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1 IntroductionThe problem of how to perform general distributed computation in an unreliable environmenthas been extensively addressed. Two types of models have been considered. The �rst modelassumes that one-way functions exist and considers adversaries (faults) which are computationallyrestricted to probabilistic polynomial time [24, 13, 25, 14, 11, 2]. The second model postulatesthat private channels exist between every pair of players [3, 7, 8, 17, 15]. Hence, in both modelsfault-tolerance is achieved at the cost of restricting the type of faults.We want to avoid any such assumption and examine the problem of fault-tolerant distributedcomputation where the faults are computationally unrestricted, and no private channels areavailable. Clearly the assumption that one-way functions exist is of no use here. The situationhere corresponds to games of complete information.The general problem can be described informally as follows: m players are interested inglobally computing v = f(x1; :::; xm) where f is a predetermined m-variate function and xi is aninput given to party i (and initially known only to it). The input xi is assumed to have beendrawn from probability distribution Di (which without loss of generality can be assumed to beuniform). A coalition F of faulty players may favor a particular value v for f and play anystrategy to maximize the probability of such an outcome. We want to bound, for each value v inthe range of f , the probability (under the best strategy for the faults) that the outcome of theprotocol used to distributively compute f is v. How good can this bound be?Regardless of the protocol under consideration, there is always one avenue that is open forthe faulty players, namely, alter their input values to ones under which the value v is most likely.This is always possible, since players' inputs are not visible to others. That is,qv := maxxi;i2FfProb(f(~x) = v where xj 2R Dj ; j =2 F )gis a lower bound on the inuence of coalition F towards value v, no matter what protocol is used.Consider the simple procedure in which each player announces its xi, and the global outputis taken to be f(x1; :::; xm). If all players (including the faulty ones) act simultaneously, thenfor every v, the probability of v being the outcome is indeed at most qv. Unfortunately, in adistributed network simultaneity cannot be guaranteed, and a delayed action by the faults canresult in much better performance for them (e.g., for f =Pmi=1 xi mod N with xi 2 f0; 1; :::;N�1g, q0 = 1N , but a single faulty player acting last has complete control of the outcome).In both of the previously studied models (private channels or computationally bounded faults)protocols were developed where for all values v and all minority coalitions F , the probability ofoutcome v is as close to qv as desired. The key to these protocols is the notion of simultaneouscommitment. At the outset of these protocols, each player Pi commits to its input xi. It shouldbe stressed that a faulty party may alter its input in this \committing phase" but not later andthat a party's commitment is \independent" of the inputs of the other honest parties.Obviously, in the full-information model such a qualitative notion of commitment cannot beimplemented (even if the faulty parties are in minority). Instead, we need to look for quantitativeresults. Faulty players can and will be able to \alter their inputs" throughout the execution ofthe protocol in order to inuence the outcome. Yet, we can bound the advantage gained by theirimproper behavior. 1



Results Concerning the Two-Party CaseThe main focus of this paper is on the two-player case of this problem. Even this restrictedcase provides interesting problems and challenges. We resolve the main problems in this case,showing:1. A lower bound: for every bivariate function f , for any protocol to compute f and everyvalue v in the range of f , there is a strategy for one of the players, so that if the otherplayer plays honestly, then the probability for the outcome f = v is at least max(qv;ppv),where pv = Prob(f(~x) = vjxi 2R Di)).2. More interestingly, we show a matching (up to polylogarithmic factor) constructive upperbound. We describe a probabilistic polynomial time protocol that computes f , given asingle oracle access to f , such that for all v,Pr(f evaluates to v) = O(poly log(1=pv) �max(qv;ppv))In the special case where qv = pv, this protocol is shown to match the lower bound up to aconstant factor. Namely, Pr(f evaluates to v) = O(ppv)The spirit of our protocol is best illustrated by the following example.Example: De�ne id(x; y) = 1 if x = y and 0 otherwise. Suppose that the local inputs x; y arechosen uniformly in f0; 1gn. Clearly, p1 = 1N , and p0 = 1 � 1N , where N = 2n. A protocol inwhich the �rst player declares x and then the second player declares y allows the second playercomplete control on the value of id. A protocol in which the two players alternatingly exchangebits in the description of their inputs is no better if these bits are exchanged in the same order(i.e., both parties send their respective ith bit in round i). A much better idea is for the twoplayers to alternate in describing the bits of their inputs but do so from opposite directions(i.e., in round i the �rst party sends its ith bit whereas the second party sends its (n � i + 1)stbit). Clearly, whichever player is faulty, the probability that the outcome of this protocol is \1"is bounded by 1pN . In light of the lower bound, this is the best result possible. This idea ofgradually revealing appropriately chosen \bits of information" is the key to the general problemof two-party computation.Results Concerning the Multi-Party CaseThe problem of m-party computations, where a subset of t < m faults may exist, is more involvedthan the two-party case (even for m = 3); see discussion in Section 5. Here, we only considerthe problem of collectively sampling a given distribution. Without loss of generality, it su�cesto consider the uniform distribution (say, on strings in f0; 1gl). We provide a probabilisticpolynomial time sampling protocol such that for every S � f0; 1gl, for every t faults,Pr(sample 2 S) < � jSj2l �1�c� tmfor some constant c > 0. This result is the best possible (up to the constant c), and is superior tothe bound obtained by the trivial protocol which consists of l repeated applications of \collective2



coin ipping"; consider, for example, the set S consisting of all strings having at least (12 + tm) � lones { under the trivial protocol, t faulty parties can inuence the output to almost always hitS, whereas our result guarantees that this set S which forms a negligible fraction of f0; 1gl is hitwith negligible probability (for, say, t < m=2c).1The above sampling protocol can be used to present a (generic probabilistic polynomial-time)protocol that works well for computing almost all functions (see our technical report [12]).Previous Work in the Full Information ModelCollective coin ipping, i.e., common bounded-biased sampling in f0; 1g has been considered inthis full-information model before [4, 5, 16, 1]. Matching lower and (constructive) upper boundsof 12 + �( tm) have been shown (by Ben-Or and Linial [4] and Alon and Naor [1],2 respectively).Our work can be viewed as an extension of these investigations which were concerned with theinuences of players on Boolean functions (i.e., Range(f) = f0; 1g). The general case, consideredin this paper, gives rise to additional di�culties. Let us stress that even the problem of samplingin arbitrary sets is more di�cult than collective coin ipping. As mentioned above, the obviousapproach to the sampling problem fails; namely, a sampling protocol that consists of repeatedlyapplying a given coin tossing protocol can be easily inuenced to almost always output stringsin a subset of negligible size.3.However, fault tolerant computation (of arbitrary functions) is more complex than samplingwhich can be viewed as fault-tolerant computation of a function specially designed for this pur-pose.Relation to Work on Slightly-Random SourcesIn this paper we present a multi-party protocol for sampling a set of strings f0; 1gl. In \sampling"we mean producing a single string in f0; 1gl so that, for every subset S � f0; 1gl, the probabilitythat the sample hits S is related to the density of S. Our protocol uses the collective coinipping of [1] as a subroutine. In fact, our sampling protocol can be viewed as a deterministicreduction to the problem of collective coin tossing. The collective coin can be viewed as a slightlyrandom source in the sense of Santha and Vazirani [22], i.e., an SV-source4. Hence, our resultcan be interpreted as presenting a sampling algorithm which uses a SV-source (with a parameter < 1p2). Our sampling algorithm performs much better than the obvious algorithm which uses1Using the above choice of parameters, we have a set S of density � � expf�(t=m)2 � lg which our protocolhits with probability at most p�, as long as at most t players are faulty. On the other hand, when repeatedcollective-coin-ippings are used, t faulty players can inuence the outcome to be in S with probability at least1� �, by biasing each coin-ip towards 1.2 Furthermore, the upper bound can be met by protocols of logarithmic round-complexity [9, 19].3An alternative method which also fails is to try to generalize the work of Alon and Naor [1] as follows: themethod of [1] consists of randomly selecting one of the players who is appointed to ip a fair coin. Letting thisplayer select a random string is a natural idea, but it is obvious that this approach performs very poorly for asample space of non-constant size. Speci�cally, each set S � f0; 1gl can be hit with probability at least 12 + tm ,independently of S and l.4An SV-source with parameter  is a sequence of binary random variables X1;X2; :::, so that for every n,� 2 f0; 1gn and � 2 f0; 1g, Prob(Xn+1=�jX1 � � �Xn=�) � .3



as a sample a sequence of coins produced by the source. (The situation is analogous to thediscussion of the multi-party sampling protocols above).Our sampling algorithm provides an alternative way of recognizing languages in BPP bypolynomial-time algorithms which use a SV-source with a parameter  < 1p2 . First, reduce theerror probability in the BPP-algorithm so that it is negligible (i.e. smaller than any polynomialfraction). Next, use our sampling algorithm to produce a sequence of coin tosses for a single runof the new BPP-algorithm. Since the \bad runs" form a negligible fraction of all possibles runsof the BPP-algorithm, it follows that the probability that we will sample a bad run (when usinga SV-source with parameter  < 1p2) is also negligible. This simulation method is di�erent fromthe original method of Vazirani and Vazirani [23] (adopted also in [6]) where the BPP-algorithmis invoked many times, each time with a di�erent sequence of coin tosses.Other Related WorkWe also present e�cient sampling protocols for the two-party case. The basic sampling protocolguarantees, for every set S � f0; 1gl, that as long as one party is honest the output hits Swith probability at most O( 4pjSj=2l). (The basic sampling protocol is essential for e�cientlyimplementing our generic two-party function-computation protocol. Interestingly, it the basicsampling protocol is also used as a building block for a better sampling protocol, which is optimalup to a constant factor.)Our basic two-party sampling protocol is very similar to a protocol, called interactive hashing,which was discovered independently by Ostrovsky et. al. [20]. Interactive hashing has found manyapplications in cryptography (cf. [20, 18, 21, 10]). For details see Remark 2.2 Preliminaries2.1 Bivariate FunctionsThroughout the paper we represent the bivariate function f :f0; 1gn�f0; 1gn 7!f0; 1g� as an N -by-N matrix, where N def= 2n. An entry, (x; y), in the matrix which has value v (i.e., f(x; y)=v)is called a v-entry. The following quantities, related to the function f and a value v in its range,are central to our analysis.Notation: The density of v, denoted pv, is the fraction of v-entries in the matrix of f (i.e.,pv = jf(x; y) : f(x; y)= vgj=22n). The maximum row density of v, denoted rv, is the maximum,taken over all rows, of the fraction of v-entries in a row of f (i.e., rv = maxx2f0;1gnfjfy :f(x; y)=vgj=2ng). The maximum column density of v is denoted cv = maxy2f0;1gnfjfx : f(x; y)= vgj=2ng,and qv is de�ned as maxfrv; cvg.Throughout the paper, we consider the case of uniform input distribution. Namely, we assumethat each input is selected uniformly from f0; 1gn and independently of the other input(s). Themore general case, where each input is selected from an arbitrary distribution (yet independentlyof the other inputs) can be reduced to the uniform case as follows. Suppose that the probabilityfor each input can be expressed as q2poly(n) , where q is an integer (for some polynomial poly).Then we can replace this input, say z, by q inputs, denoted (z; 1); (z; 2); :::; (z; q), and considerthe function F ((x; i); (y; j)) def= f(x; y) (1� i��(x)2poly(n) and 1� j� (y)2poly(n), where �(x) is4



the probability of the row-input x and  (y) is the probability of the column-input y). Protocolsfor computing F (under the uniform distribution) translate easily to protocols for computing f(under the distribution (�;  )) and vice versa. To e�ciently transform protocols for computingF into protocols for computing f , an e�cient algorithm is needed for computing the originaldensity functions (i.e., � and  ).2.2 ProtocolsThe communication model consists of a single broadcast channel. Each party can, at any time,place a message on this channel which arrives immediately (bearing the identity of its originator)to all other parties. It is not possible to impose \simultaneity" on the channel; namely, the pro-tocols may not contain a mechanism ensuring simultaneous transmission of messages by di�erentparties. Thus, it is best to think of the model as being asynchronous and of the protocols asbeing message-driven. However, asynchronicity is not a major issue here as all parties share theunique communication medium and thus have the same view.The output of an execution of a protocol is de�ned as the last message sent during theexecution. We consider the output of the protocol when the inputs are selected uniformly.We call a player honest if it follows the protocol. Dishonest players may deviate arbitrarilyfrom the protocol. In discussing our protocols we assume, without loss of generality, that dishonestplayers do not deviate from the protocol in a manner which may be detected. This assumption canbe easily removed by augmenting our protocols with simple detection and recovery procedures(which determine the output of the protocol in case deviation from the protocol is detected).For example, the protocol may be restarted with the input of the cheating party �xed to somepredetermined value and all its actions being simulated by the other parties.All our protocols are generic: Players are instructed to take steps that depend only on theirinputs, but not on the function f . When the inputs are �nally revealed, f is evaluated once, andthe protocol terminates.2.3 InuencesUnlike previous work, we use the term \inuence" in a colloquial manner. Typically, by talking\the inuence of a party towards a value" we mean the probability that this party can make thisvalue appear as output of the protocol. When discussing the computation of functions, we treatonly the inuence towards a single value; the inuence towards a set of values can be treated byde�ning a corresponding indicator function.2.4 SamplingWe also consider the problem of designing two-party and multi-party protocols for sampling in auniverse f0; 1gl. The objective here is to provide upper bounds for the probability that the outputfalls in some subset S � f0; 1gl. We note that the problem of designing a two-party protocol forsampling f0; 1gl can be reduced to the problem of designing a protocol for computing any functionf : f0; 1gn� f0; 1gn 7! f0; 1gl for which all values have the same density and this density equalsthe maximum row/column densities (i.e., qv = pv = 2�l for every v 2 f0; 1gl). An analogousreduction holds also in the multi-party case. 5



3 Lower BoundsTheorem 1 : Let f :D1�D2� : : :�Dm 7!R be a function of m variables, � an m-party protocolfor computing f , and v 2 R a value in the range of f . Consider performing � where playersin the set S are dishonest, while all other players are honest. Let �S be the maximum, over allstrategies of coalition S of the probability of the outcome being v. Then, for any 1� t� m thereis a coalition Q of t players with �Q � p1� tmv .In particular,Corollary 2 : Let f be any bivariate function, � any two-party protocol for computing f , and va value in the range of f . Then at least one of the players can, by playing (possibly) dishonestlyforce the outcome to be v with probability at least maxfqv;ppvg (the other party plays honestly).Proof of Theorem 1: The proof is very similar to that of Theorem 5 in [4], though somechanges are required. One observes �rst that if the time complexity of the protocol is no issue,and the only consideration is to keep inuences down, then nothing is lost if all actions are takensequentially and not in parallel. Therefore, � can be encoded by a tree T as follows: Leaves of Tare marked with values in the range of f , and each internal node of T is marked with a name ofa player. The run of � starts at the root of T . Whenever an internal node is reached, player Pi,whose name marks that node is to take the next step. For each input value in Di, the protocol �speci�es a probability distribution according to which the next node, a child of the present one, isselected (assuming Pi is honest). The key observation, beyond the technique of [4], is that thesedistributions (together with the input distribution over Di) induce a single distribution for thenext move of (honest) player i, conditioned on the execution having reached the present node.The outcome of this process is determined by the leaf it reaches (i.e., f = u, where u is the markof the leaf that is reached).For the analysis, let z be an internal node of T , and consider the same process as above,performed on the subtree of T rooted at z. Suppose that coalition S plays its best strategy tomake the outcome f = v most likely, and let �<z>S be that maximum probability (clearly, whenz is taken to be the root of T , then �<z>S = �S). The key step in the proof is to establish thefollowing inequality for every internal z:YjRj=t�<z>R � p(m�1t )v;z (1)where pv;z is the probability of reaching a v-marked leaf on that subtree, when all players arehonest. Extracting the �mt �-th root of the above inequality, we get maxR �<z>R � p(m�t)=mv;z . Takingz to be the root of T the theorem follows.Inequality (1) is proven by induction on the distance from the leaves in T . In the inductionstep, we assume that the inequality holds for the children of an internal node z and derive theinequality for node z. Let I denote the set of edges emanating from z and let fzi : i 2 Igdenote the corresponding children. Suppose, without loss of generality that node z is markedby player 1. The protocol � and the probability distributions on the sets Di determine theprobabilities, f�i > 0 : i2Ig, governing the player's next move provided that the player is honestand conditioned on the execution having reached node z. (This distribution may not be easy6



to determine, but we only need to know that it exists.) Now, clearly pv;z = Pi2I �ipv;zi and�<z>R = Pi2I �i�<zi>R , for every coalition R that does not contain player 1. On the other hand,for every coalition R which does contain player 1, we have �<z>R = maxi2I �<zi>R , Now, denoting�<zi>R by ai;R (where R � [m]; jRj = t) and pv;zi by bi, the inductive step reduces to proving thefollowing numerical lemma, which in turn is a generalization of Lemma 5.3 in [4].Lemma 3 Let I be a �nite set, let fai;R : i 2 I; R � [m]; jRj = tg, fbi : i 2 Ig be nonnegativereals, let f�i : i 2 Ig be positive with Pi2I �i = 1, and assume that for every i 2 I,YR�[m];jRj=t ai;R � b(m�1t )i :Furthermore, let �R equal maxi2I ai;R if 1 2 R and Pi2I �iai;R otherwise. Also, let � =PI �ibi.Then, YR�[m];jRj=t �R � �(m�1t ):Lemma 5.3 in [4] is a special case of Lemma 3 (in which jI j = 2 and �1 = �2 = 12). However, theideas presented in the proof of Lemma 5.3 in [4] su�ce for proving the general case. In fact, wefurther generalize Lemma 3 {Lemma 4 Let J;K and I be disjoint �nite sets, let fai;jji 2 I; j 2 J [ Kg, fbiji 2 Ig benonnegative reals, let f�iji 2 Ig be positive, with Pi2I �i = 1, and assume that for every i 2 I,Yj2J[K ai;j � bjKjiFor every j 2 J, let �j equal maxi2I ai;j and for every k 2 K, let �k = Pi2I �iai;k. Also� =PI �ibi. Then, Yj2J[K �j � �jKjLemma 3 follows from Lemma 4 by letting J be the set of all t-subsets of [m] which contain theelement 1 and K be the set of all t-subsets which do not contain 1.Proof of Lemma 4: There is, of course, no loss in assumingbi = ( Yj2J[K ai;j)1=jKjfor every i 2 I . Fix all ai;j (over all i 2 I; j 2 J) as well as all ai;k (all i 2 I; k 2 K nfk1; k2g). Nowconsider the minimum of (Pi2I �iai;k1)(Pi2I �iai;k2) subject to the condition that ai;k1 � ai;k2 are�xed, for all i. A simple calculation with Lagrange multipliers shows that the vectors (ai;k1ji 2 I)and (ai;k2 ji 2 I) are proportionate. In other words, there is a nonnegative vector (uiji 2 I) andnonnegative constants �k(k 2 K) such that ai;k = �k � ui for every i 2 I; k 2 K. Multiply by �iand sum over i 2 I to conclude that for any k 2 K, �k = �kPI �iui:We can write now, for everyi 2 I : (Yj2J �j)1=jKj = (Yj2J(maxi2I ai;j))1=jKj � (Yj2J ai;j)1=jKj7



and, (Yk2K �k)1=jKjui = (Yk2K ai;k)1=jKjSo, for every i 2 I , (Yj2J �j)1=jKj(Yk2K �k)1=jKjui � ( Yj2J[K ai;j)1=jKj = bi (2)Multiply Eq. (2) by �t�i, sum over i 2 I and use �t = �tPi2I �iui and � =Pi2I �ibi, to concludethat for every t 2 K, (Yj2J �j)1=jKj(Yk2K �k)1=jKj�t � �t � �:Now multiply over all t 2 K to get the desired conclusion.4 Two-Party ProtocolsIn this section we present protocols which meet the lower bounds presented in section 3, up to apolylogarithmic factor. We �rst present a general framework for the construction of such protocols(subsection 4.1), argue that this framework does indeed yield protocols meeting the lower bound(subsection 4.2), and �nally use the framework to present e�cient protocols meeting the lowerbound (subsection 4.3).Without loss of generality, we assume throughout that every value v in the range of f , appearsin each row and column in the matrix of f at least pv4 � 2n times. If some row or column has toofew occurrences of v, we'd like to add them, without a signi�cant increase in qv. This can be doneas follows: Let (A1; : : : ; Ak) be a partition of f1; : : : ; 2ng, where each Ai has cardinality betweenpv4 � 2n and pv2 � 2n. It is easy to see that by changing some elements within the Ai � Ai minorsof the matrix to v, it is possible to guarantee that v-values have density � pv4 in every row andcolumn without increasing the largest density in any row or column beyond qv + pv4 = O(qv).Also, without loss of generality, we assume pv � 1=2 (otherwise, the claims hold vacuously).4.1 Framework for Protocols Meeting the Lower BoundsThe goal of the protocol is to enable the parties to gradually reveal their inputs to each other,without granting any party a substantial inuence on the value of f .The protocol proceeds in rounds, each consisting of two steps. In each step one party sendsone bit of information about its input to the other party. In the next step the other party sendssuch a bit. The bits sent by each party specify in which side, of a bipartition of the residualinput-space, its actual input lies. These partitions must satisfy some \value-balance" propertiesto be discussed below. Following is the code of the generic protocol.Inputs: x2X0 def= f0; 1gn for the row player, y2Y0 def= f0; 1gn for the column player.Round i: Let (X0i�1; X1i�1) be a partition of Xi�1, and (Y 0i�1; Y 1i�1) a partition of Yi�1.The row player sends �2f0; 1g such that x 2 X�i�1. Let Xi def=X�i�1.The column player sends �2f0; 1g such that y2Y �i�1. Let Yi def= Y �i�1.8



Output: When both residual sets become singletons (i.e., jXtj = jYtj = 1 after round t) theprotocol terminates and the output is de�ned as f(x; y), where Xt = fxg and Yt = fyg).The reader may think of the partitions as splitting the current set evenly and in fact this isalmost the case as asserted in Property (P0). In such a case, the protocol terminates aftern rounds. For the protocol to achieve its goal (of minimizing the advantage of each party), itemploys bipartitions satisfying various (additional) value-balance properties. There will be severaldi�erent types of value-balance properties all sharing the following features. These propertiesapply both to row-partitions and column-partition. A typical row-partition property (resp.,column-partition property) requires that a subset of the rows (resp., columns), speci�ed by somepattern of v-entries, is split almost evenly between the two sides of the partition. For example,Property (P1) below (regarding column-partitions) requires that, for each row, the set of columnscontaining a v-entry in this row is split almost evenly.We will introduce the various properties in an ad-hoc manner, each property being introducedjust where it becomes essential for analyzing the generic protocol. Thus, at the end of this sub-section, we will have a set of properties and a proof that if the protocol utilizes only partitionshaving these properties, then the advantage of both parties is bounded as claimed in the intro-duction. The question of whether such partitions exist will be ignored altogether in the currentsubsection but will be the focus of the next subsection, whereas the third subsection shows howto e�ciently generate \pseudorandom" partitions which satisfy these properties.Motivation to the analysis of the protocolIn analyzing the inuence of a dishonest party we consider, without loss of generality, the prob-ability that the row player (following an arbitrary adversarial strategy) succeeds in having theprotocol yield a particular value v (in the range of f). For simplicity, we consider �rst the specialcase where qv=pv . In this case there are exactly K def= pv �N entries of value v in each row of thematrix. The analysis proceeds in three stages:stage 1: Consider the �rst log2K rounds. If every column (resp. row) partition employed halvesthe number of v-entries in each row (resp. column), then at the end of this stage the residual1pv -by- 1pv matrix contains a single v-entry in each row (resp. column), thus preserving thedensity of v-entries in each row and column. Using a v-balance property of the partitionscalled (P1), we show that this is roughly the situation (see Corollary 7).stage 2: Consider the next 12 � log2(1=pv) rounds. If each row (resp. column) partition employedhalves the number of v-entries in the residual matrix, then at the end of this stage theresidual 1ppv -by- 1ppv matrix contains a single v-entry, thus preserving the density of v-entries. Using a v-balance property of the partitions called (P2), we show that this isroughly the situation (see Lemma 8).stage 3: At the last 12 � log2(1=pv) rounds the row player can force the outcome to be v only ifthe input of the column player is a column containing a v-entry. The probability that theinput column of the column player contains a v-entry does not exceed � � ppv, where � isthe number of v-entries at the outset of this stage.9



PreliminariesAll value-balance properties are geared to guarantee an \almost even split" of certain sets. Thisis quanti�ed in the following de�nition with bounds that depend on the size of the set to be split.The size-ranges are parameterized by b. For sets smaller than b we require nothing. For sets largerthan b4 we require sublinear discrepancy/bias, and in the midrange we require a small-but-lineardiscrepancy.De�nition 1 (almost unbiased partitions): Let S � U be �nite sets and b > 1. A partition(U0; U1) of U is at most b-biased with respect to S if:1) If jSj � b4 then ���jU0 \ Sj � jSj2 ��� < jSj3=4.2) If b < jSj < b4 then ���jU0 \ Sj � jSj2 ��� < jSj20 .In our analysis of the protocol, we assume that it utilizes partitions which are at most � �log2(1=pv))-biased with respect to speci�c sets, where � is a constant to be determined as a func-tion of other constants which appear in the analysis (see subsections 4.2 and 4.3). We stress thatpv denotes the density of v-entries in the original matrix corresponding to the function f (and notthe density in any residual submatrices de�ned by the protocol). We denote �v def= � log2(1=pv).Whenever obvious from the context, we abbreviate �v by �.In addition to value-balance properties, we use the following more elementary property assert-ing that the partitions are into almost equal sizes. The parameter of approximation is determinedby the frequency of the value being discussed in the context.De�nition 2 (balance property P0): A partition (U0; U1) of U is said to have Property (P0)(with respect to a parameter �) if the partition is at most �-biased with respect to U .WhenjU j � 2 it is also required that the partition be non-trivial; namely jU0j; jU1j � 1.The additional condition guarantees that if the generic protocol uses only partitions with Prop-erty (P0) then it terminates. The main condition in Property (P0) implies termination in atmost n +� rounds (see Claim 5 and the proof of Lemma 6).We consider executions of the generic protocol under various strategies of the row player, typicallyassuming that the column player plays honestly. The residual submatrix after i rounds is thesubmatrix corresponding to Xi � Yi. We denote by #v(X; Y ) the number of v-entries in thesubmatrix induced by X � Y . When X is a singleton, X = fxg, we abbreviate and write#v(x; Y ) instead of #v(X; Y ). For example, for x 2 Xi, the number of v-entries in the residualx-row after i rounds (resulting in the residual submatrix Xi � Yi) is denoted #v(x; Yi).Analysis of the Protocol: The Special Case of qv = pvFor the analysis of this special case, we need two types of \value-balance" properties. Thede�nition is phrased for column partition. An analogous de�nition holds for row partitions.De�nition 3 (value-balance properties P1 and P2): Let Xi and Yi be residual sets of rows andcolumns and let (Y 0i ; Y 1i ) be a (column) partition of Yi, and v be a value in the range of f . Weconsider the following two properties: 10



Property (P1): The partition is v-balanced with respect to individual rows if the following holds.For every (remaining) row x 2 Xi, the partition is at most �v-biased with respect to setof columns having v-entries in row x (i.e., w.r.t. the sets fy 2 Yi : f(x; y) = vg, for eachx 2 Xi).Property (P2): Either jYij � 2=pv or the partition is v-balanced with respect to the standardcoloring in the following sense. Consider a standard minimum coloring, �, of the v-entriesinXi�Yi where no two v-entries in the same column or row are assigned the same color. Forevery color �, the partition is at most �v-biased with respect to the set of columns containinga v-entry of color � (i.e., w.r.t. the sets fy 2 Yi : 9x 2Xi s:t: f(x; y) = v and �(x; y) = �g,over � 2 Range(�)).Here is an elementary technical claim, which we use extensively in the analysis:Claim 5 : Let � < 1. Suppose that zi+1 < zi2 +(zi)�, for every i = 0; : : : ; T . Then, there exists aconstant c�, so that zt < z02t�1 , for every t < minfT; (log2 z0)�c�g. Likewise, if zi+1 > zi2 � (zi)�,for every 0� i�T , then zt > z02t+1 , for every t < minfT; (log2 z0)� c�g.proof: By successively applying the inequality t times, we get zt < z02t + Pti=1 z�t�i2i�1 . Usinginduction on t, we get zt < z02t + tXi=1 (z0=2t�i�1)�2i�1= z02t + 2�2z02t �� � tXi=1 � 121���i< z02t + 21+� � �z02t�� � 121�� � 1which is bounded by z02t�1 , provided that z02t > 2c� where c� def= 11�� � log2(21+�=(21��� 1)).We start by showing that the density of v-entries in individual rows and columns hardly changesas long as each such row/column contains enough v-entries and the partitions split them almostevenly. This assertion corresponds to stage (1) in the motivating discussion.Lemma 6 (stage 1): Let v be a value in the range of f , and suppose that the protocol usescolumn partitions satisfying Property (P1) w.r.t. the value v. Let Kx denote the number of ventries in the original row x. Then, regardless of the players' steps, if row x is in the residualmatrix after the �rst i def= log2Kx rounds, then there are at most �v residual v-entries in row x.(i.e., #v(x; Yi) � �v). Furthermore, after t < Kx rounds #v(x; Yt) � �v � 2Kx�t.proof: The analysis uses the fact that the column partitions are v-balanced with respect to eachrow. Using condition (1) of the almost unbiased property (Def. 1) and Claim 5, we see that afterthe �rst s def= log2Kx� 4 log2� rounds the residual row x has at most Kx2s�1 = 2�4 entries of valuev. For the remaining r def= 4 log2� rounds we use condition (2) of the almost unbiased property,11



to show that the number of v-entries in the row is at most �. This follows by considering riterations of condition (2), namely2�4 � �12 + 120�4 log2 � = 2 � �1 + 110�4 log2 �= 2 ��4 log2(1+ 110 )< 2 ��2=3� �where in the last inequality we use � � 8 (and pv � 1=2). The lemma follows.As an immediate corollary, we get {Corollary 7 (stage 1 for qv = pv): Let v 2 Range(f), and suppose that qv = pv. Suppose thatthe protocol uses column (resp., row) partitions satisfying Property (P1) w.r.t. the value v. Thenafter the �rst n� log2(1=pv) rounds, the number of v-entries in each residual row (resp., column)is at most �v (= � � log 1=pv). This statement holds regardless of the steps taken by the players.proof: Observe that qv = pv implies that each (original) row has pv � 2n entries of value v, andapply Lemma 6.When the number of v-entries in individual rows and columns is small, but not too small, we'dlike to assert something in the spirit of stage (2) of the motivating discussion. Namely, that thedensity of v-entries in the entire matrix is preserved as long as their total number is not too smalland the partitions behave nicely w.r.t the existing v-entries.Lemma 8 (stage 2): Let M < 2=pv. Consider an M -by-M matrix where no row or columncontains more than B v-entries. Suppose that the protocol is applied to this matrix, using columnand row partitions that satisfy Property (P2) w.r.t. the value v. Then, after the �rst 12 log2Mrounds, the number of v-entries in the residual submatrix is at most (2B+1) ��v. This statementholds regardless of the steps taken by the players.proof: The analysis uses only the fact that the row and column partitions are v-balanced withrespect to the standard coloring. (The upper bound on M implies that this is the only way tosatisfy Property (P2).) Note that the standard coloring, being a minimum coloring, uses at most2B + 1 colors since the underlying graph has maximum degree �2B. Let � be a color. In eachrow and column there is at most one v-entry of color �, hence each row/column partition a�ectsthe number of remaining v-entries of color � exactly as it a�ects the number of v-entries in aspeci�c row/column. Hence, using the same arguments as in Lemma 6, we see that after 12 log2Mrounds the residual matrix contains at most �v v-entries of color �. The lemma follows.Finally, when the total number of v-entries in the residual matrix is small we observe that v maybe the output only if the input of the column player corresponds to a residual column containinga v-entry. This corresponds to stage (3) in the motivating discussion. Thus, using Corollary 7and Lemma 8, we get 12



Corollary 9 (advantage in case qv = pv): Let qv = pv for v 2 Range(f). Suppose that theprotocol uses only partitions that satisfy Properties (P0), (P1) and (P2) w.r.t. v. Then theprotocol outputs v with probability at most O(�2vppv) (= O((� log 1=pv)2ppv)), regardless of therow player's steps.proof: Corollary 7 and Lemma 8 imply that after the �rst log2(pvN) + 12 log2(1=pv) rounds, thenumber of v-entries in the residual matrix is at most O(�2). If in all partitions the two parts haveequal size, then the residual matrix has dimension p1=pv-by-p1=pv. Property (P0) is appliedto show that the residual submatrix has size at least 12p1=pv-by-12p1=pv. To this end we useClaim 5 and the observation that p1=pv > �4v = (� log2(1=pv))4, provided that pv is boundedabove by some constant. Such a bound on pv may be assumed, possibly increasing some constantsin the O-terms. Finally, we observe that the output of the protocol is v only if the input of thecolumn player speci�es a column containing a v-entry in the residual submatrix. The corollaryfollows.Using \su�ciently random" partitions, the above bound can be improved to O(ppv). For detailssee Theorem 22.Analysis of the Protocol: The General Case { Row ClassesThe analysis of the general case (where qv may exceed pv) is more cumbersome. To facilitate theunderstanding we precede each technical step by a motivating discussion. As before, we analyzethe advantage of the row player towards some value v. Throughout the analysis we introduceadditional value-balance properties that the partitions used in the protocol should satisfy for theanalysis to go through. Later in the paper we discuss how to �nd such partitions, and show that\slightly random" partitions do have these properties.We classify the rows by density and apply the analysis separately to each class. Let �v(x)denote the density of v-entries in row x of the original matrix; that is,�v(x) def= jfy2Y0 : f(x; y)=vgjjY0j = #v(x; Y0)jY0j (3)By our assumption, pv4 < �v(x) � qv, for every x 2 X0, and the average of �v, over all x 2 X0,equals pv. For 0 � j � log2(1=pv) + 1, de�ne Rj as the class of all rows with v-entry densitybetween 2�j and 2�j�1; that is,Rj def= fx2X0 : blog2(1=�v(x))c=jg (4)Note that the last class, Rlog2(1=pv)+1, contains all rows with v-entry density smaller than pv=2.The following simple observation is stated separately only for future reference.Clearly, the inuence of the row player towards value v is bounded by the sum of its inuences(towards v) when restricting itself to inputs/rows of a certain class. Recall that the row playerbehavior is restricted (by our hypothesis that it is not detected cheating) to sending a single bitin each round. The assumption that the row player restricts itself to inputs/rows in a particularset means that its answers must be consistent with some input in the set (i.e., in round i he maysend � only if X�i intersects the restricted set). The above is summarized and generalized in thefollowing claim 13



Claim 10 For Z � X a set of rows, we let �Z be the probability for an outcome of v, assumingthat the row player must restrict its �nal choice to a row in Z, but is otherwise free to chooseany adversarial strategy. If (Z1; : : : ; Zr) is a partition of the set of rows, then the probability forthe protocol to have outcome v does not exceed Pi �Zi.proof: The claim follows by conditioning on the row selected by the row player and applying aunion bound.We now partition the row classes into two categories: heavy rows with density above ppvand rows below this density. First, we bound the advantage of the row player when it restrictsitself to heavy inputs/rows. A simple counting argument implies that there are at most ppvNheavy rows. Observe the situation after log2(ppvN) rounds of the protocol. Using an additionalv-balance property, denoted P3, which asserts that the row partitions split almost evenly the setof heavy rows, we will show that after log2(ppvN) rounds at most � of the heavy rows remainin the residual matrix and furthermore that each such row maintains its original v-density, upto a multiplicative factor of �. Loosely speaking, the row player can now choose only between� possible inputs/rows with probabilities of success that equal the density of the residual row.Thus, the advantage of the row player (towards v) when restricting itself to heavy rows is boundedby �2 � qv = O((log2(1=pv))2qv).De�nition 4 (value-balance property P3): Let Xi and Yi be residual sets of rows and columnsand and let v 2 Range(f). A row partition has Property (P3) (is said to be v-balanced withrespect to heavy rows) if it is at most �v-biased with respect to the set of the (remaining) heavyrows (i.e., w.r.t. the set fx2Xi : �v(x)�ppvg).Lemma 11 (advantage via heavy-row strategies): Suppose that the protocol is performed usingcolumn and row partitions satisfying Properties (P0), (P1) and (P3) w.r.t. the value v. Then,as long as the row player restricts itself to heavy rows and the column player plays honestly, theoutput equals v with probability at most 2�2v � qv.proof: Consider the situation after log2(ppvN) rounds of the protocol. Heavy rows have atleast ppvN entries of value v and so we will be able to apply Lemma 6 to these rows. UsingProperty (P1) and applying Lemma 6 to each heavy row, we conclude that every remaining heavyrow x contains at most � � 2i v-entries, wherei def= log2(�v(x)N)� log2(ppvN)� log2(qvN)� log2(ppvN)= log2(qv=ppv)(We are assuming that heavy rows exist, i.e., qv � ppv, whence i � 0.) Thus, each such heavyrow contains at most � � qv=ppv v-entries. Also, using Property (P3) and an argument as inthe proof of Lemma 6, it follows that the residual matrix has at most � heavy rows. Thus, theentire residual matrix contains at most �2 � qv=ppv v-entries in heavy rows. Using Property (P0)we know that the residual matrix at this stage contains at least 12p1=pv columns. Thus, by an14



argument as in the proof of Corollary 9, the probability that the protocol terminates with a pair(x; y) so that x is heavy and f(x; y)=v does not exceed#v(H \Xi; Yi)jYij � �2 � qv=ppv1=(2ppv) = 2�2qvwhere H is the set of heavy rows and Xi � Yi is the residual matrix. The lemma follows.Having analyzed strategies where the row player con�nes itself to heavy rows, we turn to strategieswhere it refrains from heavy rows. The analysis is split according to the remaining row-classes;that is, for every 1� j� 12 log2(1=pv), we bound the advantage of the row player assuming thatit restricts itself to the class (of rows) R def= Rj+12 log2(1=pv) that have density � ppv2�j. By acounting argument { jRj � ppv2jN (5)Consider the situation after log2(ppv2�jN) rounds. Note that this corresponds to stage (1) in themotivating discussion and thus we can apply Lemma 6 and assert that after these log2(ppv2�jN)rounds no residual row of R has more than � v-entries. Using an additional v-balance property,denoted P4, which asserts that the row partitions split R almost evenly, we will show that afterthese log2(ppv2�jN) rounds the residual matrix contains at most maxf�; 22j+1g rows of R.De�nition 5 (value-balance property P4): Let Xi and Yi be residual sets of rows and columnsand v 2 Range(f). A row partition has Property (P4) (is said to be v-balanced with respect torow-density classes) if, for every j (12 log2(1=pv)�j�1 + log2(1=pv)), it is at most �v-biased withrespect to the set of the (remaining) rows in Rj (i.e., w.r.t. the sets fx2Xi : blog2 �v(x)c= jg,for 12 log2(1=pv)�j�1 + log2(1=pv)).Lemma 12 (strategies restricted to R = Rj+ 12 log2(1=pv) { the �rst rounds): Let v 2 Range(f),and suppose that the protocol uses row and column partitions satisfying Properties (P0), (P1) and(P4) w.r.t. the value v. Then after the �rst i def= n� j � 12 log2(1=pv) rounds, the resulting Xi�Yisubmatrix satis�es the following conditions, regardless of the players' steps:1. each remaining row of R contains at most �v entries of value v (i.e., #v(x; Yi) � �v, forevery x 2 R \Xi);2. at most �v � 22j+1 rows of R remain (i.e., jR \Xij � �v � 22j+1);3. the number of columns is at least 12 � 2jppv (i.e., jYij � 12 � 2jppv ).proof: Item (1) follows from Lemma 6 (using Property (P1)). Using Property (P4), we de-rive Item (2) as in the second part of the proof of Lemma 11. Finally, Item (3) follows usingProperty (P0).For \small" j's (say, j � log2�) we get into a situation as in the analysis of heavy rows. Namely,Corollary 13 (advantage via R = Rj+12 log2(1=pv) strategies { simple analysis): Consider a pro-tocol in which all column and row partitions satisfy Properties (P0), (P1) and (P4) w.r.t. thevalue v. Then, as long as the row player restricts itself to rows in R and the column player playshonestly, the output equals v with probability at most 2j+2�2v � ppv.15



proof: Using Lemma 12 we infer that the residual matrix after i rounds has at most �2 � 22j+1v-entries in rows of R and at least 12 � 2jppv columns. Thus, the probability that the column chosenby the column player has a v-entry in a residual row of R does not exceed#v(R \Xi; Yi)jYij � �2 � 22j+112 � 2jppv = 2j+2�2ppvThe corollary follows.So far we dealt with heavy rows and the row classes Rj+12 log2(1=pv) for \small" j's, j � log2�v.The rest of the analysis concentrates on row classes Rj+ 12 log2(1=pv) for j > log2�v.Analysis of the Protocol: The General Case { Column SubclassesLemmas 11 and 12 summarize what we can infer by considering only row-classes de�ned by thedensity of v-entries. We learnt that after i = n � j � 12 log2(1=pv) rounds the resulting matrixhas approximately 22j rows of the class R = Rj+ 12 log2(1=pv) with no more than � v-entries each.Thus, in total the resulting submatrix has approximately 22j v-entries in rows of R. Had thesev-values been distributed evenly among the columns, then we could apply an argument analogousto Lemma 8 (corresponding to stage (2) in the motivating discussion). At the other extreme,if these v-values are all in one column, then we should have further applied Lemma 6 to thiscolumn. In general, however, the distribution of these v-entries may be more complex and inorder to proceed we classify columns according to the approximate density of v-entries withineach particular row-class. Once this is done, the matrix is split to submatrices such that thedensity of v-entries in each induced sub-column is about the same. Each such submatrix is easyto analyze and we can combine these analyses to derive the �nal result.Notations: Let ` def= 12 log2(1=pv). Recall that we are currently dealing with an arbitrary R = Rj+`,where 1 < j � `+ 1. For 0�k �2j, letCkj def= fy2Y0 : blog2(1=�v(y; Rj+`))c=kg (6)where �v(y; R) is the density of v-entries in the portion of column y restricted to rows R, that is�v(y; R) = jfx2R : f(x; y)=vgjjRj (7)Columns having lower v-density within R (i.e., �v < 2�2j�1) are de�ned to be in Cj = C2j+1j andwill be treated separately. The advantage of the row player towards v when restricting its inputto R is the sum, over all k, of the probabilities of the following 2j+2 events. For k = 0; :::; 2j+1,the kth event occurs if the input of the column player happens to be in Ckj and the output of theprotocol is v (when the row player restricts its input to be in R). Thus, it su�ces to bound theprobability of each of these 2j + 2 events. We �rst observe that, for j = 0; :::; l+ 1,jCkj j � #v(Rj+`; Y0)miny2Ckj f#v(Rj+`; y)g � jRj+`j � (ppv2�j �N)2�k�1 � jRj+`j = 2k+1�jppv �N (8)16



Thus, the probability that the input of the column player is in Ckj is bounded by 2k+1�jppv.This by itself provides a su�ciently good bound for the case k � j and so it is left to consider thecase where j < k � 2j and to deal with the columns in Cj. We start with the latter. (Warning:the next two paragraphs consist of an imprecise motivating discussion { a rigorous treatmentfollows.)Considering the submatrix R � Cj and using Item (2) of Lemma 12 we know that, afteri = n� j� ` rounds, each residual row in this submatrix contains at most � v-entries. Assumingthat the row partitions split the v-entries in the sub-column of this submatrix almost evenly(as postulated in an additional value-balance property, denoted P6), we conclude that residualsub-columns of the submatrix contain at most � v-entries (note that there are at most 22j+1rows of R and that the v-density of columns in R�Cj is at most 2�2j�1). Thus, we can apply ananalysis analogous to stage (2) in the motivating discussion. It follows that after an additionalj rounds, the resulting submatrix contains at most �2 v-entries. At this stage, there are still` = 12 log2(1=pv) rounds to go so we conclude that the probability that the column player's inputis in Cj and the output is v (when the row player restricts its input to be in R) is at most �2ppv.This argument will be made precise as a special case of the argument for Ckj , k > j.We now consider the submatrix R�C, where C def= Ckj for k > j. Again, by Property (P6) weexpect each residual sub-column to contain 2�k �22j entries of value v. Assuming that the column-partitions spilt C almost evenly, as postulated in yet another value-balance property (P5 below),and using Eq. (8), we expect the residual submatrix to contain at most 2k+1 columns of Ckj (and,recall, 22j rows of R). Thus, the next 2j�k < k rounds are expected to preserve the density of Ccolumns in the residual matrix as well as the density of v-entries in residual sub-columns of thesubmatrix R�C, provided that Properties (P5) and (P6) hold. Thus, at this point (after a totalof (n� j � `)+ (2j �k) rounds) each remaining row of R is left with at most � entries of value vand each remaining column of C has at most � entries of value v in the portion of the rows of R.Furthermore, we expect the residual R � C to have 22j�(2j�k) = 2k rows and 2k�(2j�k) = 22k�2jcolumns. We can now apply an argument analogous to Lemma 8 (corresponding to stage (2) inthe motivating discussion). To this end we introduce the last value-balance property, denotedP7, which analogously to (P2) asserts that, with respect to each color in a standard minimumcoloring of the v-entries in R�C, the row (resp. column) partitions split almost evenly the set ofrows (resp. columns) having v-entries colored by this color. Finally, consider the situation afteranother additional k�j rounds. Using (P7) in an argument analogous to Lemma 8, we show thatafter these k � j rounds, the residual R� C submatrix has at most �2 v-entries. Furthermore,this residual submatrix is expected to have 2k�(k�j) = 2j rows and 2(2k�2j)�(k�j) = 2k�j columns.Thus, assuming that the column player's input, denoted y, is in C the probability that it falls inone of the residual columns which has a v-entry in the R-portion is at most �2=2k�j. It followsthat the probability for the input column to be in Ckj and the output be v (when the row playerrestricts its input to R) is at most �22k�j � 2k�jppv = �2 � ppvThus, the claimed bound follows also in this case.We now turn to a rigorous analysis of the advantage of the row player in executions where itrestricts itself to inputs in R = Rj+` and the input column happens to fall in C def= Ckj , for some17



k > j > 0. (Recall that for k � j, Eq. (8) by itself asserts that input column falls in Ckj withprobability at most ppv.)De�nition 6 (value-balance properties P5, P6 and P7): Let Xi and Yi be residual sets of rowsand columns. Let (X0i ; X1i ) be a row partition, (Y 0i ; Y 1i ) be a column partition, and v 2 Range(f).We consider the following three properties:Property (P5): The column partition (Y 0i ; Y 1i ) is v-balanced with respect to column subclassesif, for every j; k satisfying 0 < j < k � 2j � 2` + 2, the partition is at most �v-biasedwith respect to the set of columns in Ckj (i.e., w.r.t. the sets Yi \ Ckj , for each j; k s.t.0 < j < k � 2j � 2`+ 2).Property (P6): For every j and every y 2 Yi, either #v(Xi\Rj+` ;y)jYij � pv4�v or the row partition(X0i ; X1i ) is v-balanced with respect to the jth subcolumn y in the sense that the partition isat most �v-biased with respect to the set of rows in Rj+` having v-entries in y (i.e., w.r.t.fx2Xi \ Rj+` : f(x; y)=vg, for each y 2 Yi and j s.t. 0 < j � `+ 1).Property (P7): Either jYij � 4=pv or the partition (Y 0i ; Y 1i ) is v-balanced with respect to thestandard coloring of subclasses in the following sense. For every j; k as in (P5), consider astandard minimum coloring �, of the v-entries in (Xi \Rj+`)� (Yi \Ckj ) so that every twov-entries in the same column or row are colored di�erently. For every color �, the partitionis at most �v-biased with respect to the set of columns containing a v-entry of color � (i.e.,w.r.t. the sets fy2Yi \ Ckj : 9x2Xi \ Rj+` s:t: f(x; y)=v and �(x; y)=�g, for each j; k and�.)De�nition 7 (the (j; k)-event): Let 0 < j � `+ 1 and 0 � k � 2j + 1. Fix an arbitrary strategyin which the row player restricts its input to rows in Rj+`. The (j; k)-event (or kth event) is saidto occur if both the input column is in Ckj and the output is v.Lemma 14 (bounding individual events): Let 0 < j � ` + 1 and 0 � k � 2j + 1. Suppose thatthe protocol uses partitions which satisfy Properties (P0), (P1), (P4), (P5), (P6) and (P7). Then,for any strategy in which the row player restricts its input to rows in Rj+`, the probability of the(j; k)-event is at most 5�4v � ppv.We remark that a lower power of �v can be obtained by a more careful analysis.proof: As observed above, the bound holds in case k � j, since in this case Eq. (8) impliesthat the column player's input is in Ckj with probability at most ppv. We thus turn to the casej < k � 2j + 1.First, we consider the situation after i def= (n� j � `) + (2j � k) = n+ j � k� ` rounds. Notethat j < k � 2j + 1 implies i � (n � j � `)� 1 � n � log2(2=pv) and i < n � `. We �rst boundthe number of v-entries in the residual subrows and subcolumns of R� C.claim 14.1: Each remaining row of R def= Rj+` contains at most � v-entries; namely, #v(x; Yi) � �,for every x 2 R \Xi.proof: Since i � (n� j � `)� 1, we can apply Lemma 12, and the claim follows by Item (1). 218



claim 14.2: Each remaining column of C def= Ckj contains at most � entries of value v within itsR-portion; namely, #v(R \Xi; y) � �, for every y 2 C \ Yi.proof: We �rst bound the number of v-entries in the R-portion of each column y 2 C. Bycombining the de�nition of C and Eq. (5), we get#v(R; y) � 2�k � jRj� ppv � 2j+n�k= 2j+n�k�`= 2iWe now wish to apply Property (P6) and argue that #v(R \ Xi; y) � � � #v(R; y) � 2�i, butwe need to be careful since Property (P6) is useful only when #v(R \Xt; y) � pv4� � jYtj. Thus,before applying Property (P6), we consider the simple case in which there are many v-entriesin the R-portion of y; namely, #v(R; y) � pv � jY0j. Using Properties (P6) and (P0), we inferinductively that the ratio #v(R \Xi; y)=jYij is maintained after r < i rounds. In the inductionstep we assume that the ratio after r rounds is at least pv=2 and applying Proposition (P6) inferthe same for r + 1 rounds, provided #v(R \ Xr; y) � �4. In the last (� 4 log2�) rounds wemaintain as invariant the assumption that the ratio is at least pv=�v. We conclude (analogouslyto Lemma 6) that #v(R\Xi; y) � � �2i�i = � as claimed. Yet, all the above is valid only in casethe initial number of v-entries in the subcolumn is large enough (i.e., #v(R; y) � pv � jY0j) whichneed not be the case in general. Intuitively, this cannot be a problem since fewer v-entries in thesubcolumn can only help. Formally, we proceed as follows. Let y0 def= jY0j and z0 def= #v(R; y).Consider i iterations of the following rule� If yt > �4 then set yt+1 to be in the interval [(yt=2)� y3=4t ]. If yt > � then set yt+1 to bein the interval [(yt=2)� (yt=20)]. Otherwise set yt+1 to be in the interval [0; yt].� If zt > (pv=�) � yt then set zt+1 analogously to the way yt+1 is set. Otherwise (i.e., zt �(pv=�) � yt), set zt+1 to be in the interval [0; zt].The above process corresponds to the decline (with t = 0; :::; i) of jYtj (represented by yt) and#v(R \ Xt; y) (represented by zt), as governed by Properties (P0) and (P6). In case the initialratio z0=y0 is su�ciently large, say at least pv=�, Claim 5 implies that zi � �. As far as theyt's are concerned, Claim 5 can be applied to yield yi � � � 2`+k�j, which by k � 2j + 1 andj � ` + 1 yields yi � 2� � (1=pv). Thus, it is clear that zi is bounded by the maximum of thebound obtained in the simple case (i.e., �) and (pv=�) � yi � 2. The claim follows. 2We are now in a situation analogous to the end of stage (1) in the motivating discussion, exceptthat the bounds on v-entries hold with respect to the residual R � C submatrix (rather than tothe entire residual matrix). Our goal is to apply now a process analogous to stage (2) in themotivating discussion. To this end we �rst consider a minimum coloring of the v-entries in thisresidual submatrix (i.e., a coloring in which no v-entries in the same row/column are assignedthe same color). Using Claims 14.1 and 14.2, we �rst observe that this coloring requires at most2� + 1 colors (since the degrees in the induced graph do not exceed 2�). Next we derive anupper bound on the size of independent sets in the graph, whence on individual color classes in19



this coloring. An independent set in this graph meets every row and column at most once, so itscardinality cannot exceed minfjR \Xij; jC \ Yijg.claim 14.3: minfjR \Xij; jC \ Yijg � 2� � 22(k�j).proof: Using Property (P4) and Eq. (5), we get jR \ Xij � � � 2(n+j�`)�i = � � 2k, so the claimholds when k � 2j � 1. Likewise, using Property (P5) and Eq. (8) and assuming k � 2j, we getjCkj \ Yij � � � 2(n+k+1�j�`)�i = � � 22(k�j)+1. This proves the claim for the range k � 2j. 2We now consider an execution of the next (k � j) rounds. As a preparation to applying Prop-erty (P6) we �rst consider the simple case in which the number of v-entries in the R-portion ofcolumn y is large; namely, #v(R; y) � pv � jY0j. Using Property (P7), we proceed analogouslyto Lemma 8. First, we upper bound the size of each residual color class by � � 2�22(k�j)22(k�j) = 2�2(essentially, its size after i rounds divided by a factor of 2 for each of the 2(k � j) steps in thenext k � j rounds). Adding up the bounds for all color classes, we obtain a bound on the totalnumber of v-entries in the resulting R� C submatrix; namely,#v(Xi+k�j \R; Yi+k�j \ C) � (2� + 1) � 2�2 < 5�3 (9)We are now in a situation analogous to the end of stage (2) in the motivating discussion. Wenote that till now i+ (k � j) = n� ` rounds were performed. We distinguish two cases.case 1: If jCj < �3ppv �N then the bound on the (j; k)-event is obvious by Eq. (8) (as in casek � j).case 2 (the interesting case): Suppose jCj � �3ppv �N . In this case we use Property (P5) toinfer that jC \ Yn�`j � 1� � jCjppvN . Thus, using Eq. (9), the probability for the (j; k)-event is atmost jCjN � #v(Xi+k�j \R; Yi+k�j \ C))jC \ Yn�`j � jCjN � 5�3jCj=(�ppvN)= 5�4 � ppvThe lemma follows.Combining Lemmas 11 and 14, we getTheorem 15 (advantages in the general case): Let f be an arbitrary bivariate function and sup-pose the generic protocol is performed with row and column partitions satisfying Properties (P0)through (P7). Then, for every value v in the range of f , if one party plays honestly then, nomatter how the other player plays, the outcome of the protocol is v with probability at mostO(log6(1=pv) �maxfqv;ppvg).proof: Just sum up the bounds for the probabilities of the `2 events corresponding to theadvantage from \non-heavy" strategies (provided by Lemma 14) and add the bound on theadvantage from heavy strategies provided by Lemma 11. (The summation over the strategies isan upper bound, whereas summation over the events corresponding to di�erent column subclassesis exact.)We stress that some logarithmic factors (but not all) can be eliminated by a more careful analysis.20



stated Description of the property: Number of sets Applicablefor the partition approximately halves the number of for M �M matrix forP0 col columns 1 all MP1 col columns with v-entries in row x, per row M all MP2 col columns with v-entries in color �, per color � 2M + 1 M � 2=pvP3 row heavy rows 1 all MP4 row rows of approximate weight 2�j, per j = 0; :::; ` � ` all MP5 col columns of a weight class inside a row class, < 2`2 all Mper row class and column subclassP6 row rows with v-entries in subcolumn, per column and row-class M � ` all M(provided residual subcolumn is su�ciently dense)P7 col columns with v-entries in color �, per color in rectangle � (2M + 1) � `2 M � 4=pvFigure 1: Value-Balanced Properties (` def= 12 log2(1=pv))Digest of the Value-Balanced PropertiesThe value-balance properties, referred to in Theorem 15, are tabulated in Figure 1. Property (P2)is a specialization of Property (P7) for the case qv = pv and is not used in the proof of Theorem 15(but rather in the proof of Corollary 9). Properties (P2) and (P7) di�er from all other value-balance properties in that their de�nition depends on a standard coloring of a graph induced bythe current residual matrixXi�Yi. In particular, the sets relevant to these properties, in di�erentrounds vary in size. In contrast, we stress that sets relevant to the other properties reduce to abouta half with every round. This \irregularity" of Properties (P2) and (P7) introduces di�cultiesin the subsequent subsections. To compensate for these di�culties, these properties were de�nedto hold vacuously as long as the residual matrix is \large" (i.e., 
(1=pv)). As we pointed out,this convention does not a�ect the analysis, since Properties (P2) and (P7) are applied only to\small" residual matrices. For similar reasons, Property (P6) which refers to many (i.e., jYij)sets which may be very small is also de�ned to hold vacuously in case the number of sets ismuch larger than the size of these sets. Note that all other properties either apply to fewer (i.e.,poly(`)) sets or refer to relatively big sets. Speci�cally, Properties (P3), (P4) and (P5) apply topoly(`) sets. On the other hand, whenever Properties (P0) and (P1) are applied to many, sayM , sets each of these sets has cardinality at least M=2 and (pv=4) �M , respectively.4.2 On the Existence of Value-Balanced PartitionsIn this subsection we prove the existence of partitions that have all the value-balance propertiesused in the previous subsection. We �rst bound the probability that a random partition is notbalanced with respect to a speci�c set. In the analysis we use an unspeci�ed constant, denotedc1. The constant � (in the de�nition of �v) is determined in terms of c1 (in fact � = O(c1) willdo, c1 � 2 su�ces for the results of the current subsection and c1 � 10 su�ces for all the resultsof this section). 21



Lemma 16 : Let S � U be �nite sets, with jSj = k. Then, for every c1 > 0 there exists �, so thata uniformly selected bipartition of U is �v-biased with respect to S with probability � 1�(pv=k)c1.proof: We consider two cases corresponding to the two conditions of De�nition 1. By Cherno�'sBound, the probability that a uniformly selected partition fails condition (1) in De�nition 1 (withrespect to a set S with k � �4v) does not exceed2 expf�2(k�1=4)2 � kg = 2 expf�2k1=2g (10)Using k � (� log2(1=pv))4, we upper bound Eq. (10) byexpf�k1=2g � expf(� � log2(1=pv))2gwhich for su�ciently large � (or 1=pv) yields the desired bound (of (pv=k)c1). Similarly, theprobability that condition (2) is not satis�ed by a random partition is bounded by2 expf�2(1=20)2 � kg = 2 expf�k=200g (11)Using k > � log2(1=pv) and � � 400c1, we upper bound Eq. (11) byexpf�k=400g � expfc1 log2(1=pv)gwhich for su�ciently large � (or 1=pv) yields again the desired bound.Proposition 17 (existence of value-balance partitions): Let the generic protocol run for i rounds,using only partitions which satisfy all value-balance properties w.r.t. all values in Range(f). LetXi � Yi be the residual matrix after these i rounds. Then there exist a row partition (of Xi) anda column partition (of Yi) that satisfy all value-balance properties w.r.t. all values. Furthermore,for every v 2 Range(f), all but a pc1�1v fraction of the possible partitions satisfy all v-balanceproperties.proof: We consider only row-partitions, the proof for column-partitions being identical. Letv 2 Range(f). For jXij < �v every non-trivial partition will do, so henceforth we assumejXij � �v. Lemma 16, yields an upper bound on the probability that a uniformly chosen partitionof Xi violates one of the v-balance properties. For each property, we multiply the number of setsconsidered by the probability that a uniformly selected bipartition of Xi is not �v-biased withrespect to an individual set. An obvious (lower) bound on the size of an individual set consideredis �v, but in some cases better lower bounds hold. For each of the eight properties, we prove anupper bound of pc1�1v =8 on the probability that a uniformly chosen partition violates the property.� Property (P0) is violated with probability at most jXij � (pv=jXij)c1 which can be boundedby pc1�1v =8.� Property (P1) is violated with probability at most jYij �maxy2Yif(pv=#v(Xi; y))c1g. In casejYij < �=pv, this probability is easily bounded by (pv=�v)c1�1 < pc1�1v =8. Otherwise, we22



argue as follows. Since Property (P1) was satis�ed in previous rounds, it follows (as inLemma 6) that #v(Xi; y) � 2�i�1 �#v(X0; y)� pv8 � jXijand so Property (P1) is violated with probability at most jYij � (8=jXij)c1. Using Prop-erty (P0) for the previous rounds we get jXij � jYij=4 and again obtain a bound ofO((pv=�v)c1�1) < pc1�1v =8.� For Property (P2), we need only consider the case jXij < (2=pv). In this case, Prop-erty (P2) is violated with probability at most (jXij+ jYij+ 1) � (pv=�v)c1 which is boundedby O(pc1�1v =�c1v ) < pc1�1v =8. Property (P7) is dealt similarly, but the bound here isO(pc1�1v =�c1�2) < pc1�1v =8.� For Property (P6) we need to consider only j � `+1 and y 2 Yi such that #v(Rj+`\Xi; y) �maxf�v; (pv=4�v) � jYijg. Let us denote the set of these pairs by Pi. Then, Property (P6)is violated with probability at mostX(j;y)2Pi� pv#v(Rj+` \Xi; y)�c1 � �pv��c1�1 � �jPij � pv(pv=4�v) � jYij�� �pv��c1�1 � (`+ 1) � jYijjYij=4�< pc1�1v8� For the remaining properties (i.e., (P3), (P4) and (P5)) we have a total of O(log2(1=pv))sets and so the bound holds easily.Thus, the probability that a random partition of Xi violates some property with respect to thevalue v is at most pc1�1v . The main claim of the proposition follows by summing the boundsobtained for all possible v's, and using c1 � 2.Combining Theorem 15 and Proposition 17, we getCorollary 18 (existence of a protocol meeting the lower bound): Let f be as in Theorem 15.Then, there exists a (deterministic) two-party protocol for computing the function f , so that forevery v 2 Range(f), if one party plays honestly, then the outcome of the protocol is v withprobability at most O(log6(1=pv) �maxfqv;ppvg).4.3 E�cient Protocols Meeting the Lower BoundsThe protocols guaranteed by Corollary 18 are not e�cient. In particular, merely specifying thepartitions used by the protocol takes space that is exponential in size of the inputs, not to mentionthat the proof is nonconstructive and that a naive construction would require double exponential23



time. An e�cient implementation of the protocols is achieved by using partitions which can bespeci�ed by polynomially many bits. These partitions will not be hard-wired into the protocol butrather selected online by the two parties. Namely, at the outset of each step, the parties performa sampling protocol to select a partition for that step. The partition is speci�ed by anmth degree(m = poly(n)) polynomial over the �eld F def= GF (2n) and a �xed partition of the elements ofF into two equal parts F 0 and F 1. For example, suppose polynomial P (over F ) is chosen tospecify a partition of Yi, then Y �i is de�ned as the set of all points y 2 Yi satisfying P (y)2 F � .This plan is materialized via a two-party protocol for sampling these partitions and a proof thatevery partitions selected (for the generic protocol) by the sampling protocol satis�es all v-balanceproperties with probability at least 1� pv. To this end we �rst bound the probability that, foran appropriately chosen m = poly(n), a random mth degree polynomial induces a partition thatfails to satisfy some v-balance properties. Next, we present a two-party protocol for samplingl-bit strings and bound the advantage of each party towards any set as a function of the densityof that set.Terminology: Partitions induced by (�n)4-degree polynomials are hereafter called polynomial-partitions. We modify these partitions so that they are never trivial (e.g., by replacing each trivialpartition by a �xed non-trivial partition). Recall that Property (P0) forbids trivial partitions,except if the universe is a singleton. The modi�cation is introduced to guarantee this.Bounding the Probability of Non-Balanced Polynomial-PartitionsWe start by bounding the probability for a random polynomial-partition to fail some v-balanceproperty.Lemma 19 : For every c1 > 0 there exists �, so that for every set S of cardinality k, a uniformlyselected polynomial-partition is not �v-biased with respect to S with probability at most (pv=k)c1.proof: The modi�cation described in the Terminology (above) can only decrease the probabilitythat a partition is not �-biased (w.r.t. any set S). Thus, it su�ces to analyze the distributionof unmodi�ed polynomial-partitions.A 2tth moment argument easily shows that if x1; x2; :::; xk are m-wise independent randomvariables uniformly distributed in f0; 1g then Prob(jPki=1 xi � k2 j > B) < (pktB )2t, for everyt�m=2. Therefore, the probability for a uniformly chosen polynomial-partition to fail condition(1) in De�nition 1 does not exceed  pk � tk3=4 !2t = � tk1=4�2t (12)for any t � (�n)4=2. We now use Eq. (12) with two di�erent settings for t. First we set t = �v=2(Since pv � 2�n, it follows that �v � � � 2n and this t is indeed smaller than (�n)4=2) and usingk � �4, we bound Eq. (12) by ��v=2�v ��v = p�v < p2c1v24



where the last inequality comes from � � 2c1. Secondly, we set t = 8c1, and bound Eq. (12) by� 8c1k1=4�16c1 = �(8c1)8k2 �2c1 < 14 � k�2c1where we have used k � �4 � 4 � (8c1)8. Multiplying these two bounds, we bound Eq. (12) bysp2c1v � k�2c14 = 12 � (pv=k)c1as desired. To bound the probability for failure in condition (2), note that for k��4 we have,k � (�n)4 (as previously observed �v � �n). Thus, a uniformly selected polynomial-partitionsplits k elements exactly as a totally random partition and so the bound obtained for this case(i.e., for k � �4) in Lemma 16 holds also here.Proposition 20 (polynomial-partition satisfy value-balance properties): Fix v 2 Range(f), andconsider an execution of the generic protocol with uniformly selected polynomial-partitions. Let �ibe the probability that the �rst failure of some v-balance property occurs on the ith round. Then,Xi�1 4p�i � O(�v � pv)The mysterious choice of the 4th roots will be clari�ed when we get to prove Theorem 22.proof: It su�ces, of course, to consider only row-partitions. Let �i;t be the probability thatour �rst failed row-partition occured in round i and that Property (Pt) was violated (for some0 � t � 7 and i � 1). Clearly, Xi�1 4p�i � Xi�1 4vuut 7Xt=0 �i;t� 7Xt=0Xi�1 4p�i;tSo it remains to bound, Pi�1 4p�i;t, for each t = 0; :::; 7. Analogously to the proof of Proposi-tion 17, we use Lemma 19 to upper bound the probability that a uniformly chosen polynomial-partition violates one of the v-balance properties. For each property, we multiply the numberof sets considered by the probability that a uniformly selected polynomial-partition is not �v-biased with respect to an individual set. An obvious (lower) bound on the size of an individualset considered is �v, but in some cases better lower bounds hold. We now assume c1 � 10.� We upper bound the probability that Property (P0) is violated for the �rst time in the ithround by jXi�1j � (pv=jXi�1j)c1. Letting xj := jXjj, we have:�i;0 � xi�1 � (pv=xi�1)c1 (13)where xj � maxfj�; jX0j=2j�1g (14)25



where the lower bound on xj follows, since Property (P0) held in the previous rounds.Furthermore, if Property (P0) held in all �rst n rounds, then jXnj � � and henceforthevery non-trivial partition satis�es all properties vacuously. Therefore,Xi�1 4p�i;0 = nXi=1 4p�i;0� nXi=1 4sxi�1 � � pvxi�1�c1< nXi=1 pvxi�1< pv � nXi=1 2i+22nwhere the last inequality uses the lower bounds for the xj's. It follows that Pi�1 4p�i;0 =O(pv).� Adopting the analysis in the proof of Proposition 17, we know that the probability that the�rst failure is with Property (P1) in round i is at most 4jXi�1j � (pv=jXi�1j)c1. Using thesame analysis as above, we conclude Pi�1 4p�i;1 = O(pv).� For Properties (P2) and (P7), we need only consider rounds i so that jXij < (2=pv). Usingthe analysis in the proof of Proposition 17, we bound the probability that the partition insuch a round violates Property (P2) (resp., (P7)) by O(pc1�1v =�c1v ) (resp., O(pc1�1v =�c1�2)).The bound on Pi�1 4p�i;t, for t = 2; 7, follows, since there are at most � such rounds.� Following the analysis in the proof of Proposition 17, we consider for Property (P6) onlyj � `+ 1 and y 2 Yi such that #v(Rj+` \Xi; y) � maxf�v; (pv=4�v) � jYijg. Let us denotethe set of these pairs by Pi. The probability that our �rst violation is on round i andProperty (P6) is being violated, is at mostX(j;y)2Pi� pv#v(Rj+` \Xi; y)�c1 � jPij � �pv��(c1+1)=2 � � pv(pv=4�v) � jYij�(c1+1)=2� ((`+ 1) � jYij) � �pv��4 � � 4�jYij�5< ��v � pvjYij �4Using the same analysis as for Property (P0), we obtain Pi�1 4p�i;6 < �v � pv.� For the remaining properties (i.e., (P3), (P4) and (P5)) we have a total of O(log2(1=pv))sets and so we can handle each of these sets separately. Consider, for example, the set Rj+`from the de�nition of Property (P4). The row-partition of round i+ 1 violates the balanceproperty on this set with probability at most � pvjRj+`\Xij�c1 . Setting xi def= jRj+` \Xij, wecan apply the same analysis as applied to Eq. (13), except that here we use Property (P4)for the previous rounds. The desired bound for Pi�1 4p�i;t follows, for t = 3; 4; 5.26



Having shown that Pi�1 4p�i < �v � pv, for each t = 0; :::; 7, the proposition follows.Protocol for String SamplingWe now present a two-party protocol for sampling l-bit strings and bound the advantage of eachparty towards any set as a function of the set's density. The protocol is a simpli�cation of theprotocol for computing a function. The parties proceed in l rounds. In each round one partyshould select a random polynomial-partition of the residual sample space and the other partyshould ip a coin to select a side of this partition. In the next round the parties switch roles. Allpartitions selected by each party must divide the residual space into two sets of equal cardinality.Speci�cally, the partition is de�ned by a linear combination of the bits in the representation ofthe sample point. Following is the code of the protocol (the parties are called P0 and P1).Round i:� Pimod2 uniformly selects an l-dimensional binary vector vi which is linearly independentof the vectors used in previous rounds, and sends vi to the other party.� P(i+1)mod2 uniformly selects �i2f0; 1g and sends it to the other party.Intuition: The residual sample space after round i consists of all l-dimensional binary vectors xso that < x; vj > = �j for every j� i (< �; � > is mod-2 inner product, and this residualset is an a�ne subspace).Proposition 21 (analysis of the two-party sampling protocol): Let S � f0; 1gl be arbitrary andlet pdef= jSj=2l. If one of the parties that participate in the above protocol plays honestly, then theprobability for the protocol's outcome to be in S is at most O(p 14 ).proof: Let Ui denote the residual sample space after round i; namelyUi def= fx :< x; vj > = �j 8j� igLet Si def= S\Ui denote the residual target set (U0 = f0; 1gl and S0 = S). We want to consider thecardinality of Si as i grows (i.e., the execution proceeds) and treat di�erently \small" and \large"Si. For \small" Si we bound the probability of hitting Si as jSij times the probability of hittingany speci�c element. If Si is \large", then with su�ciently high probability jSi+1j � jSij=2 andhence the density, jSij=jUij, is approximately preserved. Details follow.The following three claims do not depend on the residual sample space Ui. Thus, Si (the residualtarget set after i rounds) can be considered �xed, too.Claim 21.1: If the (i + 1)-st partition is chosen by an honest player, then, with probability atleast 1� jSij�45 : jSij2 � jSij 910 < jSi+1j < jSij2 + jSij 910 ;regardless of the choice of �i.proof: By hypothesis vi+1 is uniformly selected among the vectors which are linearly independentof v1; :::; vi. Instead, let us select vi+1 uniformly at random from the entire space Z l2. The27



additional partitions come from vi+1 in the linear span of (v1; :::; vi), and thus induce a trivialpartition on Ui, so the partition is only less likely to be balanced.We show that with very high probability, even the partition induced by a uniformly chosenvector is quite balanced. For every � 2 f0; 1g, we consider random variables �s, (s 2 Si) where�s = 1 if < s; vi+1 >= � and 0 otherwise. Since vi+1 is selected uniformly, each �s is uniformlydistributed in f0; 1g. Furthermore, these random variables are pairwise independent, as long asjUij � 2 (i.e., the protocol did not terminate). Thus, we haveProb �����Xs2Si �s � jSij2 ����� � jSij 910! < 14 � jSij2� 910�1and the claim follows. 2On the other hand,Claim 21.2: If �i+1 is selected by an honest player, then the expected cardinality of Si+1 is jSij=2.The probability of hitting Si is bounded by jSij times the probability of hitting any speci�celement of Si, soClaim 21.3: With the above notation, the probability that the output of the protocol is in S (or,equivalently, in Si) does not exceed jSij � 2�(l�i�1)=2.proof: Clearly jUij = 2l�i and there remain r def= l � i rounds to termination, of which � willbe chosen by an honest player at least br=2c times. Any s 2 Si survives each such round withprobability 12 , and is the output with probability at most �2�br=2c, as claimed. 2In case jSj < p� 12 the proposition follows by using Claim 21.3; namely, the probability for outputin S is bounded by jS0j � 2�l=2 = sjSj � jSj2l= qjSj � p< p 14So in what remains we consider the case jSj � p�12 . Let the protocol be executed for tdef= log2 jSj�12 log2(1=p) � 0 rounds. In the rest of the proof we essentially show that, at this stage, jStj � p� 12 .Using Claim 21.3 at this point, we obtain (again) the upper bound of jStj � 2�(l�t)=2 = p 14 (usingl � t = l � log2 jSj+ 12 log2(1=p) = (1 + 12) � log2(1=p)).We assume, without loss of generality, that the honest party picks the partitions at the evenrounds. Also, there is no loss in assuming that his opponent plays a pure (i.e., deterministic)strategy. Since the honest party's strategy is �xed, the adversary's optimal move maximizes hisexpected payo�. On even-numbered rounds he selects one side of a partition presented by thehonest player, while on round 2i+ 1 he selects a partition that is determined by a function �i.Formally, each of his moves is a function of the history of the execution, but this whole historyis encoded by the current residual sample space. Thus, we may view each �i as a mapping�i : 2U 7! 2U , where U2i�2, the residual sample space after 2i � 2 rounds is partitioned into(�i(U2i�2); U2i�2 � �i(U2i�2)). Having �xed the adversary's strategy, the residual sample space28



after j rounds, Uj is a well-de�ned random variable. The following two sequences of randomvariables, depend now only on the coin tosses of the honest party:1. �i is the cardinality of S \ �i(U2i�2), for i � 1;2. �j is the cardinality of S \ Uj , for j � 0 (where, �0 = jSj is constant.)The following facts are immediate by the de�nitions and Claims 21.1 and 21.3.Claim 21.4: For every i � 1,1. (e�ect of round 2i� 1: adversary presents partition)Prob(�2i�1 = �i) = Prob(�2i�1 = �2i�2 � �i) = 12 .2. (e�ect of round 2i: adversary selects side)j�2i � �2i�12 j < � 9102i�1 with probability at least 1� �� 452i�1. Always 0 � �2i � �2i�1.3. (termination: as a function of the situation after tdef= log2 jSj � 12 log2(1=p) rounds)the protocol terminates with output in S with probability at mostExp(�t) � 2�(l�t)=2 = Exp(�t) � p3=4the expectation being over the coin tosses of the honest player in the �rst t rounds.In proving Item (3), use Exp(�t�2�(l�t)=2) = Exp(�t)�2�(l�t)=2 and l�t = l�log2 jSj+ 12 log2(1=p) =(1 + 12) � log2(1=p). It remains to use Items (1) and (2) in order to prove:Claim 21.5: Let tdef= log2 jSj � 12 log2(1=p) and suppose t � 0. ThenExp(�t) = O(p�1=2)the expectation being over the coins tossed by the honest player in the �rst t rounds.proof: Using Item (2) of Claim 21.4, we obtainExp(�2i+2) � Exp��2i+12 + � 9102i+1 + �� 452i+1 � �2i+1�� Exp��2i+12 + 2 � � 9102i+1�On the other hand, using Item (1) of Claim 21.4, we obtain bothExp(�2i+1) = 12 � Exp(�2i)and Exp(� 9102i+1) = 12 � Exp(� 910i ) + 12 � Exp((�2i� �i) 910 )Combining the three (in)equalities, we getExp(�2i+2) � 14 � Exp(�2i) + Exp(� 910i ) + Exp((�2i� �i) 910 )< 14 � Exp(�2i) + 2 � Exp(� 9102i )29



For 0<�< 1, the function x� over x � 0 is concave, so we may apply Jensen's inequality, andconclude Exp(�2i+2) < 14 �Exp(�2i) + 2 � Exp(�2i) 910Setting zi def= Exp(�2i), a minor adaptation of Claim 5 yields Exp(�t) = O( �02t ). Recall now thatt = log2 jSj � 12 log2(1=p)) and �0 = jSj, to conclude the claim. 2The proposition follows.Remark 1 : The above bound is not tight, but it su�ces for the purpose of sampling partitionsin the generic protocol (See the proof of Theorem 22). Much better protocols can be obtained -see Theorem 23. These (more complex) sampling protocols use the above protocol and the boundfrom Proposition 21 as a bootstrapping step. In our best sampling protocol, if one party playshonestly, the probability for the protocol protocol to land in any set of density p does not exceedO(pp).Remark 2 : Our two-party sampling protocol is very similar to interactive hashing, a protocol,that was discovered independently by Ostrovsky et. al. [20]. However, in interactive hashingone party always picks the partition and the other always chooses the side. Also, interactivehashing terminates after l � 1 (rather than l) rounds. Interactive hashing was invented forcompletely di�erent purposes and consequently its analysis as in [20] (and subsequent studies),is very di�erent from what appears above. Interactive hashing was used in implementing varioustypes of commitment protocols (cf. [20, 18, 21, 10]).Main ResultCombining Propositions 20 and 21 with Theorem 15, we getTheorem 22 (e�cient protocol meeting the lower bound): There exists a (generic) two-partyprotocol, for evaluating an arbitrary bivariate function f . This protocol is performed by a pairof uniform probabilistic polynomial-time programs with a single oracle call to the function f andsatis�es the following properties:� If both parties play honestly and their inputs are x and y respectively, then the output isf(x; y).� For every value v in the range of f , if one party plays honestly then the outcome of theprotocol is v with probability at mostO(log6(1=pv) �maxfqv;ppvg)Furthermore, in case qv=pv, this bound can be improved to O(ppv).proof: The protocol is an implementation of the generic protocol where the partitions are de-termined by poly(n)-degree polynomials that are selected using the sampling protocol describedabove. This proves the �rst item. For the second item we consider the event in which during theexecution of the protocol (with at least one party being honest) a partition was selected which30



does not satisfy all v-balanced properties. Using Propositions 20 and 21, the probability of thisevent is O(�v � pv). (Here we use the fact that Proposition 20 bounds the sum of the fourth-rootof the density of \bad" partitions.) In the complementary case, when every partition that isused satis�es all v-balance properties, Theorem 15 applies, and the main part of the second itemfollows.A bound of O(ppv log2(1=pv)) for the special case of qv=pv can be obtained by using Corol-lary 9 instead of Theorem 15. The better bound of O(ppv) requires a slightly more carefulanalysis that we turn to perform.We slightly change the classi�cation of rounds as appearing in the motivating discussion(subsection 4.1). We �rst consider the situation after i def= n � log2(1=pv) � 4 log2�v rounds.Following the ideas in the proof of Lemma 6 (and using Proposition 20 and 21), we �rst observethat, with probability � 1�pv, the number of v-entries in each row (column) of the residual matrix(i.e., #v(x; Yi) � 2�4v, 8x 2 Xi). (Here and below the probability space is comprised of runsof the generic protocol in which polynomial-partitions are selected using the sampling protocolof Proposition 21.) Next, we consider the situation after an additional ` def= 12 log2(1=pv) rounds.Using similar ideas (this time following Lemma 8), we conclude that, with probability � 1� pv,the total number of v-entries in the entire residual matrix, is at most (4�4v+1) � 2�4v < 9�8v (i.e.,#v(Xi+`; Yi+`) < 9�8v). Furthermore, with probability at least 1� pv, the residual matrix at thispoint is of size approximately �4vppv by �4vppv . In the original analysis, we did not try to argue thatthe number of v-entries in each row/column decreases during these additional ` rounds. But thisis most likely to be the case as shown below.Claim 22.1: There exists a constant c so that with probability at least 1 � pv, after i + ` =n � 12 log2(1=pv) � 4 log2�v rounds, there are at most c v-entries in each residual row (resp.,column) (i.e., #v(x; Yi+`) � c, 8x 2 Xi+`).proof: We consider again these additional ` rounds, assuming that previously (i.e., after i rounds)each residual row/column contains at most 2�4v v-entries. We want to bound, for each individualrow x 2 Xi, the probability that #v(x; Yi+`) > c. Say that a column partition is good if eitherthere are fewer than c v-entries in the x-row, or each side of the partition contains at least onethird of these entries. (In a good round, a good column partitions is performed). A uniformlyselected polynomial partition fails to be good with probability that is exponentially small in thenumber of v-entries, since at this point, the degree of the polynomials that determine the partitionexceeds the number of v-entries in row x. However, the polynomial partitions are selected usingthe sampling protocol of Proposition 21. As Proposition 21 states, the same remains valid alsowhen using the sampling algorithm to select the partitions (at the cost of a di�erent constant inthe exponent). Therefore, there exists a constant c so that, as long as row x has more than cv-entries, the next round is good with probability at least 16=17 (a great underestimate for allbut the very last rounds). On the other hand, if we go through at least t def= log3=2(2�4v) goodrounds, then row x has at most c v-entries. Thus #v(x; Yi+`) > c only if fewer than t� ` out ofthe last ` rounds are good, and the probability of this event is bounded above by t̀! � (1=17)`�t < (1=16)(1+�)�` = p(1+�)�2v31



where � > 0 is some small constant, the inequality follows by t = o(`) and the equality uses thede�nition of `. Summing over all possible x 2 Xi, the claim follows. 2Combining Claim 22.1 with the discussion which precedes it, we conclude that after i + ` =n � 12 log2(1=pv) � 4 log2�v rounds, with very high probability, the residual matrix contains atmost 9�8v entries of value v with at most c such entries in any row or column. Since we areseeking an O(ppv) bound, we can, and will ignore those rare runs (of probability O(pv)), forwhich this is not the case. Proceeding analogously to subsection 4.1, we could consider thesituation after another r = 4 log2�v rounds and bound by pv the probability that after a totalof i + ` + r = n � 12 log2(1=pv) rounds the residual submatrix contains more than �v entries ofvalue v. This would yield a bound of O(�v � ppv) on the inuence towards v. To obtain thebetter bound claimed above, we observe that it su�ces to bound the expected number of v-entriesin the residual matrix (rather than bounding the probability that too many v-entries remain).Speci�cally, we consider a standard coloring of the v-entries after i+ ` rounds. This coloring usesat most 2 � c + 1 colors. Fixing one of these colors, we consider the next r def= 4 log2�v rounds,and bound the expected number of the remaining v-entries. A diagonal is a set of entries in amatrix that has no more than a single element in common with any row/column.Claim 22.2: Consider a diagonal D of at most 9�8v entries in the residual matrix (Xi+` � Yi+`).Then the expected number of entries from D in the residual matrix Xi+`+r � Yi+`+r is O(1).proof: It su�ces to analyze a process in which 2r = 8 log2�v polynomial partitions, selected bythe sampling protocol of Proposition 21, are applied to a space containing 9 ��8v elements so thatafter selecting each partition we proceed with the side containing more elements. Our claim isthat the expected number of elements after applying these 2r partitions is O(1). To prove thisclaim, let us consider �rst what happens after applying a single partition. Namely, let S be asubset (of some universe) and � be a random variable representing the number of S-elementsin the S-heavier side (i.e., the side containing more S-elements) of a partition, selected by thesampling protocol. Clearly,Exp(�) < � jSj2 + jSj3=4�+ Prob�� > jSj2 + jSj3=4� � jSjFor a uniformly selected polynomial-partition the probability that the S-heavy side containsmore than jSj=2+ jSj3=4 elements of S is exponentially small in pjSj and by Proposition 21 thesame holds (with a smaller constant in the exponent) when the polynomial-partition is selectedby the sampling protocol. Thus, Exp(�) < jSj2 + jSj3=4 + O(1). Hence, we have a sequence ofrandom variables, �0; �1; :::; �2r, so that �0 < 9�8v and Exp(�ij�i�1 = s) < s2 + s3=4 + O(1), fori = 1; :::; 2r. Manipulating the expectation operators (as in the proof of Claim 21.5), we concludethat Exp(�2r) = O(1) and the current claim follows. 2Combining Claims 22.1 and 22.2, we conclude that with probability 1 � pv we reach roundi + ` + r = n � 12 log2(1=pv) with an expected number of O(1) entries of value v. Using theanalysis of Corollary 9 (corresponding to stage 3 in the motivating discussion) we establish theclaimed O(ppv) bound and the theorem follows.As stated in Remark 1, we have sampling protocols that improve on Proposition 21. This can bedone either directly (with the techniques used in proving Theorem 22) or by applying Theorem 2232



to any function f with qv = 2�l (8v 2 f0; 1gl). In either case, the resulting sampling protocolsuse the simple sampling protocol and the bound presented in Proposition 21 as a bootstrappingstep.Theorem 23 (a better two-party sampling protocol): There exists a protocol for sampling f0; 1glthat is performed by a pair of uniform probabilistic polynomial-time programs, so that: For everyS � f0; 1gl of density p, if one party plays honestly, the outcome of the protocol is in S withprobability at most O(pp).proof (using the second alternative): Let f : f0; 1gn�f0; 1gn 7! f0; 1gl satisfy qv = 2�l for everyv 2 f0; 1gl. For example, f(x; y) = x + y mod 2l, where x and y are viewed as residues mod2n (and n � l, say n = l). An honest party is supposed to select its input uniformly in f0; 1gnand to invoke the protocol of Theorem 22. The current theorem follows from the (furthermorepart of) Theorem 22, by considering the indicator function �S(v) = 1 if v 2 S (and �S(v) = 0otherwise). Namely, we consider the function g(x; y) def= �S(f(x; y)) and take advantage of thefact that the protocol in Theorem 22 is generic (i.e., determines a pair of inputs (x; y) for thefunction independently of the function).5 Towards the Multi-Party CaseWe believe that the ideas developed in the two-party case will prove useful also for the multi-partycase. However, even the problem of computing a 3-argument function by a 3-party protocol in thepresence of one dishonest party is much more involved than the problem of computing a bivariatefunction by a 2-party protocol as in the previous section. A natural extension of our two-partyprotocol is to let each round consist of three steps (rather than two) and refer to three partitionsof the three residual input spaces. In each step, a predetermined party announce in which sideof the partition its input lies, and by doing so makes its residual input-space smaller. We believethat, this (generic) protocol when used with random partitions, nearly minimizes the advantageof any dishonest party, regardless of the function that is being computed. We also believe thatthis protocol nearly minimizes the advantage of any coalition of two dishonest players. However,this seems to require a much more complex analysis, and additional parameters of the functionneed to be taken into account. In particular, the advantage of a single adversary towards a valuev depends not only on the density of v-entries in the entire function (denoted pv above) and onthe density of v-entries in the function restricted by the best input (denoted qv). For example, asingle party can inuence any protocol for computing the function f(x; y; z) = x+y+z mod N toproduce output 0 (or any other residue mod N) with probability N�2=3 (and the generic protocolcan be shown to bound the advantage of a dishonest party to about this value). On the other hand,a single party can inuence any protocol for computing the function g(x; y; z) = x + y mod Nto produce output 0 with probability N�1=2 (and again the generic protocol meets this bound).However, both function have the same pv = qv = 1=N .Another di�culty which arises in the context of multi-party protocols is that, when the numberof parties is large, we cannot a�ord to let the parties reveal information in a predetermined order(as in the two-party case and the three-part case above). This di�culty is best demonstratedin the special case where each input is one bit (i.e., Domain(f) = f0; 1g�f0; 1g � � � �f0; 1g.)33



Here, the inuence of parties which are last to reveal their input is more substantial than theinuence of parties which reveal their input �rst. This calls for choosing a random permutationto determine the order of playing. Thus, the role of a sampling protocol in the multi-party caseis more fundamental than in the two-party situation. (Recall that in the two-party protocols,sampling was introduced only for increased e�ciency.)In this paper we con�ne ourselves to the presentation of an e�cient fault-tolerant multi-partysampling protocol. Namely,Theorem 24 (multi-party sampling protocol): There exists an m-party sampling protocol thatis performed by m (identical) uniform probabilistic polynomial-time programs, so that:For every set S � f0; 1gl, if m� t parties play honestly, then the outcome of the protocol is in Swith probability at most O(log(1=p) � p1�O( tm )), where pdef= jSj=2l.Our proof of Theorem 24 adapts the ideas used in Theorem 23 to the multi-party context.Namely, our protocol uses partitions which are in turn selected by a lower-quality samplingprotocol. Speci�cally, the protocol proceeds in l rounds. In each round, the m parties �rstselect at random (using a simpler sampling protocol) a poly(n �m)-degree polynomial specifyinga partition of the residual sample space, and next use the collective-coin tossing protocol of Alonand Naor [1] to choose one side of this partition. The sampling protocol used to choose poly(nm)-degree polynomials is similar except that the partitions are speci�ed by linear transformations(as in the protocol of Proposition 21). These linear transformations are selected using a trivialsampling protocol which consists of selecting each bit individually by the collective-coin tossingprotocol of Alon and Naor [1].We prefer an alternative presentation of our proof, in which the construction of multi-partysampling protocols is reduced to the construction of sampling algorithms that use an SV -sourceas their source of randomness. Recall that an SV-source with parameter  � 12 (cf. [22]) is asequence of Boolean random variables, X1; X2; :::, so that for each i and every � 2 f0; 1gi andevery � 2 f0; 1g: Prob(Xi+1=�jX1 � � �Xi=�) � Theorem 24 follows fromProposition 25 (sampling with a SV-source): For every constant , 12 �  < 1p2 , there exist aprobabilistic polynomial-time algorithm, A1, which on input 1n uses any SV -source with parameter for its internal coin tosses and satis�es, for every su�ciently large n and every set S � f0; 1gn,Prob(A1(1n)2S) = O(log(1=p) � plog2(1=))where p def= jSj2n , and the probability is taken over an arbitrary SV -source with parameter .In particular, for  = 12(1 + �), we have log2(1=) = 1� log2(1+ �) � 1� 1ln 2 � �. Thus, observingthat the Alon-Naor protocol implements an SV -source with parameter  = 12(1 + O( tn)), wederive Theorem 24 as a corollary of Proposition 25. Furthermore, Proposition 25 yields analternative way of recognizing BPP languages in polynomial-time using an arbitrary SV -sourcewith parameter  < 1p2 � 0:7. Consider, without loss of generality, an algorithm A that using34



n (perfect) random coins errs with probability at most 1=n. In order to utilize A when only anSV-source is available, we �rst use algorithm A1 (with the SV-source) to generate a \somewhatrandom" n-bit string, r, and then invoke algorithm A with the string r as a substitute forthe n coins required by A. We stress that algorithm A is only invoked once. To analyze theperformance of the new algorithm, let S be the set of coin-sequences on which A errs. By ourhypothesis jSj � 2n=n and thus using Proposition 25 a string r 2 S is generated with probabilityat most O(log(n)=nlog2(1=)) < 1=3. Thus, using an SV-source (with parameter  < 1p2), ouralgorithm errs with probability at most 1=3.proof: Following is a description of the algorithmA1. The constant � used in the description willbe determined later (as a function of ). On input 1n, the algorithm proceeds in rounds, eachround consisting of two steps. In the �rst step, algorithm A1, uses a second sampling algorithm,denoted A2, to select a succinct description of a \pseudorandom" partition of the residual samplespace. In the second step, Algorithm A1 uses the next bit of the SV -source to determine a side ofthis partition and so further restricts the residual sample space. We use two types of partitions.In the �rst n � 4 log2 �n rounds, algorithm A1 uses partitions de�ned, as in Subsection 4.3, bya polynomial of degree (�n)4 over GF (2n). In the remaining rounds, where the residual samplespace is most likely to be smaller than 2(�n)4, algorithm A1 uses partitions uniformly chosenfrom the set of all perfectly balanced partitions (i.e., bipartitions in which the cardinalities of thetwo sides are either equal, or di�er by one). The two-step process is repeated until the residualsample space contains a unique element. We will see that algorithm A1(1n) almost certainly haltsafter no more than n + 2 rounds. (Longer executions can be truncated after n + 2 rounds withan arbitrary output.)We now turn to the description of algorithmA2, which is invoked by A1(1n) on input 1m, wherem = (�n)4 � n for the �rst n� 4 log2 �n rounds of A1(1n) and where m is the size of the residualsample space of A1 later on. On input 1m, algorithm A2 proceeds in m rounds. In the ith round,the algorithm uses a third sampling algorithm, denoted A3, to selects a random m-dimensionalbinary vector vi that is linearly independent of previously used vectors. Clearly, the candidatevectors constitute an (m�(i�1))-dimensional vector space overGF2. The chosen vector partitionsthe residual sample space into two subsets of equal cardinality (as in Proposition 21). AlgorithmA2 uses the next bit of the SV -source to select a side of this partition.AlgorithmA3, invoked by A2(1m), on input 1k (for k = m;m� 1; :::; 1), is the trivial samplingalgorithm which generates a sample point in f0; 1gk by merely using the next k bits of theSV -source.We now turn to the analysis of the sampling algorithm A1. We �rst consider what happens ifone replaces algorithm A2 by an algorithm that uniformly selects the appropriate partitions (i.e.,(�n)4-degree polynomial for the �rst n � 4 log2 �n rounds and perfectly balanced partitions forlater rounds). The analysis is done following the paradigm of the previous section. Namely,we �rst analyze the performance of the algorithm assuming it employs partitions which satisfysome combinatorial properties (cf., Claim 25.1), and next consider the probability that uniformlyselected partitions satisfy these properties (cf., Claim 25.2).Claim 25.1 (A1 with balanced partitions): Let Ui be the residual sample space after round i,and Si def= S \ Ui (U0 def= f0; 1gn). Suppose that, for every i, algorithm A1 partitions Ui�1 ina way that is �-balanced with respect to Si�1 as well as to Ui�1. Furthermore, suppose that35



for every i > n � 4 log2�, the ith partition chosen for algorithm A1 is perfectly balanced (i.e.,�1 � 2jUij � jUi�1j � 1.) ThenProb(A1(1n) 2 S) � 2� � plog2(1=)In addition, jUn�4 log2 �nj < 2(�n)4, provided that � � �n.proof: The proof is analogous to the proof of Corollary 9. Using an argument analogous to oneused in the proof of Lemma 6, we conclude that after t def= n � log2(1=p) rounds the residualsample space contains at most � elements of S (i.e., jStj � �). Actually, the argument only usesthe hypothesis that the ith partition is �-balanced with respect to Si�1, for every i � t, and isindi�erent to the way in which the sides of the partitions are selected in these t rounds. Using thehypothesis that the ith partition is �-balanced with respect to Ui�1, for every i � t, we concludethat after these t rounds, the residual sample space contains at least 12p elements (i.e., jUtj � 1=2p).Furthermore, using the hypothesis that also the following r def= log2(1=p) � 4 log2� rounds usepartitions which are �-balanced with respect to the residual sample space, we conclude that aftert+ r = n� 4 log2� rounds the residual sample space has cardinality at least 12�4 (use Claim 5).Now, since all the remaining partitions are assumed to be perfectly balanced, there must be atleast l def= (4 log2�)� 1 rounds until termination. We now return to the situation after t rounds,and consider the remaining rounds, which by the above are at least r def= t + l = log2(1=p) � 1in number. Since the side of the partition is selected by an SV-source with parameter , theprobability that any speci�c element in Ut survives the remaining (i.e., at least r) rounds is atmost r. Thus, the probability that some element of St survives these rounds does not exceedjStj � r � � �  log2(1=p)�1� � � plog2(1=) � 2log2(1=)But  � 1=2, whence log2(1=) � 1 and the main part of the claim follows.The additional part (i.e., jUn�4 log2 �nj < 2(�n)4) follows easily by using Claim 5. 2Claim 25.2 (A1 { probability of balanced partitions): For every � > 0 there exists a � > 0 so thatthe following holds. Let �i denote the probability that a uniformly chosen partition for round iis not � � log2(1=p)-balanced with respect to either Si�1 or Ui�1. Then,Xi�1 ��i < pAs in Proposition 20, it is very useful for the sequel (though, admittedly, not very natural) toraise the probabilities to the �th power.proof: For i � n � 4 log2 �n, the proof is identical to the simpler cases (e.g., Properties (P0)and (P1)) considered in the proof of Proposition 20. For i > n � 4 log2 �n, we observe that theprobability of any event, assuming a uniformly selected perfectly-balanced partition is at mostpjUi�1j times larger than its probability assuming a uniformly selected partition. Since theargument of Proposition 20, can tolerate such factors, the claim follows also for i > n� 4 log2 �n.2Combining Claims 25.1 and 25.2, we conclude that it su�ces to show that for some constant� > 0 and for any set of \bad" partitions, B � f0; 1gm, the probability that A2(1m) produces36



an output in B is at most (jBj=2m)�. Once this is done, the proposition follows by consideringB(i), the set of partitions which are not � � log2(1=p)-balanced with respect to either Si�1 or Ui�1,and noting that � � log2(1=p) � �n (which guarantees that in the last 4 log2(� log2(1=p)) roundsperfectly-balanced partitions are used). Namely,Prob(A(1n)2S) < Prob(A(1n)2Sj8i A(1m) 62B(i))+Prob(9i s.t. A(1m)2B(i))< 2� log(1=p) � plog2(1=) +Xi�1  jB(i)j2m !�< 3� log(1=p) � plog2(1=)where the second inequality is based on Claim 25.1 and our hypothesis concerning A2 and thelast inequality follows from Claim 25.2. Also note that Claim 25.1 guarantees that the residualsample space after n�4 log2(�n) rounds has size at most poly(n) whence it is possible to representand generate random partitions of it. Thus, we turn to the analysis of algorithm A2. Recall thatour goal is to show that for some �, (that depends on ), and for every B � f0; 1gm of cardinalityq � 2m, Prob(A2(1m)2B) = O(q�) (15)Let � def= log2(1=)� 12 > 0 and � def= 11+� < 1 (recall that  < 1p2 is assumed). Also, � � 12 and� � 23 , since  � 12 . Henceforth, we �x an arbitrary set B � f0; 1gm and let q def= jBj2m (as above).We separately analyze the performance of A2 throughout the �rst t rounds (hereafter referred toas phase 1), and in the remaining m� t rounds (phase 2), wheret def= maxf0; m� 2�2� � 1 log2(1=q)g (16)Let Bi denote the residual set of bad polynomials after i rounds of algorithm A2 (e.g., B0 = B).Claim 25.3 (A2 { phase 1): Prob(jBtj > 2q � 2m�t) � O(q2�)Remark: By de�nition of t, we have m� t = 2�2��1 � log2(1=q) and q � 2m�t = 2(m�t)=2�.proof: For every i, let bi def= jBj2i . Our plan is to prove that with very high probability, jBij � bi forevery i � t, which would establish our claim. We consider the �rst time when jBij 6� bi. Thus,the probability that jBtj > 2q � 2m�t is bounded above byProb �9i < t : �����jBi+1j � jBij2 ���� > jBij 1+�2 � ^ �8j < i : ����jBj+1j � jBj j2 ���� � jBjj 1+�2 ��Now, using Chebyshev's Inequality (as in the proof of Proposition 21), we can show that for auniformly chosen random linear partition,Prob�����jBi+1j � jBij2 ���� > jBij 1+�2 � < 1jBij�37



Call a linear partitions for round i + 1 bad, if ���jBi+1j � jBij2 ��� > jBij 1+�2 . We now know that thenumber of bad partitions is bounded by 1jBij� � 2m�i. We need to bound the probability thatA3(1m�i) selects a bad partition in round i + 1. The union bound, the de�nition of A3 andClaim 5 (for jBij), imply Prob(A3(1m�i) is bad) � 2m�ijBij� � m�i< 2 � m�i � 2m�ib�iwhere the last inequality uses our assumption that all previous partitions are good (whence foreach j < i, jBj+1j > jBj j2 � jBjj 1+�2 and consequently jBij > bi=2). Since bi = 2t�i � bt andb�t = (q2m�t)� = 2(m�t)=2 (see remark above), we getProb(A3(1m�i) is bad) < 2 � m�i � 2m�i2(t�i)� � 2(m�t)=2= 2 � m�i � 2(m�i)�m�t2 ��(t�i)= 2 � �p2�m�i � 2�(�� 12 )�(t�i)Letting � def=  � p2 < 1 (as  < 1p2) and using m � i � m � t > 2 log2(1=q) (as m � t =2�2��1 log2(1=q) and � < 1), we getProb(A3(1m�i) is bad) < 2 � �2 log2(1=q) � 2�(�� 12 )�(t�i)= 2 � q2 log2(1=�) � 2�(�� 12 )�(t�i)= a � bt�iwhere a def= 2q2 log2(1=�) and b def= 2�(�� 12 ) < 1 (as � > 12). Hence, the probability that A3 choosesa bad partition for some round i, throughout phase 1, is bounded by Pti=1 a � bt�i < a1�b . Using� = log2(1=)� 12 = log2(1=�) � 12 and � = 11+� , we geta1� b = 2q2�1� 2� 1��2(1+�)� 2q2�1� 2�1=6< 20 � q2�and the claim follows.2Claim 25.4 (A2 { phase 2): Let Bt be the residual target set after t rounds and consider anexecution of the m � t remaining rounds. Suppose that jBtj � 2bt, where bt def= jBj2t (as inClaim 25.3). Then the probability that A2(1m) terminates with output in Bt is at most 2q�.proof: We consider the executions of rounds t+1 throughm. Regardless of which linear partitionsare used in the remaining m� t rounds, the probability that a particular element of Bt is output38



by A2(1m) is bounded by m�t. Hence,Prob(A2(1m) hits Bt) � jBtj � m�t� 2bt � m�t= 2 � 2m�t2� � m�t= 2 � � � 2 12� �m�tSetting (as before) � = p2, and using � = log2(1=�) and � = 11+� , we get 2 12� = p2=�. Hence,using again � < 1 and m� t > 2 log2(1=q), we getProb(A2(1m) hits Bt) � 2 �   �s2�!m�t< 2 � p�2 log2(1=q)= 2qlog2(1=�)= 2q�and the claim follows. 2Combining Claims 25.3 and 25.4, we have established Eq. (15) and the proposition follows.Remark 3 Actually, the result of Proposition 25 can be improved using a slightly more carefulanalysis of the algorithm A1 provided in the above proof. The improved analysis is analogousto the proof of the tighter bound for the case qv = pv of Theorem 22. Namely, we replaceClaims 25.1 and 25.2 by the following three claims. In the �rst two claims we assume thatalgorithm A2 satis�es Eq. (15).claim 1: With probability at least 1� p, after i def= n� log2(1=p)� 4 log2(� log2(1=p)) rounds theresidual sample space contains at most 2(� log2(1=p))4 elements of S; namely,Prob(jSij > 2(� log2(1=p))4) < pclaim 2: Consider an arbitrary subset S0 of Ut so that jS0j � 2(� log2(1=p))4. Then the expectednumber of elements of S0 which survive an additional number of 4 log2(� log2(1=p)) roundsis bounded above by O(1).claim 3: Let t def= n� log2(1=p). Then,Prob(A(1n) 2 S) � Exp(jStj) �  log2(1=p)�1(Here, we do use a part of the proof of Claim 25.1 to assert that with probability 1� p theprotocol does not terminate before n� 1 rounds.)Consequently, we get 39



� For every constant , 12 �  < 1p2 , the algorithm A1 appearing in the proof of Proposition 25satis�es, for every set S � f0; 1gn,Prob(A1(1n)2S) = O(plog2(1=))where p def= jSj2n , and the probability is taken over an arbitrary SV -source with parameter .� Theorem 24 can be improved analogously. Namely, for every set S � f0; 1gl, if m�t partiesplays honestly then the outcome of the protocol is in S with probability bounded above byO(p1�O( tm )), where pdef= jSj=2l.AcknowledgmentOded Goldreich would like to thank the Computer Science Department of the Hebrew Universityfor providing him shelter in times of war; surprisingly some shelters are more pleasant than home!The authors wish to thank the Computer Science Department of Tel-Aviv University for use ofits computing facilities.
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