
On the Security of Multi-Party Ping-Pong Protocols(fragments of a revised version dating to July 1985)Shimon Even1Department of Computer ScienceTechnion - Israel Institute of TechnologyHaifa, Israel.E-mail: even@cs.technion.ac.il Oded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.E-mail: oded@wisdom.weizmann.ac.ilResearch done mainly in Summer 19822Original version appeared as a TR3 in June 1983Revised version written in July 19854Abstract and Introduction reproduced in February 1996Technical part reproduced and slightly revised in February 20045

1Partially supported by the Fund for the Promotion of Research at the Technion.2While the authors visited the EECS Dept., UC-Berkeley, and were supported by NSF grant No. MCS82-04506.3TR No. 285, Computer Science Dept., Technion, Haifa, Israel, June 1983. Holding 59 pages.4At that time the second author was at MIT, where he was partially supported by a Weizmann Post-Doctoral Fellowship.5At that time the second author was at Radcli�e Institute for Advanced Study at Harvard University,where he was partially supported by a Radcli�e Fellowship.

Preface by Oded (2004)This report was reproduced from �les dating to 1985. These �les contained only a small fragmentof a working draft of an intended revision of the original write-up.1 The original (59-page) write-up (written in 1982/83) has appeared as a Technical Report (No. 285 of the Computer ScienceDept., Technion, Haifa, Israel, June 1983). An extended abstract has appeared in the 24th FOCS,Nov. 1983.The orignal work refers to a restricted notion of insecurity (i.e., breakability under a syntacticallyrestricted type of attacks) and to restricted classes of protocols. These classes extend the modelof Dolev and Yao in two ways. First, the work considers multi-party protocols rather than two-party ones. Next, the work considers protocols in which each message consists of a pair of stringsand possibly di�erent operations are applied to each element in the pair (rather than allowingonly operations that are applied to the message as a whole). The focus of the work is on thecomplexity (or even decidability) of the computational task of testing whether or not such protocolsare insecurity (under the aforementioned type of attacks). The results include:� For every �xed m, a polynomial-time algorithm for the testing problem of m-party protocolsof the Dolev-Yao type.� The testing problem for multi-party protocols of the Dolev-Yao type is NP-Hard, where m ispart of the input (rather than being �xed).� The testing problem for two-party protocols that operate on pairs of strings is undecidable.The incentive to reproduce these �les almost two decades after they were written is to provide amore accessible account of the original work, in light of the renewed interest in it. In additionto converting these �les from troof to LATEX, I have mildly proofread the text and modi�ed it alittle (without modifying the overall structure or the low-level style). In a few places I have addedfootnotes and \new notes" (where the latter are explicitly marked as such).
1The revision was intended to be quite drastic. Speci�cally, the entire paper was to be written from scratch,while using the original work [EG] only as a source of ideas. Indeed, the existing working draft deviates signi�cantly(especially in the technical part) from the original presentation (although no signi�cant new idea was introduced).1

Contents
Abstract 31 Introduction 42 The Multi-Party Extension 62.1 Security of Ping-Pong Protocols: De�nitions and Terminology 62.1.1 Operators and Relations between them . 62.1.2 What is a Ping-Pong Protocol . 92.1.3 The De�nition of Insecurity . 102.1.4 Extensions of the Insecurity De�nition . 122.1.5 Additional Terminology and Observations concerning Insecure Protocols . . . 122.2 On the Number of Saboteurs . 152.2.1 A Simple Case: F = FE [FD . 162.2.2 The General Case: a Reduction to a Combinatorial Problem 182.2.3 Lower Bounds on the Combinatorial Problem 242.2.4 Upper Bounds on the Combinatorial Problem 242.3 NP{Hardness for the Case of Varying Number of Parties 252.4 Further Discussions Concerning the Insecurity De�nition 252.4.1 Other Categories of Operator-Forms . 252.4.2 The Insecurity Problem When Allowing Improper Instances 262.4.3 Testing Insecurity of a Word in Presence of a Protocol 272.4.4 Finding the Shortest Insecurity String . 273 Two-Party Extended Ping-Pong Protocols 293.1 De�nition . 293.2 Undecidability . 294 Conclusion 30References 31Appendix: The DEK Algorithm for Testing Insecurity 33

2

AbstractThis paper is concerned with the model for security of cryptographic protocols suggested by Dolevand Yao. The Dolev and Yao model deals with a restricted class of protocols, known as Two-PartyPing-Pong Protocols. In such a protocol, messages are exchanged in a memoryless manner. Thatis, the message sent by each party results from applying a predetermined operator to the messagehe has received.The Dolev and Yao model is presented, generalized in various directions and the a�ect of thesegeneralizations is extensively studied. First, the model is trivially generalized to deal with multi-party ping-pong protocols. However, the problems which arise from this generalization are veryfar from being trivial. In particular, it is no longer clear how many saboteurs (adversaries) shouldbe considered when testing the security of p-party ping-pong protocols. We demonstrate an upperbound of 3(p � 2) + 2 and a lower bound of 3(p � 2) + 1 on this number. Thus, for every �xedp, the security of p-party ping-pong protocols can be tested in polynomial time. In contrast, weshow that testing the security of multi-party protocols (i.e. the number of participants is part ofthe input) is NP-Hard. A di�erent extension of the Dolev and Yao model, obtained by allowingoperators to operate on \half words", is shown to have an undecidable security problem.Keywords: Cryptographic Protocols, Security, Public-Key Cryptosystems, String ReplacementProblems, Undecidability, Concrete Complexity, NP-Completeness, Combinatorial Analysis, Rout-ing Problems, Graph Theory.

3

Chapter 1IntroductionThe use of public-key encryption [DH, RSA] for secure network communication has received con-siderable attention. Such systems are e�ective against a \passive" eavesdropper, namely one whomerely taps the communication line and tries to decipher the intercepted messages. However, aspointed out by Needham and Schroeder [NS], an improperly designed protocol can be vulnerableto \active" sabotage.The \active" saboteur (adversary) may be a legitimate user in the network. He can intercept andalter messages, impersonate other users, or initiate instances of the protocol between himself andother users in order to use their responses. It is possible that through such complex manipulationshe can read messages that are supposed to be protected without cracking the cryptosystem in use.In view of this danger it is desirable to have a formal model for discussing security issues ina precise manner. The �rst such model was introduced by Dolev and Yao [DY], and constitutesthe subject of this paper. The Dolev and Yao model consists of a restricted class of \memorylessprotocols" and a related de�nition of insecurity. Loosely speaking, a protocol is insecure if there isa way to obtain the initial message (which is transferred by it), even if the public-key encryptionin use are \ideal". This insecurity de�nition captures all possible weaknesses in the \high levelstructure" of the protocol; that is, weaknesses that are independent of the particular encryptionfunction used to implement the abstract protocol.Dolev and Yao considered two-party protocols that proceed in phases as follows. In the �rstphase the \�rst" party applies a predetermined sequence of encryption and decryption operators toan initial message of his choice and transmit the result. In each later phase, a predetermined partyapplies a predetermined operator sequence to the last message he/she received and transmits theresult. The set of operators was later extended to contain name appending/deletion operators, andthe resulting protocols were called ping-pong protocols. The related insecurity de�nition capturesall possible \generic" manipulations that the saboteurs can apply to messages they intercept, bypossibly using \replays" of the very protocol. In \generic manipulations" we mean actions which donot depend on the speci�c cryptosystem in use, but rather relate only to the \high level structure"of the protocol. (More details are given in section 2.1.)Dolev and Yao have demonstrated that testing the security of a two-party ping-pong protocolcan be done in polynomial time. A much more e�cient algorithm was presented by Dolev, Evenand Karp [DEK]. Its running time is O(n3), where n is the length of the input. The purpose ofthis paper is to further investigate the Dolev and Yao model by considering two natural extensionsof it.1. First we consider multi-party ping-pong protocols. This naive-looking extension causes a lotof trouble. In contrast to the case of two-party ping-pong protocols, where it was su�cient to4

consider the actions of a single saboteur, the situation in the general case is more involved: Atleast 3(p�2)+1 saboteurs must be considered for testing the security of a p-party ping-pongprotocols. On the other hand, we show that 3(p � 2) + 2 saboteurs su�ce for this purpose.Using this upper bound, a natural extension of [DEK] implies that, for every �xed p, thereis a polynomial-time algorithm for testing the security of p-party ping-pong protocols. Forun�xed p this is not likely to be the case, since we show that testing the security of multi-partyping-pong protocols is NP-Hard (here p the number of participants is part of the input).2. Next, we slightly extend the simple \operator vocabulary" by introducing operators thatoperate on \half words" (i.e., messages are viewed as pairs of strings, and operators areallowed to operate on one element of the pair while leaving the other element intact).1 It isshown that testing the security of protocols in this class is non-recursive.Organization of the PaperThe rest of the paper is partitioned to three parts. The �rst part (Chapter 2) deals with multi-partyping-pong protocols, the second (Chapter 3) with the \half word" operators, and the third part(Chapter 4) contains various comments and conclusions.

1The original text read Next, we slightly relax the \memoryless condition" by introducing operators that operateon \half words". Operation on one element of the pair was viewed as slightly violating the memoryless conditionbecause the other element (left intact) is meanwhile stored in memory. In retrospect we prefer the pharsing put inthe main text. 5

Chapter 2The Multi-Party ExtensionIn this chapter we investigate the a�ect of extending the Dolev and Yao model to protocols for morethan two parties. We begin this chapter by presenting a formal de�nition of multi-party ping-pongprotocols and the related security problem (section 2.1). The core of this chapter consists of lowerand upper bounds on the number of saboteurs that should be considered in testing the securityof p-party ping-pong protocols (section 2.2). The upper bound plays a key role in obtaining apolynomial-time algorithm for testing the security of p-party ping-pong protocols, for any �xedp. We continue by proving that testing the security of multi-party ping-pong protocols is NP-Hard, when the number of parties is part of the input (section 2.3). Section 2.4 deals with severalvariations of the insecurity de�nition.2.1 Security of Ping-Pong Protocols: De�nitions and TerminologyLet us �rst give a short outline of the de�nitions presented in this section. A multi-party ping-pongprotocols proceeds in steps as follows. In the �rst step the "�rst" party applies a predeterminedsequence of operators to an initial message of his choice and transmit the result. In each later step, apredetermined party applies a predetermined operator sequence to the last message he/she receivedand transmits the result. A formal de�nition requires a speci�cation of the operators as well as therelations between them (see subsection 2.1.1). Once this is done, protocols and instances/executionsof them are formally de�ned (subsection 2.1.2); and a formal de�nition of insecurity is presented(subsection 2.1.3). This de�nition is further extended in subsection 2.1.4. We end this section bypresenting terminology and simple observations concerning insecure protocols (subsection 2.1.5).2.1.1 Operators and Relations between themWe begin this subsection by an informal discussion of the operators we would like to consider. The�rst and most important type of operators we consider are Public-Key Encryption and Decryption.These operators are the origin of the possible security of the protocols we will consider. Following[DH], a public key cryptosystem (PKCS) is a set of pairs of operators, such that every user u has anencryption operator Eu and a decryption operator Du . Both operators are mappings from f0; 1g�to f0; 1g� : There is a public directory containing all (u;Eu) pairs, while the decryption operatorDu is known only to user u. It is required that
6

(1) For every m 2 f0; 1g� , it holds that Eu(Du(m)) = Du(Eu(m)) = m.(Du is the inverse operator of Eu.)1(2) On input m 2 f0; 1g�, any user can e�ciently compute Eu(m) but only user u can e�cientlycompute Du(m).For further details consult [DH] and [RSA]. More generally, we may assume that each user isassociated several di�erent instances of the Public-Key Cryptosystem; that is, several pairs ofencryption decryption operators. In such a case we will denote the instances associated to user uby (E(1)u ;D(1)u), (E(2)u ;D(2)u), etc.A di�erent type of operators we consider are name appending/deletion [NS]. Applying au to themessage m, appends u's name to it; while applying du to the result (i.e., au(m)), yields the originalmessage m. The result of applying du to an arbitrary message may not be de�ned. Every user(even not u) can apply au and du . Again, there may be several distinct name appending/deletionoperators per user.Another type of operators we consider are permutations (of the message space) that are associ-ated to certain users, although every other user can apply them. For example, each user may selectrandomly a key to a cryptosystem and make this key public. This by itself will not provide himwith any security, nevertheless the scrambling properties of the cryptosystem still hold and may beof use for various purposes.Operators, user's vocabulary and cancellation rules. We now turn to a formal de�nitionof the operators. We will consider operators over the set of all bit strings. In general, each operatorfi consists of a form(f) and an index (i). For example, the operator Eu (the encryption operatorof party u) is of the form E and has index u. The set of operators is symmetric in the sense that ifit contains the operator fu for some user u then it contains also the operator fv (for every user v).In other words, the set of operators consists of all possible pairs of forms and indices. FormallyDe�nition 1 (operators): Let F be a �nite set and I be an arbitrary set.2 Then, the set ofoperators with forms F and indices I is denoted by � = �(F; I) and is de�ned as ffi : f 2 F ; i 2 Ig.The set of forms will be partitioned to six categories: Encryptions, Decryptions, appendings, dele-tions, functions and function-inverses, denoted FE , FD, Fapp, Fdelt, Ffun and Finv respectively. Thereader may consider the simple case in which FE = fEg, FD = fDg, Fapp = fag, Fdelt = fdg andboth Ffun and Finv are empty (i.e. each user is associated a single public-key instance and a singlename appending/deletion mechanism). This case will su�ce for our lower bound (subsection 2.2.3)and NP-Hardness (section 2.3) results. The upper bound (subsection 2.2.4) holds also for the gen-eral case. In general, it is postulated that jFE j = jFDj, jFappj = jFdeltj and jFfunj = jFinvj. Thesecategories correspond to the di�erent types of operators discussed in the motivation (above). Theformal role of these categories will become clear throughout the following de�nitions.De�nition 2 (user's vocabulary): The vocabulary of user u, denoted �u, consists of ffi : f 2F n FD ; i 2 Ig [ffu : f 2 FDg.1The case in which Du is only a left (right) inverse of Eu is dealt in subsection 2.4.1.2We do not assume that I is �nite. In fact, we will focus on the case that I is countable (e.g., isomorphic to thenatural numbers). The point is that we wish to study the number of users that should be considered regarding theinsecurity of p-party protocols, and the former number may depend arbitrarily on the parameter p.7

That is, the vocabulary of a user contains all operators except for the decryption operators of otherusers. The vocabulary of a user will represent the set of operators that the user can apply toarbitrary messages.De�nition 3 (cancellation rules): Let FE = fE(1); E(2); :::; E(n1)g, FD = fD(1);D(2); :::;D(n1)g,Fapp = fa(1); a(2); :::; a(n2)g, Fdelt = fd(1); d(2); :::; d(n2)g, Ffun = fg(1); g(2); :::; g(n3)g and Finv =fh(1); h(2); :::; h(n3)g. The operator cancellation rules consists of the following ordered pairs:� (D(j)i ; E(j)i) and (E(j)i ;D(j)i), for every i 2 I and 1 � j � n1.� (d(j)i ; a(j)i) and for every i 2 I and 1 � j � n2.� (h(j)i ; g(j)i) and (g(j)i ; h(j)i), for every i 2 I and 1 � j � n3.The meaning of the pair (�; �) is that applying the operator � to a message m, and then applyingthe operator � to the result, yields the original message m (i.e. �(�(m)) = m for every m).Note that pairs of forms are put in the suitable categories according to their role in the user'svocabularies (i.e., (FE ; FD) versus the others) and according to the cancellation rules that referto them (i.e., (Fapp; Fdelt) versus the others). A more detailed discussion of this partition can befound in subsection 2.4.1.The Algebra of Operator Sequences. We now consider ��, the set of words over � = �(F; I).A word in �� has a natural interpretation as sequential application of operators: the empty word(denoted by �) corresponds to the identity operator; and the word �2�1 corresponds to �rst applying�1 and then applying �2 to the result. The cancellation rules induce a natural term algebra onthe set ��, when one considers the equivalence classes imposed by them. An alternative and moreelaborate de�nition follows.De�nition 4 (equivalence of operator sequences): The relation � is an equivalence relationde�ned recursively over � as follows.1. Application of a cancellation rule: For every �; � 2 �� and a cancellation rule (�; �), it holdsthat ���� � ��.2. Re
exivity, symmetry and transitivity: For every �; �;
 2 ��, it holds that(a) � � �.(b) If � � � then � � �.(c) If � � � and � �
 then � �
.In subsection 2.1.5, it will become clear that it su�ces to apply the cancellation rule in the forwarddirection (i.e., alternatively, that symmetry is not needed). Observe that � � beta implies thatfor every minf0; 1g�, �(m) = �(m). The converse, to be referred to as the freeness assumption,states that the operator sequences satisfy only the identities implied by the cancellation rules. Thefreeness assumption plays a central role in the de�nition of insecurity (subsection 2.1.3).
8

2.1.2 What is a Ping-Pong ProtocolIntuitively, an instance of a ping-pong protocol is a sequence of operator words each applied in turnby a speci�ed user. The "structure" of these sequences is predetermined by the protocol and theassignment of users to its "virtual" parties. We will �rst de�ne this predetermined "structure" andonly later consider its instances.De�nition 5 (protocols and protocol words): A var-operator fx consists of a form f 2 Fand a variable x which assumes values in I. For p � 2, let �x = (x1; x2; :::; xp) be a sequence of pdistinct variables assuming values in I, and X be the set of these variables.A p-party ping-pong protocol P [�x] (over F) is a sequence of pairs ((y1; �1[�x]); (y2; �2[�x]); :::; (yl; �l[�x]))satisfying the following properties:1. For every 1 � j � l, it is the case that �j[�x] is a sequence of var-operators indexed by variablesin X (i.e. �j [�x] 2 ffz : f 2 F; z 2 Xg�).2. For every 1 � j � l, it is the case that yj is one of the variables in X (i.e. yj 2 X).3. For every 1 � j � l, it is the case that �j[�x] consists of operators in the vocabulary of yj; thatis, �j[�x] 2 (ffz : f 2 F n FD; z 2 Xg [ffyj : f 2 FDg)�.�j [�x] is called the j-th protocol word of P [�x].In the above de�nition, yj (= xij) indicates the party to be active in the j-th step and �j [�x]determined (together with the assignment of users to �x) the operator word that this party willapply. Note that the protocol determines not only the forms of the operators in the �j 's, but alsothe relations between their indices.Example 1: Let F = fE;D; a; dg and consider the two-party ping-pong protocol ((x1; Ex2); (x2; Ex1Dx2)).This protocol consists of two steps and has the following intuitive meaning. In the �rst step, the�rst party (the user assigned to play x1) applies the encryption of the second party to the \initialmessage" and transmits the result. At the second step, the second party �rst applies its decryptionand then applies the �rst party's encryption.The intuitive notion of an execution of a protocol can be given a precise formulation, by �rstde�ning an instance of a protocol.De�nition 6 (protocol instances): Let �u = (u1; u2; :::; up) be a sequence of p elements in I, andP [�x] be a p-party ping-pong protocol as in De�nition 5, and let i1; i2; :::; il be the sequence of integersin f1; 2; :::; pg satisfying yj = xij , for 1 � j � l. That is, P [�x] = ((xi1 ; �1[�x]); :::; (yil ; �l[�x])). An�u-instance of the protocol P [�x], denoted P [�u], is the result of substituting in P [�x] the variable xj bythe user uj, for every 1 � j � p. The operator word �j [�u] is called an �u-instance of the protocolword �j [�x].Note that P [�u] is a sequence of pairs ((ui1 ; �1[�u]); (ui2 ; �2[�u]); :::; (uil ; �l[�u])) such that �j [�u] consistsof operators in the vocabulary of uij .To specify an execution of a protocol, an initial message has also to be speci�ed.
9

De�nition 7 (protocol execution): Let �u, P and i1; i2; :::; il be as in De�nition 6. Let m0 2f0; 1g�. An �u-execution of P [�x] on the message m0 is the following sequence of message transmis-sions:At the �rst step, ui1 transmits m1 = �1[�u](m0) to ui2 .For j 2 f2; :::; l � 1g, at the j-th step, uij transmits mj = �j [�u](mj�1) to uij+1 .At the last (i.e., l-th) step, uil transmits ml = �l[�u](ml�1) to all users in �u.m0 is called the initial message of this execution.It will be always assumed that m0 is chosen by ui1 . In the j-th step, uij applies �j[�u] to themessage mj�1. User uij can do so, since �j[�u] is over its vocabulary and it knows mj�1. In casemany instances of various protocols are played concurrently in the network, the users append totheir transmissions a tag indicating the protocol they are playing (P [�x]), the instance (�u), and thestep (j).Given the de�nition of a p-party ping-pong protocol, are the above de�nitions of its instancesand executions acceptable? We believe that the answer is no (or not yet). The above de�nitionsinclude instances in which the same user plays the role of two di�erent parties in the protocol (i.e.�u-instances in which the elements of �u are not distinct). We feel that such executions are improperand should be excluded. If the protocol was designed for 3 parties it should be played by 3 distinctusers and not by 2 users! We further assume that honest users will refuse to take part in improperexecutions of a protocol. The case in which this is not assumed is considered in subsection 2.4.2.De�nition 8 (proper execution): Let �u = (u1; u2; :::; up). An �u-instance (�u-execution) of ap-party ping pong protocol is called proper if �u consists of p distinct elements in I.We end this subsection with an example of a proper execution.Example 2: Consider the two-party protocol of Example 1. Let �u = (u1; u2), where u1 6= u2 2 I.The following is a proper �u-execution of the protocol on the initial message m0: user u1 sendsm1 = Eu2(m0) to u2, and u2 replies by sending m2 = Eu1Du2(m1) = Eu1(m0).2.1.3 The De�nition of InsecurityReferring to Example 2, we ask whether a user s 2 I n fu1; u2g can obtain m0? At �rst glance theanswer seems negative, because only encrypted messages pass through the communication lines.But in second thought one may �nd a
aw which allows s to obtain the initial message m0 asfollows. User s intercepts the message m1 and starts a (s; u2)-instance of the protocol sending m1as the �rst transmission. Note that s does not know m0 yet! But now, user u2, following the(s; u2)-instance sends m0 = EsDu2(m1) (= Es(m0) !) to s. Finally s applies Ds to m0 and recoversm0.Before presenting the formal de�nition of insecurity, we motivate it by the following informaldiscussion of this notion. We will say that the protocol P (�x) is insecure if there exist an �u-executionof it such that an adversary s not in �u can get the initial message through a �xed predeterminedsequence of actions. The actions that the adversary s can take are of the following three types:Type 1 { \passive" eavsedropping: Obtain (intercept) any message transmitted in the �u-execution.10

Type 2 { local computations: Apply any operator in his vocabulary to any message. As a matterof fact user s can also ask other users (who collaborate with him) to apply operators in theirvocabularies to any message. In the latter case, these users are knowingly collaborating withs and are certainly dishonest. We will assume that users in �u will refuse to do so.Type 3 { \active" attacks: Apply any proper �v-instance of any of the protocol's words to anymessage.Let �j [�x] be the j-th word of P [�x]. We �rst consider the case where j > 1. To obtain the a�ectof �j [�v] on message m, user s waits for a �v-instance of P to occur (or convinces vi1 to initiatesuch an instance on any message), replaces the j � 1-st transmission by the desired message(m), and reads the j-th transmission. To obtain the a�ect of �1[�v] on m, user s convincesuser vi1 to initiate a �v-execution on message m (and then s reads the �rst transmission).3The users in �v may unknowingly help user s, because they are playing according to theprotocol and have no reason to suspect that their behavior helps someone to illegitimatelyobtain an initial message of another execution. In fact, we may assume that the user applying�j [�v] (i.e., user vij) is is unknowingly helping s (otherwise the a�ect of �j[�v] could have beenachieved by a sequence of Type 2 actions conducted by vij). Since an honest user will refuseto take part in an improper instance, the �v-instance must be proper.The above actions capture all that adversaries can do when knowing the protocol in use, butknowing nothing about the encryption functions used in implementing it. In other word, we maysay that (as far as the notion of insecurity is concerned) it is assumed that the operators are "free"of any properties other than those algebraically implied by the cancellation rules (recall De�nitions3 and 4).De�nition 9 (insecurity): Let P [�x] be a p-party ping-pong protocol consisting of the words �1[�x],�2[�x],..., �l[�x]. Let �u = (u1; u2; :::; up) be an arbitrary sequence of p distinct users and U be the setof these users.� For every J � I, let �J denote the union of the vocabularies of users in J ; that is, �J =[j2J�j.� For every J � I, let inst(P; J) denote the set of all proper instances of protocol words of Pin which the users are from J ; that is,inst(P; J) = f�j [�v] : 1 � j � l; �v = (v1; v2; :::; vp) is proper and v1; v2; :::; vp 2 Jg :� Protocol P [�x] is insecure if there exist a set S � I n U and an operator string
 2 (�S [inst(P; S [U))� such that
�1[�u] � �.A few words of justi�cation are in place. Firstly we note that, as shown in [DEK], the adversarys 2 S (trying to get the initial message m0 in a �u-execution of P) may restrict its Type 1 actionsto obtaining the �rst message transmitted in the �u-execution (i.e. m1 = �1[�u](m0)), because otherType 1 actions are covered by Type 3. Type 2 actions are fully captured by �S , whereas Type 33The reader may wonder how is it possible to convince a user to initiate a v-execution on message m. This clearlyrequires a meta-protocol knowledge of the reasons and occasions in which users initiate executions. In any case,allowing s to commit such actions yields a stronger notion of security. Weaker notions can be obtained by restrictingthe actions of s; for example, allowing it to obtain the a�ect of �j [�v] only for j > 1.11

actions are captured by inst(P; S [U). In case
�1[�u] is equivalent to the identity operator,user s can obtain the initial message m0 by applying actions (corresponding to
) to the message�1[�u](m0).The users in S will be called saboteurs. The saboteurs are users not in �u which help eitherknowingly or unknowingly in seizing the initial message.Further comments: The choice of �u in De�nition 9 is immaterial: For every �u; �v, if a string
 exist (for demonstrating insecurity) with respect to the �u-instance then there exist a string �(demonstrating insecurity) with respect to �v. Likewise, it is easy to verify that if the protocol'sinsecurity is demonstrated by a set of saboteurs S, then it can be demonstrated by any other setS0 � I n U of the same cardinality (i.e. jSj = jS0j).2.1.4 Extensions of the Insecurity De�nitionThe notion of insecurity can be extended for an \environment" (set) of protocols in the obviousmanner. Instead of considering the instances of words of one protocol, we consider the instances ofthe words of all the protocols.De�nition 9E (insecurity of a set of protocols): For i = 1; ::; q, let pi be an integer and Pibe a pi-party ping-pong protocol with words �i;1; �i;2; :::; �i;li . The environment fPigqi=1 is insecureif there exist an r 2 f1; 2; :::; qg, a pr-long sequence �u, a set S � I n U , and a string
 2 (�S [([qi=1inst(Pi; S [U)))� such that
�r;1[�u] � �.All our (positive) results extend also to the security problem of environments.De�nition 9 (as well as De�nition 9E) can be rephrased as referring to the question does thereexist a string
 2 (�S [inst(P; S[U))� that is equivalent to the left inverse of the �rst word in theprotocol? A natural generalization of the above question refers to the question does there exist astring
 2 (�S[inst(P; S[U))� that is equivalent to a speci�c operator word �? In case the answeris positive, we will say that � is insecure in presence of the protocol P . Our results for the insecurityof p-party ping-pong protocols extend to the insecurity of operator words, indexed by at most pusers, in presence of p-party ping-pong protocols. Further details are given in subsection 2.4.3.2.1.5 Additional Terminology and Observations concerning Insecure ProtocolsRecall that the insecurity of P [�x] refers to the existemce of some sequence
 2 (�S[inst(P; S[U))�having certain properties. The following de�nition refers to such a possible sequence.De�nition 10 (�(�; �; �), insecurity strings, parsing and �llers): Let P [�x], �u, U , �J andinst(�; �) be as in De�nition 9.1. For S 2 I n U , we denote �S [inst(P; S [U) by �(P;U; S).2. Let
 2 �(P;U; S)� such that
�1[�u] � �. Then
�1[�u] is called a S-insecurity string of P [�u].3. Let
 =
n � � �
2
1 such that
i 2 �(P;U; S), for 1 � i � n. Then the sequence (
1;
2; :::;
n)is called a parsing4 of
. An element
i (of the parsing) is called a �ller if
i 2 �S.4Indeed, the parsing may not be unique. 12

Part 3 of De�nition 10 describes the syntaxtic structure of insecurity strings as elements in theregular set �(P;U; S)��1[�u]. We now describe insecurity strings as elements of the context-freegrammer \generated" by the cancellation rules. To this end we �rst de�ne a reduction process onoperator words.De�nition 11 (reduction process): Let �0 2 �� be an operator word. A reduction process on�0 is a sequence of operator words �0; �1; :::; �t such that(1) For every i 2 f0; :::; t� 1g there exists �; � 2 � and �; � 2 �� such that (�; �) is a cancellationrule, �i = ����, and �i+1 = ��.In such a case, we say that � and � reduce each other in step i of the reduction process.(2) There exists no �; � 2 � and �; � 2 �� such that (�; �) is a cancellation rule, �i = ����, and�i+1 = ��.The word �t is called the result of the reduction process.Note that �0 � �1 � � � � � �t.Intuitively, a reduction process is a sequence of omissions of adjacent operators subject to a cancel-lation rule, resulting in a word that does not contain such adjacent operators. It is easy to see thatthe reduction system de�ned above is �nite and has the Church Rosser property [CR,Ro]. By theChurch Rosser Theorem, all reduction processes on � yield the same result, called the reduced formof �. Note that �1 � �2 if and only if the reduced forms of �1 and �2 are identical.5 In particular,the reduced form of an insecurity string is the empty string �.De�nition 12 (cancellation pattern and mates): Let �0 =
�1[�u] be a S-insecurity string ofP [�u], and let �0; �1; :::; �t be a reduction process.� We denote by left(i) and right(i) the locations in �0 of the operators that cancel eachother in the i-th step of this reduction process; that is, �0 = �2t � � � �left(1)�right(1) � � � �1,�i =
i;2�left(i)�right(i)
i;1 and �i+1 =
i;2
i;1.� For every 1 � i � t, the locations left(i) and right(i) (in �0) are called mates. The set ofmates (i.e. f(left(i); right(i))gti=1) is called the cancellation pattern of �0.Example 3: Consider the following reduction sequence on �0 = �8�7 � � � �2�1:�8�7�6�5�4�3�2�1, �8�5�4�3�2�1, �8�5�4�3, �4�3, �.The corresponding cancellation pattern is f(7; 6); (2; 1); (8; 5); (4; 3)g.Conventions: We recall some of the conventions introduced so far.(1) Whenever referring to a set of forms F , we implicitly consider its partition into the categoriesFE , FD, Fapp, Fdelt, Ffun and Finv. Whenever we refer to a protocol we assume that the setof forms is �xed and understood from the context.5Thus, the symmetry of � asserted in De�nition 4 is note used.13

(2) The set of users I is isomorphic to the sent of natural numbers, denoted N .(3) Throughout the paper U � I always denotes the set of users in �u.(4) Whenever considering a S-insecurity string (as in De�nition 10), we call the users in S saboteurs.(5) Whenever considering an insecurity string we will refer to some �xed parsing and some �xedreduction sequence of it (as in De�nition 11). Mates and the cancellation pattern (as inDe�nition 12) will be considered with respect to this �xed reduction sequence. Often we willpresent an insecurity string by a parsing of it.(6) Sometimes, when presenting a protocol, we only present its protocol words. This is done whenthe protocol is only used to demonstrate some lower bound. In fact these words may belongto several protocols.Two Simple Observations. The �rst observation is that it su�ces to consider S-insecuritystrings containing operators indexed by users in U [S. (Recall that De�nition 10 talks of insecuritystrings as sequences over inst(P;U[S)[�S, whereas �S contains non-decryption operators indexedby all users in I.)Proposition 1: If P [�u] has a S-insecurity string then it also has a S-insecurity string consistingof operators in �(F;U [S).Proof: Consider a S-insecurity string � =
�1[�u]. If � contains an operator indexed by a user notin U [S then this operator is a �ller (because it cannot be contained in a word in inst(P;U [S)or in �1[�u]) and (for the same reason) its mate is also a �ller. Let s be an arbitrary user in S.Replace in � each �ller fi =2 �(F;U [S) (i.e. f 2 F and i 2 I n (U [S)) by the �ller fs. Theresulting string, denoted �0, has the same cancellation pattern as � and the same non-�llers. Thus�0 is a S-insecurity string of P [�u].In light of the above, we rede�ne �(P;U; S) to contain only words in �(F;U [S); namely:De�nition 100 (revised de�nition of �(�; �; �) and insecurity strings): Let P [�x], �u, U , �Jand inst(�; �) be as in De�nition 9.1. For S 2 I n U , rede�ne �(P;U; S) to equal (�S \ �(F; S [U)) [inst(P; S [U).Note that (�S \ �(F; S [U)) contain only the operators that are indexed by users in S [Uand are in the vocabulary of users in S. That is,(�S \ �(F; S [U)) = ffi : f 2 F n FD ; i 2 S [Ug [ffs : f 2 FD ; s 2 Sg2. The string � =
�1[�u] is rede�ned to be a S-insecurity string of P [�u] if
 2 �(P;U; S)� and� � �. The point is that
 2 (�S \�(F; S [U)) [inst(P; S [U)�.(The parsing of � is de�ned as in De�nition 10.)The second observation is that with no loss of generality, we may assume that all non-�llers inan insecurity string are applied by non-saboteurs. Furthermore, these non-�llers must contain adecription operator indexed by a user in U . 14

Proposition 2: Let � =
�1[�u] be a S-insecurity string of P [�u]. Consider a parsing of � withminimum number of non-�llers. Then every non-�ller contains an operator fv such that f 2 FDand v 2 U .Proof: Let
�1[�u] be a S-insecurity string and (
n; :::;
i; :::;
1) be a parsing of
, with theminimum number of non-�llers. If
i is a non-�ller containing no decryption operator of a user in Uthen
i 2 �+S . It follows that
i = �m � � � �1, where �jin�S for every j 2 f1; :::;mg. Contradictionis reached by considering the sequence (
n; :::;
i+1; �m; :::; �1;
i�1; :::;
1) which is an alternativeparsing of
 with less non-�llers.2.2 On the Number of SaboteursDe�nition 9 reduces the problem of testing the security of the multi-party ping-pong protocol P [�x]to the following word problem: Does there exist a set S � I n U and a string � =
�1[�u] such that
 2 �(P;U; S)� and � � �?A natural question arises: How large should the set S be so that for every insecure p-partyping-pong protocol P [�x], there exist a S-insecurity string of P [�u]? (Recall that the identity of theusers is S is immaterial.) This question is of computational importance, because the cardinalityof S determines the cardinality of �(P;U; S), which in turn e�ects the running time of the bestalgorithms known for solving the above word problem.6De�nition 13 (�(�) and �F (�)):� For an insecure multi-party ping-pong protocol P , We denote by �(P) = �(P [�u]) the cardi-nality of the smallest set S such that there exists a S-insecurity string for P [�u]. In case theprotocol P [�x] is secure, �(P) is unde�ned.� Let F be a set of forms and p be an integer. We denote by �F (p) the supremum of �(�), whentaken over all insecure p-party ping-pong protocols that have forms in F .It is not assumed that �F (p) is an integer. A-priori �F : N ! N [f1g. (It will be shown laterthat �F (p) is an integer and so in fact �F : N ! N .) Let us begin our study of �F (p) by recallinga result concerning the simple case of p = 2, due to Dolev, Even and Karp [DEK].Proposition 3 [DEK]: Let F be an arbitrary set of forms such that FE 6= ;. Then �F (2) = 1.Clearly, the case FE = ; is of no interest.6Speci�cally, let P [�x] be a p-party ping-pong protocol, l denote the number of words in P [�x] and n denote the sumof their corresponding length. Let V ij = i!(i�j)! denote the number of variations of j elements out of i elements. Thenj�(P;U; S)j = jSj � jFDj+ jU[Sj � jF nFDj+ l �V p+jSjp < O(1)+2p+jSj � l and the total length of the strings in �(P;U; S)is jSj � jFDj+ jU [Sj � jF nFDj+ n � V p+jSjp < O(1) + 2p+jSj � n. Recall that the running time of the Dolev-Even-Karpalgorithm [DEK], which can be applied here too, is cubic in the total length of the strings in �(P;U; S). Thus, if jSjcan be bounded as a function of p (and jF j) then for constant p the latter expression is linear in n.
15

Proof: By Example 2 (subsection 2.1.2), �F (2) � 1. Consider an arbitrary insecure two-partyping-pong protocol P [�x]. Let � =
�1[�u] be a S-insecurity string of P [�u], where S � I n fu1; u2gis an arbitrary set. By Proposition 2, each non-�ller
i = �j[�v] in
 contains at least one operatorindexed by a non-saboteur. Therefore, out of the two elements of �v at most one is in S. Let s be anarbitrary element in S. Replace in �, each operator fi with i 2 S, by the operator fs, resulting in astring �0. The cancellation pattern of � is maintained in �0, and all non-�llers in �0 are still properinstances of protocol words. Thus, �0 is a fsg-insecurity string of P [�u].We stress that the fact that the replacement preserves properness (as well as cancellation pat-tern), is due to the fact that the original insecurity string contains instances of protocol words withat most one saboteur. The later fact is implied by (Proposition 2 and) the fact that we consideredonly two-party protocols. For general p, we can only guarantee that each instance contains at mostp� 1 saboteurs. In the general case, \properness" will not be preserved by obvious replacements.This will be clari�ed in the coming subsections.2.2.1 A Simple Case: F = FE [FDIn this subsection, we consider �F in the special case where F contains only public-key cryptosystemforms (i.e., F = FE [FD). This special case is much simpler than the general case to be consideredin the following subsections.Theorem 1: Let F = FE [FD 6= ;. Then �F (p) = p� 1.Proof: We �rst demonstrate that �fE;Dg(p) � p� 1, by considering the following p-party ping-pong protocol, denoted P [�x], which generalizes Example 1: �1[�x] = Exp and �2[�x] = Ex1Ex2 � � �Exp�1Dxp .The protocol P [�x] is insecure, as can be demonstrated by the following fsigp�1i=1 -insecurity string ofP [�u]: (Dsp�1 ; :::;Ds2 ;Ds1 ; Es1Es2 � � �Esp�1Dup ; Eup). This allows us to write �fE;Dg(p) � �(P [�x]).Turning to the analysis of �(P [�x]), let S be an arbitrary set such that
�1[�u] is a S-insecurity stringof P [�u]. Evidently,
�1[�u] must contain as many occurrences of operators in DU = fDu : u 2 Ug asoccurrences of operators in EU = fEu : u 2 Ug. This implies that
 contains more occurrences ofDU -operators than of EU -operators (because �1[�u] = Eup 2 E+U). Since DU -operators must appearin non-�llers, this may happen only if
 contains a �v-instance of �2[�x], where v1; v2; :::; vp�1 areelements in S and vp 2 U . Since �2[�v] must be proper, the vk's are distinct users. It follows that�(P [�x]) � p� 1, and so �fE;Dg(p) � p� 1.We now demonstrate that �FE[FD(p) � p�1, by considering an arbitrary insecure p-party ping-pong protocol (P [�x]) with forms in F = FE [FD. Recall FE = fE(k)gtk=1 and FD = fD(k)gtk=1.Let S be an arbitrary set and
 be a string such that � =
�1[�u] is a S-insecurity string of P [�u]. IfjSj � p� 1 then we are done. We thus consider the case in which jSj > p� 1. By Proposition 2, allnon-�llers in
 are activated by a user in U . Thus, only �llers may contain decryption operatorsindexed by a user in S (because D(k)s =2 �u when s 2 S and u 2 U). By the above and sinceF = FE [FD, we haveFact: if two operators indexed by a saboteur cancel each other then at most one of them(i.e., the encryption) occurs in a non-�ller.Let S0 = fsigp�1i=1 be an arbitrary set of p � 1 users in S. We now replace in
 all occurrences ofoperators with index in S by operators (with the same form and) with index in S0. This replacement16

should be done with care so that \properness" of the word instances as well as the cancellationpattern are preserved. We iteratively consider all non-�llers in
. With respect to each non-�ller
i, we proceed in two steps, �rst replacing the non-�ller itself and next replacing the mates ofits saboteur-indexed operators. It is crucial that these mates are all �llers, and indeed this isguaranteed by the above Fact.Step 1 { Replace a non-�ller: Let
i = �j [�v], and Si be the set of users in �v which are also inS. Recall that jSij � p� 1 (because �v = (v1; v2; :::; vp) contains at least one user in U). Let�i : Si ! S0 be a one-to-one mapping, and �w = (w1; w2; :::; wp) be a sequence of p distinctusers such that wk = vk if vk 2 U and wk = �i(vk) if vk 2 S. Such a mapping exist becausejSij � p� 1 and jS0j = p� 1.Action: replace in
, the non-�ller �j [�v] by the non-�ller �j[�w].Step 2 { Replace mate �llers: Let � be a location in
 that changed its content from E(k)v to E(k)�i(v)through the replacement of
i = �j[�v] by �j [�w] (note that the replacement a�ects only theindex of operators in S and that their form, which is of encryption type, is preserved). Usingthe above notations, we note that �'s mate is a �ller consisting of the operator D(k)v .Action: change in
 the content of �'s mate from D(k)v to D(k)w .When the two steps concerning
i are completed, the resulting string is again an insecurity string(i.e., the properness and the cancellation pattern are preserved). When we are done with all non-�llers, the resulting string is a S0-insecurity string of P [�u], demonstrating that �(P [�u]) � p � 1.Discussion: We stress that the fact that the presented replacement preserves the properness (aswell as the cancellation pattern), is due to the fact that the original insecurity string does not containoperators indexed by saboteurs that cancel each other and are both occurring in non-�llers. Thisholds in case F = FE [FD, but may not hold in general! In general, the properness preservationrequires that, in every non-�ller, distinct saboteurs are replaced by distinct saboteurs. This inducesinequality constraints on the replacement. The cancellation pattern preservation requires that mates'indices are replaced by the same saboteur. Also, the replacement in each non-�ller must beconsistent (i.e., two occurrences of the same saboteur in the same non-�ller are replaced by thesame saboteur). These induce equality constraints on the replacement. In both proofs of Proposition3 and Theorem 1, it is easy to avoid con
icts between the equality and inequality constraints. Ingeneral, as we shortly illustrate, avoiding con
icts may be more di�cult.Example 4: Consider the following fs1; s2; s3g-insecurity string (ds2ds3Du; Euas3ds1Du; Euas1as2).The cancellation pattern is necessarily f(3; 4); (7; 8); (2; 5); (6; 9); (1; 10)g.7 Each non-�ller containsonly 2 saboteurs. Nevertheless, it is impossible to replace (in the above insecurity string) the sabo-teurs (i.e., s1, s2 and s3) by fewer than three saboteurs in a manner that will preserve both theproperness and the cancellation pattern.7Recall that the operators in the insecurity string are indexed from right to left. The correspondingcancellation process is ds2ds3DuEuas3ds1DuEuas1as2 , ds2ds3DuEuas3ds1as1as2 = ds2ds3DuEuas3ds1��as1as2 ,ds2ds3as3ds1as1as2 = ds2ds3��as3ds1��as1as2 , ds2ds3as3as2 = ds2ds3��as3����as2 , ds2as2 = ds2��������as2 ,�. 17

2.2.2 The General Case: a Reduction to a Combinatorial ProblemAs suggested by the above discussion, replacing saboteurs in insecurity strings is governed by speci�cinequality and equality constraints determined by the parsing and cancellation pattern of the string.However, the parsing and cancellation pattern of a string may not be unique, and furthermoreevery insecure protocol has in�nitely many distinct insecurity strings. This makes the analysisof the number of saboteurs needed to demonstrate insecurity of p-party ping-pong protocols (i.e.,�F (p)) very complicated. We chose to reduce the analysis of �F (�) to a much cleaner combinatorialproblem that captures only the inequality and equality constraints (which may result from suchinsecurity strings). This subsection consists of the de�nition of the combinatorial problem and areduction of �F (p) to it.De�nition 14 (Well-Formed Parentheses Expression): Let f[i;]i : i 2 Ig be a set of paren-theses symbols. The symbol [i is called a left parenthesis (left-par), the symbol]i is called a rightparenthesis (right-par) and both symbols are of the i-th type. Let
 = �n � � � �2�1 2 f[i;]i : i 2 Ign,for some natural number n. Then the �-th location in
 contains ��.� The locations � and �, � > �, in
 are said to match if the �� is an left-par and �� � is thesmallest integer such that �����1 � � � ��+1�� has an equal number of left-par's and right-par's.� The locations � and �, � > �, in
 are said to be type-matched if they match and containsymbols of the same type. It follows that �� = [i and �� =]i, for some i.�
 = �n � � � �2�1 is a well-form parentheses expression (abbreviated wfe) if the integers 1 throughn can be partitioned to type-matched pairs.Given a wfe, the matching of its locations is uniquely de�ned. This fact is very useful, as it freesus from having to specify the matching when presenting a wfe.De�nition 15 (regional wfe and regionwise-isomorphic wfe's): Let
 2 f[i;]i : i 2 Ig� bea wfe.� Let
1; :::;
n 2 f[i;]i : i 2 Ig be such that
 =
n � � �
2
1. Then �
 = (
n; :::;
2;
1) is called aregional wfe, and each of the
i's is called a region of �
.� Let �
 = (
n; :::;
2;
1) and �� = (�n; :::; �2; �1) be two regional wfes. We say that �
 and �� areregionwise-isomorphic if for every j 2 f1; :::; ng the j-th region of �
 i.e.,
j) is \isomorphic"to the j-th region of �� i.e., �j). That is, for every j, the following hold:(1) The length of
j equals the length of �j, which in turn is denoted lj.(2) For every 1 � � � lj, the �-th location in
j contains a left-par if and only if the �-thlocation in �j contains a left-par.(3) For every 1 � � < � � lj, the symbols in locations � and � in
j are of the same type ifand only if locations � and � in �j are of the same type.That is, for every j, there exists a one-to-one mapping � : I ! I such that for every � if the�-th location in
j contains [i (resp.,]i) then the �-th location in
j contains [�(i) (resp.,]�(i))18

Let �
 and �� be two regionwise-isomorphic wfes. By condition (2) above, �
 and �� have the samematching pattern (i.e. if locations � and � in �
 are matched then locations � and � in �� arematched). Since both �
 and �� are wfes, it is the case that matched locations are type-matched. Notethe correspondence to the equality constraints on the replacement of saboteurs that are mates inan insecurity string. Also note the correspondence between condition (3) above and the constraintson the replacement of saboteurs in a non-�ller (i.e., the inequality constraints are respected bythe replacement). Clearly, the number of types appearing in corresponding regions of �
 and �� isidentical. However, the number of types which appear in �
 and �� (as a whole) is not necessarilyidentical. This is demonstrated by the following regionwise-isomorphic wfes: �
 = ([1;]1[2;]2[3[2;]2]3)and �� = ([2;]2[1;]1[2[1;]1]2). The second region in each of the above regional wfes consists of symbolsfrom two types (2 and 3 in �
; 1 and 2 ��). However, �
 contains 3 types and �� contains only 2.De�nition 16 ((�), q-regional wfe and 	(�)): Let �
 = (
n; :::;
2;
1) be a regional wfe.� We denote by (�
) the smallest integer m, such that there exists a regional wfe that is regional-isomorphic to �
 and contains symbols of exactly m distinct types.� We say that �
 is a q-regional wfe (q-wfe) if each region of �
 contains symbols of at most qdistinct types.We denote by 	(q) the supremum of (�), when taken over all q-regional wfes.The intuitive correspondence between �F (�) and 	(�) is formulated in the following two Lemmas:8Lemma 1: For every p � 2 and F , it holds that 	(p� 1) � �F (p).Lemma 2: For every q � 1 and F such that FE 6= ; and Fapp 6= ;, it holds that �F (q+1) � 	(q).As an immediate corollary, we getTheorem 2: For every p � 2 and F such that FE 6= ; and Fapp 6= ;, it holds that �F (p) =	(p� 1).We now restate and prove the above Lemmas.Lemma 1 (restated): Let P [�x] be an insecure p-party ping-pong protocol. Then there exist a(p� 1)-regional wfe �� such that (��) = �(P [�u]).Assuming that �F (p) is �nite, let P be a p-party protocol such that �(P [�u]) = �F (p). It followsthat 	(p� 1) � (��) = �(P [�u]) = �F (p). In case �F (p) is in�nite we consider, for every n 2 N , ap-party protocol P such that �(P [�u]) � n and obtain 	(p� 1) � (��) = �(P [�u]) � n.8In the formulation, we allow both 	(q) and �F (p) to be in�nite, with n <1 �1 =1 for every natural numbern.
19

Proof: The lemma follows by a natural transformation of insecurity strings into regional wfes.One needs only stress that all non-�llers in the insecurity string contain at most p� 1 saboteurs.Following are the details of the transformation.Let
�1[�u] be a S-insecurity string for P [�u] such that jSj = �(P [�u]), and let �
 = (
n; :::;
2;
1)be a parsing of
. By Proposition 2, each
i contains at most p�1 saboteurs. Using �
, we constructa wfe �� = (�n; :::; �2; �1) as follows:(1) Omit from �
 all operators with index in U , resulting in a sequence ��.Locations in �� are paired by their correspondence to mates in the reduction process of
�1[�u].(2) Let (�; �) be a pair of locations in �� that correspond to mates in �
. Then, there exist s 2 S andf; g 2 F such that location � contains the operator fs while location � contains gs. Supposethat mu > nu.Replace in location � the operator fs by the symbol [s, and in location � the operator gs bythe symbol]s.Applying this to all location-pairs yields a regional wfe, denote ��.Note that �� is a (p � 1)-regional wfe, which fully captures the parsing and the reduction processof the saboteur operators in the insecurity string
�1[�u]. The inequality and equality constraintson the replacement of saboteurs in
�1[�u] are fully captured by corresponding constraints on wfesthat are regional-isomorphic to ��.Claim: (��) = �(P [�u]).Proof: By its construction, �� contains �(P [�u]) distinct types, and so (��) � �(P [�u]).Assume that �� has a regionwise-isomorphic wfe ��0 with types in S0, where jS0j < jSj.The correspondence, between saboteur indexed operators in �
 and symbols in ��, canbe used to derive from ��0 a replacement of the saboteurs in �
. Let �
0 be the parsingresulting by this replacement. The reader can easily verify that
0�1[�u] is a S0-insecuritystring of P [�u] with the same parsing and cancellation pattern as
�1[�u]. This yields�(P [�u]) � jS0j < jSj in contradiction to the hypothesis jSj = �(P [�u]). 2The Lemma follows.Lemma 2 (restated): Let E, D, a and d be encryption, decryption, name-appending and name-deletion forms, respectively. Let �� be a q-regional wfe. Then there exist an insecure (q + 1)-partyping-pong protocol P [�x] over the forms fE;D; a; dg such that �(P [�u]) = (��).Assuming that 	(q) is �nite, let �� be a q-regional wfe such that (��) = 	(q). It follows that�fE;D;a;dg(q + 1) � �(P) = (��) = 	(q). The case in which 	(q) is in�nite is handled similarly.Proof: The transformation of regional wfes into insecurity strings is more di�cult than the con-verse transformation presented in the proof of Lemma 1. One needs to construct an insecureprotocol such that each of its insecurity strings can be associated to the given regional wfe.We �rst use �� to construct a (q + 1)-party ping-pong protocol P [�x] (over fE;D; a; dg), nextshow that P [�x] is insecure (and �(P [�u]) � (��)), and end by proving that �(P [�u]) � (��).20

The Construction of the Protocol: Without loss of generality, �� = (�n; :::; �2; �1) contains symbolsof the types T = f1; 2; :::; (��)g. Let Ti � T denote the set of types occurring in �i, and �x =(x1; x2; :::; xq; xq+1) be a sequence of q + 1 distinct variables. Let �i : Ti ! fx1; x2; :::; xqg be aone-to-one mapping. Such mappings exist since jTij � q. We proceed as follows:Construct protocol sub-words that correspond to ��: For every i = 1; :::; n and j 2 Ti, wereplace in �i the symbol [j by the operator d�i(j), and the symbol]j by the operator a�i(j).The result is a var-operator word, denoted �(W)i [�x], in faxi ; dxi : 1 � i � qg�.De�ne auxiliary sub-words: For every i 2 f0; 1; :::; n+1g, de�ne �(D)i [�x] = dxq+1Exq+1(dxq+1)iDxq+1 ,and �(A)i [�x] = Exq+1(axq+1)i+1Dxq+1axq+1 . Note that all operators in �(D)i [�x] and �(A)i [�x] areindexed by xq+1.De�ne �(S)[�x] = Ex1Ex2 � � �Exq , and note that �(S)[�x] is in the vocabulary of each user.The protocol itself: The (q + 1)-party ping-pong protocol P [�x] consists of the following words:� �1[�x] = �(A)0 [�x].� For i = 1; :::; n, �i+1[�x] = �(S)[�x]�(A)i [�x]�(W)i [�x]�(D)i [�x].� �n+2[�x] = �(D)n+1[�x].The protocol words are constructed so that they may appear in a minimal length insecurity stringonly in consequtive order. This will be argued later. Let us �rst show that P [�x] is insecure.The Insecurity of the Protocol: Let S = f1; 2; :::; (��)g = T and �u = ((��)+1; (��)+2; :::; (��)+q+1).Let Ri be an arbitrary subset of S n Ti having cardinality q � jTij. Let ��1i : fx1; x2; :::; xqg !(Ti [Ri) be a one-to-one mapping such that ��1i (�i(j)) = j for every j 2 Ti. Let ��1i (�x) =(��1i (x1); ��1i (x2); :::; ��1i (xq); (��) + q + 1). The following facts can be easily veri�ed.Fact 1: For every i 2 f0; 1; :::; ng and every �v and �w such that vq+1 = wq+1, it holdsthat �(D)i+1 [�v]�(A)i [�w] � �.Proof: By its de�nition �(D)i+1 [�v]�(A)i [�w] = dvq+1Evq+1(dvq+1)i+1Dvq+1 �Ewq+1(awq+1)i+1Dwq+1awq+1 ,which in turn is equivalent to dvq+1Evq+1(dvq+1)i+1(awq+1)i+1Dwq+1awq+1 � dvq+1Evq+1Dwq+1awq+1 �dvq+1awq+1 � �. 2Fact 2: The operator string �(W)n [��1n (�x)] � � � �(W)2 [��12 (�x)]�(W)1 [��11 (�x)] is equivalent tothe empty string �.Proof: The said operator string is isomorphic to ��, where the isomorphism maps ap-pend/delete operators that are indexed by elements in T to corresponding right/leftparenthesis. The fact that �� is a wfe implies the desired reduction process. 2We now extend the \main" protocol words by decryption operators that are indexed by the �rstq parties (to be played by saboteurs): For i = 1; :::; n, let �(ext)i+1 [�v] = Dvq � � �Dv2Dv1�i+1[�v]. Notethat �(ext)i+1 [�v] � �(A)i [�v]�(W)i [�v]�(D)i [�v], and that �(i+1ext)[��1i (�x)] 2 �(P;U; S)�. Let v = ��1i (�x) and
21

 = �n+2[�v]�(ext)n+1 [�v] � � ��(ext)2 [�v]. Note that vq+1 = (��)+ q+1 = uq+1. Using the above de�nitionsand Fact 1, we have
�1[�u] � �(D)n+1[�v] � �(A)n [�v]�(W)n [�v]�(D)n [�v] � �(A)n�1[�v]�(W)n�1 [�v]�(D)n�1[�v] � � � �(A)1 [�v]�(W)1 [�v]�(D)1 [�v] � �(A)0 [�u]� �(W)n [�v]�(W)n�1 [�v] � � � �(W)1 [�v]which is equivalent to � (by Fact 2). It follows that
�1[�u] is an S-insecurity string of P [�u] and�(P [�u]) � (��).Lower Bound on Number of Saboteurs (in insecurity strings): We will now show that �(P [�u]) � (��).Let S0 be an arbitrary set such that
 = (
m; :::;
2;
1) is a S0-insecurity string of P ; that is,
�1[�u] � �. The following facts concerning
 are of interest.New Note: It is instructive to have a schematic picture of a generic �j+1[�v], which (forj � n) equals �(S)[�v]�(A)j [�v]�(W)j [�v]�(D)j [�v] if j � n. Such picture has the formS-block A-block W-block D-blockFact 3 (resp., Fact 4) asserts that the mates of the operators in the D-block (resp.,A-block) must lie to its right (resp., left).Fact 3: For any i 2 f1; :::;mg, let
i = �j+1[�v] be a non-�ller, for some j 2 f1; :::; n+1g.Consider the �(D)j = dvq+1Evq+1(dvq+1)jDvq+1 part of �j+1[�v] (which, in turn, equals�(S)[�v]�(A)j [�v]�(W)j [�v]�(D)j [�v] if j � n). Then the mates of operators in this part lie toits right in
.Proof: Observe that the leftmost operator in �(D)j is a name-deletion operator, whichmust have a mate on its right. 2Fact 4: Let
i = �j+1[�v] be a non-�ller, for some j 2 f0; :::; ng. Consider the �(A)j =Evq+1(avq+1)j+1Dvq+1avq+1 part of �j+1[�v]. Then the mates of operators in this part lieto its left in
.Proof: Observe that the rightmost operator in �(A)j is a name-appending operator, whichmust have a mate on its left. 2New Note: It seems that the order of Facts 5 and 6 can be switched, resulting in a morenatural order.Fact 5: Let �1; �2; �3 be arbitrary operator strings that do not contain any name-appending/deletion operators. Let v and w be arbitrary users. Suppose that �1dv�2aw�3 ��. Then �2 � � � �1�3 and v = w.Proof: Observe that aw has a mate to its left, dv has a mate on its right, and the \matingrelation" constitutes a \well formed parentheses expression". Thus, v = w, �2 � � and�1�3 � �. 2Fact 6: For any i 2 f1; :::;mg, let
i = �j+1[�v] be a non-�ller, for some j 2 f1; :::; ng.Then, for every k 2 f1; :::; qg, it holds that vk 2 S0.22

Proof: Assume, to the contrary that vk 2 U . Then one of the operators in the corre-sponding �(S)[�v] is an encryption by a user in U and must have a mate in a non-�ller(because the mate is a decryption). The structure of �j+1 (and Fact 4) forces thisencryption to have a mate on its left. By Fact 3, this mate is in the �(D)l part of some
i0 = �l+1[�w]. It follows that wq+1 = vk and Dwq+1
i0�1 � � �
i+1Ev1 � � �Evk � �. Butit also follows that dwq+1Dwq+1
i0�1 � � �
i+1Ev1 � � �EvkEvk+1 � � �EvqEvq+1avq+1 � �. Butthis implies wq+1 = vq+1, which violates the properness of
i = �j+1[�v]. 2Fact 7: Without loss of generality, if
i = �j+1[�v] then
i+k = Dvk for every 1 � k � q.Here, \without loss of generality" means that there exist a S0-insecurity string
 forwhich the claim holds.Proof: Using Fact 6, one can always substitute in
 the non-�ller �j+1[�v] (which is in�(P;U; S0)) by the word-sequence Ev1Ev2 � � �EvqDvq � � �Dv2Dv1�j+1[�v] 2 �(P;U; S0)�.(The key observation is that by Fact 6, v1; :::; vq 2 S0, and thusDv1 ; :::;Dvq 2 �(P;U; S0).)2Thus, we may consider
 as consisting of �llers and words in f�(ext)j+1 [�v] : 1 � j � ng[f�1[�v]; �n+2[�v]g.Note that such a partition does not correspond to the formal de�nition of a parsing, but we willuse it nevertheless.Fact 8: Without loss of generality, for j = 1; :::; n, it holds that
j = �(ext)j+1 [�]. Also,
n+1 = �n+2[�] and
n+1 � � �
1�1[�u] � �.Proof: We prove the claim by induction on j. For the basis case (j = 1), note that�1[�u] = �(A)0 [�u] = Euq+1auq+1Duq+1auq+1 must be cancelled by some �(D)k+1[�w] (use Facts3 and 4), and wq+1 = uq+1 holds. Considering the possible cancellation pattern in�(D)k+1[�w] � � ��1[�u] = duq+1Euq+1(duq+1)k+1Duq+1 � � �Euq+1auq+1Duq+1auq+1 , one infers thatk = 0. Furthermore, we may replace the word between �(D)k+1[�w] and �1[�u] by �. Similarly(in the induction step), �(A)j , which appears in
j = �(ext)j+1 [�] must be cancelled by some�(D)i+1 [�]. The same reasoning also establishes
n+1 = �n+2[�] and
n+1 � � �
1�1[�u] � �. 2Fact 9: Let �v(i) be the users in the i-th non-�ller. Then, �(W)n [�v(n)] � � � �(W)2 [�v(2)]�(W)1 [�v(1)] ��.Proof: By Fact 8, it holds that �(ext)n+2 [v(n+1)] � � ��(ext)2 [v(1)]�1[�u] � �. By the structureof the �j 's, it follows that �(W)n [�v(n)] � � � �(W)2 [�v(2)]�(W)1 [�v(1)] � �. 2By Facts 6 and 9, there exist �v(i) = (v(i)1 ; v(i)2 ; :::; v(i)q+1)'s such that �(W)n [�v(n)] � � � �(W)2 [�v(2)]�(W)1 [�v(1)] �� and v(i)j 2 S0, for every i 2 f1; :::; ng and j 2 f1; :::; qg. Using the correspondance between ��and (�(W)n ; :::; �(W)2 ; �(W)1), we can obtain a regionwise-isomorhich ��0 that contains jS0j symbols.By taking S0 such that �(P) = jS0j and considering a S0-insecurity string of P , we conclude that (��) � jS0j = �(P). The lemma follows.
23

Discussion: The reduction of �F (p) to 	(p � 1) may not seem a dramatic simpli�cation, butconsider the analysis of �(P) for the worst p-party protocol P versus the analysis of (��) for theworst ��. In the former case we need to consider all insecurity strings of P (as well as all their parsingsand cancellation pattern), whereas in the latter case we need only consider the \type-colorings" ofone �xed string.Example 5: Consider �rst the problem of determining �F (2) versus the problem of determining	(1). In the latter case, we refer to all possible 1-regional wfes, and it is clear that each suchwfe can be \type-colored" by one set of parenthesis. Thus, 	(1) = 1 (and �F (2) = 1 follows).Furthermore, to show that �F (p) > p � 1 for some p, it su�ces to show that 	(q) > q for someq = p � 1. This can be shown, for q = 2, by considering the 2-regional wfe �� = ([1[2;]2[3;]3[1).Clearly, (��) = 3, and 	(2) � 3 follows.2.2.3 Lower Bounds on the Combinatorial ProblemWe have seen in Example 5 that 	(2) � 3, which improves over the trivial lower bound of 	(2) � 2.The argument can be easily extended to yield 	(2q0) � 3q0 (e.g., by replacing each par-symbol byq0 di�erent symbols). In this section we further investigate the non-triviality of of 	 establishing	(q) � 3q � 2 for every q � 1 (e.g., 	(1) � 1, 	(2) � 4 and 	(3) � 7). It is even not a prioriclear whether 	(q) is at all �nite, for q � 2. The task of providing an upper bound on 	(q) isundertaken in section 2.2.4.New Note: Translating the results in [EG] to the current terminology we have:Lemma 3 in [EG] (p. 16): 	(2) � 5.Lemma 4 in [EG] (p. 16): 	(q) � 3q � 2, for every q � 1.Both claims are proven by presenting relatively simple regional wfe's.We comment that the presentation in [EG] takes another step of abstraction: Whenconsidering a q-regional wfe, each occurrence of a symbol of type i (regardless of whetherit is a left-par or a right-par) is substituted by a variable xi, and we consider assignmentsto the variables such that di�erent variables that appear in the same region are notassigned the same value. The question is how many values must be used in such anassignment.2.2.4 Upper Bounds on the Combinatorial ProblemNew Note: Translating the results in [EG] to the current terminology we have:Lemma 6 in [EG] (p. 18): 	(q) � 3q � 1, for every q � 1.This lemma is proven in Appendix B of [EG] (pp. 33{45). Note that it follows that	(2) = 5 and 	(q) 2 f3q � 2; 3q � 1g, for every q � 3. Recall that 	(1) = 1.In continuation to the note in Section 2.2.3, we comment that the assignment problemcan be cast as a coloring problem of a corresponding graph in which variables arerepresented by vertices and edges represent pairs of variables that appear in the sameregion. The presentation in [EG] is in therse terms.24

2.3 NP{Hardness for the Case of Varying Number of PartiesNew Note: This is proven in [EG] by reduction from a restricted form of 3XC, which isshown to be NP-complete (by reduction from 3XC), to the problem of determining thesecurity of multi-party ping-pong protocols over the set of forms F = fE;D; a; dg. Seepages 18{22 of [EG].2.4 Further Discussions Concerning the Insecurity De�nitionIn this section we discuss four side issues concerning the insecurity de�nition of section 2.1.2.4.1 Other Categories of Operator-FormsThe operator-forms considered in subsection 2.1.1, were placed in (three pairs of) categories ac-cording to their role in the users vocabularies and in the cancellation rules. Let (f; g) be a pair offorms. We say that f and g cancel symmetrically if, for every i 2 I, both (fi; gi) and (gi; fi) arecancellation rules. The forms f and g cancel asymmetrically if, for every i 2 I, only (fi; gi) is acancellation rule. We say that f is public if for every i; j 2 I, the operator fi is in j's vocabulary.The form f is private if fi 2 �j implies i = j. A systematically enumeration of all "reasonable"pairs of categories can be found in the following table.Cancellationpattern symmetrically asymmetricallyForm'sscopeboth public Ffun and Finv Fdelt and Fappone private FE and FD Cases 1 and 2 (below)both private Case 4 (below) Case 3 (below)We �rst consider the �rst three new cases (in the table above), where the forms cancel asymmetri-cally. Let (L;R) denote such a pair of forms, where (Li; Ri) is a cancellation rule, for every i 2 I.The three cases we consider are:Case 1: L is private and R is public.This case corresponds to a public-key encryption system that (unlike the basic Di�e andHellman model [DH]) cannot be directly used for digital signatures (e.g., see [GM]). We canmodel these forms by the categories of subsection 2.1.1, by letting Lu = duDu and Ru = Euau,where E 2 FE , D 2 FD, a 2 Fapp and d 2 Fdelt are special forms not used for other purposes.Testing security of protocols over �(F 0 [fL;Rg; I) can be reduced to testing security ofprotocols over �(F 0 [fE;D; a; dg; I).Case 2: L is public and R is private.This case corresponds to a public-key signature scheme that cannot be directly used forencryption. Again, we can model these forms by the categories of subsection 2.1.1, by lettingLu = duEu and Ru = Duau , where E 2 FE , D 2 FD, a 2 Fapp and d 2 Fdelt are specialforms not used for other purposes. A similar reduction of the security problem holds.25

Case 3: Both L and R are private.This case corresponds to a private message authentication scheme. Modeling is done byletting Lu = L(1)u L(2)u and Ru = R(2)u R(1)u , where (L(1); R(1)) is a forms-pair of the Case 1(above) and (L(2); R(2)) is a pair of the Case 2.Finally, we get to Case 4: We consider a pair of forms (f; f�1) where f and f�1 are both privateand cancel symmetrically. This case corresponds to a (private-key) cryptosystem that is used forboth private-key encryption and message authentication. We do not know to reduce this case to theprevious ones. Nevertheless, all our positive results extend also to protocols having such operators.New Note: All the additional cases are dealt with by reduction to the treatment ofthe forms studied in section 2.2 or by extension of that study. However, as shown insubsection 2.2.1, restricting the forms to some categories may yield a simpler treatment.Our intention, stated in a laconic note from 1985, was to study the power of operatorsthat cancel asymmetrically.9 Recall that we have shown that the set of form fE;D; a; dgexhibit all complications that must be dealt with for a general set of forms, and thatrestricting the forms to FE [FD makes life much simpler. Our plan (in 1985) was tostudy the e�ect of restricting the set of forms to forms that cancel symmetrically (i.e.,FE [FD [Ffun [Finv), but it seems that this plan was not carried out (or at least wecurrently fail to �nd any record of an actual study of this issue).2.4.2 The Insecurity Problem When Allowing Improper InstancesThroughout Chapter 2, we assumed that honest users refuse to take part in improper instances ofprotocols. Recall that a �u-instance of a ping-pong protocol is said to be improper if the sequence �ucontains two (or more) occurrences of the same user. The above assumption underlied the de�nitionof insecurity (De�nition 9 in subsection 2.1.3), where only proper instances of protocol words wereconsidered. In this subsection, we omit this restriction and consider (for the insecurity de�nition)also improper instances.De�nition 90 (weak-insecurity): Let P [�x], �u and �J be as in De�nition 9.� For every J � I, let inst0(P; J) denote the set of all instances of protocol words of P in whichthe users are from J ; that is, inst0(P; J) = f�j [�v] : 1 � j � l; v1; v2; :::; vp 2 Jg.� Protocol P [�x] is weakly-insecure if there exist a set S � I n U , and an operator string
 2(�S [inst0(P; S [U))� such that
�1[�u] � �.The only di�erence between De�nition 9 and De�nition 90 is that while inst(�; �) (in De�nition 9)contains only proper instances, inst0(�; �) (in De�nition 90) contains also improper instances. Webelieve that De�nition 9 is a much more natural than De�nition 90, nevertheless let us now considerthe notion of weak-insecurity (according to De�nition 90).Proposition X1: With respect to multi-party ping-pong protocols, insecurity implies weak-insecurity,but weak-insecurity does not imply insecurity.9The power of such operators was demonstrated in Section 6.2 of our technical report [EG], but our intentionin 1985 was to investigate their a�ect on the number of saboteurs that should be considered in determining theinsecurity of protocols. 26

Proof: The implication is trivial. For the non-implication, consider the following 2-party protocol:((x1; Ex2ax2); (x2; dx1Dx2)). This protocol is weakly-insecure (e.g., du2Du2 � Eu2au2 is a weak-insecurity string demonstrating this fact). The reader can verify that the above protocol does nothave an insecurity string and thus is not insecure.Proposition X2: If a multi-party ping-pong protocol is weakly-insecure then a single saboteursu�ces to demonstrate it.Proof: Consider a S-weak-insecurity string of the protocol, denoted �. Let s be an arbitrary userin S. Replace, in �, all operators indexed by r 2 S by operators with the same form indexed by s.The resulting string is a fsg-weak-insecurity string of the protocol.Thus, for every �xed p, the weak-insecurity of p-party ping-pong protocols can be tested in O(n3)time and O(n2) space (n is the length of the input), by using the techniques described in [DEK](and sketched in the Appendix). However, testing the weak-insecurity of multi-party ping-pongprotocols is NP-Hard (for details consult [Itz]).2.4.3 Testing Insecurity of a Word in Presence of a ProtocolWe consider the following generalization of De�nition 9.De�nition 9� (insecurity of words in presence of a protocol): Let P [�x], �J and inst(�; �)be as in De�nition 9. Let � 2 �� be an operator word such that for in�nitely many m 2 f0; 1g�,�(m) is de�ned. Let U be the set of indices of the operators of �. The work � is insecure in presenceof the protocol P [�x] if there exist a set S � I nU and an operator string
 2 (�S [inst(P; S [U))�such that
 � �.De�nition 9 is a special case of De�nition 9� (setting � to the left inverse of �1[�u]).10 In general,� = �2�1, where all operators in �1 have right inverses, and all operators in �2 have left inverses(otherwise �(m) may be unde�ned for all m 2 f0; 1g�). Let ��R1 (resp., ��L2) denote the stringwhich results by concatenating the right (resp., left) inverses of the operators in �1 (resp., �2); theresult is a right (resp., left) inverse of �1 (resp. �2). Clearly, an operator word
 is equivalentto � if and only if ��L2
��R1 � �. Testing �-insecurity is thus reduced to testing whether thereexists an appropriate
 such that ��L2
��R1 is equivalent to �. This can be done using the methodspresented in [DEK] (and sketched in the Appendix).2.4.4 Finding the Shortest Insecurity StringReturning to De�nition 9, one may ask:What is the shortest insecurity string of P [�u]?or does P [�u] have an insecurity string of length smaller than q?10In fact, in case �1[�u] does not have a left inverse, the protocol is secure in a trivial but usdeless way; that is, itcannot be used to transmit the initial message to any other party.27

In this subsection we present e�cient algorithms for solving the above questions.New Note: The following discussion assumes that p and jSj are constants.The length of the shortest S-insecurity string of P [�u] can be found using a modi�ed versionof the Dolev-Even-Karp algorithm [DEK]. First (as in [DEK]) the automata accepting the regularlanguage �(P;U; S)��1[�u] is constructed. A path in the automata is called collapsing if the stringthat corresponds to it is equivalent to �. Next shortest collapsing pathes between pairs of statesof the automata are iteratively found, using a priority queue.11 The number of insert/delete-minoperations on the queue is at most n2 and the number of decrease-key operations is at most n3,where n is the number of states in the automata. Implementing the priority queue by a FibonacciHeap [FT] yields running time O(n3) (and space O(n2)).To �nd a shortest S-insecurity string itself, pointers should be left during the above algorithm.This will later allow to reconstruct the insecurity string in time linear in its length. Further detailscan be found in [EG].Old Note: Length of insecurity string versus length of S-insecurity string???New Note: Indeed, we may set S0 such that jS0j = 3p� 4, but it may be the case thatmore saboteurs allow to obtain shorter insecurity strings. De�nitely, the number ofsaboteurs in the shortest insecurity string is smaller than the length of the S0-insecuritystring, but out algorithm is exponential in the number of saboteurs...

11In [DEK], arbitrary collapsing paths were iteratively found using an ordinary queue.28

Chapter 3Two-Party Extended Ping-PongProtocols3.1 De�nitionNew Note: A memo dating to July 1998 reads: The half-word operators where de�nedas follows. For any op de�ned before (e.g., E;D; i; d), we de�ne opL; opR to operate onstrings over f0; 1; $g, where opL (resp., opR) is unde�ned for strings in which the numberof $'s is not 1, and opL(w0$w00) def= op(w0)$w00 (resp., opR(w0$w00) def= w0$op(w00)), wherew0; w00 2 f0; 1; g�.The paper also de�ned opW , where W stands for whole, but I think this is not needed.(The de�nition is the natural extension of op to the new alphabet).New Note: Security is de�ned as before. That is, the adversary is still restricted toattacks as in Section 2.1.3. In particular, it cannot mix pairs of strings (which representmessages) to obtain a new pairs (which was not obtained as such in prior steps). Thelatter restriction is probably justi�ed by the use of the forms that operate on the entireword (speci�cally EW and DW), but this justi�cation seems to rely on the use of theseoperators in the protocol. It seems that the speci�c protocols used in the reduction(below) satisfy this intuition. Anyhow, the bottomline is that even though the formsopW are not required for the reduction, they are essential for justifying the de�nitionof security of the protocols used in the reduction.3.2 UndecidabilityNew Note: This is proven in [EG] by reduction from the Post Correspondence Problem.See pages 24{28 of [EG].
29

Chapter 4ConclusionNew Note: This chapter was written in 1985. The original report [EG] contained nothingof this sort.When studying the security of cryptographic protocols, one can take one of the following twoapproaches:1. Distinguish between the security of the "high level structure" of the protocol and the secu-rity of the cryptosystems used for its implementation. While studying the security of the(structure of the) protocol, it is assumed that the protocol is "implemented" with "ideal"cryptosystems (i.e. it is assumed that the cryptosystems are free of any properties which arenot implied by the cancellation of encryption with the corresponding decryption).This approach can be found in [NS], [DY], [DLM], [DEK], [EG] and [EGL].2. Study the security of a concrete implementation of the protocol with respect to the concretecryptosystems used for the implementation.This approach was pursued in [LMR], [BGM] and [GMR].New Note: My intention in 1985 was to strongly advocate the latter approach.

30

References[BGM] Ben-Or, M., Goldreich, O., Micali, S., and Rivest, R.L., "A Fair Protocol for SigningContracts", to appear in the proceedings of the 12th ICALP, 1984.[CR] Church, A., and Rosser, J.B., "Some Properties of Conversion", Trans. Amer. Math. Soc.39, (1936), pp. 472-482.[DLM] DeMillo, R., Lynch, N., and Merritt, M., "Cryptographic Protocols", Proc. of the 14thACM Symp. on Theory of Computation, 1982, pp. 383-400.[DH] Di�e, W., and Hellman, M.E., "New Directions in Cryptography", IEEE Trans. on Inform.Theory, Vol. IT-22, No. 6, November 1976, pp. 644-654.[DEK] Dolev, D., Even, S., and Karp, R.M., "On the Security of Ping-Pong Protocols", Inform.and Control, Vol. 55, 1982, pp. 57-68.[DY] Dolev, D., and Yao, A.C., "On the Security of Public-Key Protocols", IEEE Trans. onInform. Theory, Vol. IT-29, 1983, pp. 198-208.[EG] Even, S., and Goldreich, O., "On the Security of Multi-Party Ping-Pong Protocols", TR No.285, Computer Science Dept., Technion, Haifa 32000, Israel, June 1983, (59 pages).[EGL] Even, S., Goldreich, O., and Lempel, A., "A Randomized Protocol for Signing Contracts",Advances in Cryptology: Proceedings of Crypto82, (Chaum D. et. al. eds.), Plenum Press,1983, pp. 205-210. To appear in the Comm. of the ACM.[FT] Fredman, M.L., and Tarjan, R.E., "Fibonacci Heaps and their uses in Improving Network Op-timization Algorithms", Proc. of the 25th IEEE Symp. on Foundation of Computer Science,1984, pp. 338-346.[GJ] Garey and Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,W.H. Freeman and Co., 1979.[GM] Goldwasser, S., and Micali, S., "Probabilistic Encryption", Jour. Comp. and Sys, Sci., Vol.28, 1984, pp. 270-299.[GMR] Goldwasser, S., Micali, S., and Racko�, C., "The Knowledge Complexity of InteractiveProof-Systems", Proc. of the 17th ACM Symp. on Theory of Computation, 1985, pp. 291-304.[Itz] Itzhaik, Y., "A Protocol-Word Problem which is NP-Complete", private communication,1983. 31

[LP] Lewis, and Papadimitriou, C.H., Elements of the Theory of Computation, Prentice-Hall, Inc.,1981.[LMR] Luby, M., Micali, S., and Racko�, C., "How to Simultaneously Exchange a Secret Bit byFlipping a Symmetrically-Biased Coin", Proc. of the 24th IEEE Symp. on Foundation ofComputer Science, 1983, pp. 11-21.[NS] Needham, R.M., and Schroeder, M.D., "Using Encryption for Authentication in Large Net-works of Computers", Comm. of the ACM, Vol. 21, No. 12, 1978, pp. 993-999.[PY] Papadimitriou, C.H., and Yannakakis, M., "The Complexity of Restricted Spanning TreeProblems", Jour. of the ACM, Vol. 29, April 1982, pp. 285-309.[Po] Post, E.L., "A Variant of a Recursively Unsolvable Problem", Bull. of the Amer. Math. Soc.,52, 1946, pp. 264-268.[RSA] Rivest, R.L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital Signaturesand Public Key Cryptosystems", Comm. of the ACM, Vol. 21, February 1978, pp. 120-126.[Ro] Rosen, B.K., "Tree-Manipulation Systems and Church-Rosser Theorems", Jour. of the ACM,Vol. 20, No. 1, January 1973, pp. 160-187.

32

Appendix: The DEK Algorithm forTesting InsecurityWe review the Dolev-Even-Karp algorithm for testing insecurity of two-party protocols [DEK], andcomment on its adaptation to the multi-party case.New Note: This was the intension, but the current text merely de�nes the formal lan-guage problem to be solved. It then assumes that the reader knows how to solve thisproblem (see Way 1 below) or knows how this (formal language problem) is solved in[DEK] (see Way 2 below).By De�nition 9 (Section 2.1) and our results of Section 2.2, for every �xed p, testing insecurityof p-party ping-pong protocols can be reduced to the following word problem: does there exist anda string � =
�1[�u] in the set �(P;U; S)� such that � � �, where S is an arbitrary subset of I n Uhaving cardinality 3p� 4.Once P [�u] is given, the set � = �(P;U; S) is �nite and thus �� is a regular expression over�(F;U [S). Furthermore, by Section 2.2, j�j = O(p) + (4p�4)!(3p�4)! � l, when l denotes the number ofprotocol words, and the total length of the words in � is O(p) + (4p�4)!(3p�4)! � n, where n is the lengthof the protocol. On the other hand, note that the set of words f� 2 �(F;U [S)� : � � �g can begenerated by a context-free grammer. Thus, the above word problem is reduced to testing whetheror not the intersection of a regular expression and a context-free language is empty.There are two ways one may proceed in solving this problem.1. First construct a grammer for the intersection, and next test whether it generates a non-empty language. This algorithm requires time and space that are cubic in the total length ofthe words in �. For a constant p, we get running time (and space) that is cubic in the lengthof the protocol.2. First construct an automata accepting the regular set, and next construct the \collapsingrelation" induced by the grammer on the automata. For more details see [DEK]. Note thatthe automata has size linear in the total length of the words in �, and so (for constant p) theDEK algorithm will run in cubic time and linear space (in the length of the protocol).
33

