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1 IntroductionPerspective and Motivation. In this work, we examine the e�ects of computational restrictionson the number of examples needed for learning from random examples or membership queries. It haslong been known that there are concept classes, containing only concepts which are implementableby \small" Boolean circuits, which can be learned in the absence of computational restrictions, yetcannot be learned (using any hypothesis class) in polynomial time (under standard cryptographicassumptions) [Val84, KV94, AK91, Kha93]. Yet, these results do not answer the question of whetherthere are classes for which learning from a small set of examples is infeasible, but becomes feasiblewhen the learner has access to (polynomially) more examples. Such a phenomenon seems to bepresent in various learning problems (described below) and we focus on this tradeo� betweeninformation and computation.The most common method of learning from examples in the PAC setting is through the useof Occam algorithms [BEHW87, BEHW89]. These are algorithms which take as input a set oflabeled examples and output a concept from the target class which is consistent with the given setof examples. Blumer et.al. give an upper bound on the number of examples su�cient for an Occamalgorithm to provide a good hypothesis. This bound depends on the PAC accuracy and con�denceparameters and the Vapnik-Chervonenkis dimension (VC-Dimension) [VC71] of the target class.The general lower bound on the number of examples required for learning [EHKV89] nearly matches(within a logarithmic factor) the upper bound for Occam algorithms. Thus, the sample complexityfor learning is essentially tight when we have an algorithm which �nds a consistent concept fromthe target class.While Occam algorithms exist for all classes1, not all such algorithms are computationallye�cient. Yet, for some of these classes learning is still feasible, although the known computationallye�cient algorithms use more examples than does the Occam algorithm for the class. In thesesituations, computational restrictions appear to impair learning by requiring more data, but donot completely preclude learning. For example, it is NP-hard to �nd a k-term-DNF formula2consistent with a set of data labeled by a k-term-DNF formula [PV88]. The computationallye�cient algorithm most commonly used for learning k-term-DNF works by �nding a consistenthypothesis from an hypothesis class (kCNF) which strictly contains the target class. In usingthis larger class, the Occam algorithm requires a sample size dependent on nk (the VC-Dimensionof kCNF) as opposed to k � n (the VC-Dimension of k-term-DNF) as would be possible if thehypothesis class were k-term-DNF itself. Thus, although k-term-DNF learning is feasible, there isa gap between the sample size su�cient for learning k-term-DNF in the absence of computationalrestrictions and the sample size of known algorithms for computationally e�cient learning.3When the learner is allowed to make queries, we again see the phenomenon in which e�cientlearning seems to require more information than learning without such restrictions. One suchexample is the learning of deterministic �nite automata (DFAs). Angluin's algorithm for thisclass [Ang87] can be viewed as drawing the standard Occam-sized sample and outputting a DFAconsistent with it. But in order to e�ciently �nd this consistent DFA, the algorithm makes manyadditional membership queries.We also �nd computational restrictions to e�ect sample size when learning from examples1In this work, we restrict our attention to classes of functions that can be represented by polynomially sizedcircuits.2A k-term-DNF formula is a disjunctive normal form Boolean formula with at most constant k terms.3Note that the possibility remains of there being an algorithm which learns using the \Occam number of examples"but does not learn by outputting a consistent k-term-DNF formula.1



corrupted with noise. In the absence of computational restrictions, any PAC-learnable class canalso be learned in the presence of classi�cation noise rate � = 1=2� < 1=2 using a factor of �(1=2)more examples than the noise free case [Lai88, Tal94]. This increase is information theoreticallyrequired [Sim93, AD96]. Yet for many classes, when computation is restricted in the presenceof noisy data, the sample complexity of known algorithms is increased by more than �(1=2).Furthermore, this larger increase occurs even for classes which have computationally e�cient noise-free Occam algorithms with optimal sample complexity, i.e., classes with no gap in their noise-freesample complexities. One very simple class exhibiting these properties is the class of monotoneBoolean conjunctions.Thus, it appears that in a variety of learning models (PAC, PAC with queries, and PAC withnoise) there may exist a tradeo� between time and information { with unlimited time, a smallamount of information will su�ce, but with time restrictions, more information is required. Noneof the examples described above provably require the additional examples, yet researchers havebeen unable to close these gaps. In this work, we describe classes of functions for which we prove(based on cryptographic assumptions) a quantitative gap between the size of the sample requiredfor learning a class and the size of the sample required for learning it e�ciently.Summary of our results. We focus our attention on learning under the uniform distribution. Asdiscussed later in this section, this seems to be an appropriate and natural choice for demonstratingsample complexity gaps. Let C = SnCn be a concept class, where each Cn consists of Booleanfunctions over f0; 1gn. The (Information Theoretic) Sample Complexity of C, denoted itsc(C;n; �),is the sample size (as a function of n and �) needed for learning the class (without computationallimitations) under the uniform distribution with approximation parameter �, and con�dence 9=10.The Computational Sample Complexity of C, denoted csc(C;n; �), is the sample size needed forlearning the class in polynomial time under the uniform distribution with approximation parameter�, and con�dence 9=10. In both cases, when the class is clear, we may omit it from the notation.De�nition 1.1 (admissible gap functions): A function g : N�R7!R is called admissible if1. g(�; �) is polynomial-time computable.2. (bounded growth in n): For every � > 0, 1 � g(n; �) � poly(n).3. (monotonicity in �): For every �; �0 > 0 such that � < �0, g(n; �) � g(n; �0);4. (smoothness in �): there exists a constant a � 1 so that for every � > 0, g(n; �) � a � g(n; 2�).For example, the function g(n; �) def= nd�d0 is admissible, for every d; d0 � 0. Our main result is thatany admissible function can serve as a gap between the sample complexity of some concept classand the computational sample complexity of the same class. That is:Theorem 1.1 (basic model): Let g : N�R7!R be an admissible function, and k : N�R7!R beof the form k(n; �) = nd� , where d � 2. Suppose that one-way functions exist.4 Then there exists aconcept class C which has sample complexityitsc(n; �) = �(k(n; �))and computational sample complexitycsc(n; �) = �(g(n; �) � k(n; �)) :Furthermore, log2 jCnj = O(nd+1) and each function in Cn has a poly(n)-size circuit.4Here and in all our other conditional results, the computational sample complexity lower bounds hold for � =1=poly(n) under standard complexity assumptions (i.e., the existence of one-way functions.) For smaller values of �these bounds hold assuming slightly non-standard yet reasonable complexity assumptions.2



noise free noise rate � = 0:25ITSC CSC ITSC CSCItem 1 k(n; �) g1 � g2 � k(n; �) k(n; �) g1 � g22 � k(n; �)Item 2 k(n; �) k(n; �) k(n; �) k(n;�)2n2Figure 1: The results of Theorem 1.3 (with �-notation omitted). For general noise rate � =0:5�  � 0:25, both ITSC and CSC increase linearly in 1=2.In the above, and all subsequent theorems, one-way functions are merely used to construct pseu-dorandom functions [HILL, GGM86]. Assuming either that RSA is a one-way function or thatthe Di�e-Hellman Key Exchange is secure, one can construct pseudorandom functions in NC (cf.,[NR95]), and so all of our \gap theorems" will follow with concept classes having NC circuits.We next consider classi�cation noise at rate � < 12 . That is, the label of each example is ippedwith probability �, independently of all other examples. In this case we add  def= 12 � � > 0 as aparameter to the sample complexity functions (e.g., itsc(C;n; �; )). We obtain:Theorem 1.2 (noisy model): Let g : N�R7!R be an admissible function, and k : N�R2 7!R beof the form k(n; �; ) = n2�2 . where c � 2. Suppose that one-way functions exist. Then there existsa concept class C which, in the presence of noise at rate � = 12 � , has sample complexityitsc(n; �; ) = �(k(n; �; ))and computational sample complexitycsc(n; �; ) = �(g(n; �) � k(n; �; )) :Furthermore, each function in Cn has a poly(n)-size circuit.We stress that the above holds for every noise rate and in particular to the noise-free case (where� = 0 and  = 1=2). Thus, we have for every  > 0csc(n; �; )itsc(n; �; ) = �� csc(n; �)itsc(n; �)� = � (g(n; �))In particular, the computational sample complexity for moderate noise is of the same order ofmagnitude as in the noise-free case (i.e., csc(n; �; 14) = �(csc(n; �))). This stands in contrast tothe following theorem in which the ratio between the two (i.e., csc(n;�;14 )csc(n;�) ) may be arbitrarily large,while itsc(n; �; 14) = �(itsc(n; �)) still holds (as it always does). See Figure 1.Theorem 1.3 (noise, revisited): Let g1; g2 : N�R7!R be admissible functions, and k : N�R7!Rbe of the form k(n; �) = nd� , where d � 2. Suppose that one-way functions exist. Then1. there exists a concept class C which,� in the presence of noise at rate � = 12 �  � 14 , has sample complexityitsc(n; �; ) = �(k(n; �)=2)and computational sample complexitycsc(n; �; ) = �(g1(n; �) � (g2(n; �))2 � k(n; �)=2) ;� whereas the noise-free complexities areitsc(n; �) = �(k(n; �) and csc(n; �) = �(g1(n; �) � g2(n; �) � k(n; �))respectively. 3



Information Theoretic Computational MeasuresITSC = ITQC CQC CSCk(n; �) g1 � k(n; �) g1 � g2 � k(n; �)Figure 2: The results of Theorem 1.4 (with �-notation omitted).2. there exists a concept class C which,� in the presence of noise at rate � = 12 �  � 14 , has sample complexityitsc(n; �; ) = �(k(n; �)=2)and computational sample complexitycsc(n; �; ) = �(k(n; �)2n2 � 2 ) ;� whereas the noise-free complexities arecsc(n; �) = �(itsc(n; �)) = �(k(n; �)) :Furthermore, each function in Cn has a poly(n)-size circuit.Theorem 1.2 follows as a special case of Item 1 by setting g2 � 1. Using Item 2 we get that forevery � > 0 and for every  � 1=4, csc(n; �; ) = 
(csc(n; �)2��=2).We now turn to learning with membership queries. The (Information Theoretic) Query Complexityof C, denoted itqc(C;n; �), is the number of membership queries (as a function of n and �) neededfor learning the class (without computational limitations) under the uniform distribution withapproximation parameter �, and con�dence 9=10. The Computational Query Complexity of C, denotedcqc(C;n; �), is the number of queries needed for learning the class in polynomial time under theuniform distribution with approximation parameter �, and con�dence 9=10. We obtain (see alsoFigure 2):Theorem 1.4 (query model): Let g1; g2 : N�R7!R be two admissible functions, and k : N�R7!Rbe of the form k(n; �) = nd� , where d � 2. Suppose that one-way functions exist. Then there existsa concept class C which has query complexityitqc(n; �) = �(k(n; �)) = �(itsc(n; �))computational query complexity cqc(n; �) = �(g1(n; �) � k(n; �))and computational sample complexitycsc(n; �) = �(g1(n; �) � g2(n; �) � k(n; �)) :Furthermore, each function in Cn has a poly(n)-size circuit.Note that we may set g2 � 1 and obtaincsc(n; �) = �(cqc(n; �)) = �(g1(n; �) � itqc(n; �))(and itsc(n; �) = �(itqc(n; �))).Uniform vs. Distribution-Free Learning. Above, we show that in a variety of settings thereexists a concept class exhibiting a sample complexity gap when learning occurs with respect to theuniform distribution. We note that in all our theorems the information theoretic upper boundshold, within a factor of n, with respect to distribution-free learning.5 Thus, there exist concept5In Theorem 1.4 the upper bounds hold in the distribution-free case, without any extra factor.4



classes for which e�cient learning under the uniform distribution (is possible but) requires vastlylarger sample sizes than the distribution-free information theoretic upper bound.One may wonder whether there exists a concept class exhibiting similar sample complexitygaps with respect to every distribution. Clearly, degenerate distributions preclude such results.Alternatively, one may wonder whether, for every distribution, there exists a class that exhibitssample complexity gaps. Again, such results are precluded by degenerate distributions. Thus,we believe that an appropriate goal is to demonstrate gaps on �xed distributions, the uniformdistribution being the most natural and well studied.6Although the above notion of a gap cannot exist for a single concept class across all distributions,a di�erent notion of distribution-free gap can exist. Speci�cally, we may consider a gap between:(1) an upper bound on the information-theoretic distribution-free sample complexity; and (2) alower bound on the distribution free sample complexity of an e�cient learner that is tight (i.e., hasa matching upper bound). More precisely, let the (Distribution-Free Information Theoretic) SampleComplexity of C, denoted IT SC(C;n; �), be the sample size (as a function of n and �) needed forlearning the class (without computational limitations); and let the Distribution-Free ComputationalSample Complexity of C, denoted CSC(C;n; �), be the sample size needed for learning the class inpolynomial time. We stress that an upper bound for any of these measures refers to all possibledistributions, whereas a lower bound merely refers to one (possibly \pathological") distribution.In fact, such pathological distributions are used in the result below.Theorem 1.5 (distribution-free): Let p be a polynomial so that p(n) � n, and suppose that one-way functions exist. Then there exists a concept class C so that IT SC(n; �) = O(n=�) whereasCSC(n; �) = �(p(n)=�). Furthermore, each function in Cn has a poly(n)-size circuit.Note that the gap shown in the theorem is polynomially in n (independent of �). Thus, we donot get arbitrary admissible gaps as in Theorem 1.1. We note that the computational samplecomplexity under the uniform distribution for this class is �(p(n) �minflog(1=�); logp(n)g).Techniques. The basic idea is to consider concepts which consist of two parts: The �rst partof the concept is determined by a pseudorandom function (cf., [GGM86]), while the second partencodes the seed of such a function. Since it is infeasible to infer a pseudorandom function, thecomputational-bounded learner is forced to retrieve the seed of the function which is sparselyencoded in the second part. This sparse encoding makes retrieval very costly in terms of samplecomplexity; yet, the computationally-unbounded learner is not e�ected by it.The basic idea described above su�ces for establishing a gap between the computational samplecomplexity and the information-theoretic sample complexity for a �xed �. Additional ideas arerequired in order to have a construction which works for any �, and for which one may providetight (up to a constant factor) bounds on each of the two complexities. One of these ideas is theconstruction of concept classes, called equalizers, for which the computational sample complexityupper bound is of the same order as the information-theoretic lower bound. An result of this formfollows:Theorem 1.6 (equalizers): Let p(�) be any polynomial.1. (noisy-sample equalizer): There exists a concept class S = [nSn, with concepts realizable bypolynomial-size circuits, such thatitsc(S;n; �; ) = �(csc(S;n; �; )) = �(p(n)=�2) :6We note that our techniques may be used to show similar sample complexity gaps on distributions other thanthe uniform distribution. 5



2. (query equalizer): There exists a concept class S = [nSn, with concepts realizable bypolynomial-size circuits, such thatitqc(S;n; �) = �(csc(S;n; �)) = �(p(n)=�) :Another idea used in our proofs is the introduction and utilization of a novel (probabilistic)coding scheme. In addition to the standard coding theoretic requirements, this scheme has theproperty that any constant fraction of the bits in the (randomized) codeword yields no informationabout the message being encoded. We also use this coding scheme to obtain e�cient constructionsfor the Wire-Tap Channel Problem (cf., [Wyn75]) { see Proposition 2.2. We believe that thisprobabilistic coding scheme is of independent interest.Organization. After introducing the cryptographic tools we shall nee, we establish the separationof computational sample complexity from (IT) sample complexity in the basic model. This result(i.e., Theorem 1.1) may be derived as a special case of the other results, but we chose to presenta self-contained and simpler proof of the separation in the basic model: All that is needed is ournew coding scheme (presented in Section 2), and the basic construction (presented in Section 3).To establish separation in the noise and query models, we use a more general construction. Thisconstruction utilizes the Great Equalizer (of Theorem 1.6 presented in Section 4). The generalconstruction itself is presented in Section 5 and is used to derive Theorems 1.1 through 1.4.Theorem 1.5 is proven in Section 6. We note that this proof is much simpler than any otherproof in the paper and that it can be read without reading any of the other sections.2 Cryptographic ToolsIn subsection 2.1 we review known de�nitions and results regarding pseudorandom functions. Insubsection 2.2 we present a computationally e�cient (randomized) coding scheme which on top ofthe standard error-correction features has a secrecy feature. Speci�cally, a small fraction of (theuncorrupted) bits of the codeword yield no information about the message being encoded.2.1 Pseudorandom FunctionsLoosely speaking, pseudorandom functions are easy to select and evaluate, yet look as randomfunctions to any computationally restricted observer who may obtain their value at inputs of itschoice.De�nition 2.1 (pseudorandom functions [GGM86]): Let ` : N 7!N be a polynomially-boundedlength function, and F = fFn : n 2 Ng where Fn = ff� : �2f0; 1gng is a (multi)set of 2n Booleanfunctions over the domain f0; 1g`(n). The family F is called a pseudorandom family if� Easy to Evaluate: There exist a polynomial-time algorithm A so that A(�; x) = f�(x), forevery � 2 f0; 1g� and x 2 f0; 1g`(j�j). The string � is called the seed of f�.� Pseudorandomness: For every probabilistic polynomial-time oracle machine M , every positivepolynomial p and all su�ciently large n's��Prf2Fn(M f (1n)=1)� Prg2Rn(M g(1n)=1)�� < 1p(n)where Rn denotes the set of all (22`(n)) Boolean functions over the domain f0; 1g`(n).6



Pseudorandom functions exists if and only if there exist one-way functions (cf., [GGM86] and[HILL]). Pseudorandom functions which can be evaluated by NC circuits (one circuit per eachfunction) exist7, assuming either that RSA is a one-way function or that the Di�e-Hellman KeyExchange is secure (cf., [NR95]).2.2 A Probabilistic Coding SchemeWe present an e�cient probabilistic encoding scheme having constant rate (information/codewordratio), constant (e�cient) error-correction capability for which a (small) constant fraction of thecodeword bits yield no information about the plain message. Note that a scheme as described abovecannot be deterministic (as each bit in a deterministic coding scheme carries information).Theorem 2.1 There exist constants crate; cerr; csec < 1 and a pair of probabilistic polynomial-timealgorithms, (E;D), so that1. Constant Rate: jE(x)j= jxj=crate, for all x 2 f0; 1g�.2. Linear Error Correction: for every x 2 f0; 1g� and every e 2 f0; 1gjE(x)j which has at mostcerr � jE(x)j ones, Pr(D(E(x)� e) = x) = 1where �� � denotes the bit-by-bit exclusive-or of the strings � and �. Algorithm D is deter-ministic.3. Partial Secrecy: Loosely speaking, a substring containing csec�jE(x)j bits of E(x) does not yieldinformation on x. Namely, let I be a subset of f1; :::; j�jg, and let �I denote the substring of �corresponding to the bits at locations i 2 I. Then for every n 2 N , m = n=crate, x; y 2 f0; 1gn,I 2 fJ � f1; :::;mg : jJ j � csec �mg, and � 2 f0; 1gjIj,Pr(E(x)I = �) = Pr(E(y)I = �)Furthermore, E(x)I is uniformly distributed over f0; 1gjIj.In addition, on input x, algorithm E uses O(jxj) coin tosses.Items 1 and 2 are standard requirements of Coding Theory, �rst met by Justesen [Jus72]. What isnon-standard in the above is Item 3. Indeed, Item 3 is impossible if one insists that the encodingalgorithm (i.e., E) be deterministic.Proof: Using a \nice" error correcting code, the key idea is to encode the information by �rstaugmenting it by a su�ciently long random padding. To demonstrate this idea, consider an 2n-by-m matrix M de�ning a constant-rate/linear-error-correction (linear) code. That is, the stringz 2 f0; 1g2n is encoded by z �M . Further suppose that the submatrix de�ned by the last n rows ofM and any csec �m of its columns is of full-rank (i.e., rank csec �m). Then, we de�ne the followingprobabilistic coding, E, of strings of length n. To encode x 2 f0; 1gn, we �rst uniformly selecty 2 f0; 1gn, let z = xy and output E(x) = z �M . Clearly, the error-correction features of M areinherited by E. To see that the secrecy requirement holds consider any sequence of csec �m bits inE(x). The contents of these bit locations is the product of z by the corresponding columns in M ;that is, z �M 0 = x � A + y � B, where M 0 denotes the submatrix corresponding to these columnsin M , and A (resp., B) is the matrix resulting by taking the �rst (resp., last) n rows of M 0. By7 Actually, these circuits can be constructed in polynomial-time given the seed of the function.7



hypothesis B is full rank, and therefore y � B is uniformly distributed (and so is z �M 0 regardlessof x).What is missing in the above is a speci�c construction satisfying the hypothesis as well as allow-ing e�cient decoding. Such a construction can be obtained by mimicking Justesen's construction[Jus72]. Recall that Justesen's Code is obtained by composing two codes: Speci�cally, an outerlinear code over an n-symbol alphabet is composed with an inner random linear code.8 The outercode is obtained by viewing the message as the coe�cients of a polynomial of degree t � 1 overa �eld with � 3t elements, and letting the codeword consists of the values of this polynomial atall �eld elements. Using the Berlekamp-Welch Algorithm [BW86], one can e�ciently retrieve theinformation from a codeword provided that at most t of the symbols (i.e., the values at �eld el-ements) were corrupted. We obtain a variation of this outer-code as follows: Given x 2 f0; 1gn,we set t def= 2n= log2(2n), and view x as a sequence of t2 elements in GF(3t).9 We uniformly selecty 2 f0; 1gn and view it as another sequence of t2 elements in GF(3t). We consider the degree t� 1polynomial de�ned by these t elements, where x corresponds to the high-order coe�cients and yto the low order ones. Clearly, we preserve the error-correcting features of the original outer code.Furthermore, any t=2 symbols of the codeword yield no information about x. To see this, notethat the values of these t=2 locations are obtained by multiplying a t-by-t=2 Vandermonde withthe coe�cients of the polynomial. We can rewrite the product as the sum of two products the �rstbeing the product of a t=2-by-t=2 Vandermonde with the low order coe�cients. Thus, a uniformdistribution on these coe�cients (represented by y) yields a uniformly distributed result (regardlessof x).Next, we obtain an analogue of the inner code used in Justesen's construction. Here the aim isto encode information of length ` def= log2 3t (i.e., the representation of an element in GF(3t)) usingcodewords of length O(`). Hence, we do not need an e�cient decoding algorithm, since MaximumLikelihood Decoding via exhaustive search is a�ordable (as 2` = O(t) = O(n)). Furthermore, anycode which can be speci�ed by log(n) many bits will do (as we can try and check all possibilitiesin poly(n)-time), which means that we can use a randomized argument provided that it utilizesonly log(n) random bits. For example, we may use a linear code speci�ed by a (random) 2`-by-4`Toeplitz matrix.10 Using a probabilistic argument one can show that with positive probability sucha random matrix yields a \nice" code as required in the motivating discussion.11 In the rest of thediscussion, one such good Toeplitz matrix is �xed.We now get to the �nal step in mimicking Justesen's construction: the composition of the twocodes. Recall that we want to encode x 2 f0; 1gn, and that using a random string y 2 f0; 1gn wehave generated a sequence of 3t values in GF(3t), denoted x1; :::; x3t, each represented by a binarystring of length `. (This was done by the outer code.) Now, using the inner code (i.e., the Toeplitzmatrix) and additional 3t random `-bit strings, denoted y1; :::; y3t, we encode each of the above xi'sby a 4`-bit long string. Speci�cally, xi is encoded by the product of the Toeplitz matrix with thevector xiyi.Clearly, we preserve the error-correcting features of Justesen's construction [Jus72]. The Secrecycondition is shown analogously to the way in which the Error Correction feature is establishedin [Jus72]. Speci�cally, we consider the partition of the codeword into consecutive 4`-bit long8 Our presentation of Justesen's Code is inaccurate but su�ces for our purposes.9Here we assume that 3t is a prime power. Otherwise, we use the �rst prime power greater than 3t. Clearly, thishas a negligible e�ect on the construction.10 A Toeplitz matrix, T = (ti;j), satis�es ti;j = ti+1;j+1, for every i; j.11 The proof uses the fact that any (non-zero) linear combination of rows (columns) in a random Toeplitz matrixis uniformly distributed. 8



subsequences corresponding to the codewords of the inner code. Given a set I of locations (asin the secrecy requirement), we consider the relative locations in each subsequence, denoting theinduced locations in the ith subsequence by Ii. We classify the subsequences into two categoriesdepending on whether the size of the induced Ii is above the secrecy threshold for the inner codeor not. By a counting argument, only a small fraction of the subsequences have Ii's above thethreshold. For the rest we use the Secrecy feature of the inner code to state that no informationis revealed about the corresponding xi's. Using the Secrecy feature of the outer code, we concludethat no information is revealed about x.Efficient coding for the Wire-Tap Channel Problem: Using Theorem 2.1, we obtain ane�cient coding scheme for (a strong version of) the Wire-Tap Channel Problem (cf., [Wyn75]).Actually, we consider a seemingly harder version introduced by Csisz�ar and K�orner [CK78]. To thebest of our knowledge no computationally e�cient coding scheme was presented for this problembefore.12Proposition 2.2 Let (E;D) be a coding scheme as in Theorem 2.1 and let bscp(�) be a randomprocess which represents the transmission of a string � over a Binary Symmetric Channel withcrossover probability13 p. Then,1. Error Correction: For every x 2 f0; 1g�Pr(D(bsc cerr2 (E(x))) = x) = 1� exp(�
(jxj))2. Secrecy: For every x 2 f0; 1g�X�2f0;1gjE(x)j ���Pr(bsc 12� csec4 (E(x)) = �) � 2�jE(x)j���is exponentially vanishing in jxj.Proof: Item 1 follows by observing that, with overwhelming high probability, the channel com-plements less than a cerr=2 fraction of the bits of the codeword. Item 2 follows by representingbsc(1�)=2(�) as a two-stage process: In the �rst stage each bit of � is set (to its current value)with probability , independently of the other bits. In the second stage each bit which was not setin the �rst stage, is assigned a uniformly chosen value in f0; 1g. Next, we observe that, with over-whelming high probability, at most 2jE(x)j= csecjE(x)j bits were set in the �rst stage. Supposewe are in this case. Then, applying Item 3 of Theorem 2.1, the bits set in Stage 1 are uniformlydistributed regardless of x, and due to Stage 2 the un-set bits are also random.Remark 2.3 The above proof can be easily adapted to assert that, with overwhelming high prob-ability, no information about x is revealed when obtaining both csec2 � jE(x)j of the bits of E(x) aswell as the entire bsc 12� csec8 (E(x)).12We note that Maurer has shown that this version of the problem can be reduced to the original one by using bi-directional communiaction [Mau91]. Cr�epeau (private comm., April 1997) has informed us that, using the techniquesin [BBCM95, CM97], one may obtain an alternative e�cient solution to the original Wire-Tap Channel Problemagain by using bi-directional communiaction.13The crossover probability is the probability that a bit is complemented in the transmission process.9



3 Proof of Theorem 1.1We start by describing a construction which satis�es the gap requirement of Theorem 1.1 for a�xed �, say � = 0:1. That is, we only show that there exists a concept class C, which for � = 0:1,has sample complexity itsc(n; �) = �(k(n; �)) and computational sample complexity csc(n; �) =�(g(n; �) � k(n; �)). The construction is later generalized to handle variable �.3.1 Motivation: Construction for constant �We view a function f 2 Cn as an array of 2n bits. This array is divided into the following three(consecutive) slices which have sizes 2n�1, 2n�2 and 2n�2, respectively.Slice I: This slice, called the pseudorandom slice, is determined by a pseudorandom function fs :f0; 1gn�1! f0; 1g, where the seed s is of length n. (See subsection 2.1.)Slice II: This slice, called the seed encoder, is determined by the abovementioned seed s and anadditional string r of length O(n). More precisely, �rst we employ the probabilistic encodingscheme of subsection 2.2 to encode the message s using r as the randomness required bythe scheme. The result is a codeword of length m def= O(n). Next we repeat each bit of thecodeword in 2n�2g(n;0:1)�k(n;0:1) speci�ed locations. All other locations in this slice are set to zero.Slice III: This slice, called the sample equalizer, is determined by a binary string u of lengthk(n; 0:1). The slice consists entirely of k(n; 0:1) blocks of equal length, each repeating thecorresponding bit of u. The purpose of this slice is to dominate the (information theoretic)sample complexity, and allow us to easily derive tight bounds on it.Information Theoretic Bounds. Applying Occam's Razor [BEHW87] to the class C, we obtainitsc(C;n; 0:1) = O(log jCnj) = O(n + O(n) + k(n; 0:1)) = O(k(n; 0:1)) where the last equality isdue to k(n; 0:1) > n. On the other hand, in order to learn a function in the class with error atmost 0:1, it is necessary to learn Slice III with error at most 0:4. Thus, by virtue of Slice III alone,we have itsc(C;n; 0:1)� itsc(Slice III;n; 0:4)� 0:2 � k(n; 0:1)where the last inequality is due to the fact that learning a random string with error � requiresobtaining at least 1 � 2� of its bits. Thus, we have established the desired information-theoreticbounds. We now turn to analyze the computational sample complexity.Computational Lower Bound. The computationally bounded learner cannot learn Slice I fromexamples (or even queries) in the slice. Still, it must learn Slice I with error at most 0:2. Hence, therole of Slice I is to force the computationally bounded learner to obtain the function's seed fromSlice II. By Item 3 of Theorem 2.1, in order to attain any information (from Slice II) regardingthe seed, the learner must obtain 
(n) bits of the codeword (residing in Slice II). By Item 1 ofTheorem 2.1, this means obtaining a constant fraction of the bits of the codeword. Recall that theprobability of getting any bit in the codeword is O(n)g(n;0:1)�k(n;0:1). Therefore, by a Cherno� Bound,for every fraction � < 1, there exists a constant � < 1, such that the probability of obtaining afraction � of the codeword given (� � g(n; 0:1) � k(n; 0:1)) examples, is exponentially small. Thus,csc(C;n; 0:1) = 
(g(n; 0:1) � k(n; 0:1)).Computational Upper Bound. By Cherno� Bound a sample of O(g(n; 0:1) �k(n; 0:1)) examplescontains, with overwhelmingly high probability, an occurrence of each bit of the codeword of the10



seed. Thus, by (a special case of) Item 2 of Theorem 2.1, the learner can e�ciently retrieve the seedand so derive all of Slices I and II of the concept. However, by g(n; 0:1)� 1, the above sample willalso allow obtaining (with high probability) all but at most a 0:1 fraction of the bits in Slice III,and thus csc(C;n; 0:1) = O(g(n; 0:1) � k(n; 0:1)).3.2 General Construction { Variable �We adopt the basic structure of the construction above, except that each of the three slices is furthersubpartitioned into blocks. Speci�cally, each slice has t def= n � log2O(n) (consecutive) blocks, sothat each block corresponds to a di�erent possible value of � = 2�i, for i = 1; :::; t. We start with adetailed description of each of the three slices (see Figure 1).
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e Figure 1: Construction for Theorem 1.1Slice I: the Pseudorandom Part. The ith block has size 2n�1�i and is determined by apseudorandom function fsi : f0; 1gn�1�i ! f0; 1g, where the seed si is of length n. Note that theblocks are shrinking in size, and that they are all pseudorandom.Slice II: the Seeds Encoder. Here the blocks are of equal size B def= 1t � 2n�2. The ith blockencodes the ith seed, si, using an additional string ri of length O(n). Let ei be the codeword obtainedby employing the probabilistic encoding scheme (of Theorem 2.1) on input si using randomness ri.Recall that m def= jeij = O(n). The ith block is further divided into m (consecutive) information�elds, each of size 2n�2g(n;2�i)�k(n;2�i) , and an additional empty �eld (of size B � m�2n�2g(n;2�i)�k(n;2�i)). Thusthe m information �elds have relative density m�tg(n;2�i)�k(n;2�i) = �( n2g(n;2�i)�k(n;2�i)) with respect tothe total size B of the block. All bits in the jth information �eld are set to the value of the jth bitof ei, and all bits in the empty �eld are set to zero.Slice III: the Sample Equalizer. The ith block has size Bi def= 2n�2�i and is determined bya binary string ui of length K def= 2�i � k(n; 2�i) = nd. The ith block is further divided into K(consecutive) sub-blocks, each of size BiK . All bits in the jth sub-block are set to the value of thejth bit of ui. Note that the blocks are shrinking in size, and that for each block it is possible toobtain most bits in the block by viewing �(K) random examples residing in it.We �rst observe that Slice III above gives rise to a concept class for which tight bounds, of theform k(n; �) = poly(n)=�, on the information theoretic and computational sample complexities, canbe given. 11



Proposition 3.1 For Slice III described above we have:1. itsc(Slice III;n; 4�) = 
(k(n; �)).2. csc(Slice III;n; �) = O(k(n; �)).Proof: Item 1. Let i def= blog2(1=8�)c. In order to learn Slice III with error at most 4�, onemust learn the ith block reasonably well. Speci�cally, one must obtain examples from at leasthalf of the K sub-blocks of the ith block, and hence must have at least K=2 examples in the ithblock. By Cherno� Bound, this implies that the total number of random samples must be at least2i � K4 = 2i�2� � k(n; �) > 2�7 � k(n; �). Item 1 follows.Item 2. On the other hand, we consider the fraction of the third slice that is determined (withconstant probability close to 1) given a sample of 16 �k(n; �) = 16K=� random examples. It su�cesto show that the total area left undetermined in the �rst ` def= dlog2(4=�)e blocks is at most an �=2fraction of the total domain (since the remaining blocks cover at most an �=2 fraction of the total).Fixing any i � `, we consider the expected number of sub-blocks determined in the ith blocks (outof the total K sub-blocks). A sub-block is determined if and only if we obtain a sample in it, andthe probability for the latter event not to occur in 16K=� trials is�1� 2�iK �16K=� = exp�� 162i�� (1)It follows that the expected fraction of bits which are not determined in the �rst ` blocks is boundedabove by X̀i=1 2�i � 2� 162i� = `�1Xj=0 2�(`�j) � 2� 162`�j �2�`+2 (2)= 2�` � `�1Xj=0 2j � 2�2j+2 (3)< �4 � 2�4 1Xj=0 2�j (4)< �32 (5)where Eq. (4) follows from the fact that 8j � 0, 2j�4�2j � 2�4 � 2�j. Item 2 follows.Lemma 3.1 The concept class described above has (information theoretic) sample complexityitsc(n; �) = �(k(n; �)).Proof: Clearly, it su�ces to learn each of the three slices with error �. Applying Occam's Ra-zor [BEHW87] to Slices I and II of the class, we obtainitsc(Slices I and II;n; �) = O(n2=�) = O(k(n; �))where the last equality is due to the hypothesis regarding the function k(�; �) (i.e., that it is 
(n2=�)).Using Item 2 of Proposition 3.1, we obtain itsc(Slice III;n; �) � csc(Slice III;n; �) = O(k(n; �)) ,and itsc(n; �) = O(k(n; �)) follows. (Note that in order to obtain the desired, tight bound we cannotsimply apply Occam's Razor to Slice III since it is determined by roughly 2n � K = 2n � �k(n:�)bits.) 12



On the other hand, in order to learn a function in the class, we must learn Slice III with errorat most 4�. Using Item 1 of Proposition 3.1, we obtain itsc(Slice III;n; 4�) = 
(k(n; 4�)), anditsc(n; �) = 
(k(n; 4�)) = 
(k(n; �)) follows.Lemma 3.2 The concept class described above has computational sample complexity csc(n; �) =�(g(n; �) � k(n; �)).We stress that this lemma, as well as all subsequent lemmas which refer to computational complexitylower bounds, holds provided Slice I is indeed determined by a pseudorandom function.Proof: Using Item 2 of Proposition 3.1, we have that csc(Slice III;n; �) = O(k(n; �)), and usingg(n; �) � 1 we infer that Slice III can be e�ciently learned with � error given a sample of sizeO(g(n; �) � k(n; �)). We next show that such a sample su�ces for learning Slice I and Slice II aswell. Since the information �elds in the ith block of Slice II have density bounded above by 2�i, inorder to learn Slice II with error at most �, it su�ces to learn the �rst ` def= dlog2(4=�)e with errorat most �=2. However, such an approximation might not su�ce for learning Slice I su�ciently well.Nonetheless, we next show that a sample of size O(g(n; �)�k(n; �)) su�ces for e�ciently determining(exactly) the �rst ` seeds (residing in the �rst ` blocks of Slice II) and thus determining the �rst `blocks of Slice I.Let i � ` and consider the m information �elds in the ith block of the Seed Encoder. Supposethat for some constant c0 (to be speci�ed), we have 2c0 � (g(n; �) � k(n; �)) random examples. Thenthe expected number of examples residing in the information �elds of the ith block is2c0 � (g(n; �) � k(n; �)) � mg(n; 2�i) � k(n; 2�i) : (6)Since g(n; �) � k(n; �) = 
(g(n; 2�i)k(n; 2�i)), for a suitable constant c00 (the depends on c0 and onthe constants in the omega notation), this expected number is 2c00m. With overwhelmingly highprobability (i.e., 1 � exp(�
(m))), there are at least c00m examples in the information �elds ofthe ith block (for every i � `). We set c0 so that c00 will be such that, with overwhelmingly highprobability, such a sample will miss at most cerrm of these �elds, where cerr is the constant in Item 2of Theorem 2.1 (e.g., c00 = 2=cerr will su�ce). Invoking Item 2 of Theorem 2.1 (for the special casein which there are no errors but part of the code-word is missing), we obtain the seed encoded inthe ith block of Slice II. Since the probability of failure on a particular block is negligible, with veryhigh probability we obtain the seeds in all the �rst ` blocks of Slice II. This concludes the proof ofthe upper bound.We now turn to the lower bound and let i def= blog2(1=4�)c. Considering the ith block of Slice I, wewill show that too small a sample does not allow information regarding the ith seed to be obtainedfrom Slice II. This will lead to the failure of the computational bounded learner, since without suchinformation the ith block of Slice I looks totally random (to this learner). Speci�cally, let csec bethe constant in Item 3 of Theorem 2.1, and let c0 = 2=csec. Suppose the learner is givenc00 � g(n; �) � k(n; �) < c0 � g(n; 2�i)k(n; 2�i) (7)random examples. (The constant c00 is such that the last inequality holds.) Then, using a Cherno�Bound we infer that, with overwhelmingly high probability, we will have at most2c0 � (g(n; 2�i) � k(n; 2�i)) � mg(n; 2�i) � k(n; 2�i) = 2c0m = csecm (8)13



random examples in the information �elds of the ith block of Slice II. Invoking Item 3 of Theo-rem 2.1, this yields no information regarding the seed encoded in the ith block of Slice II. Thus,the computationally bounded learner cannot predict any unseen point in the ith block of Slice Ibetter than at random. This means that its error is greater than allowed (i.e., � 2�i�1 > �). Thus,csc(n; �) > c00 � g(n; �)k(n; �), where c00 is a constant as required.4 The Two Equalizers (Proof of Theorem 1.6)In this section we show that : (1) the sample equalizer (i.e. Slice III) described in Section 3.2 canbe used to prove the �rst item in Theorem 1.6 (noisy-sample equalizer); (2) another construction,based on interval functions can be used to prove the second item of the theorem (query equalizer).4.1 Noisy-Sample Equalizer (Item 1 of Theorem 1.6)As noted above, we use Slice III of the construction in Section 3.2. Here we think of a concept inthe class S = [nSn as being an array of size 2n (as opposed to 2n�2 when it serves as the thirdslice of a concept). The number of sublocks in each of the t = n � O(log(n)) blocks is p(n). Theproof follows the structure of the proof of Proposition 3.1.Lemma 4.1 itsc(S; n; �; ) = 
 �p(n)�2 � :Proof: Let i def= blog2(1=2�)c. In order to learn a function in the class Sn, one must learnthe ith block reasonably well. Speci�cally, one must obtain su�ciently many examples from theith block, or else the information we obtain on the bits residing in this block is too small. Inparticular, we claim that we must have at least 
(p(n)=2) examples in the ith block. We prove theclaim by noting that it corresponds to the classical Information Theoretic measure of the mutualinformation (cf., [CT91]) that these samples provide about the string residing in this block. Eachexample provides information on a single bit residing in the block and the amount of information ismerely the capacity of a Binary Symmetric Channel with crossover probability � = 12 � . That is,each example yields 1�H2(�) bits of information, where H2 is the binary entropy function, whichsatis�es 1�H2(0:5� ) � �(2). The claim follows by additivity of information.Let c > 0 be a constant so that we must have at least p(n)=c2 examples in the ith block.Then, in order to have (with high probability) at least p(n)=c2 examples in the ith block, the totalnumber of random samples must be at least 2i � p(n)2c2 = 
 �p(n)�2 �.Lemma 4.2 csc(S; n; �; ) = O �p(n)�2 � :Proof: We consider the fraction of a concept in Sn that can be correctly inferred by a sample ofO(p(n)=�2) random examples. It su�ces to show that the total area left incorrectly inferred inthe �rst ` def= dlog2(4=�)e blocks is at most an �=2 fraction of the total domain (since the remainingblocks cover at most an �=2 fraction of the total). Fixing any i � `, we consider the expectednumber of sub-blocks incorrectly inferred in the ith block (out of the total p(n) sub-blocks). We usethe obvious inference rule { a majority vote. Thus, a sub-block is correctly inferred if and only if astrict majority of the examples obtained from it are labeled correctly. (Having obtained examplesfrom this sub-block is clearly a necessary condition for having a strict majority.) Using a Cherno�bound, the probability that we do not have the correct majority in O(p(n)=�2) trials is at mostexp(�
(2�i+1=�)). As in the proof of Proposition 3.1, it follows that the expected fraction of bits14



that are incorrectly inferred in the �rst ` blocks is bounded above by �=20 and the Lemma follows.4.2 Query Equalizer (Item 2 of Theorem 1.6)For every n, we consider the following concept class Sn. Each concept in the class consists of p(n)blocks of equal size Q def= 2n�2=p(n). Each block corresponds to an interval function. Namely,the bit locations in each block are associated with [Q] def= f1; :::; Qg, and the bits themselves aredetermined by a pair of integers in [Q]. If the ith block is associated with a pair (ui; vi), then thejth bit in this block is 1 if and only if ui � j � vi. Note that pairs (ui; vi) with ui > vi determinean all-zero block.Lemma 4.3 itqc(S; n; �) = 
(p(n)=�) :Proof: We start by bounding the expected relative error of the algorithm on a single block whenmaking at most q queries to this block. We later discuss the implication of such a bound on thetotal error on Sn. Suppose �rst that the learner is deterministic. Then, no matter how it choosesits q queries, there exists an interval of length 1=q which is never queried. Hence the algorithmcannot distinguish the case in which the target concept is all 0's and the case the target concepthas 1's only in the non-queried interval, and must have error at least 1=2q on at least one of theseconcepts.Next, we consider a probabilistic learner which makes q queries all of them are answered by 0(as would be the case for the all-zero concept). Then, for every � > 0, there must exists an intervalof relative length �=q (i.e., actual length �Q=q) so that the probability that a query was made inthis interval is below �. We again consider the all-zero concept and the concept which has 1's onlyin this interval. We consider a 1�� fraction of the runs of the algorithm in which no query is madeto the above interval. In these runs the algorithm cannot distinguish the all-zero concept from theother concept. Thus, with probability 1��2 the algorithm has error at least �=2q (on some concept).If we set � = 0:2 and q = 1100� , then we have that with probability at least 0:4 the error is at least10� on one of the two concepts.To analyze the execution of a learning (with queries) algorithm on a (complete) concept in Sn,we consider the following game, consisting of two stages. In the �rst stage, the algorithm makes qqueries in each block. The algorithm is not charged for any of these queries. In the second stage,the algorithm makes a choice, for each block, whether to output a hypothesis for this block orto ask for additional queries. In the latter case it is supplied with an in�nite number of queries(for this block) and gets charged only for the q original queries made in the �rst stage. At theend of the second stage the algorithm must output a hypothesis for each of the remaining blocks.The algorithm is required to output hypotheses which together form an �-approximation of thetarget. Clearly, the charges incurred in the above game provide a lower bound on the actual querycomplexity of any learning algorithm.Claim: Any algorithm that learns Sn with � error and con�dence 0:9, incurs a charge of at least0:04 � p(n) � q.Proof: Consider the following mental experiment in which an algorithm executes only the �rst stage,and all its queries are answered `0' (as if each block corresponds to the empty interval function).For each i, let Ii be an interval (of maximum length) in the ith block such that the probability thata query is made (in the above mental experiment) to this interval is below � (for � = 0:2). Wenext de�ne a distribution on 2p(n) possible target concepts: For the ith block, independently, with15



probability 1=2, the interval Ii is chosen, and with probability 1=2, the empty interval is chosen.Now consider a full (two stage) execution of an algorithm that learns Sn with � error and con�dence0:9, when the target is chosen according to the above distribution. Since the bound on the errorand con�dence of the algorithm are with respect to a worst-case choice of a target concept, it muststill hold that with probability at least 0:9 over the randomization of the algorithm and the randomchoice of the target, the error of the algorithm is at most �.Suppose, towards contradiction, that this algorithm incurs charge less than 0:04p(n)q (where qis set as above). Then, for at least 0:96% of the blocks, the algorithm outputs a hypothesis at theend of the �rst stage. By our assumption on the algorithm, with probability at least 0:9, the overallerror in these hypotheses must be bounded by �, and so at most one ninth of these blocks may haverelative error greater than 10� >. But this implies that, with probability at least 0:9 � 0:96 � 89 > 0:6,the algorithm has relative error smaller than 10� on a randomly located block, in contradiction tothe above analysis of the single-block case.Lemma 4.4 csc(S; n; �) = O(p(n)=�) :Proof: The computationally bounded learner simply �nds a minimal consistent hypothesis foreach block in the concept. Namely, for the ith block it lets ûi 2 [Q] be the smallest index of anexample labeled 1 that belongs to ith block, and it lets v̂i 2 [Q] be the largest index of an examplelabeled 1 in the ith block. If no example in the block is labeled 1, then it lets ûi = [Q], and v̂i = 1(so the hypothesis is all 0).Assume the learner is given a sample of size bp(n)=� (= b � k(n; �)) for some constant b > 1.Then, for any particular block, the expected number of examples that fall in the block is b=�,and the probability that less than b=(2�) belong to the block is exp(�
(b=�)). Thus, by Markov'sinequality, for su�ciently large b, the probability that the fraction of blocks receiving less than b=2�examples exceeds �=2, is a small constant. It remains to show that with high probability the totalerror in the blocks receiving a su�cient number of examples is at most �=2. To this end we showthat for each such block, the expected error, relative to the size of the block, is at most �=b0 forsome constant b0.Consider a particular block that receives at least s = b=(2�) examples. Let the interval de�ningthe block be [u; v], and let the hypothesis of the learner be [û; v̂]. First note that by de�nition ofthe algorithm, [û; v̂] is always a subinterval of [u; v], and hence we have only one-sided error. Inparticular, in the case that u > v (i.e., the target interval is empty), the error of the hypothesisis 0. Thus assume u � v. For sake of the analysis, if û > v̂ (i.e., the learner did not observe anypositive example in the block, and the hypothesis is all 0), rede�ne û to be v + 1, and v̂ to be v.By de�nition, the hypothesis remains all 0. Let �L def= (û � u)=Q, and �R def= (v � v̂)=Q. The errorof the hypothesis (relative to the block) is the sum of these two random variables. We next boundthe expected value of �L (the expected value of �R is bounded analogously).For any integer a, the probability that �L > a � 1s is the probability that no example fell betweenu and u+ (a=s) �Q, which is (1� a=s)s < exp(�a). Therefore,Exp(�L) < s�1Xa=0Pr�as < �L � a+ 1s � � a+ 1s (9)< s�1Xa=0Pr��L > as� � a+ 1s (10)< 1s 1Xa=0(a+ 1)e�a (11)16



< 3=s = 6�=d : (12)Thus, the (total) expected error of the algorithm on all blocks that receive at least s = b=(2�)examples, is bounded by 12�=b.5 The General ConstructionWe adopt the structure of the construction presented in Section 3. Speci�cally, the PseudorandomSlice remains the same here, and the Sample Equalizer is one of the two equalizers analyzed inSection 4 (depending on the application). The main modi�cation is in the Seed Encoder Slice(Slice II). For an illustration of the construction, see Figure 2.
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1, distinguishing an encoding of `0' from an encoding of `1' (with constant con�dence) requires�(1=(�)2) queries/examples into the information �eld.The above discussion avoids the question of how we can make the informative locations be\random" (as far as the computational bounded learner is concerned). These \random" locationsmust be part of the speci�cation of the concepts in the class. We cannot have truly randomlocations if we want to maintain polynomial-size description of individual concepts. The use ofpseudorandom functions is indeed a natural solution. There is still a problem to be resolved { thecomputational bounded learner must be able to obtain the locations of \information" for thoseblocks that it needs to learn. Our solution is to use the i+ 1st pseudorandom function in order tospecify the locations in which information regarding the ith seed is given.The following description is in terms of two density functions, denoted �1; �2 : N�R7!R.Various instantiations of these functions will yield all the results in the paper. Each function inthe concept class consists of the three slices, and each slice is further sub-partitioned into blocks asdescribed below.Slice I: the Pseudorandom Part. Exactly as in Section 3. That is, the ith block has size2n�1�i and is determined by a pseudorandom function fsi : f0; 1gn�1�i! f0; 1g, where the seed siis of length n.Slice II: the Seeds Encoder. As in Section 3, this slice is partitioned into t blocks (of equalsize) so that the ith block has size B def= 1t � 2n�2 and encodes the ith seed, si, using an additionalstring ri of length O(n). Let ei be the codeword obtained by employing the probabilistic encodingscheme on input si using randomness ri. Recall that m def= jeij = O(n). The ith block is furtherdivided into m (consecutive) information �elds, each of size �1(n; 2�i) � Bm , and an additional empty�eld (of size (1� �1(n; 2�i) �B).A �2(n; 2�i) fraction of the bits in the jth information �eld are set to the value of the jthbit of ei. These bits are called informative and their locations are determined (\randomly") bya pseudorandom function, hsi+1 : f0; 1gn 7! f0; 1gn (this function uses the i + 1st seed!). Theremaining bits in each information �eld as well as all bits of the empty �eld are set to zero.A few details are to be speci�ed. Firstly, bit locations in Slice II are associated with stringsof length n � 2. Thus, bit location � 2 f0; 1gn�2 that is inside an information �eld is informativeif and only if hsi+1(11�) is among the �rst 2n � �2(n; 2�i) strings in the lexicographic order of alln-bit long strings. The pseudorandom functions (over the domain f0; 1gn�i�1) used in Slice I aredetermined by the same seeds by letting fsi(z) = lsb(hsi(0i+1z)), where lsb(�n � � ��1) = �1 is theleast signi�cant bit of �n � � ��1. Thus, there is no \computational observable" interference betweenthe randomness used for determining informative locations and the randomness used in Slice I.Note that Slice II in the construction of Section 3 is obtained by setting �1(n; �) = tmg(n;�)k(n;�)and �2 � 1.Slice III: the Equalizer. In this Slice we use one of the two equalizers analyzed in Theorem 1.6(depending on the application).5.1 Analysis of Slices I and II.It will be convenient to analyze the concept class that results from the above by omitting Slice III(the Equalizer). We refer to the resulting class as to the core class.Fact 5.1 The core class has information theoretic sample complexity itsc(n; �; ) = O(n2=�2) =O(k(n; �)=2). 18



Proof: Follows from the Noisy Occam Razor [Lai88].We are not interested in an information theoretic lower bound for the core class since the Equalizerwill dominate the information theoretic complexities. Thus, we turn to analyze the computationalcomplexities of the core class.Lemma 5.2 The core class has1. computational (noiseless) sample complexity csc(n; �) = �( n2�1(n;�)��2(n;�)), provided that 1(�1 ��2)is an admissible function and that it is lower bounded by 1=�.2. for  � 14, computational (noisy) sample complexity csc(n; �; ) = �( n2�1(n;�)��2(n;�)2�2 ), pro-vided that 1�1��22 is an admissible function and that it is lower bounded by 1=�.3. computational query complexity cqc(n; �) = �( n�2(n;�)), provided that 1�2 is an admissiblefunction and that it is lower bounded by 1=�.Proof: Item 1 (noise-less sample complexity:) This item follows by observing that argumentsused in Lemma 3.2 can be modi�ed to obtain the desired bound. Consider the ith block of Slice II.We �rst note that a random example hits an information �eld of the ith block with probability�1(n; 2�i)=t (i.e., with probability 1=t it falls in the ith block and conditioned on being in the ithblock it falls in an information �eld with probability �1(n; 2�i)). Thus, the probability of hitting aspeci�c information �eld (out of the m = �(n) �elds) is �1(n;2�i)tm = �(�1(n;2�i)n2 ). We also know thata random example in an information �eld is informative (i.e., depends on the encoded bit) withprobability �2(n; 2�i) and is set to zero otherwise.For the lower bound, consider the ith block for i def= blog(1=4�)c. Similarly to what was show inthe lower-bound of Lemma 3.2, for an appropriate constant c00, a sample of size c00 � n2(�1(n;�)��2(n;�) willcontain informative examples in less than csecm of the information �elds in the ith block (wherecsec is the constant in Item 3 of Theorem 2.1). As a result, the ith seed cannot be obtained and theerror of the learner on Slice I is too large.The proof of the upper bound is easily adapted as well. As in the proof of Lemma 3.2 we havethat for a su�ciently large constant c0, with very high probability, a sample of size c0 �n2=(�1(n; �) ��2(n; �)) will contain at least one informative example in all but a small constant fraction of them information �elds in the ith block, for every i � ` def= dlog(8=�)e. The only di�erence here isthat while seeing a `1' in an information �eld in fact means that the bit encoded in it is `1', seeingonly `0's in the �eld only provides statistical evidence towards `0'. Thus, while in Lemma 3.2 weonly had to deal with missing informative examples (that encode seeds), here we might have errorswhen inferring that the bit encoded is `0'. However, the coding scheme (of Theorem 2.1) allows aconstant fraction (i.e., cerr) of errors, and hence we can handle a constant fraction of errors in eachof the �rst ` blocks. Note that the ` corresponding seeds determine not only the �rst ` blocks ofSlice I but also the locations of informative bits in the �rst `� 1 blocks of Slice II.Item 2 (noisy sample complexity:) The additional di�culty we encounter here (as compared toItem 1 above) is that due to the noise it does not su�ce to \hit" informative examples insideinformation �elds in order to infer the encoded bit. Namely, each example (informative or not) hasan incorrect label with probability � = 12 � . Therefore, seeing a `1' in an information �eld doesnot necessarily mean that it is an informative example and the �eld encodes the bit `1', but ratherit could be a noisy bit in an information �eld encoding the bit `0'.19



However, there is clearly still a di�erence between information �elds that encode `1', and thosethat encode `0': In case an information �eld encodes `0', a random example in it will be labeled `1'with probability �. On the other hand, in case an information �eld encodes `1', a random examplein it will be labeled `1' with probability �2(n; 2�i) � (1� �) + (1� �2(n; 2�i)) � � = �+ 2�2(n; 2�i).Thus, we need to distinguish a 0-1 sample with expectation � from a 0-1 sample with expectation� + �( �2(n; 2�i)). This is feasible (with high probability) using O(1=(2�2(n; 2�i)) examples.Since our coding scheme can su�er a constant fraction of errors, we can allow that a small fractionof information �eld will receive less than the required number of examples, and that among thosereceiving the desired number, a small fraction will be determined incorrectly. The upper boundfollows.For � that is bounded below by some constant (say, � � 1=4), a sample of size 
(1=(�2(n; 2�i))2)is also required to distinguish between the two cases discussed above with probability greater than,say 1=2 + csec=8, where csec is the constant de�ned in Item 3 of Theorem 2.1. Suppose that asample of size c0m=(�2(n; 2�i))2 falls in the ith block of Slice II. Then, for su�ciently small c0,at most csec=2 information �elds receive a su�cient number of examples. Hence, even if all theseinformation �elds are correctly inferred, by Remark 2.3, with very high probability no informationabout the ith seed will be revealed. In particular, this holds for i = blog2(1=4�)c. We concludethat, for  � 1=4, csc(n; �; ) = �� n2�1(n; �) � (�2(n; �) � )�2� (13)Item 3. Using similar arguments to those applied above we show that O(n=�2(n; �)) queries su�cefor e�ciently determining the �rst ` def= dlog2(8=�)e seeds residing in the �rst ` blocks of Slice II.Speci�cally, we use a 2�`�4+i fraction of the c0 � (n=�2(n; �)) queries as a random sample into theinformation �elds of ith block, for i = 1; :::; ` (and ignore the empty �elds in all blocks). Thus, wehave c0 � 2�`�4+i � (n=�2(n; �)) = 2c00 � m=�2(n; 2�i) random examples in the ith block, where c00 isa constant related to the constant c0. With overwhelmingly high probability we'll obtain at leastc00m informative bits. For a suitable choice of the constants (c0 and c00), this su�ces to recover theith seed for every i � `. Observe that the only part in which we have used queries is in the skewingof the random examples among the various blocks.We now turn to the lower bound and let i def= blog2(1=4�)c. Considering the ith block of Slice I,we show that, as long as the informative locations in the ith block of Slice II are unknown, too fewqueries do not allow to obtain information regarding the ith seed. This will lead to the failure ofthe computational bounded learner, since without such information the ith block of Slice I lookstotally random (to this learner). The actual argument starts from the last block (i.e., tth block)and proceeds up to the ith block. Assuming that the learner has no knowledge of the jth seed, forj > i, we show that he obtains no knowledge of the j � 1st seed. On top of what is done in theanalogous part of the proof of Lemma 3.2, we need to argue that having no knowledge of the jthseed puts the learner in the same situation as if it has selected its queries at random: We can thinkof it making a query and then having a random biased coin determine if this query (into the SeedEncoder) carries information.5.2 Applications of Lemma 5.2Proof of Theorem 1.2. As in the setting for Theorem 1.1, we set �1(n; �) def= n2g(n;�)�k(n;e), and�2(n; �) def= 1, where k(n; �) def= 2 � k(n; �; ). By Item 1 of Theorem 1.6 and Fact 5.1, we have20



itsc(n; �; ) = �(k(n; �; ). Invoking Item 2 of Lemma 5.2 for  � 1=4, and Item 1 of Lemma 5.2for  > 1=4 (i.e., constant ), we have csc(n; �; ) = �(g(n; �) � k(n; �; ).Proof of Theorem 1.3. The �rst item follows by setting �1(n; �) def= n2g1(n;�)�k(n;e), and �2(n; �) def=1g2(n;�) . By Item 1 of Theorem 1.6 and Fact 5.1, we have itsc(n; �; ) = �(k(n; �)=2). InvokingItem 1 of Lemma 5.2, we have csc(n; �) = �(g1(n; �)g2(n; �)�k(n; �)). Invoking Item 2 of Lemma 5.2,we have csc(n; �; ) = �(g1(n; �)g2(n; �)2 � k(n; �)=2), for every  � 1=4.The second item follows by setting �1(n; �) def= 1, and �2(n; �) def= n2k(n;�). Again, we haveitsc(n; �; ) = �(k(n; �)=2), and invoking Items 1 and 2 of Lemma 5.2, we have csc(n; �) =�(k(n; �)) and csc(n; �; ) = �(k(n; �)2=n22)), for every  � 1=4. Actually, we can obtain a moregeneral result by setting �1(n; �) def= n�(d�a�2)�1�� and �2(n; �) def= n�d�� , for any a 2 [0; d� 2] and� 2 [0; 1].Proof of Theorem 1.4, for g2 � n. Here we set �1(n; �) def= ng2(n;�) , and �2(n; �) def= ng1(n;�)�k(n;e).(The hypothesis g2(n; �) � n guarantees that �1(n; �) � 1 as required by the admissibility condition.)By Item 2 of Theorem 1.6 and Fact 5.1, we have itqc(n; �) = �(k(n; �)) = �(itsc(n; �)). InvokingItem 1 of Lemma 5.2, we have csc(n; �) = �(g1(n; �)g2(n; �)�k(n; �)). Invoking Item 3 of Lemma 5.2,we have cqc(n; �) = �(g1(n; �) � k(n; �)).5.3 Proof of Theorem 1.4 (for arbitrary g2).The core class (analyzed in Lemma 5.2) provides a computationally bounded learner that usesqueries an advantage over a computationally bounded learner that only uses uniformly distributedexamples. Whereas the former may focus its queries on the �rst log2(2=�) blocks of Slice II, thelatter may not. Thus, typically, using queries entitles an advantage of a factor of n= log(1=�) intrying to learn Slice II above. To close this gap (and allow to establish Theorem 1.4 for arbitraryg2), we modify Slice II as follows. The basic idea is to randomly permute the locations of theinformation �elds of the various blocks. Thus the query-learner is forced to look for the bits itneeds in all possible locations (rather than \zoom-in" on the appropriate block).Slice II (modified). Let t def= n= log2 n (rather than t = n� log2 n). This slice is partitioned intot �m �elds of equal size, F def= 1tm �2n�2, where m is (as before) the length of the encoding of an n-bitlong seed. Unlike the above construction, we do not have a common empty �eld (instead each �eldcontains an informative part and an empty part as described below). We use m permutations overf1; :::; tg, denoted �1; :::; �m, to determine the correspondence between �elds and seed-information.Speci�cally, the jth bit of the ith seed is \encoded" in �eld number (j � 1) � t + �j(i). (Thepermutations are part of the description of the concept.) Each �eld corresponding to one of thebits of the ith seed consists of two parts. The �rst part, containing the �rst �1(n; 2�i) � F bitsof the �eld, carries information about the corresponding bit of the seed; whereas the second part(the rest of the �eld's bits) is uncorrelated to the seed. Loosely speaking, the informative partcontains the results of independent coin ips each with bias �2(n; 2�i) towards the correct valueof the corresponding bit (i.e., the probability that the answer is correct is 0:5 + bias); whereasthe rest contains the results of independent unbiased coin ips. Actually, the random choices areimplemented by a pseudorandom function determined by the i+ 1st seed.Lemma 5.3 Assume that 1�1 and ��22 are admissible functions. Then the modi�ed core class has1. computational (noise-less) sample complexity csc(n; �) = �( n2�1(n;�)��2(n;�)2 ).21



2. computational query complexity cqc(n; �) = �( n2�2(n;�)2 ).Proof: We follow the structure of the proof of Lemma 5.2, indicating the necessary modi�cations.Item 1. Considering Slice II, we note that a random example hits an information part of a�eld belonging to the ith seed with probability �1(n; 2�i)=t. Intuitively, �(�2(n; 2�i)�2) such hitsare required for obtaining reliable information from this �eld.For the lower bound, we assume that the learner is given the permutations �j for free. Still,the arguments used in Lemma 5.2 imply that it needs 
(�2(n; 2�i)�2 �m) hits in the �elds of theith seed in order to recover this seed. Using t;m = 
(n), the lower bound follows.The proof of the upper bound is to be adapted as here we cannot assume that the permutations�j are known to the learner. For i = 1; :::; log2(8=�), the learner determines the ith seed as follows.For j = 1; :::; m, the learner determines the value of the jth bit in the encoding of the ith seed. Itconsiders only examples in the �1(n; 2�i) �F pre�x of each of the relevant �elds; that is, �elds withindices (j � 1) � t + 1; :::; (j� 1) � t + t. For each such �eld it estimates the bias of the �eld. Withhigh constant probability, the estimated bias of �eld (j � 1) �m+ �j(i) is approximately �2(n; 2�i)and, under our assumption on �2, every other �eld corresponding to the jth bit of an encoding ofsome other seed, has signi�cnatly di�erent bias in its �1(n; 2�i �F pre�x. Thus, this bit is obtainedcorrectly with high constant probability. As usual, this allows to decode correctly the entire seed.Having the ith seed we may determine the ith pseudorandom function as well as the \encoding" ofthe bits of the i� 1st codeword (i.e., one may e�ciently determine the value of each bit in each ofthe �elds corresponding to the i� 1st seed). The upper bound follows.Item 2. The upper bound follows easily by the obvious adaptation of the above learningstrategy (i.e., when trying to determine the jth bit in the encoding of the ith seed the learner makesqueries only to the �1(n; 2�i) � F pre�x of each of the relevant �elds).For the lower bound we need to modify the argument given above (as here we cannot a�ordgiving away the permutations �j for free). In fact, the whole point of the modi�cation was todeprive the learner from such information. Still, when arguing about the ith seed, for i = log2(4=�),we may give the learner �j(1); :::; �j(i� 1) (8j) for free. We may assume without loss of generalitythat the learner does not make queries to these �elds (i.e., to �eld with index (j � 1) � t+ �j(i0) fori0 < i and any j). Based on our encoding scheme, the learner must infer 
(m) of the bits in theencoding of the ith seed. For each bit it must discover �j(i) and make 
( 1�2(n;2�i) queries. However,for every j and i0 � i, the �eld corresponding to the jth bit of the encoding of the i0th seed hasbias (in its �1(n; 2�i) �F pre�x) that is bounded above by �2(n; 2�i). Hence, for each j, the learnermust perform 
(n=(�2(n; 2�i)2) queries to these �elds in order to infer the desired bit. The lowerbound follows.Theorem 1.4 (in its general form) now follows by setting �1(n; �) def= 1g2(n;�) and �2(n; �) def= q n2g1(n;�)�k(n;�).We need t = O(n= logn) so that the additional \concept complexity" (of log2((t!)m)) is dominatedby k(n; �) (the desired information-theoretic sample complexity). Alternatively, the theorem willhold provided k(n; �) = 
(n2 logn).6 Proof of Theorem 1.5Here we merely use a pseudorandom generator [BM84, Yao82]. Speci�cally, we need a generator, G,which stretches seeds of length n into sequences of length p(n). The concept class, C = fCng, willcorrespond to all possible choices of a seed for the generator. Speci�cally, for every seed s 2 f0; 1gn,we get a concept fs 2 Cn de�ned so that fs(x) def= �i, where �i is the ith bit of G(s) and x belongs22
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