On the Security of Multi-Party Ping-Pong Protocols
(fragments of a revised version dating to July 1985)

Shimon Even' Oded Goldreich
Department of Computer Science Department of Computer Science
Technion - Israel Institute of Technology Weizmann Institute of Science
Haifa, ISRAEL. Rehovot, ISRAEL.
E-mail: even@cs.technion.ac.il E-mail: oded@wisdom.weizmann.ac.il

Research done mainly in Summer 19822
Original version appeared as a TR? in June 1983
Revised version written in July 1985%
Abstract and Introduction reproduced in February 1996
Technical part reproduced and slightly revised in February 2004°

IPartially supported by the Fund for the Promotion of Research at the Technion.

2While the authors visited the EECS Dept., UC-Berkeley, and were supported by NSF grant No. MCS
82-04506.

3TR No. 285, Computer Science Dept., Technion, Haifa, Israel, June 1983. Holding 59 pages.

%At that time the second author was at MIT, where he was partially supported by a Weizmann Post-
Doctoral Fellowship.

5At that time the second author was at Radcliffe Institute for Advanced Study at Harvard University,
where he was partially supported by a Radcliffe Fellowship.

Preface by Oded (2004)

This report was reproduced from files dating to 1985. These files contained only a small fragment
of a working draft of an intended revision of the original write-up.! The original (59-page) write-
up (written in 1982/83) has appeared as a Technical Report (No. 285 of the Computer Science
Dept., Technion, Haifa, Israel, June 1983). An extended abstract has appeared in the 24th FOCS,
Nov. 1983.

The orignal work refers to a restricted notion of insecurity (i.e., breakability under a syntactically
restricted type of attacks) and to restricted classes of protocols. These classes extend the model
of Dolev and Yao in two ways. First, the work considers multi-party protocols rather than two-
party ones. Next, the work considers protocols in which each message consists of a pair of strings
and possibly different operations are applied to each element in the pair (rather than allowing
only operations that are applied to the message as a whole). The focus of the work is on the
complexity (or even decidability) of the computational task of testing whether or not such protocols
are insecurity (under the aforementioned type of attacks). The results include:

e For every fixed m, a polynomial-time algorithm for the testing problem of m-party protocols
of the Dolev-Yao type.

e The testing problem for multi-party protocols of the Dolev-Yao type is NP-Hard, where m is
part of the input (rather than being fixed).

e The testing problem for two-party protocols that operate on pairs of strings is undecidable.

The incentive to reproduce these files almost two decades after they were written is to provide a
more accessible account of the original work, in light of the renewed interest in it. In addition
to converting these files from troof to IXTEX, I have mildly proofread the text and modified it a
little (without modifying the overall structure or the low-level style). In a few places I have added
footnotes and “new notes” (where the latter are explicitly marked as such).

!The revision was intended to be quite drastic. Specifically, the entire paper was to be written from scratch,
while using the original work [EG] only as a source of ideas. Indeed, the existing working draft deviates significantly
(especially in the technical part) from the original presentation (although no significant new idea was introduced).

Contents

Abstract
1 Introduction

2 The Multi-Party Extension
2.1 Security of Ping-Pong Protocols: Definitions and Terminology
2.1.1 Operators and Relations between them
2.1.2 What is a Ping-Pong Protocol oL,
2.1.3 The Definition of Insecurity
2.1.4 Extensions of the Insecurity Definition
2.1.5 Additional Terminology and Observations concerning Insecure Protocols . . .
2.2 On the Number of Saboteurs
2.2.1 A Simple Case: F=FgUFp i i i it e i e
2.2.2 The General Case: a Reduction to a Combinatorial Problem
2.2.3 Lower Bounds on the Combinatorial Problem
2.2.4 Upper Bounds on the Combinatorial Problem
2.3 NP-Hardness for the Case of Varying Number of Parties
2.4 Further Discussions Concerning the Insecurity Definition
2.4.1 Other Categories of Operator-Forms
2.4.2 The Insecurity Problem When Allowing Improper Instances
2.4.3 Testing Insecurity of a Word in Presence of a Protocol
2.4.4 Finding the Shortest Insecurity String

3 Two-Party Extended Ping-Pong Protocols
3.1 Definition
3.2 Undecidability e

4 Conclusion
References

Appendix: The DEK Algorithm for Testing Insecurity

29
29
29

30

31

33

Abstract

This paper is concerned with the model for security of cryptographic protocols suggested by Dolev
and Yao. The Dolev and Yao model deals with a restricted class of protocols, known as Two-Party
Ping-Pong Protocols. In such a protocol, messages are exchanged in a memoryless manner. That
is, the message sent by each party results from applying a predetermined operator to the message
he has received.

The Dolev and Yao model is presented, generalized in various directions and the affect of these
generalizations is extensively studied. First, the model is trivially generalized to deal with multi-
party ping-pong protocols. However, the problems which arise from this generalization are very
far from being trivial. In particular, it is no longer clear how many saboteurs (adversaries) should
be considered when testing the security of p-party ping-pong protocols. We demounstrate an upper
bound of 3(p — 2) + 2 and a lower bound of 3(p — 2) + 1 on this number. Thus, for every fixed
p, the security of p-party ping-pong protocols can be tested in polynomial time. In contrast, we
show that testing the security of multi-party protocols (i.e. the number of participants is part of
the input) is NP-Hard. A different extension of the Dolev and Yao model, obtained by allowing
operators to operate on “half words”, is shown to have an undecidable security problem.

Keywords: Cryptographic Protocols, Security, Public-Key Cryptosystems, String Replacement
Problems, Undecidability, Concrete Complexity, NP-Completeness, Combinatorial Analysis, Rout-
ing Problems, Graph Theory.

Chapter 1

Introduction

The use of public-key encryption [DH, RSA] for secure network communication has received con-
siderable attention. Such systems are effective against a “passive” eavesdropper, namely one who
merely taps the communication line and tries to decipher the intercepted messages. However, as
pointed out by Needham and Schroeder [NS], an improperly designed protocol can be vulnerable
to “active” sabotage.

The “active” saboteur (adversary) may be a legitimate user in the network. He can intercept and
alter messages, impersonate other users, or initiate instances of the protocol between himself and
other users in order to use their responses. It is possible that through such complex manipulations
he can read messages that are supposed to be protected without cracking the cryptosystem in use.

In view of this danger it is desirable to have a formal model for discussing security issues in
a precise manner. The first such model was introduced by Dolev and Yao [DY], and constitutes
the subject of this paper. The Dolev and Yao model consists of a restricted class of “memoryless
protocols” and a related definition of insecurity. Loosely speaking, a protocol is insecure if there is
a way to obtain the initial message (which is transferred by it), even if the public-key encryption
in use are “ideal”. This insecurity definition captures all possible weaknesses in the “high level
structure” of the protocol; that is, weaknesses that are independent of the particular encryption
function used to implement the abstract protocol.

Dolev and Yao considered two-party protocols that proceed in phases as follows. In the first
phase the “first” party applies a predetermined sequence of encryption and decryption operators to
an nitial message of his choice and transmit the result. In each later phase, a predetermined party
applies a predetermined operator sequence to the last message he/she received and transmits the
result. The set of operators was later extended to contain name appending/deletion operators, and
the resulting protocols were called ping-pong protocols. The related insecurity definition captures
all possible “generic” manipulations that the saboteurs can apply to messages they intercept, by
possibly using “replays” of the very protocol. In “generic manipulations” we mean actions which do
not depend on the specific cryptosystem in use, but rather relate only to the “high level structure”
of the protocol. (More details are given in section 2.1.)

Dolev and Yao have demonstrated that testing the security of a two-party ping-pong protocol
can be done in polynomial time. A much more efficient algorithm was presented by Dolev, Even
and Karp [DEK]. Its running time is O(n3), where n is the length of the input. The purpose of
this paper is to further investigate the Dolev and Yao model by considering two natural extensions
of it.

1. First we consider multi-party ping-pong protocols. This naive-looking extension causes a lot
of trouble. In contrast to the case of two-party ping-pong protocols, where it was sufficient to

consider the actions of a single saboteur, the situation in the general case is more involved: At
least 3(p —2) + 1 saboteurs must be considered for testing the security of a p-party ping-pong
protocols. On the other hand, we show that 3(p — 2) + 2 saboteurs suffice for this purpose.
Using this upper bound, a natural extension of [DEK] implies that, for every fixed p, there
is a polynomial-time algorithm for testing the security of p-party ping-pong protocols. For
unfixed p this is not likely to be the case, since we show that testing the security of multi-party
ping-pong protocols is NP-Hard (here p the number of participants is part of the input).

2. Next, we slightly extend the simple “operator vocabulary” by introducing operators that
operate on “half words” (i.e., messages are viewed as pairs of strings, and operators are
allowed to operate on one element of the pair while leaving the other element intact).! Tt is
shown that testing the security of protocols in this class is non-recursive.

Organization of the Paper

The rest of the paper is partitioned to three parts. The first part (Chapter 2) deals with multi-party
ping-pong protocols, the second (Chapter 3) with the “half word” operators, and the third part
(Chapter 4) contains various comments and conclusions.

!The original text read Nezt, we slightly relaz the “memoryless condition” by introducing operators that operate
on “half words”. Operation on one element of the pair was viewed as slightly violating the memoryless condition
because the other element (left intact) is meanwhile stored in memory. In retrospect we prefer the pharsing put in
the main text.

Chapter 2

The Multi-Party Extension

In this chapter we investigate the affect of extending the Dolev and Yao model to protocols for more
than two parties. We begin this chapter by presenting a formal definition of multi-party ping-pong
protocols and the related security problem (section 2.1). The core of this chapter consists of lower
and upper bounds on the number of saboteurs that should be considered in testing the security
of p-party ping-pong protocols (section 2.2). The upper bound plays a key role in obtaining a
polynomial-time algorithm for testing the security of p-party ping-pong protocols, for any fixed
p. We continue by proving that testing the security of multi-party ping-pong protocols is NP-
Hard, when the number of parties is part of the input (section 2.3). Section 2.4 deals with several
variations of the insecurity definition.

2.1 Security of Ping-Pong Protocols: Definitions and Terminology

Let us first give a short outline of the definitions presented in this section. A multi-party ping-pong
protocols proceeds in steps as follows. In the first step the ”first” party applies a predetermined
sequence of operators to an initial message of his choice and transmit the result. In each later step, a
predetermined party applies a predetermined operator sequence to the last message he/she received
and transmits the result. A formal definition requires a specification of the operators as well as the
relations between them (see subsection 2.1.1). Once this is done, protocols and instances/executions
of them are formally defined (subsection 2.1.2); and a formal definition of insecurity is presented
(subsection 2.1.3). This definition is further extended in subsection 2.1.4. We end this section by
presenting terminology and simple observations concerning insecure protocols (subsection 2.1.5).

2.1.1 Operators and Relations between them

We begin this subsection by an informal discussion of the operators we would like to consider. The
first and most important type of operators we consider are Public-Key Encryption and Decryption.
These operators are the origin of the possible security of the protocols we will consider. Following
[DH], a public key cryptosystem (PKCS) is a set of pairs of operators, such that every user u has an
encryption operator E, and a decryption operator D,, . Both operators are mappings from {0, 1}*
to {0,1}* . There is a public directory containing all (u, F,) pairs, while the decryption operator
D, is known only to user u. It is required that

(1) For every m € {0,1}* , it holds that E,(Dy(m)) = Dy(Ey(m)) =m.
(D, is the inverse operator of E,.)!

(2) On input m € {0,1}*, any user can efficiently compute E,(m) but only user u can efficiently
compute Dy (m).

For further details consult [DH] and [RSA]. More generally, we may assume that each user is
associated several different instances of the Public-Key Cryptosystem; that is, several pairs of
encryption decryption operators. In such a case we will denote the instances associated to user u
by (B8, D), (EP, D), ete.

A different type of operators we consider are name appending/deletion [NS]|. Applying a, to the
message m, appends u’s name to it; while applying d,, to the result (i.e., a,(m)), yields the original
message m. The result of applying d, to an arbitrary message may not be defined. Every user
(even not w) can apply a, and d, . Again, there may be several distinct name appending/deletion
operators per user.

Another type of operators we consider are permutations (of the message space) that are associ-
ated to certain users, although every other user can apply them. For example, each user may select
randomly a key to a cryptosystem and make this key public. This by itself will not provide him
with any security, nevertheless the scrambling properties of the cryptosystem still hold and may be
of use for various purposes.

Operators, user’s vocabulary and cancellation rules. We now turn to a formal definition
of the operators. We will consider operators over the set of all bit strings. In general, each operator
fi consists of a form(f) and an index(i). For example, the operator £, (the encryption operator
of party u) is of the form F and has index u. The set of operators is symmetric in the sense that if
it contains the operator f, for some user u then it contains also the operator f, (for every user v).
In other words, the set of operators consists of all possible pairs of forms and indices. Formally

Definition 1 (operators): Let F be a finite set and I be an arbitrary set.> Then, the set of
operators with forms F' and indices I is denoted by ¥ = X (F,I) and is defined as {f; : f € F',i € I}.

The set of forms will be partitioned to six categories: Encryptions, Decryptions, appendings, dele-
tions, functions and function-inverses, denoted Fr, Fp, Fopp, Fyeity Frun and Fyy, respectively. The
reader may consider the simple case in which Fg = {E}, Fp = {D}, Fopp = {a}, Faerr = {d} and
both Fpyp and Fj,, are empty (i.e. each user is associated a single public-key instance and a single
name appending/deletion mechanism). This case will suffice for our lower bound (subsection 2.2.3)
and NP-Hardness (section 2.3) results. The upper bound (subsection 2.2.4) holds also for the gen-
eral case. In general, it is postulated that |Fg| = |Fp|, |Fupp| = |Faer| and |Frun| = |Fino|- These
categories correspond to the different types of operators discussed in the motivation (above). The
formal role of these categories will become clear throughout the following definitions.

Definition 2 (user’s vocabulary): The vocabulary of user u, denoted ¥, consists of {fi: f €
F\FD,iGI}U{fu:fEFD}.

'The case in which Dy is only a left (right) inverse of E is dealt in subsection 2.4.1.

2We do not assume that I is finite. In fact, we will focus on the case that I is countable (e.g., isomorphic to the
natural numbers). The point is that we wish to study the number of users that should be considered regarding the
insecurity of p-party protocols, and the former number may depend arbitrarily on the parameter p.

That is, the vocabulary of a user contains all operators except for the decryption operators of other
users. The vocabulary of a user will represent the set of operators that the user can apply to
arbitrary messages.

Definition 3 (cancellation rules): Let Fp = {EM, E®) . g} Fp ={DW DO . D}
Fopp = {a(l),a@),...,a(m)}, Fyoy = {d(l),d@),...,d(”z)}, Frun = {g(l),g(z),...,g(”c“)} and Fi,, =
(R) n("3)}. The operator cancellation rules consists of the following ordered pairs:

. (ng),El(j)) and (EZ-(j),DEj)), foreveryi el and 1 < j < my.

. (dgj),a(.j)) and for every i € I and 1 < j < no.

2

o (hz(-j),gz(j)) and (gz(j),hz(j)), for everyi € I and 1 < j < ns.
The meaning of the pair (o, 7) is that applying the operator 7 to a message m, and then applying
the operator ¢ to the result, yields the original message m (i.e. o(7(m)) = m for every m).
Note that pairs of forms are put in the suitable categories according to their role in the user’s
vocabularies (i.e., (Fg, Fp) versus the others) and according to the cancellation rules that refer
to them (i.e., (Fypp, Faerr) versus the others). A more detailed discussion of this partition can be
found in subsection 2.4.1.

The Algebra of Operator Sequences. We now consider ¥*, the set of words over ¥ = X(F, I).
A word in X* has a natural interpretation as sequential application of operators: the empty word
(denoted by \) corresponds to the identity operator; and the word asay corresponds to first applying
oy and then applying «g to the result. The cancellation rules induce a natural term algebra on
the set X*, when one considers the equivalence classes imposed by them. An alternative and more
elaborate definition follows.

Definition 4 (equivalence of operator sequences): The relation = is an equivalence relation
defined recursively over ¥ as follows.

1. Application of a cancellation rule: For every «, f € ¥* and a cancellation rule (o,7), it holds
that aoTf = af.

2. Reflexivity, symmetry and transitivity: For every «, 3,7 € X%, it holds that

(a) a = .

(b) If « = [then [= «.
(c) If a« = and =~ then a = 7.

In subsection 2.1.5, it will become clear that it suffices to apply the cancellation rule in the forward
direction (i.e., alternatively, that symmetry is not needed). Observe that o = beta implies that
for every min{0,1}*, a(m) = B(m). The converse, to be referred to as the freeness assumption,
states that the operator sequences satisfy only the identities implied by the cancellation rules. The
freeness assumption plays a central role in the definition of insecurity (subsection 2.1.3).

2.1.2 What is a Ping-Pong Protocol

Intuitively, an instance of a ping-pong protocol is a sequence of operator words each applied in turn
by a specified user. The ”structure” of these sequences is predetermined by the protocol and the
assignment of users to its ”virtual” parties. We will first define this predetermined ”structure” and
only later consider its instances.

Definition 5 (protocols and protocol words): A var-operator f, consists of a form f € F
and a variable x which assumes values in I. Forp > 2, let T = (21,3, ...,xp) be a sequence of p
distinct variables assuming values in I, and X be the set of these variables.

A p-party ping-pong protocol P[Z] (over F') is a sequence of pairs ((y1, a1]Z]), (y2, a2[Z]), ..., (y1, q[Z]))
satisfying the following properties:

1. Foreveryl < j <[, it is the case that o;[Z] is a sequence of var-operators indexed by variables
in X (re o[zl €{f.: feF zeX}*).

2. For every 1 < j <1, it is the case that y; is one of the variables in X (i.e. y; € X).

3. For every 1 < j <1, it is the case that «;[T] consists of operators in the vocabulary of y;; that
is, aj[z] € ({f.: f € F\ Fp,z € X} U{f,, : f € Fp})".

aj(z] is called the j-th protocol word of P[z].

In the above definition, y; (= z;;) indicates the party to be active in the j-th step and a;[z]
determined (together with the assignment of users to Z) the operator word that this party will
apply. Note that the protocol determines not only the forms of the operators in the «;’s, but also
the relations between their indices.

Example 1: Let F = {E, D,a,d} and consider the two-party ping-pong protocol ((x1, Ey,), (22, Ex, Dy,)).
This protocol consists of two steps and has the following intuitive meaning. In the first step, the

first party (the user assigned to play x1) applies the encryption of the second party to the “initial
message” and transmits the result. At the second step, the second party first applies its decryption

and then applies the first party’s encryption.

The intuitive notion of an execution of a protocol can be given a precise formulation, by first
defining an instance of a protocol.

Definition 6 (protocol instances): Let @ = (uy,uy, ..., up) be a sequence of p elements in I, and
P[z] be a p-party ping-pong protocol as in Definition 5, and let i1, 12, ...,1; be the sequence of integers
in {1,2,...,p} satisfying y; = x;;, for 1 < j < 1. That is, P[T] = ((ziy,1[T]), -, (¥i,, ulT])). An
@-instance of the protocol P[Z], denoted P[u], is the result of substituting in P[Z] the variable x; by
the user uj, for every 1 < j < p. The operator word ojlu] is called an u-instance of the protocol
word o [Z].

Note that Plu] is a sequence of pairs ((u;, , o [u]), (wiy, a2lu]), ..., (us,, oq[u])) such that o;u] consists
of operators in the vocabulary of u;; .
To specify an execution of a protocol, an initial message has also to be specified.

Definition 7 (protocol execution): Let @, P and iy,i9,...,%; be as in Definition 6. Let mgy €
{0,1}*. An u-execution of P[Z] on the message myg is the following sequence of message transmis-
S10MmS:

At the first step, w;, transmits my = aq[a|(mo) to u;,.
For j € {2,...,1 — 1}, at the j-th step, w;; transmits m; = a;[u](m;j_1) to u;, .
At the last (i.e., [-th) step, w;, transmits m; = oqlu](my_1) to all users in .

myo s called the initial message of this execution.

It will be always assumed that mg is chosen by u;. In the j-th step, u;; applies ajlu] to the
message m;—1. User u;; can do so, since ;@] is over its vocabulary and it knows m;_;. In case
many instances of various protocols are played concurrently in the network, the users append to
their transmissions a tag indicating the protocol they are playing (P[Z]), the instance (%), and the

step (j).

Given the definition of a p-party ping-pong protocol, are the above definitions of its instances
and executions acceptable? We believe that the answer is no (or not yet). The above definitions
include instances in which the same user plays the role of two different parties in the protocol (i.e.
@-instances in which the elements of @ are not distinct). We feel that such executions are improper
and should be excluded. If the protocol was designed for 3 parties it should be played by 3 distinct
users and not by 2 users! We further assume that honest users will refuse to take part in improper
executions of a protocol. The case in which this is not assumed is considered in subsection 2.4.2.

Definition 8 (proper execution): Let u = (ui,uy,...,up). An u-instance (u-execution) of a
p-party ping pong protocol is called proper if u consists of p distinct elements in I.

We end this subsection with an example of a proper execution.

Example 2: Consider the two-party protocol of Example 1. Let 4 = (u1,u2), where u; # us € I.
The following is a proper w-execution of the protocol on the initial message my: user uy sends
m1 = Ey,(myg) to ug, and uy replies by sending mo = Ey, Dy, (my) = Ey, (mg).

2.1.3 The Definition of Insecurity

Referring to Example 2, we ask whether a user s € I\ {uy,u2} can obtain my? At first glance the
answer seems negative, because only encrypted messages pass through the communication lines.
But in second thought one may find a flaw which allows s to obtain the initial message mg as
follows. User s intercepts the message m; and starts a (s, us)-instance of the protocol sending m;
as the first transmission. Note that s does not know mg yet! But now, user us, following the
(s, ug)-instance sends m' = EsD,,(m1) (= Es(mg) !) to s. Finally s applies D to m’ and recovers
mo.

Before presenting the formal definition of insecurity, we motivate it by the following informal
discussion of this notion. We will say that the protocol P(Z) is insecure if there exist an @-execution
of it such that an adversary s not in @ can get the initial message through a fixed predetermined
sequence of actions. The actions that the adversary s can take are of the following three types:

Type 1 — “passive” eavsedropping: Obtain (intercept) any message transmitted in the u-execution.

10

Type 2 — local computations: Apply any operator in his vocabulary to any message. As a matter
of fact user s can also ask other users (who collaborate with him) to apply operators in their
vocabularies to any message. In the latter case, these users are knowingly collaborating with
s and are certainly dishonest. We will assume that users in @ will refuse to do so.

Type 3 — “active” attacks: Apply any proper v-instance of any of the protocol’s words to any
message.

Let «;[Z] be the j-th word of P[Z]. We first consider the case where j > 1. To obtain the affect
of a;[v] on message m, user s waits for a v-instance of P to occur (or convinces v;; to initiate
such an instance on any message), replaces the j — 1-st transmission by the desired message
(m), and reads the j-th transmission. To obtain the affect of a;[] on m, user s convinces
user v;, to initiate a 7-execution on message m (and then s reads the first transmission).?

The users in ¥ may unknowingly help user s, because they are playing according to the
protocol and have no reason to suspect that their behavior helps someone to illegitimately
obtain an initial message of another execution. In fact, we may assume that the user applying
a;[v] (i-e., user v;;) is is unknowingly helping s (otherwise the affect of a;[v] could have been
achieved by a sequence of Type 2 actions conducted by v;;). Since an honest user will refuse
to take part in an improper instance, the v-instance must be proper.

The above actions capture all that adversaries can do when knowing the protocol in use, but
knowing nothing about the encryption functions used in implementing it. In other word, we may
say that (as far as the notion of insecurity is concerned) it is assumed that the operators are ”free”
of any properties other than those algebraically implied by the cancellation rules (recall Definitions
3 and 4).

Definition 9 (insecurity): Let P[Z] be a p-party ping-pong protocol consisting of the words oy [Z],
as[z],..., oq[x]. Let u = (u1,ug,...,up) be an arbitrary sequence of p distinct users and U be the set
of these users.

e For every J C I, let X; denote the union of the vocabularies of users in J; that is, ¥j; =

UjEJEj.

e For every J C I, let INST(P,.J) denote the set of all proper instances of protocol words of P
i which the users are from J; that is,

INST(P, J) = {aj[v] : 1 < j < 1,0 = (v1,v2,...,0p) is proper and vy, va,...,v, € J}.

e Protocol P[Z| is insecure if there exist a set S C I\ U and an operator string v € (Xg U
INST(P, S UU))* such that yay[u] = A.

A few words of justification are in place. Firstly we note that, as shown in [DEK], the adversary
s € S (trying to get the initial message mg in a -execution of P) may restrict its Type 1 actions
to obtaining the first message transmitted in the @-execution (i.e. m; = aq[u)(myp)), because other
Type 1 actions are covered by Type 3. Type 2 actions are fully captured by Xg, whereas Type 3

3The reader may wonder how is it possible to convince a user to initiate a v-execution on message . This clearly
requires a meta-protocol knowledge of the reasons and occasions in which users initiate executions. In any case,
allowing s to commit such actions yields a stronger notion of security. Weaker notions can be obtained by restricting
the actions of s; for example, allowing it to obtain the affect of «;[v] only for j > 1.

11

actions are captured by INST(P,S U U). In case yoi[i] is equivalent to the identity operator,
user s can obtain the initial message mg by applying actions (corresponding to) to the message
(71 [ﬂ](mo)

The users in S will be called saboteurs. The saboteurs are users not in % which help either
knowingly or unknowingly in seizing the initial message.

Further comments: The choice of @ in Definition 9 is immaterial: For every u, v, if a string
v exist (for demonstrating insecurity) with respect to the w-instance then there exist a string 6
(demonstrating insecurity) with respect to . Likewise, it is easy to verify that if the protocol’s
insecurity is demonstrated by a set of saboteurs S, then it can be demonstrated by any other set
S" C I'\ U of the same cardinality (i.e. |S| = [5"]).

2.1.4 Extensions of the Insecurity Definition

The notion of insecurity can be extended for an “environment” (set) of protocols in the obvious
manner. Instead of considering the instances of words of one protocol, we consider the instances of
the words of all the protocols.

Definition 9F (insecurity of a set of protocols): Fori=1,..,q, let p; be an integer and P;
be a pi-party ping-pong protocol with words a1, g, ..., 5 ,. The environment {P;}? | is insecure
if there exist an v € {1,2,...,q}, a p,.-long sequence u, a set S C I\ U, and a string v € (Xg U
(UL INST(P;, SUU)))* such that yay1[u] = A

All our (positive) results extend also to the security problem of environments.

Definition 9 (as well as Definition 9F) can be rephrased as referring to the question does there
exist a string v € (Xg UINST(P, SUU))* that is equivalent to the left inverse of the first word in the
protocol? A natural generalization of the above question refers to the question does there exist a
string v € (XgUINST(P, SUU))* that is equivalent to a specific operator word 3¢ In case the answer
is positive, we will say that 3 is insecure in presence of the protocol P. Our results for the insecurity
of p-party ping-pong protocols extend to the insecurity of operator words, indexed by at most p
users, in presence of p-party ping-pong protocols. Further details are given in subsection 2.4.3.

2.1.5 Additional Terminology and Observations concerning Insecure Protocols
Recall that the insecurity of P[Z] refers to the existemce of some sequence vy € (X gUINST(P, SUU))*
having certain properties. The following definition refers to such a possible sequence.
Definition 10 (A(.,-,-), insecurity strings, parsing and fillers): Let P[Z|, @, U, ¥; and
INST(+,-) be as in Definition 9.

1. For S € I\ U, we denote ¥g UINST(P,SUU) by A(P,U,S).

2. Let v € A(P,U,S)* such that yai[u] = A. Then yaq[u] is called a S-insecurity string of Pla].

3. Let v = 7y - - yam1 such that v; € A(P,U,S), for 1 <i <mn. Then the sequence (vy1,Y2, .-y Vn)
is called a parsing® of v. An element ; (of the parsing) is called a filler if v; € Xg.

“Indeed, the parsing may not be unique.

12

Part 3 of Definition 10 describes the syntaxtic structure of insecurity strings as elements in the
regular set A(P,U,S)*a;[u]. We now describe insecurity strings as elements of the context-free
grammer “generated” by the cancellation rules. To this end we first define a reduction process on
operator words.

Definition 11 (reduction process): Let 6y € X* be an operator word. A reduction process on
bo 18 a sequence of operator words oy, 01, ...,0¢ such that

(1) For everyi € {0,...,t — 1} there exists o,7 € ¥ and «, f € ¥* such that (0,7) is a cancellation
rule, 6; = ao7f, and 6;+1 = af.

In such a case, we say that o and T reduce each other in step i of the reduction process.

(2) There exists no o,7 € ¥ and «, B € ¥* such that (o,7) is a cancellation rule, 6; = aot3, and

0iy1 = aff.
The word 6y is called the result of the reduction process.
Note that g = 61 = --- = é;.

Intuitively, a reduction process is a sequence of omissions of adjacent operators subject to a cancel-
lation rule, resulting in a word that does not contain such adjacent operators. It is easy to see that
the reduction system defined above is finite and has the Church Rosser property [CR,Ro]. By the
Church Rosser Theorem, all reduction processes on ¢ yield the same result, called the reduced form
of 6. Note that 3; = 3, if and only if the reduced forms of #; and 3y are identical.’ In particular,
the reduced form of an insecurity string is the empty string .

Definition 12 (cancellation pattern and mates): Let 6y = yai[u] be a S-insecurity string of
Pla], and let by, 61, ...,0; be a reduction process.

e We denote by left(i) and right(i) the locations in 6y of the operators that cancel each
other in the i-th step of this reduction process; that is, 6o = Ot Olefs(1)Tright(1) """ O1,
0i = Yi,201ef4(i) Oright(i) Vi, ond bit1 = Yi2Vi1-

e For every 1 < i < t, the locations left(i) and right(i) (in &y) are called mates. The set of
mates (i.e. {(left(i),right(i))}t_,) is called the cancellation pattern of &.

Example 3: Consider the following reduction sequence on oy = ogo7---02071:
0807060504030201, 080504030201, 08050403, 0403, A.

The corresponding cancellation pattern is {(7,6),(2,1),(8,5),(4,3)}.

Conventions: We recall some of the conventions introduced so far.

(1) Whenever referring to a set of forms F', we implicitly consider its partition into the categories
Fg, Fp, Fopp, Fuerts Frun and Fiy,,. Whenever we refer to a protocol we assume that the set
of forms is fixed and understood from the context.

5Thus, the symmetry of = asserted in Definition 4 is note used.

13

(2) The set of users [is isomorphic to the sent of natural numbers, denoted N.
(3) Throughout the paper U C I always denotes the set of users in .
(4) Whenever considering a S-insecurity string (as in Definition 10), we call the users in S saboteurs.

(5) Whenever considering an insecurity string we will refer to some fixed parsing and some fixed
reduction sequence of it (as in Definition 11). Mates and the cancellation pattern (as in
Definition 12) will be considered with respect to this fixed reduction sequence. Often we will
present an insecurity string by a parsing of it.

(6) Sometimes, when presenting a protocol, we only present its protocol words. This is done when
the protocol is only used to demounstrate some lower bound. In fact these words may belong
to several protocols.

Two Simple Observations. The first observation is that it suffices to consider S-insecurity
strings containing operators indexed by users in UUS. (Recall that Definition 10 talks of insecurity
strings as sequences over INST(P,UUS)UX g, whereas ¥ g contains non-decryption operators indexed
by all users in 1.)

Proposition 1: If P[a] has a S-insecurity string then it also has a S-insecurity string consisting
of operators in L(F,U U S).

Proof: Consider a S-insecurity string 6 = yaq[u]. If § contains an operator indexed by a user not
in U U S then this operator is a filler (because it cannot be contained in a word in INST(P,U U S)
or in «a;[u]) and (for the same reason) its mate is also a filler. Let s be an arbitrary user in S.
Replace in 6 each filler f; ¢ X(F,UUS) (i.e. f € Fandi € I\ (UULS)) by the filler f;. The
resulting string, denoted ¢’, has the same cancellation pattern as ¢ and the same non-fillers. Thus
8" is a S-insecurity string of Plu].

In light of the above, we redefine A(P,U, S) to contain only words in X(F,U U S); namely:

Definition 10’ (revised definition of A(:,-,-) and insecurity strings): Let P[Z], u, U, X;
and INST(-,-) be as in Definition 9.

1. For S € I\ U, redefine A(P,U,S) to equal (¥ NX(F,SUU))UINST(P,SUU).
Note that (Xs N X(F,SUU)) contain only the operators that are indexed by users in S UU

and are in the vocabulary of users in S. That s,

(EsNI(F,SUU)={fi: feF\Fp,ie SUU}U{fs:f€Fp,seS}

2. The string 6 = yaqlu| is redefined to be a S-insecurity string of Plu| if v € A(P,U,S)* and
6 = X. The point is that v € (X NE(F,SUU)) UINST(P,SUU)*.

(The parsing of ¢ is defined as in Definition 10.)
The second observation is that with no loss of generality, we may assume that all non-fillers in

an insecurity string are applied by non-saboteurs. Furthermore, these non-fillers must contain a
decription operator indexed by a user in U.

14

Proposition 2: Let 6 = yaq[ua] be a S-insecurity string of Plu]. Consider a parsing of 6 with
mainimum number of non-fillers. Then every non-filler contains an operator f, such that f € Fp
and v e U.

Proof: Let vyoj[a] be a S-insecurity string and (v,...,7i,...,71) be a parsing of v, with the
minimum number of non-fillers. If 7; is a non-filler containing no decryption operator of a user in U
then v; € &, It follows that ; = oy, - - - 01, where 0jinYg for every j € {1,...,m}. Contradiction
is reached by considering the sequence (Y, ...sYit1, Oy ooy 01, YVie1, ---»y1) Which is an alternative
parsing of v with less non-fillers. |

2.2 On the Number of Saboteurs

Definition 9 reduces the problem of testing the security of the multi-party ping-pong protocol P[Z]
to the following word problem: Does there ezist a set S C I\ U and a string 6 = yay[a] such that
v € A(P,U,S)* and 6 = \?

A natural question arises: How large should the set S be so that for every insecure p-party
ping-pong protocol PZ|, there exist a S-insecurity string of Plu]? (Recall that the identity of the
users is S is immaterial.) This question is of computational importance, because the cardinality
of S determines the cardinality of A(P,U,S), which in turn effects the running time of the best
algorithms known for solving the above word problem.%

Definition 13 (¢(-) and ®p(-)):

e For an insecure multi-party ping-pong protocol P, We denote by ¢(P) = ¢(P[u]) the cardi-
nality of the smallest set S such that there exists a S-insecurity string for Plu]. In case the
protocol P[Z| is secure, ¢p(P) is undefined.

e Let F be a set of forms and p be an integer. We denote by ®r(p) the supremum of ¢(-), when
taken over all insecure p-party ping-pong protocols that have forms in F.

It is not assumed that ®z(p) is an integer. A-priori ®p : N — N U {oo}. (It will be shown later
that ®p(p) is an integer and so in fact ®p : N — N.) Let us begin our study of ®x(p) by recalling
a result concerning the simple case of p = 2, due to Dolev, Even and Karp [DEK].

Proposition 3 [DEK]: Let F be an arbitrary set of forms such that Fg # 0. Then ®p(2) = 1.

Clearly, the case Fr = () is of no interest.

5Specifically, let P[z] be a p-party ping-pong protocol, [denote the number of words in P[Z] and n denote the sum
of their corresponding length. Let V]1 = (li—']), denote the number of variations of j elements out of ¢ elements. Then
|A(P,U,S)| = |S||Fp|+|UUS|- |F\FD|+l-VfHS‘ < O(1)+2°*151.1 and the total length of the strings in A(P,U, S)
is |S|-|Fp|+|UUS|-|F\ Fp|+n- VPPHS‘ <O(1)+ 2P+18] . 1. Recall that the running time of the Dolev-Even-Karp
algorithm [DEK], which can be applied here too, is cubic in the total length of the strings in A(P, U, S). Thus, if | S|
can be bounded as a function of p (and |F|) then for constant p the latter expression is linear in n.

15

Proof: By Example 2 (subsection 2.1.2), ®#(2) > 1. Counsider an arbitrary insecure two-party
ping-pong protocol P[Z]. Let 6 = yay[u] be a S-insecurity string of P[u], where S C I\ {ui,us}
is an arbitrary set. By Proposition 2, each non-filler ~; = «;[0) in vy contains at least one operator
indexed by a non-saboteur. Therefore, out of the two elements of v at most one is in S. Let s be an
arbitrary element in S. Replace in 6, each operator f; with ¢ € S, by the operator f;, resulting in a
string ¢’. The cancellation pattern of § is maintained in ¢’, and all non-fillers in ¢ are still proper
instances of protocol words. Thus, ¢ is a {s}-insecurity string of Pla]. Wi

We stress that the fact that the replacement preserves properness (as well as cancellation pat-
tern), is due to the fact that the original insecurity string contains instances of protocol words with
at most one saboteur. The later fact is implied by (Proposition 2 and) the fact that we considered
only two-party protocols. For general p, we can only guarantee that each instance contains at most
p — 1 saboteurs. In the general case, “properness” will not be preserved by obvious replacements.
This will be clarified in the coming subsections.

2.2.1 A Simple Case: F'= Fy UF)

In this subsection, we consider ®r in the special case where F' contains only public-key cryptosystem
forms (i.e., F = FgUFp). This special case is much simpler than the general case to be considered
in the following subsections.

Theorem 1: Let F = Fy UFp #0. Then ®p(p) =p—1.

Proof: We first demonstrate that ®;z py(p) > p — 1, by considering the following p-party ping-
pong protocol, denoted P[Z], which generalizes Example 1: «;[Z] = E;, and au[Z] = Ey Ey, - E

xp—leP'
The protocol P[z] is insecure, as can be demounstrated by the following {si}fgll—insecurity string of
Plul: (Ds, ;s Dsy, Ds), Es Es, - -+ Eg, Dy, By,). This allows us to write ®5 py(p) > ¢(P[z]).
Turning to the analysis of ¢(P[Z]), let S be an arbitrary set such that yay[a] is a S-insecurity string

of Plu]. Evidently, yai[u@] must contain as many occurrences of operators in Dy = {D,, : u € U} as
occurrences of operators in Eyy = {E, : u € U}. This implies that v contains more occurrences of
Dy-operators than of Ey-operators (because ay[u] = E,, € Ez;) Since Dy-operators must appear

in non-fillers, this may happen only if v contains a v-instance of as[z], where v, vy, ...,v,—1 are
elements in S and v, € U. Since ay[0] must be proper, the v;’s are distinct users. It follows that
¢(P[z]) > p—1, and so ®1p py(p) 2 p — 1.

We now demonstrate that ®p.ur, (p) < p—1, by considering an arbitrary insecure p-party ping-
pong protocol (P[z]) with forms in F = Fp U Fp. Recall Fy = {E®Y _ and Fp = {D®}L_ .
Let S be an arbitrary set and -y be a string such that 6 = yaq[u] is a S-insecurity string of Pla]. If
|S| < p—1 then we are done. We thus consider the case in which |S| > p—1. By Proposition 2, all
non-fillers in v are activated by a user in U. Thus, only fillers may contain decryption operators
indexed by a user in S (because ng) ¢ ¥, when s € S and v € U). By the above and since
F = Fg U Fp, we have

Fact: if two operators indexed by a saboteur cancel each other then at most one of them
(i.e., the encryption) occurs in a non-filler.

Let S = {s; 1::—11 be an arbitrary set of p — 1 users in S. We now replace in y all occurrences of
operators with index in S by operators (with the same form and) with index in S’. This replacement

16

should be done with care so that “properness” of the word instances as well as the cancellation
pattern are preserved. We iteratively consider all non-fillers in v. With respect to each non-filler
v;, we proceed in two steps, first replacing the non-filler itself and next replacing the mates of
its saboteur-indexed operators. It is crucial that these mates are all fillers, and indeed this is
guaranteed by the above Fact.

Step 1 — Replace a non-filler: Let v; = o;[v], and S; be the set of users in v which are also in
S. Recall that |S;] < p —1 (because v = (v1,v,...,vp) contains at least one user in U). Let
6; : S; — S’ be a one-to-one mapping, and @ = (wy,ws,...,wp,) be a sequence of p distinct
users such that wg = vg if v € U and wy = 0;(vg) if v € S. Such a mapping exist because
|S;| <p—1and|S|=p-1.
Action: replace in v, the non-filler «;[o] by the non-filler «;[w].
Step 2 — Replace mate fillers: Let p be a location in v that changed its content from Ez(,k) to Eéic()v)
through the replacement of v; = «;[v] by a;[w] (note that the replacement affects only the
index of operators in S and that their form, which is of encryption type, is preserved). Using

the above notations, we note that u’s mate is a filler consisting of the operator Dz(,k).

Action: change in 7 the content of y’s mate from Dz(,k) to D,(Uk).

When the two steps concerning ~; are completed, the resulting string is again an insecurity string
(i.e., the properness and the cancellation pattern are preserved). When we are done with all non-
fillers, the resulting string is a S’-insecurity string of P[u], demonstrating that ¢(P[a]) < p — 1.

Discussion: We stress that the fact that the presented replacement preserves the properness (as
well as the cancellation pattern), is due to the fact that the original insecurity string does not contain
operators indexed by saboteurs that cancel each other and are both occurring in non-fillers. This
holds in case F' = Fr U Fp, but may not hold in general! In general, the properness preservation
requires that, in every non-filler, distinct saboteurs are replaced by distinct saboteurs. This induces
inequality constraints on the replacement. The cancellation pattern preservation requires that mates’
indices are replaced by the same saboteur. Also, the replacement in each non-filler must be
consistent (i.e., two occurrences of the same saboteur in the same non-filler are replaced by the
same saboteur). These induce equality constraints on the replacement. In both proofs of Proposition
3 and Theorem 1, it is easy to avoid conflicts between the equality and inequality constraints. In
general, as we shortly illustrate, avoiding conflicts may be more difficult.

Example 4: Consider the following {s1, s2, s3}-insecurity string (ds,ds; Dy, Eyasyds, Dy, Eyas, as,).
The cancellation pattern is necessarily {(3,4),(7,8),(2,5),(6,9),(1,10)}." Each non-filler contains
only 2 saboteurs. Nevertheless, it is impossible to replace (in the above insecurity string) the sabo-
teurs (i.e., s1, sy and s3) by fewer than three saboteurs in a manner that will preserve both the
properness and the cancellation pattern.

"Recall that the operators in the insecurity string are indexed from right to left. The corresponding
cancellation process is ds,ds; DyEyassds, DuEyas, as,, dsyds; DuEyas,ds,as,as, = dsydss DyEyassds, Aas, as,,
dsydszas,ds 5,05, = dsydes ANas;ds) ANOs, A5y, dsydos@sstsy = dsyds; ANAs; AANAAG sy, dsyasy, = doy ANAAAAA G,
A

17

2.2.2 The General Case: a Reduction to a Combinatorial Problem

As suggested by the above discussion, replacing saboteurs in insecurity strings is governed by specific
inequality and equality constraints determined by the parsing and cancellation pattern of the string.
However, the parsing and cancellation pattern of a string may not be unique, and furthermore
every insecure protocol has infinitely many distinct insecurity strings. This makes the analysis
of the number of saboteurs needed to demonstrate insecurity of p-party ping-pong protocols (i.e.,
¢ (p)) very complicated. We chose to reduce the analysis of ®x(-) to a much cleaner combinatorial
problem that captures only the inequality and equality constraints (which may result from such
insecurity strings). This subsection consists of the definition of the combinatorial problem and a
reduction of ®p(p) to it.

Definition 14 (Well-Formed Parentheses Expression): Let {[;,]; : @ € I} be a set of paren-
theses symbols. The symbol |; is called a left parenthesis (left-par), the symbol |; is called a right
parenthesis (right-par) and both symbols are of the i-th type. Let v = o, -- 0901 € {|;,]; : © € I}",
for some natural number n. Then the p-th location in v contains oy,.

o The locations p and v, p > v, in vy are said to match if the o, is an left-par and p — v is the
smallest integer such that o,ou—1--- 0,410, has an equal number of left-par’s and right-par’s.

e The locations p and v, p > v, in v are said to be type-matched if they match and contain
symbols of the same type. It follows that 0, = [; and 0, =);, for some 1.

e v =0, 0901 1s a well-form parentheses expression (abbreviated wfe) if the integers 1 through
n can be partitioned to type-matched pairs.

Given a wfe, the matching of its locations is uniquely defined. This fact is very useful, as it frees
us from having to specify the matching when presenting a wfe.

Definition 15 (regional wfe and regionwise-isomorphic wfe’s): Let v € {[;,]; : i € I}* be
a wie.

o Let yi,y...,Vn € {[;51; : @ € I} be such that v =y, ---vey1. Then ¥ = (Yn,...,V2,71) is called a
regional wfe, and each of the v;’s is called a region of 7.

o Let ¥ = (Yuy -y 72,71) and 6 = (6, ..., 09,01) be two regional wies. We say that ¥ and & are
regionwise-isomorphic if for every j € {1,...,n} the j-th region of ¥ i.e., ;) is “isomorphic”
to the j-th region of ¢ i.e., 6;). That is, for every j, the following hold:

(1) The length of v; equals the length of 6;, which in turn is denoted ;.

(2) For every 1 < p < lj, the p-th location in y; contains a left-par if and only iof the p-th
location in 0; contains a left-par.

(3) For every 1 < p <wv <, the symbols in locations p and v in v; are of the same type if
and only if locations p and v in O; are of the same type.

That 1s, for every j, there exists a one-to-one mapping 0 : I — I such that for every p if the
pi-th location in vy; contains [; (vesp., |;) then the p-th location in ~y; contains [y(;) (resp., o))

18

Let 7 and 6 be two regionwise-isomorphic wfes. By condition (2) above, 5 and ¢ have the same
matching pattern (i.e. if locations g and v in 4 are matched then locations u and v in § are
matched). Since both 5 and 6§ are wfes, it is the case that matched locations are type-matched. Note
the correspondence to the equality constraints on the replacement of saboteurs that are mates in
an insecurity string. Also note the correspondence between condition (3) above and the constraints
on the replacement of saboteurs in a non-filler (i.e., the inequality constraints are respected by
the replacement). Clearly, the number of types appearing in corresponding regions of 5 and ¢ is
identical. However, the number of types which appear in 4 and ¢ (as a whole) is not necessarily
identical. This is demonstrated by the following regionwise-isomorphic wfes: ¥ = ([1, 112, l2[3[2, 12]3)
and 6 = ([3,12]1,]1[2[1,11]2)- The second region in each of the above regional wfes consists of symbols
from two types (2 and 3 in 7; 1 and 2 §). However, ¥ contains 3 types and & contains only 2.

Definition 16 (¢(-), ¢g-regional wfe and ¥(-)): Let 57 = (vn,...,72,71) be a regional wie.

o We denote by (%) the smallest integer m, such that there exists a regional wie that is regional-
1somorphic to 7 and contains symbols of exactly m distinct types.

o We say that 5 is a g-regional wfe (g-wfe) if each region of 5 contains symbols of at most q
distinct types.

We denote by V(q) the supremum of ¥(-), when taken over all g-regional wtes.

The intuitive correspondence between ®5(-) and ¥(-) is formulated in the following two Lemmas:®

Lemma 1: For every p > 2 and F, it holds that ¥(p — 1) > ®p(p).

Lemma 2: For every g > 1 and F such that F # 0 and F,,, # 0, it holds that ®p(q+1) > V(q).

As an immediate corollary, we get

Theorem 2: For every p > 2 and F such that Fg # 0 and F,y, # 0, it holds that ®p(p) =
U(p—1).

We now restate and prove the above Lemmas.

Lemma 1 (restateii): Let P[i‘]_be an insecure p-party ping-pong protocol. Then there exist a
(p — 1)-regional wie 6 such that () = ¢(Plul).

Assuming that ®p(p) is finite, let P be a p-party protocol such that ¢(P[u]) = ®@p(p). It follows
that W(p —1) > ¢(6) = ¢(P[a]) = Pp(p). In case p(p) is infinite we consider, for every n € N, a
p-party protocol P such that ¢(P[a]) > n and obtain U(p — 1) > ¢(6) = ¢(Pla]) > n.

8In the formulation, we allow both ¥(q) and ®#(p) to be infinite, with n < co < co = oo for every natural number
n.

19

Proof: The lemma follows by a natural transformation of insecurity strings into regional wfes.
One needs only stress that all non-fillers in the insecurity string contain at most p — 1 saboteurs.
Following are the details of the transformation.

Let yaq[u] be a S-insecurity string for P[] such that |S| = ¢(P[u]), and let 7 = (v, ..., 72, 71)
be a parsing of v. By Proposition 2, each 7; contains at most p—1 saboteurs. Using 7, we construct
a wfe 6 = (6, ..., 02,61) as follows:

(1) Omit from 7 all operators with index in U, resulting in a sequence /3.

Locations in 3 are paired by their correspondence to mates in the reduction process of yay [u].

(2) Let (u,v) be a pair of locations in 3 that correspond to mates in 5. Then, there exist s € S and
f,g € F such that location p contains the operator fs while location v contains g;. Suppose
that mu > nu.

Replace in location p the operator fs by the symbol [, and in location v the operator g5 by
the symbol],.

Applying this to all location-pairs yields a regional wfe, denote &.

Note that & is a (p — 1)-regional wfe, which fully captures the parsing and the reduction process
of the saboteur operators in the insecurity string yaj[a]. The inequality and equality constraints
on the replacement of saboteurs in yo;[@] are fully captured by corresponding constraints on wfes
that are regional-isomorphic to 6.

Claim: ¥(8) = ¢(P[a)).

Proof: By its construction, ¢ contains ¢(P[u]) distinct types, and so (8) < ¢(P[u]).
Assume that ¢ has a regionwise-isomorphic wfe &' with types in S’, where |S’| < |S|.
The correspondence, between saboteur indexed operators in 4 and symbols in 6, can
be used to derive from &' a replacement of the saboteurs in 5. Let 5’ be the parsing
resulting by this replacement. The reader can easily verify that 7/aq[u] is a S'-insecurity
string of Plu] with the same parsing and cancellation pattern as yaq[a]. This yields
¢(Plu]) < |S'| < |S] in contradiction to the hypothesis |S| = ¢(P[u]). O

The Lemma follows. I

Lemma 2 (restated): Let E, D, a and d be encryption, decryption, name-appending and name-
deletion forms, respectively. Let 6 be a q-regional wfe. Then there exist an insecure (¢ + 1)-party
ping-pong protocol P[Z] over the forms {E,D,a,d} such that ¢(Plu]) = ¥(9).

Assuming that U(q) is finite, let § be a g-regional wfe such that (§) = ¥(q). It follows that
(g paa(a+1) > ¢(P) =1(8) = ¥(qg). The case in which ¥(g) is infinite is handled similarly.

Proof: The transformation of regional wfes into insecurity strings is more difficult than the con-
verse transformation presented in the proof of Lemma 1. One needs to construct an insecure
protocol such that each of its insecurity strings can be associated to the given regional wfe.

We first use 6 to construct a (g + 1)-party ping-pong protocol P[Z] (over {E, D, a,d}), next
show that P[z] is insecure (and ¢(P[u]) < 1(6)), and end by proving that ¢(P[a]) > ¥(8).

20

The Construction of the Protocol: Without loss of generality, & = (ép, ..., 2,61) contains symbols
of the types T = {1,2,...,4(8)}. Let T; C T denote the set of types occurring in §;, and 7 =
(1,22, ..., 24, Tg+1) be a sequence of g + 1 distinct variables. Let 6; : T; — {x1,22,...,24} be a
one-to-one mapping. Such mappings exist since |T;| < g. We proceed as follows:

Construct protocol sub-words that correspond to 6: For every i = 1,....,n and j € T}, we
replace in 6; the symbol [; by the operator dy,(;), and the symbol |; by the operator agp,(;).

The result is a var-operator word, denoted ﬁz-(W) [Z], in {ay,,dy; : 1 <i<q}*

Define auxiliary sub-words: Foreveryi € {0,1,...,n+1}, define ﬁ()[ac] = dggq+1 Eppy(deyyy) Doy
and ﬁl(A) [Z] = Ezyy1(0gyyy) ' Dy g,y Note that all operators in ﬂi [:c] and ﬁl(A) [Z] are
indexed by zg41.

Define 3(9)[z] = E,, E,, - - - E,,, and note that 3()[z] is in the vocabulary of each user.

The protocol itself: The (¢ + 1)-party ping-pong protocol P[z] consists of the following words:

o a[7] = 45z,
o Fori=1,...n, aplz] = 8926225 [z]62)z].
o anolz] = B0,

The protocol words are constructed so that they may appear in a minimal length insecurity string
only in consequtive order. This will be argued later. Let us first show that P[Z] is insecure.

The Insecurity of the Protocol: Let S = {1,2,...,4(6)} = T and @ = (¥(6)+1,9(6)+2, ..., 1(8)+q+1).
Let R; be an arbitrary subset of S\ 7; having cardinality ¢ — |7;]. Let 6, ' : {1, 22,...,2,} —
(T; U R;) be a one-to-one mapping such that 6;(6;(j)) = j for every j € T;. Let 6; (%) =
(0; 1 (21),0; L (z9), ..., 0; (), ¥(8) + ¢ + 1). The following facts can be easily verified.

Fact 1: For every i € {0,1, ...,n} and every v and w such that vgy1 = wgi1, it holds
A)
that 87 [5]8;" [7] =

: " D)~ ; ;
Proof: By its definition ﬂ()[v]ﬁ((@] = dy,., E o (del.)”l'leq+1 . (awq+1)l+1qu+1awq+1,
;vhlch in turn;:\s equivalent to dv,,; By, (doy1) H0wys) Dy Gwgyr = oy Bogsy Dwgyr Gy =
vg41Gwgpr = A O
Fact 2: The operator string ﬂéW) [0-1(z)] - - ﬁé)[02 (2)]6; (W) [071(z)] is equivalent to
the empty string A.

Proof: The said operator string is isomorphic to §, where the isomorphism maps ap-
pend/delete operators that are indexed by elements in 7' to corresponding right/left
parenthesis. The fact that 6 is a wfe implies the desired reduction process. O

We now extend the “main” protocol words by decryption operators that are indexed by the first
(ext)

q parties (to be played by saboteurs)' For i =1,...,n, let az—l—l [0] = Dy, -+ - Dy, Dy, i 1[0]. Note
that {73 = 80 @] 8" 5]67) 6], and that aEHezL’t)[L(z)] € AP, U S)*. Let v = 6, 4(%) and

21

ewt

v = an+2[17]a£fﬁ) [7]--- [11] Note that vy4+1 = ¥(6) + ¢+ 1 = ug41. Using the above definitions

and Fact 1, we have
yaila) = ,S?Blm-5<A>W<W>[@1ﬂ?>m-ﬂf;“ w18 w182 0] - BV 116y (o168] - 65]
= WM 7]

which is equivalent to A (by Fact 2). It follows that yo[a] is an S-insecurity string of P[u| and
¢(Pla]) < ¥(6).

Lower Bound on Number of Saboteurs (in insecurity strings): We will now show that ¢(P[u]) > v(6).
Let S’ be an arbitrary set such that v = (ym,...,72,71) is a S’-insecurity string of P; that is,
vaq[u] = A. The following facts concerning v are of interest.

New Note: It is instructive to have a schematic picture of a generic «j41[v], which (for
j < n) equals)] 5V 0] 6" [0]637)[0] if j < n. Such picture has the form

| S-block | A-block | W-block | D-block

Fact 3 (resp., Fact 4) asserts that the mates of the operators in the D-block (resp.,
A-block) must lie to its right (resp., left).

Fact 3: For any i € {1,...,m}, let ; = a;41[0] be a non-filler, for some j € {1,...,n+1}.
Counsider the ﬂ() = dvq+1 By i (dy,,) Dy, ., part of ajyi[0] (which, in turn, equals

B5) [v]ﬁ](A [v]ﬁ](-w [v]ﬁj [v] if j < n). Then the mates of operators in this part lie to
its right in ~.

Proof: Observe that the leftmost operator in ﬁj(-D) is a name-deletion operator, which
must have a mate on its right. O

Fact 4: Let 75 = aj41[v] be a non-filler, for some j € {0,...,n}. Consider the ﬁ() =

By (v,)™ Dy, @y,) Part of aj1[v]. Then the mates of operators in this part lie
to its left in ~.

Proof: Observe that the rightmost operator in ﬂ](-A) is a name-appending operator, which
must have a mate on its left. O

New Note: It seems that the order of Facts 5 and 6 can be switched, resulting in a more
natural order.

Fact 5: Let (i, [2,03 be arbitrary operator strings that do not contain any name-
appending/deletion operators. Let v and w be arbitrary users. Suppose that 51d, 320,33
A. Then s = A = (103 and v = w.

Proof: Observe that a,, has a mate to its left, d, has a mate on its right, and the “mating
relation” constitutes a “well formed parentheses expression”. Thus, v = w, fo = X and

BiBs = A O

Fact 6: For any ¢ € {1,...,m}, let v; = a;41[v] be a non-filler, for some j € {1,...,n}.
Then, for every k € {1, ...,¢}, it holds that v € S'.

22

Proof: Assume, to the contrary that vy € U. Then one of the operators in the corre-
sponding 3(%) [7] is an encryption by a user in U and must have a mate in a non-filler
(because the mate is a decryption). The structure of ;41 (and Fact 4) forces this

encryption to have a mate on its left. By Fact 3, this mate is in the l(D) part of some
Yir = aqq1[w]. It follows that wgi1 = vg and Dy, vir—1 - Vg1 Ev, --- By, = A But
it also follows that dw,,, Du, Vit -1 Yit1Evy - By, By - - By By 00, = A But
this implies wgy1 = vg41, which violates the properness of v; = a;1[v]. O

Fact 7: Without loss of generality, if v; = cj41[7] then v, 4, = D,, for every 1 <k <gq.
Here, “without loss of generality” means that there exist a S’-insecurity string + for
which the claim holds.

Proof: Using Fact 6, one can always substitute in v the non-filler «;41[o] (which is in

A(P,U,S")) by the word-sequence Ey, Ey, - -+ E, Dy, -+ Dy, Dy aj1[0] € A(P,U,S")*.

(The key observation is that by Fact 6, v1, ...,v, € S', and thus Dy, ..., D,, € A(P,U, S").)
[

Thus, we may consider 7 as consisting of fillers and words in {ag-flt) [0] : 1 <j < n}pU{a1[v], ani2[0]}.
Note that such a partition does not correspond to the formal definition of a parsing, but we will
use it nevertheless.

Fact 8: Without loss of generality, for j = 1,...,n, it holds that ; = agflt)[-]. Also,
V1 = Qppo[] and Yuq1 - yianfu] = A

Proof: We prove the claim by induction on j. For the basis case (j = 1), note that

apla) = ﬂéA) [U] = By, Quyyy Duyyy G,y must be cancelled by some ﬂkH[w] (use Facts
3 and 4), and wg11 = ug41 holds. Considering the possible cancellation pattern in

D _ :
ﬂ,(H)l[D)+ (8] = duyyy Bugsr (dugy)* T Dugyy v+ Bugir Gug sy Dugys Gug sy, On€ infers that

k = 0. Furthermore, we may replace the word between 519?-)1 [w] and a1 [a] by A. Similarly
(ex

(in the induction step), ﬂ(- which appears in v; = 04]“ [] must be cancelled by some

Z(fl)[:]. The same reasoning also establishes v,+1 = ap2[-] and Y41 ---m1oq[u] = A. O

Fact 9: Let 7 be the users in the i-th non-filler. Then, ﬁ,gW) [5(™)] ... ﬁéW) [@(2)]55‘/‘/) [5(1)]
A.

Proof: By Fact 8, it holds that a(ne_g) [(»+1)]... agmt) [vM]ay @] = A. By the structure

of the a;’s, it follows that AW 5. ﬁ§W) [1—,(2)]55”7) M =X O
By Facts 6 and 9, there exist 7 = (v} ® vgz), g_i)_l) s such that ﬁ [)] .. ﬁéW) [17(2)]ﬂ§w) (V] =
A and v(l) € S, for every i € {1,...,n} and j € {1,...,q}. Using the correspondance between &

and ((W), - §W),5§W)), we can obtain a regionwise-isomorhich §' that contains |S’| symbols.
By taking S’ such that ¢(F) = |S’| and considering a S'-insecurity string of P, we conclude that
() < |S'| = ¢(P). The lemma follows. W

23

Discussion: The reduction of ®p(p) to ¥(p — 1) may not seem a dramatic simplification, but
consider the analysis of ¢(P) for the worst p-party protocol P versus the analysis of ¥(6) for the
worst 6. In the former case we need to consider all insecurity strings of P (as well as all their parsings
and cancellation pattern), whereas in the latter case we need only consider the “type-colorings” of
one fixed string.

Example 5: Consider first the problem of determining ®p(2) versus the problem of determining
U(1). In the latter case, we refer to all possible 1-regional wfes, and it is clear that each such

wie can be “type-colored” by one set of parenthesis. Thus, V(1) = 1 (and ®r(2) = 1 follows).
Furthermore, to show that ®p(p) > p — 1 for some p, it suffices to show that \Ii(q) > q for some
g =p—1. This can be shown, for ¢ = 2, by considering the 2-regional wie 6 = ([1[z,]2(3,13[1)-

Clearly, 1(6) = 3, and ¥(2) > 3 follows.

2.2.3 Lower Bounds on the Combinatorial Problem

We have seen in Example 5 that ¥(2) > 3, which improves over the trivial lower bound of ¥(2) > 2.
The argument can be easily extended to yield ¥(2¢') > 3¢’ (e.g., by replacing each par-symbol by
¢’ different symbols). In this section we further investigate the non-triviality of of ¥ establishing
U(q) > 3¢ — 2 for every ¢ > 1 (e.g., ¥(1) > 1, ¥(2) > 4 and ¥(3) > 7). It is even not a priori
clear whether ¥(q) is at all finite, for ¢ > 2. The task of providing an upper bound on ¥(q) is
undertaken in section 2.2.4.

New Note: Translating the results in [EG] to the current terminology we have:

Lemma 3 in [EG] (p. 16): ¥(2) > 5.
Lemma 4 in [EG] (p. 16): V(q) > 3¢ — 2, for every q¢ > 1.

Both claims are proven by presenting relatively simple regional wfe’s.

We comment that the presentation in [EG] takes another step of abstraction: When
considering a g-regional wfe, each occurrence of a symbol of type i (regardless of whether
it is a left-par or a right-par) is substituted by a variable x;, and we consider assignments
to the variables such that different variables that appear in the same region are not
assigned the same value. The question is how many values must be used in such an
assignment.

2.2.4 Upper Bounds on the Combinatorial Problem
New Note: Translating the results in [EG] to the current terminology we have:
Lemma 6 in [EG] (p. 18): ¥(q) < 3¢ — 1, for every ¢ > 1.
This lemma is proven in Appendix B of [EG] (pp. 33-45). Note that it follows that
V(2) =5 and ¥(q) € {3q — 2,3q — 1}, for every ¢ > 3. Recall that V(1) = 1.

In continuation to the note in Section 2.2.3, we comment that the assignment problem
can be cast as a coloring problem of a corresponding graph in which variables are
represented by vertices and edges represent pairs of variables that appear in the same
region. The presentation in [EG] is in therse terms.

24

2.3 NP-Hardness for the Case of Varying Number of Parties

New Note: This is proven in [EG] by reduction from a restricted form of 3XC, which is
shown to be NP-complete (by reduction from 3XC), to the problem of determining the
security of multi-party ping-pong protocols over the set of forms F' = {E, D, a,d}. See
pages 18-22 of [EG].

2.4 Further Discussions Concerning the Insecurity Definition

In this section we discuss four side issues concerning the insecurity definition of section 2.1.

2.4.1 Other Categories of Operator-Forms

The operator-forms considered in subsection 2.1.1, were placed in (three pairs of) categories ac-
cording to their role in the users vocabularies and in the cancellation rules. Let (f,g) be a pair of
forms. We say that f and g cancel symmetrically if, for every i € I, both (f;,¢;) and (g;, f;) are
cancellation rules. The forms f and g cancel asymmetrically if, for every i € I, only (f;,g;) is a
cancellation rule. We say that f is public if for every ¢,5 € I, the operator f; is in j’s vocabulary.
The form f is private if f; € X; implies ¢ = j. A systematically enumeration of all "reasonable”
pairs of categories can be found in the following table.

Cancellation

pattern symmetrically | asymmetrically
Form’s
scope
both public Ffun and Fim, Fdelt and Fapp
one private Fp and Fp Cases 1 and 2 (below)
both private Case 4 (below) | Case 3 (below)

We first consider the first three new cases (in the table above), where the forms cancel asymmetri-
cally. Let (L, R) denote such a pair of forms, where (L;, R;) is a cancellation rule, for every i € I.
The three cases we consider are:

Case 1: L is private and R is public.

This case corresponds to a public-key encryption system that (unlike the basic Diffie and
Hellman model [DH]) cannot be directly used for digital signatures (e.g., see [GM]). We can
model these forms by the categories of subsection 2.1.1, by letting L,, = dyD,, and R, = Eyay,
where E € F, D € Fp, a € Fy,, and d € Fye; are special forms not used for other purposes.
Testing security of protocols over X(F' U {L,R},I) can be reduced to testing security of
protocols over S(F'U{E, D,a,d},I).

Case 2: L is public and R is private.

This case corresponds to a public-key signature scheme that cannot be directly used for
encryption. Again, we can model these forms by the categories of subsection 2.1.1, by letting
L, =d,E, and R, = Dya, , where £ € Fg, D € Fp, a € Fu), and d € Fye; are special
forms not used for other purposes. A similar reduction of the security problem holds.

25

Case 3: Both L and R are private.

This case corresponds to a private message authentication scheme. Modeling is done by
letting L, = Lg,l)Lgf) and R, = &”RE}), where (L(l),R(l)) is a forms-pair of the Case 1
(above) and (L(?), R®) is a pair of the Case 2.

Finally, we get to Case 4: We consider a pair of forms (f, f) where f and f ! are both private
and cancel symmetrically. This case corresponds to a (private-key) cryptosystem that is used for
both private-key encryption and message authentication. We do not know to reduce this case to the
previous ones. Nevertheless, all our positive results extend also to protocols having such operators.

New Note: All the additional cases are dealt with by reduction to the treatment of
the forms studied in section 2.2 or by extension of that study. However, as shown in
subsection 2.2.1, restricting the forms to some categories may yield a simpler treatment.
Our intention, stated in a laconic note from 1985, was to study the power of operators
that cancel asymmetrically.® Recall that we have shown that the set of form {E, D, a,d}
exhibit all complications that must be dealt with for a general set of forms, and that
restricting the forms to Fp U Fp makes life much simpler. Our plan (in 1985) was to
study the effect of restricting the set of forms to forms that cancel symmetrically (i.e.,
FrUFpU Fyyy U Fipy), but it seems that this plan was not carried out (or at least we
currently fail to find any record of an actual study of this issue).

2.4.2 The Insecurity Problem When Allowing Improper Instances

Throughout Chapter 2, we assumed that honest users refuse to take part in improper instances of
protocols. Recall that a «-instance of a ping-pong protocol is said to be improper if the sequence @
contains two (or more) occurrences of the same user. The above assumption underlied the definition
of insecurity (Definition 9 in subsection 2.1.3), where only proper instances of protocol words were
considered. In this subsection, we omit this restriction and consider (for the insecurity definition)
also improper instances.

Definition 9' (weak-insecurity): Let P[z], u and ¥, be as in Definition 9.

e For every J C I, let INsT'(P,J) denote the set of all instances of protocol words of P in which
the users are from J; that is, INST'(P,J) = {e;[0] : 1 < j <1, v1,v9,...,vp € J}.

e Protocol P[Z] is weakly-insecure if there exist a set S C I\ U, and an operator string v €
(Xg UINST(P,SUU))* such that yoq[u] = A.

The only difference between Definition 9 and Definition 9’ is that while INST(-,-) (in Definition 9)
contains only proper instances, INST'(-,-) (in Definition 9') contains also improper instances. We
believe that Definition 9 is a much more natural than Definition 9, nevertheless let us now consider
the notion of weak-insecurity (according to Definition 9').

Proposition X1: With respect to multi-party ping-pong protocols, insecurity implies weak-insecurity,
but weak-insecurity does mot imply insecurity.

9The power of such operators was demonstrated in Section 6.2 of our technical report [EG], but our intention
in 1985 was to investigate their affect on the number of saboteurs that should be considered in determining the

insecurity of protocols.

26

Proof: Theimplication is trivial. For the non-implication, consider the following 2-party protocol:
((x1, Eyyaz4,), (x2,ds, Dy,)). This protocol is weakly-insecure (e.g., dy,Dy, - Ey,ay4, is a weak-
insecurity string demonstrating this fact). The reader can verify that the above protocol does not
have an insecurity string and thus is not insecure. [l

Proposition X2: If a multi-party ping-pong protocol is weakly-insecure then a single saboteur
suffices to demonstrate it.

Proof: Counsider a S-weak-insecurity string of the protocol, denoted 6. Let s be an arbitrary user
in S. Replace, in ¢, all operators indexed by r € S by operators with the same form indexed by s.
The resulting string is a {s}-weak-insecurity string of the protocol. [l

Thus, for every fixed p, the weak-insecurity of p-party ping-pong protocols can be tested in O(n?)
time and O(n?) space (n is the length of the input), by using the techniques described in [DEK]
(and sketched in the Appendix). However, testing the weak-insecurity of multi-party ping-pong
protocols is NP-Hard (for details consult [Itz]).

2.4.3 Testing Insecurity of a Word in Presence of a Protocol

We consider the following generalization of Definition 9.

Definition 9* (insecurity of words in presence of a protocol): Let P[z], ¥; and INST(-, ")
be as in Definition 9. Let § € ¥* be an operator word such that for infinitely many m € {0,1}*,
B(m) is defined. Let U be the set of indices of the operators of 3. The work [is insecure in presence
of the protocol P[Z] if there exist a set S C I\ U and an operator string v € (Xg UINST(P,SUU))*
such that v = 3.

Definition 9 is a special case of Definition 9* (setting (3 to the left inverse of a;[a]).!? In general,
B = P21, where all operators in (1 have right inverses, and all operators in (o have left inverses
(otherwise 3(m) may be undefined for all m € {0,1}*). Let 87 (resp., ;%) denote the string
which results by concatenating the right (resp., left) inverses of the operators in 3 (resp., 82); the
result is a right (resp., left) inverse of 5y (resp. [2). Clearly, an operator word = is equivalent
to A if and only if ﬁ{LyﬁfR = A. Testing (-insecurity is thus reduced to testing whether there
exists an appropriate 7y such that ﬁQ_LvﬁfR is equivalent to A. This can be done using the methods
presented in [DEK] (and sketched in the Appendix).

2.4.4 Finding the Shortest Insecurity String

Returning to Definition 9, one may ask:
What is the shortest insecurity string of Plu]?
or

does P[] have an insecurity string of length smaller than q?

1Tn fact, in case a1[@] does not have a left inverse, the protocol is secure in a trivial but usdeless way; that is, it
cannot be used to transmit the initial message to any other party.

27

In this subsection we present efficient algorithms for solving the above questions.
New Note: The following discussion assumes that p and |S| are constants.

The length of the shortest S-insecurity string of P[u]| can be found using a modified version
of the Dolev-Even-Karp algorithm [DEK]. First (as in [DEK]) the automata accepting the regular
language A(P,U, S)*a[a] is constructed. A path in the automata is called collapsing if the string
that corresponds to it is equivalent to A. Next shortest collapsing pathes between pairs of states
of the automata are iteratively found, using a priority queue.!! The number of insert/delete-min
operations on the queue is at most n? and the number of decrease-key operations is at most n3,
where n is the number of states in the automata. Implementing the priority queue by a Fibonacci
Heap [FT] yields running time O(n?) (and space O(n?)).

To find a shortest S-insecurity string itself, pointers should be left during the above algorithm.
This will later allow to reconstruct the insecurity string in time linear in its length. Further details
can be found in [EG].

Old Note: Length of insecurity string versus length of S-insecurity string???

New Note: Indeed, we may set Sy such that |Sy| = 3p — 4, but it may be the case that
more saboteurs allow to obtain shorter insecurity strings. Definitely, the number of
saboteurs in the shortest insecurity string is smaller than the length of the Sy-insecurity
string, but out algorithm is exponential in the number of saboteurs...

"1n [DEK], arbitrary collapsing paths were iteratively found using an ordinary queue.

28

Chapter 3

Two-Party Extended Ping-Pong
Protocols

3.1

3.2

Definition

New Note: A memo dating to July 1998 reads: The half-word operators where defined
as follows. For any op defined before (e.g., E, D,i,d), we define op”, op® to operate on

strings over {0, 1,$}, where op” (resp., op®) is undefined for strings in which the number

of $’s is not 1, and op”(w'$w") et op(w')$w” (resp., op™(w'$w") o w'$op(w")), where

w w" € {0,1, }*.
The paper also defined op"', where W stands for whole, but I think this is not needed.
(The definition is the natural extension of op to the new alphabet).

New Note: Security is defined as before. That is, the adversary is still restricted to
attacks as in Section 2.1.3. In particular, it cannot mix pairs of strings (which represent
messages) to obtain a new pairs (which was not obtained as such in prior steps). The
latter restriction is probably justified by the use of the forms that operate on the entire
word (specifically EY and D), but this justification seems to rely on the use of these
operators in the protocol. It seems that the specific protocols used in the reduction
(below) satisfy this intuition. Anyhow, the bottomline is that even though the forms
op" are not required for the reduction, they are essential for justifying the definition
of security of the protocols used in the reduction.

Undecidability

New Note: This is proven in [EG] by reduction from the Post Correspondence Problem.
See pages 24-28 of [EG].

29

Chapter 4

Conclusion

New Note: This chapter was written in 1985. The original report [EG| contained nothing
of this sort.

When studying the security of cryptographic protocols, one can take one of the following two
approaches:

1. Distinguish between the security of the ”high level structure” of the protocol and the secu-
rity of the cryptosystems used for its implementation. While studying the security of the
(structure of the) protocol, it is assumed that the protocol is ”implemented” with ”ideal”
cryptosystems (i.e. it is assumed that the cryptosystems are free of any properties which are
not implied by the cancellation of encryption with the corresponding decryption).

This approach can be found in [NS], [DY], [DLM], [DEK], [EG| and [EGL)].

2. Study the security of a concrete implementation of the protocol with respect to the concrete
cryptosystems used for the implementation.

This approach was pursued in [LMR], [BGM] and [GMR].

New Note: My intention in 1985 was to strongly advocate the latter approach.

30

References

[BGM] Ben-Or, M., Goldreich, O., Micali, S., and Rivest, R.L., ”A Fair Protocol for Signing
Contracts”, to appear in the proceedings of the 12th ICALP, 1984.

[CR] Church, A., and Rosser, J.B., ”Some Properties of Conversion”, Trans. Amer. Math. Soc.
39, (1936), pp. 472-482.

[DLM] DeMillo, R., Lynch, N., and Merritt, M., ”Cryptographic Protocols”, Proc. of the 14th
ACM Symp. on Theory of Computation, 1982, pp. 383-400.

[DH] Diffie, W., and Hellman, M.E., ”New Directions in Cryptography”, IEEE Trans. on Inform.
Theory, Vol. IT-22, No. 6, November 1976, pp. 644-654.

[DEK] Dolev, D., Even, S., and Karp, R.M., ”On the Security of Ping-Pong Protocols”, Inform.
and Control, Vol. 55, 1982, pp. 57-68.

[DY] Dolev, D., and Yao, A.C., ”On the Security of Public-Key Protocols”, IEEE Trans. on
Inform. Theory, Vol. IT-29, 1983, pp. 198-208.

[EG] Even, S., and Goldreich, O., ”On the Security of Multi-Party Ping-Pong Protocols”, TR No.
285, Computer Science Dept., Technion, Haifa 32000, Israel, June 1983, (59 pages).

[EGL] Even, S., Goldreich, O., and Lempel, A., ”A Randomized Protocol for Signing Contracts”,
Advances in Cryptology: Proceedings of Crypto82, (Chaum D. et. al. eds.), Plenum Press,
1983, pp- 205-210. To appear in the Comm. of the ACM.

[FT] Fredman, M.L., and Tarjan, R.E., ”Fibonacci Heaps and their uses in Improving Network Op-
timization Algorithms”, Proc. of the 25th IEEE Symp. on Foundation of Computer Science,
1984, pp. 338-346.

[GJ] Garey and Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Co., 1979.

[GM] Goldwasser, S., and Micali, S., ”Probabilistic Encryption”, Jour. Comp. and Sys, Sci., Vol.
28, 1984, pp. 270-299.

[GMR] Goldwasser, S., Micali, S., and Rackoff, C., ”The Knowledge Complexity of Interactive
Proof-Systems”, Proc. of the 17th ACM Symp. on Theory of Computation, 1985, pp. 291-304.

[Itz] Itzhaik, Y., ”A Protocol-Word Problem which is NP-Complete”, private communication,
1983.

31

[LP] Lewis, and Papadimitriou, C.H., Elements of the Theory of Computation, Prentice-Hall, Inc.,
1981.

[LMR] Luby, M., Micali, S., and Rackoff, C., "How to Simultaneously Exchange a Secret Bit by
Flipping a Symmetrically-Biased Coin”, Proc. of the 24th IEEE Symp. on Foundation of
Computer Science, 1983, pp. 11-21.

[NS] Needham, R.M., and Schroeder, M.D., ”Using Encryption for Authentication in Large Net-
works of Computers”, Comm. of the ACM, Vol. 21, No. 12, 1978, pp. 993-999.

[PY] Papadimitriou, C.H., and Yannakakis, M., ?The Complexity of Restricted Spanning Tree
Problems”, Jour. of the ACM, Vol. 29, April 1982, pp. 285-309.

[Po] Post, E.L., ”A Variant of a Recursively Unsolvable Problem”, Bull. of the Amer. Math. Soc.,
52, 1946, pp. 264-268.

[RSA] Rivest, R.L., Shamir, A., and Adleman, L., A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, Comm. of the ACM, Vol. 21, February 1978, pp. 120-126.

[Ro] Rosen, B.K., ”Tree-Manipulation Systems and Church-Rosser Theorems”, Jour. of the ACM,
Vol. 20, No. 1, January 1973, pp. 160-187.

32

Appendix: The DEK Algorithm for
Testing Insecurity

We review the Dolev-Even-Karp algorithm for testing insecurity of two-party protocols [DEK], and
comment on its adaptation to the multi-party case.

New Note: This was the intension, but the current text merely defines the formal lan-
guage problem to be solved. It then assumes that the reader knows how to solve this
problem (see Way 1 below) or knows how this (formal language problem) is solved in
[DEK] (see Way 2 below).

By Definition 9 (Section 2.1) and our results of Section 2.2, for every fixed p, testing insecurity
of p-party ping-pong protocols can be reduced to the following word problem: does there exist and
a string 6 = yay[u] in the set A(P,U,S)* such that 6 = A\, where S is an arbitrary subset of I \ U
having cardinality 3p — 4.

Once P[u] is given, the set A = A(P,U,S) is finite and thus A* is a regular expression over

Y(F,U US). Furthermore, by Section 2.2, |A| = O(p) + E;ﬁ:gi -1, when [denotes the number of

protocol words, and the total length of the words in A is O(p) + % -n, where n is the length
of the protocol. On the other hand, note that the set of words {# € X(F,U US)*: 8 = A} can be
generated by a context-free grammer. Thus, the above word problem is reduced to testing whether
or not the intersection of a regular expression and a context-free language is empty.

There are two ways one may proceed in solving this problem.

1. First construct a grammer for the intersection, and next test whether it generates a non-
empty language. This algorithm requires time and space that are cubic in the total length of
the words in A. For a constant p, we get running time (and space) that is cubic in the length
of the protocol.

2. First construct an automata accepting the regular set, and next construct the “collapsing
relation” induced by the grammer on the automata. For more details see [DEK]. Note that
the automata has size linear in the total length of the words in A, and so (for constant p) the
DEK algorithm will run in cubic time and linear space (in the length of the protocol).

33

