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The encryption method of Ajtai and Dwork [2], has a non-zero decryption-error probability. Speci�cally, when working with security parameter n, the ci-phertext of the message bit `1' is decrypted to be a `0' with probability 1n . (Theciphertext corresponding to the message bit `0' is always decrypted as `0'.)In this paper we modify the encryption method of Ajtai and Dwork so thatevery message is always decrypted correctly. Thus, we obtain a error-free en-cryption scheme which is secure under the same assumption used by Ajtai andDwork.2 The Encryption SchemeIn this section we recall the construction of Ajtai and Dwork [2] and describeour modi�cation of it. We start by introducing a few notations which are usedthroughout the paper.2.1 NotationsWe denote the set of integers by Z, and the set of real numbers by R. For anynumber � between 0 and 12 , we denote by Z� � the set of real numbers for whichthe distance to the nearest integer is at most �.The n-dimensional Euclidean space is denoted by Rn. For two vectors x; y 2Rn, we denote the inner-product of x and y by hx; yi. Given a set of n linearlyindependent vectors w1; : : : ; wn 2 Rn, the parallelepiped which is spanned by thewi's is the setP (w1; : : : ; wn) def= (Xi �iwi : �i 2 [0; 1); i = 1; : : : ; n)The width of P (w1; : : : ; wn) is the minimum over i of the Euclidean distancebetween wi and the subspace spanned by the other wj's.Given a parallelepiped P = P (w1; : : : ; wn) and a vector v, we reduce v moduloP by obtaining a vector v0 2 P so that v0 = v +Pi ciwi, where the ci are allintegers. We denote this process by v0 = v mod P .2.2 The Ajtai-Dwork ConstructionLet us recall the Ajtai-Dwork construction.3 To simplify the exposition we presentthe scheme in terms of real numbers, but we always mean numbers with some�xed �nite precision. (Following [2], one should use n-bit binary expansion ofreal numbers when working with security parameter n).3 The scheme which we describe below is slightly di�erent than the original scheme in[2]. The di�erence between these schemes is insigni�cant, however (this is mostly amatter of presentation style).



Common Parameters. Given security parameter n, we let m def= n3, and �n def=2n logn. We denote by Bn (for Big or cuBe) the n-dimensional cube of side-length �n. Also, we denote by Sn (for Small or Sphere) the n-dimensional sphereof radius n�8. Namely, we haveBn def= fx 2 Rn : 0 � xi < �n; i = 1; : : : ; ng and Sn def= fx 2 Rn : kxk � n�8gPrivate-key. Given security parameter n, the private-key is a uniformly chosenvector in the n-dimensional unit sphere. We denote this vector by u.Public-key. For a private key u, denote by Hu the distribution on points in Bnwhich is induced by the following process.1. Pick a point a uniformly at random from the set fx 2 Bn : hx; ui 2 Zg.2. For i = 1; : : : ; n, select �1; : : : ; �n uniformly at random from Sn.3. Output the point v = a+Pi �i.Using this notation, the public key which correspond to the private key u isobtained by picking the points w1; : : : ; wn; v1; : : : ; vm independently at randomfrom the distribution Hu, subject to the constraint that the width of the par-allelepiped P (w1; : : : ; wn) is at least n�2�n. In the sequel, we often use thenotations w def= (w1; : : : ; wn), v def= (v1; : : : ; vm), and e def= (w;v).(Remark: It is shown in [2] that of we pick w1; : : : ; wn uniformly in Hu, then thewidth of P (w1; : : : ; wn) will be large enough, with probability at least 1�n�1=2.)Encryption. The encryption works in a bit-by-bit fashion. Namely, to encrypt astring s = �1�2 : : :�`, each bit �i is encrypted separately.To encrypt a '0', we uniformly select b1; : : : ; bm in f0; 1g, and reduce the vectorPmi=1 bi � vi modulo the parallelepiped P (w). The vector x = (Pmi=1 bi � vi) modP (w) is the ciphertext which correspond to the bit '0'.To encrypt a '1' we uniformly select a vector x in the parallelepiped P (w). Thisvector is the ciphertext which correspond to the bit '1'.Decryption. Given a ciphertext, x, and the private-key u, we compute � = hx; ui.We decrypt the ciphertext as a '0' if � is within 1=n of some integer and decryptit as a '1' otherwise.Decryption errors. It is easy to see that if x is an encryption of '1', then thefractional part of hx; ui is distributed almost uniformly in [0; 1). On the otherhand, a simple argument show that if x is an encryption of '0' then the fractionalpart of hx; ui is always less than 1=n in absolute value. Thus, an encryption of'0' will always be decrypted as '0', and an encryption of '1' has a probability of2=n to be decrypted as '0'.



2.3 An Error-free ConstructionWe proceed now to describe our modi�cation which eliminates the decryptionerrors from the construction above. In this modi�ed scheme, just like in theoriginal Ajtai-Dwork scheme, encrypting a '0' results in a ciphertext x such thathx; ui is close to an integer. However, in our scheme we also make sure thatencrypting a '1' results in a ciphertext x such that hx; ui is far from any integer.The modi�ed scheme is as follows:Common Parameters and private-key. The commonparameters n;m; �n; Bn andSn, and the private key u, are set in exactly the same manner as in the originalscheme.Public-key (modi�ed). The vectors w1; : : : ; wn; v1; : : : ; vm are chosen in exactlythe same manner as in the original scheme.In addition, we pick i1 uniformly at random from all the indices i for whichhai; ui 2 2Z + 1, where ai is the large vector used to generate vi (i.e., vi =ai +Pj �j). That is, i1 is selected so that hai1 ; ui is an odd integer. We notethat with probability 1� 2�
(m) such an index exists.4 The public-key consistsof the sequence of points (w1; : : : ; wn; v1; : : : ; vm) and the integer i1.Encryption (modi�ed). We encrypt a '0' just like in the original scheme, byuniformly selecting b1; : : : ; bm 2 f0; 1g, and reducing the vector Pmi=1 bi � vimodulo the parallelepiped P (w). The vector x = (Pmi=1 bi � vi) mod P (w) is theciphertext which correspond to the bit '0'.The di�erence is in the encryption of a '1'. We do that by uniformly selectingb1; : : : ; bm 2 f0; 1g, and reducing the vector 12vi1+Pmi=1 bi �vi modulo the paral-lelepiped P (w). The vector x = �12vi1 +Pmi=1 bi � vi� mod P (w) is the ciphertextwhich correspond to the bit '1'.Decryption (modi�ed): Given a ciphertext, x, and the private-key u, we compute� = hv; ui. We decrypt the ciphertext as a '0' if � is within 1=4 of some integerand decrypt it as a '1' otherwise.In contrast to the encryption scheme in [2], we can show that in our schemethere is no decryption error. Speci�cally, we have:Proposition 1 (error-free decryption): For every � 2 f0; 1g, every choice ofthe private and public keys, and every choice of bi's by the encryption algorithm,the ciphertext, x, satis�es hx; ui 2 Z + �2 � 1n .Proof (sketch): The case of � = 0 is the same as for the original Ajtai-Dworkscheme. The case of � = 1 follows from the same arguments, using the fact thath12vi1 ; ui 2 Z + 12 � n�7. ut4 Otherwise, we may simply use the identity function for encryption/decryption.



3 Security of the Modi�ed SchemeTo prove the security of the modi�ed scheme, we start by invoking the mainresult of Ajtai and Dwork [2]:Theorem 2 [2, Thm 7.1]: Under Assumption ISVP, it is infeasible to distin-guish the encryption of � = 0 from a uniformly distributed point in P (w), whengiven w;v. (We stress that w;v and the encryption of `0' are distributed asdescribed above.)Note that this theorem establishes the security (as de�ned in [3]) of the encryp-tion scheme of Ajtai and Dwork [2], since in that scheme � = 1 is encrypted asa uniformly chosen point in P (w). To establish the security of our (modi�ed)encryption scheme (under the same assumption), we need to proveTheorem 3 (security): Under Assumption ISVP, it is infeasible to distinguishthe encryption of � = 0 from the encryption of � = 1, when given w;v and i1.(We stress that w;v; i1 and the encryptions are distributed as described in themodi�ed scheme.)Proof: Recall our notations w def= (w1; : : : ; wn), v def= (v1; : : : ; vm) and e def=(w;v). For a bit � 2 f0; 1g, and an encryption key (e; i), let us denote byEe;i(�) the probabilistic encryption of � using (e; i). Also, let us denote by �wthe uniform distribution over P (w). Assuming ISVP, we will show that for both� = 0 and � = 1, it is infeasible to distinguish (e; i; Ee;i(�)) from (e; i;�w).First we show that this holds for � = 0. Note that this claim is not identicalto Theorem 2, as here the distinguisher is given i (for which hvi; ui 2 2Z+1�n�7holds) as extra information. Still, Theorem 2 does imply the followingLemma 4 Under Assumption ISVP, it is infeasible to distinguish (e; i; Ee;i(0))from (e; i;�w), where (e; i) are selected as above and �w is uniformly distributedin P (w).Proof. Suppose towards the contradiction that there exists a distinguisher, D,of running-time t(n) and distinguishing gap �(n) (between (e; i; Ee;i(0)) and(e; i;�w) as in the claim). We construct a new distinguisher, D0, which violatesTheorem 2. D0 works as follows:input: e = (w1; : : : ; wn; v1; : : : ; vm) and x.preprocessing: Using D, we �nd an index j which approximately maximizesthe distinguishing gap of D on inputs of the form (e; j; �). This is done byestimating, for every j = 1; : : : ;m, the valueProb[D(e; j; Ee;j(0)) = 1]� Prob[D(e; j;�w) = 1]where the probability is taken over the internal coin tosses of both the encryp-tion algorithm (i.e., choice of bi's) andD. InvokingD for poly(n)=�(n)2 timeswe may obtain, with overwhelmingly high probability, an approximation ofthe above upto �(n)=4. Let � 2 f�1g denote the sign of the approximateddi�erence for the best j.



decision: Using j and � , found in the preprocessing, we invoke D on input(e; j; x). Let � 2 f�1g denote the output of D. Then D0 outputs � � �.Clearly, D0 has running time poly(n; t(n); �(n)�1), which is polynomial in n aslong as t(n)=�(n) is polynomial in n. It is easy to see thatjProb[D0(e; Ee(0)) = 1]� Prob[D0(e;�w) = 1]j > �(n)2 � 2�n(The second term is due to the case where we made some wrong approximation inthe preprocessing stage.) Thus, we have a distinguisher violating the conclusionof Theorem 2, and so contradiction follows. utUsing Lemma 4, we easily deriveLemma 5 Under Assumption ISVP, it is infeasible to distinguish (e; i; Ee;i(1))from (e; i;�w), where (e; i) and �w are as in Lemma 4.Proof. Suppose towards the contradiction that there exists a distinguisher, D,of running-time t(n) and distinguishing gap �(n) (between (e; i; Ee;i(1)) and(e; i;�w) as in the claim). We construct a new distinguisher, D0, as followsinput: e = (w1; : : : ; wn; v1; : : : ; vm), i and x.decision: AlgorithmD0 computes x0 = �x� 12vi� mod P (w), and outputsD(x0).Observe that Ee;i(0) and Ee;i(1)� 12vi (reduced mod P (w)) are identically dis-tributed. Similarly, �w and �w � 12vi (reduced mod P (w)) are identically dis-tributed. Thus, D0 distinguishes (e; i; Ee;i(0)) from (e; i;�w), in contradictionto the claim of Lemma 4. The current lemma follows. utCombining Lemmas 4 and 5, we have established Theorem 3.Comment { An alternative proof of Theorem 3. The security of the encryptionscheme in [2] is established via a sequence of reductions. The �rst reductionassumes an algorithmD which distinguishes between encryptions of 0's and 1's.It then constructs another algorithmD0 which distinguishes between sequences ofvectors (w;v) which constitute a public-key, and sequences uniformly distributedpoints in the big cube Bn (See [2, Lemma 8.1]). On a high level, this is done asfollows: Algorithm D0 uses the input vectors, (w;v), to encrypt 0's and 1's as ifthey constitute a public-key. If D is able to distinguish between encryptions of0's and 1's, then D0 concludes that these vectors indeed constitute a public-key.Otherwise, D concludes that they are just uniformly distributed points.One can easily verify the argument in [2] holds also for distinguishers ofencryptions under our modi�ed scheme. Speci�cally, one needs to verify thatwhen applying our encryption scheme using m uniformly distributed vectors,the result is distributed almost uniformly in the parallelepiped P (w), regardlessof whether a `0' or a `1' was encrypted. ut
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