
Quantifying Knowledge Complexity�Oded Goldreichy Erez PetrankzJuly 17, 1997AbstractOne of the many contributions of the paper of Goldwasser, Micali and Racko� is the in-troduction of the notion of knowledge complexity. Knowledge complexity zero (also known aszero-knowledge) have received most of the attention of the authors and all the attention of theirfollowers. In this paper, we present several alternative de�nitions of knowledge complexity andinvestigate the relations between them.

�An extended abstract of this paper appeared in the 32nd Annual IEEE Symposium on the Foundations of Com-puter Science (FOCS91) held in San Juan, Puerto Rico, October 1991.yDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il.zComputer Science Department, Technion { Israel Institute of Technology, Haifa 32000, Israel. E-mail:erez@cs.technion.ac.il. 0

1 IntroductionOne of the many contributions of the seminal paper of Goldwasser, Micali and Racko� [18] is theintroduction of the notion of knowledge complexity. Knowledge complexity is intended to measurethe computational advantage gained by interaction. Hence, something that can be obtained withoutinteraction is not considered knowledge. The latter phrase is somewhat qualitative and suppliesthe intuition underlying the de�nition of zero-knowledge (i.e., knowledge complexity zero) given in[18]. Quantifying the amount of knowledge gained by interaction, in case it is not zero, is moreproblematic.1 We stress that the de�nition of zero-knowledge does not depend on the formulationof the amount of knowledge gained since this de�nition addresses the case in which no knowledgeis gained.1.1 Motivation for the study of Knowledge ComplexityWhatever a party can compute in solitude is a function of the information it has and its computingpower. However, when two (or more) parties interact their individual computing abilities mayincrease as a result of information they receive from other parties. Knowledge complexity is intendedto capture this increase in computing ability. Thus, knowledge complexity is a fundamental measureof interaction between parties, and it di�ers from other measures of interaction such as informationentropy [27, 9] and communication complexity [28, 24]. The following examples may help to illustratewhat we mean. In all these examples we assume that Bob is restricted to probabilistic polynomial-time (in the parameter n), whereas no computation restrictions are placed on Alice. We also assumethroughout this discussion that integer factorization is an infeasible task (i.e., cannot be performedin probabilistic polynomial-time).Example 1 Suppose that Alice uniformly selects a string r 2 f0; 1gn and sends it to Bob. Froman information theoretic point of view, Bob has received n bits (of maximum entropy) and thesame holds with respect to the point of view of communication complexity. However, from thecomputational complexity point of view Bob has received nothing as he could have generated r byhimself. Thus, Alice's message carries knowledge complexity zero (i.e., is zero-knowledge).Example 2 Suppose that Alice just sends Bob the string 1n. Still, n bits are communicatedbut both information theory and computational complexity view the interaction as being of zerocontents. Again, Alice message has knowledge complexity zero since again Bob might have producedthe received message in solitude.Example 3 Suppose that Alice sends Bob the prime factorization of an n-bit composite numberwhich is given to both of them from the outside. Again, information theory says that Bob hasgained nothing from Alice's message (since the prime factorization is determined by the compositenumber known to Bob). However, from the point of view of computational complexity Bob hasgained a lot: he can now perform many tasks which he could not have done before receiving thefactorization (e.g., extract square roots modulo the composite number).The above examples are well known and so is their analysis which has been focused at thequalitative question of whether Alice's behavior (in these examples) is zero-knowledge or not.However, as is the case in information theory and communication complexity, the spectrum of1It seems that, in general, quantitative notions are harder to handle than qualitative ones.1

possible behaviors is wider than being binary (i.e., carrying zero-knowledge or not). The followingexamples are aimed at demonstrating this point.Example 4 Both Alice and Bob are given a composite number, denoted N , which is the productof two primes each congruent to 3 mod 4. Let QNR+N denote the set of quadratic non-residues modN with Jacobi Symbol +1. Recall that one fourth of the elements of Z�N are in QNR+N and thatit is considered infeasible to distinguish elements of QNR+N from quadratic residues mod N [17].Suppose that Alice uniformly selects a y 2 QNR+N and sends it to Bob. It seems that Bob hasgained some knowledge (as we don't know how to uniformly sample QNR+N in polynomial-timewhen only given N). On the other hand, it seems that Bob did not gain much knowledge. Inparticular, he still cannot factor N (i.e., with the help of y). To see that an element of QNR+Nadds little knowledge towards the factorization of N (or any other NP-task) note that Bob canuniformly select a residue with Jacobi Symbol +1 mod N . Suppose that Bob does so and let ydenote the residue produced by Bob. With probability 1=2, y 2 QNR+N (and otherwise y is aquadratic residue modulo N). Bob does not know whether y is in QNR+N but if elements in QNR+Nfacilitate the factorization of N then Bob may try to factor N and succeed whenever y is indeed inQNR+N (which as we said happens with probability 1=2). Thus, the message sent by Alice seemsto yield knowledge but not much (especially when compared to Alice's message in Example 3).Another point worth noting is that repeated executions of Alice's step do not increase theknowledge gained by Bob. This holds since given any y 2 QNR+N , Bob can easily generate (byhimself!) uniformly distributed elements of QNR+N (e.g., by uniformly selecting r 2 Z�N andoutputting y � r2 (mod N)).Example 5 Let N be as in Example 4. Suppose that Alice agrees to provide Bob with the leastsigni�cant bit of the square root (mod N) of any quadratic residue mod N of Bob's choice. By[20, 3] such an answer (by Alice) does yield knowledge to Bob and furthermore jN j answers of thisform allow Bob to factor N . Thus, although each answer yields little knowledge (as can be arguedanalogously to Example 4), many answers yield substantial knowledge.Examples 3, 4 and 5 demonstrate that there is more to knowledge complexity than merely de-termining whether a protocol is zero-knowledge or not. Following Goldwasser, Micali and Racko�[18], we suggest that the knowledge gained by interaction can be quanti�ed. The analogy to infor-mation theory and communication complexity is telling: none of these stops at a binary distinctionbetween zero and positive.Goldwasser, Micali and Racko� have suggested to characterize languages according to the knowl-edge complexity of their interactive proof systems [18]. The lowest class consists of languages havingknowledge complexity zero. This class, also known as zero-knowledge, has received much attentionin recent years. The following example may serve as a teaser for the low (non-zero) levels of theknowledge complexity hierarchy:Example 6 composing zero-knowledge languages. Consider, for example, the union of two lan-guages each having a (perfect) zero-knowledge interactive proof system. One can certainly provemembership in the union by proving membership in one of these languages, but this, in general,seems to leak some knowledge (yet not much). Likewise, consider the language consisting of pairsso that exactly one of the elements in the pair belongs to a speci�c language having a (perfect) zero-knowledge proof system. These composed languages are not known to be (perfect) zero-knowledge2

(in general) and yet seem to have low perfect knowledge-complexity (especially when compared tothe perfect knowledge-complexity of PSPACE-complete languages).To summarize, we believe that the concept of knowledge complexity is a fundamental one andthat it may play an important role in Complexity Theory. Before this can happen, an adequatede�nition of knowledge complexity has to be supplied. In this paper we explore several alternativeways of de�ning knowledge complexity and investigate the relations between them. But before westart, let us recall some of basic notions and frameworks regarding zero-knowledge.1.2 Background on zero-knowledgeLoosely speaking, an interactive proof system for a language L is a two-party protocol, by whicha powerful prover can \convince" a probabilistic polynomial time veri�er of membership in L, butwill fail (with high probability) when trying to fool the veri�er into \accepting" non-members.An interactive proof is called zero-knowledge if the interaction of any probabilistic polynomialtime machine with the predetermined prover, on common input x 2 L, can be \simulated" by aprobabilistic polynomial time machine (called the simulator). Thus, the de�nition considers twotypes of probability ensembles, where each ensemble associates a distribution to each x 2 L. Thetwo di�erent distribution associated to each x 2 L are:1. The distribution of the view of a probabilistic polynomial time machine with the prover oncommon input x 2 L.2. The output distribution of a probabilistic polynomial time machine (the simulator) on thesame input x.It is required that for every distribution ensemble of type (1), there is a distribution ensemble oftype (2) such that these two distribution ensembles are similar. Similarity is interpreted in threepossible ways yielding three di�erent de�nitions of zero-knowledge.1. The most conservative interpretation is that the ensembles are identical. The resulting def-inition is called perfect zero-knowledge. An example of a language having a perfect zero-knowledge interactive proof is Quadratic Non-Residuosity [19].2. Slightly more liberal is the requirement that the ensembles are statistically close, namely thattheir variation distance (Norm-1 di�erence) is negligible (i.e., smaller than any polynomialfraction in the length of the common input). The resulting de�nition is called statistical (oralmost perfect) zero-knowledge. For example, the results of Fortnow [10] and of Aiello andH�astad [2] on the \complexity of zero-knowledge" refer to this de�nition.3. Most liberal is the requirement that the ensembles are indistinguishable by all probabilisticpolynomial time tests. The resulting de�nition is called computational zero-knowledge. Forexample, the result of [13] asserting that \all languages in NP have zero-knowledge proofsprovided that commitment schemes exist" refers to this de�nition.1.3 De�ning Knowledge ComplexityUnless otherwise indicated, the following discussion refers to the de�nitions of knowledge complexityin which the simulated conversations are close to the real one in the statistical sense. Namely, weconsider the hierarchy of knowledge complexity extending statistical zero-knowledge (as the zerolevel). Here we consider knowledge complexity in the context of interactive proof systems. Theactual de�nitions apply to any pair of interactive machines.3

A �rst attempt. An attempt to formalize the \amount of knowledge" (in case it is not zero)has appeared in the preliminary version of [18] but was omitted from the later version of thiswork [19] since the authors themselves found it inadequate (Micali, private communication). Bythe preliminary formulation of [18] the knowledge complexity of an interactive proof (P; V) issaid to be k(jxj) if there exists a simulator which can generate a distribution M(x) such that thevariation distance2 of M(x) and (P; V)(x) is bounded above by 1� 2�k(jxj)+ jxj�c for all constantsc > 0 and su�ciently long x's. Hence, any prover which with probability 12 sends nothing, leaks(by this de�nition) at most 1 bit of knowledge. In particular, a prover that with probability 12reveals a Hamiltonian path in the input (Hamiltonian) graph (and otherwise reveals nothing),is considered to leak only one bit of knowledge (contradicting our feeling that this prover givesaway a lot). However, the same analysis applies to a prover which merely tell the veri�er whetherthe input graph is Hamiltonian or not. Thus, this measure does not distinguish between theseprovers and this contradicts our feelings that the former prover gives away much more knowledge.Furthermore, by this de�nition, all protocols have knowledge complexity bounded by k(jxj) =log(jxj)o(1) ; the reason being that one can simulate them by any distribution, since the variation distance(of any distribution) towards the real interaction is at most 1 which, in turn, is smaller than1 � 2�k(jxj) + jxj�O(1) = 1 � jxj1=o(1) + jxj�O(1). In particular, it follows that all languages in theclass IP (i.e., all languages having interactive proof systems) have knowledge complexity log(jxj)o(1) .This contradicts our feeling that one may give away more knowledge; see below. We mention that,prior to our work, the notion of knowledge complexity (apart from zero-knowledge) has not beeninvestigated any further.A suggested criteria. Our search for a de�nition of knowledge complexity is guided by theintuitive discussion in Subsection 1.1. In particular, we postulate that the knowledge complexityof a protocol must be bounded above by its communication complexity. We also believe that thisupper bound should be obtainable, by some protocols, for every possible value of the communicationcomplexity. Thus, knowledge complexity should range between zero and polynomial.We suggest several de�nitions of knowledge complexity and discuss them in light of the abovecriteria. Our de�nitions utilize well-established frameworks such as oracle machines, communicationcomplexity, conditional probability spaces and machines which accepts hints. Among the de�nitionsof knowledge complexity presented below, we �nd the following most intuitive.Knowledge as communication in an alternative interaction (or simulation with thehelp of an oracle). A prover P is said to yield at most k(jxj) bits of knowledge if whatevercan be e�ciently computed through an interaction with P on input x (in the language), canalso be e�ciently computed on input x through an interaction with an alternative machine whichsends at most k(jxj) bits. Hence, the computational advantage gained by the interaction withthe prover who may send much more than k(jxj) bits can be simulated by an interaction with amachine which only sends k(jxj) bits. In some sense, this approach reduces knowledge complexity tocommunication complexity. Clearly, knowledge complexity as de�ned here is bounded above by thecommunication complexity and we show (in Section 5) that the bound may be met in some cases.We note that, without loss of generality, the \knowledge-giving-machine" can be made memorylessand deterministic, by supplying it with all previous messages and with coin tosses. Hence, the\knowledge-giving-machine" is merely an oracle (and we may think of the simulation as beingperformed by an oracle machine and count the number of its binary queries). We present three2Recall that the variation distance between the random variables Y and Z is 12P� jProb(Y = �)�Prob(Z = �)j.4

variants of the above de�nition. These variants are analogous to common variants of probabilisticcommunication complexity. The most conservative (or \strict") approach is to consider the worst-case number of bits communicated on an input x. The most liberal approach is to consider theaverage case (the average is taken only on the coin-tosses of the simulator, the input x is �xed).In between and (in light of our results) much closer to the worst-case variant is a relaxation of theworst-case variant in which the simulator is only required to produce output with probability atleast one half (i.e., this is a Las Vegas variant). This last variant is hereafter referred to as theoracle de�nition of knowledge complexity.The above de�nition corresponds to our intuition that Alice behavior in Examples 4 and 5 givesaway very little knowledge (in each message). This seem clear with respect to Example 5 whereonly one bit is communicated and in Example 4 (when one uses the intermediate oracle de�nition).3On the other hand, Alice's behavior in Example 3 as well as repeated executions of the protocol inExample 5 seem to have knowledge complexity which grows with the length of the prime factors.This corresponds to our intuition that a lot of knowledge may be gained by Bob in these cases.Knowledge as the measure of a good conditional probability space. An alternative ap-proach to knowledge complexity is to provide the simulator (of the interaction between the proverand the veri�er) no help, but rather relax the requirement concerning its output distribution. In-stead of requiring, as in the zero-knowledge case, that the output distribution of the simulationbe similar to the distribution of the \real interaction", we only require that former distributioncontains a (good) subspace which is similar to the distribution of the \real interaction". Knowl-edge complexity is de�ned to reect the density of this good subspace (in the output distribution).Speci�cally, knowledge complexity is de�ned as (minus) the logarithm of the density of this goodsubspace in the entire probability space (i.e., the output distribution). Again, knowledge complex-ity as de�ned here is bounded above by the communication complexity and we show (in Section 5)that the bound may be met in some cases. Also note that Alice's behavior in Example 4 is clearlyof knowledge complexity 1 according to the de�nition here. Interestingly, the de�nition of knowl-edge complexity as a \logarithm of the good fraction" agrees with the informal discussion in [18](although the formal de�nition presented there was di�erent { see above). In fact, Micali (privatecommunication) has independently discovered the \fraction" de�nition.We show that knowledge-complexity as per the fraction measure approximates (up to an additiveconstant) the oracle measure of knowledge-complexity. The fact that these intuitive but seeminglydi�erent approaches to knowledge-complexity yields very close measures adds to our feeling thatthese de�nitions are the adequate ones.Knowledge as the length of a hint. Our last interpretation of knowledge-complexity is asthe length of the shortest hint which allows an e�cient machine to simulate the real interaction.Unlike in the oracle approach to knowledge complexity, this hint is a predetermined function of theinput and, in particular, does not depend on the coin-tosses of the simulator (or even the veri�er).Hence, the amount of knowledge (in the hint sense) leaked by two executions of the same protocolon the same input, always equals the amount of knowledge leaked by a single execution. We notethat the hint-length measure was suggested in [6], and seems adequate in the information theoreticmodel discussed there.We have several reasons for objecting to the last measure of knowledge-complexity (i.e., thehint length measure). Firstly, knowledge complexity by the hint measure is not bounded by the3Using the strict oracle measure of knowledge complexity, we only establish a super-logarithmic upper bound; seeresults below. 5

communication complexity; this is shown explicitly in Section 5. In particular, we present a protocolin which Alice sends a single bit but no polynomial-length hint can enable to compute this bit andso simulate this protocol (let alone in polynomial-time). Furthermore, we conjecture that theprotocols in Examples 4 or 5 (even when executed once) have knowledge complexity which growswith the length of the prime factors, which puts them in the same category as the protocol ofExample 3 (whereas our intuition is that the latter yields much more knowledge). Nevertheless,the hint measure can be used to satisfactory bound the knowledge complexity of the languages inExample 6 (i.e., 1-bit long hint su�ces there). This may raise hopes that, although too conservativeas a measure for protocols, the hint measure may be adequate for de�ning knowledge complexityclasses of languages (i.e., by considering the knowledge complexity of the cheapest interactive proof).These hopes should be abandoned if one believes, as us, that all languages in IP must have at mostpolynomial knowledge-complexity: In Section 6 we extend the work of Aiello and H�astad [2], who inturn follow Fortnow's ideas [10], showing that languages having polynomial knowledge-complexityin the hint sense are in AM[2].4 Thus, languages having polynomial knowledge-complexity by thehint measure are unlikely to contain all of IP.1.4 Relating the various de�nitions of Knowledge ComplexityIn order to summarize our results concerning the relations between the various de�nitions, wepresent the following unsound notations.5 Let kcstrictoracle(�); kcoracle(�) and kc1=2oracle(�) denote theknowledge complexity of a protocol � = (P; V) according to the strict, average and \intermediate"(i.e., output with probability 1=2) variants of the oracle approach. Likewise, kcfraction(�) andkchint(�) denote the knowledge complexity of � according to the \fraction" and \hint" approaches.In the following lines we informally summarize our results concerning the relations between thevarious de�nitions:1. Obvious inclusions between the various oracle measures: For every protocol �,kcoracle(�)� 2 � kc1=2oracle(�) � kcstrictoracle(�) � kchint(�)2. Closeness of the oracle and the fraction measures: For every protocol �,kcfraction(�)� 1 � kc1=2oracle(�) � kcfraction(�) + 43. The strict oracle measure versus the oracle measure: For every protocol � and any unboundedfunction g : N ! N , kcstrictoracle(�) � kc1=2oracle(�) + log(log(jxj)) + g(jxj)On the other hand, for any c > 0 and for any polynomial p : N ! N , there exists a protocol� such that kc1=2oracle(�) = p(jxj) and kcstrictoracle(�) � kc1=2oracle(�) + log(log(jxj)) + c.4We also show that languages having logarithmic knowledge-complexity in the hint sense are in coAM[2].5The notations below suggest that knowledge-complexity is a functional which assigns each protocol a uniquefunction (i.e., upper bound). This is inaccurate since actually each protocol is assigned a (countable) set of functions;see Section 2. Still, we urge the reader to ignore this point for the time being, and think of the knowledge-complexityof a protocol, according to each measure, as of a single function. The formal interpretation of the results below canbe derived by using the notational conventions of Section 2.6

(Here and throughout the rest of the paper, all logarithms are to base 2.)4. The average oracle measure may be much smaller than the oracle measure: For every polyno-mial p(jxj), there exists a protocol � such that kcoracle(�) � 1p(jxj) and kc1=2oracle(�) � p(jxj).5. The hint measure may be much larger than the oracle measure: There exists a protocol � suchthat kcstrictoracle(�) = 1 and kchint(�) > p(jxj) for any polynomial p.6. Each measure gives rise to a strict hierarchy: For every polynomial-time computable functionk(�), there exists an protocol � such that kc(�) � k(jxj) by all the measures suggested in thispaper, yet it also holds that kc(�) > k(jxj)� 3 by all these measures.The last result asserts that the knowledge complexity hierarchy of protocols (classi�ed by theirknowledge complexity) is \rich". We remark that an analogous result for the knowledge complexityof languages would separate BPP from PSPACE.Among our proofs of the above results, we �nd the proof which upper bounds the fractionmeasure by the oracle measure (i.e., the proof of Proposition 4.3) to be the most interesting one.1.5 Subsequent worksFollowing the conference publication of this paper, subsequent work has been done in two directions.The �rst direction, pursued in [7], [15] and [26], focuses on the oracle (or, equivalently fraction)measure of knowledge complexity and is aimed at relating the knowledge complexity of languagesto their computational complexity. The �rst step was taken by Bellare and Petrank [7] who showedthat any language having a r(�)-round interactive proof of (statistical) knowledge complexity k(�),where k(n) � r(n) = O(logn), resides in BPPNP . Subsequently, Goldreich, Ostrovsky and Pe-trank [15] showed that all languages that have logarithmic (statistical) knowledge complexity arein BPPNP . This was done by providing a re�ned analysis of a procedure in [7] and by relatingthe hierarchies of statistical and perfect knowledge-complexity with respect to the honest veri�er6.In particular it was shown how to transform an interactive proof of statistical knowledge com-plexity k(�) (w.r.t. the honest veri�er) into an interactive proof of perfect knowledge complexityk(�) + O(log(�)) (w.r.t. the honest veri�er). Petrank and Tardos [26] have extended [2] and [15]and showed that languages with logarithmic knowledge complexity are in AM \ coAM. Thus,unless the polynomial time hierarchy collapses, NP-complete languages have super-logarithmicknowledge-complexity. They also discussed the connection between the knowledge-complexity, k(�),of an interactive proof and its error probability,7 �(�), and showed that if �(n) < 2�3k(n) then thelanguage proven has to be in the third level of the polynomial time hierarchy.The second direction, pursued by Aiello, Bellare and Venkatesan [1], focuses on knowledge-complexity under the average oracle measure. Firstly, they introduced a more re�ned de�nition ofaverage knowledge-complexity and related it to the notion de�ned in this paper. Secondly, theyshowed that the perfect and statistical average knowledge-complexity hierarchies of languages areclose up to a negligible additive term. This provides an alternative characterization of the class ofStatistical Zero-Knowledge (i.e., as languages having negligible-on-the-average perfect knowledge-complexity). Thirdly, they showed that languages with average logarithmic knowledge-complexityreside in BPPNP . This result, which suggests that as far as languages are concerned averageknowledge-complexity is not very far from knowledge-complexity (in the non-average oracle sense),6 See Subsection 3.5.7 Note that reducing the error probability via repetition is not free in our context: it may increase the knowledge-complexity. 7

stands in contrast to our results by which there are protocols for which the average knowledge-complexity is vastly smaller than the non-average version.1.6 OrganizationIn Section 2 we present the formal de�nitions of the various knowledge complexity measures. Wealso state some simple connections between the various measures. In Section 3 we further discussthese de�nitions. We proceed, in Section 4 by showing inclusion relations between the variousmeasures. This section includes the assertion that the oracle measure and the fraction measure areequal up to an additive constant. In Section 5 we present some separating protocols, i.e., protocolsfor which the various measures assign di�erent knowledge complexity functions. These protocolsdemonstrate why we cannot achieve tighter inclusion relations between the measures (tighter thanthe relations shown in Section 4). In Section 5 we also demonstrate the strictness of the hierarchyof protocols classi�ed by their knowledge complexity. In Section 6, we discuss the hint measure ofknowledge complexity and prove properties of this measure which indicate that it is an inadequatemeasure.2 De�nitions of knowledge complexity and some basic resultsIn this section we present the various de�nitions of knowledge complexity. In each of the variousde�nitions, knowledge complexity zero coincides with the (known) concept of zero-knowledge. Forsake of brevity we present only the de�nitions of knowledge complexity that extend statistical zero-knowledge. Analogue de�nitions can be derived to extend perfect zero knowledge and computationalzero-knowledge. All the analogous results (presented in this paper) hold, except for the perfectknowledge-complexity analogue of Proposition 4.7 and the computational knowledge-complexityanalogue of Section 6.For simplicity we de�ne knowledge complexity only in the context of interactive proof systemswhere we are interested in the knowledge given away by the prover. However, these de�nitionsapply to any interaction and to the knowledge given away by any of the interactive parties. Also,for simplicity, we consider in all our de�nitions only machines (veri�ers and simulators) which runin strict polynomial time. Analogue de�nitions and results for machines which run for expectedpolynomial time, can be derived (although, in some cases, the proofs are slightly more involved).Interactive proof systems: The de�nition of interactive proof systems are quite robust underthe choice of error probability, as long as it is bounded away from 1=2. The reason being thatthe error probability can be easily decreased up-to an exponentially vanishing function (of theinput length), by using sequential (or parallel) repetitions of the proof system. Things become lessrobust when zero-knowledge is involved, since the latter is not known to be preserved under parallelrepetitions (see negative results in [12]). Still, zero-knowledge (w.r.t. auxiliary-input) is preservedunder sequential repetitions (see [14]). However, not all measures of knowledge complexity de�nedbelow are preserved under sequential repetitions. Thus, when talking about an interactive proofof certain knowledge complexity we must specify the error probability of the system. Below, weadopt the convention by which (unless stated otherwise) the error probability of an interactiveproof is a negligible function of the input. That is, (P; V) is an interactive proof system for L if forsome function �: N! (0; 1], where for every positive polynomial p, �(n) < 1=p(n) holds for all but�nitely many n's, it holds that 8

Completeness: For every x 2 L, the veri�er V accepts with probability at least 1 � �(jxj) wheninteracting with P on common input x.Soundness: For every x 62 L and any prover strategy P 0, the veri�er V accepts with probability atmost �(jxj) when interacting with P 0 on common input x.Some Standard Notations: Let (P; V)(x) be a random variable representing V 's view of theinteraction of P and V on input x. This includes V 's coin tosses and the (the transcript of) theinteraction. The probability space is that of all possible outcomes of the internal coin-tosses of Vand P . We will be interested in probability ensembles which associate a distribution (equivalently,a random variable) to each x 2 L � f0; 1g�. Speci�cally, we will consider ensembles of the formf(P; V 0)(x)gx2L and fM 0(x)gx2L, where V 0 is an arbitrary polynomial-time interactive machine andM 0 is a simulator. When we say that two ensembles, fD1(x)gx2L and fD2(x)gx2L, are statisticallyclose we mean that the variation distance between them is a negligible function in the length of x.That is, for every positive polynomial p and for all su�ciently long x'sX� jProb(D1(x) = �)� Prob(D2(x) = �)j < 1=p(jxj)A Non-Standard Notation: The knowledge-complexity measures de�ned below are upperbounds. Each measure associates with each protocol a (countable) set of upper bound functionsrather than a single function.8 This raises a problem when we want to compare two di�erentmeasures. To this end we adopt the following notational convention regarding inequalities betweensets of functions. All functions we consider map strings to real numbers, and by f � g we meanthat f(x) � g(x) for all x 2 f0; 1g�. For sets of functions F and G and a function h, the notationF � G+h means 8g 2 G9f 2 F so that f � g+h. Consequently F � G+h means 8f 2 F9g 2 Gso that f � g + h (F � h means that 8f 2 F so that f � h), and F = h means 9f 2 F so thatf = h. This notational convention is consistent with the intuitive meaning of upper bounds; for ex-ample, F � G suggests that upper bounds in F are not worse than those in G which indeed meansthat for every g 2 G there exists an f 2 F so that f � g. Thus, when considering inequalities ofthe type F � G, the reader may get the spirit of the statement by thinking of both F and G as offunctions.In the following, we shall use functions over the integers, to describe the knowledge complexityof a protocol. Some of our results require that this function is polynomial time computable in thefollowing (liberal) sense:De�nition 2.0 We say that the knowledge complexity bound, k : N ! N, is polynomial time com-putable if there exists a probabilistic polynomial time algorithm that on input 1n outputs k(n) withprobability at least 23 (equivalently, at least 1� 2�n).This de�nition is more liberal than the standard one, in which, the input (n) is given to themachine in binary representation, thus allowing the machine to run only for poly(log(n)) numberof steps.8The reason is that each simulator gives rise to such an upper bound function, and it is not clear whether anin�mum exists. 9

2.1 The hint measureIn the �rst de�nition, knowledge is interpreted as a function of the input x.De�nition 2.1 (knowledge complexity - Hint version): Let k : N ! N be a function overthe integers. We say that an interactive proof system � = (P; V) for a language L can be simulatedusing a hint of length k, if for every probabilistic polynomial time veri�er V 0 there exists a proba-bilistic polynomial (in jxj) time machine MV 0 (simulator) such that for every x 2 L there exists astring h(x) of length at most k(jxj) such that the ensembles fMV 0(x; h(x))gx2L and f(P; V 0)(x)gx2Lare statistically close.The knowledge complexity in the hint sense is an operator, denoted kchint, which assigns each inter-active proof system � the set of functions, denoted k�, so that for every k 2 k� the protocol � canbe simulated using a hint of length k.The class KChint(k(�)) is the set of languages having interactive proofs with knowledge complexity(in the hint sense) bounded above by k(�).A subtle point regarding the above de�nition, concerns the convention of feeding the hint to thesimulator. We adopt the convention by which, the hint (a binary string) is given to the machineon a special \hint tape". The hint string is located on the left side of the tape and is paddedto its right by in�nitely many zeros. The alternative convention, by which the padding is by aspecial symbol (\blank" 62 f0; 1g) provides implicit knowledge (i.e. the length of the hint) and isnot compatible with the other de�nitions (presented below). Nevertheless, in case the knowledgecomplexity bound (i.e., the function k(�)) is polynomial-time computable, the di�erence betweenthe two conventions is at most a single bit.9 In any case, for knowledge complexity zero there is nodi�erence.2.2 The oracle measuresThe second de�nition widens the interpretation of knowledge to a stochastic one. Namely, theknowledge gained from the protocol depends on the random coins of the machine M (or the veri�erV), rather than being �xed in advance. The formalization is by use of oracle machines. There arethree variants of oracle knowledge complexity. In all versions we adopt the standard complexitytheoretic convention by which each oracle query is answered by a single bit.De�nition 2.2 (knowledge complexity - strict Oracle version): We say that an interactiveproof � = (P; V) for a language L can be strictly simulated using k oracle queries, if for everyprobabilistic polynomial time veri�er V 0 there exists a probabilistic polynomial time oracle machineMV 0 and an oracle A such that:1. On input x 2 L, machine MV 0 queries the oracle A at most k(jxj) times.102. The ensembles fMAV 0(x)gx2L and f(P; V 0)(x)gx2L are statistically close.9The following encoding scheme allows us to tell where the the hint string ends at the cost of only one extra bit.Encode the hint string h by concatenating the bit 1 to its end. Namely, h is encoded as h � 1. Decoding relies on thefact that we have an upper bound on the length of h. Let k be this bound. To decode, consider the �rst k + 1 bitson the hint tape and truncate the string 10� from its right side. Namely, scan the k + 1 bits from right to left andtruncate all zeros found until encountering a 1. Truncate this 1 too, and you are left with the decoded hint string.10Here and throughout the paper we adopt the standard convention by which each oracle query is answered by asingle bit. 10

The knowledge complexity in the strict oracle sense, denoted kcstrictoracle (also kc1oracle), and the classKCstrictoracle (also KC1oracle) are de�ned analogously to De�nition 2.1.Accessing the bits of the oracle sequentially, we can easily emulate a hint11 and so we get:Proposition 2.3 For every interactive proof �, kcstrictoracle(�) � kchint(�).The second variant of oracle knowledge complexity allows the simulator to announce failure in halfof its runs.De�nition 2.4 (knowledge complexity - Oracle version): This de�nition is the same as theprevious one except that condition (2) is substituted by :2'. For each x 2 L, machine MAV 0 produces an output with probability at least 1=2. Let DV 0(x)denote the output distribution of MAV 0 (condition that it produces an output at all). Then theensembles fDV 0(x)gx2L and f(P; V 0)(x)gx2L are statistically close.The knowledge complexity in the oracle sense, denoted kc1=2oracle (also kcoracle) and the class KC1=2oracle(also KCoracle) are de�ned similarly to the previous de�nitions.Clearly,Proposition 2.5 For every interactive proof �, kc1=2oracle(�) � kcstrictoracle(�).The constant 1=2 used as a lower bound on the probability that the simulator produces an output,can be substituted by any constant 0 < � � 1 to get kc�oracle(�). The relation of this de�nition tothe original one is given in the following two propositions:Proposition 2.6 For every interactive proof �, and every 0 < � < 12,kc1=2oracle(�) � kc�oracle(�) + �log �1� ��.Proof: Given a simulator that produces an output with probability �, we build a new simulatorthat picks 2dlog(1�)e � 1 random tapes for the original simulator and sends them to the oracle. Theoracle speci�es the �rst random tape on which the original simulator produces a conversation, orzero if no such tape exists. In the �rst case, the new simulator runs the original simulator on theselected tape, and refers its queries to the oracle. The probability that no output is produced bythe new simulator is (1� �)2dlog(1�)e�1 < 12 . 2Proposition 2.7 For every interactive proof �, and every 0 < � < 12,kc1��oracle(�) � kc1=2oracle(�) + dlogd1 + log(1�)ee.Proof: Similar to the proof of Proposition 2.6. This time the list is of length dlog(1�)e, the failureprobability is (12)dlog(1�)e � �, and a pointer to an element in this list requires dlog(1 + dlog(1�)e)ebits. 2The third variant of the oracle knowledge complexity allows no failure, but instead allows thesimulator more exibility in the number of queries. This is done by considering the expectednumber of queries rather than the worst case number.11Here we capitalize on the convention that the machine in De�nition 2.1 reads the hint from an in�nite tape anddecides by itself when to stop reading. 11

De�nition 2.8 (knowledge complexity - Average Oracle version): This de�nition is thesame as De�nition 2.2, except that condition (1) is replaced by:1'. On input x, the average number of queries that machine MV 0 makes to oracle A is at mostk(jxj). (Here, the average is taken over the coin tosses of the machine MV �.)The average knowledge complexity in the oracle sense, denoted kcoracle, and the class KCoracle arede�ned analogously to De�nition 2.1.2.3 The fraction measureIn the last de�nition the simulator is given no explicit help. Instead, only a 12k fraction of its outputdistribution is being considered.De�nition 2.9 (knowledge complexity - Fraction version): Let �: N ! (0; 1]. We saythat an interactive proof (P; V) for a language L can be simulated at density �(jxj) if for everyprobabilistic polynomial time veri�er V 0 there exists a probabilistic polynomial-time machine MV 0with the following \good subspace" property. For any x 2 L there is a subset Sx of MV 0 's possiblerandom tapes such that:1. The set Sx contains at least a �(jxj) fraction of all possible coin tosses of M(x).2. Let DV 0(x) denote the output distribution of MAV 0 conditioned on the event that MV 0(x)'s coinsfall in Sx. Then the ensembles fDV 0(x)gx2L and f(P; V 0)(x)gx2L are statistically close.The knowledge complexity in the fraction sense, denoted kcfraction, assigns the interactive proof �a function k� so that � can be simulated at density 2�k�. The class KCfraction(k(jxj)) is de�nedanalogously to the previous de�nitions.3 Examples and RemarksWe call the reader's attention to an interesting usage of knowledge complexity (x3.3), to a discussionregarding the e�ect of sequential repetition (x3.4), and to a variant of the de�nitional treatment inwhich one considers only honest veri�ers (x3.5).3.1 Focusing on the Statistical versionThe presentation in this paper focuses on the statistical knowledge-complexity measures. An analo-gous treatment of the perfect and computational knowledge-complexity measures (for protocols) canbe easily derived, except that we do not know whether the perfect knowledge-complexity analogueof Proposition 4.7 holds.As per the knowledge-complexity hierarchies of languages, under some reasonable assumptions,the hierarchy of computational knowledge-complexity is quite dull. That is, assuming the existenceof secure bit commitment scheme (i.e., the existence of one-way functions), all languages havinginteractive proofs have interactive proofs of computational knowledge-complexity zero [8, 23].12

3.2 Analyzing the examples of the introductionAlice's behavior in Examples 1 and 2 is zero-knowledge and thus of knowledge-complexity zerounder all our de�nitions. In general, it is easy to see that zero-knowledge coincides with knowledge-complexity zero under all our de�nitions. As per Example 3, we can bound the knowledge-complexity (under each de�nition) by the length of the prime factorization (save the last factorwhich is easy to compute from the product and the other factors). We see no way to separate thevarious measures using this speci�c example.Examples 4 and 5 are more interesting. Starting with Example 4, we observe that the discussionin Subsection 1.1 implies that the knowledge-complexity by the fraction measure is at most 1. Thesame holds with respect to the oracle measure (cf., Proposition 4.3). An obvious bound with respectto the hint measure is the length of the smallest element in QNR+N (which under ERH has lengthO(log jN j) [25]), and it is not clear if one can provide a better bound.As per Example 5, Alice sends a single bit which can be easily simulated by one oracle query (orby a good subspace of density 1/2). Thus, the knowledge-complexity of Alice's message under boththe oracle and fraction measures is bounded by 1. In general, both the oracle and fraction measuresare bounded above by the communication complexity in the Alice-to-Bob direction. Again, we don'tknow if such a bound can be obtained with respect to the hint measure. In this case the best boundwe can o�er is the length of the prime factorization of N (again, save the last factor).3.3 Another example: Parallel repetitions of some protocolsConsider the basic zero-knowledge interactive proof system (of soundness error 1=2) for GraphIsomorphism [13]: On input x = (G1; G2), the prover generates a random isomorphic copy, denotedH , of G1 and sends it to the veri�er. The veri�er uniformly selects � 2 f1; 2g and the prover replieswith the isomorphism between H and G�.Example 7. To obtain a zero-knowledge interactive proof system (with negligible error) for GraphIsomorphism, the basic protocol is repeated sequentially for t(jxj) = !(log jxj) times. In contrast,consider the protocol, denoted �tGI, resulting from t(jxj) parallel repetition of the basic protocol.Indeed, �tGI is also an interactive proof system (with negligible error) for Graph Isomorphism.However, unless Graph Isomorphism is in BPP , protocol �tGI is unlikely to be zero-knowledge [12].Still, we can bound the knowledge complexity of �tGI by t.Proposition 3.1 kcfraction(�tGI) � t(�).Proof: Use the obvious simulator (a la [13]): Uniformly select �1; :::; �t 2 f1; 2g and generategraphs H1; :::; Ht so that Hi is a random isomorphic copy of G�i . Send the sequence of graphsto the veri�er. With probability 2�t it will reply with the sequence �1; :::; �t, in which case we'veproduced a good simulation.12 Otherwise, we output a \failure" symbol. 2Comment: If t = O(log jxj) then we may invoke the simulator again until we get a good simulation,but this is not feasible for t = !(log jxj).The above discussion applies to many other protocols. In particular, we mention M. Blum'szero-knowledge interactive proof system (of soundness error 1=2) for Hamiltonicity [11, Chap. 6,Exer. 15]. Thus, assuming the existence of one-way functions (as in [13]), there are constant-roundinteractive proofs of super-logarithmic computational knowledge complexity for any language in12As in [13], any inappropriate response is interpreted as a canonical response, say the sequence 1; :::;1.13

NP. Furthermore, these protocols are in the public{coin (Arthur{Merlin) model of Babai [5], andcan be proven to have bounded knowledge complexity by using a black-box simulator. These pro-tocols cannot be proven to be in zero-knowledge using a black-box simulator, unless NP � BPP(cf., [12]).3.4 The e�ect of sequential repetitionsRecall that zero-knowledge is preserved under sequential repetitions, provided that the de�nition isaugmented to allow for auxiliary inputs: See [12] for demonstration of the necessity of an augmen-tation, and [14] for a de�nition of auxiliary-input zero-knowledge and a proof that it is preservedunder sequential repetitions. It should thus come at no surprise that we start by augmenting ourde�nitions so to handle auxiliary-inputs. Loosely speaking, the auxiliary input account for a-priorinformation that the veri�er may have before entering the protocol. When de�ning zero-knowledgeprotocols, we wish that the veri�er gains nothing from the interaction also in case it had sucha-prior information. In the actual de�nitions, the simulator is given the same auxiliary input andis required to simulate the interaction relative to the common input and this auxiliary input. Werequire the same from the simulators in our de�nitions. For example, extending De�nition 2.2, wepresent a de�nition of auxiliary-input knowledge-complexity in the strict oracle sense:De�nition 3.2 (knowledge complexity with auxiliary input { strict oracle version): Aninteractive proof � = (P; V) for a language L can be strongly simulated (in the strict sense) withk oracle queries, if for every probabilistic polynomial-time veri�er V 0 there exists a probabilisticpolynomial time oracle machine MV 0 and an oracle A such that:1. On input x 2 L and auxiliary input z, machine MV 0 queries the oracle A at most k(jxj) times.2. The ensembles fMAV 0(x; z)gx2L;z and f(P; V (z))(x)gx2L;z are statistically close.We stress that when de�ning knowledge complexity with auxiliary input in the hint sense, the hintremains a function of the common input (and is thus independent of the auxiliary-input).13 Thisfollows the motivation behind the hint measure, intended to capture a (predetermined) function ofthe input which may be leaked by the protocol.The e�ect of sequential repetition on the hint measure: Knowledge complexity in thehint sense is preserved under sequential repetitions: For every interactive proof � = (P; V), andevery polynomial-time computable function t : N 7! N which is bounded by a polynomial, we let�t denote the interactive proof system in which on input x the system � is repeated t(jxj) timesand the veri�er accepts i� the V accepts in all t(jxj) runs.Proposition 3.3 For every interactive proof � = (P; V), if � can be strongly simulated using ahint of length k : N 7! N then so can �t, for every function t : N 7! N as above.Proof outline: The basic idea is to use the simulators guaranteed for � in order to constructsimulators for �t. This is easy when the possibly cheating veri�er (in �t) \respects" the structureof �t (i.e., its actions in the ith run of � are independent of previous runs). However, this may notbe true in general and overcoming the di�culties is done by adapting the ideas in [14]. Suppose13Alternatively, one may adopt a more liberal measure in which the hint may be a function of both the commoninput and the auxiliary input. We do not know whether Proposition 3.3 holds under this alternative de�nition.Certainly, the alternative de�nition is at most additive (as in Proposition 3.4).14

that �(x) can be strongly simulated on input x when given the hint h(x). Given a cheating veri�erV 0 for �t, we convert it into t interactive machines, V 01 ; :::; V 0t . The ith machine, V 0i , handles theinteraction with P during the ith run. Given an auxiliary input, which will be set as the view of the(i� 1)st machine, machine V 0i acts in the ith run as V 0 would. Clearly, the view of V 0t is identical tothe �nal view of V 0. To simulate V 0, we use the simulators guaranteed for the V 0i 's. Note that allV 0i 's (except maybe the �rst) are actually identical and so these simulators are actually identical.The desired simulator (for V 0) is obtained by applying this simulator t times, feeding the outputof the (i� 1)st run into the ith run. The crucial observation is that all these runs of the simulatoruse the same hint, which is a function of the common input, and so the simulator for V 0 just needsthe same hint. 2The e�ect of sequential repetition on the other measures: In contrast to the above,the other measures of knowledge-complexity are not preserved under sequential repetitions { seeProposition 5.7. However, in all measures, knowledge-complexity is (essentially) at most additive.That is, let � = (P; V), t : N 7! N and �t be as above, then the knowledge complexity of �t is(essentially) at most t times the knowledge complexity of �:Proposition 3.4 For every interactive proof �=(P; V) and every polynomially bounded k; t :N 7!N, 1. (strict oracle sense): If � can be strongly simulated in a strict sense with k oracle queriesthen �t can be strongly simulated in a strict sense with tk oracle queries.2. (average oracle sense): If � can be strongly simulated with k oracle queries on the averagethen �t can be strongly simulated with tk oracle queries on the average.3. (fraction sense): If � can be strongly simulated at density 2�k then �t can be strongly simulatedat density 2�tk.4. (oracle sense): If � can be strongly simulated with k oracle queries then �t can be stronglysimulated with t �(k+1)+c oracle queries, where c = 0 if t(n) = O(logn) and c = 4 otherwise.Proof outline: We merely follow the outline of the proof of Proposition 3.3, with the exceptionthat here the same \help" can not be used in all runs. Thus, we need k bits of \help" per eachround. The argument varies slightly depending on the measure in use. In Item 1 (resp., Item 2) wemake k oracle queries (resp., on the average) during the simulation of each run, and thus we have atotal of tk queries (resp., on the average). In Item 3 we merely note that the good subspace is theCartesian product of the good subspaces associated with individual runs. Item 4 is slightly subtle:Following the above argument we obtain a simulator which makes tk queries and produces outputwith probability at least 2�t. We need to convert this simulator into one which produces outputwith probability at least 1=2. Towards this end we use the techniques of the proof of Proposition 4.3.23.5 Knowledge complexity with respect to the honest veri�erIt is possible to de�ne knowledge complexity measures and knowledge complexity classes withrespect to any �xed veri�er, i.e., not requiring the existence of a simulation for all polynomial timeveri�ers but only for a speci�c one. An important and natural case is when we only require thatthere exists a simulation of the honest veri�er (i.e., the veri�er de�ned in the protocol). Intuitively,15

stating a knowledge complexity bound k(�) only for the honest veri�er means that if the veri�erfollows his part in the protocol then he gains at most k(jxj) bits of knowledge. However, if theveri�er deviates from the protocol, then nothing is guaranteed and he may gain more than k(jxj)bits of knowledge.All the above de�nitions of knowledge complexity can be stated for this special case of thehonest veri�er simply by replacing the requirement that there exists a simulator for any possibleveri�er V 0 with the requirement that there exists a simulator only for the honest veri�er. Forexample, the de�nition of the oracle measure of knowledge complexity for the honest veri�er (theanalogue of De�nition 2.4) is as follows.De�nition 3.5 (knowledge complexity - Oracle version for honest veri�er): We say thatan interactive proof � = (P; V) for a language L has an honest veri�er simulation with k oraclequeries, if there exists a probabilistic polynomial time oracle machine MV and an oracle A suchthat:1. On input x 2 L, machine MV queries the oracle A at most k(jxj) times.2. For each x 2 L, machine MAV produces an output with probability at least 1=2. Let D(x)denote the output distribution of MAV (condition that it produces an output at all). Then theensembles fD(x)gx2L and f(P; V)(x)gx2L are statistically close.The honest-veri�er oracle knowledge-complexity measure hvkcoracle and the class HVKCoracle arede�ned analogously to De�nition 2.1.We stress that all the results in this paper hold also with respect to the appropriate de�nitionsfor honest veri�er. This holds since all our results are obtained by making transformations on thesimulator, and never by modifying the protocol.3.6 Remarks on the knowledge complexity functionThroughout the paper we consider only knowledge complexity functions which are polynomiallybounded. This follows from the fact that we consider only simulators that run in polynomialtime. Thus, the simulator can use only polynomially many oracle bits or hint bits. In the fractionmeasure, the good subspace Sx must contain at least one string out of the (at most) exponentiallymany possible coin tosses, and thus (minus) the logarithm of the density of the good subspace ispolynomially bounded.Some of our results require that the knowledge complexity function be polynomial-time com-putable (see De�nition 2.0).4 Inclusion resultsFor every interactive proof �, kc1=2oracle(�) � kcstrictoracle(�) � kchint(�) (see Propositions 2.3 and 2.5).In the following subsections we prove further inclusion relations between these de�nitions. Webelieve that the most interesting result (and proof), in this section, is that of Proposition 4.3.4.1 The oracle and the fraction versions are equal up to a constantIn this subsection, we prove equivalence up to an additive constant of the oracle measure and thefraction measure of knowledge complexity. That is,16

Theorem 4.1 (closeness of the oracle and fraction measures): For any interactive proof �,kcfraction(�)� 1 � kc1=2oracle(�) � kcfraction(�) + 4Furthermore, for kc1=2oracle(�) = O(log(�))kcfraction(�)� 1 � kc1=2oracle(�) � kcfraction(�)Theorem 4.1 follows from Propositions 4.2 and 4.3 below.Proposition 4.2 For any interactive proof �, kcfraction(�) � kc1=2oracle(�) + 1.Proof: Let k = kc1=2oracle(�). Suppose there is a simulator M that makes at most k queries to theoracle and produces an output with probability at least 12 . We construct a new simulator M 0 whichdoes not make oracle queries but has a good sub-space of density at least 2�(k+1). The simulatorM 0 randomly selects a random tape to the original simulator M and guesses (at random) k bitsrepresenting the oracle answers. The new simulator M 0 runs M on this random tape, and uses thek random bits to \reply to the queries" ofM instead of the oracle. With probability at least 2�k theoriginal simulatorM gets the correct oracle answers, and conditioned on this event, M produces anoutput with probability at least 1=2. Thus, with probability at least 2�(k+1), the original simulatorM both gets the correct oracle answers and does yield an output. In this case,M 0 produces exactlythe same output distribution as the original simulator. 2Proposition 4.3 For any interactive proof � with polynomial time computable knowledge com-plexity in the fraction sense, kc1=2oracle(�) � kcfraction(�) + 4.(For perfect knowledge-complexity we have kc1=2oracle(�) � kcfraction(�) + 5.)Furthermore, if kcfraction(�) = O(log(�)) then kc1=2oracle(�) � kcfraction(�).Proof: Below (as well as in some other proofs), we transform a simulator guaranteed by one de�ni-tion into a simulator satisfying a second de�nition. Our transformation assumes the \knowledge" ofthe value of the knowledge-complexity function on the speci�c input length. Thus, the constructedsimulator starts by computing this value (hence the condition that the knowledge-complexity func-tion be polynomial-time computable).Let k = kcfraction(�). Our purpose is to pick uniformly at random r 2 Sx and run the originalsimulator on r. The problem is how to sample Sx. The naive solution of asking the oracle to pickan r 2 Sx uniformly, is not good, since r might be much longer than k(jxj). A better suggestion,that works for k = O(log jxj) follows. Pick a list of 2k � 1 random strings for the original machine,and ask the oracle to specify one of them that belongs to Sx. The oracle answers with the index ofthe �rst string which belongs to Sx, if such exists, and otherwise returns the all-zero string. Thelength of the list is polynomial in jxj because k = O(log jxj). The probability of failing (not havingany good string in the list) is (1� 12k)2k�1 � 12 (with equality holding for k = 1). Hence in this case(i.e., for k = O(log jxj)), we have kc1=2oracle(�) � kcfraction(�).Dealing with k = log jxjo(1) is somewhat more complicated. We would like to do the same as before,but the problem is that the list of length 2k�1 is not polynomial (in jxj), and thus cannot be givenexplicitly. In the rest of this proof, we are going to show that by somewhat sacri�cing the \full"randomness of the list, we can still follow a procedure similar to the above in polynomial time.Namely, we will use a \pseudorandom" list of 2k+2 � 1 strings so that17

(1) The list can be succinctly represented and the representation enables e�cient retrieval of itselements (i.e., given the succinct representation and an index i into the list we can e�ciently�nd the ith string in the list);(2) Uniformly selecting such a representation yields a sequence which is su�ciently random in thesense that with constant probability the list intersects Sx;Combining items (1) and (2), we get an e�cient procedure for sampling Sx using k+2 oracle queries.The procedure consists of selecting at random a (succinct representation of a) list L and sendingit to the oracle which replies with the index of an element in L which resides in Sx (if such exist).A reasonable implementation of this procedure is likely to output each of the elements in Sx withsome probability (say between O(1)=jSxj and 1=O(jSxj)), but is unlikely to sample Sx uniformly.Let us stress that it is important that the procedure uniformly samples Sx, the reason being thatwe will use the output of the procedure for running the original simulator which is guaranteed toproduce the correct output only when being run with coins uniformly selected in the good set Sx.We thus need an alternative procedure, which using k+O(1) oracle queries samples Sx uniformly{(3) There exists an oracle such that the following procedure samples uniformly in Sx. The proce-dure picks a random list L and sends the representation of the list to the oracle. The oraclereturns k+2 bits which either provide an index to an element in the list or indicates failure. Inthe �rst case the procedure outputs the string pointed to by the index and in the second casethere is no output. We require that with constant probability the procedure yields output,and that in case an output is produced it is uniformly distributed in Sx.A natural way for generating a random list satisfying Items (1) and (2) above is to use a sequenceof pairwise independent random variables. Actually, our analysis becomes even easier if we use asequence of 3-wise independent random variables. It will be most convenient to use the constructiongiven in Alon et. al. [4] which works in the �eld GF (2m), since this �eld corresponds naturally tothe set of m-bit strings. The construction uses t < 2m arbitrary elements of the �eld, denoted�1; �2; :::; �t. A sequence of t elements is represented by a triplet of �eld elements, denoted (u; v; w),and the ith element in the sequence is u+�i �v+�2i �w (where all operations are in the �eld). Clearly,this construction satis�es Item (1) above. It is also well-known that a uniformly selected triplet(u; v; w) induces a t-long sequence which is 3-wise independent so that each element is uniformlydistributed in GF (2m).14 For t = 2k+2 � 1, it follows (by Chebyshev's Inequality) that any setS � f0; 1gn of cardinality at least 2m�k is hit with constant probability. Thus, Item (2) is satis�edas well. Before proceeding, let us remark that we may assume, without loss of generality, that2k+2 � 1 < 2m (as otherwise we can use the trivial procedure of asking the oracle for a (random)element in Sx).We are left with the task of satisfying Item (3). A natural implementation of the above samplingprocedure is to ask the oracle for a random15 element in the intersection of the list and the subsetSx. The intersection is expected to have size (2k+2 � 1) � jSxj2m � 4 (assuming16, for simplicity, thatjSxj = 2m�k). If the intersection of a uniformly chosen sequence and Sx always had size equal to itsexpectation then we would have been done. However, this is unlikely to be the case. We can only14This can be seen by considering the equalities which relate to any three elements in the sequence (i.e., the elementsin positions i, j and k). These equations form a non-singular transformation of the triplet (u; v;w) to the values ofthese three elements. (Thus, all possible 23m outcomes are possible and appear with the same probability.)15The oracle can be made to take \random" moves by supplying it with coin tosses (by appending them to thequery).16Recall that we are only guaranteed that jSxj � 2m�k).18

be guaranteed that with high probability the size of the intersection is close to its expectation andsometimes even this does not hold (i.e., with small probability the size of the intersection is far fromthe expectation). Our solution uses two natural ideas. First, we ignore the unlikely cases in whichthe intersection is far from the expectation. Secondly, we skew the probabilities to compensate forthe inaccuracy. To be more speci�c, let I denote the intersection (of the list and Sx) and let edenote the expected size of the intersection. In case jI j > 2e the oracle indicates failure. Otherwise,it indicates failure with probability 1� jIj2e and outputs each element in I with probability exactly12e . This skewing is not su�cient, since some elements in Sx may tend to appear, more often thanothers, in lists which have too large intersection with Sx. Yet, we can correct this problem by amore re�ned skewing. A detailed description follows.Recall that we are given an (original) simulator which simulates the protocol with density2�k(�). Fix an input x to the protocol, de�ne k = k(jxj), and denote by m = m(jxj) the length ofthe random tape used by the original simulator on input x. Set � = jSxj=2m and t = 2k+2� 1. Weare going to build a new simulator which uses k+O(1) oracle queries and runs the original simulatoras a subroutine (see Step (4)). The new simulator will produce an output with constant probabilityand its output will be distributed identically to the distribution produced by the original simulatorwhen its coins are taken from the \good sub-space". Thus, the new simulator is a good one (i.e.,it simulates the original prover-veri�er interaction).The new simulator (for the oracle de�nition of knowledge complexity):1. The simulator picks uniformly a triplet (u; v; w) so that u; v; w 2 GF (2m). This triplet is asuccinct representation of the t-long sequenceL = L(u; v; w) def= (u+ �iv + �2iw)1�i�tThe simulator sends (u; v; w) to the oracle.2. The oracle answers as follows:(a) If either jL\Sxj = 0 or jL\Sxj > 2 � (t ��), then the oracle returns \failure" (i.e., 0k+2).Here and below L \ Sx is a multi-set and sojL(u; v; w)\ Sxj = jfi : u + �iv + �2iw 2 Sxgj(b) Otherwise, the oracle picks at random r 2 L \ Sx.Actually, it picks uniformly an element in fi : u+ �iv + �2iw 2 Sxg.(c) With probability Px;i;L (to be speci�ed below), the oracle returns the index i chosen inSub-step (b) above.(d) Otherwise (with probability 1� Px;i;L), the oracle returns \failure".3. If the oracle returns \failure", then the simulator stops with no output.4. Otherwise, upon receiving answer i (1� i� t), the simulator computes r u + �iv + �2iw,and runs the original simulator using r as its random tape.Motivation: Let us �rst assume, for simplicity, that jSxj = 2m+2=t � 2m�k and that the cardinalityof L \ Sx always equals its expected value (i.e., jL \ Sxj = 2m+2t � t2m = 22). This means that theoracle never answers \failure" in Step (2a). Setting Px;r;L = 1, the oracle never answers \failure"19

in Step (2d) either. Since each element of the list is uniformly distributed, it follows that eachr 2 Sx is selected with probability 22jSx j � 122 = 1jSx j . However, this simple analysis does not su�ce ingeneral since the \uniform behavior" of the cardinality of L \ Sx cannot be guaranteed. Instead,an approximate behavior can be shown to occur.Analysis: We call a list L bad if either jL \ Sxj = 0 or jL \ Sxj > 2 � (t � �). Otherwise, the listis called good. Thus, the oracle answers \failure" in Step (2a) if and only if it is presented with abad list. For every r 2 Sx and every i � t, we denote by Li;r the set of lists in which r appears inthe ith position; namely Li;r def= f(u; v; w) : r = u+ �iv + �2iwgClearly, jLi;rj = 2�m � 23m (as each element in a random list is uniformly distributed). Now let Gi;rdenote the subset of good lists in Li;r (i.e., L 2 Gi;r i� L is good and in Li;r). Using the fact thatlists are 3-wise independent, we show (see Lemma 4.4 below) that at least 12 of the lists in Li;r arein Gi;r. We now list a few elementary facts regarding any �xed r 2 Sx1. The probability that r is used in Step (4) of the simulator is the sum over all i's of theprobabilities that the oracle returns i in Step (2c) and r = u+ �iv + �2iw holds.2. The probability that the oracle returns i and r = u+�iv+�2iw holds equals p1 � p2 � p3, wherep1 def= Prob(L 2 Li;r)p2 def= Prob(L 2 Gi;rjL 2 Li;r)p3 def= XL2Gi;r 1jGi;rj � � 1jL \ Sxj � Px;i;L�where the probabilities (in the �rst two de�nitions) are taken uniformly over all possiblechoices of L. Recall that p1 = 2�m and that (we'll show) p2 > 12 .3. Setting Px;i;L def= jL\Sx j2t� � qi;r, where r is the ith element in L (and qi;r will be determined next),we get p3 = qi;r2t� . Note that qi;r � 1 guarantees that Px;i;L � 1 (since jL\ Sxj � 2t�).4. Knowing that p2 = jGi;rjjLi;rj � 12 , we set qi;r def= 1=2p2 (which guarantees qi;r � 1). We concludethat the probability that the oracle returns i and r = u+ �iv + �2iw holds equals2�m � p2 � qi;r2t� = 2�m � 1=22t�Consequently, the probability that r is used in Step (4) of the simulator equalst ��2�m � 1=22t�� = 14 � 12m�= 14 � 1jSxjThis means that with probability 1=4 our simulator produces an output and that this outputis produced by invoking the original simulator using a coin sequence uniformly chosen in Sx.A few minor things require attention. Firstly, in the above description we have required the oracleto make random choices, an action which it cannot do. To overcome this problem, we simply20

let the simulator supply the oracle with extra coin-tosses which the oracle uses for implementingits random choices. (This works well if it su�ces to approximate the probabilities in question,as is the case when treating statistical knowledge-complexity; we'll remark about handling perfectknowledge complexity at a later stage). Another minor di�culty is that the simulator describedabove outputs conversations with probability 14 (and outputs nothing otherwise). Hence, we onlyproved kc1=4oracle(�) � kcFraction(�)+2. Yet, using Proposition 2.6,17 the current proposition follows.We now turn to prove the followingLemma 4.4 For every i � t and every r 2 Sx,Prob(L 2 Gi;rjL 2 Li;r) � 59 � 2�k > 12Proof: Using the hypothesis that the sequence is 3-wise independent, it follows that �xing the ithelement to be r leaves the rest of the sequence pairwise independent (and uniformly distributed overf0; 1gm). Assume, without loss of generality, that i = t and let s = t� 1. De�ne random variables�j representing whether the jth element of the (s-long) sequence hits Sx. Recall, � = jSxj=2m andthus �j = 1 with probability � and �j = 0 otherwise. Now, the event that we are interested in isrewritten as Psj=1 �j > 2t� � 1, where the �1 is due to the fact that the tth element in the t-longsequence is assumed to be in Sx. Thus, using Chebyshev's Inequality we getProb(L 62 Gi;rjL 2 Li;r) = Prob(sXj=1 �j > 2t�� 1)< Prob(j sXj=1 �j � s�j > s�� 1)� s � �(1� �)(s�� 1)2Using s� � (2k+2� 2) � 2�k = 4� 2�k+1, the above expression is bounded by 49 +2�k and the lemmafollows (since we may assume k > 5 or else k = O(logn)). 2The proposition now follows (for statistical knowledge complexity). For the case of perfect knowledgecomplexity, we are left with one problem; namely, implementing the random choices required ofthe oracle with exactly the prescribed probability. To this end, we slightly modify the procedure asfollows. First, we observe that the two random choices required of the oracle can be incorporatedinto one. Indeed, an alternative description of the oracle's choices is that given a good list L (i.e.,jL \ Sxj � 2t�) which contains r 2 L \ Sx as its ith element, the oracle answers i with probability1jL\Sx j � Px;i;L = qi;r � 12t� . Replacing 2t� by the next power of 2 (i.e., 2dlog2 2t�e) maintains thevalidity of the procedure (since the decrease in the probability of using r 2 Sx is equal for all suchr's) while possibly decreasing the probability of output by up to a factor of 2 (see Fact 4 in thelist of elementary facts above). The advantage of this modi�cation is that the oracle can easilyhandle probabilities which are of the form q=2l for integers q and l. So given a good list L (i.e.,jL \ Sxj � 2dlog2 2t�e), we can select each index i corresponding to an r 2 L \ Sx with probability2�dlog2 2t�e. We are left with the problem of implementing the additional \sieve" corresponding toprobability qi;r which equals 1=2jGi;rj=jLi;rj = jLi;rj2jGi;rj . This probability is not of the \admissible" form,17We will ask the oracle to indicate which of three uniformly chosen random-tapes (for the 14 -simulator) is goingto produce an output. This requires two additional queries and the probability that none of the three random-tapesproduces an output is at most (3=4)3 < 12 . 21

yet we observe that the very same probability needs to be implemented for every L 2 Gi;r. So,instead, we may designate jLi;rj2 (� jGi;rj) of the lists in Gi;r and modify the oracle so that it returnsthe index i (corresponding to r) only when presented with these lists. To summarize, the modi�edoracle procedure for the case of perfect knowledge complexity is as follows.(notation) Let L = L(u; v; w) be the list indicated in the query and D def= 2dlog2(2�(t��))e. For everyi and r, let Di;r be an arbitrary subset of Gi;r having cardinality jLi;rj2 .(a') If jL\ Sxj > D, then the oracle returns \failure".(b') Otherwise, the oracle uniformly selects j 2 f1; 2; :::;Dg. If j > jL\Sxj then the oracle returns\failures"; otherwise, i is de�ned as the index in L of the jth element in L \ Sx and r is theelement itself (i.e., r = u+ �iv + �2iw).(c') If L 2 Di;r then the oracle returns the index i chosen above.(d') Otherwise (i.e., L 2 Gi;r �Di;r) the oracle returns \failure".Using the modi�ed oracle, our simulator produces an output with probability at least 1=8 (and theoutput distribution is identical to the output distribution of the original simulator when run on arandom tape uniformly selected in Sx). Using Proposition 2.6,18 the current proposition follows.2Remark 4.5 Our original proof of Proposition 4.3 (cf., [16]) used a more complicated constructionof a \somewhat random" list with no apparent advantage. Furthermore, the additive constantachieved there (i.e., 11) is worse.4.2 The oracle vs. average oracle measureProposition 4.6 For any interactive proof �, kcoracle(�) � kc1=2oracle(�) + 2.Proof: Suppose we have a probabilistic polynomial time oracle machine (a simulator) that queriesthe oracle k(jxj) times, outputs a conversation with probability at least 12 , and its output distri-bution is statistically close to �. We construct a new simulator which chooses random coin-tossesfor the original simulator and asks the oracle whether these coins are \good", i.e., whether on thisrandom string the original simulator (querying the original oracle) outputs a conversation (ratherthen nothing). If the oracle says \yes", the original simulator is run on these coin-tosses, and itsk(jxj) queries are answered by the oracle. Otherwise the new simulator tries again. In order notto allow in�nite runs, we let the new simulator make up to p(jxj) tries, where p is a polynomialbounding the length of the conversations in �. If all tries fail, the new simulator asks the oraclefor a conversation. The probability that the new simulator succeeds in each try is at least 12 , andtherefore if the simulator were allowed to make in�nite runs, we would have got that the expectednumber of additional queries made by the new simulator would have been at most 2. Note thatforcing the simulator to stop after p(jxj) tries, and then make additional p(jxj) queries, does notincrease the average number of additional queries. 2In light of the results in Section 5, it is not possible to bound the opposite direction (i.e., it is noteven possible to prove that kc1=2oracle(�) � kcoracle(�) + p(jxj) for some polynomial p and all �'s).18This time we use 7 random-tapes (and (7=8)7 < 1=2) and this requires three additional queries.22

4.3 The oracle and the strict oracle versions are closeClearly, as stated in Proposition 2.5, kcstrictoracle(�) � kc1=2oracle(�). Proposition 4.7 gives us a comple-mentary relation.Proposition 4.7 For any interactive proof � and any unbounded function g : N ! N ,kcstrictoracle(�) � kc1=2oracle(�) + log(log(jxj)) + g(jxj).Proof: Use Proposition 2.7 with � = 1jxjf(jxj) , where f(jxj) = minf2g(jxj); jxjg. Note that � is anegligible fraction and that Proposition 2.7 holds as long as � > 2�poly(jxj). We get a simulatorwhich does not produce an output with probability at most �. We modify this simulator so thatit always produces an output. (Note that since we are using the statistical version of knowledgecomplexity it doesn't matter what the output is in this case, which happens with a negligibleprobability). 2In light of the results in Section 5, the above result cannot be improved in general.5 Separation resultsIn this section we provide separation results for the knowledge complexity of speci�c protocols. Westress that these results do not necessarily translate to a separation of languages according to theirknowledge complexity (which would have implied a separation between BPP and PSPACE). Asmentioned in Subsection 3.6, we consider only knowledge complexity functions which are polyno-mially bounded. This fact is required in all the proofs of this section.5.1 Strictness of the hierarchiesWe �rst show a separation in each of the knowledge complexity hierarchies. Namely, we show thateach of these hierarchies (of protocols) is strict.Theorem 5.1 (strictness of hierarchies): Let k : N! N be a polynomial time computable function.Then there exists an interactive proof system (P; V) (for the language f0; 1g�) satisfying:1. (P; V) has knowledge complexity at most k(jxj) in the hint sense (and also in all other sensesconsidered in this paper).2. (a) (P; V) has knowledge complexity at least k(jxj) in the oracle sense, provided k(n) =O(logn).(b) (P; V) has knowledge complexity at least k(jxj)� 1 in the oracle sense.(c) (P; V) has knowledge complexity at least k(jxj) in the strict oracle sense.3. For any polynomial p, the interactive proof system (P; V) has knowledge complexity greaterthan k(jxj)� 1p(jxj) in the fraction sense.4. For any polynomial p, the interactive proof system (P; V) has knowledge complexity greaterthan k(jxj)� 2� 1p(jxj) in the average oracle sense.A lower bounds of k(jxj) hold also for the hint measure, since kcstrictoracle(�) � kchint(�) for everyinteractive proof �. We believe that Part (2) can be improved so that it holds that (P; V) hasknowledge complexity at least k(jxj) in the oracle sense, for any k : N! N.23

Overview of the proof: We consider a generic (arti�cial) interactive proof (for the languagef0; 1g�) in which, on input x, the prover sends to the veri�er a single string, denoted K(x), to bespeci�ed later. The function K : f0; 1g�! f0; 1g� will satisfy jK(x)j = k(jxj), for every x 2 f0; 1g�,and will be chosen so to fail all simulators which violate the lower bounds of Parts (2){(4). Part (1)follows easily by using a trivial hint-version simulator which merely outputs its hint.To prove Parts (2){(4) we use the diagonalization technique. We will show that it is possibleto choose the function K(�) such that all Turing machines fail to simulate this protocol unless theyreceive the help that is stated in the theorem (i.e., enough hint bits, enough oracle bits, or thepossibility to output a small enough \good" subspace Sx). Speci�cally, each part of the theoremasserts a lower bound on the help needed to simulate the protocol properly. We are going to selectthe function K(�) so that all lower bounds hold. For each lower bound and each possible Turingmachine, M , which may serve as a simulator, we select a di�erent input x and set the functionK at x such that the machine M on input x does not simulate the transcript K(x) unless it getsenough help as stated in the lower bound. Actually, this description, adopted in the rest of the proof,su�ces only for foiling perfect simulations (and thus establishing perfect knowledge-complexity lowerbounds). To foil statistically close simulations (and establish statistical knowledge-complexity lowerbounds), we need to select a (di�erent) in�nite sequence of inputs per each possible machine (sinceany two �nite sequences of random variables may be said to be statistically close).For simplicity, we discuss each lower bound separately, and foil all machines that do not getenough help as stated in the speci�c lower bound. However, one should keep in mind that we arebuilding a single function K which satis�es all the lower bounds simultaneously.Our proof proceeds as follows. We �rst prove Part (3) of the theorem, next Part (2), andconclude the proof of the theorem by proving Part (4).Proof of Part 3: Here we show that for an appropriate choice of a function K, the aboveinteractive proof has knowledge complexity greater than t(jxj) def= k(jxj)� 1p(jxj) in the fraction sensefor any given polynomial p. The function K is constructed using the diagonalization technique.Consider an enumeration of all probabilistic polynomial time machines. For each machine M ,select a di�erent input x, and consider the output distribution M(x). Machine M simulates theinteractive proof with density 2�t, if it outputs the string K(x) on input x with probability at least12t(jxj) � (1 � �), where � is a negligible fraction. Note that 12t(jxj) � (1 � �) > 12k(jxj) since � is smallerthan any polynomial fraction. By a pigeon hole argument, there is a string y of length k(jxj), thatappears in M(x) with probability at most 12k(jxj) , and setting K(x) = y foils the simulation of Mon x.19 Part (3) follows. 2Proof of Part 2: Here we show how to foil all oracle machines that never ask more than k(jxj)�1queries (and must produce an output with probability at least 12). We consider an enumeration ofall probabilistic polynomial time oraclemachines, and select a di�erent input x for each machineM .As a mental experiment, consider the output distribution of machine M on input x and access to arandom oracle �. Let us denote by p the probability that on input x and access to a random oracle,machine M produces output. Again, by a pigeon hole argument, there is a string y of length k(jxj),that appears in this distribution with probability less or equal to 2�k(jxj) � p. We show that for anyspeci�c oracle �, the probability that this string y appears in the output distribution of machineM on input x and access to the oracle � is p2 at the most. Let k = k(jxj) and let m = m(jxj) be19Note that we did not use the fact that M is a polynomial time machine. It is indeed true that we can setthe function K such that this protocol cannot be simulated with density 2�t(jxj) even by a (non-restricted) Turingmachine. A similar observation is valid for all the lower bounds in this theorem.24

a bound on the running time of machine M on input x (and therefore, a bound on the numberof its coin-tosses). Denote by r 2 f0; 1gm the coin-tosses of machine M , and by A(x; r; �) thek � 1 answers that oracle � gives machine M on input x and random tape r. Note that x; r andA(x; r; �) completely determine the behavior of machine M . Also note that the random oracle � ischosen independently of r. Let us denote the output of machine M on input x, random string r andaccess to oracle � by M�r (x). The probability that the string y appears in the output distributionof machine M with access to a speci�c oracle �0 isProbr(M�0r (x) = y) = Probr;�(M�r (x) = yjA(x; r; �) = A(x; r; �0))� Probr;�(M�r (x) = y)Probr;�(A(x; r; �) = A(x; r; �0))The numerator is at most 2�k � p (by the choice of y). We now show that the denominator is equalto 12k�1 . d def= Probr;�(A(x; r; �) = A(x; r; �0)) = 12m Xr2f0;1gm Prob�(A(x; r; �) = A(x; r; �0))Since r (and x) are �xed inside the summation, a random choice of k � 1 oracle answers agreeswith the answers of the speci�c oracle �0 with probability 12k�1 and we get:d = 12m Xr2f0;1gm 12k�1 = 12k�1Thus, for any speci�c oracle �0, the string y appears in the output distribution of M�0(x) withprobability at most p2 . Selecting K(x) = y, causes M to produce K(x) with probability at most p2(no matter which oracle is being used). But what does this mean? We consider two cases:Case 1: p > 1� 2�(k+1). We claim that in this case, for any speci�c oracle, machine M produces(some) output with probability at least 34 . This holds since otherwise p < 2�(k�1) � 34 + (1 �2�(k�1)) �1 = 1�2�(k+1). Thus, for any �, the probability that M�(x) = K(x) conditioned onM�(x) producing output is at most p=23=4 � 23 , which means that M fails to simulate (P; V)(x)properly.Case 2: p � 1 � 2�(k+1). In this case, for any �, the probability that M�(x) = K(x) is at mostp2 � 12 � 2�(k+2).Thus, if k(n) = O(logn) then the simulator fails with noticeable probability in both cases, and sothe Item (2-a) follows. Item (2-c) follows merely by Case 1, since for strict simulation we have p = 1.Item (2-b) follows by carrying out the entire argument assuming that the simulator makes onlyk� 2 queries. The conclusion will be that the simulator produces the right answer with probabilityat most p4 � 14 , which is a clear failure. Part (2) follows. 2Proof of Part 4: Here we show how to foil all oracle machines which make at most k(jxj)�2� 1p(jxj)queries on the average, for any polynomial p. Again, consider an enumeration of all probabilisticpolynomial time oracle machines, and select a di�erent input x for each machine M . Let k = k(jxj)and p = p(jxj). Let �� denote the random variable that represents the number of queries that Mmakes on input x and oracle �. To show that E(��) is \big", (i.e., bigger then k � 2� 1p), we will�rst show that if M�(x) simulates the protocol then:25

(1) For all log(k � p) � i < k, Prob(�� < k � i) < 1k�pand(2) For all 0 � i � log(k � p), Prob(�� < k � i) < 2�i.Finally, we will show that these two properties of �� imply E(��) > k � 2� 1p .We begin by showing Property (1). Assume, by way of contradiction, that there exists an isuch that log(k � p) � i < k and Prob(�� < k � i) � 1k�p . Consider the behavior of M after makingk � i � 1 queries to the oracle �. Machine M may either query more, or halt outputting a stringwithout making further queries. By hypothesis, the later happens with probability at least 1k�p . Weuse this polynomial fraction of the output distribution to foil the simulation; namely, we show thatfor an appropriately chosen K(x), half of this (polynomial) fraction of the output distribution isdi�erent from K(x) no matter what the oracle set is. Again, consider the output distribution ofM on input x and access to a random oracle �0. By the pigeon hole principle, there is a string y oflength k, that appears in this distribution with probability less or equal to 2�k. Again, a randomchoice of k � i � 1 answers agrees with the answers of any speci�c oracle set � with probability12k�i�1 . Therefore, for any speci�c oracle �, the string y appears in the output distribution ofM�(x)with probability at most 2�k � 2k�i�1 = 2�i�1. Selecting K(x) = y, we get that for every oracle �the probability that M�(x) does not output K(x) is at least 1k�p � 2�i�1. Using i � log(k � p) we getProb(M�(x) 6= K(x)) � 1k � p � 2�1�log(k�p) = 12 � k � p = 1poly(n)which implies that M fails to simulate � on x. Thus, if M simulates the transcript of the protocolproperly then Property (1) must hold. A similar argument for 0 � i � log(k � p) shows that we canchoose K(x) = y so that M fails to simulate on input x with probability at least 2�i � 2�i�1 =2�i�1. Using i � log(k � p) we again get Prob(M�(x) 6= K(x)) � 12k�p = 1poly(n) , which impliesthat M fails to simulate � on x. Thus, if M simulates the transcript of the protocol properly thenProperty (2) must hold too.Clearly, E(��) � kXj=0Prob(�� = j) � j= k � kXi=1 Prob(�� = k � i) � i= k � kXi=1 Prob(�� � k � i)= k � k�1Xi=0 Prob(�� < k � i)Using Properties (1) and (2) we get:E(��) � k � log(k�p)�1Xi=0 Prob(�� < k � i)� k�1Xi=log(k�p)Prob(�� < k � i)> k � log(k�p)�1Xi=0 2�i � k�1Xi=log(k�p) 1k � p26

> k � 2� 1pPart (4) follows. 25.2 Gaps between some measuresIn this subsection, we present protocols which demonstrate the di�erence between the variousmeasures. Speci�cally, we investigate the gap between the oracle and the average oracle measures,between the hint and the strict oracle measures, and between the oracle and the strict oraclemeasures. Finally, we consider the variant of the oracle de�nition in which the simulator is requiredto produce an output with probability at least � for some 0 < � < 1 which is not necessarily 1=2.This variant was related to the oracle measure in Propositions 2.6 and 2.7. We present protocolswhich demonstrate that the relations shown in Propositions 2.6 and 2.7 are (almost) tight.Let us begin by showing that the gap between the average oracle and the other oracle versions,cannot be bounded, even by a polynomial.Proposition 5.2 (the average oracle measure may be much lower than the strict one): Forevery polynomial time computable k(jxj) and every non-negligible (and polynomial-time computable)fraction p(jxj) (i.e., 9c > 0 such that p(jxj) > 1jxjc) there exists an interactive proof system (forf0; 1g�) satisfying:1. (P; V) has knowledge complexity at most p(jxj) � k(jxj) < 1 in the average Oracle sense.2. (P; V) has knowledge complexity greater than k(jxj)� 2� log 1p(jxj) in the Oracle sense.Proof: We consider an interactive proof in which, on input x, with probability p(jxj) the proversends K(x) to the veri�er (and otherwise sends nothing). Clearly, for jK(x)j � k(jxj), this inter-active proof has average knowledge complexity at most p(jxj) � k(jxj) (i.e., in the average Oraclesense). We now show that for an appropriate choice of K, the above interactive proof has knowl-edge complexity greater than t(jxj) def= k(jxj)� 2� log 1p(jxj) in the Oracle sense. As in the proof ofTheorem 5.1, we make a mental experiment considering the output of an arbitrary oracle machineM on input x and access to a random oracle �. We set K(x) = y, where y is a k(jxj)-bit stringsatisfying Prob(M�(x) = y) � 2�k(jxj) (for a random oracle �). As each oracle � has probability2�t(jxj) to coincide with t(jxj) random answers, it follows that for any speci�c oracle set �, we haveProb(M�(x) = y) � 2t(jxj) � 2�k(jxj) = 2�2�log2(1=p(jxj)) = p(jxj)4On the other hand, the protocol (P; V) outputs y with probability at least p(jxj). Since p(jxj) is anon-negligible fraction, it follows thatM (even when allowed to produce no output with probability1=2) fails to simulate the protocol (P; V) (no matter which oracle is used to answer M 's queries).The proposition follows. 2Interestingly, we can upper bound the knowledge complexity of the protocol appearing in theabove proof by k(jxj)+1�log � 1p(jxj)� even in the strict oracle measure. The simulator (for the strictoracle version) guesses the �rst log 1p(jxj) bits of K(x) and sends them to the oracle, which replieswhether this guess is correct or not. In case it is not, the simulator outputs nothing. Otherwise, it27

queries the oracle for the remaining k(jxj)� log 1p(jxj) bits of K(x). Thus, the simulator makes atmost k(jxj)� log � 1p(jxj)�+ 1 queries, and output K(x) with probability p(jxj) as it should.The following proposition shows a huge gap between the hint version and the strict oracleversion of knowledge complexity.Proposition 5.3 (the hint measure may be much higher than the oracle measure): There existsan interactive proof � that has knowledge complexity 1 in the strict Oracle sense, yet for anypolynomial p, it holds that kchint(�) > p(jxj).Proof: The protocol � is the following: V sends a random string r in f0; 1gjxj to P , which respondswith a single bit K(x; r). Clearly, for any K, this protocol yields one bit of knowledge in the strictoracle sense. Let n = jxj. We build a function K(x; r) such that any probabilistic polynomial timemachine that uses a hint of length less than t(n) def= 110 � 2n fails to simulate �. We consider anenumeration of all probabilistic polynomial time \hint machines" and for each machine M we selecta di�erent input x, on which M fails to simulate �. Let us consider the distributions M(x; h) forall possible hints h 2 f0; 1gt(n). For each h 2 f0; 1gt(n), de�ne a function f (h) : f0; 1gn ! f0; 1g sothat f (h)(r) = � i� Prob(M(x; h) = (r; �))� Prob(M(x; h) = (r; ��)) (set � = 0 if the probabilitiesare equal). Clearly, M(x; h) does not simulate the protocol properly if f (h)(�) is not \close" toK(x; �). We show that there is a function that is not close to any f (h) (h 2 f0; 1gt(jxj)), and thus,by selecting this function for K(x; �), we foil the simulation of M on x (no matter which h is usedas a hint). We say that a function f is close to a function g if they disagree on less than 16 oftheir possible inputs. Using this notation, if f (h)(�) is not close to K(x; �) then for at least 16 of ther 2 f0; 1gn it holds thatProb (M(x; h) 6= (r;K(x; r)) j M(x; h) = (r; �)) � 12Since (P; V) outputs (r;K(x; r)) for a uniformly selected r, we get that the statistical di�erencebetween the distributions M(x; h) and (P; V)(x) is at least 112 . Thus, M does not simulate (P; V)properly (with hint h).We use a counting argument to show that there exists a function K(x; �) : f0; 1gn ! f0; 1gwhich is not close to any of the possible f (h)'s. The number of possible f (h)'s is 2t(n) (this is thenumber of possible h's), and the number of functions that agree with a speci�c f (h) on at least 56 ofthe r's is bounded by l(n) def= 2n2n6 ! � 2 2n6 . Therefore, the total number of functions that are closeto f (h) for some h 2 f0; 1gt(n) is less than l(n) � 2t(n) < 22n, and we can select a function K(x; �) tofoil the simulation of M on x. 2It was asserted in Proposition 4.7 that for any interactive proof �, and any unbounded g : N!N, kcstrictoracle(�) � kc1=2oracle(�) + log(log(jxj)) + g(jxj). The following proposition shows that we cannot do better in general.Proposition 5.4 (tightness of Proposition 4.7): For every polynomial time computable functionk : N ! N and for any constant c > 0, there exists an interactive proof � such that: kc1=2oracle(�) =k(jxj) + 1 and kcstrictoracle(�) � k(jxj) + log(log(jxj)) + c.Proof: Suppose, �rst, that k(jxj) = 0. Let Sx � f0; 1gjxj be a set of cardinality 12 � 2jxj. Consider aprotocol, �, in which the prover P sends V a uniformly chosen y 2 Sx. A simulator of the oracle28

type can choose a string uniformly in f0; 1gjxj, and ask the oracle whether y 2 Sx. Thus, for anySx, the simulator outputs a conversation of the right distribution with probability 12 . We use againthe diagonalization technique, and show that for each strict oracle simulator M , which makes atmost log(log(jxj)) + c queries to the oracle, there exists a set Sx such that M can not simulate�(x) properly. In particular, we show that even if Sx is uniformly chosen among the subsets off0; 1gjxj which have cardinality 12 � 2jxj, the probability that M does not output an element of Sxis non-negligible (no matter which oracle is used to answer M 's queries). Thus, there exist suchan Sx which M fails to simulate. As before, we denote by M�r (x) the output of M on input x,coin tosses r and oracle �. First, we show that for a randomly chosen set Sx and any �xed randomstring r, the probability that M does not output an element of Sx is non-negligible no matter whatthe oracle answers are. It follows that the probability that M does not output an element of Sx,when Sx is random as before, is non-negligible also when the string r is uniformly chosen.First, note that (for a �xed r) the set fM�r (x)g� contains only O(log(jxj)) di�erent strings. Thisfollows from the fact that the behavior of Mr is completely determined by the log(log(jxj))+ c bitswhich it gets from the oracle, and there are only O(log(jxj) possible di�erent sequences of answers.Therefore, the probability that all the strings in fM�r (x)g� are not in Sx (for a randomly chosenSx) is at least �12�O(log(jxj)) = 1jxjO(1) . In other words, the probability that machine M does notoutput an element of Sx is greater than a polynomial fraction. Since the argument holds for any r,it certainly holds for a random r, leading to the conclusion, that for any oracle � (and a randomSx) the probability that M does not output an element in Sx is greater than a polynomial fraction.Thus, there exists such Sx, and we can use it to foil M on x.To extend the proof for any polynomial computable function k(jxj), we compose (sequentially)the above protocol with the protocol used in the proof of Theorem 5.1. It seems intuitively clearthat this composition yields the desired assertion and this intuition is indeed valid. A completeproof has to combine both proofs into a single diagonalization argument. The straightforward de-tails are omitted. 2Propositions 2.6 and 2.7 state the relations between the oracle measure, and the measures weget by changing the constant 1=2 (the lower bound on the probability that the simulator producesan output) to any constant 0 < � < 1. The following propositions show that we cannot get tighterrelations in general.Proposition 5.5 (tightness of Proposition 2.7): For any polynomial computable function k : N ! N,and for each constant 0 < � < 12 , there exists a protocol �� such that kc1=2oracle(��) = k(jxj) + 1 andkc1��oracle(��) � k(jxj) + log(log �1� �).Proof: By the same construction as in the previous proof. 2Proposition 5.6 (tightness of Proposition 2.6): For every interactive proof �, and every 0 <� < 12, kc�oracle(�) � 1 + maxfkc1=2oracle(�) � blog � 12��c; 0g. In particular, for every polynomialtime computable function k : N ! N which is bounded by some �xed polynomial, there exists aninteractive proof � such that kc�oracle(�) = k(jxj) and kc1=2oracle(�) � k(jxj) + log � 12��� 2.The second part of the above proposition is actually the one which asserts the tightness of Propo-sition 2.6.Proof: We show how to transform a simulator which produces output with probability at least 0:5into one which uses less queries but produces output with probability at least � < 0:5. The existenceof the protocol � mentioned in the second assertion follows by applying the above transformation to29

a protocol of knowledge complexity at least k(jxj)+blog � 12��c�2 and at most k(jxj)+blog � 12��c�1 inthe oracle sense. (Such a protocol exists by the strictness of the oracle hierarchy { see Theorem 5.1.)Given a simulator which produces output with probability at least 0:5, we construct a newsimulator as follows. The new simulator produces a random string of coins, denoted r, for theoriginal simulator, and guess at random the �rst blog � 12��c answers, denoted �, that the originaloracle would have provided (the original simulator running under these coins). Next, it queries the(augmented) oracle on whether this pre�x of the oracle answers (i.e., �) is correct for the chosenrandom string (i.e., r) and whether the original simulator produces an output on this randomstring. That is, the query is a pair (r; �) and the answer is one bit. If the answer is yes, then thenew simulator invokes the original simulator on coins r, answering the �rst j�j queries by the bitsof � and referring the subsequent queries to the oracle. Otherwise, the new simulators halts withno output.With probability at least 12 , the original simulator produces an output when given access to agood oracle. The new simulator correctly guesses the �rst �log � 12��� responses of this oracle withprobability at least 2�. Thus, the probability that the new simulator produces an output is at least12 � 2� = � . 25.3 Knowledge complexity is not preserved under sequential repetitionsRecall that knowledge complexity in the hint sense is preserved under sequential repetitions (cf.,Proposition 3.3). In contrast, we note that knowledge complexity in any of the other measuresdiscussed above is not preserved under sequential repetitions. This holds even if we restrict ourattention only to honest veri�ers (see Subsection 3.5). For example {Proposition 5.7 There exists an interactive proof � which has knowledge complexity 1 in the(strict) oracle sense while �2 has knowledge complexity at least 2� 1=poly(n) in the fraction senseas well as in the average oracle sense (even when restricting attention to the honest veri�er).It follows that �2 has has knowledge complexity 2 in the oracle sense. Recall that �2 denotes theinteractive proof system in which the system � is repeated twice.Proof outline: We use a proof system � analogous to the one in the proof of Proposition 5.3:Speci�cally, the veri�er randomly selects a bit r 2 f0; 1g, sends it to the prover which responds witha single bit K(x; r), where K : f0; 1g� � f0; 1g 7! f0; 1g is de�ned below. Clearly, kcstrictoracle(�) � 1(as well as kcstrictoracle(�2) � 2). To establish the lower bound, we use again the diagonalizationtechnique. Speci�cally, using the average oracle measure, we need to fail all simulators which withsome noticeable (i.e., 1=poly(n)) probability makes only a single query. Note that with probability1=4 the honest veri�er sends the bit 0 in the �rst run and the bit 1 in the second. Thus, thesituation reduces to the one analyzed in the proof of Theorem 5.1, and so we may apply the samearguments here (i.e., to the function K(x) def= (K(x; 0);K(x; 1))). 26 Knowledge complexity of languages in the hint senseIn this section we investigate the \hint-knowledge complexity" hierarchy of languages and establishtwo results - KChint(poly(jxj)) � AM[2], and KChint(O(log(jxj)) � coAM[2]. These results areobtained by extending the result proven for zero-knowledge by Fortnow [10] and Aiello and H�astad30

[2]. In the sequel, we follow the construction of [2]20. One doesn't have to master the techniquesused in that work in order to understand our proofs. Yet, some properties of these techniques,explicitly stated below, are essential to the validity of our proofs.The construction in [2] considers the interactive proof (P; V) for L and the simulator M of(P; V) guaranteed by the hypothesis21. They use the simulator to build a new interactive proof(P 0; V 0) for L which is of constant number of rounds. A simple enhancement in the construction(see [2, 22]) produces also an interactive proof (P 00; V 00) for L (the complement of L) which alsohas a constant number of rounds. (Employing [21] and [5] they get that L and L are in AM[2].)We �rst note that the use of M in these proof systems is limited. The proof considers only thefunction fM;x which is de�ned so that fM;x(r) is the output of M on input x and random string r.The simulator is not considered on other inputs, and the algorithm by which fM;x(�) is computedis immaterial as long as it runs in polynomial time in jxj.By the de�nition of the simulator M , there is no restriction on its behavior when the input xis not in L (except for being polynomial time). Namely, when x 62 L, the only property of fM;x(�)which is guaranteed by M being a simulator is that fM;x(�) is computable in polynomial time (injxj).Returning to the proof systems in [10, 2], we get that when x 62 L, the properties of these proofsystems are maintained also in the case that they are given access to any polynomial time (in thelength of their input x) computable function f(�) and not necessarily to fM;x(�). Thus, we getClaim 6.1 Suppose the protocol (P 0; V 0) (resp. (P 00; V 00)) is given access to some arbitrary proba-bilistic polynomial time machine M 0 instead of the simulator M . Then, it still holds that for anyx 62 L the protocol (P 0; V 0) accepts (resp. (P 00; V 00) rejects) x with negligible probability (as it wouldhave accepted (resp. rejected) with access to the original simulator).Comment: Both protocols require that the original interactive proof (P; V), has an exponentiallysmall error probability. This causes no di�culty when using the honest veri�er in the Hint version.We can run several copies of (P; V) in parallel without increasing the knowledge complexity, sinceall copies of the simulation can use the same hint.Theorem 6.2 Let L be a language that has an interactive proof with knowledge complexity k =poly(jxj) in the Hint sense, then L 2 AM[2].Proof: We have a language L accepted by an interactive proof (P; V), and a simulator M thaton the input x, and the hint h(x), produces a conversation. If M gets the right hint, it produces agood simulation of (P; V). Otherwise, nothing is guaranteed about the behavior of M , except forpolynomial running time.We use the interactive proof (P 0; V 0) for L given by [2] with a preliminary step. In this step,P 0 sends V 0 the hint h(x) associated with the input x. After this step, P 0 and V 0 build a ma-chine M 0(x) def= M(x; h(x)) and proceed by running the protocol (P 0; V 0) on the input x using thesimulator M 0.20The AM[2] protocol built in [10] for a language L whose complement has a statistical zero-knowledge interactiveproof has a aw (see Appendix A in [15] for further details). However, the basic ideas in [10] were extended in [2] toconstruct an AM[2] protocol for a language L that has a statistical zero-knowledge interactive proof. Furthermore,the additional machinery presented in [2] su�ces also for proving Fortnow's result (see [22] details of how to use themachinery of [2] to prove Fortnow's result). Alternatively, see [26].21Note that though the zero-knowledge property implies the existence of many simulators (one for each possibleveri�er), [2] use only the simulator for the original interactive proof (P;V), where V is not cheating.31

It is clear that if both prover and veri�er act according to the protocol, then completeness isensured. Claim 6.1 implies the soundness of the protocol. The number of rounds is a constant, andusing [5] and [21] we get L 2 AM[2] as desired. 2Theorem 6.3 Let L be a language that has an interactive proof with knowledge complexity k =O(log(n)) in the Hint sense, then L 2 coAM[2].Proof: Let us de�ne 2k(jxj) new simulators. For each � 2 f0; 1gk, let M 0�(x) def= M(x; �) whereM is the hint machine which simulates the original interactive proof (P; V). Obviously, M 0h(x) isa good simulating machine for (P; V). The interactive proof we build runs (P 00; V 00), the protocolconstructed in [2] for �L, for 2k times in parallel. The ith copy uses M 0i as its black box simulator.Our new veri�er will accept the input x i� all the sub-protocols end up accepting.Completeness: Suppose x 2 �L (i.e., x 62 L). The construction of [2] guarantees that (P 00; V 00) ac-cepts x with probability at least 1� �(jxj) when P 00 and V 00 are given access to a proper simulatorand where � : N ! [0; 1] is some negligible fraction. However, by Claim 6.1, (P 00; V 00) acceptsx with this probability also when P 00 and V 00 are given access to any probabilistic polynomialtime machine (and not necessarily to a simulator for (P; V)). Therefore, each copy of the protocol(P 00; V 00) rejects x with a negligible probability, and the probability that at least one of these copiesrejects x is bounded by 2k(jxj) � �(jxj). Since k(jxj) = O(log jxj) and since �(jxj) is negligible, thisprobability is also negligible.Soundness: If x 62 �L (i.e. x 2 L) then the copy of (P 00; V 00) which uses M 0h(x) rejects x with proba-bility almost 1, and since our veri�er accepts only if all the copies end up accepting, it will rejectx with probability almost 1. 2Acknowledgment:We are grateful to Benny Chor, Johan H�astad, Hugo Krawczyk, and Eyal Kushilevitz for helpfuldiscussions.References[1] Aiello, W., M. Bellare, and R. Venkatesan, \Knowledge on the Average { Perfect, Statistical,and Logarithmic", Proc. 27th STOC, pp. 469{478, 1995.[2] Aiello, W., and J. H�astad, \Perfect Zero-Knowledge Languages can be Recognized in TwoRounds", JCSS, Vol. 42, pages 327{345, 1991.[3] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, \RSA/Rabin Functions: Certain Partsare As Hard As the Whole", SIAM J. Comp., Vol. 17, No. 2, April 1988, pp. 194{209.[4] Alon, N., L., Babai and A. Itai, \A Fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem", J. of Algorithms, Vol. 7, 1986, pp. 567{583.[5] Babai, L., \Trading group theory for randomness", Proc. 17th STOC, 1985, pp. 421-429.32

[6] Bar-Yehuda, R., B. Chor, and E. Kushilevitz, \Privacy, Additional Information, and Commu-nication", 5th IEEE Structure in Complexity Theory, July 1990, pp. 55-65.[7] Bellare M. and E. Petrank, \Making Zero Knowledge Provers E�cient", Proc. 24th STOC,1992, pp. 711-722.[8] Ben-Or, M., O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali, and P. Rogaway,\Everything Provable is Provable in Zero-Knowledge", Advances in Cryptology - Crypto88(proceedings), Springer-Verlag, Lecture Notes in Computer Science, Vol. 403, pp. 37-56, 1990.[9] T.M. Cover and G.A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc.,New-York, 1991.[10] Fortnow, L., \The Complexity of Perfect Zero-Knowledge", Advances in Computing Research:a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 327{343, 1989.[11] O. Goldreich, Foundations of Cryptography { Fragments of a Book Department ofComputer Science and Applied Mathematics, Weizmann Institute of Science, Is-rael, February 1995. Available from http://theory.lcs.mit.edu/~oded/frag.html andhttp://www.eccc.uni-trier.de/eccc/.[12] Goldreich, O. and H. Krawczyk, \On the Composition of Zero-Knowledge Proof Systems",SIAM Journal on Computing, Vol. 25, No. 1, February 1996, pp. 169{192.[13] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing But their Validity orAll Languages in NP Have Zero-Knowledge proof Systems", Jour. of ACM., Vol. 38, 1991, pp.691{729.[14] Goldreich, O. and Y. Oren, \De�nitions and Properties of Zero-Knowledge Proof Systems",Jour. of Cryptology, Vol. 7, 1994, pp. 1{32.[15] Goldreich, O., R. Ostrovsky, and E. Petrank, \Computational Complexity and KnowledgeComplexity", 26th ACM Symp. on Theory of Computation, May 1994. pp. 534{543. To appearin SIAM J. on Comput., 1998.[16] Goldreich, O. and E. Petrank, \Quantifying Knowledge Complexity", the 32nd Annual IEEESymposium on the Foundations of Computer Science, October 1991, pp. 59{68.[17] S. Goldwasser and S. Micali, \Probabilistic Encryption", JCSS, Vol. 28, No. 2, pages 270{299,1984. Preliminary version in 14th STOC, 1982.[18] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive Proofs",Proc. 17th STOC, 1985, pp. 291-304.[19] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive ProofSystems", SIAM Jour. on Computing, Vol. 18, 1989, pp. 186-208.[20] Goldwasser, S., S. Micali, and P. Tong, \Why and How to Establish a Private Code on aPublic Network", In 23rd FOCS, pages 134{144, 1982.[21] Goldwasser, S., and M. Sipser, \Private Coins vs. Public Coins in Interactive Proof Systems",Advances in Computing Research (ed. S. Micali), 1989, Vol. 5, pp. 73-90.33

[22] H�astad, J., Perfect Zero-Knowledge in AM \ coAM. Unpublished (2-page) manuscript ex-plaining the underlying ideas behind [2]. 1994.[23] Impagliazzo, R., and M. Yung, \Direct Minimum-Knowledge Computations", Advances inCryptology - Crypto87 (proceedings), Springer-Verlag, Lectures Notes in Computer Science,Vol. 293, 1987, pp. 40-51.[24] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, 1996.[25] G. L. Miller, \Riemann's Hypothesis and Tests for Primality", JCSS, Vol. 13, 1976, pp. 300{317.[26] E. Petrank and G. Tardos, \On the Knowledge Complexity of NP", In 37th FOCS, pages494{503, 1996.[27] Shannon, C.E., \A mathematical theory of communication", Bell Sys. Tech. J., Vol. 27, 1948,pp. 623{656.[28] A.C. Yao, \Some complexity questions related to distributive computing", In 11th STOC,pages 209{213, 1979.[29] A.C. Yao, \Theory and Application of Trapdoor Functions", In 23rd FOCS, pages 80{91, 1982.

34

