered public-keys to be used only after autho-rization by a trusted \switchboard", which may interact with the new user and then issuea certi�cate that will allow it to act as a veri�er. We stress that users that register at set-up time are not required to interact with a server (or a switchboard): they merely deposittheir public-key via a one-sided communication. This alternative seems better suited to thesmart-card application discussed in the introduction.Let us repeat here that registration is only required of veri�ers. Again, this is nicely suited tosmart-card applications in which the provers are played by the smart-cards and the veri�ers byservice providers. In such applications service providers are much fewer in number, and are anyhowrequired to undergo more complex authorization procedures (than the smart-card users).Almost constant-round RZK under weaker assumptions. We mention that using the weakDLP assumption (rather than the strong one), we obtain for every unbounded function r : N! N,an r(�)-round resettable zero-knowledge argument for NP in the public-key model. Again, suchprotocols are concurrent zero-knowledge (as a special case). (For further details see Section 7.3.)11

3 PreliminariesInteractive proof systems. Throughout this paper we consider interactive proof systems [28]in which the designated prover strategy can be implemented in probabilistic polynomial-time givenan adequate auxiliary input. Speci�cally, we consider interactive proofs for languages in NP andthus the adequate auxiliary input is an NP-witness for the membership of the common input in thelanguage. Also, whenever we talk of an interactive proof system, we mean one in which the errorprobability is a negligible function of the length of the common input (i.e., for every polynomialp and all su�ciently long x's, the error probability on common input x is smaller than 1=p(jxj)).Actually, we may further restrict the meaning of the term `interactive proof system' by requiringthat inputs in the language are accepted with probability 1 (i.e., so-called perfect completeness).Argument systems. Likewise, when we talk of computationally-sound proof systems (a.k.aarguments) [7] we mean ones with perfect completeness in which it is infeasible to cheat with non-negligible probability. Speci�cally, for every polynomial p and all su�ciently large inputs x not inthe language, every circuit of size p(jxj) (representing a cheating prover strategy) may convince theveri�er to accept only with probability less than 1=p(jxj).Round-complexity. For simplicity, we consider only interactive proof systems in which the totalnumber of message-exchanges (a.k.a. rounds) is a pre-determined (polynomial-time computable)function of the common input. We are specially interested in interactive proof systems in whichthis number is a constant; these are called constant-round interactive proof systems.Zero-knowledge { strict versus expected polynomial-time simulators. We adopt the ba-sic paradigm of the de�nition of zero-knowledge [28]: The output of every probabilistic polynomial-time adversary which interacts with the designated prover on a common input in the language,ought to simulatable by a probabilistic polynomial-time machine (which interacts with nobody).The latter machine is called a simulator. We mention that the simulators in Part I of the paperwork is strict polynomial-time, whereas those in Part II work in expected polynomial-time. (AsPart II focuses on constant-round resettable zero-knowledge systems, expected polynomial-timesimulation seems unavoidable: recall that it is not known whether constant-round zero-knowledgeproofs for NP exists, when one insists on strictly polynomial-time simulators (rather than expectedpolynomial-time ones); See [21, 18].)Witness indistinguishable proof systems. We also refer (or, actually, extend) the de�nitionof witness indistinguishable proof systems (cf., [15]). Loosely speaking, these are proof systemsin which the prover is a probabilistic polynomial-time machine with auxiliary input (typically, anNP-witness), having the property that interactions in which the prover uses di�erent \legitimate"auxiliary-inputs are computationally indistinguishable.The models considered: In this paper we consider two main models, depending on the initialset-up assumptions. The vanilla case, considered in Part I, is when no set-up assumptions are made.This is indeed the \simplest" model typically employed in theoretical works regarding secure two-party and multi-party computation. In Part II we consider the public-key model as described insubsection 2.4. 12

Part IThe Vanilla Model4 De�nitional IssuesGiven a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be anNP-witness for x being in some NP-language), we consider polynomially-many interactions withthe residual deterministic prover strategy Px;y;! determined by uniformly selecting and �xing P 'scoins, denoted !. That is, ! is uniformly selected and �xed once and for all, and the adversarymay invoke and interact with Px;y;! many times, each such interaction is called a session. In eachsuch session, Px;y;! behaves as P would have behaved on common input x, auxiliary-input y, andrandom-tape !. Thus, the adversary and Px;y;! engage in polynomially-many sessions; but whereasPx;y;!'s actions in the current session are oblivious of other sessions (since Px;y;! mimics the \singlesession strategy" P), the actions of the adversary may depend on other sessions.We consider two variants of the model, and prove their equivalence. In the basic variant, asession must be terminated (either completed or aborted) before a new session can be initiatedby the adversary. In the interleaving variant, this restriction is not made and so the adversarymay concurrently initiate and interact with Px;y;! in many sessions. A suitable formalism must beintroduce in order to support these concurrent executions. For simplicity, say that the adversaryprepend a session-ID to each message it sends, and a distinct copy of Px;y;! handles all messagesprepended by each �xed ID. Note that in both variants, the adversary may repeat in the currentsession the same messages sent in a prior session, resulting in an identical pre�x of an interaction(since the prover's randomness is �xed). Furthermore, by deviating in the next message, theadversary may obtain two di�erent continuations of the same pre�x of an interaction. Viewed inother terms, the adversary may \e�ectively rewind" the prover to any point in a prior interaction,and carry-on a new continuation (of this interaction pre�x) from this point.The interleaved variant of our model seems related to the model of concurrent zero-knowledge.In both models an adversary conducts polynomially-many interleaved interactions with the prover.In our case these interactions are all with respect to the same common input, and more importantlywith respect to the same prover's random coins (i.e., they are all with copies of the same Px;y;!,where ! is random). In contrast, in the concurrent zero-knowledge model, each interaction is withrespect to an independent sequence of prover's coin tosses (while the common input may di�er andmay be the same). That is, in the concurrent zero-knowledge model, one may interact only once witheach Pxj ;yj ;!j , where the !j 's are random and independent of one another. Intuitively, interactingwith copies of the prover that share the same coin sequence ! seem far more advantageous to theadversary than interacting with copies which have each its independent coin tosses !j. However,in order to show that resettable zero-knowledge implies concurrent zero-knowledge, we augmentthe former model a little so to allow polynomially-many interaction with respect to each of a set ofpolynomially-many independent choices of prover's coin sequence. That is, we allow the adversaryto interact polynomially-many times with each of polynomially-many Pxi;yi;!j 's, where the !j's arerandom and independent of one another.4.1 The actual de�nitionIn the actual de�nition we use a di�erent formalism than the one presented informally above. Thatis, instead of prepending each message to Pxi;yi;!j with a session ID, we prepend each message by13

the full transcript of all messages exchanged so far. That is, we adopt the following convention.Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-i�ed pair, (A0; B0), so that for t = 1; 2; :::A0(�1; �1; :::; �t�1; �t�1) = (�1; �1; :::; �t�1; �t�1; A(�1; :::; �t�1))provided that �i = A(�1; :::; �i�1), for i = 1; :::; t � 1B0(�1; �1; :::; �t�1; �t�1; �t) = (�1; �1; :::; �t�1; �t�1; �t; B(�1; :::; �t�1))provided that �i = B(�1; :::; �i�1), for i = 1; :::; t � 1In case the corresponding condition does not hold, the modi�ed machine outputs a special symbolindicating detection of cheating. Probabilistic machine are handled similarly (just view the random-tape of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress thatthe modi�ed machines are memoryless (they respond to each message based solely on the messageand their initial inputs), whereas the original machines respond to each message based on theirinitial inputs and the sequence of all messages they have received so far.In the traditional context of zero-knowledge, the above transformation adds power to the ad-versary, since each machine just checks partial properness of the history presented to it { its ownprevious messages.12 That is, A0 checks that �i = A(�1; :::; �i�1), but it does not (and in generalcannot) check that �i = B(�1; :::; �i�1) since it does not know B (which by the convention regard-ing probabilistic machines and inputs may depend also on \hidden variables" { the random-tapeand/or the auxiliary input to B). However, in the context of resettable zero-knowledge this trans-formation does not add power: Indeed, the transformation allows an adversary to pick a di�erent(possible) continuation to an interaction, but this is allowed anyhow in the resettable model. Inthe following de�nition, we assume that P is a machine resulting from the modi�cation above.De�nition 4.1 (resettable security { vanilla model): A prover strategy P is said to be resettablezero-knowledge (rZK) on L if for every probabilistic polynomial-time adversary V � as below thereexists a probabilistic polynomial-time simulator M� so that the following two distribution ensembles,where each distribution is indexed by a sequence of common inputs x = x1; :::; xpoly(n) 2 L\f0; 1gnand a corresponding sequence of prover's auxiliary-inputs y = y1; :::; ypoly(n), are computationalindistinguishable:Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x t = poly(n) random-tape, !1; :::; !t, for P , resulting in de-terministic strategies P (i;j) = Pxi;yi;!j de�ned by Pxi;yi;!j (�) = P (xi; yi; !j ; �), fori; j 2 f1; :::; tg.Each P (i;j) is called an incarnation of P .2. Machine V � is allowed to initiate polynomially-many interactions with the P (i;j)'s.� In the general model (i.e., the interleaving version) we allow V � to send arbitrarymessages to each of the P (i;j), and obtain the responses of P (i;j) to such messages.� In the sequential (or non-interleaving) version V � is required to complete its currentinteraction with the current copy of P (i;j) before starting a new interaction withany P (i0;j0), regardless if (i; j) = (i0; j0) or not. Thus, the activity of V � proceeds12 Actually, this part of the history may be omitted from these messages, since it can be re-computed by the receiveritself. Furthermore, it is actually not needed at all. We choose the current convention for greater explicitness.14

in rounds. In each round it selects one of the P (i;j)'s and conducts a completeinteraction with it.3. Once V � decides it is done interacting with the P (i;j)'s, it (i.e., V �) produces an outputbased on its view of these interactions. Let us denote this output by hP (y); V �i(x).Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be im-plemented by letting M have oracle-access to V �, we say that P is resettable zero-knowledge via ablack-box simulation.13A prover strategy P is said to be resettable witness indistinguishable (rWI) on L if every twodistribution ensembles of Type 1, where each distribution is indexed by a sequence of common inputsx = x1; :::; xpoly(n) 2 L \ f0; 1gn, depending on two di�erent sequence of prover's auxiliary-inputs,aux(1)(x) = y(1)1 ; :::; y(1)poly(n) and aux(2)(x) = y(2)1 ; :::; y(2)poly(n), are computationally indistinguishable.That is, we require that fhP (aux(1)(x)); V �i(x)gx and fhP (aux(2)(x)); V �i(x)gx are computationallyindistinguishable.Several previously investigated aspects of zero-knowledge can be casted as special cases of the abovegeneral model. For example, sequential composition of zero-knowledge protocols coincides with aspecial case of the non-interleaved model, where one is allowed to run each P (j;j) once (and maynot run any other P (i;j)). More importantly, concurrent zero-knowledge coincides with a specialcase of the interleaving model where one is allowed to run each P (j;j) once (and may not run anyother P (i;j)).14 Thus, every resettable zero-knowledge protocol is concurrent zero-knowledge.Recall that, as stated above, all known zero-knowledge protocols are not resettable zero-knowledge. Furthermore, they are even not resettable witness indistinguishable; not even in thesequential, single-incarnation version. For example, ability to \reset" the original zero-knowledgeproof for 3-Colorability [24], allows the adversary to fully recover the 3-coloring of the input graphused by the prover. Still (as shown below), resettable zero-knowledge interactive proofs for NP doexist, under standard intractability assumptions.4.2 Relationship among the variantsBelow we refer to four variants of the above de�nition, depending on two parameters:1. Sequential versus interleaving: This aspect is explicitly considered in De�nition 4.1.2. Single versus multiple incarnations: De�nition 4.1 refers to multiple incarnations, and thesingle-incarnation variant is obtained by postulating above that t � 1 (or, equivalently, al-lowing V � to interact only with P (1;1)).Sequential versus interleaving. As stated above, the restricted non-interleaved model is actu-ally as powerful as the general (interleaved) model. That is, any prover strategy that is resettablezero-knowledge in the non-interleaved model is also resettable zero-knowledge in general (i.e., is rZKin the interleaved model). This holds both when allowing a single incarnation or many incarnations.In fact, a stronger result holds:13 Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [25, 22]).14 Indeed, the possibility to run various P (i;j)'s (i.e., same j and varying i's) was never considered before. Thisrefers to running the prover on the same random-tape but on di�erent input, and is a natural extension of our notionof resettable zero-knowledge. 15

Theorem 4.2 Let P be any prover strategy. Then for every probabilistic polynomial-time V � forthe interleaved model, there exists a probabilistic polynomial-time W � in the non-interleaved modelso that hP (y);W �i(x) is distributed identically to hP (y); V �i(x). Furthermore, W � uses V � as ablack-box, and if V � interacts with a single incarnation of P then so does W �.So, in particular, a (zero-knowledge) simulator guaranteed forW � will do also for V �, and the black-box feature will be preserved. Furthermore, resettable witness indistinguishable in the sequentialmodel imply rWI in the general (interleaved) model.Proof Sketch: Using V � as a black-box and interacting with instances of P in a non-interleavedmanner, W � emulates interleaved interactions of V � with P . The emulation proceeds round byround. In order to emulate the next communication round (i.e., a message sent by the interleavingadversary followed by a respond by some copy of Px;y;!), the (non-interleaving) adversary W �initiates a new session of the protocol, and conducts the prior interaction relating to the sessionthat the interleaving adversary wishes to extend. Details follow.Recall that by our conventions, each message sent in an interaction contains the full transcriptof prior messages exchanged during that session. Thus, given a veri�er-message, we can recover allprior veri�er-messages sent in the corresponding session.15 For simplicity, we �rst assume that V �interacts with a single incarnation of P (i.e., a single Px;y;! rather than polynomially-many suchPxi;yi;!j 's).Suppose that the sequence of messages emulated so far is �1; :::; �t and the message to beemulated is �t+1 = (�i1 ; �i1 ; :::; �ij ; �ij). That is, �ij+1 def= �t+1 is the j + 1st veri�er-message inthe current session that V � wishes to extend, and the previous veri�er-messages in that sessionare �i1 ; :::; �ij . Then the non-interleaving adversary, W �, initiates a new session with Px;y;!, andproceeds in j + 1 steps so that in the kth step it sends �ik and obtains the response of Px;y;!. Thenon-interleaving adversary W � forward to V � (only) the last response of Px;y;! (i.e., the responseof Px;y;! to �ij+1). Finally, W � aborts the current session with Px;y;! (or, actually, to �t the exactde�nition of the sequential model, it completes the interaction with this session arbitrarily).16Note that the emulation of each message-exchange between V � and Px;y;! (in the interleavedmodel) is performed by W � by initiating and conducting a brand new session with Px;y;! (inthe sequential model). Thus, if V � (interleavingly) interacts with s sessions of Px;y;! then W �will (sequentially) interact with r � s sessions, where r is the number of message-exchanges in theprotocol (P; V).The argument extends easily to the general case in which V � (interleavingly) interacts withpolynomially-many Pxi;yi;!j 's. All that is required is for W � to initiate a new session with thecorresponding Pxi;yi;!j (i.e., the one to which the current message of V � was directed).Single versus multiple incarnations. As stated above, it is our intuition that interacting withmultiple incarnations of P is less advantageous to the adversary than interacting (many times) withthe same incarnation. This intuition holds for all natural results presented in this paper: as in theproof of Theorem 4.2, the argument for the of security for the single-incarnation case extends easilyto the multiple-incarnation case. Unfortunately, a clean result analogous to Theorem 4.2 is false:Proposition 4.3 There exists a protocol that is resettable zero-knowledge in the single-incarnationmodel, but is not resettable zero-knowledge in the multiple-incarnation model.15 Note that this holds also in case the alternative convention of specifying a session-ID is adopted. In such a case,one recovers the prior messages corresponding to the current session from the sequence of all messages exchanged.16 Indeed, the current session of Px;y;! may be \unhappy" with this completion, but (by de�nition) this informationcannot be passed to other sessions of Px;y;!. 16

Proof Sketch: We adapt an argument of Goldreich and Krawczyk [22], introducing a prover Pthat behaves as follows:� In case the common input x is of even parity, the prover sends the jxj-bit long pre�x of itsrandom-tape (i.e., !), and halts.� In case the common input x is of odd parity, the prover compares the message received fromthe veri�er to the jxj-bit long pre�x of its random-tape (i.e., !). If equality holds then theprover reveals to the veri�er some hard to compute function of x and/or its auxiliary input(and halts). Otherwise, it halts without sending anything.It can be easily veri�ed that P is resettable zero-knowledge in the single incarnation model: for xof even parity, the simulator merely outputs a (sequence of repeats of a) uniformly chosen jxj-bitlong string; whereas for x of odd parity it outputs nothing. In contrast, P is not resettable zero-knowledge in the multiple incarnation model: an adversary interacting with P0x0;y;! and P1x0;y;!,where ! is uniformly selected and x0 is of even parity, obtains \knowledge" (and/or y), by �rstobtaining the j0x0j-bit long pre�x of ! from P0x0;y;! and then sending it to P1x0;y;!.Summary and simpli�ed notation. In view of the results above, we analyze the protocolspresented in the rest of this paper only with respect to the sequential multiple-incarnation model.In all cases, we �rst present the analysis of the single-incarnation (sequential) model, and then(easily) extend it to the multiple-incarnation model. Since we shall be using the sequential variant,we can drop the conventions of dealing with many sessions (which were introduced in Section 4.1).These conventions were introduced only for the interleaving model, since there an indication mustbe provided as to which session the current message belongs. Such an indication is unnecessary forthe sequential model.5 How to construct resettable protocolsIn this section we show how to construct resettable zero-knowledge proofs and constant-roundresettable witness indistinguishable proofs for NP.Theorem 5.1 Suppose that there exists a two-round perfectly-hiding commitment scheme.17 Thenthe following holds:1. Every language in NP has a constant-round resettable witness indistinguishable interactiveproof system.2. Every language in NP has a resettable zero-knowledge interactive proof system. Furthermore,rZK holds via a black-box simulator.Recall that the hypothesis holds if families of claw-free permutations exists, which in turn holds ifthe Discrete Logarithm Problem (DLP) is hard modulo primes p of the form 2q + 1 where q is a17 Recall that, by de�nition, the receiver's decision at the reveal phase depends only on the messages sent (i.e., thetwo messages exchanged between the two parties during the commit phase, and the single message sent by the senderin the reveal phase. The latter provides, without loss of generality, the sender's coins, and veri�cation of the revealedmessage is done by running the (predetermined) sender's program. Thus, the receiver's decision in the reveal phaseis deterministic. 17

prime. We note that the theorem holds also under the assumption that there exist constant-round(rather than two-round) perfectly-hiding commitment schemes that is computationally-binding alsoin the resettable model (i.e., when the receiver may be reset). Note that any two-round perfectly-hiding commitment scheme is computationally-binding in the resettable model.We note that all known zero-knowledge protocols are not even resettable witness indistinguish-able, and so the mere existence of a resettable witness indistinguishable protocol for languagesoutside BPP is interesting.Theorem 5.1 is proven by presenting a general transformation that applies to a subclass of pro-tocols that are zero-knowledge (resp., witness-indistinguishable) in the concurrent model. Whenapplied to the concurrent zero-knowledge proof system of Ransom and Kilian [34], the transforma-tion yields an resettable zero-knowledge proof system (and so establishes Part 2 of Theorem 5.1).Part 1 of Theorem 5.1 is established by applying the transformation to the constant-round zero-knowledge proof system of Goldreich and Kahan [21]. (We use the fact that zero-knowledge proofsare witness-indistinguishable, and that the latter feature is preserved under concurrent composition(cf. Feige [13]).)We start by presenting a class of protocols to which our transformation applies. Next, wepresent and analyze our transformation. Finally, we show that the two protocols mentioned above(i.e., of [34] and of [21]) indeed belong to the class.5.1 The Class of Admissible ProtocolsIntuitively, we consider protocols (P; V) in which the �rst veri�er-message \essentially determines"all its subsequent messages. What we mean by \essentially determine" is that the only freedomretained by the veri�er is either to abort (or act so that the prover aborts) or to send a practicallypredetermined message. For clari�cation, consider the special case (which actually su�ces for ourapplications), in which the �rst veri�er-message is a sequence of commitments that are revealed(i.e., decommited) in subsequent veri�er steps. In such a case, the veri�er's freedom in subsequentsteps is con�ned to either send an illegal decommitment (which is viewed as aborting and actuallycauses the prover to abort) or properly decommit to the predetermined value.Although the above formulation su�ces for our main results (i.e., deriving the conclusion ofTheorem 5.1 under the standard DLP assumption), we wish to relax it for greater generality.We syntactically partition each subsequent message of the veri�er into two parts: a main partand an authenticator. In the special case considered above (of the �rst veri�er-message beinga commitment), the main part (of a subsequent veri�er-message) is the revealed value and theauthenticator is the extra decommitment information that establishes the validity of this value.The relaxation is that the main part (in this case the revealed value) must be determined bythe �rst veri�er message (i.e., the commitment), but the authenticator (i.e., the decommitmentinformation) may vary. Note that this corresponds to the standard de�nition of commitmentschemes that require that the commitment binds the sender to a unique revealed value, but thedecommitment information may vary. (We comment that in some implementations, like the onebased on DLP, the proper decommitment information is unique too.) The above relaxed formsu�ces, provided that the prover's subsequent actions merely depend on whether the authenticatoris valid (otherwise it aborts), and in case the authenticator is valid the action depends only onthe main part of the message. Note that this �ts the usual use of commitment schemes withinprotocols.Before presenting the actual de�nition, we stress that the �rst veri�er message is not necessarilythe �rst message sent in the protocol. It may be preceded by a (single) message sent by the prover.18

However, we require that the prover's randomization for this �rst message (in case it exists, whichwe assume w.l.o.g.), is decoupled from its randomization in later steps. Also, without loss ofgenerality, we assume that the �rst prover message contains the common input.De�nition 5.2 (admissible protocols { a sketch): A protocol (P; V) is called admissible if thefollowing requirements hold:1. The strategy of P utilizes two distinct random strings; the �rst is used to determine the very�rst prover-message (denoted msg below), and the second is used to determine all later provermessages as described below. Both parts are of length polynomial in the length of the commoninput.2. Each veri�er message consists of two parts, called main and authenticator. It is required thatthe prover response to such a message is determined as follows: First the prover decides,based on its own messages18, the main part of the very �rst veri�er-message and (both partsof) the current veri�er-message, whether to abort or not.19 In case the prover does not abort,it determines its respond message as a function of the second part of its random-tape and themain part of all veri�er-messages.203. Let V � be an arbitrary (deterministic) polynomial-size circuit representing a possible strategyfor the veri�er in the interactive proof (P; V). Let msg denote the �rst prover message,generated at random according to P 's strategy. We consider a probabilistic polynomial-timeoracle machine that is given oracle access to V �msg(�) def= V �(msg; �). That is, the oracle machinemay query V � on every history of prover messages that starts with msg, which guarantees thatall responses correspond to an interaction in which the �rst veri�er message equals V �(msg).Then it is required that the probability, taken over the choices of msg and the internal cointosses of the oracle machine, that the oracle machine obtains for some veri�er-message twodi�erent main parts that are both properly authenticated is negligible.5.2 The Transformation { A Warm-upGiven a proof system (P; V) that satis�es De�nition 5.2 and is \secure in the concurrent model",we construct a new strategy P for the resettable model as follows:� The initial random-tape of P is viewed as a pair (r1; f2), where r1 is of length adequate forthe �rst part of P 's random-tape and f2 is a description of a pseudorandom function.� Using r1, prover P determines the �rst message just as P does, and sends it to the veri�er.18 The above phrase postulates a deterministic decision, which su�ces for our applications. We may allow thedecision to be probabilistic; that is, depend also on designated portions of the second part of the prover's random-tape. In such a case we require that the decision is via bounded-away probabilities (which, without loss of generality,means that the prover either rejects or accepts with negligible probability). The analysis of our transformation holdsalso in this case. A more relaxed (and natural) de�nition allows the prover's decision to depend also on the �rst partof its random-tape. However, in this case the validity of veri�er's messages is not universally veri�able (but ratherveri�able only by the prover). We were not able to analyze our transformation for the latter class.19 The de�nition can be further extended by allowing the prover to consider the main part of all prior veri�er-messages. This requires to further specify in the next item what is meant by a properly authenticated generated bythe oracle machine (rather than in an interaction). However, the current de�nition su�ces for our purposes.20 Note that the case in which the current veri�er-message has an empty authenticator is a special case covered bythe above. 19

� Upon receiving the �rst veri�er-message, denoted msg0, prover P �rst determines a string r2of length adequate for the second part of P 's random-tape; that is, r2 f2(msg0).� All subsequent messages of P are determines as P would have determined them using r2 asthe (second part of the) random-tape.The above description su�ces for constructing a correspondingly secure prover for the single-incarnation resettable model, and it will be slightly augmented (in the next subsection) in order tocover the multiple-incarnation model. As a warm-up, we further simplify the analysis by assuming(unrealistically!)21 that the �rst message of prover P is a �xed string, independent of r1. Thissimplifying assumption will be removed in the next subsection, but it allows us to focus here onthe main ideas underlying the analysis of the protocol transformation. Speci�cally, we prove thefollowing:Proposition 5.3 (for warm-up purposes only): Suppose that (P; V) satis�es De�nition 5.2, andthat the �rst message of P is a �xed string. Let P be the prover strategy obtained from P byapplying transformation above, assuming that pseudorandom functions exist. Then for every prob-abilistic polynomial-time V � for the single-incarnation resettable model, there exists a probabilisticpolynomial-time W � in the concurrent model so that hP (y);W �i(x) is computationally indistin-guishable from hP(y); V �i(x).It follows that if P is concurrent zero-knowledge (resp., witness-indistinguishable) then P is re-settable zero-knowledge (resp., witness-indistinguishable) in the single-incarnation model. (But,unfortunately, we don't know whether there exists a concurrent zero-knowledge prover P as in thehypothesis of Proposition 5.3.)Proof Sketch: By Theorem 4.2, it su�ces to consider the sequential variant of the resettablemodel. Thus, V � proceeds in rounds, where in each round it initiates a new session with the singleincarnation of P, and carries it out till completion. Our analysis will refer to a mental experimentin which P utilizes a truly random function rather than a pseudorandom one. As usual, thecorresponding views of the veri�er V � in the two cases (i.e., random versus pseudorandom function)are computationally indistinguishable. From this point on, we identify the random-tape of P witha truly random function.Working in the concurrent model, W � handles the messages of V � as follows:1. V � initiates a new session: In this case W � initiates a new session with the prover P , obtainsits �rst message, denoted msg, and forwards msg to V �.(Here we capitalize on the fact that, by our hypothesis, independent sessions of P yieldthe very same �rst prover-message. This is important because V � always initiates the sameincarnation of P, and hence expects to always obtain the same �rst prover-message.)2. V � sends a new �rst-message: That is, we refer to the case where the current message sentby V � is the �rst veri�er-message in the current session (carried out by V � with P), andassume that this message is di�erent from all �rst-veri�er-messages sent in prior sessions. Letmsg0 denote the message sent by V �. Then W � sends msg0 to one of the sessions (which it21 Unfortunately, this assumption does not hold in the protocols to which we want to apply the transformation. Infact, in some sense, this assumption cannot possibly hold when one considers (as we do) adversaries V � that may benon-uniform polynomial-size circuits. 20

carries out with P) that still awaits a �rst-veri�er-message,22 obtains the prover's response,and forwards it to V �. Finally, W � designates this session (with P) as the active session ofmsg0, and stores the prover's response.(All subsequent sessions of V � in which the �rst-veri�er-message equals msg0 will be \served"by the single session of W � designated as the active session of msg0. Non-active sessions willnot be used (i.e., W � does not send any message in them).)3. V � repeats a �rst-message: That is, we refer to the case where the current message sent byV � is the �rst veri�er-message in the current session, and assume that this message equals a�rst-veri�er-message, msg0, sent in a prior session. In this case, W � retrieves from its storageP 's answer in the active session of msg0, and forwards it to V �.We stress that W � does not communicate with any session of P in this case. (Note that ifW � were to send the same message msg0 to two sessions of P then the responses could havedi�ered, whereas V � expects to see exactly the same answer in sessions in which it sends thesame msg0.)4. V � sends a valid non-�rst-message: That is, we refer to the case where V � sends a non-�rst-message in the current session and this message is valid; that is, P accepts it as valid as perDe�nition 5.2. (In this case, the message is essentially determined by the �rst-veri�er-messagein that session.)We stress that it is universally veri�able whether the current message of V � is valid or not(i.e., this depends only on the current and �rst veri�er-messages, and on all prover-messagesin the current session).We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-message of the current round was sent in a session of V � in which the �rst veri�er-messageequals msg0, where msg0 is the �rst veri�er-message sent by V � in the current session. Let� > 1 denote the index of the current message sent by V �.(a) The current session is the �rst session in which the �rst veri�er-message equals msg0and the �th veri�er-message is valid: In this case W � forwards the current message tothe active session of msg0 (with P), obtains P 's response, stores it, and forwards it toV �.(b) The current session is not the �rst session in which the �rst veri�er-message equalsmsg0 and the �th veri�er-message is valid: In this case W � does not communicate withany session of P . Instead, it merely retrieve the corresponding prover response fromits storage, and forwards it to V �. Note that the corresponding answer is stored in thehistory of the active session of msg0.(Note that by De�nition 5.2, it is infeasible for V � to send, in two sessions starting withany �xed veri�er-message, valid messages for the same round that di�er in their mainpart. Thus, the responses of P to valid �th messages, in sessions starting with any �xedveri�er-message, are identical. It follows that V � will be content with the indenticalresponses supplied to it by W �.)22 Such a session exists since W � initiates a new session per each new session initiated by V �, whereas W � sendsat most one �rst veri�er-message per each such message sent by V �.
21

5. V � sends an invalid non-�rst-message: That is, we refer to the case where V � sends a non-�rst-message in the current session and this message is invalid. In this case, W � just forwardsP 's standard abort message to V �.We stress that W � does not forward the invalid message of V � to any session of P , mostimportantly not to an active session. This allows W � to handle a corresponding valid messagethat may be sent by V � in a future session.6. V � terminates: When V � sends a termination message, which includes its output, W � justoutputs this message and halts.We stress that W � is de�ned to operate in the concurrent model. That is, in every session itinvokes with P , the action of the latter are independent of other sessions. In contrast, V � thatoperates in the (stronger) resettable model interacts with a single incarnation of P, and so theactions of P in various sessions are potentially related. Nevertheless, we claim that the output ofW � is computationally indistinguishable from the output of V �. The key observations justifyingthis claim refer to the actions of P in the various sessions invoked by V �:� In sessions having di�erent �rst-veri�er-messages, the actions of P are independent. This isbecause P determines its actions by applying a random function on the �rst-veri�er-message,and in this case the results are independent random-tapes.� In sessions having the same �rst-veri�er-message, the actions of P are practically determinedby that �rst message. This is because in this caseP determines the same random-tape, and theonly freedom of V � is essentially to choose at each message whether to send a predetermined(by the �rst-veri�er-message) value or to abort. Thus, the transcripts of all these sessionscorrespond to various augmented pre�xes of one predetermined transcript, where each pre�xis either the complete transcript or a strict pre�x of it augmented by an abort message.The corresponding transcripts (of imaginary sessions with P) are generated by W � by merelycopying from real sessions it conducts with P . Each set of P-sessions sharing the same �rst-veri�er-message, is generated from a single (distinct) session with P (called the active session ofthat message). The way in which W � handles invalid messages of V � guarantees that it neveraborts an active session, and so such a session can always be extended (up-to completion) to allowthe generation of all P-sessions sharing that �rst-veri�er-message. We stress again that W � doesnot need to (and in fact does not) abort a session in order to produce P's abort message; it merelydetermines whether P aborts and, if so, generates the standard abort message by itself.Comment: We emphasize the concurrent nature of the adversary W � constructed in the proofabove. If V � �rst abort a session with �rst-veri�er-message msg0, and later sends a correspondingvalid message in a later session with the same �rst-veri�er-message, then W � answers V � by ob-taining a response from the active session of msg0. However, the latter session was initiated at thetime when msg0 was �rst sent, and other sessions could have been initiated between the two timesin which V � sent msg0 as a �rst message. Thus, W � conducts concurrent sessions with P , althoughV � only interacts sequentially with P.5.3 The Actual TransformationThe above description su�ces for the single-incarnation resettable model. To deal with themultiple-incarnation model, we slightly augment the above construction: instead of setting r2 = f2(msg0),22

where msg0 is the �rst veri�er-message, we set r2 = f2(x; r1; msg0), where x is the common-input.We also assume, without loss of generality, that jr1j > jxj (so that the probability that the same r1is selected at random is negligible). For sake of clarity we reproduce and expand the description ofthe transformation:Construction 5.4 Given an admissible protocol (P; V), and a collection of pseudorandom func-tions, we de�ne a new protocol (P;V) as follows.The inputs: the common input and auxiliary inputs to the two parties are as in (P; V). Let xdenote the common input, and n denote the security parameter, which for simplicity mayequal the length of x.The new prover's randomness is viewed as a pair (r1; f2), where r1 2 f0; 1gpoly(n) is of lengthadequate for the �rst part of the random-tape of P , and f2 : f0; 1g�poly(n) ! f0; 1gpoly(n) is adescription of a function taken from an ensemble of pseudorandom functions.The new veri�er is identical to V .The new prover: The new prover emulates the actions of P , when the latter uses random-tape(r1; r2), where r2 is determined by applying f2 to the veri�er's �rst message. Speci�cally:1. The �rst message sent by P equals the message that P would have sent on random-tapehaving r1 as its �rst part. That is, P sends msg = P (x; r1) to the veri�er.2. Upon receiving the veri�er's �rst message, denoted msg0, the prover P sets r2 = f2(x; r1; msg0).From this step on, P emulates the actions of P using (r1; r2) as P 's random-tape. Recallthat, by De�nition 5.2, these actions are actually independent of r1.To overcome the gap left by Proposition 5.3, we need to consider admissible protocols (P; V) inwhich the �rst prover-message is not �xed, but is rather a function of r1. The problem with suchprotocols (P; V) is that an adversary may initiate two sessions with (the same incarnation of) P,and use di�erent �rst veri�er-messages (i.e., msg0) in them, whereas the �rst prover-message msgdetermined (before) byP will be the same. Thus, applying the proof of Proposition 5.3, the resultingW � needs to interact with two sessions of P having the same �rst part of random-tape (i.e., r1),something that is not allowed in the concurrent model (in which W � is supposed to operate). Suchinteractions are explicitly allowed in the hybrid model presented below, which allows interactionswith sessions of P sharing the same r1 but still postulates that the second part of the random-tape(i.e., r2) is independently chosen per each session (as in the concurrent model). Thus, the hybridmodel lies between the resettable model and the concurrent model. We feel that the hybrid modelis closer in spirit to the concurrent model (than to the resettable model). Speci�cally, in naturalprotocols (such as the ones to which we apply the transformation of Construction 5.4), the e�ectof re-using the same r1 is much lesser than the e�ect of re-using the same r2. The reason is thatin such protocols the randomness of r1 is used merely to establish that the veri�er's messages areessentially determined by the �rst veri�er-message.De�nition 5.5 (hybrid model): We consider an adversary as in the resettable model, interactingwith incarnations of P , where incarnation P (i;j;k) = Pxi;yi;!j;k is determined by the common-inputxi, auxiliary-input yi, and (two-part) random-tap !j;k = (r(j)1 ; f (k)2), where the r(j)1 's and the f (k)2 'sare independently and uniformly selected in the relevant space and �xed. Here the adversary is23

allowed to initiate at most one session with each incarnation P (i;j;k). Furthermore, for every k, theadversary is allow to hold at most one session with one of the incarnations in fP (i;j;k) : i; jg. Thatis, for every k, the number of sessions held with incarnations of the form P (�;�;k) is at most 1.Thus, in the hybrid model, for every i; j, the adversary may hold polynomially-many sessionswith incarnations in fP (i;j;k) : kg, but in each of these sessions a di�erent k is used. In contrast,in the (standard) resettable model, when applied to provers as above, the adversary may holdpolynomially-many sessions with each P (i;j;j). On the other hand, in the concurrent session, forevery j, the number of sessions held with incarnations of the form P (�;j;j) is at most 1.In the next theorem we relate the security of P in the resettable model to the security of P in thehybrid model. (Security means either zero-knowledge or witness-indistinguishability properties.)Theorem 5.6 Suppose that (P; V) satis�es De�nition 5.2, and let P be the prover strategy ob-tained from P by applying Construction 5.4, assuming that pseudorandom functions exist. Thenfor every probabilistic polynomial-time V � for the resettable model, there exists a probabilisticpolynomial-time W � in the hybrid model so that hP (y);W �i(x) is computationally indistinguish-able from hP(y); V �i(x).It follows that if P is zero-knowledge (resp., witness-indistinguishable) in the hybrid model then Pis resettable zero-knowledge (resp., witness-indistinguishable).We comment that in the hybrid model there is no di�erence between the actions of P and of P.For sake of clarity, we preferred to stated and prove Theorem 5.6 with respect to W � interactingwith P rather than with P. Recall that hP(y); V �i(x) denotes the view (or output) of V � afterinteracting with P on various inputs under the resettable model. Similarly, hP (y);W �i(x) denotesthe view (or output) of W � after interacting with P on various inputs under the hybrid model.Proof Sketch: By Theorem 4.2, it su�ces to consider the sequential variant of the resettablemodel. Recall that we deal with the multiple incarnation model, and so V � may interact (sequen-tially) with polynomially-many incarnations of P, invoking each such incarnation polynomiallymany times. As in De�nition 4.1, these incarnations are denoted P(i;j) = Pxi;yi;!j , where xi is acommon input, yi a corresponding auxiliary input, and the !j's are uniformly and independentlyselected random pads. We will construct a hybrid-model adversary, W �, that interacts with incar-nations of P , denoted P (i;j;k)'s (as in Def. 5.5). To satisfy De�nition 5.5, this W � will invoke eachP (i;j;k) at most once, and furthermore if it invokes P (i;j;k) then it will not invoke any other P (i0;j0;k).The proof (slightly) extends the ideas presented in the proof of Proposition 5.3.Again, our analysis will refer to a mental experiment in which P utilizes a truly random functionrather than a pseudorandom one. As usual, the corresponding views of the veri�er V � in the twocases are computationally indistinguishable. From this point on, we identify the random-tape of Pwith a pair (r1; f2), where f2 is a truly random function.The construction of W �. (The following construction slightly extends the construction pre-sented in the proof of Proposition 5.3.) Working in the hybrid model, W � handles the messages ofV � as follows:1. V � initiates a new session with some P(i;j): In this case W � initiates a new session withthe prover P , obtains its �rst message, and forwards msg to V �. Speci�cally, W � initiates asession with P (i;j;k), where k is a new index not used so far. That is, W � maintains a counterfor k that is incremented each time the current case is encountered.24

We stress that a session with P (i;j;k) may be invoked even if a session with some P (i;j;k0), withk0 < k, was invoked before. In the latter case, since r1 = r(j)1 is identical in both sessions, the�rst message obtained from P (i;j;k) is identical to the �rst message obtained previously fromP (i;j;k0).2. V � sends a new �rst-message to P(i;j): That is, we refer to the case where V � sends a�rst-message in the current session, and assume that this message is di�erent from all �rst-veri�er-messages sent in prior sessions with P(i;j). Let msg0 denote the message sent by V �.Then W � sends msg0 to one of the sessions of the form P (i;j;�) that still awaits a �rst-veri�er-message, obtains the response, and forwards it to V �. It designates this session (with P(i;j))as the active session of (i; j; msg0), and stores the prover's response.(All subsequent sessions of V � with P(i;j) in which the �rst-veri�er-message equals msg0 willbe \served" by the single session of W � designated as the active session of (i; j; msg0).)3. V � repeats a �rst-message to P(i;j): That is, we refer to the case where the current messagesent by V � is the �rst veri�er-message in the current session, and assume that this messageequals a �rst-veri�er-message, msg0, sent in a prior session of V � with P(i;j). In this case, W �retrieves from its storage P 's answer in the active session of (i; j; msg0), and forwards it to V �.We stress that W � does not communicate with any session of P in this case. (Note that ifW � were to send the same message msg0 to two sessions of the form P (i;j;�) then the responsescould have di�ered, whereas V � expects to see exactly the same answer in sessions in whichit sends the same msg0.)4. V � sends a valid non-�rst-message to P(i;j): That is, we refer to the case where V � sendsa non-�rst-message in the current session with P(i;j), and assume that this message is valid;that is, P accepts it as valid as per De�nition 5.2. (In this case, the message is essentiallydetermined by the �rst-veri�er-message in that session.)We stress that it is universally veri�able whether the current message of V � is valid or not(i.e., this depends only on the current and �rst veri�er-messages, and on all prover-messagesin the current session).We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-message of the current round was sent in a session of V � with P(i;j) in which the �rst veri�er-message equals msg0, where msg0 is the �rst veri�er-message sent by V � in the current session.Let � > 1 denote the index of the current message sent by V �.(a) The current session is the �rst session of V � with P(i;j) in which the �rst veri�er-messageequals msg0 and the �th veri�er-message is valid: In this case W � forwards the currentmessage to the active session of (i; j; msg0), obtains P 's response, stores it, and forwardsit to V �.(b) The current session is not the �rst session of V � with P(i;j) in which the �rst veri�er-message equals msg0 and the �th veri�er-message is valid: In this case W � does notcommunicate with any session of P . Instead, it merely retrieve the corresponding proverresponse from its storage, and forwards it to V �. Note that the corresponding answer isstored in the history of the active session of (i; j; msg0).(Note that by De�nition 5.2, it is infeasible for V � to send, in two sessions starting withany �xed veri�er-message, valid messages for the same round that di�er in their mainpart. Thus, the responses of P(i;j) to valid �th messages, in sessions starting with any25

�xed veri�er-message, are identical. It follows that V � will be content with the indenticalresponses supplied to it by W �.)5. V � sends an invalid non-�rst-message to P(i;j): That is, we refer to the case where V � sendsa non-�rst-message in the current session with P(i;j), and assume that this message is invalid.In this case, W � just forwards P 's standard abort message to V �.We stress that W � does not forward the invalid message of V � to any session of P , mostimportantly not to an active session. This allows W � to handle a corresponding valid messagethat may be sent by V � in a future session.6. V � terminates: When V � sends a termination message, which includes its output, W � justoutputs this message and halts.We stress that W � is de�ned to operate in the hybrid model. That is, in every session it invokeswith P , a di�erent incarnation is used, and furthermore for every k the adversaryW � holds at mostone session with an incarnation of the form P (�;�;k). So the second part of P 's random-tape in thissession is independent from the random-tape in all other sessions. In contrast, V � that operatesin the (stronger) resettable model may invoke each incarnation of P many times, and so the taper2 as determined (by the same incarnation of P) in these sessions is identical. Nevertheless, weclaim that the output of W � is computationally indistinguishable from the output of V �. The keyobservations justifying this claim refer to the actions of P in the various sessions invoked by V �:� In sessions having di�erent �rst-veri�er-messages, the second parts of the random-tape (i.e.,the r2 part) are independent. Same for sessions in which a di�erent incarnation P(i;j) isused. This is because P determines r2 by applying a random function on the the triplet(xi; r(j)1 ; msg0), where msg0 is the �rst-veri�er-message.(Indeed, if i 6= i0 (resp., j 6= j0) then xi 6= xi0 (resp., r(j)1 6= r(j0)1 , with overwhelmingly highprobability).)� In sessions having the same common-input, the same r1, and the same �rst-veri�er-message,the actions of P are essentially determined by the �rst veri�er-message. This is because inthis case P determines the same r2, and the only freedom of V � is practically to chooseat each message whether to send a predetermined (by the �rst-veri�er-message) value or toabort. Thus, the transcripts of all these sessions correspond to various augmented pre�xes ofone predetermined transcript, where each pre�x is either the complete transcript or a strictpre�x of it augmented by an abort message.The corresponding transcripts (of imaginary sessions with P) are generated by W � by merelycopying from real sessions it conducts with P . Each set of P(i;j)-sessions sharing the same �rst-veri�er-message, is generated from a single (distinct) session with P (called the active session ofthat message). The way in which W � handles invalid messages of V � guarantees that it neveraborts an active session, and so such a session can always be extended (up-to completion) to allowthe generation of all P(i;j)-sessions sharing that �rst-veri�er-message. We stress again that W �does not need to (and in fact does not) abort a session in order to produce P's abort message; itmerely determines whether P aborts (and, if so, generates the standard abort message by itself).
26

5.4 Deriving a constant-round rWI proof for NPPart 1 of Theorem 5.1 is proved by applying Construction 5.4 to an admissible (as per De�nition 5.2)proof system for NP that is constant-round and witness-indistinguishable in the hybrid model (ofDe�nition 5.5). Thus, we need to assert the existence of such a protocol.Proposition 5.7 Suppose that there exists a two-round perfectly-hiding commitment scheme. Thenevery language in NP has a 5-round admissible proof system that is witness-indistinguishable inthe hybrid model.Combining Theorem 5.6 and Proposition 5.7, Part 1 of Theorem 5.1 follows.Proof Sketch: It su�ces to present a proof system for some NP-complete problem (and we referto Graph 3-Colorability). We comment that most of the known zero-knowledge proofs systems areeither not admissible (e.g., typically, they do not satisfy the third requirement in De�nition 5.2)or are not witness-indistinguishable in the hybrid model.23 Fortunately, as we show below, the(5-round) zero-knowledge proof system of Goldreich and Kahan [21] is both admissible and witness-indistinguishable in the hybrid model. On an abstract level, the proof system of [21] is as follows.Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.(V1) The veri�er commits to a sequence of t def= n � jEj uniformly and independently chosen edges.The commitment is done using a perfectly-hiding commitment scheme,24 so that the provergets no information on the committed values, while it is infeasible for the veri�er to \de-commit" in two di�erent ways (i.e., the scheme is computationally-binding).(P1) The prover commits to t �n values corresponding to the colors of all vertices under t randomrelabeling of the coloring �. The commitments are done using an ordinary commitmentscheme, providing computational-secrecy and perfect-binding.(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). Italso provides the necessary information required to determine the correctness of the revealedvalues (i.e., \de-commit").(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitmentssent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colorsand provides the corresponding \de-commitment".(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitmentssent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects.23 For example, in the zero-knowledge proof system of Goldreich, Micali and Wigderson [24], the prover startsby committing itself to a (random) coloring of the graph, and the veri�er asks it to reveal the colors of a pair ofadjacent vertices. In case the prover's commitment is via unidirectional communication, the protocol is triviallyadmissible (since the prover uses randomness only in its �rst message, and the veri�er sends a single message), butis not witness-indistinguishable in the hybrid model (since the veri�er can obtain a full coloring of the graph byinvoking the prover many times on the same r1. In case the prover's commitment is via a two-round commitmentscheme (cf. [33], the protocol is not admissible (since the veri�er has total freedom in selecting the edges).24 See discussion following this abstract presentation. 27

There is one problem, however, with the above presentation. In Step (V1) we have assumed theexistence of a 1-round (i.e., uni-directional communication) perfectly-hiding commitment scheme.However, any perfectly-hiding commitment scheme requires at least two rounds of communication(i.e., a message sent from the commitment-receiver to the commitment-sender followed by a messagefrom the sender to the receiver).25 Thus, we need to integrate such (two-round) commitmentschemes in the above protocol. We stress that doing so means that the prover's initial randomizationis interpreted as a pair (r1; r2), where r1 is randomness required by the receiver's strategy in the two-round (perfectly-hiding) commitment scheme, and r2 is the randomization used for implementingStep (P1).The reader may easily verify that the resulting protocol is indeed admissible, Furthermore,as shown in [21], the protocol is indeed a 5-round zero-knowledge proof system for Graph 3-Colorability. Thus, it follows that the protocol is witness-indistinguishable in the concurrent model(cf. [13]). However, we need to show that it is witness-indistinguishable also in the hybrid model.The extra power of the adversary in the latter model is to invoke sessions with the same (ran-dom) value of r1. However, the randomness of r1 is only used to establish the (computational)binding feature of the veri�er's commitment, and this feature continues to hold also when thesender commits to several values using the same receiver message.26 Thus, the above protocol iswitness-indistinguishable in the hybrid model, and the proposition follows.Comment: We mention that the above protocol is probably not resettable zero-knowledge; infact, it is probably not even concurrent zero-knowledge. This follows from recent work of A. Rosen(priv. comm.): extending [22, 32], Rosen shows that no language outside BPP can have a 8-roundprotocol that is concurrent zero-knowledge via black-box simulation.5.5 Deriving a resettable zero-knowledge proof for NPPart 2 of Theorem 5.1 is proved by applying Construction 5.4 to an admissible (as per De�nition 5.2)proof system for NP that is zero-knowledge in the hybrid model (of De�nition 5.5). Thus, we needto assert the existence of such a protocol.Proposition 5.8 Suppose that there exists a two-round perfectly-hiding commitment scheme. Thenevery language in NP has an admissible proof system that is zero-knowledge in the hybrid model.Combining Theorem 5.6 and Proposition 5.8, Part 2 of Theorem 5.1 follows.Proof Sketch: We show that the concurrent zero-knowledge proof system of Ransom and Kil-ian [34] can be slightly modi�ed so that the resulting protocol satis�es all requirements.We start by reviewing the Ransom and Kilian protocol [34]. In essence, the protocol consists oftwo stages. In the �rst stage, which is independent of the actual common input, k instances of cointossing into the well [3] are executed in a speci�c manner to be described, where k is the securityparameter (or a parameter that is polynomially related to the security parameter). Speci�cally, �rst25 The lower bound refers to commitment schemes in which the computationally-hiding requirement should holdw.r.t (non-uniform) polynomial-size circuits. (Such circuits may just incorporate two valid decommits for the same1-message commitment.) Note that the standard zero-knowledge condition is itself somewhat non-uniform (as itrefers to any veri�er's input), and so the commitment scheme used by the veri�er must be computationally-bindingw.r.t. non-uniform polynomial-size circuits. (Such non-uniform complexity assumptions are employed in all work onzero-knowledge, with the exception of a fully-uniform treatment (cf. [17]).)26 See an analogous discussion in the proof of Proposition 5.8.28

the veri�er commits to k random bit sequences, v1; :::; vk 2 f0; 1gk , and next k iterations proceed sothat in each iteration the prover commits to a random bit sequence, pi, and the veri�er decommitsto the corresponding vi. The result of the ith coin-toss is de�ned as vi�pi and is known only to theprover. In the second stage, the prover provides a witness indistinguishable (WI) proof that eitherthe common input is in the language or one of the outcomes of the k coin-tosses is the all-zerostring (i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen in an actualexecution of the protocol, the protocol constitutes a proof system for the language. However, thelatter case is the key to the simulation of the protocol in the concurrent zero-knowledge model:Whenever the simulator may cause vi = pi to happen for some i, it can simulate the rest of theprotocol (and speci�cally Stage 2) by merely running the WI proof system with vi (and the prover'scoins) as a witness. (By the WI property, such a run will be indistinguishable from a run in whichan NP-witness for the membership of the common input (in the language) is used.)Ransom and Kilian do not say which WI protocol should be used; in fact, for their purposesany such protocol will do [34]. However, as a starting point to our modi�cation, we use a speci�cWI proof system: the zero-knowledge proof system of [21], which is reviewed in the proof ofProposition 5.7. Thus, at an abstract level, the protocol is as follows.Common Input: x supposedly in the language L 2 NP, and a security parameter k.27Prover's Auxiliary Input: an NP-witness w for x 2 L.Stage 1: This stage has little e�ect in real interactions between the prover and the veri�er, yet itprovides a \trapdoor" for the simulation.1. The veri�er commits to k uniformly selected k-bit strings, using a two-round perfectly-hiding commitment scheme. That is, the prover, which acts a receiver, sends the �rstmessage, to which the veri�er responds by uniformly selecting v1; :::; vk 2 f0; 1gk , andsending to the prover its commitment to each of the vi's. Denote by � = �1; :::; �k thesequence of k commitments sent by the veri�er. Note that � reveals no informationabout v1; :::; vk.2. For i = 1; :::; k, the following two-round interaction goes on. First the prover commits(in a perfectly-bidding way) to a random k-bit string, denoted pi, and next the veri�erdecommits to �i by providing vi along with the randomness used in forming �i from vi.We stress that pi is uniquely determined by the string, denoted �i, sent by the prover.Stage 2: The prover provides a proof that either x 2 L or vi = pi, for some i (i.e., either x 2 L orfor some i there exists a decommitment string validating that the string �i is a commitmentto the value vi). The NP-witness used by the prover is w, and the proof system is the onereviewed above (after reducing the above NP-statement to a statement about 3-Colorabilityof the resulting graph). Recall that this proof system starts with a two-round perfectly-hiding commitment of the veri�er (to a sequence of uniformly selected graph-edges), followedby a perfectly-binding commitment of the prover (to a random relabeling of colors), thenthe veri�er reveals all values (i.e., edges), and �nally the prover reveals the indicated values(colors of indicated endpoints).As usual, in both stages, whenever a party fails to provide a message as instructed the otherparty halts (detecting an obvious cheating attempt).27 For simplicity we equate all \security governing" parameters such as the number of iterations in Stage 1, thelength of strings committed to in Stage 1, and the security parameters used in the various commitment schemes, etc.29

Recall that the above protocol is concurrent zero-knowledge (cf. [34]). However, it is not admissible.Below we modify the protocol so as to make it admissible and zero-knowledge also in the hybridmodel.The modi�ed protocol: We slightly modify the above protocol by moving the veri�er's secondcommitment, which takes place in the �rst two rounds of Stage 2, to Step 1 of Stage 1. That is,both the veri�er commitment to k uniformly selected k-bit strings as well as its commitment torandom edges in the reduced graph are made up-front, as the very �rst thing in the entire protocol.We comment that there is a minor problem here, since the graph (to which the proof system (ofStage 2) is applied) is not determined yet (i.e., in the very beginning of Stage 1). However, (anupper boun on) the size of this graph is known. Thus, we let the veri�er commit to random pairsof vertices, and use a standard convention by which the prover interprets each non-edge as some�xed edge (cf. [24, p. 714]). The only (other) thing requiring change is to increase the number ofparallel repetitions; that is, set t = n3 (rather than t = n � jEj), where n (resp., jEj) is the numberof vertices (resp., edges) in the graph. This is done in order to guarantee that the probabilitythat a bad edge is hit in t tries, where in each trial we select a random pair of vertices, is at least(1� n�2)t = exp(�n).28Firstly, we observe that the modi�ed protocol is indeed admissible. Next, we analyze the e�ectof our modi�cation. Intuitively, the above modi�cation only restricts the power of the veri�er (asit needs to commit earlier to its choices). Thus, we should verify (which is easy to do) that theabove protocol maintains its soundness (i.e., remains a proof system for Graph 3-Colorability). Onthe other hand, one can show that the protocol remains zero-knowledge in the concurrent model(since the veri�er power has only decreased). Furthermore, we need and will show that the modi�edprotocol is zero-knowledge in the hybrid model.Let Porg denote the original prover and Pmod the modi�ed one. We consider the followingauxiliary model as applied to both Porg and Pmod: First, for each of the two instances of thetwo-round perfectly-hiding commitment scheme (in which the veri�er sends a commitment to theprover), a polynomial number of independent receiver-messages are generated and given to theadversary veri�er. (We refer to the �rst message in the two-round commitment scheme, which is amessage from the receiver to the sender.) Next, the adversary is allowed to initiate polynomially-many independent sessions with the prover. In each session, the veri�er indicates which pair ofreceiver-messages (out of the above list) it wishes to use, and the prover executes its programskipping the generation of these messages, which are instead taken as the messages selected by theveri�er (from the list). We stress that in each session, the prover uses an independently chosenrandom-tape (which corresponds to the second part of the random-tape of prover Pmod). Weobserve that:1. The proof that Porg is zero-knowledge in the concurrent model extends to showing that Porgis zero-knowledge in the auxiliary model.This is the case since the only di�erence between the two models is in whether the samereceiver message is used for several sender's commitments or not. The computational-bindingproperty, which is stated for a single use of a receiver's message, holds also for multipleuses. Furthermore, the randomness of the receiver's message is only used to argue that theveri�er's commitment is binding, and the simulator and its analysis use this fact as a \blackbox". Thus, the simulator and its analysis extend to show that Porg is zero-knowledge in theauxiliary model.28 Before, the modi�cation we had (1� jEj�1)t = exp(�n).30

2. Intuitively, the transformation of Porg to Pmod only restricts the power of the veri�er, andso the fact that Porg is zero-knowledge in the auxiliary model implies that so is Pmod. Thisintuition can be proven valid (in the auxiliary model).Speci�cally, for every adversary V � interacting with Pmod (in the auxiliary model), we canconstruct an adversary W � that interacts with Porg (in the auxiliary model) so that W � hasoutput identical to the output of V �: We merely let W � emulate the actions of V � in thenatural manner. Speci�cally, the �rst message that W � sends in each session is determinedby the �rst message sent by V � in the corresponding session, where the latter message is apair of veri�er's commitments and W � sends only the �rst one (as its �rst message in thecurrent session) and saves the second message for future use. When W � encounters the point(in the beginning of Stage 2) where it needs to send a second commitment, it merely sendsthe message stored at the very beginning of the emulation of the current session.3. When applied to prover Pmod, the hybrid model is equivalent to the auxiliary model: Speci�-cally, if Pmod is zero-knowledge in the auxiliary model then it is zero-knowledge in the hybridmodel.Furthermore, for every adversary V � interacting with Pmod in the hybrid model, we canconstruct an adversary W � that interacts with Pmod in the auxiliary model so that W � hasoutput identical to the output of V �: Given an upper bound B on the running time of V �,machineW � �rst asks to be given B receiver-messages (as it is entitled in the auxiliary model).Next, W � emulates the actions of V � in the natural manner. Speci�cally, when V � invokesincarnation Pmod(i;j;k) (as in the hybrid model), W � invokes a new session with Pmod askingit to use the jth receiver-message (in the list provided above), and uses the latter session inorder to emulate Pmod(i;j;k).Combining the above three facts, the proposition follows.

31

Part IIThe Public-Key Model6 Discussion and De�nitionThe vanilla model, considered in Sections 4{5, is when no set-up assumptions are made. This isindeed the \cleanest" model typically employed in theoretical works regarding secure two-partyand multi-party computation.By the public-key model we mean a model in which all users are assumed to have deposited apublic-key in a �le that is accessible by all users at all times. The only assumption about this �leis that it guarantees that entries in it were deposited before any interaction among the users takesplace. No further assumption is made about this �le, and so in particular an adversary may depositmany (possibly invalid) public-keys in it (and, in particular, without even knowing correspondingsecret keys or whether such exist). Access to the �le may be implementable by either severalidentical servers or by providing users with certi�cates for their deposited public-keys.A more realistic public-key model allows parties to register at all times. Note however that sucha exible model requires some restriction (as otherwise it coincides with the vanilla model). Onepossibility is to make some mild timing assumption such as that all parties can distinguish betweensome predetermined large delay (which all newly registered public-keys must undergo before beingused) and a small delay (which upper bounds the communication delays in actual interaction).29 Adi�erent possibility is to require newly registered public-keys to be used only after authorization bya trusted \switchboard", and occasionally updating (i.e., replacing) the entire system. The secondalternative seems better suited to the smart-card application discussed in the introduction. Forsake of simplicity, we assume throughout the rest of this section that registration occurs before anyinteraction between the users takes place. The treatment of more exible models is deferred toa future version of this work. We comment that variants of the public-key model are a standardmodel in many applied works.A more imposing model (i.e., assuming stronger set-up assumptions) which is still quite rea-sonable in practice, augments the public-key model by allowing (\validating") interaction betweenusers and system manager at deposit time. In general, the preprocessing model postulates thatbefore any interaction among users takes place, the users have to interact with a system managerwhich issues them certi�cates in case it did not detect cheating at this stage. In particular, one mayuse the preprocessing stage in order to verify that the user knows a secret-key for the public-key itwishes to have certi�ed.We stress that we actually use weaker assumptions. Speci�cally, in both the latter models, weonly need that potential veri�er will deposit public-keys and/or participate in a pre-computation.This is not required of users who are only going to play the role of provers.De�nition (sketch): Analogously to De�nition 4.1, we may de�ne resettable zero-knowledge inthe public-key model: The only modi�cation is that the prover and veri�er (as well as the simulator)have access to a public-�le which was generated by the adversary V � before all interactions began.Thus, the public-�le may be viewed as part of the common input as far as the zero-knowledge (i.e.,RZK) condition holds. (In the soundness (in fact computational-soundness) condition one needs to29 As explained in Section 2 such an assumption does not e�ect typical interactions; whereas the timing assumptionin [12] amounts to slowing down all interactions to meet some a-priori upper bound (which must be quite conservativeto prevent abort of honest interactions). 32

consider what happens when the public-�le is randomly generated (by a honest veri�er), and theactual input is �xed possibly afterwards.)7 Constant-round RZK for NP in the public-key modelThe main result of this section is a construction of constant-round computationally-sound resettablezero-knowledge proof systems. Here we use two-round perfect commitment schemes with someadditional features (to be speci�ed below). Such schemes exist assuming that DLP is hard forsub-exponential circuits. Thus, as a special case, we obtain:Theorem 7.1 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2n� solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a constant-round resettable zero-knowledge computationally-sound proof system in the public-keymodel. Furthermore, the prescribed prover is resettable zero-knowledge via a black-box simulation.7.1 RZK for NP in the preprocessing modelWe �rst present a resettable zero-knowledge protocol for a model allowing preprocessing (i.e., amodel which has stronger set-up assumptions). The preprocessing will be used in order to guaranteethat veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.The protocol uses two types of perfect commitment schemes; that is, secrecy of commitmentholds in an information theoretic sense, whereas the binding property holds only in a computationalsense. The two commitment schemes used has some extra features informally stated below. For aprecise de�nition see Appendix A.1. A two-round perfect commitment scheme, denoted PC1, with two extra features:� The trapdoor feature: It is possible to e�ciently generate a receiver message (called theindex) together with a trapdoor, so that knowledge of the trapdoor allows to decommitin any way.Note that the �rst message in a two-round commitment scheme is from the commitment-receiver to the commitment-sender. The trapdoor feature says that the receiver will beable to decommit to the sender's message in any way it wants (but as usual the sender,not knowing the trapdoor, will not be able to do so).In our solution we will \decouple the execution" of the two-round commitment schemeso that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., willbe deposited in a public-�le), and only the second message will be send in the actualprotocol. We stress that the same index can and will be used for polynomially manycommitments, and that the number of such commitments need not be a-priori known.(Note that both perfect secrecy and computational-binding continue to hold also undersuch \recycling" of the index.)� The strong computational-binding feature: The computational-binding property holdsalso with respect to subexponential circuits. That is, there exists a constant � > 0 sothat for su�ciently large security parameterK no sender strategy which is implementableby a circuit of size 2K� can decommit in two di�erent ways with probability greater than2�K� . 33

2. A constant-round perfect commitment scheme, denoted PC2. (This scheme corresponds tothe one used in the actual implementation of Step (V1) above.) Without loss of generality,we may assume that the binding property can be violated in exponential time. That is, whenthe commitment protocol is run on security parameter k, the sender may in time 2k decommitany way it wants.Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the currentpresentation. We also note that for our application it is possible to further relax the requirementfrom PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [18,Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLPis hard for subexponential circuits; see details in Appendix A. More generally, one may use anypair of trapdoor claw-free permutations, provided the claw-free property holds w.r.t subexponentialcircuits.30The protocol in the preprocessing model: The inputs to the protocol are as follows.Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)(resp., are implementable in poly(K)-time).Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generatedby veri�ers on security parameter K. Each veri�er need only deposit a single index in thepublic �le, which may be stored under its name. We consider also cheating veri�ers who maydeposit polynomially many such indices. We stress however that the number of entries in thepublic-�le should be bounded by some �xed polynomial.At this point we assume that the veri�er knows a trapdoor to any index it has deposited.This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.Prover's initial randomization: The prover's random-tape is used to determine a pseudoran-dom function f : f0; 1gpoly(n) ! f0; 1gpoly(n).The protocol itself is an adaptation of the resettable witness indistinguishable proof system ofSection 5.4 with Step (V1) being replaced (or rather implemented) by current Steps (1) and (3).Another important change is the replacement of former Step (P1) by current Step (2); the di�erencebeing that commitment via a standard commitment scheme (with perfect binding) is replaced bya commitment relative to a (perfect secrecy) scheme which is only computationally-binding.(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwisethe prover aborts.)Note that this step may be viewed as transcendental to the protocol, since it amount to theveri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its identity;we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it isin the public �le. Since we view the adversary as controlling the entire \world outside theprover" it really does not matter who knows the trapdoor.]30 In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and isstrong wrt subexponential circuits. 34

(2) This step is analogous to Step (V1) in the protocol of the previous subsection: The veri�ercommits to a sequence of t def= n � jEj uniformly and independently chosen edges. The commit-ment is done using the constant-round perfect commitment scheme PC2, in which the veri�erplays the role of the sender and the prover plays the role of the receiver. The scheme PC2is invoked while setting the security parameter to k = K�=2, where � > 0 is as speci�ed inthe strong binding feature of PC1. The randomization required for the actions of the receiverin PC2 are determined by applying the pseudorandom function f to (G;�; history), wherehistory is the transcript of all messages received by the prover so far.Thus, the prover gets no information on the committed edges, while it is infeasible for theveri�er to \de-commit" in two di�erent ways.[The analysis makes heavy use of the setting of the security parameter k = K�=2. On onehand, this setting guarantees that a quantity that is polynomial in K is also polynomial ink. On the other hand, time 2k which su�ces to violate the computational-binding propertyof PC2 when run on security parameter k, is insu�cient to violate the strong computational-binding property of PC1 when run on security parameter K (since 2k = 2K�=2 � 2K�).](3) This step is analogous to Step (P1) in the protocol of the previous subsection: The prover usesPC1 with index i in order to commit to a sequence of t random colorings. That is, the proverinvokes t instances of protocol PC1 playing the sender in all, and acts as if it has received i(the index) in all these instances.Recall that the prover wishes to commit to t � n values, the (jn + v)th value being the colorassigned to vertex v by the jth random coloring (i.e., the jth random relabeling of �, selectedamong the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of therandom coloring as well as randomization required by PC1) are determined by applying thepseudorandom function f to (G;�; history), where history is the transcript of all messagesreceived by the prover so far.(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, itreveals the sequence of t edges, as well as the necessary information required to determinethe correctness of the revealed values. [This step is analogous to Step (V2).](5) In case the values revealed (plus the \de-commitment" information) in Step (4) match thecommitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-sponding colors and provides the corresponding de-commitment. [This step is analogous toStep (P2).](6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitmentssent in Step (3), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects. [This step is analogous to Step (V3).]We note that, in the above description of the protocol, the veri�er does not use the trapdoor(i.e., trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers)knows the trapdoor will be used by the simulator which is rather straightforward: In contrast tostandard constructions of simulators (cf., [28, 24]), the current simulator does not \rewind" theveri�er. Instead, it simulates an execution of the protocol by emulating the actions of the proverin Steps (1){(4) using some dummy sequence, rather than a sequence of colorings, in Step (3).However, when getting to Step (5), and in case the veri�er has decommited properly, the simulator35

uses trap(i) in order to decommit to the corresponding edge queries in a random legal-lookingway (i.e., it decommits to a uniformly and independently chosen pair of distinct colors, for eachsuch edge). This uses the trapdoor feature of PC1 and the hypothesis that the veri�er (and sothe simulator) knows this trapdoor. The above description corresponds to simulation of the �rstinteraction with the prover. Subsequent interactions are simulated in the same way assuming thatthe execution of Steps (1){(2) of the current interaction is di�erent than in all previous interactions.Otherwise, we simulate Steps (3) and (5) by copying the values used in the previous interaction. Alast issue to be addressed is the possibility that in two executions of the protocol the veri�er maysend the same messages in Step (2) but latter decommit in two di�erent ways in Step (5), in whichcase the output of the simulator may be noticeably di�erent from the output in real executions.Using the computational-binding property of the scheme PC2, we argue that this event may onlyoccur with negligible probability. This establishes the resettable zero-knowledge property of theabove protocol (in the preprocessing model).Observe that the computational-binding property of PC1 allows computationally-unboundedprovers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-active proof. However, one can show that computationally-bounded provers can fool the veri�eronly with negligible probability, and so that the protocol is computationally-sound.Intuitively, one would like to argue that the computational-binding property of PC1 does notallow to decommit to two di�erent values in Step (5). The problem is that the prover commits tocolors in Step (3) after obtaining the veri�er's commitment to queries, and that the prover decom-mits only after the veri�er decommits. How can we rule out the (intuitively unlikely) possibility thatthe veri�er's decommitment allows the prover to decommit accordingly (in a way it could not havedone before getting the veri�er's decommitment)? Here we use the strong computational-bindingproperty of PC1 (relative to security parameter K); that is, the fact that it holds also with respectto circuits of size 2K� = 22k. We also use the fact that commitments with PC2 were done whilesetting the security parameter to k, and so we can decommit any way we want while using time 2k.Thus, the binding property of PC1 has to be maintained in Step (5); i.e., it should be infeasible todecommit \at will" in Step (5) also after obtaining the decommitment of the veri�er at Step (4). Inthe actual proof we consider what happens in Step (5) when the prover interacts with an imaginaryveri�er which at Step (4) uniformly selects new queries and decommits according to these values.Observe that such an imaginary veri�er can be implemented within time poly(n) � 2k. Thus, if weconsider the mental experiment in which Steps (4)-(5) are repeated T = 2k=3 times, after a singleexecution of Steps (1)-(3), then all proper decommits by the prover must be for the same value(or else the binding property of PC1 is violated in time T � poly(n) � 2k � 22k). Furthermore, theabove should hold for at least 1 � T�1 fraction of random executions of Steps (1)-(3). Thus, ifwe consider a computationally-bounded prover which fools the veri�er, only a term of O(2�k=3)in its success probability may be attributed to \ambiguous decommitment". The computational-soundness of the protocol follows by noting that (1 � jEj�1)t) � e�n is an upper bound on theprobability of fooling the veri�er in case commitments are non-ambiguous. This establishes thecomputationally-soundness of the above protocol.7.2 Back to the bare public-key modelGiven the above, all that is needed in order to adapt the protocol to the public-key model is to re-place the assumption that the veri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledgeof this claim. We stress that the veri�er in the above protocol will play the role of knowledge-prover,whereas the main prover will play the role of a knowledge-veri�er. This protocol has to maintain36

its soundness also when the knowledge-veri�er undergoes \rewinding". Furthermore, it should beconstant-round. (We comment that we are not aware of a known protocol satisfying these strongrequirements.) On the other hand, we don't need \full-edged" zero-knowledge property; simu-latability in subexponential time will su�ce (as it is merely used for the computational-soundnessproperty which is established based on the strong computational-binding property of PC1, whichin turn accounts for such running times too). Thus, Step (1) in the above protocol is augmentedby a constant-round proof-of-knowledge (POK) which proceeds as follows:The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-prover, denoted KP, played by the main veri�er.Inputs: Common input i 2 f0; 1gK .Furthermore, KP gets auxiliary input the randomness used to generate i (equiv., to generate(i; trap(i))).Goal: KP wants to prove that it knows trap(i).High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK ofthe randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POKis via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cienttransformation of NP-witnesses from the original relation to the target Hamiltonicity relationand vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltoniancycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retrievetrap(i).The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for thislanguage, which is reproduced in Appendix B. An important property of Blum's basic proto-col is that it is a \challenge{response" game in which the challenge consists of a single bit.Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-nian cycle (i.e., the knowledge claimed).31 This property simpli�es the knowledge extractionargument in case many copies are played in parallel: Ability to respond to any two di�erentsequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times inparallel, where k = K�=3. The resulting protocol will have negligible knowledge-error32 (i.e.,error of 2�k), and will be simulatable in time poly(K) � 2k. Furthermore, the simulation willbe indistinguishable from the real interaction by any 2K�-size circuits. As stated above, weare not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatablein poly(K)-time).The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy;that is, circuits of size 2K� cannot distinguish commitments to two di�erent known values(with distinguishing gap better than 2�K�). Such a scheme can be constructed based on theDLP assumption utilized above.(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries ofk = K�=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is the31 This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [24]. Any protocolhaving the property will do.32 Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating proverwho does not know a Hamiltonian cycle. For a precise de�nition, see Appendix B.37

adjacency matrix of a random isomorphic copy of the graph obtained from the reduction.In case the output of the reduction is a graph with N vertices, the commitment scheme isapplied k �N2 times.) The commitment scheme is run with security parameter K.(pok2) KV \randomly" selects a sequence c = c1 � � � ck 2 f0; 1gk of k challenges. Actually, thesequence c is determined by applying the pseudorandom function f to the input (i.e., theindex i) and the history so far (of the POK protocol).(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if cj = 0 thenKP decommits to all entries of the jth matrix and also reveals the isomorphism; otherwise, KPdecommits only to the entries corresponding to the Hamiltonian cycle. Note that the locationof the latter entries is determined by applying the isomorphism to the original cycle.)(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case cj = 0, KV checksthat the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrixrepresenting the reduced graph. In case cj = 1, KV checks that all revealed entries are indeed1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)The weak zero-knowledge property is easy to establish. That is, we need and do show that theinteraction with any (possibly dishonest but computationally-bounded) knowledge-veri�er can besimulated in time poly(k) � 2k. This follows by merely using the standard simulator procedure(cf., [28, 24]), which merely selects a random string c 2 f0; 1gk and \simulates" Step (pok1) sothat it can answer the challenge c (but not any other challenge). The strong computational-secrecyof the commitment scheme (used with security parameterK) guarantees that the knowledge-veri�ercannot guess c better than with probability approximately 2�k, and so we will succeed with over-whelming probability after at most k �2k tries. Standard arguments will also show that the output ofthe simulator cannot be distinguish from the real interaction by circuits of size 2K��1 > 22k. Thus,this simulator can be plugged into the argument given above for computational-soundness in thecase of preprocessing, and yield that the augmented protocol maintains computational-soundness:The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, andwhat the simulation says is that in case the veri�er (playing the knowledge-prover) follows theprotocol then whatever the knowledge-veri�er can compute after interacting with it, can also becomputed with overhead of at most poly(k) � 2k on input the index i.We now turn to establish the resettable zero-knowledge property of the entire protocol. Asa �rst step towards this goal, we establish that the above sub-protocol is indeed a POK withknowledge-error 2�k (see Def. B.6 in Appendix B). In other words, we analyze a single execution ofthe sub-protocol, and thus we may assume that Step (pok2) is replaced by sending a truly randomstring c. This assumption is not valid when the sub-protocol is run many times, and this is whythe simpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.Without loss of generality, consider a deterministic cheating knowledge-prover, and let C bethe message sent by it in Step (pok1). Consider the probability space of all 2k possible challengesc 2 f0; 1gk that KV may send in Step (pok2). Say that a challenge c 2 f0; 1gk is successful forthis knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The keyobservation is that given the knowledge-prover's answer to any two di�erent successful challengeswe can easily reconstruct the Hamiltonian cycle (and from it the trapdoor).33 To extract theHamiltonian cycle we just invoke the knowledge-prover many times, each time it answers with the33 This is the case since each such pair of challenges di�ers in some location and from the two answers to thislocation we may reconstruct the Hamiltonian cycle. 38

same Step (pok1) message but then we challenge it with a new randomly chosen c (i.e., chosenindependently of all prior attempts). If we ever obtain its answer to two successful challengesthen we are done. Denoting by p the probability that a uniformly chosen challenge is successful, weconclude that if p > 2�k then given oracle access to the knowledge-prover (played by the adversary)we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2�k). Bya trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelmingprobability runs for time poly(k)=p, and in case p > 2�k also retrieves the trapdoor.34The above argument would have su�ces if we were guaranteed that the adversary, when playingthe role of KP, never repeats the same Step (pok1) message (in two di�erent invocations of theentire protocol). Assuming that this is indeed the case avoids the subtle problem discussed in theprevious subsection. Still let use assume so and see how, under this unjusti�ed assumption (whichwill be removed later), the resettable zero-knowledge property follows.Consider a sequence of invocations of the main protocol. The simulator will proceed by sim-ulating one interaction after the other, where a single interaction is simulated as follows. Thesimulator starts by playing the role of KV in Step (1). In case KV rejects then the simulatorcomplete the simulation of the current interaction by announcing that the prover aborts it. Notethat this is exactly what would have happened in the real interaction. In case KV accepts, thesimulator will use the knowledge-extractor described above in order to extract the trapdoor of theindex i sent in Step (1). Here is where we use the assumption that the adversary does not repeatthe same Step (pok1) message. The point is that the knowledge-extractor described above willtry many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"function evaluated at a new point (here is where we use the \no repeat" clause), we may view thischallenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose thatthe cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,the simulator will always construct an aborting execution (just as in the real interaction). In casep > 2�k, with probability 1 � p the simulator will construct an aborting execution (just as in thereal interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent inStep (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the caseof preprocessing). Note that the expected number of steps required for the simulation in this caseis (1� p) �poly(k) + p � (poly(k)=p) = poly(k). The only case left is the one where p = 2�k. In thiscase, the simulator fails with probability p, which is negligible, and so its output is computationallyindistinguishable from a real interaction. We stress that in all cases the simulator runs in expectedtime poly(k).Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurswhen the adversary uses the same index and same Step (pok1) message in two di�erent interactionswith the prover. Furthermore, suppose that in the �rst interaction it fails to convince KV played bythe prover, but in the second it succeeds. The problem (avoided by the assumptions above) is thatwe cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second interaction, sincethe challenge is determined already by the �rst interaction. Thus, the simulator cannot completethe simulation of the second interaction, unless it \rewinds" upto the �rst interaction in whichthe same Step (pok1) message is used.35 This need to \rewind" interactions which were alreadycompleted may lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [12]. Whatsaves us here is that the number of times we possibly need to \rewind" is a-priori bounded by34 This can be done by using a time-out mechanism invoked when poly(k) � 2k steps are completed, and observingthat if p > 2�k then in fact p � 2 � 2�k and so (p� 2�k)�1 � 2=p.35 We comment that in general, a simulator for resettable zero-knowledge may not proceed by generating theinteractions one after the other without \rewinding" between di�erent interactions.39

the total number of indices in the public �le. (This is the key and only place where we use theassumption underlying the public-key model.)Resolving the problem { a sketch: Let us reproduce and further abstract the problem weneed to analyze. For sake of simplicity, we will consider only non-interleaving adversaries (yet thisassumption can be removed as in Section 5) We are dealing a game consisting of multiple (historydependent) iterations of the following steps, which depends on a random function f �xed once andfor all.(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pairis determined by applying the veri�er's strategy, V �, to the history of all previous iterations(of these steps).[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to theStep (pok1) message.](b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).[This corresponds to Step (pok2) of KV played by the prover.](c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)take place or it fails in which case the current execution is completed.[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment inStep (pok3), and to the continuation of the main protocol which takes place only in case theveri�er has done so.]We want to simulate an execution of this game, while having oracle access to the veri�er's strategy(but without having access to the prover's strategy, which enables the further steps referred to inStep (c) above). Towards this goal we are allowed to consider corresponding executions with otherrandom functions, f 0; f 00; :::, and the rule is that whenever we have two di�erent successes (i.e.,with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred toin Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of therest of the steps in the current interaction of the main protocol.]Thus, problems in simulating the above game occur only when we reach a successful Step (c).In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).In order to obtain such a di�erent success, we will try to run related simulations of the game. Oncewe �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in thesimulation temporarily suspended above. That is, a natural attempt at a simulation procedure isas follows. We simulate the iterations of the game one after the other, using a random functionf selected by us. Actually, the random function f is de�ned iteratively { each time we need toevaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne fat this point. As long as the current iteration we simulate fails, we complete it with no problem.Similarly, if the current iteration is successful relative to the current pair (i; C) and i is alreadycovered, then we can complete the execution. We only get into trouble if the current iterationis successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get icovered and then proceed. (Actually, as we shall see, covering any new element of I, not necessarilyi, will do.)Starting with all I uncovered, let us denote by p the probability that when we try to simulatethe game a success occurs. Conditioned on such a success occuring, our goal is to cover someelement of I within expected time poly(k)=p. Suppose we can do this. So in expected time40

(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire gameor got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in anattempt to simulate the game, but this time we have already i covered. Thus, we get into troubleonly if we reach a success relative to (i0; C) with i0 2 I 0 def= I n fig. Again, we may denote by p0 theprobability that when we try to simulate the game a success occurs with respect to some i0 2 I 0. Insuch a case, we try to cover some element of I 0, and again the same analysis holds. We may proceedthis way, in upto jIj + 1 phases, where in each phase we either complete a random simulation ofthe game or we get a new element of I covered in each iteration. Eventually, we do complete arandom simulation of the game (since there are more phases than new elements to cover). So,pending on our ability to cover new elements within time inversely proportional to the probabilitythat we encounter a success relative to a yet uncovered element, each phase requires poly(k) stepson the average. Thus, pending on the above, we can simulate the game within expected timepoly(k) � jIj = poly(k) (by the hypothesis regarding I).We now consider the task of covering a new element. Let us denote the set of currently uncoveredelements by U . Let H denote the pre�x of completed executions of the simulated game and let(i; C) = V �(H) be the current pair which is related to the current success, where i 2 U . To get icovered we do the following:1. Let H 0 be the maximal sequence of executions which does not contain (i; C) as a Step (a)message. Note that H 0 = H in case the current pair (i; C) does not appear as a Step (a)message in some (prior) execution in H.2. Rede�ne f 0(i; C) uniformly at random, and try to extend H 0 (wrt to the function f 0) just aswe do in the main simulation (where we currently try to extend H wrt to the function f).If during an attempt to extend H 0 we encounter a new (i.e., di�erent than above) successwith respect to the same pair (i; C) then i itself gets covered, and we have ful�lled our goal.Otherwise, we repeat the attempt to extend H 0 (with a new random choice for f 0(i; C)) aslong as we did not try more than k � 2k times. In case all attempts fail, we abort the entiresimulation.We will show that, for p > 2�k, we will get a new element covered while making (p� 2�k)�1tries, on the average.3. If during the current attempt to extend H 0 we encounter a success relative to some other pair(i0; C 0) 6= (i; C), where i0 (possibly equals i) is also currently uncovered, then we abort thecurrent extension of H 0 (and try a new one { again as long as k � 2k tries are made).7.3 Almost constant-round RZK under weaker assumptionsUsing a perfect commitment scheme which enjoys the trapdoor feature but not necessarily thestrong computational-binding feature, one may obtain resettable zero-knowledge computationally-sound proof system for NP in the public-key model. These protocols, however, have an unboundednumber of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){(6) of the main protocol as well as for the POK sub-protocol) rather that parallel repetitions. Thatis, both Steps (2){(6) of the main protocol and the POK sub-protocol consists of parallel executionsof a basic protocol, and what we suggest here is to use sequential repetitions instead. The numberof (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [24])also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, onemay use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol41

composed of parallel execution of p(n) = O(log n) copies of the basic protocol (of Blum). Thisyields a O(s(n))-round resettable zero-knowledge computationally-sound proof system for NP inthe public-key model, for any unbounded function s : N!N. In particular, we obtainTheorem 7.2 Let r : N!N be any unbounded function which is computable in polynomial-time,and suppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a r(�)-round resettable zero-knowledge computationally-sound proof system in the public-keymodel.Alternatively, we note that by using the perfect commitment scheme PC1 also in role of the(\weaker") scheme PC2, we obtain resettable zero-knowledge property also against subexponentialadversaries. Speci�cally, even adversaries of running-time bounded by 2k� = 2K�2 gain nothingfrom the interaction, where K (the primary security parameter), k = K� (the secondary securityparameter) and � (the exponent in the strong computational-binding feature) are as above.7.4 An alternative presentation of resettable zero-knowledge systemsAn alternative presentation of the above protocol may proceed as follows: Rather than relyingon general proofs of knowledge we introduce an additional requirement from the PC1 commit-ment scheme. The new feature referred to as One-Or-All asserts that obtaining two di�erentdecommitments to the same commitment allows to (feasibly) decommit any way one wants. Inour application, the veri�er is supposed to know the trapdoor to an instance of the PC1 scheme,allowing it to decommit any way it wants. Thus, if the veri�er demonstrates ability to decom-mit at will then this e�ectively yields a proof of knowledge of the trapdoor. Put in other words,if the simulator may obtain from the veri�er (by rewinding, which is not possible for the actualprover) two di�erent decommitments to the same commitment then it can later decommit at will.Of course, the veri�er's demonstration of ability to decommit at will should be performed in a\zero-knowledge" manner. The natural protocol is to have the veri�er commit to a k-bit string,and later decommit any way as required by the prover. The natural way to (weakly) simulate thisis to select at random a single k-bit string, commit to it and hope that the prover will require todecommit to this value.Details can be found in our original technical report [8].

42

References[1] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error inComputationally Sound Protocols? In 38th FOCS, pages 374{383, 1997.[2] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In CRYPTO88, Springer-VerlagLNCS403, pages 37{56, 1990[3] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February1982. See also SIGACT News, Vol. 15, No. 1, 1983.[4] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.In 20th STOC, pp. 103{112, 1988.[5] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J. Computing, Vol. 13, pages 850{864, 1984.[6] J. Boyar, M. Krentel and S. Kurtz. A Discrete Logarithm Implementation of PerfectZero-Knowledge Blobs. Jour. of Cryptology, Vol. 2, pp. 63{76, 1990.[7] G. Brassard, D. Chaum and C. Cr�epeau. MinimumDisclosure Proofs of Knowledge. JCSS,Vol. 37, No. 2, pages 156{189, 1988.[8] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge.ECCC, TR99-024, 1999. Also available from the Theory of Cryptography Library.[9] I. Damgard. Concurrent Zero-Knowledge in Easy in Practice. Theory of CryptographyLibrary, 99-14, June 1999. http://philby.ucsd.edu/cryptolib/1999.html.[10] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd STOC, pages542{552, 1991.[11] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for TimingConstraints. In Crypto98, Springer LNCS 1462.[12] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages409{418, 1998.[13] U. Feige. Ph.D. thesis, Weizmann Institute of Science.[14] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,Vol. 1, 1988, pages 77{94.[15] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In22nd STOC, pages 416{426, 1990.[16] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation andSignature Problems. In CRYPTO86, Springer-Verlag LNCS263, pages 186{189, 1987.[17] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Jour.of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.43

[18] O. Goldreich. Foundation of Cryptography { Fragments of a Book. Febru-ary 1995. Revised version, January 1998. Both versions are available fromhttp://theory.lcs.mit.edu/�oded/frag.html.[19] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,Vol. 33, No. 4, pages 792{807, 1986.[20] O. Goldreich, S. Goldwasser, and S. Micali. Interleaved Zero-Knowledge in the Public-KeyModel. ECCC, TR99-024, 1999. Also available from the Theory of Cryptography Library.[21] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge ProofSystems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167{189, 1996.[22] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.SIAM J. Computing, Vol. 25, No. 1, pages 169{192, 1996.[23] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21stSTOC, pages 25{32, 1989.[24] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validityor All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.691{729, 1991.[25] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Jour. of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[26] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages270{299, 1984.[27] S. Goldwasser and S. Micali. Patent applications on Internet Zero-knowledge Protocolsand Application (3/3/99) and Internet Zero-Knowledge and Low-Knowledge Proofs andProtocols (6/11/99).[28] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM J. Comput., Vol. 18, No. 1, pp. 186{208, 1989.[29] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. InCrypto98,[30] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of PseudorandomGenerator from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages1364{1396, 1999.[31] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity BasedCryptography. In 30th FOCS, pages 230{235, 1989.[32] J. Kilian, E. Petrank, and C. Racko�. Lower Bounds for Zero-Knowledge on the Internet.In 39th FOCS, pages 484{492, 1998.[33] M. Naor. Bit Commitment using Pseudorandom Generators. Jour. of Cryptology, Vol. 4,pages 151{158, 1991. 44

[34] R. Ransom and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. InEuroCrypt99, Springer LNCS 1592, pages 415{413.[35] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofsof Possession of Information. In 28th FOCS, pages 472{482, 1987.[36] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,1982.

45

Part IIIAppendicesThese appendices are reproduced from old versions; some inconsistencies with and repetitions ofthe main text may occur.Appendix A: Commitment SchemesWe formally de�ne the various types of commitment schemes used in the main text. We startwith the more standard notion of a commitment scheme in which secrecy is preserved only w.r.tcomputationally bounded adversaries, and later pass to the dual notion of a perfect commitmentscheme (in which secrecy is preserved in an information theoretic sense). Recall that the bindingproperty in standard schemes is absolute (i.e., information theoretical), whereas in perfect commit-ment schemes it holds only w.r.t computationally bounded adversaries. But before de�ning anyof these, let use de�ne a su�cient condition for the existence of all these schemes { a strong DLPassumption.A.1 The Strong DLP Intractability AssumptionThe Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, gis a primitive element in the multiplicative group modulo p, and y 2 Z�p, one has to �nd x suct thatgx � y (mod p). We assume that this task is intractable also in the special case where p = 2q+1and q is a prime too. Such p's are often called safe primes, and the above assumption is quitestandard. It follows that the same would hold when g is of order q and so is y. Finally, we assumethat intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.Thus we assume the following:The Strong DLP Assumption: For some � > 0, for every su�ciently large n, andevery circuit C of size at most 2n�Pr[C(p; g; gx mod p) = x] < 2�n�where the probability is taken uniformly over all n-bit long safe primes p, elements g oforder q def= (p� 1)=2, and x 2 Z�q.We comment that, although stronger than the standard assumption, the above Strong DLP As-sumption seems very reasonable.A.2 Standard Commitment SchemesBy a standard commitment scheme we refer to one providing computational-secrecy and absolute(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.De�nition A.3 (standard commitment scheme): A standard commitment scheme is a probabilisticpolynomial-time algorithm, denoted C satisfying:
46

(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1n; v)and C(1n; u) are computationally indistinguishable by circuits. That is, for every two polyno-mials p; q, all su�ciently large n's and all v; u 2 f0; 1gp(n) and every distinguishing circuit Dof size q(n), jPr[D(C(1n; v)) = 1] � Pr[D(C(1n; u)) = 1]j < 1q(n)(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1n; v) andC(1n; u) have disjoint support. That is, for every v; u and �, if Pr[C(1n; v) = �] andPr[C(1n; u) = �] are both positive then u = v.The way such a commitment scheme is used should be clear: To commit to a string v, under securityparameter n, the sender invokes C(1n; v) and sends the result as its commitment. The randomnessused by C during this computation, is to be recorded and can latter be used as a decommitment.A commitment scheme as above can be constructed based on any one-way permutation: Looselyspeaking, given a permutation f : D ! D with a hard-core predicate b (cf., [23]), one commits toa bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.A strong version of the standard commitment scheme requires computational-secrecy to holdalso with respect to subexponential-size circuits (i.e., replace the polynomial q above by a functionf of the form f(n) = 2n� , for some �xed � > 0). This is analogous to the strong computational-binding feature discussed below. The Strong DLP Assumption implies the existence of such strongcomputational-secrecy commitment schemes.A.3 Perfect Commitment SchemesWe start by de�ning two-round perfect commitment schemes. In such schemes the party's strategiesmay be represented by two algorithms, denoted (S;R), for sender and receiver. The sender has asecret input v 2 f0; 1g� and both parties share a security parameter n. Thus, the �rst messagesent (by an honest receiver) is R(1n), and the response by a sender wishing to commit to a value v(of length bounded by a polynomial in n) is S(1n; v; msg), where msg is the message received in the�rst round. To \de-commit" to a value v, the sender may provide the coin tosses used by S whencommitting to this value, and the receiver may easily verify the correctness of the de-committedvalue.De�nition A.4 (perfect two-round commitment scheme): A perfect two-round commitment schemeis a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfying:(Perfect) Secrecy: For every mapping R� (representing a computationally-unbounded cheatingreceiver), and for every v; u of equal poly(n)-length, the random variables S(1n; v; R�(1n)) andS(1n; u;R�(1n)) are statistically close. That is, for every two polynomials p; q, all su�cientlylarge n's and all v; u 2 f0; 1gp(n)X� jPr[S(1n; v; R�(1n)) = �]� Pr[S(1n; u;R�(1n)) = �] j < 1q(n)(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given themessage sent by the honest receiver, to answer in a way allowing it to later de-commit in twodi�erent ways. 47

In order to formulate the above, we rewrite the honest sender move, S(1n; v; msg), as con-sisting of uniformly selecting s 2 f0; 1gpoly(n;jvj), and computing a polynomial-time functionS0(1n; v; s; msg), where msg is the receiver's message. A cheating sender tries, given a receivermessage msg, to �nd two pairs (v; s) and (v0; s0) so that v 6= v0 and yet S0(1n; v; s; msg) =S0(1n; v0; s0; msg). This should be infeasible; that is, we require that for every polynomial-sizecircuit S� (representing a cheating sender invoked as part of a larger protocol), for everypolynomial p, all su�ciently large n'sPr[Vn 6= V 0n & S0(1n; Vn; Sn; R(1n)) = S0(1n; V 0n; S0n; R(1n))] < 1q(n)where (Vn; Sn; V 0n; S0n) = S�(1n; R(1n)).A perfect two-round commitment scheme can be constructed using any claw-free collection (cf., [21]).In particular, it can be constructed based on the standard assumption regarding the intractabilityof DLP (as the latter yields a claw-free collection). Combing the two constructions, we get thefollowing perfect two-round commitment scheme: On input a security parameter n, the receiverselects uniformly an n-bit prime p so that q def= (p� 1)=2 is prime, a element g of order q in Z�p, andz in the multiplicative subgroup of Z�p formed by g, and sends the triple (p; g; z) over. To committo a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise it halts announcingthat the receiver is cheating36), uniformly selects s 2 Zq, and sends gsz� mod p as its commitment.Additional features: The additional requirements assumed of the perfect commitment schemesin Section 7 can be easily formulated. The strong computational binding feature is formulated byextending the Computational Binding Property (of Def. A.4) to hold for subexponential circuits S�.Again, the Strong DLP Assumption yields such a stronger binding feature. The trapdoor featurerequires the existence of a probabilistic polynomial-time algorithm R that outputs pairs of stringsso that the �rst string is distributed as in R (above), whereas the second string allows arbitrarydecommiting. That is, there exists a polynomial-time algorithm A so that for every (msg; aux) inthe range of R(1n), every v; u 2 f0; 1gpoly(n), and every s 2 f0; 1gpoly(n;jvj), satis�esS0(1n; v; s; msg) = S0(1n; u; A(aux; (v; s); u); msg)That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment tothe value v (i.e., the message S0(1n; v; s; msg)). Thus, one may generate random commitments c(by uniformly selecting s and computing S0(1n; 0poly(n); s; msg)) so that later, with knowledge ofaux, one can decommit to any value u of its choice (by computing a = A(aux; (0poly(n); s); u)).The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,the known implementation for the random selection of z (in the subgroup generated by g) is toselect r uniformly in Z�q and set z = gr mod p. But in this case r is the trapdoor we need, sincegszv � gs+(v�u)rzu (mod p), and so we may decommit to u by presenting s+ (v � u)r mod q.Appendix B: Blum's Proof of KnowledgeFor sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The followingtext is reproduced from [18].36Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.48

B.1 Proofs of KnowledgePreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. Then R(x) def= fs : (x; s) 2 Rg and LR def= fx :9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomiallybounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that Ris an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-timealgorithm for deciding membership in R (i.e., LR 2 NP). In the sequel, we con�ne ourselves topolynomially bounded relations.We wish to be able to consider in a uniform manner all potential (knowledge) provers, withoutmaking distinction based on their running-time, internal structure, etc. Yet, we observe that theseinteractive machine can be given an auxiliary-input which enables them to \know" and to provemore. Likewise, they may be lucky to select a random-input which enables more than another.Hence, statements concerning the knowledge of the prover refer not only to the prover's programbut also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machineand all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,and consider both the corresponding accepting probability (of the veri�er) and the usage of this(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the followingde�nition.De�nition B.5 (message speci�cation function): Denote by Px;y;r(m) the message sent by ma-chine P on common-input x, auxiliary-input y, and random input r, after receiving messages m.The function Px;y;r is called the message speci�cation function of machine P with common-input x,auxiliary-input y, and random input r.An oracle machine with access to the function Px;y;r will represent the knowledge of machine P oncommon-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledgeextractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running timeof the extractor is inversely related to the corresponding accepting probability (of the veri�er).)Knowledge veri�ersNow that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.At �rst reading, the reader may set the function � to be identically zero.De�nition B.6 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error� if the following two conditions hold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Validity (with error �): There exists a probabilistic oracle machine K such that for everyinteractive machine P , every x 2 LR and every y; r 2 f0; 1g�, on input x and access to Px;y;rmachine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),where p is the probability that V accepts x when interacting with Px;y;r. More precisely:Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, wheninteracting with the prover speci�ed by Px;y;r. Then if p(x; y; r) > �(jxj) then, on input x and49

access to oracle Px;y;r, machine K outputs a solution s2R(x) within an expected number ofsteps bounded above by poly(jxj)p(x; y; r)� �(jxj)The oracle machine K is called a universal knowledge extractor.When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. Aninteractive pair (P; V) so that V is a knowledge veri�er for a relation R and P is a machinesatisfying the non-triviality condition (with respect to V and R) is called a system for proofs ofknowledge for the relation R.B.2 Blum's ProtocolIn the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language inNP). We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction B.7 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is a commitment to1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�eronly the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover alsosupplies the corresponding decommitments.� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. In both cases the veri�er checks that thedecommitments are proper (i.e., that they �ts the corresponding commitments). The veri�eraccepts if and only if the corresponding condition holds.We stress that the above protocol uses a standard commitment scheme.Proposition B.8 The protocol which results by k parallel repetitions of Construction B.7 is aproof of knowledge of Hamiltonicity with knowledge error 2�k. Furthermore if, for every positivepolynomial p, the commitment scheme used in Step (P1) maintain secrecy with respect to circuitsof size p(n) � 23k and distinguishing gap of 2�3k=p(n) then, for every positive polynomial q, theinteraction can be simulated in time poly(n) � 2k so that no circuit of size q(n) � 22k can distinguishthe simulation from the real interaction with gap of 2�2k=q(n) or more.50

