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1 IntroductionGiven any one-way permutation (i.e., a length preserving 1-1 one-way function), one can easilyconstruct an e�cient pseudorandom generator. The construction follows the scheme given byBlum and Micali [3], using the fact that every one-way function has a hard-core bit [5]. Specif-ically, assume that f is such a function and let b be a hard core-bit for it (i.e., starting with afunction f 0 we de�ne f(x; r) def= (f 0(x); r) and b(x; r) as the inner-product mod 2 of the strings xand r when viewed as binary vectors of length jxj = jrj). Then, the pseudorandom generator G,on input a seed s outputs the sequence b(s); b(f(s)); b(f(f(s))); b(f3(s)); :::Pseudorandom generators can be constructed also based on arbitrary one-way functions [8];yet, the known construction is very complex and ine�cient. In fact, it is of no practical value.The construction in [6], which uses arbitrary regular one-way functions is more attractive inthese respects, yet it is far less attractive than the simple construction outlined above. A similarsituation occurs with respect to the construction of digital signature schemes (cf., [10] vs [15]). Ingeneral, 1-1 one-way functions currently o�er simpler and more practical constructions (of morecomplex primitives) than o�ered by general one-way functions.These facts were our initial motivation for trying to construct length-preserving 1-1 one-wayfunctions. Such functions should not be confused with what is commonly referred to (especiallyin the \Crypto Community") as \one-way permutations" and which are actually in�nite sets of�nite functions { see de�nitions below. What we want is a single in�nite function, which is bothlength-preserving and 1-1 (and needless to say one-way). We show how to construct such 1-1one-way functions based on popular intractability assumptions such as the intractability of DLPand inverting RSA.Indeed, some (but not all) of the constructions which use length-preserving 1-1 one-wayfunctions can be modi�ed so that families of one-way permutations can be used instead. Still thequestion of whether the former exists is of both theoretical and practical importance.2 One-Way Functions and FamiliesDe�nition 1 (one-way functions): Let f :f0; 1g� 7!f0; 1g� be a length preserving function whichis polynomial-time computable.� (strongly one-way): f is called (strongly) one-way if for any probabilistic polynomial-timealgorithm A, any positive polynomial p and all su�ciently large n'sProb(A(f(x)) 2 f�1f(x)) < 1p(n)where the probability is taken uniformly over x 2 f0; 1gn, and the internal coin tosses ofalgorithm A.� (weakly one-way): f is called weakly one-way if there exists a positive polynomial p so thatfor any probabilistic polynomial-time algorithm A and all su�ciently large n'sProb(A(f(x)) =2 f�1f(x)) > 1p(n)where the probability is as above. 1



(Note that f : f0; 1g� 7! f0; 1g� is 1-1 if f(x) 6= f(y) for all x 6= y). In case f(x) 6= f(y) for allbut a negligible fraction of the pairs (x; y) we say that f is almost 1-1. Namely, an almost 1-1function f satis�es, for every positive polynomial p and all su�ciently large n's,Prob(f(x)=f(y)) < 1p(n)where the probability is taken uniformly and indepedently over all x; y 2 f0; 1gn.De�nition 2 (family of one-way permutations { simpli�ed version): A set of �nite permutations,F = ffi :Di 1-17!Digi2I, is called a family of one-way permutations if the following conditions hold� (e�cient evaluation): there exists a polynomial-time algorithm that on input an index (of apermutation) i 2 I and a domain element x 2 Di returns fi(x).� (e�cient index selection): there exists a probabilistic algorithm S that on input n, runsfor poly(n) time and returns a uniformly distributed index of length n (i.e., an i uniformlydistributed in I \ f0; 1gn).� (e�cient domain sampling): there exists a probabilistic polynomial-time algorithm D thaton input an index i 2 I, returns a uniformly distributed element of Di.� (one-wayness): For any probabilistic polynomial-time algorithm A, any positive polynomialp and all su�ciently large n's Prob(A(i; fi(x)) = x) < 1p(n)where the probability is taken uniformly over i 2 I \ f0; 1gn, x 2 Di, and the internal cointosses of algorithm A.In the non-simpli�ed version, both probabilistic algorithms mentioned above (i.e., S and D) are al-lowed to produce output with only non-negligible probability (i.e., probability at least 1=poly(n)).Furthermore, given these algorithms have produced an output, the output is allowed to be wrong(i.e., out of the target set or non-uniformly distributed) with negligible probability (e.g., withprobability at most 2�n).Analogously to De�nition 1, families of permutations can be de�ned to be weakly one-way,rather than (strongly) one-way.3 Transforming One-Way Families into FunctionsClearly, any family of one-way permutations can be converted into a single one-way function;namely, f(r; s) def= fi(x), where i = S(n; r) is the index selected using coin-tosses r and x =D(i; s) 2 Di is the element selected on input i and coin-tosses s. (Padding can be applied, ifnecessary, to make f length preserving.) However, this procedure does not necessarily yield a 1-1function; furthermore, for most natural examples such as RSA, DLP, etc., the resulting functionwill be many-to-one. 2



An alternative construction, which does yield a 1-1 one-way function, is possible under someadditional conditions, as demonstrated below. In fact, the conditions are de�ned to make thisnatural construction work and the thrust of this paper is in demonstrating that these conditionscan be met under reasonable and popular assumptions (see next section).3.1 The ConditionsLet F be a family of one-way permutations and that let q(n) denote the number of coins ippedby the index selection algorithm S on input n. We consider the following conditions that F maysatisfyDe�nition 3 (additional conditions)� augmented one-wayness: For any probabilistic polynomial-time algorithm A, any positivepolynomial p and all su�ciently large n'sProb(A(r; fS(n;r)(x)) = x) < 1p(n)where the probability is taken uniformly over r 2 f0; 1gq(n), x 2 DS(n;r), and the internalcoin tosses of algorithm A.(Namely, the permutations are hard to invert even when the inverting algorithm is giventhe random coins used to generate the index of the permutation.)� canonical domain sampling: The domain-sampling algorithm may consist of uniformly se-lecting a string of speci�c (easy to determine) length and testing whether the string residesin the domain. In other words, we require{ (recognizable domain): There exists a polynomial-time algorithm that on input anindex i 2 I and a string x decides if x 2 Di.{ (non-negligible domain): There exists a polynomial-time computable function l : IN 7! INand a positive polynomial p(�) so that Di � f0; 1gl(n) and jDij > 1p(n) � 2l(n)3.2 The ConstructionGiven a family of one-way permutations that satis�es the additional conditions, we explicitlyconstruct a 1-1 one-way function as follows.Construction 1 (simple version): Let F be a family of permutations with an index selectionalgorithm S that uses q(�) coins and having domains Di's which are subsets of f0; 1gl(jij), forsome function l(�). We construct the function f as followsf(r; s) def= ( (r; fi(s)) if s 2 Di, where i def= S(n; r)(r; s) otherwisewhere r 2 f0; 1gq(n) and s 2 f0; 1gl(n), 3



Proposition 1 : The function f is 1-1 and length preserving. If F is a family of one-waypermutations satisfying the additional conditions of De�nition 3 then f is weakly one-way. Thelatter holds even if F is only weakly one-way (and satis�es the additional conditions).proof: By de�nition f is length-preserving. Let Gn be the set of pairs (r; s) 2 f0; 1gq(n)�f0; 1gl(n)so that s 2 DS(n;r) holds and let Bn be the set of the other pairs (i.e., Bn = (f0; 1gq(n)�f0; 1gl(n))�Gn). The key observation is that if (r; s) 2 Gn then, letting i = S(n; r), s 2 Di holds andfi(s) 2 Di (and f(r; s) 2 Gn) follows. On the other hand, if (r; s) 2 Bn then f(r; s) = (r; s) 2 Bn.Thus, f maps Gn (resp., Bn) to itself and furthermore the mapping induced on Gn (rep., Bn) is1-1. It follows that f is 1-1.The function f is polynimal-time computable by virtue of the �rst two e�ciency conditions ofF and the additional `recognizable domain' condition. By the additional `non-negligible domain'condition we know that Gn forms a non-negligible fraction of Gn [ Bn and by the `augmentedone-wayness' condition we infer that f is hard to invert on Gn. Thus, we conclude that f isweakly one-way. In fact, the latter conclusion remain valid even if the family of permutations Fis only weakly one-way. 2Remark: The function f (constructed above) may be only weakly one-way since it equals theidentity transformation for a part of its domain and this part may have non-negligible measure.To get a (strongly) one-way function, one may apply the transformation in [4] to the function f .(In fact, degenerate versions of the transformation in [4] su�ce for this purpose.)The above construction is stated with respect to the simpli�ed de�nition of a family of one-waypermutations. Recall that in the non-simpli�ed version, the index-selecting algorithm, S, is onlyrequired to have an output with non-negligible probability (i.e., the probability is bounded belowby 1=p(n) where p is some �xed positive polynomial). Furthermore, S is allowed to err (i.e., haveoutput not in I) with a negligible probability. For the general case, we rede�ne the function f asfollowsConstruction 2 (complex version): Let F = ffi :Di 1-17!Digi2I be a family of permutations withan index-selecting algorithm, S, which produces output with non-negligible probability and errswith negligible probability. We construct the function f as followsf(r; s) def= ( (r; fi(s)) if i def= S(n; r) 6= ? and s 2 Di(r; s) otherwisewhere the convention is that in case, on input n and coin tosses r 2 f0; 1gq(n), the algorithm Shalts with no output then S(n; r) def= ? =2 f0; 1g�.Proposition 2 : The function f is length preserving and almost 1-1, and in case S never errs fis 1-1. If F is a family of one-way permutations satisfying the additional conditions of De�nition 3then f is weakly one-way. The latter holds even if F is only weakly one-way (and satis�es theadditional conditions).proof: In case algorithm S never errs, the proof is similar to the proof of the previous proposition(i.e., Gn is de�ned as the set of all pairs (r; s) so that i def= S(n; r) 6= ? and s 2 Di). Otherwise,we observe that the collision probability of f is bouded above by the probability that S errs (andoutputs a string not in I). Since this happens with negligible probability, we are done. 24



4 Applying the TransformationUsing the transformation speci�ed in the previous section, we show how to construct a 1-1 one-way function based on one of several popular intractability assumptions. To this end, we usethese intractability assumptions in order to construct families of one-way permutations satisfyingthe additional conditions of De�nition 3. Before presenting these constructions, we wish to stressan important aspect regarding them; namely, their \security".SecurityThe security of a one-way function f is a function, s : IN 7! IN, specifying the amount of \work"required to invert f on inputs of given length. The work of an algorithm is de�ned as theproduct of the running-time (of the inverting algorithm) and the inverse of its success probability;namely, wA(n) def= tA(n) � 1pA(n) , where tA(n) is the running time of A on f -images of length n andpA(n) def= Probx2f0;1gn(A(f(x)) 2 f�1f(x)) is its success probability.Typical cryptographic constructions, and in particular our constructions, transform one object(in our case a family of one-way permutations) of security s(�) into another object (in our casea single 1-1 one-way function) of related security s0(�). The relation between s and s0 is of keyimportance. A weak relation, which is usually easier to obtain, is that s0(poly(n)) > s(n)=poly(n).Although this relation translates any super-polynomial security s into a superpolynomial securitys0, it is of limited practical value. In order to use the resulting object of security s0 one may needsto use very big instances. For example, if s0(n5) = s(n) and the original object is \secure inreality" for instance size 100 (bits) then the resulting object (of security s0) will be \secure inreality" only for instances of size 1010, and is thus unlikely to be of practical value. Thus, strongerrelation between the security s of the original object and the security s0 of the resulting objectare of more value. In particular, it is desirable to have s0(O(n)) > s(n)=poly(n), in which casewe say that the transformation preserves the security.Getting back to the constructions of the previous section, we note that the security of theresulting one-way 1-1 function f , on f -images of length q(n)+l(n), is at least a polynomial fractionof the security of the family of one-way permutations on fi-images of length l(n). (Recall, ndenotes the length of the index of the permutation, l(n) the length of the description of elementsin the domain of the permutation and q(n) the randomness complexity of the index-selectingalgorithm.) Namely, s0(q(n) + l(n)) > s(l(n))=poly(n), where s denotes the security of thefamily F and s0 the security of the function f . Therefore, the smaller the polynomial q(�) is, thebetter security one gets. It is particularly desirable to keep q(n) linear in l(n). All the constructionspresented below achieve this goal. Consequently, the one-way functions constructed below preservethe security of the intractability assumption on which they are based. We remark that the (weakto strong one-way) transformation of [4] (mentioned in the Remark above) preserves security too.Preliminaries: selecting prime numbersPrime numbers play a key role in all our constructions and so e�cient algorithms for selectingsuch numbers are of key importance to us. We will use two algorithms due to Bach [1, 2]. The�rst algorithm [2] is merely a very e�cient (problem-speci�c) \deterministic ampli�cation" of the5



Miller-Rabin primality tester [9, 13]. The second algorithm [1] produces uniformly distributedintegers together with their prime factorization.Theorem 1 (randonmess e�cient primality tester [2]): There exists a probabilistic polynomialtime algorithm that on input P uses jP j random bits so that if P is prime then the algorithmalways accepts, and otherwise (i.e., P is composite) the algorithm accepts with probability at most1pP = 2�jP j=2.Theorem 2 (space e�cient generation of integers with known prime factorization [1]): Thereexists a probabilistic polynomial time algorithm that uses linear space and on input 1n uniformlygenerates a number N in the interval [2n�1; 2n � 1] and outputs the prime factorization of N .The above two algorithms are reasonablly e�cient. We are reluctant to use the primality certi�erof Goldwasser and Kilian which for all but a negligible fraction of the primes �nds in probabilisticpolynomial-time a certi�cate of primality [7]. Interestingly, this algorithm can be implementedwithin linear space and so applying the transforamtion of Nisan and Zuckerman [11] we get animplementation which uses linear randomness.Theorem 3 (randonmess e�cient primality certi�er [7, 11]): There exists a probabilistic polyno-mial time algorithm that on input P uses O(jP j) random bits and for all but a negligible fraction ofthe primes �nds a certi�cate of primality (i.e., a witness/proof with respect to some NP-relation).4.1 A construction based on RSAThe standard presentation of RSA [14] yields a family of permutations which is believed to beone-way, but is certainly not one-way in the augmented sense of De�nition 3. (Here we referto a family in which the indices are pairs (N; e), where N is the product of two primes of equallength and e is relatively prime to �(N). The index is generated by randomly selecting these twoprimes, multiplying them and next selecting a proper e. Thus, giving these random choices awaycompromises the security of RSA, since given the prime factors it is easy to invert the function.)We consider, instead, the following family of weak one-way permutations. The indices in thisfamily are pairs of integers (N;P ) so that P is a prime and jP j = jN j. For each such pair we de�nea permutation over Z�N , the multiplicative group modulo N ; speci�cally, fN;P (x) def= xP mod N .Note that we do not insist that N is a product of two primes of the same length. Yet, a non-negligible fraction of the possible N 's will have this form. Thus, if the standard RSA family isstrongly one-way (for random exponent) then it is also (strongly) one-way for a prime exponentand consequently the above (non-standard) family of functions will be weakly one-way (due to thenon-negligible fraction of composites of the standard form). Since P is relatively-prime to �(N),the functions in this family are in fact permutations over Z�N . (Note that the index-selectingalgorithm does not know �(N) and so relative-primality of P and �(N) is imposed by requiringthat P is prime.)We now show that the above family satis�es the non-simpli�ed requirements (from a familyof one-way permutations) as well as the additional conditions in De�nition 3. Of the e�ciencyconditions only the index selection is problematic, yet it does hold when allowing negligible errorand requiring that output is produced only with non-negligible probability (i.e., just select two n-bit integers at random and check if the second is prime { producing an output only if the answer is6



in the a�rmative). Also, Z�N is easily recognizable and is non-negligible with respect to f0; 1gjN j.Furthermore, this family is one-way in the augmented sense (under the \RSA assumption") sincethe modulus is generated via an identity transformation from the coins of the index-selectingalgorithm (and thus these coins add no knowledge to the inverter). It follows that we can applyProposition 2 and derive an almost 1-1 one-way function.De�nition 4 (standard RSA Assumption): We say that inverting RSA is intractable with securitys(�) if any algorithm for the inverting task uses work greater than s(�). The inverting task consistsof �nding x such that y = xe mod N , when given N , e and y, where N is uniformly selectedamong all composites which are the product of two (n=2)-bit long primes, e is uniformly selectedamong the elements of the multiplicative group modulo �(N), and y is uniformly selected amongthe elements of the multiplicative group modulo N .To justify our claim that security (of the RSA Assumption) is preserved we have to note thatpairs (N;P ) as required can be selected using O(j(N;P )j) random bits. To this end, we use thealgorithm guaranteed in Theorem 1. Thus, we getCorollary 1 : Suppose that inverting RSA is intractable with security s(n). Then, there existsan almost 1-1 one-way function with security s0(O(n)) def= s(n)=poly(n).The possible colisions in the one-way function are due to the error probability of the indexselection algorithm which in turn is due to the probability that a composite passes the primalitytest. Using Theorem 3 we can get rid of this error (i.e., if we fail to generate a certi�cate then wetreat the integer, which is possibly a prime, as if it were found to be composite). Thus, assumingthat inverting RSA is intractable (with security s(n)), there exists a 1-1 one-way function (withsecurity s0(O(n)) def= s(n)=poly(n)).4.2 A construction based on a restricted DLPHere we rely on the assumption that the Discrete Logarithm Problem (DLP) in the multiplicativegroup modulo P is hard also for the special case of primes of the form P = 2Q + 1, where Qis a prime. We also use the assumption that such primes form a non-negligible fraction of theintegers of the same length. Based on these assumptions, the following family of permutationsis one-way. The indices in the family are pairs (P; g), where P is a prime of the above form andg is a primitive element modulo P . The index is selected by �rst selecting a prime of the aboveform and next using the known factorization of �(P ) = 2Q to test candidates for primitivity (seedetails below). For each index, (P; g), we de�ne a permutation over Z�P , the multiplicative groupmodulo P ; speci�cally, fP;g(x) def= gx mod P . Noting that Z�P is both `non-negligible' and easy torecognize, we can apply Proposition 2.To justify our claim that the resulting 1-1 one-way function preserves the security of thefamily, we note that pairs (P; g) can be selected using O(jP j) random bits. On input n weuniformly select an (n � 1)-bit integer, Q, and test Q and P = 2Q + 1 for primality. In casewe are successful, we uniformly select g 2 Z�P and test if it is primitive (mod P ) by computinggP�1 mod P , gQ mod P and g2 mod P . (If the �rst expression evaluates to 1 whereas the othertwo don't, then g is a primitive element modulo P .) We get7



Corollary 2 : Suppose that the restricted DLP is intractable with security s(n) (see de�nitionbelow), and that the set of n-bit primes, P , for which �(P )=2 is prime, constitute a 1=poly(n)fraction of the n-bit long integers. Then, there exists an almost 1-1 one-way function with securitys0(O(n)) def= s(n)=poly(n).Again, the one-way function can be made 1-1 by using Theorem 3 (as above).De�nition 5 (restricted DLP Assumption): We say that the restricted DLP is intractable withsecurity s(�) if any algorithm for the following inverting task uses work greater than s(�). Theinverting task consists of �nding x such that y = gx mod P , when given P , g and y, where Pis uniformly selected among all n-bit primes for which �(P )=2 is prime, g is uniformly selectedamong the primitive elements modulo P , and y is uniformly selected among the elements of themultiplicative group modulo P .4.3 A construction based on the general DLPHere we rely on a seemingly weaker assumption concerning the DLP. Speci�cally, we assume thatthe Discrete Logarithm Problem (DLP) in the multiplicative group modulo a prime P is hardalso when given the factorization of �(P ). Making this assumption, we can waive the assumptionmade in the previous subsection concerning the density of primes of special form P = 2Q + 1,where Q is a prime. (Note that for primes of the special form P = 2Q+ 1 the factorization of�(P ) = 2 �Q is always known.)Based on the above intractability assumption, the following family of permutations is one-way. The indices in the family are pairs (P; g), where P is a prime and g is a primitive elementmodulo P . The index is chosen by �rst generating a random prime P with known factorizationof �(P ) (see details below), and next using this factorization to test candidates for primitivity.For each index, (P; g), we de�ne a permutation over Z�P as before (i.e., fP;g(x) def= gx mod P ).Again, we can apply Proposition 2.We have postponed the discussion of how to randomly generate primes P with known fac-torization of �(P ). Here, a di�erent algorithm of Bach comes to the rescue. This algorithm,uniformly generates composites with their factorization [1]. Having produced a factored compos-ite N , we test N + 1 for primality and are done if the answer is in the a�rmative. Actually, thealgorithm produces a certi�cate for the primality of P = N + 1 in probabilistic polynomail-timeusing the (certi�ed) factorization of P � 1 (produced by Bach's algorithm). A straightforwardimplementation of Bach's algorithm requires a super-linear number of coin tosses. Yet, it ispossible to implement an approximation of the algorithm using only a linear number of cointosses (i.e., linear in the length of the composite being generated). The details are quite tedious.Instead, we prefer to invoke a general result of Nisan and Zuckerman [11] by which any proba-bilistic polynomial-time algorithm, which uses linear space, can be approximated using a linearnumber of coin tosses. It is very easy to see that Bach's algorithm falls into this category (andthis is stated in Theorem 2 above). This yields an index selecting algorithm which selects pairs(P; g) using O(j(P; g)j) random bits, justifying our claim that the resulting 1-1 one-way functionpreserves the security of the family. We stress that the index selecting algorithm never errs (andfurthermore it produces a certi�cante for membership in the index set). Thus, we get8



Corollary 3 : Suppose that DLP is intractable with security s(n), even when the factorization ofthe order of the group is given (see de�nition below). Then, there exists a 1-1 one-way functionwith security s0(O(n)) def= s(n)=poly(n).De�nition 6 (DLP Assumption): We say that the DLP is intractable with security s(�) if anyalgorithm for the following inverting task uses work greater than s(�). The inverting task consistsof �nding x such that y = gx mod P , when given P , the factorization of �(P ), g and y, where Pis uniformly selected among all n-bit primes, g is uniformly selected among the primitive elementsmodulo P , and y is uniformly selected among the elements of the multiplicative group modulo P .5 Conclusions and Open ProblemsWe have presented a method for constructing (strongly) one-way permutations. The methodconsists of three steps.Step (1) using well-known intractability assumptions to construct families of one-way permu-tations satisfying the additional properties speci�ed in De�nition 3;Step (2) using such a family to construct a weak one-way function;Step (3) transforming the resulting function into a strongly one-way function.We consider the identi�cation of the conditions in De�nition 3 and the construction of families ofone-way permutations satisfying these conditions to be the most important contributions of thecurrent paper. Thus, most of the paper is dedicated to the implementation of Step (1), whereasStep (2) is obtained by Construction 1 and Step (3) is obtained by referring to [4].Regarding Step (3), we remark that applying the general (\weak to strong") transformationof [4] seems an over-kill since in our case the weakly one-way function f has a special structure(e.g., it is hard to invert almost on all points on which it is not the identity transformation).Furthermore, it seems that ad-hoc methods may be applicable to the function f resulting from aspeci�c transformation. However, in our attempts to avoid using [4], we were not able to avoidusing random walks on expander graphs (and since expander graphs are the only non-elementarycomponent of [4] we see no point in presenting these alternatives here). Certainly, it will bebetter to the use of expander graphs and perform Step (3) in a more e�cient manner.Another obvious open problem is to construct one-way 1-1 functions based on the intractabilityof factoring. To achieve this goal using our method one will need to construct a family of one-way permutations satisfying the additional properties speci�ed in De�nition 3. (The standardconstruction of a family of one-way permutations based on factoring [12] does not satisfy theaugmented one-wayness condition.)AcknowledgmentsWe would like to thank Eric Bach and Hugo Krawczyk for helpful discussions and comments.9
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