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1 IntroductionComputational indistinguishability, introduced by Goldwasser and Micali [7] and de�ned in fullgenerality by Yao [11], is a central concept of complexity theory. Two probability ensembles,fXngn2N and fYngn2N , where both Xn and Yn range over f0; 1gn, are said to be indistinguishableby a complexity class if for every machine M in the class the di�erence dM(n) def= jPr(M(Xn) =1)� Pr(M(Yn)=1)j is a negligible function in n (i.e., decreases faster than 1=p(n) for any positivepolynomial p).We stress that, in the de�nition recalled above, the distinguishing machine (i.e., M) obtainsa single sample (from either distributions), and casts its \verdict" based on this sample. An im-portant and natural question is what happens when the distinguishing machine is given severalsamples. It is well known that in several cases (see below), computational indistinguishability ispreserved also when many samples are given to the distinguisher. That is, in these cases, if twoensembles are computationally indistinguishable by a single sample then they are also computation-ally indistinguishable by (polynomially) many samples. Two important cases where this happensare:1. When the two probability ensembles are polynomial-time computable, and one considersprobabilistic polynomial-time distinguishers. (An ensemble fZngn2N is polynomial-time com-putable if there exists a probabilistic polynomial-time sampling algorithm, S, such that S(1n)and Zn are identically distributed.)2. When one considers computational indistinguishability with respect to the class of non-uniform polynomial-size circuits.In both cases the proof amounts to using the multi-sample distinguisher to derive a single-sampledistinguisher, by incorporating copies of the two ensembles into the single-sample distinguisher (cf.,[5, 4]). This is possible using the fact that the class of distinguishers is able to generate samplesfrom each of the two ensembles.However, it has been shown that the above may fail in certain other cases (cf., [3, 8, 6]).Speci�cally, there exists a pair of (non-e�ciently computable) ensembles which, on one hand,are computationally indistinguishable by (uniform) probabilistic polynomial-time algorithms whichtake a single sample, while on the other hand, can be distinguished in polynomial-time given twosamples.It has been unknown whether separations as above may exists between distinguishability basedon, say, 2 samples and 3 samples. Furthermore, it was not known if there is a separation between2 samples and polynomially many samples.We show a separation between k samples and k + 1, for any polynomially-bounded functionk : N 7! N. That is, there exist a pair of probability ensembles which are (polynomial-time)indistinguishable based on k samples and yet can be distinguished (in polynomial-time) given k+1samples.2 Formal SettingIn this paper we call P = fPngn2N a probability ensemble if, for some polynomially-bounded lengthfunction ` : N 7!N, Pn is a distribution on the set of strings of length `(n). The corresponding (tothe length function `) uniform ensemble, denoted U = fUngn2N , has each Un uniformly distributedover f0; 1g`(n). A function, � :N 7! [0; 1], is called negligible if for every positive polynomial p and all1



su�ciently large n's, �(n) < 1=p(n). The latter de�nition is naturally coupled with the associationof e�cient computation with polynomial-time algorithms: An event \occurs negligibly" if it cannotbe observed after a feasible (i.e., expected polynomial) number of trials.De�nition 2.1 (indistinguishability by k samples): Let k : N 7!N be any polynomially boundedfunction, and P = fPngn2N and Q = fQngn2N be a pair of probability ensembles. The ensembles Pand Q are said to be indistinguishable by k samples if for every probabilistic polynomial-time machineM the function dM(n) def= jPr(M(Pk(n)n ) = 1)� Pr(M(Qk(n)n ) = 1)jis negligible, where P k(n)n (resp., Qk(n)n ) represents k(n) independent copies of Pn (resp., Qn).A \strong" negation of the notion of indistinguishability is presented by the notion of distinguisha-bility. A function, � :N 7! [0; 1], is called noticeable if there exists a positive polynomial p so thatfor all su�ciently large n's, �(n) > 1=p(n). We stress that the two notions do not complement oneanother, but rather leave a gap in-between, since the underlying notions of negligible and notice-able are not complementary. Clearly, a negligible function is not noticeable, but there are functions� :N 7! [0; 1] which are neither negligible nor noticeable (e.g., �(n) = 1 if n is even and 0 otherwise).De�nition 2.2 (distinguishability by k samples): Let k :N 7!N, P = fPngn2N and Q = fQngn2Nbe as in De�nition 2.1 above. The ensembles P and Q are said to be distinguishable by k samples ifthere exists a probabilistic polynomial-time machine M so that the function dM, de�ned as above,is noticeable.Theorem 2.3 (main result): Let k : N 7!N be any polynomially bounded function. Then, thereexists a probability ensemble, P = fPngn2N , where Pn ranges over strings of length 2n, so that1. Indistinguishability by k samples: The ensemble fPngn2N is indistinguishable from the uniformensemble, U = fUngn2N , by k samples. Furthermore, for any probabilistic Turing machineM which takes k samples, and for all su�ciently large n's,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) represents k(n) independent copies of Pn (resp., Un).2. Polynomial-time distinguishability by k + 1 samples: The ensemble fPngn2N is distinguishablefrom the uniform ensemble U by k + 1 samples. Furthermore, there exists a deterministicpolynomial-time machine M such that for all su�ciently large n's,jPr(M(P k(n)+1n ) = 1)� Pr(M(Uk(n)+1n ) = 1)j > 13where P k(n)+1n (resp., Uk(n)+1n ) represents k(n) + 1 independent copies of Pn (resp., Un).Furthermore, Pn can be generated by a probabilistic circuit of size polynomial in n. In case oneonly wishes to fool probabilistic polynomial-time distinguishers (in item 1), the nth circuit can beconstructed in time e(n), where e : N 7!N is any function which grows faster than 2nc, for everyc > 0. 2



Thus, with respect to uniform computations (and general ensembles which may not be polynomial-time computable), the \sample hierarchy" is strict. We comment that one may also construct apair of probability ensembles, P = fPngn2N and Q = fQngn2N such that both satisfy the abovetheorem and furthermorejPr(M(P k(n)+1n ) = 1)� Pr(M(Qk(n)+1n ) = 1)j > 1� 2�
(n)where M is as in Item 2 above.3 Proof of Main ResultWe prove Theorem 2.3 by �rst studying a problem concerning polynomials of low degree over a big�nite �eld.3.1 Typical PolynomialsStandard Notations: Let F be a �nite �eld. Denote by Fd the set of polynomials of degree atmost d over F.Less Standard Notations: For x = (x1; :::; xk) 2 Fk (i.e., each xi in F), we extend the de�nitionof polynomials so that, for any polynomial p, we have p(x) = (p(x1); :::; p(xk)).Motivating Discussion. Clearly, for every f : (Fk)2 7! [0; 1],Ex2Fk ;p2Fk�1 (f(x; p(x))) � Ex;y2Fk(f(x; y))Equality would hold if x was uniformly selected among the set of k-sequences consisting of kdistinct elements of F. For such x's, the sequence p(x) is uniformly selected over Fk, given that p isuniformly distributed in Fk�1. It is appealing to conjecture that there exists a polynomial p 2 Fk�1so that Ex2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))However, as shown below (see Proposition 3.5), this is false. Instead, we consider degree k polyno-mials which are examined at k arguments (rather than at k+ 1 arguments). In this case, we showthat for every f : (Fk)2 7! [0; 1] most polynomials p 2 Fk satisfyEx2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))We call such polynomials (f; k)-typical. More generally,De�nition 3.1 (typical functions): Let k 2 N, � 2 [0; 1] and f : Fk � Fk 7! [0; 1]. A functiong : F 7! F is called (f; k; �)-typical ifjEx2Fk(f(x; g(x))) � Ex;y2Fk(f(x; y))j < �Following the above discussion we will consider an arbitrary f : (Fk)2 7! [0; 1] and prove1. For some absolute constant c > 0 the following holds. For every �nite �eld F, k < jFj1=cand every f : (Fk)2 7! [0; 1] all but at most an jFj�c fraction of the degree k polynomials are(f; k; jFj�c)-typical. (See Lemma 3.2.) 3



2. For every �nite �eld F and every k < pjFj=10 there exists a (polynomial-time computable)function f : (Fk)2 7! [0; 1] so that no degree k � 1 polynomial is (f; k; 0:4)-typical. (SeeProposition 3.5.)Using the above, Theorem 2.3 is proven by standard diagonalization. The high level plan is asfollows. Using parameter n, we consider F = GF(2n), and wish to fool the �rst t(n) (e.g., t(n) = n)probabilistic machines which takes k(n) samples. These machines give rise to t(n) functions fi asabove, and by Item 1 there exists a degree k(n) polynomial, denoted p, which is (fi; k(n); 2�
(n))-typical for all i's. Using p, we de�ne the nth distribution, denoted Pn, as (x; p(x)) where x isuniformly distributed over F, and infer that none of the above machines can distinguish k(n)samples taken from Pn from k(n) samples taken from the uniform distribution over pairs F�F. Onthe other hand, by Item 2 (substituting k for k(n) + 1), there exists a polynomial-time algorithmwhich distinguishes k(n) + 1 samples from Pn from k(n) + 1 samples taken from the uniformdistribution. For details see Section 3.4.3.2 Almost all degree k polynomials are k-typicalThe most involved technical part of this work is proving that for any f : (Fk)2 7! [0; 1] most degreek polynomials are (f; k; jFj�
(1))-typical. That is,Lemma 3.2 There exists a constant c > 0 so that for every f : (Fk)2 7! [0; 1], setting � def=Ex;y2Fk (f(x; y)) and � def= k1=cc�jFjc the following holdsPrp2Fk (jEx2Fk(f(x; p(x)))� �j > �) < �The lemma is proven in the next section. As a warm-up we prove that for any such f mostdegree 2k � 1 polynomials are (f; k; jFj�
(1))-typical. This su�ces to establish a weaker version ofTheorem 2.3 (i.e., separating distinguishability by k samples from distinguishability by 2k samples).Lemma 3.3 Let f : (Fk)2 7! [0; 1], and � def= Ex;y2Fk(f(x; y)). Then, for any � > 0Prp2F2k�1 (jEx2Fk(f(x; p(x)))� �j > �) < k2�2 � jFjProof: Consider the probability space of all possible choices of p 2 F2k�1 with uniform distribution.De�ne random variables (over this probability space) so that �x def= f(x; p(x)), for every x 2 Fk.The claim of the lemma can be rephrased asPrp2F2k�1 0@������Xx2Fk �x � jFjk � ������� > � � jFjk1A < k2�2 � jFj (1)This will be established by applying Chebyshev's inequality to the �x's. Speci�cally, we will showthat the expected value of the sum of the �x's is approximately jFjk��, and that with high probabilitythe sum of the �x's is close to its expected value. In showing the latter we will use the fact thatthe �x's are \almost pairwise independent" (as in [1, Sec. 4.3]).Fact 3.3.1: j jFjk � � � Px2Fk E(�x) j < k22�jFj : 4



Proof: For every x = (x1; :::; xk) 2 Fk with jfx1; :::; xkgj = k, we haveE(�x) = Ep2F2k�1 (f(x; p(x)))= Ey2Fk(f(x; y))since for such an x = (x1; :::; xk) the values p(x1); :::; p(xk) are uniformly and independently dis-tributed in F. Observe that the fraction of x's consisting of k distinct xi's is at least 1� �k2� � jFj�1,and so Xx2Fk E(�x) = jFjk � Ex;y2Fk(f(x; y)) �  k2! � jFjk�1= jFjk �  ��  k2! � jFj�1!as claimed. 2Fact 3.3.2: Pr0@������Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < k2�2 � jFjProof: We �rst observe that for every x 2 Fk, for all but at most a �k2�=jFj fraction of the y's inFk, the random variables �x and �y are independent. This follows since these random variables areindependent whenever the sequences x and y have no common element. (Here we use the hypothesisthat the probability space is uniform over the set of polynomials of degree 2k� 1 over F. For sucha random polynomial, p, the sequence p(x1); :::; p(xk); p(y1); :::; p(yk) is uniformly distributed overF2k.) Now applying Chebyshev's inequality (cf., [1]), we havePr0@������Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < var(Px2Fk �x)(�=2)2 � jFj2k< 4 �Px var(�x)�2 � jFj2k + 4 �Px 6=y cov(�x; �y)�2 � jFj2kNow, as usual, the �rst term is upper bounded by 4 � jFjk � 1=4�2�jFj2k = 1�2�jFjk � 1�2�jFj . As for the secondterm, let Ix denote the set of y's for which �x and �y are stochastically independent. By the aboveobservation we have jIxjjFk j > 1� k2�1jFj , and by de�nition cov(�x; �y) = 0 for every y 2 Ix. Thus, thesecond term is bounded by4 �Xx 6=y cov(�x; �y)�2 � jFj2k < 4 � Xx2Fk Xy2Fk cov(�x; �y)�2 � jFj2k< 4 � Xx2Fk jFk n Ixj � (1=4)�2 � jFj2k< k2 � 1�2 � jFjThe claimed bound follows by combining the bounds for the two terms. 2We may assume that k2�2�jFj � 1 and � < 1 (or else the lemma holds vacuously). It follows thatk22jFj � �22 < �2 . Thus, combining the two facts, the lemma follows. Speci�cally, by Fact 3.3.1j jFjk � � � Px2Fk E(�x) j < �2 , and using Fact 3.3.2 { Eq. (1) follows.Instantiating the above lemma (using � = jFj�1=3), we have5



Corollary 3.4 Let f be as above, and k � 6pjFj. Then for all but a jFj�1=6 fraction of p's in F2k�1jEx2Fk(f(x; p(x)))� Ex;y2Fk(f(x; y))j < jFj�1=3That is, all but a jFj�1=6 fraction of the degree 2k� 1 polynomials over F are (f; k; jFj�1=3)-typical.3.3 No degree k � 1 polynomial is k-typicalIn contrast to Lemma 3.2 (as well as to the weaker Lemma 3.3), we haveProposition 3.5 There exists an (e�ciently computable) function f so that for any polynomialp 2 Fk�1 jEx2Fk(f(x; p(x)))� 0:5j > 0:5� k2jFj (2)Ex;y2Fk(f(x; y)) = 0:5 (3)Proof: Consider any easily recognizable set, S, containing exactly half the elements of F. Considerthe algorithm f , which given k pairs, denoted (x1; y1); :::; (xk; yk), �nds a (typically unique) degreek� 1 polynomial p0 satisfying p0(xi) = yi, for i = 1; :::; k. (In case there are several possibilities, thealgorithm selects p0 uniformly among them.) The algorithm outputs 1 if p0(0) 2 S and 0 otherwise.(Here is where we use the hypothesis that S is an easily recognizable set.)Consider any p 2 Fk�1, and suppose that the algorithm is given k random pairs with yi = p(xi).With probability greater than 1 � k2 � jF j�1, we have jfx1; :::; xkgj = k and so the extrapolatedpolynomial (i.e., p0) equals p. In such a case the algorithm's output is determined by the predicatep(0) 2 S and so is identically zero or identically one. Thus, Eq. (2) follows.However, when the yi's are uniformly selected, the value of the extrapolated degree k � 1polynomial p0 at any �xed point (e.g., p0(0)) is uniformly distributed. Thus the algorithm's outputis uniformly distributed in f0; 1g, and Eq. (3) follows.3.4 Using Typical PolynomialsUsing Lemma 3.3 and Proposition 3.5, we can prove the existence of probability ensembles whichare indistinguishable from the uniform ensemble by k samples but distinguishable from it by 2ksamples. More generally, we have the following lemma.Lemma 3.6 Let t : N 7!N be any non-decreasing and unbounded function, and k; k0 : N 7!N betwo polynomially-bounded functions so that k(n) < k0(n) for every n. Suppose that for some c > 0and any function f : (GF(2n)k(n))2 7! [0; 1] all but at most a 1=2t(n) fraction of the degree k0(n)�1polynomials over GF(2n) are (f; k(n); 2�cn)-typical. Then, there exists probability ensembles, P =fPngn2N and Q = fQngn2N , where Pn (resp. Qn) ranges over strings of length 2n and can begenerated by a probabilistic circuit of size poly(n), so that1. The ensemble P is indistinguishable from the uniform ensemble, U = fUngn2N , by k samples.Furthermore, for any probabilistic Turing machine M which takes k samples,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) are as in Theorem 2.3. Same for Q.6



2. The ensemble P is distinguishable from the uniform ensemble U by k0 samples. Furthermore,there exists a deterministic polynomial-time machine M such thatjPr(M(Pk0(n)n ) = 1)� Pr(M(Uk0(n)n ) = 1)j > 12 � 2�
(n)Same for Q. Furthermore,jPr(M(Pk0(n)n ) = 1)� Pr(M(Qk0(n)n ) = 1)j > 1� 2�
(n)Theorem 2.3 follows by combining the above lemma (using k0(n) = k(n) + 1) with Lemma 3.2,whereas a weaker statement with k0(n) = 2k(n) follows by combining the above lemma with Corol-lary 3.4. In both cases we may set t : N 7!N to be any non-decreasing and unbounded functionso that t(n) < 2n=O(1) (e.g., t(n) = n or t(n) = logn will do, alas the hypothesis holds even fort(n) = 2n=O(1)).Proof: We construct Pn by considering the �rst t(n) machines in an enumeration of probabilisticTuring machines. For each such machine, M , we de�ne fM(�; �) def= Pr(M(�; �) = 1).1 By thehypothesis, for each such M , all but at most 1=2t(n) of the polynomials, p, of degree k0(n)� 1 overF = GF(2n) satisfy jEx2Fk(n) (fM(x; p(x)))� Ex;y2Fk(n) (fM(x; y))j � 2�cn (4)Thus, for more than half of the polynomials, p, of degree k0(n)� 1 over F it holds that for each ofthe �rst t(n) machines, M ,jEx2Fk(n)(Pr(M(x; p(x))=1))� Ex;y2Fk(n) (Pr(M(x; y)=1))j � 2�n=3 (5)In particular, let �x an arbitrary polynomial p 2 Fk0(n)�1 satisfying Eq. (5) (for all these M 's) sothat p(0) is one of the �rst 2n�1 elements of F (by some standard enumeration). Such a polynomialdoes exist since exactly half of the polynomials satisfy the latter condition and less than half donot satisfy the former. Similarly, we �x q 2 Fk0(n)�1 satisfying Eq. (5) so that q(0) is one of the last2n�1 elements of F.Using this polynomial p, we de�ne Pn to be uniformly distributed over f(x; p(x)) : x 2 GF(2n)g.Similarly, Qn is de�ned to be uniformly distributed over f(x; q(x)) : x 2 GF(2n)g.By Eq. (5), Item 1 of the lemma holds. To establish Item 2, we use the algorithm of Proposi-tion 3.5: We extrapolate a degree k0(n)� 1 polynomial, based on the given k0(n) samples, and testwhether its free term is one of the �rst 2n�1 elements of F. Clearly, the answer is almost always yeswhen given k0(n) samples from Pn, whereas it is almost always no when given k0(n) samples fromQn. (Here \almost always" means with probability 1�2�
(n).) The answer is yes with probability12 when given k0(n) samples from the uniform distribution over f0; 1g2n. The lemma follows.4 Proof of Lemma 3.2Our proof consists of the following four steps:1 We slightly abuse notation here. The input toM is a sequence of k pairs, (�1; �1); :::; (�k; �k), and so we actuallyhave fM(�1; :::;�k; �1; :::; �k) = Pr(M((�1; �1); :::; (�k; �k))=1).7



1. We consider a bipartite graph in which edges link left-side vertices of the form (x; y) 2 (Fk)2with right-side vertices p 2 Fk i� p(x) = y. We claim that for any f : (Fk)2 7! [0; 1], foralmost all p 2 Fk the average of f over the neighbors of p approximates the average of f overall (Fk)2.2. We consider an auxiliary multi-graph (having parallel edges and self-loops) over the vertexset Fk with edges representing paths of length 2 in the former graph. We show that a goodupper bound on the second eigenvalue of the auxiliary graph implies the former claim.3. Reversing the well-known connection between eigenvalues and rapid-mixing, we show thatthe rapid-mixing of a random walk on a graph implies a good upper bound on the secondeigenvalue of the graph. (This part has appeared implicitly in many works.)4. Finally, we show that a random walk on the auxiliary graph is su�ciently rapidly mixing (toyield a good enough bound on the second eigenvalue).Initial simpli�cation. We assume throughout that k2 < jFj (as otherwise Lemma 3.2 holdsvacuously). Recall that Lemma 3.2 asserts that for some �0; �0 def= O(k1=c � jFj�c), all but at most an�0 fraction of the k degree polynomials are (f; k; �0)-typical. This statement refers to expectationtaken over all x's in F k. As we have seen in the previous section, it is more convenient to consideronly x = (x1; :::; xk)'s consisting of distinct xi's. Let F(k) denote the set of such sequences, that isF(k) def= f(x1; :::; xk) 2 Fk : xi 6= xj (8i 6= j)g (6)Then, Lemma 3.2 would follow if we establish, for �1 = �0 and �1 = �0 � k2jFj , that all but at most a�1 fraction of the k degree polynomials satisfyjEx2F(k)(f(x; p(x)))� Ex2F(k) ;y2Fk(f(x; y))j � �1 (7)(Lemma 3.2 follows since the di�erence between expectation taken over x 2 Fk and expectationtaken over x 2 F(k) is at most �k2� � jFj�1.) From this point on, we consider probability spaces wherex is uniformly distributed over F(k).The bipartite graph GF;k. We consider a bipartite graph, denoted GF;k, with vertex set UF;k [VF;k, where UF;k def= F(k) � Fk and VF;k def= Fk. The edge set of the graph, denoted E � UF;k �VF;k, consists of pairs ((x; y); p) where p(x) = y. Clearly, each vertex p 2 VF;k has exactly jF(k)jneighbours; speci�cally, its neighbour set, denoted �(p), equals f(x; p(x)) : x 2 F(k)g. Using thefact that x consists of distinct elements, we know that each vertex (x; y) 2 UF;k has exactly jFjneighbours, corresponding to the jFj degree k polynomials p's which satisfy p(x) = y. Thus, Eq. (7)can be rephrased as asserting that all but at most an �1 fraction of v 2 VF;k satisfy������ 1j�(v)j Xu2�(v) f(u)� 1jUF;kj Xu2UF;k f(u)������ � �1 (8)Thus, our aim is to establish Eq. (8). 8



4.1 It su�ces to show that GF;k is a good extractorFollowing Zuckerman [12], we observe that the above holds (i.e., at most an �1 fraction of v 2 VF;kviolate Eq. (8)) in case GF;k is an (�2; �2)-extractor, with �2 = �1=2 and �2 = �1.De�nition 4.1 (extractor): The regular bipartite graph with edge set E � U�V is called an (�; �)-extractor if for every set V 0 � V of cardinality � � jV j, the distribution induced on U by uniformlyselecting v 2 V 0 and u 2 �(v) is �-close (in variation distance) to the uniform distribution on U .Lemma 4.2 [12]: Suppose that a regular bipartite graph with edge set E � U � V is an (�; �)-extractor. Then, for every f : U 7! [0; 1], for all but at most a 2� fraction of v 2 V������ 1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u)������ � �Proof: Assuming on the contrary that the conclusion does not hold, we let V 0 be a set of � � jV jvertices v's for which, without loss of generality,1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u) > �This implies that Eu2�(v)(f(u))� Eu2U(f(u)) > � holds for every v 2 V 0. Thus,Ev2V 0 ;u2�(v)(f(u))� Eu2U(f(u)) > �Letting X denote the distribution induced on U by uniformly selecting v 2 V 0 and u 2 �(v), andby Y the uniform distribution on U , we have E(f(X))� E(f(Y )) > �. De�ning S � U so thatx 2 S i� Pr(X = x) > Pr(Y = x), and using the fact that f ranges over [0; 1], we havePr(X 2 S)� Pr(Y 2 S) = Xx2S (Pr(X = x)� Pr(Y = x))� Xx2U (Pr(X = x)� Pr(Y = x)) � f(x)= E(f(X))� E(f(Y )) > �However, this contradicts the lemma's hypothesis, which asserts that the distribution X (i.e.,uniformly selecting v 2 V 0 and u 2 �(v)) is �-close to Y (i.e., the uniform distribution on U).Corollary 4.3 Let �2; �2 def= k1=c2c�jFjc and suppose c � 1=2. If GF;k is an (�2; �2)-extractor thenLemma 3.2 follows.Proof: By Lemma 4.2 and the setting of the parameters, the hypothesis implies Eq. (8), whichin turn (by the above discussion) implies Lemma 3.2. (Note, �0 = �1 = 2�2 � k1=c � jF�cj=c and�0 = �1 + k2 � jFj�1 � k1=c � jF�cj=c.) 9



4.2 The auxiliary graph AF;k and the relevance of its eigenvaluesIn order to show that GF;k is a good extractor, we consider an auxiliary multi-graph with vertex setV and edge set corresponding to all possible paths of length 2 in GF;k. That is, for every v; u 2 Vand every path of length 2 in GF;k between v and u (passing through a vertex in UF;k), we introducean edge in the auxiliary multi-graph. We stress that this multi-graph, denoted AF;k, has jF(k)jself-loops per each vertex, and that it is regular (with degree jF(k)j � jFj).Let A denote the normalized adjacency matrix of AF;k (i.e., AF;k's adjacency matrix dividedby its degree), and let �F;k denote the second largest (in absolute value) eigenvalue of A. Then wehaveLemma 4.4 Let � def= �F;k be as above. Then GF;k is an (�1=3; �1=3)-extractor.Proof: Let � def= �1=3, and suppose for contradiction that GF;k is not an (�; �)-extractor. Then, thereexists a set V 0 � VF;k of cardinality at least � � jVF;kj so that the distribution induced on UF;k byuniformly selecting v 2 V 0 and u 2 �(v) is �-far (in variation distance) to the uniform distributionon U . Denoting by pu the probability assigned to vertex u 2 UF;k, the contradiction hypothesisyields Xu2UF;k jpu � jUF;kj�1j > 2� (9)On the other hand, denoting by �(x) the neighbor set of any vertex x in GF;k, we havepu = 1jV 0j � Xv2V 0 j�(v) \ fugjj�(v)j = j�(u) \ V 0jjV 0j � (jUF;kj � j�(u)j=jVF;kj) (10)Considering a random walk of length 2 in GF;k, starting at a uniformly selected vertex v 2 V 0, wehave Prv2V 0;u2�(v);v02�(u)[v0 2 V 0] = Xu2UF;k pu � Prv02�(u)[v0 2 V 0]= Xu2UF;k pu � j�(u) \ V 0jj�(u)j= Xu2UF;k p2u � jV 0j � jUF;kjjVF;kjLooking at the same walk as a random edge in AF;k, and denoting by �0(v) the neighbor multisetof a vertex v in AF;k, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0] = jV 0jjVF;kj � Prv2V 0;v02�0(v)[v0 2 V 0]= jV 0j2jVF;kj2 � jUF;kj � Xu2UF;k(jUF;kj�1 + (pu � jUF;kj�1))2= jV 0j2jVF;kj2 �0@1 + jUF;kj � Xu2UF;k(pu � jUF;kj�1)21A10



Thus, using Eq. (9) and setting N def= jUF;kj, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0] � jV 0j2jVF;kj2 �  1 +N � minxi�0 ;Pi xi>2�( NXi=1 x2i)!> jV 0j2jVF;kj2 � (1 + (2�)2)However, as we shall shortly see, this contradicts the Expander Mixing Lemma (cf., Corollary 2.5in [1, Chap. 9])2, by which����Prv2VF;k;v02�0(v)[v; v0 2 V 0]� jV 0j2jVF;kj2 ���� < � � jV 0jjVF;kjSpeci�cally, we obtain jV 0j2jVF;kj2 � (2�)2 < � � jV 0jjVF;kj , and so � � (2�)2 < �. This, however, contradicts oursetting of � = �1=3. The lemma follows.Corollary 4.5 Suppose that for some constant c, �F;k � k3=c(2c�jFjc)3 . Then Lemma 3.2 holds withconstant c.4.3 Reversing the eigenvalue connectionIt is well-known that good upper bounds on the second eigenvalue of a (regular) graph yield rapidmixing (i.e., fast convergence of a random walk to the uniform distribution). The converse is lessknown, holds as well and has been used in various papers. In particular, the fact that the traceof the tth power of the (normalized) adjacency matrix is the sum of the eigenvalues tth powers [2],can be used to derive such a bound (Noga Alon, priv. comm.).3 For sake of selfcontainment, weprovide a proof of the desired result.Lemma 4.6 Consider a regular connected graph on N vertices, let A be its normalized adjacencymatrix and �2 denote the absolute value of the second eigenvalue of A. Let t be an integer and �tdenote an upper bound on the maximum, taken over all possible start vertices v, of the di�erencein Norm2 between the distribution induced by a t-step random walk starting at v and the uniformdistribution. Then �2 � (N ��t)1=t.Proof: Under the hypothesis all eigenvectors and eigenvalues are reals, and ~e1 def= pN �(N�1; :::; N�1)is the (normalized) eigenvector corresponding to the eigenvalue 1. Let ~e2 be the (normalized)eigenvector corresponding to �2, and consider the probability vector ~p def= (N�1; :::; N�1)+N�1 � ~e2.(The latter is a probability vector since the absolute value of any entry in ~e2 is bounded by 1.)Since ~p is in the convex hull of the probability vectors referred to in the hypothesis, the distancekAt~p� (N�1; :::; N�1)k is bounded above by �t. On the other hand,kAt~p� (1=N; :::; 1=N)k = 1N � kAt~e2k= 1N � �t22The Expander Mixing Lemma refers to arbitrary sets A;B of vertices in a regular graph G = (V;E) of normalizedeigenvalue �. It asserts that the absolute di�erence between j(A�B)\EjjEj and jAjjV j � jBjjV j is at most � � pjAj�jBjjV j .3In this case one may use a upper bound on the t-step \return probability" of random walks. Thus, an upperbound on the max-norm deviation of a t-step random walk from any start vertex implies an upper bound on thesecond eigenvalue. The hypothesis is thus weaker than the one we use below.11



and so �t2N � �t. The lemma follows.Corollary 4.7 Suppose that for any vertex v in AF;k, the di�erence in Norm2 between the distri-bution induced by a O(k)-step random walk starting at v and the uniform distribution is at mostO(k)O(k) � jFj�(2k+1). Then, Lemma 3.2 follows.Proof: By Lemma 4.6, we have �F;k � (jFj�k)1=O(k), and by Corollary 4.5 we are done.4.4 Showing that the auxiliary graph is rapid-mixingWe conclude the proof of Lemma 3.2 by establishing the hypothesis of Corollary 4.7. That is, weconsider an arbitrary �xed polynomial p0 2 Fk = VF;k and a random walk of length t def= O(k) onAF;k starting at p0, and prove that such a walk converges to the uniform distribution. That is,Lemma 4.8 Let p0 2 Fk be any vertex in AF;k, and t = 3k + 1. Then, the Norm2 di�erencebetween the distribution induced by a t-step random walk starting at v and the uniform distributionis at most O(k)O(k) � jFj�(2k+1).Proof: For i = 1; :::; t, we denote by pi a random variable representing the distribution after isteps of this walk. Note that pi is derived from pi�1 by the following two step random process:1. Uniformly select �i = (�i;1; :::; �i;k) 2 F(k).2. Uniformly select a polynomial pi among the jFj polynomials p satisfying p(�i) = pi�1(�i).Expressing these degree k polynomials as polynomials in a formal variable x, we havepi(x) = pi�1(x) + ri � kYj=1(x� �i;j)where ri is uniformly selected in F (11)Using the symmetric functions�j(z1; :::; zk) def= (�1)j XS�[k] ; jSj=jYi2S zi;we have pi(x) = pi�1(x) + ri � kXj=0 �j(�i) � xj (12)Switching to vector notation, we write each pi as a (k+1)-dimensional vector of random variables,denoted pi, and so have pi = pi�1 + ri � (�0(�i); �1(�i); :::; �k(�i))> (13)Denoting �� def= (�0(�); �1(�); :::; �k(�))>, we have pi = pi�1 + ri � ��i , and sopt = p0 + tXi=1 ri � ��i (14)12



Finally, we move to matrix notation: Letting M(�1; :::; �t) denote the (k+1)-by-t matrix in which��i is the ith column, and r def= (r1; :::; rt)>, we havept = p0 +M(�1; :::; �t) � r (15)Since t � k+1 and r is uniformly distributed in Ft, the random variable pt is uniformly distributedin Fk provided that the matrix M(�1; :::; �t) has full rank. Thus, the Norm2 (as well as any othernorm) distance of pt from the uniform probability distribution (over Fk) is bounded above by twicethe probability that M(�1; :::; �t) is not of full rank, where the probability is taken over the choicesof the �i's. Thus,Fact 4.8.1: The lemma follows if the probability, over �i's chosen uniformly and independently fromF(k), that the matrix M(�1; :::; �t) does not have full rank is bounded above by (2k)O(k) � jFj�(2k+1).On the other hand, the hypothesis of Fact 4.8.1 follows by establishing that with high probability,as long as the matrix does not have full rank, its rank increases with any additional column. Letus establish the latter fact �rst. That is,Fact 4.8.2: Let �1; :::; �i 2 F(k) be �xed so that the matrix M(�1; :::; �i) does not have fullrank. Then, for uniformly chosen � 2 F(k), with probability at least 1 � 2k � jFj�1, the matrixM(�1; :::; �i; �) has higher rank than the matrix M(�1; :::; �i).Proof: We use the well know fact by which the rank of a matrix is r if and only if it containsan r-by-r sub-matrix having a non-zero determinant. Suppose that M(�1; :::; �i) has rank r � k,and let A denote a corresponding r-by-r (non-singular) sub-matrix. Let j be an arbitrary row notincluded in A (such a row exists as r < k + 1), and using the formal variables z = (z1; :::; zk) (witheach z` ranging over F), consider the formal matrix F (z1; :::; zk) def= M(�1; :::; �i; z). Actually, weconsider the (r + 1)-by-(r+ 1) sub-matrix, denoted F 0(z1; :::; zk), of F (z1; :::; zk) encompassing thesub-matrix A, the jth row and the last column (of F ). Recall that the �rst r columns of F 0(z) areelements of F, whereas the last column contains r + 1 distinct symmetric functions �`(z)'s. Thatis, the elements of the last column are homogeneous polynomials in distinct degrees in the rangef0; 1; :::; kg. Developing the determinant of F 0(z1; :::; zk) according to the last column we have1. The determinant of F 0(z1; :::; zk) is a polynomial in z1; :::; zk of total degree at most k.2. The determinant of F 0(z1; :::; zk) is not zero. This follows by noting that(a) the expression obtained for the determinant contains the term det(A) � �j(z), wheredet(A) 2 F n f0g denotes the determinant of A);(b) whereas the term above is of degree j no other term in the expression has degree j.Thus, by Schwartz's Lemma [10], the probability that for uniformly chosen � 2 Fk, the determinantof F 0(�) is zero is bounded above by k=jFj. However, in our case � is uniformly chosen in F(k), andso the bad event occurs with probability at most 1=Pr�2Fk [� 2 F(k)] < 2 times bigger. The currentfact follows. 2Using Fact 4.8.2, the probability that the matrix M(�1; :::; �t) does not have full rank is boundedabove by kXi=0  ti! � (2k � jFj�1)t�i < 2t � (2k � jFj�1)t�k= 25k+2 � k2k+1 � jFj�(2k+1)Using Fact 4.8.1, the lemma follows. 13
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