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Abstract

We present a (randomized) test for monotonicity of Boolean functions. Namely, given the
ability to query an unknown function f : {0,1}" — {0,1} at arguments of its choice, the
test always accepts a monotone f, and rejects f with high probability if it is e-far from being
monotone (i.e., every monotone function differs from f on more than an € fraction of the domain).
The complexity of the test is O(n/e).

The analysis of our algorithm relates two natural combinatorial quantities that can be mea-
sured with respect to a Boolean function; one being global to the function and the other being
local to it. A key ingredient is the use of a switching (or sorting) operator on functions.

*A preliminary (and weaker) version of this work appeared in[21]
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1 Introduction

In this work we address the problem of testing whether a given Boolean function is monotone. A
function f: {0,1}™ +— {0, 1} is said to be monotone if f(x) < f(y) for every z < y, where < denotes
the natural partial order among strings (i.e., x1 -+ @, < y1 -y, if z; < y; for every i and x; < y;
for some 7). The testing algorithm can request the value of the function on arguments of its choice,
and is required to distinguish monotone functions from functions that are far from being monotone.
More precisely, the testing algorithm is given a distance parameter € > 0, and oracle access to an
unknown function f mapping {0,1}" to {0,1}. If f is a monotone then the algorithm should accept
it with probability at least 2/3, and if f is at distance greater than e from any monotone function
then the algorithm should reject it with probability at least 2/3. Distance between functions is
measured in terms of the fraction of the domain on which the functions differ. The complexity
measures we focus on are the query complexity and the running time of the testing algorithm.

We present a randomized algorithm for testing the monotonicity property whose query com-
plexity and running time are linear in n and 1/e. The algorithm performs a simple local test: It
verifies whether monotonicity is maintained for randomly chosen pairs of strings that differ exactly
on a single bit. In our analysis we relate this local measure to the global measure we are interested
in — the minimum distance of the function to any monotone function.

1.1 Perspective

Property Testing, as explicitly defined by Rubinfeld and Sudan [31] and extended in [22], is best
known by the special case of low degree testings' [13, 20, 31, 30, 5] which plays a central role in the
construction of probabilistically checkable proofs (pcp) [7, 6, 18, 4, 3, 30, 5]. The recognition that
property testing is a general notion has been implicit in the context of PCP: It is understood that
low degree tests as used in this context are actually codeword tests (in this case of BCH codes),
and that such tests can be defined and performed also for other error-correcting codes such as the
Hadamard Code [3, 10, 11, 8, 9, 29, 32|, and the “Long Code” [9, 25, 26, 32].

For as much as error-correcting codes emerge naturally in the context of PCP, they do not seem
to provide a natural representation of familiar objects whose properties we may wish to investigate.
That is, one can certainly encode any given object by an error-correcting code — resulting in a
(legitimate yet) probably unnatural representation of the object — and then test properties of
the encoded object. However, this can hardly be considered as a “natural test” of a “natural
phenomena”. For example, one may indeed represent a graph by applying an error correcting
code to its adjacency matrix (or to its incidence list), but the resulting string is not the “natural
representation” of the graph.

The study of Property Testing as applied to natural representation of (non-algebraic) objects
was initiated in [22]. In particular, Property Testing as applied to graphs has been studied in [22, 23,
24] — where the first work considers the adjacency matriz representation of graphs (most adequate
for dense graphs), and the latter works consider the incidence list representation (adequate for
sparse graphs).

In this work we consider property testing as applied to the most generic (i.e., least structured)
object — an arbitrary Boolean function. In this case the choice of representation is “forced” upon
us.

!That is, testing whether a function (over some finite field) is a polynomial of some bounded degree d, or whether
it differs significantly from any such polynomial.



1.2 Monotonicity

In interpreting monotonicity it is useful to view Boolean functions over {0,1}" as subsets of {0,1}",
called concepts. This view is the one usually taken in the PAC Learning literature. Each position
in {1,...,n} corresponds to a certain attribute, and a string z = z---x,, € {0,1}" represents an
instance where z; = 1 if and only if the instance - has the i*" attribute. Thus, a concept (subset of
instances) is monotone if the presence of additional attributes maintains membership of instances
in the concept (i.e., if instance x is in the concept C then any instance resulting from z by adding
some attributes is also in C).

The class of monotone concepts is quite general and rich. On the other hand, monotonicity
suggests a certain aspect of simplicity. Namely, each attribute has a uni-directional effect on the
value of the function. Thus, knowing that a concept is monotone may be useful in various appli-
cations. In fact, this form of simplicity is exploited by Angluin’s learning algorithm for monotone
concepts [2], which uses membership queries and has complexity that is linear in the number of
terms in the DNF representation of the target concept.

We note that an efficient tester for monotonicity is useful as a preliminary stage before em-
ploying Angluin’s algorithm. As is usually the case, Angluin’s algorithm relies on the premise that
the unknown target concept is in fact monotone. It is possible to simply apply the learning algo-
rithm without knowing whether the premise holds, and hope that either the algorithm will succeed
nonetheless in finding a good hypothesis or detect that the target is not monotone. However, due
to the dependence of the complexity of Angluin’s algorithm on the number of terms of the target
concept’s DNF representation, it may be much more efficient to first test whether the function is
at all monotone (or close to it).

1.3 The natural monotonicity test

In this paper we show that a tester for monotonicity is obtained by repeating the following O(n/¢)
times: Uniformly select a pair of strings at Hamming distance 1 and check if monotonicity is
satisfied with respect to the value of f on these two strings. That is,

ALGORITHM 1: On input n, e and oracle access to f : {0,1}" — {0, 1}, repeat the following steps
up to n/e times
1. Uniformly select = € {0,1}" and ¢ € {1,...,n}.
2. Obtain the values of f(z) and f(y), where y results from x by flipping the ‘! bit.
3. If z,y, f(x), f(y) demonstrate that f is not monotone then reject.
That is, if either (z <y) A (f(x)> f(y)) or (y<z) A (f(y)> f(z)) then reject.

If all iterations were completed without rejecting then accept.

Theorem 1 Algorithm 1 is a testing algorithm for monotonicity. Furthermore, if the function s
monotone then Algorithm 1 always accepts.

Theorem 1 asserts that a (random) local check (i.e., Step 3 above) can establish the existence of a
global property (i.e., the distance of f to the set of monotone functions). Actually, Theorem 1 is
proven by relating two quantities referring to the above: Given f : {0,1}"+ {0,1}, we denote by
om(f) the fraction of pairs of n-bit strings, differing on one bit, which violate the monotonicity con-
dition (as stated in Step 3). We then define ey (f) to be the distance of f from the set of monotone



functions (i.e., the minimum over all monotone functions g of |{z : f(z)#g(z)}|/2"). Observing
that Algorithm 1 always accepts a monotone function, Theorem 1 follows from Theorem 2, stated
below.

Theorem 2 For any f: {0,1}"+—{0,1},

On the other hand,
Proposition 3 For every function f:{0,1}"+—{0,1}, em(f) > om(f)/2.

Thus, for every function f
em(/f)

n

< om(f) < 2-em(f) (1)

A natural question that arises is that of the exact relation between y;(-) and ey(-). We observe
that this relation is not simple; that is, it does not depend only on the values of 6y and ey
Moreover, we show that both the lower and the upper bound of Equation (1) may be attained (up
to a constant factor).

Proposition 4 For every ¢ < 1, there exists ¢ < 1 so that for any sufficiently large n, and for
any o« such that 27" < a < %:

1. There exists a function f:{0,1}"+—{0,1} such that o < eyp(f) < 2 and

B = euls).

2. There exists a function f:{0,1}"—{0,1} such that (1 —o(1)) - a < em(f) < 2a

om(f) = (L£o(1))-(1—=c)-em(f) .

PERSPECTIVE. Analogous quantities capturing local and global properties of functions were ana-
lyzed in the context of linearity testing. For a function f : {0,1}"™ — {0,1} (as above), one may
define epn(f) to be its distance from the set of linear functions and épin(f) to be the fraction of
pairs, (z,y) € {0,1}" x{0,1}" for which f(z)+ f(y) # f(z®y). A sequence of works [13, 10, 11, 8]
has demonstrated a fairly complex behavior of the relation between 6pn and epny. The interested
reader is referred to [8].

PRrEVIOUS BOUND ON éyp(f). This paper is the journal version of [21]. In [21], a weaker version of
Theorem 2 was proved. In particular it was shown that oy(f) = Q (W%), thus yielding

a testing algorithm whose complexity grows quadratically with n instead of linearly (as done here).
Furtheremore, the proof was more involved and the techniques did not lend themselves to obtain the
results presented subsequently for testing monotonicity over domain alphabets other than {0,1}.



1.4 Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show that this is no coincidence — any monotonicity
tester that utilizes only uniformly and independently chosen random examples, must have much
higher complexity.

Theorem 5 For any e = O(n_3/2), any tester for monotonicity that only utilizes random examples
must use at least Q(1/2"/€) such examples.

Interestingly, this lower bound is tight (up to a constant factor).

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses
at most O(\/2"[¢) examples, provided ¢ > n?-27", For ¢ < n?.27" the algorithm uses at most
O(n - /2" [€) examples. Furthermore, the algorithm runs in time poly(n) - /2" /€.

We note that the above tester is significantly faster than any learning algorithm for the class of all
monotone concepts when the allowed error is O(1/y/n): Learning (under the uniform distribution)
requires €2(2"/,/n) examples (and even that number of queries) [27].2

1.5 Extensions
1.5.1 Other Domain Alphabets

Let ¥ be a finite alphabet, and <y a (total) order on 3. Then we can extend the notion of
monotonicity to Boolean functions over ", in the obvious manner: Namely, a function f : ¥" —
{0,1} is said to be monotone if f(z) < f(y) for every x <y y, where x1 - -z, <y y1 - yn if z; <y y;
for every i and x; <y y; for some 1.

A straightforward generalization of our algorithm yields a testing algorithm for monotonicity
of functions over X" with complexity O (|X] - %) By modifying the algorithm we can obtain a
dependence on |X| that is only logarithmic instead of linear. By an alternative modification we
can remove the depedence on |X| completely at the cost of increasing the dependence on n/e from
linear to quadratic.

1.5.2 Other Ranges

We may further extend the notion of monotonicity to finite ranges other than {0,1}: Let = be a
finite set and <z a (total) order on =. We say that a function : ¥" +— = is monotone if f(z) <z f(y)
for every x <y y. We show that every algorithm for testing monotonicity of Boolean function that
works by observing pairs of strings selected according to some fixed distribution (as our algorithms
do), can be transformed to testing monotonicity of functions over any finite range Z. The increase
in the complexity of the algorithm is by a multiplicative factor of |Z|. Recently, Doddis, Lehman
and Raskhodnikova have devised a transformation whose dependency on the size of the range is
only logarithmic [16].

2The claim follows by considering all possible concepts that contain all instances having |n/2] + 1 or more 1’s,
no instances having |n/2] — 1 or less 1’s, and any subset of the instances having exactly |n/2| 1’s. In contrast,
“weak learning” [28] is possible in polynomial time. Specifically, the class of monotone concepts can be learned in
polynomial time with error at most 1/2 — ©(1/4/n) (though no polynomial-time learning algorithm can achieve an

error of 1/2 — w(log(n)/\/n)) [12]).



1.5.3 Testing Unateness.

A function f : {0,1}" — {0,1} is said to be unate if for every i € {1,...,n}, exactly one of the
following holds: whenever the i*! bit is flipped from 0 to 1 then the value of f does not decrease; or
whenever the 7*® bit is flipped from 1 to 0 then the value of f does not decrease. Thus, unateness
is a more general notion than monotonicity. We show that our algorithm for testing monotonicity
of Boolean functions over {0,1}" can be extended to test whether a function is unate or far from
any unate function at an additional cost of a (multiplicative) factor of /n. The definition of
unateness can also be extended to functions over larger domain alphabets and larger ranges, and
our algorithms extend to these cases as well.

1.6 Techniques

Our main results are proved using shifting of Boolean functions (subsets of {0,1}™). Various shifting
techniques play an important role in extremal set theory (cf., [19] as well as [1, 15]). A typical
application is for showing that a function has a certain property. This is done by shifting the
function so that the resulting function is simpler to analyze, whereas shifting does not introduce
the propetry in question.

Our applications are different. We shift the function to make it monotone, while using a
“charging” operator to account for the number of changes made by the shifting process. This
“charge” is on one hand related to the distance of the function from being monotone, and on the
other hand related to the local check conducted by our testing algorithm.

Actually we will be using several names for the same procedure — sorting and switching will
also make an appearance.

1.7 Related Work

The “spot-checker for sorting” presented in [17, Sec. 2.1] implies a tester for monotonicity with
respect to functions from any fully ordered domain to any fully ordered range, having query and
time complexities that are logarithmic in the size of the domain. We note that this problem
corresponds to the special case of n = 1 of the extension discussed in Subsection 1.5 (to general
domains and ranges).

1.8 An Open Problem

Our algorithm (even for the case f : {0,1}" — {0,1}), has a linear dependence on the dimension
of the input, n. As shown in Proposition 4, this dependence on n is unavoidable in the case of our
algorithm. However, it is an interesting open problem whether other algorithms may have signifi-
cantly lower query (and time) complexities, and in particular have query complexity independent
of n. A candidate alternative algorithm inspects pairs of strings (z,y), where z is chosen uniformly
in {0,1}", and y is chosen as follows: First select an index (weight) w € {0,...,n} with probability
(") -27™, and then select y uniformly among the strings having w 1’s, and being comparable to z

w

(e, y <z ory > x).

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Section 4. The extension
to domains alphabets and ranges other than {0, 1}, is presented in Section 5, and the extension to



testing Unateness is described in Section 6. Theorems 5 and 6 are proved in Section 7.

2 Preliminaries

For any pair of functions f,¢: {0,1}" — {0,1}, we define the distance between f and g, denoted,
dist(f, g), to be the fraction of instances x € {0,1}" on which f(z) # g(z). In other words, dist(f, g)
is the probability over a uniformly chosen z that f and g differ on . Thus, ep(f) as defined in the
introduction is the minimum, taken over all monotone functions g of dist(f, g).

A general formulation of Property Testing was suggested in [22], but here we consider a special
case formulated previously in [31].

Definition 1 (property tester): Let P = U,>1Py be a subset (or a property) of Boolean functions,
so that P,, is a subset of the functions mapping {0,1}™ to {0,1}. A (property) tester for P is a
probabilistic oracle machine®, M, which given n, a distance parameter € > 0 and oracle access to
an arbitrary function f: {0,1}"—{0,1} satisfies the following two conditions:
1. The tester accepts f if it is in P :
If f € Py, then Prob(M/(n,e)=1) > 2.
2. The tester rejects f if it is far from P :
If dist(f,g) > € for every g € P,,, then Prob(M/(n,e)=1)<

Wi

TESTING BASED ON RANDOM EXAMPLES. In case the queries made by the tester are uniformly and
independently distributed in {0,1}", we say that it only uses examples. Indeed, a more appealing
way of looking as such a tester is as an ordinary algorithm (rather than an oracle machine) which is
given as input a sequence (x1, f(x1)), (x2, f(x2)), ... where the x;’s are uniformly and independently
distributed in {0,1}".

3 Proof of Theorem 2

In this section we show how every function f can be transformed into a monotone function g. By
definition of ey(f), the number of modification performed in the transformation must be at least
em(f) - 2. On the other hand, we shall be able to upper bound the number of modifications by
om(f) - m-2™, thus obtaining the bound on éy(f) stated in Theorem 2.

For any i € {1,...,n}, we say that a function f is monotone in dimension i, if for every
a € {0,1} 1 and B € {0,1}" %, f(a0B) < f(alpB). For a set of indices T C {1,...,n}, we say
that f is monotone in dimensions T, if for every ¢« € T, the function f is monotone in dimension
i. We next define a switch operator, S; which transforms any function f to a function S;(f) that
is monotone in dimension i.

Definition 2 For every i € {1,...,n}, the function S;(f) : {0,1}" — {0,1} is defined as follows:

For every a € {0,1}=1 and every 8 € {0,1}"7, if f(a08) > f(a1p) then S;(f)(a08) = f(alp),
and S;(f)(alB) = f(a0p). Otherwise, S;(f) is defined as equal to f on the strings a0 and a1 3.

3 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain and
range elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.



Let
U {(z,y) : x and y differ on a single bit and = < y} (2)

be the set of neighboring pairs, and let

A(f) =A{(z,y) : (x,y) € Uand f(z) > f(y)} (3)

be the set of violating (neighboring) pairs. Hence, |U| = & 2" - n, and by definition of §(f), we
have 6(f) = %. Let D;(f) def {z: Si(f)(z) # f(x)}, so that D;(f) is twice the number of pairs
in A(f) that differ on the 4*® bit (and 3" ; D;(f) = 2 - |A(f)|). We show:

Lemma 7 For every f:{0,1}" + {0,1} and j € [n|, we have:
1. If f is monotone in dimensions T C [n] then S;(f) is monotone in dimensions T U {j};
2. For every 1 <i# j <n, D;(Si(f)) < D;(f).

We prove the lemma momentarily. First we show how Theorem 2 follows. Let g =
Sp(Sp—1(---(S1(f))---). By successive application of the first item of Lemma 7, the function g
is monotone, and hence dist(f,g) > em(f). By successive applications of the second item,

Di(Si 10+ (1)) < Di(Si ol (S1(F) ) < - < Dil) @
and so
dist(f,g) < 2"-im(si_l(---(sl(f))---) < 2“§}Di<f>. 5)
Therefore, z z
iDi(f) > disi(f,9) - 2" > ei(f) - 2" ()

On the other hand, by definition of D;(f),
>_Di(f) = 2-1A(A)] = 2-8u(f) - |U] = bu(f)-2" n (7)

where U and A(f) were defined in Equations (2) and (3), respectively. Theorem 2 follows by
combining Equations (6) and (7).

Proof of Lemma 7: A key observation is that for every i # j, the effect of S; on monotonicity of
[ in dimension ¢ (resp., the effect of S; on D;(-)) can be analyzed by considering separately each
restriction of f at the other coordinates.

Item 1. Clearly, S;(f) is monotone in dimension j. We show that S;(f) is monotone in any
dimension 7 € T. Fixing any ¢ € T, and assuming without loss of generality, that i < j, we fix any
a € 0,1}~ Be {0,197 and v € {0,1}"7, and consider the function f'(o7) def flao BT7y).
Clearly f’is monotone in dimension 1 and we need to show that so is So(f’). In other words, consider
the 2-by-2 zero-one matrix whose (o, 7)-entry is f’(o 7). Our claim thus amounts to saying that
if one sorts the rows of a 2-by-2 matrix which is column-sorted then the columns remain sorted.
This is easily verified by a simple case analysis. For a more general argument, concerning any d x d
zero-one matrix, see the proof of Lemma 8.



Item 2. Fixingi,j, «, (3,7 and defining f as above, here we need to show that Dy(S1(f")) < Da(f").
Again, we consider the 2-by-2 zero-one matrix whose (o, 7)-entry is f’'(o7). The current claim
amounts to saying that for any such matrix if we sort the columns then the number of unsorted
rows cannot increase. (Recall that Dy equals twice the number of unsorted rows.) The claim is
easily verified by a simple case analysis. For a more general argument, concerning any d x 2 zero-one
matrix, see the proof of Lemma 8. (We note that the claim is false for d x d zero-one matrices,
starting at d > 4 as well as for 2-by-2 matrices over {0,1,2}.) W

4 Proofs of Propositions 3 and 4

Below we prove the propositions concerning the other relations between ey (f) and 6y(f) that were
stated in the introduction.

Proof of Propositions 3: Let us fix f and consider the set A(f) of its violating pairs (as defined
in Equation (3)). In order to make f monotone, we must modify the value of f on at least one
string in each violating pair. Since each string belongs to at most n violating pairs, the number of
strings whose value must be modified (i.e., epr(f) - 2") is at least

AL sl Ul )52 n) ()

n n n 2

(where U is as defined in Equation (2)). and the proposition follows. M

Comment: For each string z, if f(z) = 0 then at most all pairs (z,z) € U are violating, and if
f(z) =1, then at most all pairs (z,y) € U are violating. The number of former pairs equals the
number of 1’s in z and the number of latter pairs equals the number of 0’s in z. Since all but a
small fraction of strings have roughly n/2 1’s and n/2 0’s, the above bound can be improved to
yield ey > (1 — o(1)) - 6m(f), provided oy (f) > 27" for any constant ¢ < 1;,

Proof of Proposition 4: It will be convinient to view the Boolean Lattice as a directed
layered graph G,. Namely, each string in {0,1}" corresponds to a vertex in G,. For every
vertex y = ¥y1...Yn, and for every ¢ such that y; = 1, there is an edge directed from y to
=y Yi-10yiy1...yn. Thus G, is simply a directed version of the hypercube graph. We
refer to all vertices corresponding to strings having exactly i 1’s as belonging to the i*® layer of
G, denoted L;. By definition of the edges in the graph, there are only edges between consecutive
layers. For any function f : {0,1}" — {0,1}, we say that an edge from y to x is violating with
respect to f, if f(x) > f(y) (which implies that (z,y) € A(f)). The fraction of violating edges
(among all 1 -2" . n edges), is by definition dn(f).

We start by proving both items for the case where a = § — O(ﬁ)

Item 1. Let f = g, be defined on {0,1}" in the following way: ¢,(z) =1 if 21 = 0, and g,(z) =0
if z1 = 1 (thus g, is the “dictatorship” function). By definition of g, for every 3 € {0,1}" 1, the
edge (13,00) is a violating edge with respect to g,, and there are no other violating edges (since
for every edge (y, x) such that x; = y1, we have g,,(x) = ¢g,(y).) Since the number of violating edges

is 2"~ (as there is a single edge for each # € {0,1}"), and the total number of edges is 1 - 2" - n,
2n—1 - l

L on, n
22n

we have 0yi(g,) =



On the other hand, we next show that ey(g,) = % Clearly, ey < % as the all 0 function is

monotone and at distance % from g¢,. It remains to show that we cannot do better. To this end,

observe that the violating edges, of which there are 2"~!, define a matching between C Aot {y €
{0,1}" : y; = 1} and C o {x € {0,1}" : 21 = 0} (where for every g € {0,1}" ! y =14 is
matched with x = 04). To make g, monotone, we must modify the value of g, on at least one
vertex in each matched pair, and since these pairs are disjoint the claim follows.

Item 2. Let f = h, : {0,1}" — {0,1} be the (symmetric) function that has value 0 on all
vertices belonging to layers L; where ¢ is even, and has value 1 on all vertices belonging to layers
L; where i is odd (i.e., hy is the parity function). Since all edges going from even layers to odd
layers are violating edges, ém(hn) = 1/2. We next show that em(h,) > & — O(ﬁ) (where once

again, ey (h,) < % since it is at distance at most 1/2 either from the all-0 function or the all-1
function). Cousider any pair of adjacent layers such that the top layer is labeled 0 (so that all edges
between the two layers are violating edges). It can be shown (cf. [14, Chap. 2, Cor. 4]) using Hall’s
Theorem, that for any such pair of adjacent layers, there exists a perfect matching between the
smallest among the two layers and a subset of the larger layer. The number of unmatched vertices
is hence 22[2/12] | |Loi| — |Loi—1| | + 1 (where L, 11 def (0, and the +1 is due to the all 0 string). This
sum can be bounded by

[n/4] [n/4]
242 Y | |Lai| = [Loica| | = 242+ ) [Log| — |Laica| < 242 [Lpyyg| = 0(2%/vn)

Thus, we have (1 —o(1))-2"! disjoint violating edges. Since we must modify the value of at least
one end-point of each violating edge, ex(hy,) € [0.5 — 0(1),0.5] and the claim follows.

To generalize the above two constructions for smaller o we do the following. For each value of
a we consider a subset S C {0,1}", such that all strings in S have a certain number of leading 0’s,
and the size of S is roughly 2« - 2. Thus there is a 1-to-1 mapping between S and {0,1}" for a
certain n’, and S induces a subgraph of G,, that is isomorphic to G, ;. For both case we define f on
S analogously to the way it was defined above on {0,1}", and let f be 1 everywhere else. We argue
that the values of ey (f) and 6y (f) are determined by the value of f on S, and adapt the bounds
we obtained above. Details follow.

Item 1. Let n’ =n— |log(1/(2a))], and consider the set S of all strings whose first n —n’ bits are
set to 0 (thus forming a sub-cube of the n-dimensional cube). The size of the set S is at least 2a.- 2"
and at most 4« - 2". Clearly the subgraph of G,, induced by vertices in S is isomorphic to G,. For
every x = 0"~ € S (where v € {0,1}"), we let f(x) = gu(7), (where g, : {0,1}" — {0,1} is
as defined in the special case of Item 1 above), and for every = ¢ S, we let f(z) = 1. Therefore,
for every z € S and y ¢ S, either x < y or x and y are incomprable. This implies that the
closest monotone functions differs from f only on S, and all violating edges (with respect to f) are

between vertices in S. Therefore, ey (f) = EM(’LQ# = @#

oulf) = 6M(h5;)n.2/r; n'/2 _ 2‘5_'”/;2- So Sm(f) = 2EMT(J‘), as desired.

(which ranges between « and 2«), and

Item 2. Here we let n' = n — |log(1/(2«))], and define S as in Item 1. Thus, 2« - 2" <
S| < 4a-2". For every # = 0" ™~ € S (where v € {0,1}"), we let f(z) = hy(7), (where
ho @ {0,1}" — {0,1} is as defined in Item 2 above), and for every = ¢ S, we let f(z) = 1.

on! 1+-L)s
Therefore, ey (f) = EM(g;T'L) > _ G ‘2/:7” | (which is greater than (1 — o(1))« - 2™ and less than




200 2%), and Sy(f) = 2ULZo2 _ BIMUL - We thus have 6y(f) = ST ey (f). Since

n' > (1 —c¢)-n— 3, the claim follows. H

5 Other Domain Alphabets and Ranges

As defined in the introduction, for finite sets ¥ and = and orders <y, and <z on ¥ and =, re-
spectively, we say that a function f : X" — = is monotone if f(z) <z f(y) for every z <y v,
where 1z, <2 y1---yn if ; <y y; for every ¢ and x; <y y; for some 7. In this subsection we
discuss how our algorithm generalizes when ¥ and = are not necessarily {0,1}. We first consider
the generalization to |¥| > 2 while maintaining Z = {0, 1}, and later generalize to any =.

5.1 General Domain Alphabets

Let f: X" +— {0,1}, where |X| = d. Without loss of generality, let ¥ = {1,...,d}. A straightfor-
ward generalization of Algorithm 1 uniformly selects a set of strings, and for each string x selected
it uniformly select an index j € 1,...,n, and queries the function f on x and y, where y is obtained
from x by either incrementing or decrementing by one unit the value of ;. However, as we shall
see below, the number of strings that should be selected in order to obtain 2/3 success probability,
grows linearly with d. Instead, we show how a modification of the above algorithm, in which the
distribution on the pairs (z,y) is different from the above, yields an improved performance. Both
algorithms are special cases of the following algorithmic schema.

ALGORITHM 2: The algorithm utilizes a distribution p : £ x ¥ +— [0, 1], and depends on a function
t. Without loss of generality, p(k,¢) > 0 implies & < ¢. On input n,e and oracle access to
f:E¥"—{0,1}, repeat the following steps up to t(n, ¢, |X|) times

1. Uniformly select i € {1,...,n}, « € ¥} and 3 € X"
2. Select (k, ) according to the distribution p.
3. If f(akB)> f(alp) (that is, a violation of monotonicity is detected), then reject.

If all iterations were completed without rejecting then accept.

The above algorithm clearly generalizes the algorithm suggested at the beginning of this section
(where t(n,e,d) = O(n - d/e) and the distribution p is uniform over {(k,k +1) : 1 < k < d}).
However, as we show below, we can select the distribution p so that t(n,e,d) = ©(% -log d) will do.
Yet a third alternative (i.e., letting p be uniform over all pairs (k,£) with 1 < k < £ < d) allows to
have t(n,e,d) = O(n/e)?.

Clearly, Algorithm 2 always accepts a monotone function (regardless of the distribution p in
use). Our analysis thus focuses on the case the function is not monotone.

5.1.1 Reducing the analysis to the case n =1

We reduce the analysis of the performace of the above algorithm to its performance in the case
n = 1. The key ingrediant in this reduction is a generalization of Lemma 7. As in the binary case,
we describe operators by which any Boolean function over ¥™ can be transformed into a monotone
function. In particular we generalize the switch operator (which is now a sort operator) to deal
with the case d > 2.
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Definition 3 For every i € {1,...,n}, the function S;(f) : X" — {0,1} is defined as follows: For
every a € Y1 and every B € X", we let Si(f)(alp),...,S:(f)(adp) be given the values of
flalpB),..., f(adpB), in sorted order.

Clearly, similarly to the binary case, for each i, the function S;(f) is monotone in dimension {i},
where the definition of being monotone in a set of dimentions is as in the binary case.* The
definitions of U and A(f) C U of the binary case (cf., Eq. (2) and (3)) may be extended in several

different ways. Specifically, for every i € [n] def {1,...,n} and every pair (k,/) € X% so that k < ¢,
we let

Uiko = {(akB,alp):aest pgexm '} (8)
Niao(f) = {(@y) €Uigg : flz)> fy)} (9)

In the binary case, U = U, U; 1 9 and A(f) = U1 A; (12)(f). Furthermore, D;(f) as defined in
the binary case, equals twice [A; (1 9)(f)]-

Lemma 8 (Lemma 7 generalized): For every f : ¥ +— {0,1} and j € [n], we have:

1. If f is monotone in dimensions T C [n] then S;(f) is monotone in dimensions T U {j};

2. For every i € [n]\ {j}, and for every 1 <k <{<d
1A k00 (S ()] < 1A% (k,0) ()]

Proof: As in the proof of Lemma 7, we may consider the function f restricted at all dimensions
but the two in question. Again, the proof of the two items boil down to corresponding claims about
sorting matrices.

Item 1. Let ¢ be some index in T, and assume without loss of generality that ¢ < j. Again, we
fix any o € 71 B € ¥7~! and v € ¥"7J, and consider the function f’: X2~ {0,1} defined by
f'(oT) At f(ao B77). Again, f'is monotone in dimension 1 and we need to show that so is Sa(f’)
(as it is obvious that Sy(f’) is monotone in dimension 2). Our claim thus amounts to saying that if
one sorts the rows of a d-by-d matrix which is column-sorted then the columns remain sorted (the
matrix we consider has its (o, 7)-entry equal to f'(o 7)).

Let M denote a (d-by-d zero-one) matrix in which each column is sorted. We observe that the
number of 1’s in the rows of M is monotoniclly non-decreasing (as each column contributes a unit
to the 1-count of row k only if it contributes a unit to the 1-count of row k£ + 1). That is, if we let
oy, denote the number of 1’s in the k' row then o, < 04y for k =1, ...,d — 1. Now suppose we sort
each row of M resulting in a matrix M’. Then the k" row of M’ is 097% 1% and it follows that
the columns of M’ remain sorted (as the k 4 15 row of M’ is 097%+11%+1 and o}, < 0g41).

Item 2. Fixing i,j, a, 3,7 and defining f’ as above, here we need to show that [A, ¢ (S1(f'))] <
|A2 (k) (f)|. The current claim amounts to saying that for any d x 2 zero-one matrix if we sort
the columns then the number of unsorted rows cannot increase. Note that the claim refers only to
columns k and £ in the d-by-d matrix considred in Item 1, and that Ay ¢ is the set of unsorted
rows.

“That is, for T C {L,...,n}, we say that the function f: X" — {0, 1} is monotone in dimensions T if for every
i €T, every a € {0,1}'71,3€ {0,1}"7, and every k = 1,...,d — 1, it holds that f(akpB) < f(ak+10).
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Let @ denote a (d-by-2 zero-one) matrix in which each column is sorted. Let o; (resp., 02)
denote the number of ones in the first (resp., second) column of Q. Then, the number of unsorted
rows in Q is 7(Q) def 01 — 09 if 01 > 09 and 7(Q) 4f ) otherwise. Let Q' be any matrix with oy
(resp., 02) 1’s in its first (resp., second) column. Then we claim that the number of unsorted rows
in Q' is at least r(Q). The claim is obvious in case r(Q) = 0. In case r(Q) > 1 we consider the
location of the o7 1’s in the first column of Q'. At most 02 of the corresponding rows in Q' may
have a l-entry also in the second column (as the total of 1’s in the second column is 0y), and so
the remaining rows (which are at least 0; — 09 in number) are unsorted. H

With Lemma 8 at our disposal, we are ready to state and prove that the analysis of Algorithm 2
(for any n) reduces to its analysis in the special case n = 1.

Lemma 9 Let A denote a single iteration of Algorithm 2, and f : £" — {0,1}. Then there exists
functions fiop: 3 {0,1}, fori € [n], a € {0,1}'"! and B € {0,1}"7*, so that the following holds

1. em(f) <23, Exp, glem(fia,5)), where the expectation is taken uniformly over a € {0, 1}t
and 3 € {0,1}"7",

2. The probability that A rejects f is lower bounded by the expected value of Prob[A rejects f; o ],
where the expectation is taken uniformly over i € [n], a € {0,1}~! and 3 € {0,1}"~".

In fact, Theorem 1 follows easily from the above lemma, since in the binary case Algorithm 2
collapses to Algorithm 1 (as there is only one possible distribution p — the one assigning all weight
to the single admissible pair (1,2)). Also, in the binary case, for any f’:{0,1} — {0, 1}, algorithm
A rejects with probability exactly 2ey(f'). Thus, the lemma implies that in the binary case, for
any f:{0,1}" — {0,1}, algorithm A rejects with probability at least

Exp; o g(Prob[A rejects finp]) = Exp;,s(2eM(fia,p))

> Salf)

The application of the above lemma in the non-binary case is less straightforward (as there the
probability that A rejects f': 3 — {0,1} is not necessarily 2eyp(f’)). Furthermore, algorithm A
may be one of infinitely many possibilities, depending on the infinitely many possible distributions
p. But let us first prove the lemma.

Proof: Fori=1,...n+1, we define f; def Si—1---S1(f). Thus, f1 = f, and by Item 1 of Lemma 8,
we have that f,,; is monotone. It follows that

ent(f) < dist(f, farr) < D dist(fi, fir1) (10)

=1
Next, for i = 1,...,n, o € {0,1}*"1 and B € {0,1}" %, define the function f; o4 : = — {0,1}, by
fiza”g(x) = f(az B), for x € X. Throughout the proof, 3°, 5 refers to summing over all (a, 3)’s in

Yl x 7t and Exp, g refers to expectation over uniformly distributed (o, 3) € Yl x Bt We
claim that

dist(fi, fir1) < 2-Expy g(em(fia,)) (11)

This inequality is proven (below) by observing that f;;; is obtained from f; by sorting, seperately,
the elements in each f; o 3. (The factor of 2 is due to the relationship beween the distance of a
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vector to its sorted form and its distnace to monotone.) Thus,

d" - dist(fi, fir1) = Yz €X: filaxf) # fii(azB)}]

o,

= Y Hzr €2 fiap(@) # Si(fias)(®)}]
o8

< > 2d-en(fiap)
o,

where the inequality is justified as follows. Consider a vector v € {0,1}¢, and let S(v) denote its
sorted version. Then S(v) = 071977, where z denotes the number of zeros in v. Thus, for some
e > 0, the vector v has e l-entries within its z-prefix and e 0-entries in its (d — z)-suffix. So the
number of locations on which v and S(v) disagree is exactly 2e. On the other hand, consider an
arbitrary perfect matching of the e 1-entries in the prefix and the e 0-entries in the suffice. To make
v monotone one must alter at least one entry in each matched pair; thus, ey(v) > e/d.

Combining Eq. (10) and (11), the first item of the lemma follows. In order to prove the second
item, we use the definition of algorithm A and let x(E) =1 if E holds and x(E) = 0 otherwise.

Prob[A rejects f] = - d” IZZProbMNP[f(Oékﬁ)>f(0455)]
i=1la,l
S lzzpu S \lF(kB) > flat )
L (k,0) a,f

1
= g1 Z > ok, ) - 1A (0 (£)]
=1 (kl)

Using Item 2 of Lemma 8, we have

1A (k) (O] = 1A% (k0 (Si—1(f))]

> |Ai7(k,z)(si—1 T Sl(f))|

Combining the above with the definition of f;, we have

Prob[A rejects f] >

= dn 1zzpk£ Zsz akﬁ)>fz(a£ﬁ)]

=1 (k) o,
= dn S S bk ) i) > Fures(D)
=1 a, B (kL)
1
= — 1ZZPrObAreJects fi o]
n-d i=la,B

and the lemma follows. W

5.1.2 Algorithms for the case n =1

By the above reduction (i.e., Lemma 9), we may focus on designing algorithms for the case n = 1.
The design of such algorithms amounts to the design of a probability distribution p : ¥? — [0, 1]
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(with support only on pairs (k,¢) with & < £), and the specification of the number of times that
the basic iteration of Algorithm 2 is performed. We present three such algorithms, and analyze the
performance of a single iteration in them.

ALGORITHM 2.1: This algorithm uses the uniform distribution over pairs (k,k+1), and t(n,€,d) =
O(nd/e). That is, it uses the distribution p; : ¥ x ¥ +— [0, 1] defined by py(k,k+1) =1/(d —1) for
k=1,..,d—1.

Proposition 10 Let A; denote a single iteration of Algorithm 2.1, and f': ¥ — {0,1}. Then, the
probability that Ay rejects f' is at least 727 - em(f').

The lower bound can be shown to be tight (by considering the function f’ defined by f'(x) =1 if
x < d/2 and f(z) = 0 otherwise).

Proof: If ey (f’) > 0 then there exists a k € {1,...,d — 1} so that f’(k) =1 and f(k+1)=0. In
such a case A; rejects with probability at least 1/(d — 1). On the other hand, ey (f’) < 1/2, for
every f': 3 — {0,1} (by considering the distance to either the all-zero or the all-one function).

ALGORITHM 2.2: This algorithm uses a distribution py : ¥ x ¥ + [0,1] which is uniform on
a set P to be defined below, and t(n,e,d) = O((nlogd)/e). The set P cousists of pairs (k, ),
where 0 < £ — k < 2% and 2! is the largest power of 2 which divides either k¥ or £. That is, let
powery(z) € {0, 1...,logy 7} denote the largest power of 2 which divides i. Then,

PY (k) €D x T :0 < € — k < gmax(powery(k).powers(6) ) (12)
We mention that an algorithm of similar performance was presented and analyzed in [17, Sec. 2.1].
Loosely speaking, their algorithm selects a pair (k, ¢) by first picking & uniformly in {1,...,d — 1},
next selects ¢ uniformly in {0, 1, ...,logy(d—Fk)}, and finally selects £ uniformly in {k+1, ..., k+2'}NX.

Proposition 11 Let Ay denote a single iteration of Algorithm 2.2, and f': X — {0,1}. Then, the
probability that Ay rejects f' is at least m ~em(f").

Proof: We first show that |P| = O(dlogd). This can be shown by charging each pair (k,{) € P
to the element divisible by the larger power of 2 (i.e., to k if powery(k) > powery(f) and to £
otherwise), and noting that the charge incurred on each ¢ is at most 2 - gpowers (1) Tt follows that
the total charge is at most Y%, 2powera(D+1 = Z;Ofgd 4271 = O(dlog d).

We say that a pair (k,¢) € P (where k < {) is a violating pair (with respect to f'), if f'(k) >
f'(£). By definition, the probability that A rejects f’ is the ratio between the number of violating
pairs in P (with respect to f’), and the size of P. Thus, it remains to show that the former is
Qem(f) - d).

In the following argument it will be convenient to view the indices 1, ..., d as vertices of a graph
and the pairs in P as edges. Specifically, each pair (k,¢), where k < ¢ corresponds to a directed
edge from k to £. We refer to this graph as Gp.

Claim 11.1: For every two vertices k£ and £ in Gp, if £ < £ then there is a directed path of length
at most 2 from k to £ in Gp.

Proof of Claim: Let r = [logd], and consider the binary strings of length r representing k£ and
(. Let k = (zy—1,...,20) and £ = (y—1,...,Y0). Let ¢t be the highest index such that z; = 0 and
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y¢ = 1. Note that z; = y; for t < i < r. We claim that the vertex m = (z,_1,...,2¢41,1,0,...0) is
on a path of length 2 from & to £. This follows from the definition of P, since m is divided by 2¢,
while both m — k =2t — S 02,20 <20 and £ —m = Y15 y20 <2t O

We now use the claim to provide a lower bound on the number of violating pairs. Let z = [{k :
f'(k) = 0}|. Then, the number of 1’s in the z-prefix of f’ must equal the number of 0’s in the
(d — z)-suffice. Let us denote this number by a, and by definition of ey(f') we have eyi(f') < 2a/d.
Consider a matching of the a 1’s in the z-prefix to the a 0’s in the (d — z)-suffice of f’. By the
above claim, there is path of length at most 2 in Gp between every matched pair. Clearly, these
paths (being of length 2) are edge-disjoint. Since each path starts at a vertex of value 1 and ends
at a vertex of value 0, it must contain an edge the corresponds to a violating pair. Thus, we obtain
a > em(f')d/2 violating pairs, and the proposition follows. H

ALGORITHM 2.3: This algorithm uses the uniform distribution over all admissible pairs, and
t(n,e,d) = min{O(nd/¢), O(n/e)?}. That is, it uses the distribution p3 : ¥ x X — [0, 1] defined by
p3(k, ) =2/((d—1)d) for 1 <k < <d.

Proposition 12 Let Az denote a single iteration of Algorithm 2.3, and f': X — {0,1}. Then, the
probability that As rejects f' is at least em(f')?/2.

The lower bound is tight upto a constant factor: For any integer e < d/2, consider the function
fl(x)=01iftx € {e+1,...,2¢} and f'(z) =1 otherwise (then ey (f’) = e/d and Aj rejects f’ iff it
selects a pair in {1,..., e} x{e+1, ..., 2e}, which happens with probability e?/((d—1)d/2) =~ 2em(f')?).
On the other hand, note that if eyy(f’) > 0 then eyr(f’) > 1/d and so the detection probability is at
least en(f')/2d. This bound is also tight upto a constant factor (e.g., consider f'(x) =0 if z = 2
and f(z) = 1 otherwise, then ey(f') = 1/d and Aj rejects f' iff it selects the pair (1,2)).

Proof: As in the proof of Lemma 8, let z be the number of zero’s in f’ and let 2¢ be the number of
mismatches between f’ and its sorted form. Then ey (f’) < 2e/d. On the other hand, considering
the e l-entries in the z-prefix of f’ and the e O-entries in the (d — z)-suffix, we lower bound the
rejection probability by e?/((d—1)d/2) > 2(e/d)?. Combining the two, we conclude that A3z rejects
f' with probability at least 2- (em(f")/2)2. W

ON THE SEMI-OPTIMALITY OF ALGORITHM 2. We call an algorithm, within the framework of
Algorithm 2, smooth if the number of repetitions (i.e., t(n,d,¢€)) is linear in e~!. Note that Al-
gorithm 2.2 is smooth, whereas Algorithm 2.3 is not. We claim that Algorithm 2.2 is optimal
in its dependence on d, among all smooth algorithms. The following argument is due to Michael
Krivilevich.

Proposition 13 For any distribution p : ¥ x ¥ — [0, 1], with support only on pairs (k,£) such that
k < £, there exists a non-monotone f': %X — {0,1} so that

2
logy d

Prob, ol f (k) > f'(£)] < ~em(f')

Proof: Let p be a distribution on pairs as above. We define

{PI'Ob(k7z)~p [fl(k) > fl(g)] }
em(f)

def
= max
f1:2—{0,1} S.t. ep(f')>0
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Our aim is to show that p < 2/logyd. The key observation is that for any consecutive 2a indices,
p has to assign a probability mass of at least p - a/d to pairs (k,?) where k is among the lowest
a indices and ¢ among the higher a such indices. This observation is proven as follows. Let
L,H be the low and high parts of the interval in question; that is, L = {s +1,...,s + a} and
H ={s+a+1,..,s+2s}, for some s € {0,...,d—2a}. Consider the function f’ defined by f'(i) =1
ifie LU{s+2a+1,..,d} and f'(i) = 0 otherwise. Then ey (f’) = a/d. On the other hand, the
only pairs (k, £) with f'(k) > f'(¢), are those satisfying k € L and £ € H. Thus, by definition of p,
it must hold that p < Pr, o[k € L & £ € H]/(a/d), and the observation follows.

The rest of the argument is quite straightforward: Consider log, d partitions of the interval
[1,d], so that the i*h partition is into consecutive segments of length 2°. For each segment in the
ith partition, probability p assign a probability mass of at least 2°~'p/d to pairs where one element
is in the low part of the segment and the other element is in the high part. Since these segments
are disjoint and their number is d/2¢, it follows that p assigns a probability mass of at least p/2 to
pairs among halfs of segments in the i*" partition. These pairs are disjoint from pairs considered
in the other partitions and so we conclude that (log, d) - § < 1. The proposition follows. M

5.1.3 Conclusions for general n

Combining Lemma 9 with Propositions 11 and 12, we obtain.

Theorem 14 Algorithm 2.2 and Algorithm 2.3 constitute testers of monotonicity for mappings
" {0,1}.

e The query complezity of Algorithm 2.2 is O((nlogd)/e).
o The query complexity of Algorithm 2.3 is O(n/e)?.

Both algorithms run in time O(q(n,d, €) - nlogd), where q(n,d,€) is their query complexity.

Proof: Both algorithms always accept monotone functions, and have complexities as stated. For
a = 2,3, let 64(f) denote the rejection probability of a single iteration of Algorithm 2.a when given
access to a function f : ¥" — {0,1}. Combining Lemma 9 and Proposition 11, we have

&(f) > Expi’aﬁ(ég(fz-’a”g)) [By Part 2 of the lemmal]
> Exp; o s(em(fia,)/O(log d)) [By the proposition]
> w [By Part 1 of the lemmal

which establishes the claim for Algorithm 2.2. Combining Lemma 9 and Proposition 11, we have

o(f) > Expi7a75(63(fi,a7ﬁ)) [By Part 2 of the lemmal]
> Exp; o g(em(fin,p)’/2) [By the proposition]
where Exp; o g(em(fia,8)) = em(f)/2n [By Part 1 of the lemmal]

So 63(f) is lower bounded by the minimum of %Z;vzl x? subject to %Z;vzl zj > enm(f)/2n, where
all x;’s are non-negative. The minimum is obtained when all z;’s are equal, and this establishes

the claim for Algorithm 2.3. W
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5.2 General Ranges

Suppose we have an algorithm for testing monotonicity of functions f : X" — {0,1} (where X is
not necessarily {0,1}). Further assume (as is the case for all algorithms presented here), that the
algorithm works by selecting pairs of strings according to a particular distribution on pairs, and
verifying that monotonicity is not violated on these pairs. We show how to extend such algorithms
to functions f : X" — = while losing a factor of |Z|.

Without loss of generality, let = = {0,...,b}. The definition of €); extends in the natural way to
functions f : £" — {0,1,...,b}. Given a function f : X" — {0,1,...,b}, we define Boolean functions
fi : ¥"—{0,1}, by letting f;(x) el if f(z) > i and fi(x) ) otherwise, for 1 = 1,...,b. For any
algorithm A that tests monotonicity of Boolean functions as restricted above, and for any Boolean
function f, let 61@[(]“) be the probability that the algorithm observes a violation when selecting a
single pair according to the distribution on pairs it defines. For f : £" ~ {0,1,...,b}, let 6{(f) be
defined analogously.

Lemma 15 Let f: X" — {0,...,b}, and let f;’s be as defined above.

1oeu(f) < em(fi).

2. 5ﬁ(f) > 5ﬁ(fi), for every i.

Combining the two items and using the relationship between 6i and ey in the binary case (i.e.,
say, 64:(fi) > em(f;)/F, where F depends on |X| and n), we get

1 — em(fi)
6ﬁ(fi) > 7 - T

=1 1=1

em(f)
F

S| =

N =
M=

6i(f) > max{s5i(fi)} > >

Hence, we may apply algorithm A (designed to test monotonicity of Boolean functions over general
domain alphabets), to test monotonicy of functions to arbitrary range of size b + 1; we only need
to increase the number of pairs that A selects by a multiplicative factor of b.

Proof: To prove Item 2, fix any ¢ and consider the set of violating pairs with respect to f;. Clearly
each such pair is also a violating pair with respect to f (i.e., if x < y and f;(z) > fi(y) then
fi(x) = 1 whereas f;(y) = 0, and so f(x) > i > f(y)). Thus, any pair (z,y) that contributes to
6{:(f;) also contributes to 63 (f).

To prove Item 1, consider the Boolean monotone functions closest to the f;’s. That is, for each

1, let g; be a Boolean monotone function closest to f;. Also, let gg be the constant all-one function.

Now, define ¢g : £ — {0,1,...,b} so that g(x) 4l if i is the largest integer in {0,1,...,b} so that

gi(x) =1 (such i always exists as go(x) = 1).

First note that the distance of g from f is at most the sum of the distances of the g;’s from the
corresponding f;’s. This is the case since if g(z) # f(x) then there must exists an i € {1,...,b} so
that g;(z) # fi(x) (since if g;(x) = f;(x) for all ’s then g(x) = f(x) follows).

Finally, we show that ¢ is monotone (and so ey (f) < 322, em(fi) follows). Suppose towards

the contradiction that g(xz) > g¢(y) for some z < y. Let i def g(x) and j o g(y) < i. Then by

definition of ¢, we have g;(z) =1 and g;(y) = 0, which contradicts the monotonicity of g;. W
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6 Testing whether a function is Unate

By our definition of monotonicity, a function f is monotone if, for any string, increasing any of its
coordinates does not decrease the value of the function. A more general notion is that of unate
functions. For sake of brevity we focus on Boolean functions over {0,1}", and discuss other finite
domain alphabets and ranges at the end of this section. A function f: {0,1}" — {0,1} is unate if
there exists a sequence T = 7y ... 7, where each m; is one of the two permutation over {0,1}, for
which the following holds: For any two strings © = 1 -z, and y = y1 - - yp, if for every ¢ we
have x; <, v;, then f(x) < f(y), where <, denotes the total order induced by m; on ¥ (namely,
b <, b if and only if m;(b) < m;(b')). We say in such a case the f is monotone with respect to 7.

In particular, if a function is monotone with respect to the sequence id,...,id, where id is the
identity permutation (which induces the order 0 < 1), then we simply say that it is a monotone
function, and if a function is monotone with respect to some 7, then it is unate.

Similarly to the algorithms presented for testing monotonicity, which search for evidence to non-
monotonicity, the testing algorithm for unateness tries to find evidence to non-unateness. However,
here it does not suffice to find a pair of strings =,y that differ on the i*" bit such that < y while
f(x) > f(y). Instead we check whether for some index i and for each of the two permutations ,
there is a pair of strings, (x,y) that differ only the i*h bit, such that z; <, y;, while f(x) > f(y).

ALGORITHM 3 (TESTING UNATENESS): On input n,e and oracle access to f : {0,1}"+—{0,1}, do
the following:

1. Uniformly select m = O(n'/¢) strings in {0,1}", denoted x',...,2™, and m indices in
{1,...,n}, denoted it,... ™.

2. For each selected 7, obtain the values of f(27) and f(y?), where 3/ results from 27 by flipping
the #/-th bit.

3. If unateness is found to be violated then reject.

Violation occurs, if among the string-pairs {z7, 47}, there exist two pairs and an index i, such
that in both pairs the strings differ on the ' bit, but in one pair the value of the function
increases when the bit is flipped from 0 to 1, and in the other pair the value of the function
increases when the bit is flipped from 1 to 0.

If no contradiction to unateness was found then accept.

Theorem 16 Algorithm 3 is a testing algorithm for unateness. Furthermore, if the function is
unate, then Algorithm 3 always accepts.

The furthermore clause is obvious, and so we focus on analyzing the behavior of the algorithm on
functions which are e-far from unate.

6.1 Proof of Theorem 16

Our aim is to reduce the analysis of Algorithm 3 to Theorem 2. We shall use the following notation.
For T = my - - - m, (where each 7; is a permutation over {0,1}), let <7 denote the partial order on
strings with respect to m. Namely, <z y if and only if for every index 4, x; <, y;. Let em=(f)
denote the minimum distance between f and any function g that is monotone with respect to ,
and let oy 7(f) denote the fraction of pairs z,y that differ on a single bit such that © <z y but
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f(x) > f(y). For any f and =, consider the function fz defined by fz(z) = f(mi(z1) - mn(zp)).
Then, em=(f) = em(fr) and dm=(f) = Om(fr). Hence, as a corollary to Theorem 2, we have

Corollary 17 For any f:{0,1}"+—{0,1}, and for any sequence of permutations T,
em(f)

n

Our next step is to link dy=(f) to quantities which govern the behavior of Algorithm 3. For each
i € {1,...,n}, and permutation m over {0,1}, let v; »(f) denote the fraction, among all pairs of
strings that differ on a single bit, of the pairs z,y such that = and y differ only on the i*® bit,
x; <z y;, and f(x) > f(y). In other words, v;(f) is the fraction of pairs that can serve as
evidence to f not being monotone with respect to any @ = my,..., 7, such that m; = m. Note
that in case f is monotone with respect to some 7, then for every ¢, v; ,(f) = 0. More generally,
omz(f) = Xim1 Vi (f) holds for every T (since each edge contributing to éyz(f) contributes to
exactly one v; ,(f)).

The distance of f from the set of unate functions, denoted ey (f), is the minimum distance of f
to any unate function; that is, ey(f) = ming(em#(f)). We next link the v; ~(f)’s to ey(f).

Lemma 18 Y1  ming{v; »(f)} > culf)

n .

Proof: Let @ = m ... m, be defined as follows: 7; = argmin, {v; ~(f)}. The key observation is

ona(f) = D vim(f) = ZH}riIl{%,n(f)}
i=1 i=1

where the first equality holds for any 7, and the second follows from the definition of this specific
7. Using the above equality and invoking Corollary 17, we have

em7(f) > ev(f)

n n

> min{yi.(f)} = bux(f) >
=1

For each i, let I'; -(f) be the set of all pairs of strings «,y that differ only on the ith bit, where
x; <z Yi, and f(z) > f(y). Lemma 18 gives us a lower bound on the sum ), ming{|[; |}. To
prove Theorem 16, it suffices to show that if we uniformly select Q(n'-®>/ey(f)) pairs of strings that
differ on a single bit, then with probability at least 2/3, for some 7 we shall obtain both a pair
belonging to I';iq(f) and a pair belonging to I‘iﬁ(f) (where id is the permutation (1,0)). The
above claim is derived from the following technical lemma, which can be viewed as a generalization
of the Birthday Paradox.

Lemma 19 Let Sy,...,S,,T1,..., T, be disjoint subsets of belonging to a universe U. For each
1, let use denote by p; the probability that a uniformly selected element in U hits S;, and by q; the
probability that 4t hits T;. Let p def Yo, min(p;,q;) > 0. Then, for some constant c, if we uniformly
select 2c-\/n/p elements in U, then with probability at least 2/3, for some i we shall obtain at least
one element in S; and one in T;.
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To derive the claim, let S; = I';ja(f) and T; = I',5(f). Then by Lemma 18, 3=, min(p;, ¢;) >

eu(f)/n. Now, using Lemma 19, the claim (and theorem) follow. So it remains to prove the last
lemma.

Proof: Suppose, without loss of generality, that p; < g;, for every 7. As a mental experiment, we
partition the sample of elements into two parts of equal size, ¢+ /n/p. Let I be a random variable
denoting the (set of) indices of sets S; hit by the first part of the sample. We show below that with
probability at least 5/6 over the choice of the first part of the sample,

p
sz' > —= (13)
1€l \/ﬁ

The lemma then follows since, conditioned on Eq. (13) holding, the probability that the second
part of the sample does not include any elements from (J;c; T, is at most

evn/p e/nfp 1
(1—2@) < (1—%) <z

1€l
where the last inequality holds for an appropriate choice of c.
To prove that Equation (13) holds with probability at least 5/6, we assume without loss of
generality that the sets S; are ordered according to size. Let Si,..., S be all sets with probability
weight at least p/2n each (i.e., p1 > ... > pr > p/2n). Then, the total probability weight of all

other sets Spi1,...,Sy is less than p/2, and ¥ p; > p/2 follows. We first observe that by a
(multiplicative) Chernoff bound (for an appropriate choice of ¢), with probability at least 11/12,

the first part of the sample contains at least 4 - \/n elements in S o koS

Let ' ¥ 1N {1,...,k}. That is, I’ is a random variable denoting the indices of sets S;,
i € {1,...,k} that are hit by the first part of the sample. By the above, with probability at
least 11/12, we have |[I'| > 4 -y/n. Thus, it remains to prove the following

Claim: Conditioned on |I'| > 4 -\/n, with probability at least 11/12, >, pi > ﬁ.

Proof: Since conditioned on an element belonging to S it is uniformly distributed in that set,
we may bound the probability of the above event, when selecting 4,/n elements uniformly and
independently in S. Consider the choice of the j*® element from S, and let 1971 denote the set
of indices of sets hit by the the first j — 1 elements selected in S. Going for j = 1,...,4\/n, we

k
consider two cases. In case ) ;cp | Di > %, we are done since Zle pi > §. Otherwise (i.e.,
- ]7
deﬁéfl pi <23%  pi/\/n < 1/4/n), the probability that the j* element belongs to I’ \ I (ie,

it hits a set in {Si,...,Sk} that was not yet hit), is at least 1 — 1/4/n, which is at least 2/3 for
n > 9. Observe that if we toss 4\/n coins with bias 2/3 towards heads then with probability at least
11/12 (provided n is big enough) we’ll get at least 2y/n heads. In our case, the heads correspond
to getting a new element from S, where each such element carries a p; weight of at least p/2n. The
claim follows. O

The lemma, follows, as indicated above. W

6.2 Testing Unateness over other Domain Alphabets and Ranges

For finite ordered sets ¥ and =, we say that a function f : X" +— Z is unate if there exists a
sequence T = 7y ...7,, where each 7; is any one of the |X|! permutation over ¥, for which the
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following holds: For any two strings * = 1 -- -y, and y = y; - - - yp, if for every ¢ we have z; <, y;,
then f(z) <z f(y), where <z is the order defined in =, and <, denotes the total order induced by
m; on X (namely, k <, ¢ if and only if m;(k) < m;(¢)).

We show how to test unateness in case = = {0, 1}, using a hybrid of Algorithm 2.3 and Algo-
rithm 3: The algorithm selects uniformly pairs (z,y) so that = and y differ on a single coordiante,
obtains the values f(x) and f(y), and constructs a partial order 7; on ¥ for each ¢. That is, if
the algorithm sees a pair (z,y) such that z; # y; and f(x) < f(y) then it records that in the !
coordinate x; <z, y;. The algorithm rejects if for some 7 it encounters a contradiction to the partial
order.

Defining ~; »(f) analogously to the binary case, and using an argument as in Lemma 18 we
obtain 3, min{vi »(f)} = Q(eu(f)/n)?. Thus, there exists an i so that v; .(f) = Q(eu(f)*/n?)
holds for all 7’s. Thus, if the basic step of the algorithm is repeated O(n3e;?log(d!)) times, then
with probability at least 2/3 all possible d! permuations are ruled out.

We believe that the algorithm works well also in case of general =, maybe at the cost of a factor
of |Z|. Unfortunately, the argument used in Subsection 5.2 does not extend.

7 Testing based on Random Examples

In this section we prove Theorems 5 and 6: establishing a lower bound on the sample complexity
of such testers and a matching algorithm, respectively.

7.1 A Lower bound on sample complexity

Let M’ be as defined in the proof of Item 2 in Proposition 4. Recall that M’ has the property that
there are no edges (in G,,) between pairs of vertices that both belong to M’ but are not matched to
each other (in M’). By possibly dropping edges from M’ we can obtain a matching M" so that |M"|
is even and of size 2¢ - 2" (recall that e = O(n3/?)). Using M” we define two families of functions.
A function in each of the two families is determined by a partition of M” into two sets, A and B,
of equal size.

1. A function f in the first family is defined as follows

€ A, define f(v) =1 and f(u) = 0.

e For every (v,u) € B, define f(v) =0 and f(u) = 1.

x) >k, for which f has not been defined, define f(z) = 1.

x) <k — 1, for which f has not been defined, define f(z) = 0.

e For every (v,u

~—

e For x with w

—~~

e For x with w
2. A function f in the second family is defined as follows

e For every (v,u) € A, define f(v) =1 and f(u) =1.
e For every (v,u) € B, define f(v) =0 and f(u) = 0.
e For z’s on which f has not been defined, define f(x) as in the first family.
It is easy to see that every function in the second family is monotone, whereas for every function

f in the first family ey(f) = |B|/2™ = €. Theorem 5 is established by showing that an algorithm
which obtains o(y/|B]) random examples cannot distinguish a function uniformly selected in the
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first family (which needs to be rejected with probability at least 2/3) from a function uniformly
selected in the second family (which needs to be accepted with probability at least 2/3). That is,
we show that the statistical distance between two such samples is too small.

Claim 20 The statistical difference between the distributions induced by the following two random
processes is bounded above by (') - ‘gg,ﬁ. The first process (resp., second process) is define as follows

e Uniformly select a function f in the first (resp., second) family.
o Uniformly and independently select m strings, z*,...,x™, in {0,1}".

o Output (x!, f(z1)),..., (™, f(z™)).

Proof: The randomness in both processes amounts to the choice of B (uniform among all (|M"]/2)-
subsets of M") and the uniform choice of the sequence of '’s. The processes differ only in the
labelings of the 2*’s which are matched by M”, yet for u (resp., v) so that (u,v) € M” the label of u
(resp., v) is uniformly distributed in both processes. The statistical difference is due merely to the
case in which for some 4, j the pair (z°,27) resides in M”. The probability of this event is bounded
by ('5) times the probability that a specific pair (2*,27) resides in M”. The latter probability equals
M 9. O

o
Conclusion. By the above claim, m < 2"/4/3|]M”| implies that the statistical difference between
these processes is less than mTZ : “;gn' < 1/6 and thus an algorithm utilizing m queries will fail to

work for the parameter € = |B|/2". Theorem 5 follows. W

7.2 A matching algorithm

def

The algorithm consists of merely emulating Algorithm 1. That is, the algorithm is given m
O(+/2"/€) uniformly selected examples and tries to find a violating pair as in Step 3 of Algorithm 1.
We assume € > n* - 27" or else the algorithm sets m = O(2").

ALGORITHM 4: Input n, e and (2!, f(z1)), ..., (@™, f(2™)).

1. Place all (27, f(27))’s on a heap arranged according to any ordering on {0, 1}".

2. For j=1,....,m and i = 1,...,n, try to retrieve from the heap the value y e i @ 0i-110m,
If successful then consider the values 27, y, f(z?), f(y) and in case they demonstrate that f is
not monotone then reject.

If all iterations were completed without rejecting then accept.

ANALYSIS. Clearly, Algorithm 4 always accepts a monotone function, and can be implemented
in time poly(n) - m. Using a Birthday Paradox argument, we show that for the above choice of
m = O(y/2"/e), Algorithm 4 indeed rejects e-far from monotone functions with high probability.
We merely need to show the following.

Lemma 21 There exists a constant ¢ so that the following holds. If m > c¢-+/2"/em(f) and if

the x’s are uniformly and independently selected in {0,1}" then Algorithm 4 rejects the function
f with probability at least 2/3.
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Proof: We consider the sets U and A(f), as defined in the proof of Theorem 2 (see Eq. (2)
and Eq. (3), respectively). By Theorem 2, we have |A(f)| > EMT(f) U = em(f) - 27D, Our
goal is to lower bound the probability that the m-sample contains a pair in A(f). Towards this
end, we partition the sample into two equal parts, denoted (1), ..., z("/2) and y(l), ...,y(m/z), For
i,j € {1,...,m/2}, we define a 0-1 random variable (;; so that (;; = 1 if (™, 4@y e A(f)
and (; ; = 0 otherwise. Clearly, the (; ;’s are identically distributed and we are interested in the
probability that at least one of them equals 1 (equiv., their sum is positive). Note that the (; ;’s
are dependent random variables, but they are almost pairwise independent as shown below. We
first show that the expected value of their sum is at least ¢?/8. Below, X and Y are independent
random variables uniformly distributed over {0,1}".

p L ExplGs] = Prayl(XY) € A (9
= Y Pryy[X=z&Y =y
(z,y)eA(S)
= A > eu(f) 270D

Thus, Exp[>; ; Gij] > (m/2)%-em(f)2- (1D > ¢2/8, which for sufficiently large value of the constant
c yields a big constant. It thus come at little suprise that the probability that }°; ;(;; = 0 is very
small. Details follows.

Let ZZ] def Cij — p- Using Chebishev’s Inequality we have

Pr(} ¢ij=01 < Pr [Z@,j
1,7 i,J

_2 p— —
> Expl ] 4. i gk Bxp[C; G k]
(m/2)* - p? (m/2)* - p?

using Exp[zi’jzildl] = Exp[zm-] -Exp[zi,Jv] = 0, for every 4-tuple satisfying 7 # i’ and j # j'. The
first term above is bounded by

22,5 Exp| 12_7] _ > ExplGi _ 1 < 8

/22 (R o s @
To bound the second term, we let X, ¥ and Z be independent random variables uniformly dis-
tributed over {0,1}", and use

> Exp[(; iG] < Z Exp[(i ;Ci k]

i,j#k 1,57k

> (m/2)? -u]

I
s
~
[\]
?u
]
=
=
N
is
=
m
I
=
&
P
N
m
e
=

S {2y, 2) : (2,y) € A(f) & (2,2) € U - (277)°

)
(m/2)
(m/2)* - (JA(f)] - m) - 27"
(m/2)° -p-m-27"

IN N

Combining all the above, we get

8 (m/2)% - p-n-27"
Pr ;=0 < —+2-
2 G 2 (/2152
.9—n
< 8 48 n-2

e ' cy/2" e - €27
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Using € > n?27", the second term is bounded by 8/c, and the lemma follows (for ¢ > 25). O
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