
Honest-Verifier Statistical Zero-Knowledge
Equals General Statistical Zero-Knowledge

Oded Goldreich� Amit Sahaiy Salil VadhanzAbstract
We show how to transform any interactive proof system which is
statistical zero-knowledge with respect to the honest-verifier, into a
proof system which is statistical zero-knowledgewith respect to any
verifier. This is done by limiting the behavior of potentially cheat-
ing verifiers, without using computational assumptions or even re-
ferring to the complexity of such verifier strategies. (Previous trans-
formations have either relied on computational assumptions or were
applicable only to constant-round public-coin proof systems.)

Our transformation also applies to public-coin (aka Arthur-Merlin)
computational zero-knowledge proofs: We transform any Arthur-
Merlin proof system which is computational zero-knowledge with
respect to the honest-verifier, into an Arthur-Merlin proof system
which is computational zero-knowledge with respect to any proba-
bilistic polynomial-time verifier.

A crucial ingredient in our analysis is a new lemma regarding
2-universal hashing functions.1 Introduction
Zero-Knowledge proofs, introduced by Goldwasser,Micali and Rack-
off [GMR89], are fascinating and extremely useful constructs. Their
fascinating nature is due to their seemingly contradictory nature;
they are both convincing and yet yield nothing beyond the valid-
ity of the assertion being proven. Their applicability in the domain
of cryptography is vast; they are typically used to force malicious
parties to behave according to a predetermined protocol (which re-
quires parties to provide proofs of the correctness of their secret-
based actions without revealing these secrets).

Zero-knowledge proofs come in many flavors. Arguably, the
most important parameters refer to the strength of the zero-knowledge
(or simulability) condition. These are captured by two parameters:
The first parameter is the type of adversary which is supposed to�Department of Computer Science, Weizmann Institute of Science, Rehovot, IS-
RAEL. E-mail: oded@wisdom.weizmann.ac.il. Work done while visiting
LCS, MIT. Supported by DARPA grant DABT63-96-C-0018.yLaboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139. E-mail: amits@theory.lcs.mit.edu. Supported by an
NDSEG/DOD Graduate Fellowship and partially by DARPA grant DABT63-96-C-
0018.zLaboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139. E-mail: salil@math.mit.edu. Supported by an ND-
SEG/DOD Graduate Fellowship and partially by DARPA grant DABT63-96-C-0018.

learn nothing while verifying an assertion. The simplest type is a
honest-verifier; that is, one which follows the protocol (and ends up
with the transcript of the interaction). Zero-knowledge with respect
to an honest-verifier is already a fascinating notion from a concep-
tual as well as a complexity-theoretic point of view. However, cryp-
tographic applications typically require robustness against arbitrary
(or arbitrary feasible) behavior which typically deviates from the
protocol. This is the general (or standard)notion of zero-knowledge.
A major open problem in the area is whether honest-verifier zero-
knowledge equals general zero-knowledge. A positive answer to
this question may also lead the way to a useful methodology: First
construct a honest-verifier zero-knowledge proof to the problem at
hand, and next transform it to a general zero-knowledge proof. To
describe our contribution to the above open problem, we need first
to discuss a second major parameter of the zero-knowledge frame-
work – the notion of learning nothing.

The requirement that the verifier learns nothing from the proof
is formulated by saying that the transcript of its interaction with the
prover can be simulated by the verifier itself. That is, there exists
an efficient procedure than on input a valid assertion produces a dis-
tribution which is “similar” to the distribution of transcripts of the
executions of the proof system on that assertion. The key param-
eter is the interpretation of “similarity”. Three notions have been
commonly considered in the literature (cf., [GMR89, For89]). Per-
fect Zero-Knowledge (PZK) requires that the two distributions be
identical. Statistical Zero-Knowledge (SZK) requires that these dis-
tributions be statistically close (i.e., the variation distance between
them is negligible). Finally, Computational Zero-Knowledge(CZK)
refers to the case that these distributions are computationally indis-
tinguishable (cf., [GM84, Yao82]).

Assuming the existenceof one-way functions, any languagewhich
has an interactive proof, has also a Computational Zero-Knowledge
one (cf., [GMW91, IY87, BGG+88]). Thus, assumingthe existence
of one-way functions, the above problem (i.e., of honest-verifier ZK
versus general ZK) is long resolved for the case of Computational
Zero-Knowledge. Still, it is open whetherone can prove that honest-
verifier CZK equals general CZK, without assuming the existence
of one-way functions. We resolve this problem for the special case
of public-coin (aka Arthur-Merlin) proof systems –

Theorem 1 Every language having an Honest-Verifier Computa-
tional Zero-Knowledgepublic-coin proof system, also has a general
Computational Zero-Knowledge (public-coin) proof system.

We note that it is known that the existence of honest-verifier CZK
for languages outside BPP yields a weak form of one-way functions
[OW93]. However, this weak form of one-way functions does NOT

seem to suffice for constructing general CZK proofs for the same
language (in general).

The main focus of this paper is the honest-verifier versusgeneral
verifier problem for Statistical Zero-Knowledge. We fully resolve
the problem in this case –

Theorem 2 Every language having an Honest-Verifier Statistical
Zero-Knowledgeproof system, also has a general (public-coin) Sta-
tistical Zero-Knowledge proof.

Results of similar nature were previously achievedunder intractabil-
ity assumptions (cf., [BMO90, OVY93, Oka96]). A weaker uncon-
ditional result was claimed in [DOY97]. All these are discussed in
detail below. But first we need to be somewhat more precise about
the notions and issues discussed above.1.1 Formal Setting
The basic notions of interactive proofs [GMR89] are recalled in Ap-
pendix A. Throughout this subsection we fix a languageL, and an
interactive proof system, (P; V), for it.1 The basic paradigm of zero-
knowledge is that for every verifier of a certain class, there should
be an efficient non-interactive machine, called the simulator, which
is able to “simulate well” the view of the verifier in real interactions
with the prescribed prover (i.e., P). The two main issues we con-
sider are (1) which verifiers should be simulated, and (2) the quality
of simulation.Which veri�ers should be simulated (or honest-veri�er ver-sus general zero-knowledge): The two standard classes are the
class consisting merely of the prescribed verifier V (aka the honest-
verifier), and the class consisting of all probabilistic polynomial-
time interactive machines (i.e., feasible cheating strategies for the
verifier).

For the case of statistical zero-knowledge,we will considereven
a wider (in fact the widest possible) class – the class of all possi-
ble verifier strategies (including non-computable ones). This will
make our result even stronger. But how can an efficient machine
(i.e., the simulator) simulate the behavior (let alone interaction) of
a non-computable verifier strategy? The clue is the familiar notion
of a reduction, captured in this context by the notion of a black-box
simulator. The latter is a probabilistic polynomial-time oracle ma-
chine which is given oracle access to the verifier strategy.2 We com-
ment that the notion of black-box simulation was considered before
for other reasons (cf., [GO94, GK96]).The quality of simulation (or SZK versus CZK): When
defining statistical zero-knowledge (w.r.t. a class of verifiers), one
requires that for every verifier, V �, in the class there exists an effi-
cient simulator, S�, such that the following two distribution ensem-
bles are statistically close (i.e., the variation distance is eventually
smaller than 1=p(jxj) for every positive polynomial p):

1. f(P;V �)(x) : x 2 Lg, where (P; V �)(x) denotes the view
of V � when interacting with P on common input x. Recall
that this view consists ofx, all internal coin tosses of V �, and
all messages received from P .

2. fS�(x) : x2Lg.
The variation distance between the two distribution ensembles is
called the simulator deviation . In case there exists a black-box sim-
ulator, denoted S, the second distribution ensemble is fSV � (x) :1 All our results extend also to promise problems.2 That is, assuming deterministic strategies, each query is parsed as a sequence of
prover messages representing a prefix of the interaction, and the answer is the response
of this verifier strategy to such a prefix. Probabilistic verifier strategies are considered
by first randomly selecting and fixing a deterministic strategy, and then proceeding as
above.

x2 Lg, where SV �(x) denotes the output distribution of S on in-
put x and oracle access to V �.

When defining computational zero-knowledge (with respect to
a class of verifiers), one instead requires that the two distributions
above are computationally indistinguishable (cf., [GM84, Yao82]).
That is, for every probabilistic polynomial-time algorithm, D, the
following quantity is negligible (i.e., is eventuallysmaller than1=p(jxj)
for every polynomial p):jPr(D((P;V �)(x)) = 1) � Pr(D(SV � (x)) = 1)j

In our definitions of zero-knowledge, we require that the simu-
lators run in strict polynomial-time, as in [Gol95].Notations: LetHVSZK (resp., SZK) denote the class of lan-
guageshaving interactive proofs which are statistical zero-knowledge
with respect to the honest-verifier (resp., with respect to any proba-
bilistic polynomial-time verifier). The classesHVCZK and CZK
are defined analogously for computational zero-knowledge.Public-coin (or Arthur-Merlin) proof systems. As we re-
fer to this notion, let us recall that public-coin proof systems are in-
teractive proof systems in which the prescribed verifier’s strategy
amounts to the following: In each round, the verifier tosses a pre-
determined number of coins and sends the outcome to the prover,
and at the end it decides whether to accept by applying a predicate
to the (full) sequence of messages it has sent and received. For each
of the classesC above, we denote by Cjam the subclassof public coin
(or Arthur-Merlin) proof systems having the corresponding zero-
knowledge property.1.2 Previous work
Clearly, SZK � HVSZK (resp., CZK � HVCZK), BPP �SZK � CZK (resp., HVSZK � HVCZK), and Cjam � C �IP for each of these four ZK classes.1.2.1 On the complexity of various ZK classes.
The situation with respect to computational ZK is as follows.

Positive for CZK: Assuming the existence of one-way functions,CZKjam = IP (cf., [GMW91, IY87, BGG+88, HILL, Nao91]),
and so under this assumption the status of all computational
zero-knowledge classes is resolved.

“Negative” for CZK: If one-way functions do not exist then only
“easy on the average languages” have honest-verifier (com-
putational) zero-knowledge proofs [OW93]. This result al-
most complements the positive result above.

Open for CZK: Does HVCZK = CZK hold unconditionally?
(Or put otherwise, can it be proven without assuming the ex-
istence of one-way functions?)

Recall, this paper resolves this open problem for the case of public-
coin proof systems; that is, we show that HVCZKjam = CZKjam.
As for statistical ZK we have

Positive for SZK: Several computationalproblems, believed to be
hard, are known to have statistical zero-knowledge proof sys-
tems; for example, Quadratic Residuosity [GMR89], Graph
Isomorphism [GMW91], a problem equivalent to the Discrete
Logarithm Problem [GK93], Statistical Difference [SV97],
and a gap promise problem for lattices [GG98].

Negative for SZK: HVSZK � AM\ coAM [For89, AH87].

Inside HVSZK: A key result regarding SZK is that any honest-
verifier statistical zero-knowledge proof can be transformed
into one using only public-coins [Oka96]. That is,HVSZK =HVSZKjam. It is also known thatHVSZK is closed under
complement [Oka96, SV97].

Open for SZK: DoesHVSZK = SZK hold?

Recall, this paper resolves this open problem, showing thatHVSZK =SZK (and in factHVSZK = SZKjam).1.2.2 Previous transformation of honest-veri�er to gen-eral ZKConditional results for SZK: The problem of relatingHVSZK
to SZK was first studied in [BMO90]. They showed that the two
classes coincide, provided that the Discrete Logarithm Problem is
hard. At the time, it seemed puzzling that computational assump-
tions can be used in the supposedly “information theoretic” context
of statistical zero-knowledge. However, a careful examination re-
veals that the standard class SZK does refer to computational lim-
itations: It is required to simulate only all probabilistic polynomial-
time verifiers. The computational assumption is thus used to restrict
the behavior of cheating verifiers. This approach was carried to its
climax in [Oka96] (cf., [DGOW95, Part 2]): Using any bit com-
mitment scheme (and thus any one-way function [HILL, Nao91])
it was shown that HVSZKjam = SZKjam. Combined with theHVSZK = HVSZKjam result cited above, one gets that the exis-
tence of one-way functions impliesHVSZK = SZK (and in factHVSZK = SZKjam).Unconditional results for constant-round ZK: The only un-
conditional transformations of honest-verifierSZK (resp., CZK) known
before, referred to the class of constant-roundpublic-coin proof sys-
tems (cf., [Dam94, DGW94]). It was shown that if L has a HVSZK
(resp., HVCZK) public-coin proof system of a constant number of
rounds then L 2 SZKjam (resp., L 2 CZKjam).Weak SZK: In [DOY97] it is claimed that any language inHVSZK
has an interactive proof, (P; V), with the following non-standard
statistical zero-knowledge property: For every positive polynomialp, and every probabilistic polynomial-time verifier V �, there exists
a probabilistic polynomial-time simulator S�p (with running-time de-
pending on p) so that the variation distance between the probability
ensembles, f(P; V �)(x) : x2Lg and fS�p (x) : x2Lg, is at most1=p(jxj).31.3 Restating our results
We obtain the first unconditional general transformation of honest-
verifier zero-knowledge to general zero-knowledge.

Theorem 3 (main result): There exists an efficient transformation
of Honest-VerifierStatistical (resp., Computational) Zero-Knowledge
public-coin proof systems, into general Statistical (resp., Computa-
tional) Zero-Knowledge public-coin proof systems. Furthermore,

1. The resulting proof systems has twice as many rounds as the
original one.

2. The resulting prover strategy can be implemented in proba-
bilistic polynomail-time given oracle access to the original
prover strategy.

3. The completeness error of the resulting proof system is expo-
nentially vanishing. In case the original proof system has per-
fect completeness, so does the resulting one.3The first author was unable to verify the claims and arguments given in [DOY97].

4. The soundness error of the resulting proof system is bounded
above by 1=p(jxj), where p is an arbitrary polynomial deter-
mined by the transformation.

5. The resulting proof system has a black-box zero-knowledge
simulator.

6. In case of Statistical Zero-Knowledge, the resulting simulator
is strong (i.e., it can handle arbitrary verifier strategies), and
its simulation error is at most poly(jxj) � �(x) + 2�
(jxj) ,
where �(x) is the simulation error of the original system.

Theorems 1 and 2 follow, where in caseof Statistical Zero-Knowledge
we use Okamoto’s result by whichHVSZK = HVSZKjam [Oka96,
Thm. 1].

We stress that, in contrast to the previously mentioned condi-
tional results, our result for (unbounded) statistical zero-knowledge
is unconditional and guarantees (black-box) simulation of all possi-
ble verifier strategies (not only polynomial-time ones). Theorem 3
also provides a transformation for a wide class of computational
zero-knowledgeproof systems – that is, the class of public-coin proof
systems. We view our result as a significant step towards showing
that HVCZK = CZK without relying on any intractability as-
sumptions.Soundness error and number of rounds: The transformation
of Theorem 3 increases the number of rounds of the original proof
system only by a factor of 2. However, the resulting protocol has
noticeable soundness error. That is, for any positive polynomial p,
we can achieve a soundness error of 1=p(jxj). The soundness er-
ror may be further decreased, while preserving the zero-knowledge
property, by sequential repetition of the proof system. In partic-
ular, to achieve negligible soundness error it suffices to use !(1)
sequential repetitions. This is unavoidable, unless NP � BPP ,
since only BPP languages may have black-box simulation zero-
knowledge public-coin proofs with constant number of rounds and
negligible error probability [GK96].4Completeness error: By first applying the transformation of [FGM+89],
we may eliminate completeness error altogether (at the cost of at
most one additional round and not preserving the complexity of the
prover). (Recall that the transformation of [FGM+89] increases the
simulation error by at most an exponentially vanishing amount.)Corollaries: Many known results regarding the class HVSZK
translate to the classSZK (and respectively results forHVCZKjam
translate to CZKjam). For example, using known results regard-
ing HVSZK, one obtains that SZK is closed under complement,
equalsSZKjam, has a complete promise problem, etc. A somewhat
less straightforward corollary is the following.

Corollary 4 Every language in SZK has a SZK proof system with
perfect completeness in which the soundness error and the simula-
tion deviation are exponentially vanishing.

Given Theorem 3 (and the discussion above), the only non-obvious
part in Corollary 4 is the claim about the simulation error. Here we
rely on the result of [SV97] by which every language in HVSZK
has a 1-round interactive proof system for which the honest-verifier
can be simulated with exponentially vanishing simulation error. We4 Recall that if one-way functions exist thenNP has constant-round public-coin
proofs with negligible soundness error which are honest-verifier computational zero-
knowledge[GMW91]. So, if Theorem3 were to preserve all its features while resulting
in a proof system with negligible soundness error then NP � BPP would follow
(assuming that one-way functions exist).

also use a careful analysis of theHVSZK toHVSZKjam transfor-
mation of [Oka96] by which this transformation increases the sim-
ulation error by at most an exponentially vanishing amount. And
lastly, applying Theorem 3, we use its item 6.1.4 Techniques
Theorem 3 is proven by modifying the transformation presented in
[DGW94]. Whereas the proof systems resulting from that transfor-
mation could be simulated only for a constant number of rounds,
our modified transformation can be simulated for any (polynomial)
number of rounds. Both transformations apply to honest-verifier
Arthur-Merlin zero-knowledge proofs (both statistical and compu-
tational).

In the transformation of [DGW94], each`-bit long (random) mes-
sage sent by Arthur is replaced by an invocation of a 2-round Ran-
dom Selection protocol, for generating strings in f0; 1g`. For any
fixed positive polynomial p, a Random Selection protocol with the
following two properties was presented [DGW94]:

1. As long as Arthur plays according to the protocol, Merlin may
cause the outcome to deviate from uniform distribution overf0; 1g` by at most 1=p(`). (That is, the variation distance is
at most 1=p(`).)

2. As long as Merlin plays according to the protocol, Arthur may
not cause any `-bit string to appear as the outcome with prob-
ability greater than p(`)4 � 2�`. In particular, when Arthur
applies a deterministic cheating strategy, the outcome of the
protocol is uniformly distributed over some set of 2`p(`)4 strings.

The proof system resulting from the above transformation is sim-
ulated in [DGW94] by running the honest-verifier simulator, and
hoping that all Arthur-messages included in the transcript fall in the
sets mentioned in Item (2) above. If the proof system uses only a
constant number of invocations of the Random Selection protocol,
then the above suffices for producing a black-box simulation with
respect to any cheating Arthur-strategy. This approach fails when
we have a non-constant number of rounds (Random Selection in-
vocations).

In this paper we modify the above transformation as follows.
Rather than selecting a message, we use the Random Selection pro-
tocol to specify (in a succinct manner) a set of 2n messages. Mer-
lin is then supposed to select a message for Arthur, uniformly from
this set. An immediate concern is that this allows Merlin to select
a string which is advantageous for cheating. However, this only
increases Merlin’s cheating probability by a factor of 2n per each
round. (We can first make the original proof system have an even
smaller soundness error, so this should not scare us.) So the ques-
tion is what we gained by doing so. Intuitively, we gained not hav-
ing to simulate the Random Selection protocol for any possible out-
come. Rather than having to simulate an execution which results in
any specific `-bit output, �, we only need to simulate an execution
which results in a random set of strings containing �. The distinc-
tion is important since executions of the former type may exist only
for a 1=poly(`) fraction of the possible�’s, whereas – as we show –
executions of the latter type exists and can be efficiently generated
for all but a 2�
(n) fraction of the �’s. Proving the last statement is
a major technical undertaking of the paper. It is reduced to proving
the following lemma which may be of independent interest:

Lemma 5 (Hashing Lemma): Thereexists a universalconstant, c >0, so that the following holds, for every �; � > 0. Let D and T be
finite sets, H be a 2-universal family of hash functions from D toT , and e 2 T . Let S � H such that jSj � �jHj, and X be a

random variable ranging over a finite setD having collision prob-
ability at most �jT j (i.e.,

Px2D Pr [X = x]2 � �jT j). Then the sta-
tistical difference between the following two random processes is at
most c � �1=c��c.

(A) Select h uniformly in S, and let x be selected from X condi-
tioned on h(X) = e. Output (h; x).

(B) Let x X , and h be selected uniformly among all h 2 H
satisfying h(x) = e. Output (h; x).

Actually, a special case of this lemma, where X is uniform over D
(and jT j = � � jDj) suffices for the current proof of Theorem 3.
Thus, only a proof of this special case is given in this version. The
stronger version was developed for an alternative proof, discovered
first, which is totally superseded by the current proof.2 Notation
Whenever we consider an interactive proof system, x will denote
the common input and n will be the length ofx. For notational con-
venience, we will often hide dependence on x or n when it is clear.
For example, we write r instead of r(n).

If X and Y are random variables, we write kX � Y k for their
statistical difference (or variation distance), defined as kX�Y k =12 (Px jPr [X = x]� Pr [Y = x] j). By x X , we mean taking
a sample x from random variable X . If S is a set x 2R S indicates
that x is chosen uniformly from S.3 The starting proof system
Theorem 3 is proven by combining two transformations. The first
transformation is obtained by parallel repetition, and is stated with-
out proof below.5 The protocols resulting from this transformation
are the starting point for our main transformation, stated in the next
section.

Lemma 3.1 Let L be a language having a honest-verifier statis-
tical (resp., computational) zero-knowledge public-coin proof sys-
tems of r rounds. ThenL has such a (r-round honest-verifier) zero-
knowledge (public-coin) proof system in which

1. The proverstrategy can be implemented in probabilistic polynomial-
time given oracle access to the original prover stategy.

2. The completenesserror is exponentailly vanishing,and in case
the original proof system has perfect completeness so does
the resulting one.

3. Soundness error is less than 2�n�(r+1) .
4. For L 2 HVSZK: The simulator deviation is at most a

polynomial factor greater than the original one.4 The transformation
Fix a language L in HVSZK or HVCZKjam and let (M;A) be
the proof system guaranteed by Lemma 3.1. Let r = r(n) be the
number of rounds of (M;A) and let ` = `(n) be the length of A’s
messages. We may describe this proof system as follows:5 Recall that honest-verifier zero-knowledgepropertiesare preservedunder parallel
repetition.

Original Proof System (M;A), on input x:
1. In round i (i = 1; 2; : : : ; r),

(a) A chooses a message�i 2R f0; 1g` and sends it to M .

(b) M sends a response �i M(�1; �1; �2; �2; : : : ; �i)
to A.

2. After round r, machine A deterministically decides whether
to accept or reject.

The reason such a protocol could be zero-knowledgeagainst the hon-
est verifier but not against dishonest verifiers is that nothing pre-
vents A from choosing the �i’s maliciously rather than uniformly.
The idea of our transformation is to replaceA’s random choices with
a Random Selection protocol (to be described in Section 5) which
guarantees that the �i’s are statistically close to uniform, regardless
of howA behaves. The new protocol, denoted (M;A), proceedsas
follows.Transformed Proof System (M;A), on input x:

1. In stage i (i = 1; 2; : : : ; r),

(a) M andA use the Random Selection protocol,RS2nr(n);`(n)(n), to select �i 2 f0; 1g`.
(b) M sends the response�i M(�1; �1; �2; �2; : : : ; �i)

toA.

2. After stage r, machine A accepts or rejects as A would on
transcript (�1; �1; : : : ; �r; �r).

We will prove the following about the Transformed Proof Sys-
tem:

Lemma 4.1 The TransformedProofSystem (M;A) has the follow-
ing properties:

1. The numberof roundsis twice the number of rounds in (M;A).
2. M can be implemented in probabilistic polynomial time given

oracle access to M .
3. The completeness error is exponentially vanishing. In case(M;A) has perfect completeness, so does (M;A).
4. Soundness error 1=n.
5. When (M;A) is Honest-Verifier Statistical (resp., Computa-

tional) Zero-Knowledge, (M;A) is Statistical (resp., Com-
putational) Zero-Knowledge, and this zero-knowledge prop-
erty is exhibited by a black-box simulator.

6. In the case of Statistical Zero-Knowledge, the simulator de-
viation is at most 2�
(n) greater than that of (M;A).

Theorem 3, follows immediately from Lemmas 3.1 and 4.1.6
We now informally explain why Lemma 4.1 holds. All of these prop-
erties depend on facts about our Random Selection protocol which
will be proven in subsequent sections. Property 1 follows from the
fact that our Random Selection Protocol consists of 2 rounds with
Merlin sending the last message. Property 2 is clear, given that the
Merlin’s strategy in the Random Selection protocol can be imple-
mented in probabilistic polynomial time.

Property 3, the completeness error, follows from the fact that(M;A) has exponentially vanishing completenesserror and the fact
that whenM behaves honestly in the Random Selection protocol,
the �’s will have only have a statistical difference of 2�
(n) from
uniform. It is obvious that perfect completeness is preserved by our6For ease of presentation, we only show how to obtain a soundness error of 1=n,
but this can be replaced with any inverse polynomial.

transformation. For soundness (Property 4, we will show that in our
Random Selection protocol, a cheatingM cannot make the output
lie in any set S � f0; 1g` with probability greater that 2n � jSj2` +12nr . This givesM essentially an extra 2n factor of freedom (com-
pared to what M has) at each stage. Over r stages, we expectM to
succeed with probability 2rn times greater than M can. But since
the original (M;A) protocol has soundness error 2�(r+1)n ,M still
has only an exponentially small chance of succeeding. The additive
error term of 1=2nr also accumulates to give an additional additive
factor of 1=2n to the soundness error over r rounds, yielding a total
soundness error less than 1=n. A more detailed proof of soundness
will be given in the full version of the paper [GSV98].

The proof of zero-knowledgeness (Properties 5 and 6) is the ma-
jor technical undertaking of the paper, and it too reduces to proper-
ties of our Random Selection protocol. We will demonstrate that no
matter what strategy the verifier follows, the �i’s will be distributed
statistically close to uniform. Moreover, we will show that the Ran-
dom Selection protocol satisfies a strong simulability property: Us-
ing the verifier algorithm as a black-box subroutine and given a ran-
dom � 2 f0; 1g`, one can efficiently simulate the distribution of
Random Selection transcripts which yield �. Thus, a simulator for
the Transformed Proof System could operate as follows: Run the
honest verifier simulator for the original proof system to produce a
transcript of�i’s and�i’s; then use the strong simulator for the Ran-
dom Selection protocol to “fill in” how the �i’s are chosen. These
intuitive arguments will be made precise in the next few sections.5 Random Selection
Let q and ` be any polynomials. In this section, we describean Arthur-
Merlin protocol RSq;`(n) = (MRS; ARS)(n) for randomly se-
lecting a string in f0; 1g`(n). The protocol employs the Random
selection protocol DGW q;`(n) = (MD; AD) of [DGW94] as a
subprotocol, and the following presentation is adapted from that pa-
per.

For notational convenience, we will write q to mean q(n) and` to mean `(n). LetH be the space of affine linear functions fromf0; 1g` to f0; 1g`�n, i.e. h 2 H is of the form h(x) = Ax+ b for
some appropriately sized matrix A and vector b.7 For � 2 f0; 1g`,
we write H� for fh 2 H:h(�) = 0g. Let s = ` � (` � n) +(`�n) and t = s�4 log2(3qs). Note that elements of f0; 1gs can
be viewed as elements from H. The protocol DGW q;` utilizes a
space of functions F from f0; 1gs to f0; 1gt satisfying the follow-
ing properties:

1. Each f 2 F has a description of size poly(n).
2. There is a poly(n)-time algorithm that, on input f 2 F andh 2 f0; 1gs, outputs f(h).
3. There is a poly(n)-time algorithm that, on input f 2 F , y 2f0; 1gt, lists all the elements of f�1(y). In particular, jf�1(y)j �p(n) for some polynomial p.
4. For every y 2 f0; 1gs and f 2 F , f�1(y) is nonempty.
5. F is a family of almost s-wise independenthashing functions

in the following sense: For every s distinct pointsh1; : : : ; hs 2(f0; 1gs n f0; 1gt0s�t), for a uniformly chosen f 2 F , the
random variables f(h1); : : : ; f(hs) are independentlyand uni-
formly distributed in f0; 1gt . (This property is used only for
the proof of the soundnesscondition of the protocol, found in
[DGW94].)7Any 2-universal family for which the required computations are feasible can be

used; we use this particular family for simplicity and ease of presentation.

An explicit construction of such a family is given in [DGW94]. We
can view each f 2 F as defining a partition of f0; 1gs into 2t cells
of the form f�1(y), each of size poly(n). For notational conve-
nience, we will sometimes write cell y to refer to the cell f�1(y).

We now describe the protocol of [DGW94]:The DGW RandomSelection Protocol DGW q;` = (MD; AD)(n):
1. AD selects f 2R F , and sends it to MD (i.e., AD selects a

random partition).
2. MD selects y 2R f0; 1gt , and sends it to AD (i.e., MD uni-

formly selects a cell).
3. AD selects h 2R f�1(y) (i.e. AD uniformly selects an ele-

ment of the cell).
4. Output h.

If, at any step, AD or MD do not select an object from the appro-
priate set, whatever message they send is interpreted as a canonical
element of that set. In [DGW94], it was shown that the above pro-
tocol has the following properties (roughly speaking):

1. (Soundness) For any Merlin strategy M�D , the output distri-
bution onH = f0; 1gs of (M�D; AD) deviates from uniform
by at most 1=q (in statistical difference).

2. (Simulability) Let A�D be any strategy for Arthur. At least
a 1=poly(n) fraction of the h’s in f0; 1gs occur as possible
outputs of the interaction (MD; A�D) and given such an h,
one can simulate in poly(n)-time A�D’s view of an interac-
tion resulting in h.

The main hindrance in applying the protocol as used by [DGW94]
is that the simulator is only guaranteed to work for a 1=poly(n)
fraction of the h’s. The new technique of this paper is to interpret
the output h 2 H of the DGW protocol as a set of strings (namelyh�1(0)), from which a single string � is randomly selected by Mer-
lin. It is this�, rather than h, that is the output of the Random Selec-
tion protocol. Thus, we only need to simulate the Random Selection
protocol for a random� rather than a random h. For a given�, there
are exponentially many hash functions h such that h(�) = 0. Be-
cause this space ofh’s is so large and covers the �’s near-uniformly,
we are able to perform the simulation for a 1 � 2�
(n) fraction of
the �’s.

A full description of our Random Selection protocol follows.Our Random Selection Protocol RSq;` = (MRS ; ARS)(n):
1–3. As in DGW q;`(n).

4. MRS selects� 2R h�1(0). (If h�1(0) = ; then� is defined
to be 0`.)

5. Output �.

As with the DGW protocol, if ARS or MRS do not select an object
from the appropriate set at any step, whatever message they send is
interpreted as a canonical element of that set. The properties of this
protocol are described in the following Proposition.

Proposition 1 For any polynomials q and `, the Random Selection
protocolRSq;` is a 2-round protocol with the following properties:

1. (Efficiency) Both MRS and ARS can be implemented in timepoly(n) and the protocol is public-coin for both parties.
2. (Soundness) For all Merlin strategiesM�RS and all sets S �f0; 1g`, the probability that the output of (M�RS; ARS)(n)

lies in S is at most 2n � jSj2` + 1q

3. (Strong Simulability) There exists a black-box simulator SRS
running in time poly(n), such that for all deterministic8 Arthur
strategiesA�RS , the statistical difference between the follow-
ing distributions is 2�
(n):
(I) Execute (A�RS;MRS)(n), let � 2 f0; 1g` be the output

of the protocol, and let v be A�RS ’s view of the interac-
tion (i.e., v is a transcript (f; y; h; �)).9

(II) Choose� uniformly fromf0; 1g`. Output (SA�RSRS (�);�).Remark. The �’s are included in the outputs of Distributions
(I) and (II) above to force the simulator to produce a transcript for
an externally specified� (rather than an � which it generates on its
own while producing the transcript.)

Proof: Efficiency is immediate from the description of the pro-
tocol and the properties of the families F and H. For Soundness,
let M�RS be any cheating Merlin strategy and consider an execu-
tion of the protocol (M�RS; ARS). Notice that that the probability
that the output � lies in some set S is bounded above by the prob-
ability that h�1(0) contains an element of S. Now, for h chosen
uniformly from H (instead of by the protocol), the probability thath�1(0) contains an element of S is at mostX�2S Prh2RH[h(�) = 0] = jSj2`�n :
In our protocol, h is chosen using the DGW protocol. It shown in
[DGW94, Prop. 1] that a cheating Merlin can cause at most a 1=q
statistical difference from the uniform distribution onH, and so the
Soundness property follows.

We now describe the simulator which will be used to establish
Strong Simulability. Recall that p is polynomial bound on the size
of f�1(y) for any f 2 F , s is the description length for elements
of H, and functions in F map f0; 1gs to f0; 1gt, where t = s �4 log2(3qs).The simulator SA�RSRS , on input � 2 f0; 1g`, proceeds asfollows:

S1. Let f 2 F be the first message sent by A�RS .
S2. Repeat the following up to n � 2(3sq)4 � p times:

(a) Chooseh0 uniformly fromH� (Recall thatH� = fh: h(�) =0g.
(b) Let y = f(h0) (i.e., y is the cell containing h0). Com-

pute k def= jf�1(y)\H�j. With probability 1� 1k , pro-
ceed to next iteration of Step S2. (Otherwise continue.)

(c) Let h = A�RS(y), that is, the element (hereafter called
the cell representative)of celly thatA�RS gives in Step 3
after being sent y in Step 2.

(d) If h(�) = 0, output ((f;y; h; �);�) and terminate the
simulation. Otherwise, proceed to next iteration of Step S2.

S3. If the simulator failed to produce output so far, output fail.8The restriction to deterministic Arthur strategies is only for ease of presentation,
as a simulator for randomized Arthur strategies can uniformly select and fix Arthur’s
coins and then use the simulator for deterministic strategies. When we use the Random
Selection simulator as a subroutine in the simulator for the Transformed Protocol in
Section 6, the coins of Arthur will have already been fixed by the outer simulator.9In Section 1.1, we defined the Verifier’s view to consist of his random coins and
the Prover’s messages. Here, we do not include random coins, as they are irrelevant for
deterministic strategies. We also include Arthur’s messages — this is unnecessary as
they are functions of Merlin’s messages, but it will be convenient for our presentation.

From the various properties of the families F and H, such as
the fact that f�1(y) can be enumerated in time poly(n), and the
fact that s, q, and p are all poly(n), we see immediately that the

running time of SA�RSRS is poly(n).
Let us now show that Distributions (I) and (II) in Proposition 1

have statistical difference 2�
(n). Each producesoutput of the form((f; y; h; �); �). In both cases, f is the (deterministically chosen)
first message of A�RS and y = f(h), so it suffices to show that the
distributions restricted to their (h;�) components are statistically
close. We therefore define the Distributions (I’) and (II’) to be the
Distributions (I) and (II) restricted to their (h;�) components. To
analyze these distributions, we make use of the following Lemma,
the proof of which is in Section 7. (As stated in the introduction, we
can also prove a much more general form of this lemma. The proof
is omitted in this abstract.)

Lemma 5.1 There exists a universal constantc > 0, so that the fol-
lowing holds: LetH be the family of affine-linear maps from D =f0; 1g` to T = f0; 1g`0 , i.e. h 2 H is of the form h(x) = Ax+ b
for some matrix A and vector b. Let S � H be such that jSj ��jHj. Let " = jT jjDj . Then

Part 1: The statistical difference between the following two distri-
butions is at most (c � "1=c��c):
(A) Choose h 2R S. Let x 2R h�1(0). Output (h; x).
(B) Choose x 2R D. Let h 2R S \Hx. Output (h; x).

Part 2: For at least a 1� (c � "1=c��c) fraction of x 2 D,jS \HxjjHxj � �=2:
When we apply the lemma, we take `0 = `� n, " = 2�n, andS = fA�RS(y): y 2 f0; 1gtg. In other words, S is the set all possi-

ble cell representatives thatA�RS can send in Step 3 of the protocol(MRS; A�RS). Notice that� def= jSjjHj = 2t2s = 2�4 log2(3sq) = 1(3sq)4 :
and so, c � "1=c��c = 2�
(n). Now, observe that the protocol(MRS; A�RS) selects h uniformly from S. (Recall that A�RS is de-
terministic.) Thus, Distribution (I’) is exactly Distribution (A) of
Lemma 5.1. Now we will show that the Distribution (II’) is statis-
tically close to Distribution (B).

Let us consider a single iteration of Step S2 in SA�RSRS . In such
an iteration, h0 is chosen uniformly from H�, and y = f(h0). We
write f(H�) to denote the set of images of elements ofH� under f
(i.e., f(H�) = ff(h):h 2 H�g). In other words, f(H�) is the set
of cells intersectingH�. We want to establish that the distribution
of h’s produced by the simulator will be uniform in S \ H�. In
order for this to happen, y must be uniformly selected from f(H�).
If f was chosen honestly by A�RS , we would expect it to be one-to-
one on the setH�, sinceH� is a vanishingly small fraction of the
domain. However, f is chosen adversarially, so we must do some
work to ensure uniformity:

Notice that for any y0 2 f(H�), the probability that f(h0) =y0 when uniformly selectingh0 2 H� is exactly jH�\f�1(y0)j=jH�j.
In Step S2b, any suchchoice is maintained with probability 1=jH�\f�1(y0)j. Thus the probability that y = y0 after Steps S2a and S2b
in SRS is exactly 1=jH�j. This is independent of y0, and there-
fore y is a uniformly chosen element of f(H�) — that is, a uni-
formly chosen cell intersectingH�. (These probabilities sum up to

jf(H�)j=jH�j, which may be less than 1; this is due to the possi-
bility that the iteration ends prematurely in Step S2b.)

Now, since, in Step S2c, h = A�RS(y) is taken to be the repre-
sentative of cell y, the function h is uniformly distributed over the
representatives of cells which intersectH�. In Step S2d, we aban-
don any h not in H�, so the resulting distribution on h is uniform
over cell representatives inH�, that is, uniform over S\H�. Thus
a single iteration of the loop produces an h uniformly chosen fromS \ H�, if it manages to produce output at all. This is identical
to how h is chosen in Distribution (B) of Lemma 5.1. So, to show
that the Distribution (II’) is statistically close to Distribution (B),
we need only to show that the probability that the repeat loop fails
to produce output in all its poly(n) iterations is 2�
(n) for at least
a 1� 2�
(n) fraction of the �’s in f0; 1g`. We do this by showing
that each iteration produces output with probability at least n times
the reciprocal of the number of iterations.

There are two places in which an iteration can be exited, causing
it to fail to produce output — Steps S2b and S2d. Observe that the
simulator never exits in Step S2d if h0 chosen in Step S2a lies inS, because then h will equal h0. This occurs with probability jS \H�j=jH�j: By Lemma 5.1, for at least a 1 � 2�
(n) fraction of� 2 f0; 1g`, this quantity is at least �=2 = 1=2(3sq)4 .

Now suppose that h0 has been chosen in S. The probability of
not exiting in Step S2b is at least 1=jf�1(y)j, which is at least 1=p
by the properties of the family F . Thus, for a 1�2�
(n) fraction of
the �’s, a single iteration produces output with probability at least1=(2(3sq)4 � p). Since there are (2(3sq)4 � p) � n iterations, output
is produced with probability 1� 2�
(n).

We have shown that Distribution (I’) is identical to Distribution
(A) in Lemma 5.1 and Distribution (II’) has a statistical difference
of 2�
(n) from Distribution (B). So, by Lemma 5.1, we conclude
that Distributions (I) and (II) have statistical difference 2�
(n) and
Strong Simulability is established.6 Simulating the Transformed Protocol
In this section, we describe the simulator for the protocol (M;A)
of Section 4. Let S be the simulator for the honest verifier in the
original protocol (M;A). We will give a universal simulator S for(M;A) which uses any verifier strategy A� as a black-box.The simulator SA� , on input x:

1. Uniformly choose and fix random coins c forA� to obtain a
deterministic strategy A(1) .

2. Run the original honest-verifiersimulator to obtain a transcript(�1; �1; : : : ; �r; �r) S(x).
3. For i = 1 to r, do the following:

(a) Run the strong simulator for the Random Selection pro-
tocol, on input �i with Arthur strategy A(i), to obtain a
simulated transcript ti of the Random Selection proto-

col (i.e., ti SA(i)RS (�i)).
(b) Let A(i+1) be the state of A(i) after additional historyti; �i; �i.

4. Output (t1; �1; �1; : : : ; tr; �r; �r; c).
To prove that the above simulator has the desired properties, we

first consider its output distribution in the case that the original honest-

verifier simulator S is perfect: Let SA�
be the output distribution

of SA�
if the output of S in Step 2 is replaced with a true sample(�1; �1; : : : ; �r; �r) of the protocol (M;A). By an induction ar-

gument using the strong simulability property of the Random Se-
lection protocol, it is easy to show the following:

Claim 6.1 SA�(x) and (M;A�)(x) have statistical difference at
most 2�
(n).

The proof of Claim 6.1 can be found in the full version of the
paper [GSV98]. Now we deduce Lemma 4.1, Parts 5 and 6, from
Claim 6.1.Statistical Zero-Knowledge. Using the output ofS instead of a
true sample from (M;A) can increase the simulator deviation by at
most kS(x)�(M;A)(x)k, which is exactly the simulator deviation
for the protocol (M;A).Computational Zero-Knowledge. We claim that the probabil-

ity ensemblesX1 def= f(M;A�)(x)gx2L andX2 def= fSA�(x)gx2L
are computationally indistinguishable for any probabilistic polynomial-

timeA�. Consider the ensembleX3 def= fSA�(x)gx2L . By Claim 6.1,X1 and X3 are statistically close and therefore computationally in-
distinguishable. We claim that X2 and X3 are computationally in-
distinguishable, for any probabilistic polynomial-timeA�. This holds
becauseany distinguisherD betweenX2 andX3 can be transformed
into a distinguisherD0 between f(M;A)(x)gx2L and fS(x)gx2L ,
which are computationally indistinguishableby hypothesis. The new
distinguisher D0 operates as follows: Given a transcript T of ei-
ther of the latter two ensembles, perform the procedure specified bySA�

, replacing the execution in Step 2 with T , and feed the output
of SA�

to D. When T is selected according to f(M;A)(x)gx2L,D is fed with ensembleX3, whereas when T is selected according
to fS(x)gx2L, D is fed with ensemble X2.Remark. The above proof actually shows that, for any (not just
probabilistic polynomial-time) verifier A�, if (M;A�) and SA�
can be distinguished by algorithm D, then there is an algorithm no
more powerful thanA� andD (i.e., a probabilistic polynomial time
machine with oracle access to A� and D) that can distinguish the
original honest-verifier proof system (M;A) from its simulator S.
So, if the honest-verifiersimulator produces transcripts indistinguish-
able from (M;A)by any machine running in, say,quasi-polynomial
time, then the new protocol (M;A) is zero-knowledge against all
quasi-polynomial time verifiers.7 Proof of Hashing Lemma
Here we provide a proof of the Hashing Lemma used to establish
the main result of this paper. We restate the lemma here:

Lemma 7.1 (Hashing Lemma) There exists a universal constantc > 0, so that the following holds: Let H be the family of affine-
linear maps from D = f0; 1g` to T = f0; 1g`0 , i.e. h 2 H is
of the form h(x) = Ax + b for some matrix A and vector b. LetS � H be such that jSj � �jHj. Let " = jT jjDj . Then

Part 1: The statistical difference between the following two distri-
butions is at most c � "1=c��c:A = (AH; AX): Let h2RS. Let x2Rh�1(0). Output (h; x).B = (BH; BX): Let x2RD. Let h2RS\Hx . Output (h; x).
Part 2: For at least a 1� (c � "1=c��c) fraction of x 2 D,jS \HxjjHxj � 12 � jSjjHj � �2 :

Proof: We define a perfect hash function h 2 H to be one of the
form h(x) = Ax+ b, where the matrix A is full rank (and hence h
is surjective). Note that a straightforward calculation shows that at
most an " fraction of the functions in H are not perfect.

We first establish Part 1 of the Hashing Lemma for the special
case of perfect hash functions.

Sublemma 7.2 Part 1 of the Hashing Lemma holds when S con-
tains only perfect hash functions.

Proof: First, we consider the relationship between distributionsAX and BX .

Claim 7.3 kAX �BXk � 3"1=3� .

Proof: Note BX is uniform over D. To establish the claim, it suf-
fices to show that for all C � D,����Pr [AX 2 C]� jCjjDj ���� � 3"1=3� :
Note

���Pr [AX 2 C]� jCjjDj ��� = ���Pr [AX 2 (D nC)]� jDnCjjDj ���, so

it suffices to considersetsC such that jCjjDj � 12 . From the definition
of A, we observe:Pr [AX 2C] = 1jSjXh2S jh�1(0) \ Cjjh�1(0)j = 1jSjXh2S "�jh�1(0)\Cj
where the last equality is due to our assumption that every h 2 S is
perfect, and hence jh�1(0)j = 1=".

To analyze the expressionabove, which refers to a sum over h 2S, we first consider the behaviour of the sum over all h 2 H. Here,
we can use Chebyshev’s inequality. Consider the probability space
uniform overH, and define, for every x 2 C , an indicator random
variable: �x(h) = � 1 if h(x) = 00 otherwise

Let WC(h) = " � jh�1(0) \ Cj = " � Px2C �x(h). Since H is

a 2-universal family of hash functions, the �x’s are pairwise inde-
pendent with Prh2H[�x(h) = 1] = 1jT j = 1"�jDj . Thus, we have
that: Eh2H[WC(h)] = " �Xx2C Eh2H[�x(h)] = jCjjDj :Varh2H[WC(h)] = "2 �Xx2CVarh2H[�x(h)] < " � jCjjDj :
By Chebyshev’s inequality,Prh2H �����WC(h) � jCjjDj ���� > "1=3 � jCjjDj� < Var[WC]�"1=3 � jCjjDj�2< "1=3jDjjCj � 2"1=3
where the last inequality is because jCj � jDj=2. Since jSjjHj � �,
we can apply the above to the probability space uniform over S and
conclude, Prh2S �����WC(h) � jCjjDj ���� > "1=3 jCjjDj� < 2"1=3� :

Recall, Pr [AX 2 C] = 1jSjXh2SWC(h):
Hence, for all but at most 2"1=3� � jSj terms in the sum, we have

that
���WC(h)� jCjjDj ��� � "1=3 jCjjDj . Since for every h it is true that0 � WC(h) � 1, we have,����Pr [AX 2 C]� jCjjDj ���� � "1=3 jCjjDj + 2"1=3� � 3"1=3� :

And the claim is proved.
We are now ready to complete the proof of this sublemma. For

all x 2 D and all h 2 S such that h(x) = 0, we have, by Bayes’
Law:Pr [AH = hjAX = x] = Pr [AX = xjAH = h] � Pr [AH = h]Pr [AX = x]= jh�1(0)j�1 � jSj�1Pr [AX = x] = " � jSj�1Pr [AX = x]
where the last step is because for all perfect h, jh�1(0)j = 1=".
Note that this value has no dependence on h. Hence, for every x,
given AX = x, the distribution AH is uniform over fh 2 S :h(x) = 0g. Note that for all x, given BX = x, BH is also uni-
form over the same set. Thus, conditioned on the value of x, the
distributions AH and BH are identical.

Hence kA�Bk = kAX �BXk � �1, and the sublemma is
established.

Before we argue Part 1 of the Hashing Lemma in general, we
will show how Part 2 follows from Sublemma 7.2. In the sequel,
it will be convenient to introduce the following notation: For any
subset I � H, we will write Ix to denote the set fh 2 I : h(x) =0g.

In order to apply Sublemma 7.2, we will consider the subsetS0 �S of all perfect hash functions in S. Since less than an " fraction of
all hash functions are not perfect, jS0j � (1� "�)jSj � (��")�jHj.
Similarly, we define the following two modifications of the distribu-
tions A and B, using S0 instead of S:A0 = (A0H; A0X): Let h2R S0. Let x2Rh�1(0). Output (h; x).B0 = (B0H; B0X): Let x2RD. Let h2RS0\Hx. Output (h; x).

The following claim establishes Part 2 of the Hashing Lemma:

Claim 7.4 Let �1 def= 3"1=3��" . For at least a (1 � p�1) fraction ofx 2 D; jSx jjHx j � �=2:
Proof: By the definition of A0X ,Pr �A0X = x� = 1jS0j Xh2S0x 1jh�1(0)j = " jS0xjjS0j
where the last equality follows because jh�1(0)j = 1=" for all h 2S0 . However, by the Sublemma, kA0X �B0Xk � �1. Note thatB0X
is uniform over D, so for a (1�p�1) fraction of x 2 D, it must be
that " jS0xjjS0j = Pr �A0X = x� � (1�p�1) � 1jDj :
Thus,jSxjjHxj � jS0xjjHxj � (1�p�1) � jS0j"jDj � jHxj = (1�p�1) � jS0jjHj

where the last equality follows from " � jDj= jT j and jT j � jHxj =jHj. Using the fact that jS0 jjHj � (1� "�) � jSjjHj , we have, for a (1�p�1) fraction of x 2 D,jSxjjHxj � (1�p�1) � (1� "�) � � � �2 :
Note that the final inequality follows because we can safely assume
that
p�1 + "� < 12 . This is because we can freely assume that c �"1=c��c < 1, since otherwise the statement of the Hashing Lemma

becomes trivially satisfied. Since
p�1 + "� is upper bounded by k �"1=k��k for some constantk, our assumption can be made to imply

that
p�1 + "� < 12 by choosing c > 2k.
Finally, we establish Part 1 of the Hashing Lemma in general by

showing that the presence of imperfect hash functions will not dis-
turb our computations. First, we see immediately that since jS0j �(1 � "�)jSj, the statistical difference between A and A0 can be at
most "� . To see that the statistical difference between B0 and B is
sufficiently small, it suffices to show that for almost all x, the proba-
bility thatBH outputs an imperfect hash function, given that BX =x, is small. First we argue:

Claim 7.5 For every x 2 D; Prh2Hx[h is imperfect] � ".

Proof: Observe that for any x 2 D,Hx consists exactly of those
functions h(y) = Ay + b where b = �Ax. Thus, there is exactly
one function in Hx for every matrix A. Hence, the fraction of im-
perfect functions in Hx is precisely the fraction of matrices A that
do not have full rank, which is at most ".

For any x 2 D, the probability that BH outputs an imperfect
hash function given that BX = x isPrh2Sx[h is imperfect] � Prh2Hx[h is imperfect] � jHxjjSxj :
Using Claim 7.4 and Claim 7.5 above,we have that for at least a (1�p�1) fraction of x 2 D, this probability is at most �2 def= " � (2=�).
Thus, kB �B0k � (1�p�1) � �2 +p�1 � �2 +p�1. We have
already observed that kA0 �Ak � "� , and Sublemma 7.2 showed
that kB0 �A0k � �1. Hence kA� Bk � �1 + "� + �2 +p�1, and
the Hashing Lemma is established.Acknowledgments
We are grateful to Madhu Sudan for collaboration at early stages of
this research, and to Shafi Goldwasser for helpful discussions and
encouragement.References
[AH87] William Aiello and Johan Håstad. Perfect zero-knowledgelan-

guages can be recognized in two rounds. In Proceedings of
the Twenty Eighth Annual Symposiumon Foundationsof Com-
puter Science, pages 439–448, 1987.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan
Håstad, Joe Kilian, Silvio Micali, and Phillip Rogaway. Ev-
erything provable is provable in zero-knowledge. In S. Gold-
wasser, editor, Advances in Cryptology—CRYPTO ’88, vol-
ume 403 of Lecture Notes in Computer Science, pages 37–56.
Springer-Verlag, 1990, 21–25 August 1988.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true)
complexity of statistical zero-knowledge. In Proceedings
of the Twenty Second Annual ACM Symposium on Theory of
Computing, pages 494–502, 1990.

[Dam94] Ivan Damgård. Interactive hashing can simplify zero-
knowledge protocol design. In Proceedings of Crypto ‘95,
Lecture Notes in Computer Science, volume 403, pages 100–
109. Springer-Verlag, 1994.

[DGOW95] Ivan Damgård, Oded Goldreich, Tatsuaki Okamoto, and Avi
Wigderson. Honest verifier vs. dishonest verifier in public coin
zero-knowledge proofs. In Proceedings of Crypto ‘95, Lec-
ture Notes in Computer Science, volume 403. Springer-Verlag,
1995.

[DGW94] Ivan Damgård, Oded Goldreich, and Avi Wigderson. Hashing
functions can simplify zero-knowledge protocol design (too).
Technical Report RS-94–39, BRICS, November 1994. See
Part 1 of [DGOW95].

[DOY97] Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung.
Keeping the SZK-verifier honest unconditionally. In Burton S.
Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 31–
45. Springer-Verlag, 17–21 August 1997.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael
Sipser, and Stathis Zachos. On completeness and soundness
in interactive proof systems. In Silvio Micali, editor, Advances
in Computing Research, volume 5, pages 429–442.JAC Press,
Inc., 1989.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. In
Silvio Micali, editor, Advances in Computing Research, vol-
ume 5, pages 327–343. JAC Press, Inc., 1989.

[GG98] Oded Goldreich and Shafi Goldwasser. On the limits of non-
approximability of lattice problems. These proceedings, 1998.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-
knowledge proof system for a problem equivalent to the dis-
crete logarithm. Journal of Cryptology, 6:97–116, 1993.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of
zero-knowledge proof systems. SIAM Journal on Computing,
25(1):169–192, 1996.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryp-
tion. Journal of Computer and System Sciences, 28(2):270–
299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, February 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. Journal of the Association for
Computing Machinery, 38(1):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties
of zero-knowledge proof systems. Journal of Cryptology,
7(1):1–32, Winter 1994.

[Gol95] Oded Goldreich. Foundations of Cryptography (Fragments of
a Book). Weizmann Institute of Science, February 1995. Avail-
able from http://www.eccc.uni-trier.de/eccc/.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-
verifier statistical zero-knowledge equals general statistical
zero-knowledge. Electronic Colloquium on Computational
Complexity, 1998. http://www.eccc.uni-trier/
eccc/.

[HILL] Johan Håstad, Russell Impagliazzo, Leonid Levin,
and Michael Luby. Construction of pseudorandom generator
from any one-way function. To appear in SICOMP. Prelimi-
nary versions by Impagliazzo et. al. in 21st STOC (1989) and
Håstad in 22nd STOC (1990).

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-
knowledge computations (extended abstract). In Carl Pomer-
ance, editor, Advances in Cryptology—CRYPTO ’87, volume
293 of Lecture Notes in Computer Science, pages 40–51.
Springer-Verlag, 1988, 16–20 August 1987.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Jour-
nal of Cryptology, 4(2):151–158, 1991.

[Oka96] Tatsuaki Okamoto. On relationships between statistical zero-
knowledge proofs. In Proceedings of the Twenty Eighth An-
nual ACM Symposium on the Theory of Computing, 1996. See
also preprint of full version, Aug. 1997.

[OVY93] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung.
Interactive hashing simplifies zero-knowledge protocol de-
sign. In Proceedings of Eurocrypt ‘93, Lecture Notes in Com-
puter Science. Springer-Verlag, 1993.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are
essential for non-trivial zero-knowledge. In Proceedingsof the
Second Israel Symposium on Theory of Computing and Sys-
tems, 1993.

[SV97] Amit Sahai and Salil Vadhan. A complete promise problem
for statistical zero-knowledge. In Proceedings of the Thirty
Eighth Annual Symposium on Foundations of Computer Sci-
ence, pages 448–457, 1997.

[Yao82] Andrew C. Yao. Theory and application of trapdoor func-
tions. In Proceedings of the Twenty Third Annual Symposium
on Foundations of Computer Science, pages 80–91, 1982.A De�nitions

Definition 6 (Interactive Proofs – IP) [GMR89]: An interactive proof
system with completeness error c : N 7! N and soundness errors : N 7!N for a language L is a two-party game, between a veri-
fier executing a probabilistic polynomial-time strategy (denotedV)
and a prover which executesa computationally unboundedstrategy
(denoted P), satisfying� Completeness: For every x 2 L, the verifier V rejects with

probability at most c(jxj), after interacting with the proverP
on common input x.� Soundness: For every x 62 L and every potential strategyP �, the verifierV accepts with probability at most s(jxj), af-
ter interacting with P � on common input x.

In case c � 0 we say that the interactive proof has perfect com-
pleteness.

Unless specified differently, an interactive proof system means one
in which both the completeness and soundness errors are negligible
(i.e., eventually smaller than 1=p(�), for any polynomial p). Recall
that completenessand soundnesserrors can be decreasedby parallel
repetitions of the proof system. Thus, a proof system with sound-
ness and completeness errors which sum-up to a function bounded
away from 1 (i.e., c(n) + s(n) < 1 � 1=poly(n)), can be trans-
formed into a proof system of the same number of rounds having
exponentially decreasing completeness and soundness errors. This
transformation preserves honest-verifier statistical (resp., computa-
tional) zero-knowledge. (Recall that zero-knowledge with respect
to any verifier is not preserved, in general, under parallel repetition
[GK96].)

