
Computational Indistinguishability: Algorithms vs. CircuitsOded GoldreichDepartment of Computer Scienceand Applied MathematicsWeizmann Institute of ScienceRehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il Bernd MeyerPegasusstra�e 1485716 Unterschlei�heimGermany.E-mail: Bernd.Meyer@munich.netsurf.deDecember 19, 1996AbstractWe present a simple proof to the existence of a probability ensemble with tiny support whichcannot be distinguished from the uniform ensemble by any recursive computation. Since thesupport is tiny (i.e, sub-polynomial), this ensemble can be distinguished from the uniform en-semble by a (non-uniform) family of small circuits. It also provides an example of an ensemblewhich cannot be (recursively) distinguished from the uniform by one sample, but can be so dis-tinguished by two samples. In case we only wish to fool probabilistic polynomial-time algorithmsthe ensemble can be constructed in slightly super-exponential time.1 IntroductionComputational indistinguishability, introduced by Goldwasser and Micali [4] and de�ned in full gen-erality by Yao [7], is a central concept of complexity theory. Two probability ensembles, fXngn2Nand fYngn2N, where both Xn and Yn range over f0; 1gn, are said to be indistinguishable by a com-plexity class if for every machine M in the class the di�erence Prob(M(Xn)=1)�Prob(M(Yn)=1)is a negligible function in n (i.e., decreases faster than 1=p(n) for any positive polynomial p).It has been known for a while (cf., [7, 5, 3]) that there exists probability ensembles which arestatistically far from the uniform ensemble and yet computationally indistinguishable from it: In[7, 5] indistinguishability is with respect to (probabilistic) polynomial-time algorithms, whereasin [3] indistinguishability is with respect to polynomial-size circuits. A simple proof is via theProbabilistic Method: If you �x any function d : f0; 1gn 7! f0; 1g, and select at randomO( t�2 ) stringsof length n, then with probability greater than 1� 2�t the average value of d over this sample willbe within �� of the average over the entire domain f0; 1gn. Using a standard enumeration of Turingmachines this means that for any super-polynomial function s : N 7!N there exists a probabilityensemble, with support size bounded by s(�), which is indistinguishable from the uniform ensembleby any (halting) Turing machine. Clearly, time bounds on the distinguishing machines yield obviousbounds on the time required to construct the ensemble. Furthermore, the same argument can beapplied to non-uniform families of circuits (e.g., all polynomial-size circuits).In [6], two probability ensembles, having sparse but disjoint supports, are shown to be indis-tinguishable by probabilistic polynomial-time algorithms. Speci�cally, the support size is n2 andthe distinguishing probability is exponentially vanishing in n. It seems that the argument in [6]cannot yield either a support of size o(n logn) nor zero distinguishing probability. Here we presenta simpler proof of the following stronger result: 1



Proposition 1 (main result): Let M be an enumeration of halting (probabilistic) Turing ma-chines, and t : N 7!N be any non-decreasing and unbounded function. Then, there exists a proba-bility ensemble, fRng, so that, for every n 2 N:1. The support of Rn has size at most t(n) + 1.2. For each one of the �rst t(n) machines in M, denoted M ,Prob(M(Rn)=1) = Prob(M(Un)=1)where Un denotes the uniform distribution over f0; 1gn.Furthermore, in case M is the set of probabilistic polynomial-time machines, the distribution Rncan be constructed in time e(n), where e : N 7!N is any function which grows faster than 2poly(n).As immediate corollaries we getCorollary 1 There exists a probability ensemble, fRng, which is indistinguishable from the uniformensemble by probabilistic polynomial-time machines but is distinguishable from it by a family ofpolynomial-size circuits.(Hint: the ensemble is as in Proposition 1. The nth circuit incorporates the support of Rn andoutputs 1 if and only if the input is in the support.)Corollary 2 There exists a probability ensemble, fRng, which is indistinguishable from the uniformensemble by probabilistic polynomial-time machines but is distinguishable from it by a polynomial-time algorithm which gets two (independently drawn) samples from the distribution.(Hint: again, the ensemble is as in Proposition 1. An algorithm, which gets two samples, outputs1 if and only if both samples are identical.) We comment that both [1, 6] present a result relatedto the last corollary. Speci�cally, they present two ensembles, each with at most two n-bit stringsin their support, for which all single-sample algorithms have vanishing distinguishing probabilitywhereas a simple two-sample algorithm has constant distinguishing probability. Note that in thecorollary above the size of the support of Rn is small (e.g., log log n) but not a constant. Yet, thedistinguishing probability based on a single sample is zero.We stress that all results in the paper are absolute (i.e., do not require any unproven assumptions).On the other hand, the fact that the ensembles are not constructible in polynomial-time is unavoid-able, since analogous results for polynomial-time constructible (sampleable) ensembles imply theexistence of one-way functions (cf., [2]).2 Proof of Main ResultSuppose that you want to construct a distribution with small support which fools (i.e., looks randomto) a single machine, denoted M . Then all you need is two strings, x; y 2 f0; 1gn, so thatProb(M(x) = 1) � Prob(M(Un) = 1) (1)Prob(M(y) = 1) � Prob(M(Un) = 1) (2)2



Fixing these x and y, there exists an � 2 [0; 1] so that de�ning the distribution Rn so that Rn = xwith probability � and Rn = y otherwise, you getProb(M(Rn) = 1) = Prob(M(Un) = 1)Thus, machine M cannot distinguish Rn from Un.All that is needed for proving the main result is to generalize the argument so that we can fool tmachines simultaneously. To this end consider the 2n (t-dimensional) vectors corresponding to theprobabilities that each of the t machines outputs 1 on each of the strings in f0; 1gn. Speci�cally,the vector associated with x 2 f0; 1gn has Prob(Mi(x) = 1) in its ith component, where Mi isthe ith machine (that we are trying to fool). Assume, without loss of generality, that these 2nvectors span a t-dimensional vector space.1 Observe that the average of these vectors, denoted �v,is a vector of probabilities with Prob(Mi(Un) = 1) as its ith component. The average vector �v isin the convex hull of all 2n former vectors, and thus there must exist t + 1 vectors which (also)have �v in their convex hull. Let v1; :::; vt+1 denote a set of such t + 1 vectors. Then, by de�nition,there exists �1; :::; �t+1 non-negative and summing up to 1, so that the vectorPt+1j=1 �jvj equals thevector �v. Using the xj's corresponding to these vectors with the coe�cients �j 's, we get the desireddistribution. Speci�cally, we de�ne Rn so that Prob(Rn=xj) = �j, for j = 1; :::; t+ 1. Clearly, fori = 1; :::; t, Prob(Mi(Rn)=1) = t+1Xj=1�i � Prob(Mi(xj)=1) = Prob(Mi(Un)=1)References[1] M.J. Fischer, and S.A. Paleologou. On the Indistinguishability of Probabilistic Ensembles.Unpublished manuscript, 1994.[2] O. Goldreich. A Note on Computational Indistinguishability. IPL, Vol. 34, pp. 277{281,May 1990.[3] O. Goldreich, and H. Krawczyk. On Sparse Pseudorandom Ensembles. Random Structuresand Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[4] S. Goldwasser, and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270{299,1984. Preliminary version in 14th STOC, 1982.[5] L.A. Levin, private communication, mid 1980's.[6] B. Meyer. Constructive Separation of Classes of Indistinguishable Ensembles. Structure inComplexity Theory, 1994, pages 198{204.[7] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,1982.1 Otherwise consider the coordinates which span a full dimensional space.3


