The Graph Clustering Problem has a Perfect Zero-Knowledge Proof

Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Rehovot, ISRAEL. E-mail: oded@wisdom.weizmann.ac.il

November 3, 1996

Abstract

The Graph Clustering Problem is parameterized by a sequence of positive integers, $m_1, ..., m_t$. The input is a sequence of $\sum_{i=1}^t m_i$ graphs, and the question is whether the equivalence classes under the graph isomorphism relation have sizes which match the sequence of parameters. In this note we show that this problem has a (perfect) zero-knowledge interactive proof system.

Keywords: Graph Isomorphism, Zero-Knowledge Interactive Proofs.

1 Introduction

For many years, the Graph Clustering Problem (defined below), has been my favorite example for a concrete problem having low (but non-zero) knowledge-complexity (cf., [4, 3]). However, reconsidering the problem a few weeks ago, I've realized that current "state of the art" (specifically, the paper of De-Santis et. al. [1]) yields that this problem does have zero knowledge-complexity.

2 The Graph Clustering Problem

The Graph Clustering Problem (GCP) is parameterized by a sequence of positive integers, $m_1, ..., m_t$. Let $m \stackrel{\text{def}}{=} \sum_{i=1}^t m_i$. Fixing these parameters the problem is specified as follows:

input: m Graphs, denoted $G_1, ..., G_m$.

Without loss of generality we may assume all have $[n] \stackrel{\text{def}}{=} \{1,...,n\}$ as their vertex set.

question: Does there exist a partition, $C_1, ..., C_t$, of [m] so that $|C_i| = m_i$ for i = 1, ..., t and

- For every $i \in [t]$ and every $j, k \in C_i$, the graphs G_j and G_k are isomorphic.
- For every $i \neq j \in [t]$ and every $k \in C_i$ and $h \in C_j$, the graphs G_k and G_h are not isomorphic.

That is, $C_1, ..., C_t$ are the equivalent classes under the graph-isomorphism relation and their sizes match the m_i 's.

Let us denote this problem by $GCP_{m_1,...,m_t}$. Note that GCP_2 and $GCP_{1,1}$ correspond to the Graph Isomorphism and Graph Non-Isomorphism problems, respectively. Both are known to have perfect zero-knowledge proof systems [2].

3 The Zero-Knowledge Proof

The main tools we use are two results due to De-Santis et. al. [1]. In their paper the following problem parameterized by a Boolean formula Ψ and a language L is considered, where k denotes the number of variables in Ψ :

input: k instances, denoted $x_1, ..., x_k$.

question: Does $\Psi(\chi_L(x_1), ..., \chi_L(x_k)) = 1$ hold, where χ_L is the Characteristic function of L (i.e., $\chi_L(x) \stackrel{\text{def}}{=} 1$ if $x \in L$ and 0 otherwise).

Let us denote the above problem by $\mathcal{CL}_{L,\Psi}$. Also, let GI denote the set of pairs of isomorphic graphs. We use two of the results of [1]:

- 1. For every monotone formulae Ψ , the language $\mathcal{CL}_{GI,\Psi}$ has a (perfect) zero-knowledge proof system.
- 2. For every integer u, the language $\mathcal{CL}_{\mathrm{GI},T_u}$ has a (perfect) zero-knowledge proof system, where T_u is the threshold function which is 1 iff there are at most u 1's in the input.

Our (perfect) zero-knowledge proof for $GCP_{m_1,...,m_t}$ follows by the observation that this problem is reduced to the AND of two \mathcal{CL}_{GI_1} problems, one of Type (1) and the other of Type (2). Specifically, let $k = \binom{m}{2}$ and consider a standard enumeration of all k (unordered) pairs of distinct integers in [m]. Let $\{i_1, i_2\}$ be the i^{th} pair in this enumeration and define $x_i = (G_{i_1}, G_{i_2})$. Then

$$GCP_{m_1,...,m_t}(G_1,...,G_m) = \mathcal{CL}_{GI,\Psi}(x_1,...,x_k) \wedge \mathcal{CL}_{GI,T_u}(x_1,...,x_k)$$

where $u = \sum_{i=1}^{t} {m_i \choose 2}$ and Ψ is an adequate monotone formulae. The obvious question is whether the adequate Ψ does exist. The answer is indeed in the affirmative: Ψ is the disjunction of formulae Ψ_{C_1,\ldots,C_t} , for all partitions C_1,\ldots,C_t of [m] which satisfy $|C_i|=m_i$ for all $i=1,\ldots,t$. The formulae Ψ_{C_1,\ldots,C_t} is true if the instances corresponding to pairs in any cluster are indeed in the Graph-Isomorphism language. That is

$$\Psi_{C_1,...,C_t}(\sigma_1,...,\sigma_k) = \bigwedge_{j \in [t]} \bigwedge_{i_1,i_2 \in C_j} \sigma_{\{i_1,i_2\}}$$

The threshold formula T_u makes sure that there are no additional pairs of isomorphic graphs.

Comments: Reduction to Threshold formulae suffices as long as $m \leq 5$ (since each partition of such m's into m_i 's has a distinct value for $\sum_i {m_i \choose 2}$). But for k = 6 both 6 = 2 + 2 + 2 and 6 = 3 + 1 + 1 + 1 have the same value for $\sum_i {m_i \choose 2}$ (i.e., 3). On the other hand, our result can be proven using other tools in [1]; for example, the analogous proof systems for closures of Graph Non-Isomorphism.

References

- [1] A. De-Santis, G. Di-Crescenzo, G. Persiano and M. Yung, "On Monotone Formula Closure of SZK", 35th FOCS, pp. 454-465, 1994.
- [2] O. Goldreich, S. Micali and A. Wigderson, "Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems", *JACM*, Vol. 38, No. 1, pp. 691–729, 1991.
- [3] O. Goldreich, and E. Petrank, "Quantifying Knowledge Complexity", 32nd FOCS, pp. 59-68, 1991. A full version is available from http://theory.lcs.mit.edu/~oded/.
- [4] S. Goldwasser, S. Micali and C. Rackoff, "The Knowledge Complexity of Interactive Proof Systems", SIAM J. Comput., Vol. 18, No. 1, pp. 186–208, 1989.