
On-Line/O�-Line Digital Signatures�Shimon Eveny Oded Goldreichz Silvio Micalix(non-�nal version from 1994)AbstractA new type of signature scheme is proposed. It consists of two phases. The �rst phase isperformed o�-line, before the message to be signed is even known. The second on-line phaseis performed once the message to be signed is known, and is supposed to be very fast. Amethod for constructing such on-line/o�-line signature schemes is presented. The methoduses one-time signature schemes, which are very fast, for the on-line signing. An ordinarysignature scheme is used for the o�-line stage.In a practical implementation of our scheme, we use a variant of Rabin's signature scheme(based on factoring) and DES. In the on-line phase, all we use is a moderate amount ofDES computation and a single modular multiplication. We stress that the costly modularexponentiation operation is performed o�-line. This implementation is ideally suited forelectronic wallets or smart cards.
�A preliminary version appeared in the proceedings of Crypto89. On-Line/O�-Line Digital Signing has obtainedpatent protection under U.S. Patent No. 5,016,274. A �nal version of this work will appear in Journal of Cryptology.cCopyright 1996 by International Association for Cryptographic Research.yComputer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel. E-Address:even@cs.technion.ac.il. Supported by the Fund for the Promotion of Research at the Technion.zComputer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel. E-Address:oded@cs.technion.ac.il.xLaboratory for Computer Science, MIT - Massachusetts Institute of Technology, 545 Technology Square, Cam-bridge, MA 02139. E-Address: silvio@theory.lcs.mit.edu.0

1 IntroductionInformally, in a digital signature scheme, each user U publishes a public key while keeping secreta secret key. U 's signature of a message m is a value �, depending on m and his secret key,such that U can (quickly) generate � and anyone can (quickly) verify the validity of �, using U 'spublic key. However, it is hard to forge U 's signatures without knowledge of his secret key. Westress that signing is a non-interactive process involving only the signer, and that one can signarbitrarily many messages, with one pair of keys.Many signature schemes are known by now. Based on various intractability assumptions,several schemes have been proved secure even against chosen message attack [8, 1, 12, 19]. Unfor-tunately, in these schemes, the signing process is not su�ciently fast for some practical purposes.Furthermore, even more e�cient schemes like RSA [16] and Rabin's scheme of [15], are consid-ered too slow for many practical applications (e.g., electronic wallets [5, 4]). In particular, thesesignature schemes require to perform modular exponentiation with large moduli as part of thesigning process, and these in turn require many modular multiplications. Furthermore, thesecostly operations can start only once the message to be signed becomes known. Consequently,these signature schemes will become much more attractive if only a few (say, two or three) modu-lar multiplications need to be performed after the message becomes known, while the more costlyoperations can be preprocessed. This leads to the notion of an on-line/o�-line signature scheme.A New NotionTo summarize, in many applications signatures have to be produced very fast once the messageis presented. However, one can tolerate slower precomputations, provided that they do nothave to be performed on-line (i.e., once the message to be signed is handed to the signer andwhile the veri�er is waiting for the signature). This suggests the notion of an on-line/o�-linesignature scheme, in which the signing process can be broken into two phases. The �rst phase,performed o�-line, is independent of the particular message to be signed; while the second phaseis performed on-line, once the message is presented. We will be interested in on-line/o�-linesignature schemes in which the o�-line stage is feasible (though relatively slow) and both on-linesigning and veri�cation are fast.A General ConstructionWe present a general construction transforming an ordinary, digital signature scheme to an on-line/o�-line one. This is done by properly combining three main ingredients:1. An (ordinary) signature scheme;2. A fast one-time signature scheme (i.e., a signature scheme known to be unforgeable, pro-vided it is used to sign a single message); 1

3. A fast collision-free hashing scheme (i.e., a hashing scheme for which it is infeasible to �ndtwo strings which hash to the same value).The essence of the construction is to use the ordinary signature scheme to sign (o�-line) a ran-domly constructed instance of the information which enables one-time signature, and later tosign (on-line) the message using the one-time signature scheme which is typically very fast. Thehashing scheme is most likely to be used in practice for compressing long messages into shortertags, but it is not essential for the basic construction.We present several practical implementation of the general scheme. In these implementations,we use a modi�cation of Rabin's signature scheme [15] in the role of the ordinary signature scheme,and DES as a basis for a one-time signature scheme. The security of these implementations isbased on the intractability of factoring large integers and the assumption that DES behaves likea random cipher. The only computations (possibly) required, in the on-line phase of the signingprocess, are applications of DES. Veri�cation requires some DES computations (yet not too many)and a single modular multiplication. The costly modular computation, of extracting square rootsmodulo a large (e.g. 512-bit) composite integer with known factorization, is performed o�-line. A reasonable choice of parameters allows to sign 100-bit tags using only 200 on-line DEScomputations (which can be performed much faster than exponentiation).One-time Signature SchemesOne-time signature schemes play a central role in our construction of on-line/o�-line signatureschemes. This is due to the fact that they seem to o�er a much faster signing process thanordinary signature schemes. The disadvantage of one-time signature scheme, namely the factthat the signing-key can only be used once, turns out to be irrelevant for our purposes.A general method for constructing one-time signatures was proposed in the late 70's byRabin [14] and several variants of it have appeared since (cf. [11]). Yet, a rigorous analysis oftheir security has never appeared. Furthermore, the known constructions can be improved inseveral respects. In particular, the length of the signatures can be decreased and the securityof the schemes can be enhanced. We describe several techniques for achieving these goals. Inparticular, we observe that signing error-corrected encoding of messages requires the forger tocome-up with signatures of strings which are very di�erent from the strings for which it hasobtained signatures via a chosen message attack. This translates to enhanced security especiallywhen the signature scheme in used is the one described in [14, 11].SecurityTo discuss, even informally, the issue of security, we need some terminology. A chosen messageattack is an attempt of an adversary to forge a signature of a user after getting from him signaturesto messages of the adversary's choice; in this scenario, the user behaves like an oracle whichanswers the adversary's queries. The adversary's choice of (message) queries may depend on theuser's public key and the previous signatures the adversary has received. A known message attack2

is an attempt of an adversary to forge a signature of a user after getting from him signaturesto messages which are randomly selected in the message space. (These messages are selectedindependently of the adversary's actions.) In both cases (chosen and known message attacks),security means the infeasibility of forging a signature to any message for which the user has notsupplied the signature (i.e., existential forgery in the terminology of [8]).A su�cient condition for the resulting signature scheme to withstand chosen message attack isthat both signature schemes used in the construction (i.e., (1) and (2)) do withstand such attacks.However, in particular implementations it su�ces to require that these underlying schemes onlywithstand known message attack. This is demonstrated in the following theoretical result, wherewe use a signature scheme, secure against known message attack, both in the role of the ordinarysignature scheme and in order to implement a one-time signature scheme. One-way hashing isnot used at all. The resulting scheme is secure against chosen message attack. Hence we getTheorem: Digital signature schemes that are secure against chosen message attack exist if andonly if signature schemes secure against known message attack exist.We remark that the above Theorem can be derived from Rompel's work by observing that theexistence of a signature scheme secure against known message attack implies the existence ofone-way functions, while the latter imply the existence of signature schemes which are secureagainst a chosen message attack [19]. However, this alternative proof is much more complex andis obtained via an impractical construction. Furthermore, the preliminary version of our work [6](which includes a proof of the above Theorem), predates Rompel's work [19].OrganizationBasic de�nitions concerning signature schemes are presented in Section 2. In Section 3, thegeneral construction of on-line/o�-line signature scheme is presented. The construction of one-time signature scheme is addressed in Section 4. Concrete implementations of the general scheme,which utilize di�erent constructions of one-time signature schemes, are presented in Section 5.We conclude with a proof of the Theorem stated above (Sec. 6).2 Some Basic De�nitionsFollowing the informal presentation in the introduction, we recall the following de�nitions due toGoldwasser et. al. [8].Signature schemesDe�nition 1 (signature schemes): A signature scheme is a triplet, (G; S; V), of probabilisticpolynomial-time algorithms satisfying the following conventions:� Algorithm G is called the key generator. There exists a polynomial, k(�), called the keylength, so that on input 1n, algorithm G outputs a pair (sk; vk) so that sk; vk 2 f0; 1gk(n).3

The �rst element, sk, is called the signing key and the second element is the (corresponding)veri�cation key.� Algorithm S is called the signing algorithm. There exists a polynomial, m(�), called themessage length, so that on input a pair (sk;M), where sk 2 f0; 1gk(n) and M 2 f0; 1gm(n),algorithm S outputs a string called a signature (of message M with signing-key sk). Therandom variable S(sk;M) is sometimes written as Ssk(M).� Algorithm V is called the veri�cation algorithm. For every n, every (sk; vk) in the range ofG(1n), every M 2 f0; 1gm(n) and every � in the range of Ssk(M), it holds thatV (M; vk; �) = 1(One may also require that V (M; vk; �) = 1 implies that � is in the range of Ssk(M) for asigning-key sk corresponding to the veri�cation-key vk. However, this intuitively appealingrequirement is irrelevant to the real issues { in view of the security de�nitions which follow.)Note that n is a parameter which determines the lengths of the keys and the messages aswell as the security of the scheme as de�ned below. We emphasize that the above de�nition doesnot say anything about the security of the signature scheme which is the focus of the subsequentde�nitions. We remark that signature schemes are de�ned to deal with messages of �xed andpredetermine length (i.e., m(n)). Messages of di�erent lengths are deal by one of the standardconventions. For example, shorter messages can always be padded to the desired length, andlonger messages can be broken into many pieces each bearing an ID relating the piece to theoriginal message (e.g., the ith piece will contain a header reading that it is the ith piece out of tpieces of message with a speci�c (randomly chosen) ID number). Alternatively, longer messagescan be hashed into the desired length by use of a collision-free hashing function. For more detailssee Section 3.3.Types of attacksGoldwasser et. al. discuss several types of attacks ranging in severeness from a totally non-adaptiveone (in which the attacker only has access to the veri�cation key) up to the most severe attackever considered (i.e., chosen message attack, in which the attacker gets the veri�cation-key andmay get signatures to many messages of its choice). In this paper we discuss the chosen messageattack as well as a special (and hence weak) form of known message attack (which we call randommessage attack).De�nition 2 (types of attacks):� A chosen message attack on a signature scheme (G; S; V) is a probabilistic oracle machinethat on input (a parameter) 1n and (a veri�cation-key) vk also gets oracle access to Ssk(�),where (sk; vk) is in the range of G(1n). The (randomized) oracle Ssk answers a query4

q 2 f0; 1gm(n) with the random variable Ssk(q) = S(sk; q). (For simplicity we assume thatthe same query is not asked twice.)� A random message attack on a signature scheme (G; S; V) is a probabilistic oracle machinethat on input 1n and vk also gets access to a random oracle that on query i returns a pair(ri; Ssk(ri)), where (sk; vk) is in the range of G(1n) and each of the ri's is uniformly andindependently selected from f0; 1gm(n).The above de�nition does not refer to the complexity of the attacking machines. In our resultswe will explicitly specify the running-time of the attackers as well as the number of queries thatthey make (resp., number of signatures that they receive).Success of attacksGoldwasser et. al. also discuss several levels of successfulness of the (various) attacks, rangingfrom total forgery/breaking (i.e., ability to forge a signature for every message) up to existentialforgery/breaking (i.e., ability to forge a signature for some message).De�nition 3 (success of attacks): Consider an attack on input parameter 1n and a veri�cation-key vk.� We say that an attack has resulted in total forgery if it outputs a program � for a time-bounded1 universal machine, U , so that V (M; vk; U(�;M)) = 1 holds, for every M 2f0; 1gm(n).� We say that an attack has resulted in existential forgery if it outputs a pair (M;�), so thatM 2 f0; 1gm(n) and V (M; vk; �) = 1, and M is di�erent from all messages for which asignature has been handed over (by the signing oracle) during the attack.The above de�nition does not refer to the success probability of the attacking machines. Inour results we will explicitly specify the success probability of the attackers. The probability willbe taken over all possible (sk; vk) pairs according to the distribution de�ned by G(1n), and overall internal coin ips of the attacking machines and the answering oracles.Security de�nitionsSecurity de�nitions for signature schemes are derived from the above by combining a type of anattack with a type of forgery and requiring that such attacks, restricted to speci�ed time bounds,fail to produce the speci�ed forgery, except for with a speci�ed probability. For example, considerthe following standard de�nition.1The time bound can be �xed to be a speci�c polynomial. Using padding arguments, one can show that thechoice of the polynomial, as long as it is greater than - say - n2, is immaterial (cf., [9]).5

De�nition 4 (standard de�nition of secure signature schemes): A signature scheme is said to besecure if every probabilistic polynomial-time chosen message attack succeeds in existential forgerywith negligible probability.(A function is f : IN 7! IN is called negligible if for every polynomial p(�) and all su�ciently largen's it holds that f(n) < 1=p(n).)Notice that there is nothing sacred in the choice of polynomials as speci�cation for the time-bound or success-probability. This choice is justi�ed and convenient for a theoretical treatmentof the various notions, but for deriving results concerning practical schemes one should pre-fer the more cumbersome alternative of specifying feasible time-bounds and noticeable success-probabilities.3 The General ConstructionLet us �rst de�ne digital signature schemes with less stringent security properties. Namely,De�nition 5 A one-time signature scheme is a digital signature scheme which can be used tolegitimately sign a single message. A one-time signature scheme is secure against known (resp.,chosen) message attack (of certain time-complexity and success-probability) if it is secure againstsuch attacks which are restricted to a single query.Notice the analogy with a one-time pad, which allows one to send private messages securely aslong as one does not use the secret pad twice. An early version of one-time signature was suggestedby Rabin [14]. It required an exchange of messages between the signer and signee. Schemes whichavoid such an exchange were suggested by Lamport, Di�e, Winternitz and Merkle; see [11]. Inparticular, a one-time signature scheme can be easily constructed using any one-way function.For further details see Section 4.We believe that the importance of one-time signature schemes stems from their simplicityand the fact that they can be implemented very e�ciently. Our construction demonstrates thatone-time signatures can play an important role in the design of very powerful and useful signatureschemes.As our construction uses both a one-time signature scheme and an ordinary signature scheme,we will always attach the term \one-time" to terms such as \signing-key" and \veri�cation-key"associated with the one-time signature scheme. Hopefully, this will help to avoid confusion.3.1 The Basic SchemeLet (G; S; V) denote an ordinary signature scheme and (g; s; v) denote a one-time signaturescheme. Bellow we describe our general on-line/o�-line signature scheme. In our description weassume that the security parameter is n. 6

Key GenerationThe key generation for our on-line/o�-line scheme coincides with the one of the ordinary scheme.Namely, the signer runs G on input 1n to generate a pair of matching veri�cation and signingkeys (VK; SK). He announces his veri�cation-key, VK, while keeping in secret the correspondingsigning key, SK.O�-Line ComputationThe o�-line phase consists of generating a pair of one-time signing/verifying keys, and producingan ordinary signature of the one-time veri�cation key. Both one-time keys and the signatureare stored for future use in the on-line phase. We stress that the o�-line phase is performedindependently of the message (to be later signed). Furthermore, the message may even not bedetermined at this stage. Following is a detailed description of the o�-line phase. The signerruns algorithm g on input 1n to randomly select a one-time veri�cation-key vk and its associatedone-time signing-key sk. (This pair of one-time keys is unlikely to be used again.) He thencomputes the signature of vk, using the ordinary signing algorithm S with the key SK. Namely,� def= SSK(vk)The signer stores the pair of one-time keys, (vk; sk), as well as the \precomputed signature", �.On-Line SigningThe on-line phase is performed once a message to be signed is presented. It consists of retrievinga precomputed unused pair of one-time keys, and using the one-time signing-key to sign themessage. The corresponding one-time veri�cation key and the precomputed signature to theone-time veri�cation key are attached to produce the �nal signature. Namely, to sign messageM , the signer retrieves from memory the precomputed signature �, and the pair (vk; sk). Hethen computes a one-time signature � def= ssk(M)The signature of M consists of the triplet (vk;�; �).Veri�cationTo verify that the triple (vk;�; �) is indeed a signature of M with respect to the veri�cation-keyVK, the veri�er acts as follows. First, he uses algorithm V to check that � is indeed a signatureof (the one-time veri�cation-key) vk with respect to the veri�cation-key VK. Next, he checks, byrunning v, that � is indeed a signature of M with respect to the one-time veri�cation-key vk.Namely, veri�cation procedure amounts to evaluating the following predicateVVK(vk;�)^ vvk(M;�)7

Key, Message and Signature LengthsLet us denote by k(�) and m(�) the key and message length functions for the ordinary signaturescheme. Let l : IN 7! IN be a function bounding the length of the signature in the ordinary signaturescheme, as a function of the parameter n (rather than as function of the message length, m(n)).Similarly, we denote by the corresponding functions for the one-time signature scheme by k1(�),m1(�) and l1(�), and the functions for the resulting on-line/o�-line scheme by k�(�), m�(�) andl�(�). Then, the following equalities holdk�(n) = k(n)m�(n) = m1(n)m(n) = k1(n)Namely, the key-length of the on-line/o�-line scheme equals the one of the ordinary scheme,whereas the message-length for the on-line/o�-line scheme equals the one of the one-time scheme.In addition, the ordinary scheme must allow signatures to messages of length equal to the key-length of the one-time scheme. E�ciency improvements can be obtained by using collision-freehashing functions. This may allow setting m�(n) = n and dealing with longer messages byhashing, as well as allow m(n) � k1(n) and signing the one-time veri�cation-key by hashing it�rst. For details see subsection 3.3.Finally, we remark that the length of the signatures produced by the resulting scheme growlinearly with the key-length of the one-time scheme, even in case hashing is used! Namely,l�(n) = k1(n) + l(n) + l1(n)3.2 SecurityThe basic on-line/o�-line signature scheme can be proven secure against adaptive chosen messageattacks provided that both the original schemes (i.e., the ordinary scheme (G; S; V) and the one-time scheme (g; s; v)) are secure against chosen message attack. As usual in complexity-basedcryptography, the above statement is not only valid in asymptotic terms but also has a concreteinterpretation which is applicable to speci�c key lengths. Due to the practical nature of thecurrent work, we take the uncommon approach of making this concrete interpretation explicit2 .Namely,Lemma 1 Suppose that Q; T : IN 7! IN and � : IN 7! IR are functions so that the resulting on-line/o�-line signature scheme can be existentially broken, via a chosen Q(�)-message attack, intime T (�) and probability �(�). Then, for every n 2 IN at least one of the following holds:� The underlying one-time signature scheme can be existentially broken, via a chosen (single)message attack, with probability at least �(n)=(2Q(n)) and within time tG(n)+T (n)+(tg(n)+ts(n) + tS(n)) �Q(n), where tA(n) is a bound on the time complexity of algorithm A.2This clearly results in a more cumbersome statement, but we believe that in the context of the current paperthe price is worth paying. 8

� The underlying ordinary signature scheme can be existentially broken, via a chosen Q(n)-message attack, with probability at least �(n)=2 and within time T (n)+(tg(n)+ts(n)) �Q(n).The lemma is to be understood in the counter-positive. Namely, if both the underlying (ordinaryand one-time) signature schemes can not be broken within the parameters speci�ed in the con-clusion of the lemma then the on-line/o�-line scheme cannot be broken within the parametersspeci�ed in the hypothesis.Proof: Let us denote the resulting on-line/o�-line signature scheme by (G�; S�; V �). Supposethat F � is a probabilistic algorithm which in time T (�) forges signatures of (G�; S�; V �), withsuccess probability �(n), via a chosen Q(n)-message attack. In the rest of the discussion we �x nand consider the forged signature output by F � (at the end of its attack). This forged signatureeither uses a one-time veri�cation-key, vk, which has appeared in a previous signature (suppliedby the signer under the chosen message attack), or uses a one-time veri�cation-key vk which hasnot appeared previously. Thus, one of the following two cases occurs.Case 1: With probability at least �(n)=2, algorithm F � forms a new signature using a one-timeveri�cation-key used in a previous signature. In this case we use algorithm F � to construct analgorithm, F1, forging signatures of the one-time signature scheme (g; s; v). Loosely speaking,algorithm F1 operates as follows. It creates an instance of the ordinary signature scheme andmany additional instances of the one-time signature scheme. For all these instances, algorithm F1will be able to produce signatures. Algorithm F1 will use the attacked instance of the one-timesignature scheme in one of its responses to F �. In case F � halts with a forge signature in whichthe attacked instance of the one-time scheme appears, then algorithm F1 has succeeded in itsattack. Details follow.On input vk and access to a chosen (single) message attack on the corresponding signingoperator ssk , algorithm F1 proceeds as follows. Algorithm F1 runs G to obtain a pair of cor-responding keys (SK; VK) for the ordinary signature scheme. Without loss of generality, assumethat F � always asks Q(n) queries (i.e., messages to be signed). Algorithm F1 uniformly selects aninteger i 2 f1; 2; :::;Q(n)g, and invokes algorithm F � on input VK. (Motivating remark: algorithmF1 will use the very instance it attacks in the ith message to be signed for F �.)In the sequel, F1 supplies F � with signatures to messages of F �'s choice. The signature tothe jth message, denoted Mj , is produced as follows. If j 6= i, algorithm F1 runs g to generate apair of one-time keys3, denoted (skj; vkj), and answers with the triplet (vkj; SSK(vkj); sskj (Mj).Note that F1 has no di�culty doing so since, having produced SK and skj, it knows the requiredsigning keys. In case j = i, algorithm F1 uses its the single message attack, which it is allowed,to obtain a signature � to the message Mi (relative to the veri�cation-key vk). Using � and theordinary signing-key SK, algorithm F1 supplies the required signature (vk; SSK(vk); �).3We remark that it is very unlikely that vkj equals vk. Yet, if this happens then algorithm F1 can use skj(which it knows) in order to forge signatures, relative to vk (= vkj), to any message.9

Eventually, with probability at least �(n)=2, algorithm F � halts yielding a signature to a newmessage, denoted M , in which the one-time veri�cation-key is identical to one of the one-timeveri�cation-keys which has appeared before. With probability 1=Q(n), conditioned on the eventthat such a forged signature is output by F �, the forged signature output by F � uses the sameone-time veri�cation-key used in the ith signature, namely the one-time veri�cation-key vk. SinceM 6= Mi, algorithm F1 obtains (and indeed outputs) a signature to a new message relative to theone-time veri�cation-key vk. Hence, the attack on the one-time signature scheme succeeds withprobability at least �(n)2Q(n) . We observe that the time complexity of algorithm F1 can be boundedby tG(n) + T (n) + Q(n) � (tg(n) + ts(n) + tS(n)).Case 2: With probability at least �(n)=2, algorithm F � forms a new signature using a one-timeveri�cation-key not used in previous signatures. In this case we use algorithm F � to construct analgorithm, F2, forging signatures of the ordinary signature scheme (G; S; V). Loosely speaking,algorithm F2 operates as follows. It creates many instances of the one-time signature scheme.For each of these instances, algorithm F2 will be able to produce signatures. Algorithm F2 willuse the chosen message attack on the ordinary signature scheme to obtain signatures to theseone-time veri�cation-keys and using the corresponding one-time signing-keys F2 will be able tosupply F � with signatures to messages of its choice. In case F � halts with a forge signature inwhich a new instance of the one-time scheme appears, then algorithm F2 has succeeded in itsattack. Details follow.On input VK (and access to chosen message attack on the corresponding signing operatorSSK), algorithm F2 invokes F � on input VK and supplies F � with signatures to messages of F �'schoice as follows. To supply a signature to the jth message, denoted Mj , algorithm F2 startsby running g to generate a pair of one-time keys, denoted (skj ; vkj). Algorithm F2 then usesthe chosen message attack to obtain an ordinary signature, denoted �j, to vkj (relative to theordinary veri�cation-key VK) and replies with the triplet (vkj;�j; sskj(Mj). (Note that F2 has nodi�culty producing sskj (Mj) since it knows the required signing key.)Eventually, with probability at least �(n)=2, algorithm F � yields a signature to a new messagewhich contains an SSK-signature of a one-time veri�cation-key which has not appeared so far. Inthis case, algorithm F2 obtains (and indeed outputs) a signature to a new message relative to theordinary veri�cation-key VK. Hence, the attack on the ordinary signature scheme succeeds withprobability at least �(n)2 . We observe that the time complexity of algorithm F2 can be boundedby T (n) +Q(n) � (tg(n) + ts(n)) and that it asks Q(n) queries. The lemma follows. 2Remark: The chosen message attacks described in the above proof, both in Case 1 and Case2, are oblivious of the corresponding veri�cation-key. Hence, the resulting on-line/o�-line sig-nature scheme resists general chosen message attacks (which may depend on the correspondingveri�cation-key), even if the underlying ordinary and one-time signature schemes only resistschosen message attacks which are oblivious of the corresponding veri�cation-key.Recalling the standard de�nition of security (i.e., Def. 4), we get10

Theorem 1 The resulting on-line/o�-line signature scheme is secure (in the standard sense)provided that the underlying ordinary and one-time signature schemes are secure.3.3 E�ciency ConsiderationsThe o�-line computation, in our scheme, reduces to generating an instance of the one-time signa-ture scheme and computing the signature of a single string (speci�cally, the one-time veri�cation-key) in the ordinary scheme. The on-line phase of the signing process merely requires applyingthe signing process of the one-time signature scheme. Hence, our on-line/o�-line scheme is ad-vantageous for the signer only if the signing algorithms of one-time signature schemes are muchfaster than signing algorithms of ordinary schemes. Indeed this seem to be the case if one uses theone-time signature schemes based on one-way functions, described in Section 4, and especially ifDES is used as a one-way function.In case the veri�cation procedure in the ordinary signature scheme (and in the one-timesignature scheme) is much faster than signing in the ordinary scheme, the entire on-line (signingand veri�cation) process is sped-up. The condition (i.e., much faster veri�cation) is satis�ed inRabin's scheme as well as in RSA when used with small veri�cation exponent (e.g., 3). Hence,attractive implementation of the general scheme can be presented { see Section 5.A major factor e�ecting the e�ciency of the above scheme is the length of the strings to whichthe ordinary and one-time signing algorithms are applied. A standard practice used to reducethe time required for signing (as well as veri�cation) is to use very fast hashing functions whichmap long strings into much shorter ones. This hashing functions have to be secure in the sensethat it is hard to form collisions; namely, �nd two strings which are mapped by the function tothe same image.4 Assuming the intractability of factoring (alternatively of extracting DiscreteLogarithms), such functions can be constructed [3, 8]. Yet, in practical implementations, onemay use much faster hashing schemes. A typical example is the MD5 recently suggested byRivest [17, 18].The security of a scheme which uses hashing can be proven in a way analogous to the proofof Lemma 1. Namely, one considers two cases: the case that a forged signature is formed using ahashed value which has appeared in previous signatures, and the case that such a hashed valuedoes not appear in the forged signature. In the �rst case, we derive an algorithm which contradictsthe collision-free property of the hashing function, whereas in the second case we proceed as inthe proof of Lemma 1.4Actually, a lower level of security su�ces for our purposes. Speci�cally, it su�ces that the function is one-wayhashing; namely, given a preimage to the function it is infeasible to �nd a di�erent preimage which is mapped,under the hashing function, to the same image [12]. It is known that one-way hashing functions can be constructedusing any one-way function [12, 19], but this construction is very far from being practical.11

3.4 A RemarkMost ordinary signing algorithms are based on the computational di�culty of integer factor-ization. Should some moderately faster factoring algorithm come about, then longer ordinaryveri�cation and secret keys will be necessary. This will cause a slowdown in the o�-line stage,but not in the on-line one. Thus, our construction may become even more useful if ordinarysignature schemes will become slower due to increasing security requirements.4 One-Time Signature Schemes Based on One-Way FunctionOne-time signatures schemes play a central role in our construction of on-line/o�-line signatureschemes. A general method for constructing one-time signatures has been known for a relativelylong time; cf., [14, 11]. Yet, a rigorous analysis of their security has never appeared. Furthermore,the known constructions can be improved { as shown below.4.1 The Basic ConstructionWe start with the basic construction (of one-time signature schemes based on one-way functions).Let f be a one-way function; namely, we assume that f is polynomial-time computable but itis infeasible to invert f with noticeable success probability (taken over the distribution resultingfrom applying f to a uniformly chosen preimage). The signing-key consists of a sequence of mpairs of n-bit long strings, (x01; x11); :::; (x0m; x1m), and the veri�cation-key consists of the result ofapplying the one-way function f to each of the 2m strings (i.e., the veri�cation-key consists of thesequence (f(x01); f(x11)); :::; (f(x0m); f(x1m)), where f is the one-way function). To sign the message�1:::�m, the signer reveals x�11 ; :::; x�mt , and the signee applies f to the revealed strings and checkswhether they match the corresponding strings in the veri�cation-key. Loosely speaking, thisscheme is secure since otherwise we get a way to invert the one-way function f . Further detailswill become obvious later.4.2 Shortening the lengths of keys and signaturesA somewhat repelling property of the basic construction is that it uses very long keys and sig-natures. Additional ideas can be used to reduce these lengths. We start with an idea whichis attributed in [11] to Winternitz. The idea is to use only m + 1 strings, each of length n,instead of the 2m strings used above. The signing-key consists of a sequence of m+1 (n-bit long)strings, x0; x1; :::; xm, and the veri�cation-key consists of the sequence fm(x0); f(x1); :::; f(xm),where f t(x) denotes the string resulting from x by applying f successively m times. To sign themessage �1:::�m, the signer reveals the xi's for which �i = 1 as well as y def= fP�i(x0). Veri�ca-tion is done in the obvious manner (i.e., applying f to the supplied xi's and applying fm�P �i toy). Intuitively, the zero-component serves as an \accumulator" for the rest. To prove that the12

signature scheme is secure we need to assume that f is one-way also on the distribution obtainedby iterating it upto m times (cf., [9]). Details follow.Another idea is to break the message to be signed into blocks and to use each block as anindicator determining how many times f has to be applied to each of the individual strings inthe signing-key so to form the signature. Note that in the previous construction, depending onthe bits of the message to be signed, the function f is applied between m and 0 times to x0, andeither once or not at all to each xi, for i 6= 0. A precise description, which combines both ideas,follows.Construction 1 (based on accumulator and block partition): Let t : IN 7! IN be an integerfunction so that 1 � t(n) = poly(n) and f : f0; 1g� 7! f0; 1g� be a function, both computablein polynomial-time. We consider the following one-time signature scheme for message lengthfunction m(�).� key generation: On input 1n, the key-generator uniformly selects x0; x1; :::; xm=t 2 f0; 1gn,where m def= m(n) and t def= t(n). The signing-key consists of these xi's, whereas theveri�cation-key is �y def= f (2t�1)�(m=t)(x0); f2t�1(x1); :::; f2t�1(xm=t) :� signing: To sign a message M 2 f0; 1gm, its t-bit long blocks, �1; :::; �m=t, are interpretedas integers5 and the signaturefP �i(x0); f2t�1��1(x1); :::; f2t�1��m=t(xm=t)is computed.� veri�cation: the components of the signature vector are subjected to the correspondingnumber of applications of f and the result is compared to the veri�cation-key. Namely,to verify that (z0; z1; :::; zm=t) constitutes a signature to M = (�1; :::; �m=t) relative to theveri�cation-key �y = (y0; y1; :::; ym=t), one computesf (2t�1)�(m=t)�P�i(z0); f�1(z1); :::; f�m=t(zm=t)and compares the resulting vector to the vector �y.Lemma 2 Suppose that T : IN 7! IN and � : IN 7! IR are functions so that the above one-timesignature scheme can be existentially broken, via a chosen (single) message attack, in time T (�)and probability �(�). Then, for every n 2 IN and some i � (m=t) � (2t � 1) the function f can beinverted on distribution f i(Un) in time T (n) and success probability �(n)(m=t)2t+1 , where Un denotesa random variable uniformly distributed over f0; 1gn.5i.e., the string 0t is interpreted as 0, the string 0t�11 as 1, etc.13

In the statement of Lemma 2, as well as in all other lemmata in this section, we ignore the timerequired to compute the function f (in the forward direction!). Namely, the inverting algorithm(of the conclusion) actually runs in time T (n) + 2t � (m=t) � Tf(n) (rather than T (n)), whereTf denotes the complexity of computing f . This omission is justi�ed since the additive term isnegligible in all reasonable applications of such lemmata.proof: Let F be a probabilistic algorithm that existentially breaks the one-time scheme, via achosen (single) message attack, in time T (�) and probability �(�). Hence, for every n 2 IN, withprobability �(n), algorithm F �rst asks for a signature of M 2 f0; 1gm and then produces asignature to M 0 6= M . Let M = b1 � � � bm=t and M 0 = c1 � � �cm=t. Then, one of the following twocases occurs.Case 1: there exists an j so that bj < cj. In this case we can use F to invert f on the (2t�1�bj)thiterate of f .Case 2: Pmj=1 bj >Pmj=1 cj. In this case we can use F to invert f on the (P bj)th iterate of f .The actual inverting algorithm is similar in the two cases. On input y, the inverting algorithmselects j = 0 with probability 12 and j uniformly in f1; :::; (m=t)g otherwise. In case j = 0,the algorithm selects b uniformly in f1; :::; (m=t)2tg, and otherwise b is selected uniformly inf1; :::; 2tg. Set b def= (m=t) �(2t�1)�b if j = 0 and b def= 2t�1�b otherwise. The veri�cation-key isformed as in the key-generation, except that the jth component is f b(y). We invoke F with thisveri�cation-key. With probability at least �(n)(m=t)2t+1 , algorithm F asks for the signature that wecan supply (i.e., the jth component is not smaller than b) and returns a signature of a message inwhich the jth component is smaller than b. This yields an inverse of y under f , and the lemmafollows. 2Remark: For t = 1, the statement of Lemma 2 is tight in the following sense. Any algorithminverting f with probability �(n) (in time T (n)) yields a (m � T (n)-time) chosen message attackon the one-time signature scheme which existentially forges a signature with probability 1� (1��(n))m � m � �(n) (for �(n) � 1=m). Hence, in case t = 1, the security loss of a factor m isinevitable. Similarly, for general t � 1, we get an inevitable loss of security by a mt factor.4.3 Enhancing security by use of error-correcting codesAs just remarked, the security loss of a factor of m=t in the above construction is inevitable.To avoid this loss, we need a new idea. Loosely speaking, the idea is to encode messages via agood error-correcting code and sign the encoded message rather than the original one. This ideastands in contrast to the common practice of trying to shorten the message to be signed. Yet,the moderate increase in the length of the message to be signed will provide a substantial bene�t.The reason being that in order to forge a signature the adversary needs to invert the one-wayfunction on many points rather than on a single one. For sake of simplicity, let us apply the idea�rst to the basic construction (of subsection 4.1).14

Background on error-correcting codesDe�nition 6 (error-correcting code [10]): A (m(�); m0(�); d(�))-code is an (e�ciently computable)mapping, �, of m(�)-bit long strings to m0(�)-bit long strings so that, for every two x 6= y 2f0; 1gm(n), dist(�(x); �(y))� d(n)where dist(�; �) denotes the Hamming distance (i.e., number of mismatches) between � and �.For our purposes, we don't require the code to have an e�cient decoding algorithm. Hence, forour purposes, we can use random linear codes (i.e., a mapping de�ned by multiplication by arandom m-by-m0 Boolean matrix). By the Gilbert-Varshamov bound [10, 20] a uniformly chosenm-by-m0 matrix de�nes a (m;m0; d)-code with probability 1� p provided thatd�1Xi=1 m0i ! < p � 2m0�m+1For example, we can set m0 = 2m, p = 2�m=2 and d = � �m0 where H2(�) � 14 (� = 120 will do).6 Alternatively, m0 = 3m, p = 2�m=2 and d = � �m0 where H2(�) � 12 (� = 18 will do). For smallvalues of m0 and m larger values of � are attainable by specially designed codes. For example, form = 79 and m0 = 128 there exists a code with distance d = 15 (� > 0:117), whereas for m = 80and m0 = 160 one gets d = 23 (� > 0:143) [10, Appendix A.1]. For m = 128, we use a code withdistance d = 13 and codewords of length m0 = 185, yielding � > 0:07.Basic scheme with error-correcting codesLoosely speaking, to sign a message M one �rst computes the codeword C def= �(M) and thensigns C. In addition to verifying, as usual, that C is properly signed, the veri�cation procedurechecks that C indeed equals �(M). Hence, a chosen message attack needs to produce a signatureto a string C 0 that is not only di�erent from C, but is also at distance at least d from C.Construction 2 (using error-correcting codes): Let f : f0; 1g� 7! f0; 1g� be a one-way functionand � : f0; 1g� 7!f0; 1g� be a (m(�); m0(�); d(�))-code. We consider the following one-time signaturescheme for message length function m(�).� key generation: On input 1n, the key-generator uniformly selects x01; x11; :::; x0m0; x1m0 2 f0; 1gn,where m0 def= m0(n). The signing-key consists of these xji 's, whereas the veri�cation-key isf(x01); f(x11); :::; f(x0m0); f(x1m0).� signing: To sign a message M 2 f0; 1gm, one computes �1 � � ��m0 def= �(M) and revealsx�11 ; :::; x�m0m0as the signature to M .6As usual, H2(x) def= �(x log2 x+ (1� x) log2(1� x)) denotes the binary entropy function.15

� veri�cation: The codeword C = �(M) is computed and the function f is applied to therevealed strings. The result is checked against the corresponding strings in the veri�cation-key.Lemma 3 Suppose that T : IN 7! IN and � : IN 7! IR are functions so that the above one-timesignature scheme can be existentially broken, via a chosen (single) message attack, in time T (�)and probability �(�). Then, for every n 2 IN, the function f can be inverted in time T (n) andsuccess probability �(n)2 � �(n), where �(n) def= d(n)m0(n) .As a special case, we derive a bound for the security of the basic construction. Namely,Corollary 4 Suppose that T : IN 7! IN and � : IN 7! IR are functions so that the basic construction(of subsection 4.1) can be existentially broken, via a chosen (single) message attack, in time T (�)and probability �(�). Then, for every n 2 IN, the function f can be inverted in time T (n) andsuccess probability 12m � �(n).proof of Lemma 3: Let F be a probabilistic algorithm that existentially breaks the one-timescheme, via a chosen (single) message attack, in time T (�) and probability �(�). Hence, for everyn 2 IN, with probability �(n), algorithm F �rst asks for a signature of M 2 f0; 1gm and thenproduces a signature to M 0 6= M . Let �(M) = b1 � � � bm0 and �(M 0) = c1 � � � cm0 . By de�nition ofthe code, bi 6= ci for at least a � fraction of the i 2 f1; :::;m0g.The inverting algorithm, A, operates as follows. On input y, algorithm A uniformly selectsi 2 f1; :::; m0g and j 2 f0; 1g. Next, A forms a veri�cation-key as in the key-generation, exceptthat the (2(i�1)+j)st component is y, and invokes F with this veri�cation-key. With probability12 , algorithm F asks for the signature, to a message denoted M , that A can supply. In this case,with probability �(n), algorithm F returns a signature of a message M 0 and with probability atleast � the ith bit of �(M 0) is di�erent from the ith bit of �(M). This yields an inverse of y underf , and the lemma follows. 2Scheme with block codingWe now combine the shortening ideas of subsection 4.2 with the coding idea just presented.In fact, we only use of the shortening ideas; speci�cally, the partition of the binary string intot-bit long blocks. Each block is assigned a pair of strings in the signing-key (resp., veri�cation-key). The partition into blocks �ts very nicely with error-correcting codes, provided m0t � 2t.Namely, we partition the m-bit long message into m=t blocks (each of length t) and encode thesem=t blocks using m0=t blocks (each of length t). Our encoding scheme views the m=t blocks aselements in GF (2t) specifying a polynomial of degree (m=t)� 1 over this �eld, and the codewordis the sequence of values this polynomial yields on (m0=t) di�erent elements of the �eld (hencethe requirement m0t � 2t). This encoding, known as block-coding and speci�cally as BCH code,has the property that di�erent messages (viewed as polynomials) are mapped to codewords that16

agree on at most (m=t) � 1 values. Hence, the `block distance' between codewords correspondsto (m0 �m)=t.Construction 3 (based on block partition and coding): Let t : IN 7! IN be an integer function sothat 1� t(n)=poly(n) and m0(n)t(n) � 2t(n), and f : f0; 1g� 7!f0; 1g� be a function, both computablein polynomial-time. We consider the following one-time signature scheme for message lengthfunction m(�) < m0(�).� key generation: On input 1n, the key-generator uniformly selects x01; x11; :::; x0m0=t; x1m0=t 2f0; 1gn, where m0 def= m0(n) and t def= t(n). The signing-key consists of these xji 's, whereasthe veri�cation-key isf2t�1(x01); f2t�1(x11); :::; f2t�1(x0m0=t; f2t�1(x1m0=t)� signing: To sign a message M 2 f0; 1gm, its t-bit long blocks, �1; :::; �m=t, are interpreted aselements in GF (2t) specifying a polynomial of degree t�1 over the �eld (i.e., �i is interpretedas the i � 1st coe�cient of the polynomial). The values of the polynomial at some m0=t�eld elements are now interpreted as integers, denoted �1; :::; �m0=t 2 f0; 1; :::; 2t� 1g, andthe signature f �1(x01); f2t�1��1(x11); :::; f �m0=t(x0m0=t); f2t�1��m0=t(x1m=t)is computed.� veri�cation: The polynomial and its values at the m0=t points is constructed as above, thecomponents of the signature vector are subjected to the corresponding number of applica-tions of f and the result is compared to the veri�cation-key.Lemma 5 Let m0(n) = (1 + �) �m(n), for some constant � > 0. Suppose that T : IN 7! IN and� : IN 7! IR are functions so that the above one-time signature scheme can be existentially broken,via a chosen (single) message attack, in time T (�) and probability �(�). Then, for every n 2 INand some i � (2t � 1) the function f can be inverted on distribution f i(Un) in time T (n) andsuccess probability �(1+�)2t � �(n), where Un denotes a random variable uniformly distributed overf0; 1gn.proof: Using the same ideas as in the proofs of the last two lemmata. 2Remark: We can set 2t = m0t and � = 1. Then, for t � 4, we get security at least as in the basicconstruction while using keys and signatures which are only 4 times as large as those used inConstruction 1. In general, the bound on success probability of attacks in the new constructionis related to the bound in the basic construction by a factor of (1+�)2�t , which is typically smallerthan 1. 17

4.4 Further enhancing securityThe reader may note that in the enhanced security asserted in the previous subsection stems fromthe fact that when using a forging algorithm we have a better chance that it inverts the function onthe desired component (provided that we choose the desired component at random). We did nottake advantage of the fact that this forging algorithm inverts the function on many components.To do so we have to consider the problem of simultaneously inverting a one-way function on manyimages, and to show how this problem reduces to forging signatures in Constructions 2 and 3.Once this is done, the security of the signature scheme is based on the di�culty of inverting thefunction on many images, a task that may be more di�cult than inverting the function on a singleimage. For example, time-probability trade-o�s in exhaustive search for inverting a function areless favorable when one needs to invert the function on several instances (see Assumption 2 inthe subsequent section).Lemma 6 Suppose that T : IN 7! IN and � : IN 7! IR are functions so that Construction 2 can beexistentially broken, via a chosen (single) message attack, in time T (�) and probability �(�). Letk : IN 7! IN so that k(n) � d(n). Then, for every n 2 IN, the function f can be simultaneouslyinverted on k(n) images, in time T (n) and success probability0@k(n)�1Yl=0 d(n)� l2(m0(n)� l)1Ak(n) � �(n)proof: Similar to the proof of Lemma 3. Fixing any n 2 IN, the inverting algorithm, A, oper-ates as follows. On input y1; :::; yk, algorithm A uniformly selects k di�erent elements, denotedi1; i2; :::; ik, in f1; :::;m0g and j1; :::; jk 2 f0; 1g. Next, A forms a veri�cation-key as in the key-generation, except that for every l � k the (2(il � 1) + jl)st component is yl, and invokes theforging algorithm, F , with this veri�cation-key. With probability 12k , algorithm F asks for thesignature, to a message denoted M , that A can supply. In this case, with probability �(n), algo-rithm F returns a signature of a message M 0. With probability at least dm0 � d�1m0�1 � � � d�k+1m0�k+1 , thebit locations i1 through ik of �(M 0) and �(M) are all in disagreement. This yields inverse of y1through yk under f , and the lemma follows. 2Using similar ideas, we getLemma 7 Let m0(n) = (1 + �) �m(n), for some constant � > 0. Suppose that T : IN 7! IN and� : IN 7! IR are functions so that Construction 3 can be existentially broken, via a chosen (single)message attack, in time T (�) and probability �(�). Let k : IN 7! IN so that k(n) � �m(n) and Undenote a random variable uniformly distributed over f0; 1gn. Then, for every n 2 IN and somei1; :::; ik(n) � (2t(n)� 1) the function f can be simultaneously inverted on k(n) images, taken from18

the distributions f i1(Un) through f ik(n)(Un), in time T (n) and success probability0@k(n)�1Yl=0 � � (l=m)(1 + � � (l=m))2t(n)1Ak(n) � �(n)5 Concrete ImplementationsWe now suggest concrete implementations of our general on-line/o�-line signature scheme o�eringfast on-line computations (both for signer and veri�er).5.1 The IngredientsAll the concrete implementation use Rabin's scheme [15] in role of the ordinary signature schemeand the DES as a one-way function used to construct a one-time signature scheme. The imple-mentations di�er by the construction they use for a one-time signature scheme. The constructionsof one-time signature scheme used are those presented in the previous section.The ordinary signature schemeIn the role of the ordinary signature scheme we use a modi�cation of Rabin's scheme [15]. In thismodi�cation, we use integers which are the product of two large (say 256 bits long) primes, onecongruent to 3 modulo 8 and the other congruent to 7 modulo 8. For such an integer N and forevery integer v 2 Z�N (the multiplicative group modulo N) exactly one of the elements in the setSv def= fv;�v; 2v;�2vg is a square modulo N (see [21, 8]). Moreover, each square modulo N hasexactly 4 distinct square roots mod N . Let us de�ne the extended square root of v modulo N ,denoted extpv mod N , to be a distinguished square root modulo N (say, the smallest one) of theappropriate member of Sv. Computing extpv mod N is feasible if the factorization of N is known,and is considered intractable otherwise.The message space is associated with the elements of the above multiplicative group. Largermessages are �rst hashed into such an element. It is assumed that the message space satis�es thefollowing condition: If v 6= u then Sv \ Su = ;. This can be enforced by using only values of the2nd eighth of Z�N (i.e., fv 2 Z�N : N8 < v < N4 g).Consider a user A, whose public-key is a modulo NA. User A alone knows the factorizationof NA. Signing message M , in the modi�ed Rabin scheme, amounts to extracting an extendedsquare root of M , modulo NA. Anyone can verify that � is a legitimate signature of M bycomputing �2 mod NA and checking that it indeed belongs to the set SM .The scheme described so far is not secure against existential forgery. It is not clear whetherthis problem is really important to our application, nevertheless padding by a random su�x (cf.,[15]) overcomes the obvious attack. 19

We assume that it is infeasible to break the modi�ed Rabin scheme, even after a chosenmessage attack, when the integers which are used are the product of two large (say 256 bits long)primes.The one-time signature schemeFor the one-time signature scheme, we use any of the constructions presented in Section 4. Theseconstructions exhibit a trade-o� between key and signature size, on one hand, and computation-time and security on the other hand. In particular, we propose to use the DES algorithm asa one-way function f(x) def= DESx(M); that is, the value obtained by encrypting a standardmessage, M , using DES with key x.The collision-free hashing schemeIn role of the collision-free hashing function we use any standard way of using DES in a hashingmode. (See, for example, [14].) Alternatively, one may use the recently suggested MD4 or MD5(cf., [17, 18]). We recommend that H maps arbitrarily long strings to 128-bit long strings (i.e.,m = 128). For some applications, one may be content with m = 64.5.2 Four ImplementationsWe now describe four versions of the concrete implementation. We start with a straightforwardimplementation of the general scheme with the modi�ed Rabin scheme playing the role of theordinary signature scheme and the DES as a one-way function used for a one-time signaturescheme (as in the basic construction of Section 4). The other three implementations, di�er fromthe �rst one only in the way in which the one-way function is used to construct a one-timesignature scheme.Implementation 1 The modi�ed Rabin scheme, with primes of length 256, is used as the ordi-nary signature scheme. As one-time signature scheme, for message length m = 128, we use thebasic construction of Section 4 with DES in role of the one-way function. Finally, fast collision-free hashing functions are used to hash arbitrarily long strings to m-bit strings.The key-length for the one-time signature scheme is 2m � n, where in case of DES-based one-way function n = 56. The total length of the signature in the resulting on-line/o�-line scheme is3m � n + 512, which for our choice of parameters (i.e., m = 128 and n = 56) yields 22; 016. Themost time-consuming operation in the o�-line signing phase is the computation of an ordinarysignature in the modi�ed Rabin scheme, which amount to extracting square roots modulo 256-bitprimes. On-line signing only involves retrieving relevant information from memory. Veri�cationamounts to m DES computations, that may be performed in parallel, and a single multiplicationmodulo a 512-bit integer (i.e., veri�cation in the modi�ed Rabin scheme). The signatures and keyscan be shortened by a factor of � t if we are willing to increase the number of DES computationsby a factor of 2t � 1. For t = 4 this tradeo� seems worthwhile. Namely,20

Implementation 2 The ordinary signature scheme and the collision-free hashing function areas in the previous implementation. As one-time signature scheme, for message length m = 128,we use Construction 1 (of Section 4), with t = 4. Again, DES is used in role of the one-wayfunction.Now, the key-length for the one-time signature scheme is (1 + mt) � n, and total length of thesignature in the resulting on-line/o�-line scheme is thus 2(1 + mt) � n + 512. For our choice ofparameters (i.e., m = 128, t = 4 and n = 56) we get signature length of 4; 208. The numberof DES operations increases by a factor of 2t � 1 = 15. However, the security of the currentimplementation is decreased by a factor of 2t�1t = 3:75. Improved security can be obtained byusing Construction 3 as a basis for the one-time signature scheme. Namely,Implementation 3 The ordinary signature scheme and the collision-free hashing function areas in the previous implementations. As one-time signature scheme, for message length m = 120,we use Construction 3 (of Section 4), with m0 = 160 and t = 5. Again, DES is used in role ofthe one-way function.Now, the key-length for the one-time signature scheme is 2 � m0t �n, and the total length of thesignature in the resulting on-line/o�-line scheme is 4 � m0t � n+ 512. For our choice of parameters(i.e., m = 120, m0 = 160, t = 5 and n = 56) we get signature length of 7; 680. The numberof DES operations is about three times as much as in the previous implementation. However,the security of the current implementation is even better than in Implementation 1. To get evenbetter security we used Construction 2Implementation 4 The ordinary signature scheme and the collision-free hashing function areas in the previous implementations. As one-time signature scheme, for message length m = 120,we use Construction 2 (of Section 4), with m0 = 185 and d = 13. Again, DES is used in role ofthe one-way function.Now, the key-length for the one-time signature scheme is 2 �m0 � n, and total length of thesignature in the resulting on-line/o�-line scheme is thus 3�m0�n+512. For our choice of parameters(i.e., m = 128, m0 = 185 and n = 56) we get signature length of 31; 592. The number of DESoperations is 185 (instead of 128 in Implementation 1).The complexity bounds for the four implementations are tabulated below (for the choice ofparameters speci�ed above). For the reader's convenience we also present the relative securityof these implementations. The security �gures are upper bound on the success probability ofsome reasonably restricted attacks fully described and analyzed below. (Hence, the lower the21

security-�gures are { the better.) Implem: 1 Implem: 2 Implem: 3 Implem: 4message len. 128 128 120 128key len. 14; 336 1848 3584 20; 720signature len. 22; 016 4208 7680 31; 592DES operations 128 1920 4800 185security 13600 1960 16700 132000SecurityOur analysis is based on two assumptions. The �rst is that it in practically infeasible to exis-tentially forge signatures to the modi�ed Rabin scheme, even after a chosen message attack. Inother words, we assume that the probability that such a practical attack succeeds is negligibleand hence we ignore it all together. Our second assumptions is that the DES-based one-wayfunction can not be inverted better than by exhaustive search (in the f0; 1g56 key space), and,furthermore, that it behaves as a random function over a domain with 256 elements. A more ac-curate statement follows. We stress that this assumption is not in contradiction with the currentknowledge concerning the cryptanalysis of DES [2].By the proof of Lemma 1, a breach of security in the on-line/o�-line scheme yields either abreach of security in the modi�ed Rabin scheme or a breach of security in the one-time scheme.We stress that this lemma asserts that if the on-line/o�-line scheme is broken with probability�(n) then either Rabin's scheme is broken with probability �(n)=2 (within the same time andquery complexities) or, with probability �(n)=2, one of the instances of the one-time scheme isbroken. Assuming that a breach of security in the modi�ed Rabin scheme is infeasible, we ignorethe �rst possibility and are left with the second. Before continuing, we now explicitly state ourassumption concerning the security of the DES-based one-way function.Assumption 1 Let D def= 256 denote the number of elements in the domain of the DES-basedone-way function. Then, a randomized algorithm running in time that allows making only T DESevaluations, succeeds in inverting the DES-based function on a given image, with probability atmost TD .We start by evaluating the security of the �rst implementation presented above (i.e., Imple-mentation 1). Combining Assumption 1, Lemma 1 and Corollary 4, we conclude that a chosenQ-message attack of time T succeeds in existential forgery with probability at most T �(2m�Q)D . Inrealistic implementations at most Q = 10; 000 messages are likely to be signed and each is oflength m = 128. Let R def= Q �m � 1:3 � 106. Thus, the success probability of an attack whichasks for Q messages to be signed and runs in time allowing T DES computations is bounded by2 � T �RD22

Several estimates for the success probability of forging signatures by attacking the DES-basedone-way function are tabulated below. As above, T denotes the time spent (i.e., number offunction evaluations) in the attack, R denotes the total number of bits in all (hashed) messagesigned, and � denotes an upper bound on the success probabilityR T �106 106 136;000106 107 13600106 108 1360We conclude by evaluating the security of the other three implementations. This is done usingthe corresponding lemmata of Section 4. First, using Lemma 5, we observe that Implementation 3(with m0 = 43 �m = 2tt and t � (1+�)22� = 83) maintains the security of Implementation 1. Actually,security is increased by a factor of 3t8 (which for t = 5 yields � 2). Inspecting Lemma 2, itfollows that the probability of breaking Implementation 2 is at most 2t�1t times bigger than thebound presented for Implementation 1 (which for t = 4 means a factor of 3:75). Finally, usingLemma 3, it follows that the probability of breaking Implementation 4 is smaller by a factor 9than the bound presented for the probability of breaking Implementation 1. The bounds for thesuccess probability of forging signatures in the last three implementations are tabulated below.The bounds on the success probabilities of Implementations 2, 3 and 4, are denoted �2, �3 and �4,respectively, and R and T are as above.R T �2 �3 �4106 106 19;600 167;000 1320;000106 107 1960 16700 132;000106 108 196 1670 13200The bounds on the success probabilities of Implementations 3 and 4, can be improved usingthe following reasonable assumption.Assumption 2 A randomized algorithm running in time that allows making only T DES eval-uations, succeeds in simultaneously inverting the DES-based function on k given images, withprobability at most (TD)k.In particular, using Lemma 6 with k = 2; 3 (k < d = 13), it follows that the probability ofbreaking Implementation 4 is at most maxfp; (15:4�p)2; (256�p)3g, where p is the bound computedby using Lemma 3. Similarly, using Lemma 7 with k = 2 (k < �m = 40), it follows that theprobability of breaking Implementation 3 is at most maxfp; (128 � p)2g, where p is the boundcomputed by using Lemma 5. Hence, our security bounds are improved as tabulated below.R T �3 �4106 106 1274;000 11:9�109106 107 16700 11:9�106106 108 1670 143;00023

6 A Related Theoretical ResultTheorem 2 Digital signature schemes that are secure against a chosen message attack exist ifand only if signature schemes secure against random message attack exist.proof: The necessary condition is obvious. To prove the su�cient condition, we present thefollowing construction that uses much of the structure of our general construction.Let (G; S; V) be a signature scheme secure against random message attack. By a paddingargument, we may assume that the message length for parameter n equals n (i.e.,m(n) = n). Weconsider two instances of this scheme, the �rst with parameter n and the second with parameter2n2. We now construct the signature scheme (G�; S�; V �) as follows.The key generation algorithm, G�, consists of using G twice to produce two pairs of matchingpublic and secret keys, (VK1; SK1) and (VK2; SK2). The signing algorithm, S�, operates as follows.First, obliviously of the message to be signed, algorithm S� selects randomly 2n strings of lengthn each, denoted r1; :::; r2n. Let the concatenation of these strings be denoted r. Second, S�computes � def= SSK1(r). The last step does depend on the message to be signed. To sign a messageM = b1 � � � bn, where each bi 2 f0; 1g, algorithm S� computes, for each i, �i def= SSK2(r2i�bi). Thesignature of message M consists of r, � and �, where � def= �1 � � ��n. The veri�cation algorithmis obvious from the above.Parenthetical Remark: By a minor modi�cation we can obtain an on-line/o�-line signaturescheme, in which no computation is necessary in the on-line signing phase. In the modi�edscheme, sj def= SSK2(rj) is precomputed for every j (1 � j � 2n), and in the on-line phase onemerely needs to retrieve the appropriate precomputed sj (i.e., these j which equal 2i � bi forsome i). Unfortunately, veri�cation in the (G�; S�; V �)-scheme is substantially more expensivethan in the original (G; S; V)-scheme, speci�cally by a factor of n+1. Hence, the scheme presentedin this section does not o�er much hope in terms of practical implementations (since n should beset large enough to resists a birthday attack7).We now prove that if (G�; S�; V �) is existentially forgeable via a chosen message attack then(G; S; V) is existentially forgeable via a random message attack. The proof is very similar tothe proof of Lemma 1.Let F � be a probabilistic polynomial-time algorithm which forges signatures of (G�; S�; V �), withsuccess probability �(n) > 1poly(n) , via a chosen message attack. Such a forged signature eitheruses a sequence r = (r1; :::; r2n) which has appeared in a previous signature or uses a sequence rwhich has not appeared previously. Thus, one of the following two cases occurs.7In practical implementations n will not be the actual length of the message, which is much too long, but ratherthe length of the hashed value. In a birthday attack we use 2n=2 \perturbations" of a desired message to match itshashed value with one of 2n=2 values signed by the signer in a random message attack. Hence, n should be largeenough so that it is infeasible to obtain 2n=2 signatures.24

Case 1: With probability at least �(n)=2, algorithm F � forms a new signature using a sequencer used in a previous signature.In this case we construct an algorithm, F1, forging signatures of (G; S; V) as follows. Oninput VK (and access to random message attack on the corresponding SSK), algorithm F1 runs Gto obtain a new pair of corresponding keys (SK0; VK0). Then algorithm F1 initiates algorithm F �on input VK� = (VK0; VK), and supplies it with signatures to messages of F �'s choice. To get asignature for the message M = b1 � � � bn, requested by F �, algorithm F1 asks for n new randomSSK-signatures (i.e., signatures to n uniformly selected messages), each n bits long. (Here weemploy a random message attack on SSK.) Suppose that F1 is given the message-signature pairs(�1; SSK(�1)); :::; (�n; SSK(�n))Algorithm F1 sets r2i�bi def= ui and selects the other n strings ri at random. It uses its secret keySK0 to compute � def= SSK0(r1 � � �r2n), and gives F � the triple(r1 � � �r2n ; � ; SSK(r2�b1) � � �SSK(r2n�bn))as a signature of M . We stress that it is unlikely that the same ri appears in two di�erent triplesgiven to F � (since the ri's are uniformly chosen from a huge space, i.e., of size 2n). Eventually,with probability at least �(n)=2, algorithm F � yields a signature to a new message, denotedM = b1 � � � bn, in which the r-sequence is identical to a r-sequence used in a previous message,denoted M 0 = c1 � � �cn. Since M 6= M 0, there exists a position i in which they di�er (i.e., bi 6= ci)and it follows that the signature to M contains a signature SSK(rj), where rj is the jth block in rand j = 2i� bi. With very high probability, rj has not appeared as a block in any other positionexcept the jth position in r, and hence we obtained a SSK signature to the string for which asignature has not been seen so far . Outputting this (rj; SSK(rj)) pair, algorithm F1 achievesexistential forgery, via a random message attack.Case 2: With probability � �(n)=2, algorithm F � forms a new signature using a sequence r notused in previous signatures.In this case we construct an algorithm, F2, forging signatures of (G; S; V) as follows. On inputVK (and access to random message attack on SSK), algorithm F2 runs G to obtain a new pair ofcorresponding keys (SK0; VK0). Then algorithm F2 initiates algorithm F � on input VK� = (VK; VK0),and supplies it with signatures to messages of F �'s choice. To get a signature for the messageM = b1 � � � bn, requested by F �, algorithm F2 asks for a new SSK-signature on a random message rof length 2n2. Suppose that F2 is given the message-signature pair (r; SSK(r)), where r = r1 � � �r2n,and each of the ri's is of length n. Algorithm F2 computes SSK0(r2i�bi), for every i, and gives F �the triple ((r1 � � �r2n) ; SSK(r1 � � �r2n) ; SSK0(r2�b1) � � �SSK0(r2n�bn))as a signature ofM . Eventually, with probability at least �(n)=2, algorithm F � yields a signatureto a new message which contains a SSK-signature of a new sequence r. If this happens then F2outputs (r; SSK(r)), hence committing existential forgery (via a random message attack).Hence, in both cases contradiction is derived and the theorem follows. 225

AcknowledgmentsWe are most grateful to the anonymous referees for their comments and especially for urgingus to provide rigorous treatment to the security of the concrete implementations. In fact, thiscomment caused us to inspect carefully the complexity of the reductions and propose ways ofimproving them.We also wish to thank Eli Biham, Ronny Roth and Adi Shamir for helpful discussions.

26

References[1] Bellare, M., and Micali, S., \How to Sign Given Any Trapdoor Function", STOC 88, pp.32-42.[2] E. Biham and A. Shamir, \Di�erential Cryptanalysis of DES-like Cryptosystems", Journalof Cryptology, Vol. 4, No. 1, pp. 3{72, 1991.[3] Damgard, I., \Collision-free Hash Functions and Public-key Signature Schemes", Euro-Crypt87, LNCS (304), Springer-Verlag, 1988, pp. 203-216.[4] Even, S., \Secure O�-Line Electronic Fund Transfer Between Nontrusting Parties", SmartCard 2000: The future of IC cards, D. Chaum and I. Schaumuller-Bichl (eds.), North-Holland, 1989, pp. 57-66.[5] Even, S., Goldreich, O., and Yacobi, Y., \Electronic Wallet", Advances in Cryptology:Proc. of Crypto83, D. Chaum (ed), Plenum Press, 1984, pp. 383-386.[6] Even, S., Goldreich, O., and Micali, S., \On-line/O�-line Digital Signatures", Advancesin Cryptology: Proc. of Crypto89, G. Brassard (ed), LNCS (435), Springer-Verlag, 1990,pp. 263-277.[7] Goldreich, O., \Two Remarks Concerning the Goldwasser-Micali-Rivest SignatureScheme", Advances in Cryptology - Crypto86, A.M. Odlyzko (ed), LNCS (263), Springer-Verlag, 1987, pp. 104-110.[8] Goldwasser, S., Micali, S., and Rivest, R.L., \A Digital Signature Scheme Secure AgainstAdaptive Chosen-Message Attacks", SIAM J. on Computing, April 1988, pp. 281-308.[9] Levin, L.A., \One-Way Functions and Pseudorandom Generators", Combinatorica, Vol.7, No. 4, 1987, pp. 357{363.[10] F.j. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.[11] Merkle, R.C., \A Digital Signature Based on a Conventional Encryption Function", Ad-vances in Cryptology - CRYPTO '87, Pomerance (ed), Lecture Notes in Computer Sci-ence, Vol. 293, Springer-Verlag, 1987, pp. 369-378.[12] Naor, M., and Yung, M., \Universal One-Way Hash Functions and their CryptographicApplication", 21st STOC, 1989, pp. 33-43.[13] National Bureau of Standards, Federal Information Processing Standards, Publ. 46 (DES1977). 27

[14] Rabin, M.O., \Digital Signatures", in Foundations of Secure Computation, R.A. DeMillo,et. al. (eds). Academic Press, 1978, pp. 155-168.[15] Rabin, M.O., \Digitalized Signatures and Public-Key Functions as Intractable as Factor-ization", Lab. for Computer Science, MIT, Report TR-212, January 1979.[16] Rivest, R.L., Shamir, A., and Adleman, L., \A Method for Obtaining Digital Signaturesand Public-Key Cryptosystems", Comm. ACM 21 (2), 1978, pp. 120-126.[17] Rivest, R.L., \The MD4 Message Digest Algorithm", presented in Crypto90.[18] Rivest, R.L., \MD5 { New Message Digest Algorithm", presented in the rump session ofCrypto91.[19] Rompel, J., \One-way Functions are Necessary and Su�cient for Secure Signatures", 22ndSTOC, 1990, pp. 387-394.[20] Roth, R., \Topics in Coding Theory { Lecture Notes", 1993.[21] Williams, H. C., \A Modi�cation of the RSA Public-Key Encryption Procedure", IEEETrans. Inform. Theory IT-26 (6), 1980, pp. 726-729.

28

