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IntroductionWe consider the problem of perfectly hashing an arbitrary subset S�f0; 1gn of cardinality 2k intof0; 1gm, where k � m. That is, given an arbitrary subset S � f0; 1gn of cardinality 2k, we seeka function h : f0; 1gn 7! f0; 1gm so that h(x) 6= h(y) for every two distinct x 6= y in S. Clearly,such a function always exists, the question is what is its complexity; that is, what is the size of thesmallest circuit computing h.Although much work has been done on perfect hashing, it seems surprising that this questionwas not addressed before (to the best of our knowledge). Two easy bounds are1. For every S�f0; 1gn, there is a circuit of size jSj�n which perfectly hashes S into f0; 1gdlog2 jSje.(The circuit is merely a look-up table for S.)2. For every S�f0; 1gn, there is a circuit of size poly(n) which perfectly hashes S into f0; 1g2dlog2 jSje.(The circuit implements a suitable function from a family of Universal2 Hashing [2]. Such afamily always contains perfect hashing functions for S [4].)We show that these bounds are the best possible. That isTheorem 1 For every n; k and m � n� 1, there exists a subset S�f0; 1gn of cardinality 2k whichcannot be hashed into f0; 1gm using a circuit of size 
(22k�m=n).Interestingly, the lower bound is tight for all values of m 2 [k; 2k] (and not only for m = k; 2k).That is,Proposition 2 For every n;m; k where k � m � 2k, and every subset S � f0; 1gn of cardinality2k there exists1 a circuit of size 22k�m � poly(n) which hashes S into f0; 1gm.1 Proof of Theorem 1The proof follows by a simple counting argument, combining an upper bound on the number ofcircuits of given size with a lower bound on the size of a family of functions that can separate allsubsets of size 2k. Improved lower bounds for the latter appears in [3, 5, 7]. For completenesswe prove a weaker bound below, that is su�cient for our purposes, and present the argument inprobabilistic terms.Suppose, in contrary to Theorem 1, that for every subset S � f0; 1gn of cardinality K def= 2kthere exists a circuit of size o(22k�m=(2k�m)) which hashes S into f0; 1gk. We will show that eachcircuit can serve as a perfect hashing for too few K-subsets and thus that there are too few circuitsto perfectly hash all possible K-subsets. The main observation follows:Lemma 1.1 Let C : f0; 1gn 7! f0; 1gm be an arbitrary circuit, and S � f0; 1gn be a uniformlyselected subset of cardinality K = 2k. Then, the probability that C perfectly hashes S into f0; 1gmis bounded above by 2�
(22k�m)provided m � n� 1.1 We stress that such a circuit cannot, in general, be simply described; that is, this result is completely nonuniform.1



Proof: Let N def= 2n and M def= 2m. Clearly, we may assume that k � m (as otherwise theprobability is zero). Let c1; :::; cM denote the sizes of the preimages of the various m-bit stringsunder C (i.e., ci = jC�1(si)j, where si denotes the ith (m-bit long) string by some order). Then,the probability we are interested in isPI�[M ]:jIj=K Qi2I �ci1 ��NK� � �MK� � (N=M)K�NK�= K�1Yi=0 1� (i=M)1� (i=N)= exp(�K�1Xi=1 ln�1 + (i=M)� (i=N)1� (i=M) �)< exp��K � (K � 1)2 �� 1M � 1M ��which for M � N=2 yields 2�
(K2=M). The lemma follows.Adding up the contribution of all possible circuits, while applying Lemma 1.1 to each of them,we conclude that if too few circuits are considered then not all K-subsets can be perfectly hashed.Speci�cally, there are sO(s) possible circuits of size s, and so we need sO(s)�2�
(22k�m) � 1. Theorem 1follows.2 Proof of Proposition 2We consider two cases. In case m � k + log2 n then the proposition follows by constructing anobvious circuit which maps each string in S to its rank (in S) represented as an m-bit long string.This circuit has size jSj � n � 22k�m � n2 and the proposition follows.The less obvious case is when m � k + log2 n. Here we use a family of n-wise independentfunctions mapping f0; 1gn onto f0; 1g`, where ` def= m� log2 n. Function in such a family can beevaluated by poly(n)-size circuits; cf., [1]. We consider the collisions caused by a uniformly chosenfunction from this family applied to S. Speci�cally,Lemma 2.1 Let H be a family of functions fh : f0; 1gn 7! f0; 1g`g so that Probh2H(^ni=1h(�i) =�i) = 2�n`, for every n distinct �1; :::; �n2f0; 1gn and for every �1; :::; �n2f0; 1g`. Then, for everyS �f0; 1gn of cardinality 2k � 2`, there exists h 2 H so that1. jh�1(�) \ Sj � n, for every � 2 f0; 1g`.2. jf�2f0; 1g` : jh�1(�) \ Sj > 1g � 22k�`Proof: Fixing an arbitrary 2k-subset, S, and uniformly selecting h 2 H , we consider the probabilitythat the two items (above) hold. Firstly, we consider the probability that h maps n elements of Sto the same image. Using the n-wise independence of the family H , the probaility of this event isbounded by  2kn! � 2�`n < 2kn2k! � 2�kn < 12Thus, the probability that Item (1) does not hold is less than 1=2. Next, we consider the probabilitythat Item (2) does not hold. We start by using the pairwise independence of H to note that the2



collision probability is 2�` (i.e., Probh2H(h(�1) = h(�2)) = 2�`, for any �1 6= �2 2 f0; 1gn). Itfollows that the expected number of h-images which have more than a single preimage in S isbounded above by the expected number of collisions; that is, by �2k2 � � 2�` < 12 � 22k�`. ApplyingMarkov's Inequality, we conclude that the probability that Item (2) does not hold is less than 1=2.The lemma follows.Using Lemma 2.1, we are now ready to present a circuit which perfectly hashes an arbitrary 2k-subset, S � f0; 1gn, into f0; 1gm. Our construction uses the double hashing paradigm (e.g., [4]).Let h :f0; 1gn 7!f0; 1gk�log2 n be as guaranteed by the lemma. We de�ne a perfect hashing functionf :f0; 1gn 7!f0; 1gk for S by lettingf(�) def= h(�) � rankS\h�1 (h(�))(�)where rankP (�) is an log2 n-bit long string representing the rank of � among the elements of P . Acircuit computing the function f is constructed as follows. For each � having more than a uniqueh-preimage in S we maintain a table ranking these preimages in S. By Item (1) of Lemma 2.1,such a table need only contain n entries; whereas by Item (2) we only need 22k�` such tables. (Westress that if a string, �, does not appear in any of the tables then f(�) = h(�) � 0log2 n.) The sizeof the circuit is 22k�` � n2 = 22k�m � n3 and so Proposition 2 follows.References[1] N. Alon, L. Babai, and A. Itai, \A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem", J. of Algorithms, Vol. 7, 1986, pp. 567{583.[2] L. Carter and M. Wegman, \Universal Classes of Hash Functions", J. Computer and SystemSciences , Vol. 18, 1979, pp. 143{154.[3] M. Fredman and J. Koml�os, \On the Size of Separating Systems and Perfect Hash Functions",SIAM J. Algebraic and Discrete Methods, Vol. 5, 1984, pp. 61{68.[4] M. Fredman, J. Koml�os, E. Szemer�edi, \Storing a Sparse Table with O(1) Worst Case AccessTime", Journal of the ACM, Vol. 31, 1984, pp. 538{544.[5] J. Korner and K. Marton, \New Bounds for Perfect Hashing via Information Theory", Europ.J. Combinatorics, 9 (1988), pp. 523{530.[6] K. Mehlhorn, Data Structures and Algorithms (Vol. 1), EATCS Monographs on TheoreticalComputer Science, 1984.[7] A. Nilli, \Perfect Hashing and Probability", Combinatorics, Probability and Computing, 3(1994), pp. 407{409.
3


