
Increasing the Expansion of Pseudorandom Generators(Extracts from a book on Cryptography)1Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 24, 1996
1Copyright (c) 1995 by Oded Goldreich. Permission to make copies of part or all of this work forpersonal or classroom use is granted without fee provided that copies are not made or distributed forpro�t or commercial advantage and that new copies bear this notice and the full citation on the �rst page.Abstracting with credit is permitted.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 1Preface: The purpose of the following extract is to provide an accessible source to anunpublished result of Goldreich and Micali (1984) by which the expansion of pseudo-random generators can be increased; see Theorem 3 (below).3.3 De�nitions of Pseudorandom GeneratorsPseudorandom ensembles, de�ned above, can be used instead of uniform ensemble in any e�cientapplication without noticeable degradation in performance (otherwise the e�cient application canbe transformed into an e�cient distinguisher of the supposedly-pseudorandom ensemble fromthe uniform one). Such a replacement is useful only if we can generate pseudorandom ensemblesat a cheaper cost than required to generate a uniform ensemble. The cost of generating anensemble has several aspects. Standard cost considerations are reected by the time and spacecomplexities. However, in the context of randomized algorithms, and in particular in the contextof generating probability ensembles, a major cost consideration is the quantity and quality of therandomness source used by the algorithm. In particular, in many applications (and especially incryptography), it is desirable to generate pseudorandom ensembles using as little randomness aspossible. This leads to the de�nition of a pseudorandom generator.3.3.1 Standard De�nition of Pseudorandom GeneratorsDe�nition 1 (pseudorandom generator - standard de�nition): A pseudorandom generator is adeterministic polynomial-time algorithm, G, satisfying the following two conditions:1. expansion: there exists a function l : N 7! N so that l(n) > n for all n 2 N, and jG(s)j =l(jsj) for all s 2 f0; 1g�.The function l is called the expansion factor of G.2. pseudorandomness (as above): the ensemble fG(Un)gn2N is pseudorandom.Again, we call the input to the generator a seed. The expansion condition requires that thealgorithm G maps n-bit long seeds into l(n)-bit long strings, with l(n) > n. The pseudoran-domness condition requires that the output distribution, induced by applying algorithm G toa uniformly chosen seed, is polynomial-time indistinguishable from uniform (although it is notstatistically close to uniform - see justi�cation in previous subsection).The above de�nition says little about the expansion factor l :N 7!N. We merely know thatfor every n it holds that l(n) � n + 1, that l(n) � poly(n), and that l(n) can be computed intime polynomial in n. Clearly, a pseudorandom generator with expansion factor l(n) = n + 1is of little value in practice, since it o�ers no signi�cant saving in coin tosses. Fortunately, asshown in the subsequent subsection, even pseudorandom generators with such small expansionfactor can be used to construct pseudorandom generators with any polynomial expansion factor.Hence, for every two expansion factors, l1 : N 7! N and l2 : N 7! N, that can be computed inpoly(n)-time, there exists a pseudorandom generator with expansion factor l1 if and only if there

2exists a pseudorandom generator with expansion factor l2. This statement is proven by using apseudorandom generator with expansion factor l1(n) def= n+ 1 to construct, for every polynomialp(�), a pseudorandom generator with expansion factor p(n). Note that a pseudorandom generatorwith expansion factor l1(n) def= n+ 1 can be derived from any pseudorandom generator.3.3.2 Increasing the Expansion Factor of Pseudorandom GeneratorsGiven a pseudorandom generator, G1, with expansion factor l1(n) = n + 1, we construct apseudorandom generator G with polynomial expansion factor, as follows.Construction 2 Let G1 a deterministic polynomial-time algorithm mapping strings of lengthn into strings of length n + 1, and let p(�) be a polynomial. De�ne G(s) = �1 � � ��p(jsj), wheres0 def= s, the bit �i is the �rst bit of G1(si�1), and si is the jsj-bit long su�x of G1(si�1), for every1� i�p(jsj). (i.e., �isi = G1(si�1))Hence, on input s, algorithm G applies G1 for p(jsj) times, each time on a new seed. ApplyingG1 to the current seed yields a new seed (for the next iteration) and one extra bit (which is beingoutput immediately). The seed in the �rst iteration is s itself. The seed in the ith iteration is thejsj-long su�x of the string obtained from G1 in the previous iteration. Algorithm G outputs theconcatenation of the \extra bits" obtained in the p(jsj) iterations. Clearly, G is polynomial-timecomputable and expands inputs of length n into output strings of length p(n).Theorem 3 Let G1, p(�), and G be as in Construction 2 (above). Then, if G1 is a pseudorandomgenerator then so is G.Intuitively, the pseudorandomness of G follows from that of G1 by replacing each application ofG1 by a random process which on input s outputs �s, where � is uniformly chosen in f0; 1g.Loosely speaking, the indistinguishability of a single application of the random process from asingle application of G1 implies that polynomially many applications of the random process areindistinguishable from polynomially many applications of G1. The actual proof uses the hybridtechnique.Proof: The proof is by a \reducibility argument" . Suppose, to the contradiction, that G is nota pseudorandom generator. It follows that the ensembles fG(Un)gn2N and fUp(n)gn2N are notpolynomial-time indistinguishable. We will show that it follows that the ensembles fG1(Un)gn2Nand fUn+1gn2N are not polynomial-time indistinguishable, in contradiction to the hypothesis thatG1 is a pseudorandom generator with expansion factor l1(n) = n+ 1. The implication is proven,using the hybrid technique.For every k, 0� k� p(n), we de�ne a hybrid Hkp(n) as follows. First we de�ne, for every k,a function gkn : f0; 1gn 7! f0; 1gk by letting g0n(x) def= � (the empty string) and gk+1n (x) = �gkn(y),where � is the �rst bit of G1(x) and y is the n-bit long su�x of G1(x) (i.e., �y = G1(x)). Namely,for every k � p(jxj), the string gkn(x) equals the k-bit long pre�x of G(x). De�ne the random

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 3variable Hkp(n) resulting by concatenating a uniformly chosen k-bit long string and the randomvariable gp(n)�k(Un). Namely Hkp(n) def= U (1)k gp(n)�k(U (2)n)where U (1)k and U (2)n are independent random variables (the �rst uniformly distributed over f0; 1gkand the second uniformly distributed over f0; 1gn). Intuitively, the hybrid Hkp(n) consists of thek-bit long pre�x of Up(n) and the (p(n)� k)-bit long su�x of G(Xn), where Xn is obtained fromUn by applying G1 for k times each time to the n-bit long su�x of the previous result. However,the later way of looking at the hybrids is less convenient for our purposes.At this point it is clear that H0p(n) equals G(Un), whereas Hp(n)p(n) equals Up(n). It follows that ifan algorithmD can distinguish the extreme hybrids then D can also distinguish two neighbouringhybrids, since the total number of hybrids is polynomial in n and a non-negligible gap betweenthe extreme hybrids translates into a non-negligible gap between some neighbouring hybrids.The punch-line is that, using the structure of neighbouring hybrids, algorithm D can be easilymodi�ed to distinguish the ensembles fG1(Un)gn2N and fUn+1gn2N. Details follow.The core of the argument is the way in which the distinguishability of neighbouring hybridsrelates to the distinguishability of G(Un) from Un+1. As stated, this relation stems from thestructure of neighbouring hybrids. Let us, thus, take a closer look at the hybrids Hkp(n) and Hk+1p(n),for some 0 � k � p(n) � 1. To this end, de�ne a function fm : f0; 1gn+1 7! f0; 1gm by lettingf0(z) def= � and fm+1(z) def= �gm(y), where z = �y with �2f0; 1g.Claim 3.1:1. Hkp(n) = U (1)k fp(n)�k(Xn+1), where Xn+1 = G1(U (2)n).2. Hk+1p(n) = U (1)k fp(n)�k(Yn+1), where Yn+1 = U (3)n+1.Proof:1. By de�nition of the functions gm and fm, we have gm(x) = fm(G1(x)). Using the de�nitionof the hybrid Hkp(n), it follows thatHkp(n) = U (1)k gp(n)�k(U (2)n) = U (1)k fp(n)�k(G1(U (2)n))2. On the other hand, by de�nition fm+1(�y) = �gm(y), and using the de�nition of the hybridHk+1p(n), we get Hk+1p(n) = U (1)k+1gp(n)�k�1(U (2)n) = U (1)k fp(n)�k(U (3)n+1)2Hence distinguishing G1(Un) from Un+1 is reduced to distinguishing the neighbouring hybrids(i.e. Hkp(n) and Hk+1p(n)), by applying fp(n)�k to the input, padding the outcome (in front of) by auniformly chosen string of length k, and applying the hybrid-distinguisher to the resulting string.Further details follow.

4 We assume, to the contrary of the theorem, thatG is not a pseudorandom generators. Supposethat D is a probabilistic polynomial-time algorithm so that for some polynomial q(�) and forin�nitely many n's it holds that�(n) def= jProb(D(G(Un)=1)� Prob(D(Up(n))=1)j > 1q(n)We derive a contradiction by constructing a probabilistic polynomial-time algorithm, D0, thatdistinguishes G1(Un) from Un+1.Algorithm D0 uses algorithm D as a subroutine. On input � 2 f0; 1gn+1, algorithm D0operates as follows. First, D0 selects an integer k uniformly in the set f0; 1; :::; p(n)� 1g, next D0selects � uniformly in f0; 1gk, and �nally D0 halts with output D(�fp(n)�k(�)), where fp(n)�k isas de�ned above.Clearly, D0 can be implemented in probabilistic polynomial-time (in particular fp(n)�k iscomputed by applying G1 polynomially many times). It is left to analyze the performance of D0on each of the distributions G1(Un) and Un+1.Claim 3.2: Prob(D0(G(Un))=1) = 1p(n) p(n)�1Xk=0 Prob(D(Hkp(n))=1)and Prob(D0(Un+1)=1) = 1p(n) p(n)�1Xk=0 Prob(D(Hk+1p(n))=1)Proof: By construction of D0 we get, for every � 2 f0; 1gn+1,Prob(D0(�)=1) = 1p(n) p(n)�1Xk=0 Prob(D(Ukfp(n)�k(�))=1)Using Claim 3.1, our claim follows. 2Let dk(n) denote the probability that D outputs 1 on input taken from the hybrid Hkp(n) (i.e.,dk(n) def= Prob(D(Hkp(n)=1)). Recall that H0p(n) equals G(Un), whereas Hp(n)p(n) equals Up(n). Hence,d0(n) = Prob(D(G(Un)) = 1), dp(n)(n) = Prob(D(Up(n)) = 1), and �(n) = jd0(n) � dp(n)(n)j.Combining these facts with Claim 3.2, we get,jProb(D0(G1(Un))=1)� Prob(D0(Un+1)=1)j = 1p(n) � j p(n)�1Xk=0 dk(n)� dk+1(n)j= jd0(n)� dp(n)(n)jp(n)= �(n)p(n)Recall that by our (contradiction) hypothesis �(n) > 1q(n) , for in�nitely many n's. Contra-diction to the pseudorandomness of G1 follows.

