
Using the FGLSS-reduction to Prove Inapproximability Results forMinimum Vertex Cover in HypergraphsOded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilDecember 18, 2001AbstractUsing known results regarding PCP, we present simple proofs of the inapproximability ofvertex cover for hypergraphs. Speci�cally, we show that1. Approximating the size of the minimum vertex cover in O(1)-regular hypergraphs to withina factor of 1.99999 is NP-hard.2. Approximating the size of the minimum vertex cover in 4-regular hypergraphs to within afactor of 1.49999 is NP-hard.Both results are inferior to known results (by Trevisan and Holmerin), but they are derivedusing much simpler proofs. Furthermore, these proofs demonstrate the applicability of theFGLSS-reduction in the context of reductions among combinatorial optimization problems.

Keywords: Complexity of approximation, combinatorial optimization problems, Vertex Cover,PCP, regular hypergraphs.�Supported by a MINERVA Foundation, Germany.



IntroductionThis note is inspired by a recent work of Dinur and Safra [4]. Speci�cally, what we take from theirwork is the realization that the so-called FGLSS-reduction is actually a general paradigm that canbe applied in various ways and achieve various purposes.The FGLSS-reduction, introduced by Feige, Goldwasser, Lov�asz, Safra and Szegedy [5], is typ-ically understood as a reduction from languages having certain PCP systems to approximationversions of Max-Clique (or Max Independent Set). The reduction maps inputs (either in or outof the language) to graphs that represent the pairwise consistencies among possible views of thecorresponding PCP veri�er. It is instructive to think of these possible veri�er views as of possiblepartial solutions to the problem of �nding an oracle that makes the veri�er accept.Dinur and Safra apply the same underlying reasoning to derive graphs that represent pairwiseconsistencies between partial solutions to a combinatorial problem [4]. In fact, they use two di�erentinstantiations of this reasoning. Speci�cally, in one case they start with the vertex-cover problemand consider the restrictions of possible vertex-covers to all possible O(1)-subsets of the vertexset. The partial solutions in this case are the vertex-covers of the subgraphs induced by all possibleO(1)-subsets, and pairwise consistency is de�ned in the natural way. Thus, we claim that in a sense,the work of Dinur and Safra [4] suggests that the FGLSS-reduction is actually a general paradigmthat can be instantiated in various ways. Furthermore, the goal of applying this paradigm mayvary too. In particular, the original instantiatation of the FGLSS-reduction by Feige et. al. [5]was aimed at linking the class PCP to the complexity of approximating combinatorial optimizationproblems. In contrast, in the work of Dinur and Safra [4] one instantiation is aimed at derivinginstances of very low \degree" (i.e., co-degree at most 2), and the other instantiation is aimed atmoving the \gap location" (cf. [12] and further discussion below).We fear that the complexity of the work of Dinur and Safra [4] may cause researchers to missthe above observation (regarding the wide applicability of the FGLSS-reduction). This would beunfortunate, because we believe in the potential of that observation. In fact, this note grew out ofour fascination with the above observation and our attempt to �nd a simple illustration of it.Our concrete results: Combining known results regarding PCP with the FGLSS-reduction, wepresent simple proofs of inapproximability results regarding the minimum vertex cover problem forhypergraphs. Speci�cally, we show that:1. For every � > 0, approximating the size of the minimum vertex cover in O(1)-regular hyper-graphs to within a (2� �)-factor is NP-hard (see Section 1). In fact, the hypergraphs we useare O(��o(1))-regular.This result is inferior to Holmerin's result [10], by which approximating vertex cover in 4-regular hypergraphs to within a (2 � �)-factor is NP-hard. We also mention Trevisan's re-sult [13], by which for every constant k, approximating vertex cover in k-regular hypergraphsto within a 
(k1=19)-factor is NP-hard. Clearly, in terms of achieving a bigger inapproxima-tion factor, Trevisan's result is superior, but in terms of achieving an inapproximation resultfor k-regular graphs when k is small (e.g., k < 219) it seems that our result is better.2. For every � > 0, approximating the size of the minimum vertex cover in 4-regular hypergraphsto within a (1:5 � �)-factor is NP-hard (see Section 2).Again, this result is inferior to Holmerin's result [10].We note that our work was done independently of Holmerin's work [10], but after the publicationof Trevisan's work [13]. 1



PreliminariesA k-regular hypergraph is a pair (V;E) such that E is a collection of k-subsets (called hyper-edges) ofV ; that is, for every e 2 E it holds that e � V and jej = k. For a k-regular hypergraph H = (V;E)and C � V , we say that C is a vertex cover of H if for every e 2 E it holds that e \ C 6= ;.Free-bit complexity and the class FPCP . We assume that the reader is familiar with the basicPCP-terminology (cf. [1, 2, 3] and [6, Sec. 2.4]). (For sake of simplicity we consider non-adaptiveveri�ers.) We say that the free-bit complexity of a PCP system is bounded by f : N ! R if onevery input x and any possible random-pad ! used by the veri�er, there are at most 2f(jxj) possiblesequence of answers that the veri�er may accept (on input x and random-pad !). Clearly, thefree-bit complexity of a PCP system is bounded by the number of queries it makes, but the formermay be much lower. Free-bit complexity is a key parameter in the FGLSS-reduction. For functionsc; s : N ! [0; 1], r : N ! N and f : N ! R, we denote by FPCPc;s[r; f ] the class of languageshaving PCP systems of completeness bound c, soundness bound s, randomness complexity r andfree-bit complexity f . That is, for every input x in the language, there exist an oracle that makesthe veri�er accept with probability at least c(jxj), whereas for every input x not in the languageand every oracle the veri�er accepts with probability at most s(jxj).The FGLSS-graph. For L 2 FPCPc;s[r; f ], the FGLSS-reduction maps x to a graph Gx having2r(jxj) layers, each having at most 2f(jxj) vertices. The vertices represent possible views of theveri�er, where the N def= 2r(jxj) layers correspond to all possible choices of the random-tape andthe vertices in each layer correspond to the up-to 2f(jxj) possible sequences of answers that theveri�er may accept. The edges represent inconsistencies among these views. In particular, eachlayer consists of a clique (because only one sequence of answers is possible for a �xed random-tapeand a �xed oracle). If the random-tapes !1; !2 2 f0; 1gr(jxj) both lead the veri�er to make thesame query q (and both answers are acceptable) then the corresponding layers will have edgesbetween vertices encoding views in which di�erent answers are given to query q. In case x 2 Lthe graph Gx will have an independent set of size c(jxj) � N , whereas if x 62 L then the maximumindependent set in Gx has size at most s(jxj) � N . Thus, the inapproximability factor for themaximum independent set problem shown by such a reduction is c(jxj)=s(jxj), and the fact themaximum independent set is always at most a 2�f(jxj) fraction of the size of Gx does not e�ect thegap. However, inapproximability factor for the minimum vertex cover shown by such a reductionis 2f(jxj) �N � s(jxj) �N2f(jxj) �N � c(jxj) �N = 2f(jxj) � s(jxj)2f(jxj) � c(jxj) < 2f(jxj)2f(jxj) � 1 (1)This is the reason that while the FGLSS-reduction allows to establish quite optimal inapprox-imability factors for the maximum independent set problem, it failed so far to establish optimalinapproximability factors for the minimum vertex cover problem (although, it was used by Has-tad [8] in deriving the 7=6 hardness factor by using Eq. (1) with f = 2, c � 1 and s = 1=2). In asense, the gap between the size of the maximum independent set of Gx for x 2 L versus for x 62 L isat the \right" location for establishing inapproximability factors for the maximum independent setproblem, but is at the \wrong" location for establishing inapproximability factors for the minimumvertex cover problem. In a sense, what we do below is \move the gap location": Speci�cally, inSection 1, we take a maximum independent set gap of c2�f versus s2�f (which means a minimumvertex cover gap of 1 � c2�f versus 1 � s2�f ), and transform it into a minimum vertex cover gapof (2� c) � 2�f versus (2� s) � 2�f ). 2



1 A 2� � Hardness Factor for O(1)-Regular HypergraphsWe start with the usual FGLSS-graph, denoted G, derived from the FGLSS-reduction as appliedto input x of a FPCP1��;s[log; f ] scheme (for a language in NP). For simplicity, think of f asbeing a constant such that 2f is an integer. Without loss of generality, each layer of G has ` = 2fvertices.We now apply the \FGLSS paradigm" by considering vertex-covers of G, and their projectionon each layer. Such projections (or \partial assignments") have either ` or ` � 1 vertices. Wefocus on the good vertex covers, having exactly ` � 1 vertices in each projection. Thus, for eachsuch (` � 1)-subset we introduce a vertex in the hypergraph, to be denoted H. That is, for layerL = (v1; :::; v`) in G, we introduced a corresponding layer in H containing ` vertices such that eachH-vertex corresponds to an (`� 1)-subset of L; that is, we introduce ` vertices that correspond toL n fv1g,...,L n fv`g. For each pair of layers L0 = (v01; :::; v 0̀ ) and L00 = (v001 ; :::; v00̀) if (v0i; v00j ) is anedge in G then we introduce the 2 � (` � 1)-hyperedge containing the H-vertices that correspondto the subsets fL0 n fv0kg : k 6= ig and fL00 n fv00kg : k 6= jg; that is, the hyper-edge consists ofall the H-vertices of these two layers except for the two that correspond to the subsets L0 n fv0igand L00 n fv00j g. In addition, for each layer in H, we introduce an `-size hyper-edge containing all `vertices of that layer.To get rid of the non-regularity of this construction, we augment each layer with a sets of `� 2auxiliary vertices, and augment the abovementioned `-size hyper-edge by a hyper-edge containingall vertices of that layer (i.e., the original ` vertices as well as the ` � 2 auxiliary vertices). Thiscompletes the construction of H.Fixing any input x, we consider the corresponding FGLSS-graph G = Gx, and the hypergraphH = Hx derived from G by following the above construction. Let N denote the number of layersin G (and H).Claim 1.1 If x is in the language then the hypergraph Hx has a vertex-cover of size at most(1 + �) �N .Proof: Since x is in the language the graph G = Gx has an independent set (IS) of size at least(1� �) �N . Consider this IS or actually the corresponding vertex-cover (i.e., VC) of G. Call a layerin G good if it has `� 1 vertices in this VC, and note that at least (1� �) �N layers are good. Wecreate a vertex-cover for H = Hx as follows. For each good layer, place in C the correspondingH-vertex; that is, the H-vertex corresponding to the (` � 1)-subset (of this layer in G) that is inthe VC of G. For the rest of the layers (i.e., the non-good layers), place in C any two H-verticesof each (non-good) layer.In total we placed in C at most (1� �)N +2�N = (1+ �)N vertices. We show that C is a vertexcover of H by considering all possible hyper-edges, bearing in mind the correspondence betweenlayers of G and layers of H.� The intra-layer hyper-edges of H are de�nitely covered because we placed in C at least oneH-vertex from each layer.� Each hyper-edge connecting H-vertices from two good layers is covered.This is shown by considering the edge, denoted (x; y), of G that is \responsible" for theintroduction of each hyper-edge (in H). Since we started with a vertex cover of G, either x ory must be in that cover. Suppose, without loss of generality, that x is in the VC of G. Then,we must have placed in C one of the H-vertices that corresponds to a (` � 1)-subset that3



contains x. But then this H-vertex covers the said hyper-edge (because the latter containsall (`� 1)-subsets that contain x).� Hyper-edges containing H-vertices from non-good layers are covered because we placed in Ctwo H-vertices from such layers, whereas each hyper-edge containing H-vertices of some layercontains all but one vertex of that layer.The claim follows.Claim 1.2 If x is not in the language then every vertex-cover of the hypergraph Hx has size atleast (2� s(jxj)) �N .Proof: Consider any vertex cover C of H. Note that due to the intra-layer hyper-edges, C mustcontain at least one vertex in each layer. Furthermore, without loss of generality, C contains onlyoriginal vertices (rather than the ` � 2 auxiliary vertices added to each layer). Denote by C 0 theset of layers that have a single vertex in C. Then, jCj � jC 0j+2(N � jC 0j) = 2N � jC 0j. The claimfollows by proving that jC 0j � sN , where s def= s(jxj).Suppose, towards the contradiction, that jC 0j > sN . We consider the set of G-vertices, denotedI, that correspond to the (single) H-vertices in these layers; that is, for layer L (in C 0) such thatC contains the H-vertex (which corresponds to) L n fvg, place v 2 G in I. We show that I is anindependent set in G (and so derive a contradiction to G = Gx not having an independent set ofsize greater than sN , because x is a no-instance). Speci�cally, for every u; v 2 I, we show that(u; v) cannot be an edge in G. Suppose (u; v) is an edge in G, then the corresponding hyper-edgein H cannot be covered by C; that is, the hyper-edge fLnfwg : w 6= ug[fL0 nfwg : w 6= vg (whichmust be introduced due to the edge (u; v)) cannot be covered by the H-vertices that correspond tothe (`� 1)-subsets L n fug and L0 n fvg. The claim follows.Conclusion: Starting from a FPCP1��;s[log; f ] system forNP, we have shown that the minimumvertex-cover in (2f+1�2)-regular hypergraphs is NP-hard to approximate to a (2�s)=(1+�)-factor.Now, if we start with any FPCP1;s[log; f ] for NP , with s � 0, then we get a hardness result for afactor of 2 � s � 2. Any NP � PCP [log; O(1)] result (starting from [1]) will do for this purpose,because a straightforward error-reduction will yield NP � FPCP1;s[log; O(1)], for any s > 0.The (amortized) free-bit complexity only e�ects the growth of the hyper-edge size as a function ofthe deviation of the hardness-factor from 2. Speci�cally, if we start with an \amortized free-bitcomplexity zero" result (i.e., NP � FPCP1;s[log; o(log2(1=s))] for every s > 0) then we get afactor of 2� s hardness for (1=s)o(1)-regular hypergraphs. That is, starting with Hastad's �rst suchresult [7] or from the simplest one currently known [9], we state the above as our �rst little result:Theorem 1.3 For every � > 0, approximating the size of the minimum vertex cover in ��o(1)-regular hypergraphs to within a (2� �)-factor is NP-hard.Alternatively, if we start with Hastad's \maxLIN3 result" [8] (i.e., NP � FPCP1��;0:5[log; 2] forevery � > 0), then we get a hardness factor of (2 � 0:5)=(1 + �) � 1:5 for 6-regular hypergraphs.Below we show that the same hardness factor holds also for 4-uniform hypergraphs (by startingwith the same \maxLIN3 result" [8] but capitalizing on an additional property of it).
4



2 A 1:5� � Hardness Factor for 4-Regular HypergraphsWe start with the FGLSS-graph derived from applying the FGLSS-reduction to Hastad's \maxLIN3system" [8]; that is, the FPCP1��;0:5[log; 2] system for NP (8� > 0). The key observation is thatin this system for any two queries all four answer pairs are possible (as accepting con�gurations).This observation is relied upon when establishing (below) simple structural properties of the derivedFGLSS-graph.As before, there will be a correspondence between the vertex set of G and the vertex set of H.Here it is actually simpler to just identify the two sets. So it just remains to specify the hyper-edges of H. Again, we place hyper-edges between all (i.e., four) vertices of each layer. As for theconstruction of inter-layer hyper-edges, we consider three cases regarding each pair of layers:1. The trivial case: In case there are no edges between these two layers in G, there would beno hyper-edges between these layers in H. This case corresponds to the case that these twolayers correspond to two random-tapes that induce two query sets with empty intersection.2. The interesting case is when these two layers correspond to two random-tapes that inducetwo query sets having a single query, denoted q, in common. Relying on the property ofthe starting PCP system, it follows that both answers are possible to this query and thateach possible answer is represented by two vertices in each corresponding layer. Accordingly,we denote the vertices of the �rst layer by u01; u02; u11; u12, where ubi is the ith con�gurationin this layer in which query q is answered by the bit b. Similarly, denote the vertices ofthe second layer by v01 ; v02 ; v11 ; v12 . (We stress that this notation is used only for determiningthe hyper-edges between the current pair of layers, and when considering a di�erent pair oflayers a di�erent notation may be applicable.) In this case we introduce the two hyper-edgesfu01; u02; v11 ; v12g and fu11; u12; v01 ; v02g.Intuition: Note that the edges in G between these two layers are two K2;2's (i.e., for eachb 2 f0; 1g, between the two ubi 's on one side and the two v1�bi 's on the other side). These twoK2;2's enforce that if some ubi is in some IS then v1�bj is not in the IS. For a H-VC having asingle vertex in each layer, the (two) hyper-edges will have the same e�ect.3. The annoying case is when these two layers (correspond to two random-tapes that induce twoquery sets that) have two or more queries in common. In this case, we label the vertices inthese two layers according to these two answers; that is, we denote the four vertices of the �rstlayer by u0;0; u0;1; u1;0; u1;1, where ua;b is the unique con�guration in this layer in which thesetwo queries are answered by a and b, respectively. Similarly, denote the vertices of the secondlayer by v0;0; v0;1; v1;0; v1;1. (Again, this notation is used only for determining the hyper-edgesbetween the current pair of layers.) In this case, we introduce four hyper-edges between thesetwo layers, each has one vertex of the �rst layer and the three \non-matching" vertices of thesecond layer; that is, the hyper-edges are fua;b; va;1�b; v1�a;b; v1�a;1�bg, for a; b 2 f0; 1g.Intuition: The pair (ua;b; va0;b0) is an edge in G if and only if either a 6= a0 or b 6= b0. Similarly,the pair (ua;b; va0;b0) participates in an hyper-edge of H if and only if either a 6= a0 or b 6= b0.This completes the construction. Note that H = Hx is a 4-regular hypergraph.Claim 2.1 If x is in the language then the hypergraph Hx has a vertex-cover of size at most(1 + 3�) �N , where N denotes the number of layers.5



Proof: Since x is in the language the graph G = Gx has an independent set (IS) of size (1� �)N .Consider such an IS, denoted I. Call a layer in G good if it has a vertex in I, and note that atleast (1� �)N layers are good. Augment I by the set of all vertices residing in non-good layers. Intotal we took at most (1� �)N + 4�N = (1 + 3�)N vertices. We show that these vertices cover allhyper-edges of H.� The intra-layer hyper-edges are de�nitely covered (since we took at least one vertex from eachlayer).� Each hyper-edge connecting vertices from two good layers is covered.This is shown by considering each of the two non-trivial cases (in the construction). In theinteresting case, I (having a single vertex in each good layer) must have a single vertex ineach K2;2. But then this vertex covers the corresponding hyper-edge. In the annoying case,I (having a single vertex in each good layer) must contain vertices with matching labels inthese two layers. But then these two vertices cover all 4 hyper-edges, because each hyper-edgecontains a (single) vertex of each label.� Hyper-edges containing H-vertices from non-good layers are covered trivially (because wetook all vertices of each non-good layer).The claim follows.Claim 2.2 If x is not in the language then every vertex-cover of the hypergraph Hx has size atleast 1:5 �N .Proof: Consider a cover C of H. Note that (due to the intra-layer hyper-edges) C must containat least one vertex in each layer. Denote by C 0 the set of layers that have a single vertex in C.Then, jCj � jC 0j+ 2(N � jC 0j). The claim follows by proving that jC 0j � 0:5N . Suppose, towardsthe contradiction, that jC 0j > 0:5N . Consider the set of vertices, denoted I, that correspond tothese layers (i.e., for a layer in C 0 consider the layer's vertex that is in C). We show that I is anindependent set in G (and so we derive contradiction).Suppose that u; v 2 I and (u; v) is an edge in G. In the interesting case, this (i.e., (u; v) beingan edge in G) means that u and v are in the same hyper-edge in H, and being the only verticesin C that are in these layers, no vertex covers the other (vertex-disjoint) hyper-edge between theselayers. In the annoying case, this (i.e., (u; v) being an edge in G) means that u and v do nothave the same label and one of the four hyper-edges in H cannot be covered by them; speci�cally,without loss of generality, suppose that u is in the �rst layer, then neither v = va;b nor u 6= ua;bcovers the hyper-edge fua;b; va;1�b; v1�a;b; v1�a;1�bg.Conclusion: Starting from the abovementioned NP � FPCP1��;0:5[log; 2] result of Hastad [8],we have shown that the minimum vertex-cover in 4-regular hypergraphs is NP-hard to approximateto a factor of 1:5=(1 + 3�). Let us state this as our second little result:Theorem 2.3 For every � > 0, approximating the size of the minimum vertex cover in 4-regularhypergraphs to within a (1:5 � �)-factor is NP-hard.
6



PostscriptFollowing this work, Holmerin has applied related FGLSS-type reductions to di�erent PCP systemsand obtained improved inapproximability results for vertex cover in hypergraphs [11]. Speci�cally,for every � > 0, he showed that:1. Approximating the size of the minimum vertex cover in k-regular hypergraphs to within afactor of 
(k1��) is NP-hard.2. Approximating the size of the minimum vertex cover in 3-regular hypergraphs to within afactor of 1:5 � � is NP-hard.AcknowledgmentsWe are grateful to Johan Hastad for referring us to the works of Trevisan [13] and Holmerin [10].References[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and Intractability of ApproximationProblems. JACM, Vol. 45, pages 501{555, 1998. Preliminary version in 33rd FOCS, 1992.[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. JACM, Vol. 45, pages 70{122,1998. Preliminary version in 33rd FOCS, 1992.[3] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { Towards Tight Results. SICOMP,Vol. 27, No. 3, pages 804{915, 1998.[4] I. Dinur and S. Safra. The Importance of Being Biased. Manuscript, 2001.[5] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique is almost NP-complete. JACM,Vol. 43, pages 268{292, 1996. Preliminary version in 32nd FOCS, 1991.[6] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms and Combinatoricsseries (Vol. 17), Springer, 1999.[7] J. Hastad. Clique is hard to approximate within n1��. Acta Mathematica, Vol. 182, pages 105{142, 1999. Preliminaryversions in 28th STOC (1996) and 37th FOCS (1996).[8] J. Hastad. Some optimal in-approximability results. In 29th STOC, pages 1{10, 1997.[9] J. Hastad and S. Khot. Query e�cient PCPs with Perfect Completeness. In 42nd FOCS, pages 610{619, 2001.[10] J. Holmerin. Vertex Cover on 4-regular Hypergraphs is Hard to Approximate within 2� �. TR01-094, ECCC, 2001.[11] J. Holmerin. Improved Inapproximability Results for Vertex Cover on k-regular Hypergraphs. Manuscript, 2001.[12] E. Petrank. The Hardness of Approximations: Gap Location. Computational Complexity, Vol. 4, pages 133{157,1994.[13] L. Trevisan. Non-approximability Results for Optimization Problems on Bounded-Degree Instances. In 33rd STOC,pages 453{461, 2001.
7


