
Simpli�ed derandomization of BPP using a hitting set generator�Oded Goldreichy Salil Vadhanz Avi WigdersonxJanuary 14, 2000AbstractA hitting-set generator is a deterministic algorithm which generates a set of strings thatintersects every dense set recognizable by a small circuit. A polynomial time hitting-set gen-erator readily implies RP = P . Andreev et. al. (ICALP'96, and JACM 1998) showed that ifpolynomial-time hitting-set generator in fact implies the much stronger conclusion BPP = P .We simplify and improve their (and later) constructions.Keywords: Derandomization, RP, BPP , one-sided error versus two-sided error

�A preliminary version of this work has appeared in the proceedings of Random99.yDepartment of Computer Science, Weizmann Institute of Science, Rehovot, Israel.oded@wisdom.weizmann.ac.il.zMIT Laboratory for Computer Science, 545 Technology Square,Cambridge, MA 02139. salil@theory.lcs.mit.edu. Supported by an NSF Mathematical Sciences PostdoctoralResearch Fellowship.xInstitute of Computer Science, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.avi@cs.huji.ac.il. 0

1 IntroductionThe relation between randomized computations with one-sided error and randomized computationswith two-sided error is one of the most interesting questions in the area. Speci�cally, we refer tothe relation betwen RP and BPP. In particular, does RP = P imply BPP = P?The breakthrough paper of Andreev et. al. [1] (and its sequel [2]) gave a natural setting in whichthe answer is yes. The setting is a speci�c natural way to prove RP = P, namely via \hitting-set generators" (see exact de�nition below). Informally, such a generator outputs a set of stringsthat hits every large e�ciently-recognizable set (e.g., the witness set of a positive input of an RPlanguage). Having such a generator which runs in polynomial time enables a trivial deterministicsimulation of an RP algorithm by using each of the generator's outputs as the random pad of thegiven algorithm.The main result of [1] was that such a generator for 1-sided error algorithms already su�cesto derandomize 2-sided error algorithms: the existence of polynomial-time hitting set generatorsimplies BPP = P.De�nition 1 (hitting set generator): An algorithm, G, is called a hitting set generator for circuitsif for every n; s 2 N (given in unary) generates as output a set of n-bit strings G(n; s) with thefollowing property: every circuit of size s on n input bits, which accepts at least half its inputs,accepts at least one element from the set G(n; s).1Since s is the essential complexity parameter (n � s), we let tG(s) denote the running time of thegenerator G on input (n; s), and NG(s) denote the size of its output set. Clearly NG(s) � tG(s).The result of Andreev et. al. [1] isTheorem 2 [1]: If there exists a hitting-set generator G running in time tGthen BPP � DT IME(poly(tG(poly(n))).With the most important special case (i.e., tG(s) = poly(s))Corollary 3 [1]: If G runs in polynomial time then BPP = P.Our main result is a simple proof of Theorem 2. To explain what simple means is not so simple,and we have to explain how the given generator assumed in the theorem is used to enable thederandomization of BPP , in the proof of [1] and in later proofs. Indeed later proofs (of [2] andthen [3]) were much simpler, but while proving Corollary 3, they fell short of proving Theorem 2.2The reader is warned that the following discussion is on an intuitive level and some thingscannot easily be made precise. The reader who doesn't like such discussions is welcome to skip tothe formal proof in the next two sections.The proof in [1] uses the generator in two ways. Once, literally as a producer of a hitting setfor all large e�cient sets. Second, and more subtly, as a hard function. Observe that the existenceof such a generator G immediately implies the existence of a function on O(log tG(s)) bits which1Usually generators are de�ned to output only one string; in terms of the above de�nition it means that on inputan index i 2 f1; :::; jG(n; s)jg, the generator outputs the ith string in G(n; s). However, we �nd the current conventionsimpler to work with in the current context.2However, both [2] and [3] use their techniques to study the relationship between one-sided and two-sided errorin additional respects not addressed by Theorem 2. In particular, [3] resolve the promise-problem analogue of thequestion \Does RP = P imply BPP = P?" in the positive. See the discussion at the end of this section.1

is computable in time tG(s) but cannot be computed by circuits of size s. These two ways arecombined in a rather involved way for the derandomization of BPP .It is interesting to note that for the case tG(s) = poly(s), the resulting hard function mentionedabove can be plugged into the pseudorandom generator of [6], to yield BPP = P as in Corollary 3.However, [6] was unavailable to the authors of [1] at the time (the two papers are independent).Moreover, [6] is far from \simple", it does use the computational consequence which we are tryingto avoid, and anyway it is not strong enough to yield Theorem 2.A considerably simpler proof was given in [2]. There the generator is used only in its \originalcapacity", as a hitting set generator, without explicitly using any computational consequence ofits existence. In some sense, this proof is more clearly a \black-box" use of the output set of thegenerator. However, something was lost. The running time of the derandomization is replaced bypoly(tG(tG(poly(n))).On the one hand, this is not too bad. For the interesting case of tG(s) = poly(s) (which impliesRP = P), they still get the consequence BPP = P, as in Corollary 3 (since iterating a polynomialfunction twice results in a polynomial). On the other hand, if the function tG grows moderately sothat tG(tG(n)) = 2n, then we have as assumption a highly nontrivial derandomization of RP, butthe consequence is a completely trivial derandomization of BPP .The best (to our taste) way to understand the origin of the iterated application of the functiontG in the result above, is explained in the recent paper [3], which further simpli�es the proof of [2].They remind the reader that Sipser's proof [8] putting BPP in �2 \�2 actually gives much more.In fact, viewed appropriately, it almost begs (with hindsight) the use of hitting sets!The key is, that in both the 89 and 98 expressions for the BPP language, the \witnesses"for the existential quanti�er are abundant. Put di�erently, BPP � RPprRP , (where prRP is thepromise-problem version of RP). But if you have a hitting set, you can use it �rst to derandomizethe \oracle" part of the right-hand side. This leaves us with an RT IME(tG(poly(n)) machine,which can again be derandomized (using hitting sets for tG(poly(n)) size circuits).In short, the \two quanti�er" representation of BPP , leads to a two-level recursive applicationof the generator. It seems hopeless to reduce the number of quanti�ers to one in Sipser's result. Soanother route has to be taken to prove Theorem 2 in a similar \direct" (or \black-box") manneras above, without incurring the penalty arising from this two level recursion.We eliminate the recursion to have only one-level use of the hitting set, by \increasing thedimension to two": Following Lautemann's proof [7] of Sipser's result, for each input to a givenBPP algorithm which uses `(n) random coins, we consider a 2`(n) � 2`(n) matrix whose (a; b)'thentry is the decision of the algorithm using random pad a � b.3 In this matrix, the fraction ofincorrect answers in each row (resp., column) is small. The hitting set is used to select a smallsubset of the rows and a small subset of the columns, and the entries of this submatrix determinethe result. Speci�cally we will look for \enough" (yet few) rows which are monochromatic, anddecide accordingly. The correctness and e�ciency of the test are spelled out in Lemma 6. It isessentially captured by the following simple Ramsey-type result, which is seemingly new and maybe of independent interest.Proposition 4 For every n-vertex graph, either the graph or its complement has a dominating setof size dlog2 ne. Furthermore, one can �nd such a set in polynomial time.3A preliminary version of this work [5] considered a di�erent matrix whose (a; b)'th entry is the decision of thealgorithm using random pad a � b. For that matrix to have the desired properties, it was necessary to �rst performdrastic error reduction (using extractors) on the BPP algorithm. The main simpli�cation here is in avoiding thisstep. 2

We end by observing that (like the previous results) our result holds in the context of promiseproblems. Hence, the existence of hitting set generators provides an e�cient way for approximatelycounting the fraction of inputs accepted by a given circuit within additive polynomial fraction.Formalizing this is standard and we leave it to the reader.Perspective: As described above, Buhrman and Fortnow [3] prove that BPP � prRPprRP ,and actually prBPP = prRPprRP . It follows immediately that prRP = prP) prBPP = prP ,resolving the main question of this area for promise classes! This result suggests two naturalextensions that remain open. The �rst is to obtain an analogue of their result for the standardlanguage classes RP and BPP . (In [3], it is shown that such an extension cannot relativize.)The second is to \scale" the result upwards. From the hypothesis prRP � DT IME(t(n)), theyobtain the conclusion prBPP � DT IME(poly(t(t(poly(n))))). Theorem 2, as proven in [1] andthis paper, replaces the composition t(t(�)) with a single t(�) for the (very) special case when thederandomization of prRP is via a hitting-set generator.2 The Derandomization ProcedureGiven L 2 BPP , consider a probabilistic polynomial-time algorithm A for L. Let ` = `(n) be a�xed polynomial denoting the number of coin tosses made by A on inputs of length n; similarly,de�ne s = s(n) so that the computation of A on inputs of length n can be implemented by circuitsof size s(n). We assume that A has error probability at most 1=2`(n); this can be achieved bystraightforward ampli�cation of any BPP algorithm for L.Let A(x; r) denote the output of algorithm A on input x 2 f0; 1gn and random-tape contentsr 2 f0; 1g`(n), Our derandomization procedure, described below, utilizes a hitting-set generator Has de�ned earlier (cf., Def. 1).Derandomization procedure: On input x 2 f0; 1gn, letting A, `, and s be as above.1. Invoking the hitting-set generator G, obtain H G(` ; ` � s). That is, H is a hitting setfor circuits of size ` � s and input length `. Denote the elements of H by e1; :::; eN, whereN def= NG(s) and each ei is in f0; 1g`.2. Construct an N-by-N matrix, M = (vi;j), so that vi;j = A(x; ei � ej). That is, run A with allpossible random-pads composed by XORing each of the possible pairs of strings in H. (Wemerely use the fact that a� b is easy to compute and that for any a the mapping b 7! a� bis 1-1, and similarly for any b and a 7! a� b.)3. Using a procedure to be speci�ed below, determine whether for every ` columns there exists arow on which all these columns have 1-value. If the procedure accepts then accept else reject.That is, accept if and only if8c1; :::; c` 2 [N] 9r 2 [N] s.t. ^ì=1 (vci;r = 1) (1)We �rst show that if x 2 L then Eq. (1) holds, and analogously if x 62 L then8r1; :::; r` 2 [N] 9c 2 [N] s.t. ^ì=1 (vri;c = 0) (2)Note that this by itself does not establish the correctness of the procedure. Neither did we specifyhow to e�ciently implement the procedure. To that end we use a general technical lemma which3

implies that it cannot be the case that both Eq. (1) and Eq. (2) hold, and in fact e�cientlydetermines at least one which does not hold. These are deferred to the next section. But �rst weprove the above implications.Proposition 5 If x 2 L (resp., x 62 L) then Eq. (1) (resp., Eq. (2)) holds,Proof: We shall prove a slightly more general statement. Let �L be the characteristic function ofL (i.e., �L(x) = 1 if x 2 L and �L(x) = 0 otherwise). Then we prove that for every x 2 f0; 1gn, forevery ` rows (resp., columns) there exists a column (resp., row) on which the value of the matrixis �L(x).Fixing the input x 2 f0; 1gn to algorithm A, we consider the circuit Cx which takes an `-bitinput r and outputs A(x; r) (i.e., evaluates A on input x and coins r). By our hypothesis regardingthe error probability of A, we havePrr2f0;1g` [Cx(r) 6= �L(x)] � 12`It follows that for every y1; :::; y` 2 f0; 1g`,Prz2f0;1g` [(8i) Cx(yi � z) = �L(x)] � 12 (3)Let y = (y1; :::; y`), and consider the circuit Cx;y(z) def= ^ì=1(Cx(yi � z) = �L(x)). Then, by theabove Prz[Cx;y(z) = �L(x)] � 1=2. On the other hand, the size of Cx;y is merely ` times the size ofCx, which was at most s. Thus, by de�nition of the hitting-set generator G, the set H = G(` ; s)must contain a string z so that Cx;y(z) = �L(x).The above holds for any y = (y1; :::; y`). Thus, for every y1; :::; y` 2 H � f0; 1g` there existsz 2 H so that A(x; yi � z) = Cx(yi � z) = �L(x) for every i 2 [`]. Thus we have proved that forevery ` rows in M there exists a column on which the value of the matrix is �L(x).A similar argument applies to sets of ` columns in M . Speci�cally, for every z1; :::; z` 2 f0; 1g`Pry2f0;1g` [(8i) Cx(y � zi) = �L(x)] � 12 (4)Again, we conclude that for every z1; :::; z` 2 H there exists y 2 H so that Cx(y � zi) = �L(x) forevery i 2 [`]. Thus, for every ` columns in M there exists a row on which the value of the matrixis �L(x). The proposition follows.Perspective: The above procedure is a simpli�ed version of the procedure given in a preliminaryversion of this work [5]. Speci�cally, the argument in [5] relies on explicit constructions of extractorsfor drastic error reduction of the BPP algorithm. Here, we only use a mild (and trivial) errorreduction. The discrepency stems from the fact that the matrix considered in [5] is di�erent. Step 3in the above procedure is identical to the step in [5], and so is Lemma 6. Thus, our argument relieson two essential ingredients: The �rst ingredient, adopted from [2], is the use of auxiliary circuits(depending on Cx but not identical to it), in order to argue that a hitting-set must have certainstrong properties with respect to Cx. The second ingredient is the constructive combinatorial resultgiven by Lemma 6. (A third ingredient, using extractors as in [5], is eliminated here.)
4

3 Correctness and E�ciency of the DerandomizationProposition 5 shows that for every x either Eq. (1) or Eq. (2) holds. But, as stated above, it is noteven clear that Eq. (1) and Eq. (2) cannot hold simultaneously. This is asserted next.Lemma 6 Every n-by-n Boolean matrix, with n � 2k, either has k rows whose OR is the all1's row, or k columns whose AND is the all 0's column. Moreover, there is a (deterministic)polynomial-time algorithm that given such a matrix �nd such a set.We prove the lemma momentarily. But �rst let use show that Eq. (1) and Eq. (2) cannot holdsimultaneously. We �rst note that in our case n = N = NG(s) (which we may assume is at most 2`since it does not help for a hitting set to have repeated elements) and k = `. Then we just applythe following corollary.Corollary 7 For every n-by-n Boolean matrix, with n � 2k, it is impossible that both1. For every k rows there exists a column so that all the k rows have a 0-entry in this column.2. For every k columns there exists a row so that all the k columns have a 1-entry in this row.Furthermore, assuming one of the above holds, we can decide which holds in (deterministic) polynomial-time.Proof (of Corollary 7): Suppose Item (1) holds. Then, the OR of every k rows contains a0-entry, and so cannot be the all 1's row. Likewise, if Item (2) holds then the AND of every kcolumns contains a 1-entry, and so cannot be the all 0's column. Thus, the case where both itemsholds stands in contradiction to Lemma 6. Furthermore, �nding a set as in the lemma yields whichof the two items does not hold.Proof of Lemma 6: Let S0 = [n], R = ;, and repeat for i = 1; 2; :::: Take a row j not in Rwhich has at least jSij=2 1's in Si. Add j to R, and let Si+1 be the part of Si that had 0's in rowj. We get stuck if for any i, no row in current [n]�R has at least jSij=2 1's in Si. Otherwise, weterminate when Si = ;If we never get stuck, then we generated at most log2 n � k rows whose OR is the all 1's row(as the ith row has 1-entries in every column in Si�1 � Si, and the last Si is empty). On the otherhand, if we got stuck at iteration i, let S = Si. Note that every row has at least jSj=2 0's inthe columns S. (This includes the rows in the current R which have only 0's in the columns inS � Si�1 � � � � � S0.) But now picking greedily columns from S in sequence so as to contain thelargest number of 0's in the remaining rows will clearly pick a 0 from every row after a set T of atmost k columns from S were chosen.Turning to the algorithmics, note that the above procedure for constructing R, S and T isimplementable in polynomial-time. Thus, in case the \row" procedure was completed successfully,we may output the set of rows R, and otherwise the set T of columns.Proof of Theorem 2: Proposition 5 shows that for every x either Eq. (1) or Eq. (2) holds,and furthermore that the former (resp., latter) holds whenever x 2 L (resp., x 62 L). By applyingCorollary 7 as indicated above it follows that only one of these equation may hold. Using the decision5

procedure guaranteed by this corollary, we implement Step 3 in our derandomized procedure, andTheorem 2 follows.Note that for a BPP algorithm which uses ` coin tosses and can be implemented by circuitsof size s, our derandomization only invokes the hitting-set generator with parameters (`; s � `) andotherwise runs in polynomial time. However, if the algorithm only has constant error probability,we must �rst reduce the error to 1=2`, which increases these parameters somewhat. Using standarderror reduction (running the algorithm O(log `) times independently and ruling by majority), weobtain the following more quantitative version of our result:Theorem 8 Suppose there is a hitting set generator G such that G(`; s) is computable in timet(`; s). Let L be a problem with a constant-error BPP algorithm that, on inputs of length n, uses` = `(n) coin tosses and can be implemented by circuits of size s = s(n). ThenL 2 DT IME(poly(t(O(` � log `); O(s � ` log `)))):The O(` log `) in the �rst argument to t can be reduced to `+O(log `) by using random walkson expanders for error reduction.AcknowledgmentsThe second author thanks Adam Klivans for explaining [5] to him.References[1] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomizationmethod. Journal of the Association for Computing Machinery (J. of ACM), 45(1), pages179{213, 1998.Hitting Sets Derandomize BPP. In XXIII International Colloquium on Algorithms, Logicand Programming (ICALP'96), 1996.[2] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim and L. Trevisan, Weak Random Sources,Hitting Sets, and BPP Simulations. To appear in SIAM J. on Comput.. Preliminaryversion in 38th FOCS, pages 264{272, 1997.[3] H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Proceedingsof the 16th Symposium on Theoretical Aspects of Computer Science. Lecture Notes inComputer Science, Springer, Berlin, 1999.[4] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173,1984.[5] O. Goldreich and A. Widgerson. Improved derandomization of BPP using a hitting setgenerator. Proceedings of Random99, LNCS 1671, Springer, pages 131{137, 1999.[6] R. Impagliazzo, A. Wigderson, P=BPP unless E has Subexponential Circuits: Deran-domizing the XOR Lemma. 29th STOC, pages 220{229, 1997.6

[7] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters,Vol. 17, pages 215{217, 1983.[8] M. Sipser. A complexity-theoretic approach to randomness. In 15th STOC, pages 330{335,1983.[9] D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica,Vol. 16, pages 367{391, 1996.

7

