
DEFINITIONS AND PROPERTIES OFZERO-KNOWLEDGE PROOF SYSTEMSOded GoldreichYair OrenDepartment Of Computer ScienceTechnion, Haifa, IsraelAbstractIn this paper we investigate some properties of zero-knowledge proofs, a notionintroduced by Goldwasser, Micali and Racko�. We introduce and classify two de�ni-tions of zero-knowledge: auxiliary � input zero-knowledge and blackbox� simulationzero-knowledge. We explain why auxiliary-input zero-knowledge is a de�nition moresuitable for cryptographic applications than the original [GMR1] de�nition. In partic-ular, we show that any protocol solely composed of subprotocols which are auxiliary-input zero-knowledge is itself auxiliary-input zero-knowledge. We show that blackbox-simulation zero-knowledge implies auxiliary-input zero-knowledge (which in turn impliesthe [GMR1] de�nition). We argue that all known zero-knowledge proofs are in factblackbox-simulation zero-knowledge (i.e., were proved zero-knowledge using blackbox-simulation of the veri�er). As a result, all known zero-knowledge proof systems areshown to be auxiliary-input zero-knowledge and can be used for cryptographic appli-cations such as those in [GMW2]. We demonstrate the triviality of certain classes ofzero-knowledge proof systems, in the sense that only languages in BPP have zero-knowledge proofs of these classes. In particular, we show that any language havinga Las Vegas zero-knowledge proof system necessarily belongs to RP . We show thatrandomness of both the veri�er and the prover, and non-triviality of the interaction areessential properties of (non-trivial) auxiliary-input zero-knowledge proofs.Preliminary versions of this work have appeared in [O1, O2].WARNING: The current text was automatiocally translated from old tro� �les. Suchtranslations may introduce errors. Furthermore, I'm not sure whether the source tro� �lesI've found are actually the onesw corresponding to the �nal version. Errors may be due tothis fact too. The �nal version has appeared in Journal of Cryptology, Vol. 7, No. 1 (1994),pp. 1{32.



1. INTRODUCTION The fundamental notion of zero-knowledge was introduced byGoldwasser, Micali and Racko� in [GMR1]. They considered a setting where a powerfulprover is proving a theorem to a probabilistic polynomial time verifier. Intuitively, a proofsystem is considered zero-knowledge if whatever the veri�er can compute while interactingwith the prover it can compute by itself without going through the protocol. The intriguingnature of this notion has raised considerable interest and many questions to be answered.Zero-knowledge proofs are of wide applicability in the �eld of cryptographic protocols, asdemonstrated by Goldreich, Micali and Wigderson in [GMW1, GMW2]. In this paperwe investigate some aspects of these proof systems. We present new de�nitions of zeroknowledge, discuss their importance, and investigate their relative power. In the secondpart of the paper we demonstrate that certain properties are essential to zero knowledgeinteractive proofs.1.1 De�nitional issues: The original de�nition of zero-knowledge was presented in[GMR1]. This de�nition does not seem to fully capture the intuitive meaning of the conceptof zero-knowledge. For one thing, one would expect that the sequential application ("com-position") of protocols each of which is zero-knowledge would yield a protocol which is itselfzero-knowledge (in the same manner that summing any �nite number of zeros would leavethe total at zero). However, as claimed by [FS] and recently shown in [GK], such a "com-position theorem" cannot be proved for the [GMR1] de�nition. Another problem with thisde�nition concerns its applicability to cryptographic protocols. Typically, zero-knowledgeproof systems will be used as subprotocols within larger cryptographic protocols. In sucha scenario it is natural that a dishonest party (a "cheating" veri�er in the zero-knowledgeterminology) will compute its messages based on information acquired before the proof pro-tocol began, possibly from earlier stages of the protocol in which the zero-knowledge proofis a subprotocol. We would like to require that even this additional information will notenable the veri�er to obtain any knowledge from its interaction with the prover. (This isnot guaranteed by the original de�nition). In an e�ort to overcome these problems, weformulate the de�nition referred to as auxiliary � input zero-knowledge. Intuitively, thede�nition requires that whatever a veri�er that has access to any information can computewhen interacting with the prover, it can also compute by itself when having access to thesame information. Apart from dealing with veri�ers that "cheat" by means of using outsideinformation, the proposed de�nition also enables us to prove a composition theorem. Thefact that auxiliary-input zero-knowledge is closed under composition is crucial for the use ofzero-knowledge proofs in modular design of cryptographic protocols. In [GMW2] a compileris presented that transforms any protocol correct in a weak adversarial model to a protocolcorrect in the strongest adversarial model. The existence of such a compiler relies heavilyon the existence of auxiliary-input zero-knowledge proofs for every language in NP . Onthe other hand, the ability to derive such a strong result indicates that the auxiliary-inputzero-knowledge de�nition is suitable for cryptographic purposes. The requirements of theauxiliary-input de�nition may seem very restrictive. However, all known zero-knowledgeproof systems (e.g. [GMR1, GMW1]) satisfy even a seemingly much stricter de�nition.



All these protocols were proved zero-knowledge by presenting one algorithm that uses anyveri�er as a black-box to simulate the interaction of that veri�er with the prover. In factit is hard to conceive an alternative way to prove a protocol zero-knowledge. We thereforepresent the de�nition of blackbox � simulation zero-knowledge, which formalizes this re-quirement. We show that blackbox-simulation zero-knowledge implies auxiliary-input zero-knowledge. As a result, all known zero-knowledge proofs are auxiliary-input zero-knowledgeand can be used for cryptographic purposes such as those in [GMW2].Remark 1.1: The fact that the [GMR1] de�nition is not closed under composition, and that"non-uniform" veri�ers could be used to overcome this problem, was observed independentlyby Goldwasser, Micali and Racko� [GMR2], Tompa and Woll [TW] and Feige and Shamir[FS].1.2 Essential Properties of Zero-Knowledge: Other results in this paper concern thetriviality of certain classes of zero-knowledge proof systems. We will consider a class ofproof systems trivial in this context if only languages in BPP can have zero knowledgeproof systems of this type. The reason being that any BPP language has a trivial zero-knowledge proof: one in which the veri�er checks by himself whether x 2 L or not. Provingthe triviality of some class of proof systems can be thought of as demonstrating that someproperty (which this class lacks) is essential to zero-knowledge. In particular, we show thatany language L possessing a Las Vegas zero-knowledge proof system (i.e. a proof systemthat never causes the veri�er to accept on x =2 L) is in Random Polynomial Time. It followsthat the error probability on "no" instances, existing in all known zero-knowledge proofs, isinevitable and essential to the non-triviality of these proof systems. It is interesting to notethat Las Vegas interactive proofs can exist only for languages inNP (see [GMS]). It is easy tosee that the class of languages for which membership can be proved by a deterministic proverequals that for which membership can be proved by a probabilistic prover. (We can consideran optimal prover, i.e. one which always maximizes the acceptance probability. This provercomputes in each case the "best possible" messages and can clearly be deterministic). Thus,randomness of the prover is not essential to the power of interactive proof systems as faras language recognition is concerned. On the other hand, in all proof systems shown tobe zero-knowledge the prover is probabilistic, and this property seems essential to the"zero-knowledge-ness" of these proof systems. We show that this is no coincidence: onlylanguages in BPP can have auxiliary-input zero-knowledge interactive proofs in whichthe prover is deterministic, and therefore randomness of the prover is essential to the non-triviality of the proof system. We thus demonstrate a meaningful di�erence between generalinteractive proofs and zero-knowledge interactive proofs. Just as an error probability on"no" instances and randomness both of the prover and the veri�er are essential to zero-knowledge proof systems, so is the non-triviality of the interaction. It can be easily shownthat only languages in BPP can have 1-step interactive proofs which are zero-knowledge.We show that the same holds for 2-step zero-knowledge proof systems under the auxiliary-input de�nition. Aiello and Hastad [AH2] proved that, relative to some oracle A, 2 �



StepZero � KnowledgeA 6� BPPA. Their proof hold for the original [GMR1] de�nition(actually for a stronger de�nition, see [AH2]). The proof presents a 2-step protocol which is azero-knowledge interactive proof system for some language LA, but such that LA =2 BPPA.Since the prover in the protocol is deterministic, the result can also be interpreted asDeterministic � ProverZero � KnowledgeA 6� BPPA. Our proofs for the 2-step anddeterministic prover cases, both holding for auxiliary-input zero-knowledge, relativize, andwe can therefore conclude that neither will extend to the [GMR1] de�nition. Note that2-step protocols and deterministic-prover protocols can be zero-knowledge with respectto the prespeci�ed veri�er V (e.g. the 2-step protocols for Quadratic Non-Residuosity[GMR1] and Graph Non-Isomorphism [GMW1]). Therefore, unlike Fortnow [F] and Aielloand Hastad [AH1], who actually rely only on the fact that the prespeci�ed veri�er V hasa simulator, we must in this case make use of the full power of the de�nition of zero-knowledge: speci�cally, the requirement that there exist simulators for all veri�ers, includingthe "cheaters". Our results extend to zero-knowledge arguments, introduced in [BCC]. Zero-knowledge arguments di�er from zero-knowledge interactive proofs, which are the main topicof our investigations, in that the former have a relaxed soundness condition (rather thanrequiring that it is impossible to fool the veri�er into believing false statements it is onlyrequired that cheating the veri�er is computationally infeasible).Remark 1.2: We stress that if one-way functions exist, then every language in IP =PSPACE has a zero-knwoledge proof system [GMW1,IY,S]. These proof systems have allthe essential properties discussed above. Hence there seems to be a big di�ernce betweenproof systems possesing these properties and those lacking them.Organization of the Paper Section 2 contains some basic de�nitions and also an ex-tension of the notion of polynomial indistinguishability which is required for the de�nitionspresented in section 3. In section 3 we present our new de�nitions of zero-knowledge andinvestigate their relative power. We also prove the composition property of auxiliary-inputzero-knowledge in that section. Section 4 contains our triviality results.2. NOTATION AND BASIC DEFINITIONS Let S be a set. By e 2R S we meanthat an element e is chosen at random from the set S with uniform probability distribution.When describing a protocol between two parties, A and B, we will writeactionto mean party A performs some internal action (computation), andA! B: mto mean that A sends message m to B. We recall the de�nition of interactive proof systems[GMR1 ; An alternative de�nition due to Babai [B] was shown equivalent by Goldwasserand Sipser [GS] ]: An interactive proof system for a language L is a protocol (i.e. a pair



of local programs) for two probabilistic interactive machines called the prover and theverifier. Initially both machines have access to a common input tape. The two machinessend messages to one another through two communication tapes. Each machine only sees itsown tapes, the common input tape and the communication tapes. The veri�er is boundedto a number of steps which is polynomial in the length of the common input, after whichit stops in an accept state or in a reject state. We impose no restrictions on the localcomputation conducted by the prover. We require that, whenever the veri�er is followingits predetermined program, V , the following two conditions hold:1) Completeness of the interactive proof system: If the prover runs its predeterminedprogram, P , then, for every constant c0 and large enough x 2 L, the veri�er acceptsthe common input x with probability at least 1 � jxj�c. In other words, the provercan convince the veri�er of x 2 L.2) Soundness of the interactive proof system: For every program P �, run by the prover,for every constant c0 and large enough x =2 L, the veri�er rejects x with probabilityat least 1� jxj�c. In other words, the prover cannot fool the veri�er.An interactive proof system having P; V as programs will be denoted P; V .De�nition: A t� step interactive proof system is one in which a total of t messages is sentby the two parties. Without loss of generality, we assume that the last message sent duringan interactive proof is sent by the prover. (A last message sent by the veri�er can have norole in convincing the veri�er and therefore has absolutely no e�ect.) Thus, the prover sendsthe last (and only) message in a 1-step interactive proof while in a 2-step protocol the veri�ersends a message �rst, followed by a response from the prover. The notion of polynomialindistinguishability of probability distributions is used in the de�nitions of zero-knowledgediscussed in the next section. We extend the original [GM, Y] de�nition for the case ofprobability distributions indexed by two parameters, which are treated di�erently. Thisextension is required for the formal de�nition of auxiliary-input zero-knowledge, presentedin a later section. In that case, x will be the common input to the protocol while y will bethe auxiliary input to the veri�er.De�nition (polynomial indistinguishability): For every algorithm A, let pD(x;y)A denote theprobability that A outputs 1 on input (x; y), an element chosen according to the probabilitydistribution D(x; y). Denote by Dom the domain from which the pairs x; y are chosen. Thedistribution ensembles fD(x; y)gx;y2Dom and fD0(x; y)gx;y2Dom are polynomially indistin-guishable if for every probabilistic algorithm A which runs time polynomial in the lengthof its input, for every constant c0 there exists N0 such that for every x, jxj > N0, and forevery y such that (x; y) 2 Dom, jpD(x;y)A � pD0(x;y)A j � jxj�c:Note that we do not put any restrictions on the length of y, and in particular we don't requirejyjN0. The original de�nition is obtained from the above de�nition by omitting all mention



of y. We will occasionally avoid specifying the domain, and write fD(x; y)gx;y instead offD(x; y)gx;y2Dom. Two distribution ensembles fD(x; y)gx;y2Dom and fD0(x; y)gx;y2Dom areNOT polynomially indistinguishable if there exist a probabilistic polynomial time algorithmA , a constant c0, and an in�nite sequence Seq of x's such that for every x 2 Seq thereexist some y such that (x; y) 2 Dom andpD(x;y)A � pD0(x;y)A � jxj�c:De�nition: Let c0 be a constant and let D(x; y) and D0(x; y) be probability distributionsover strings of length n1. We say that an algorithm A c-distinguishes between D(x; y) andD0(x; y) if pD(x;y)A � pD0(x;y)A 1ncRemark 2.1: Throughout this paper we use the phrases "with very high probability","with (non-) negligible probability", and so on, to describe the behavior of algorithms. Theformal interpretation of the statement "the algorithm behaves this way with very high prob-ability" should be taken to be "the probability that the algorithm behaves this way on inputof length n is greater than 1 � 1Q(n) for any (positive) polynomial Q and su�ciently largen". Accordingly "negligible probability" is "less than 1Q(n) for any (positive) polynomialQ and su�ciently large n" and "non-negligible probability" means "greater than 1Q(n) forsome polynomial Q and su�ciently large n". For convenience, we will say that a functionp(n) is c-non-negligible, where c0, if p(n) 1nc for in�nitely many n's.3. A TAXONOMY OF ZERO-KNOWLEDGE DEFINITIONS In this sectionwe present two alternative de�nitions of the notion of zero-knowledge, and investigate therelationship between them. We start by de�ning history descriptions and recalling theoriginal zero-knowledge de�nition of [GMR1].De�nition: A history description of a conversation between a machine V � and the proverP consists of the contents of all of V �'s read-only tapes (common input, random input, andin the case of auxiliary-input zero-knowledge, also the auxiliary input) and of the sequenceof messages sent by the prover during the interaction. We use [x; r;m] ([x; y; r;m]) to denotehistory descriptions, where x is the common input, (y the auxiliary input), r the randominput to the veri�er and m the sequence of messages sent by the prover. We denote byP (x); V �(x) (P (x); V �(x; y)) the probability distribution of history descriptions generatedby the interaction of V � with P on x 2 L.De�nition: [GMR1]: An interactive proof system for a language L is zero-knowledge iffor all probabilistic polynomial-time machines V �, there exists a probabilistic polynomial-



time algorithm MV � that on input x produces a probability distribution MV �(x) such thatMV�(x)x2L and P(x);V�(x)x2L are polynomially indistinguishable.Remark 3.1: If we require that the above two probability distributions be equal, we obtainthe de�nition referred to as perfect zero-knowledge. If we require them to be statisticly close,we obtain almost-perfect zero-knowledge. (The de�nitions originate from [GMR1], and werenamed as above in [F].)Remark 3.2: In the de�nition above we required MV � to simulate the history of V �'sinteraction with P . An alternative de�nition is to require MV � to generate the output ofV � when interacting with P . Clearly, the output of V � is determined given the history,and therefore simulating the history is at least as hard as simulating the output. Theconverse may not be true for a speci�c veri�er (in particular for V , the "honest" veri�er).However, since for every veri�er V � there exists a veri�er V 0 whose output is the historyof the interaction of V � with P , it follows that, when quantifying over all veri�ers, the twoformalizations are equivalent. We will be using the history-based notion of zero-knowledgethroughout this paper.3.1 New De�nitions The �rst de�nition to be considered is motivated by cryptographicapplications and will be referred to as the Auxiliary Input Zero-Knowledge de�nition. Letus elaborate on this motivation: Zero-knowledge interactive proofs are a powerful tool inthe design of cryptographic protocols. Typically, they will be used by a party to provethat it is computing its messages according to the protocol. It is crucial that these proofsare carried out without yielding the prover's secrets. In such a scenario it seems natural toassume that an adversarial party playing the role of the "veri�er" will try to gain knowledgeof interest to it. In order to do so the adversary may deviate from the speci�ed program andcompute its messages in a manner suited to its goals. Most probably it will want to basethe computation of its messages on previously acquired information, possibly from earlierstages of the protocol in which the zero-knowledge proof is a subprotocol. Intuitively, wewill require that the proof system be such that even having this additional informationcannot enable any V � to extract from its conversations with P anything that it could notcompute by itself having that same information. To allow this possibility the interactiveproof and zero-knowledge de�nitions introduced in [GMR1] should be modi�ed so that theveri�er can have an auxiliary input tape, through which the information that enables the"veri�er" to compute the desired messages will be entered.De�nition (Auxiliary-input Zero-Knowledge): An interactive proof system for a languageL is auxiliary-input zero-knowledge if for every probabilistic polynomial time machine V �there exists a probabilistic polynomial time machine MV � such that the distribution en-sembles fP (x); V �(x; y)gx;y2D1 and fMV �(x; y)gx;y2D1 are polynomially indistinguishable,where D1 = f(x; y)jx 2 L; y 2 f0; 1g�g. Note that by saying that V � is polynomial-timewe mean that its running time is bounded by a polynomial in the length of the commoninput. Machine V � has an additional input tape containing the auxiliary input y. During



an interaction of V � on common input x, machine V � reads at most a poly(x)-long pre�xof its auxiliary input. A similar convention holds for the simulator MV � (i.e. its runningtime is polynomial in the length of its �rst input, and consequently it may only read apre�x of the second input. The second de�nition we consider will be referred to as BlackboxSimulation Zero-Knowledge. This de�nition requires the existence of a single polynomialtime machine Mu which simulates the interaction of any polynomial time machine V � withthe prover P on any x 2 L, using V � as a blackbox. What do we mean by "use V � as ablackbox"? A probabilistic algorithm in general can be viewed either as an algorithm whichinternally tosses coins or as a deterministic algorithm that has two inputs: a regular inputand a random input. Two corresponding interpretations of "using a probabilistic algorithmas a blackbox" follow. In the �rst case, it means choosing an input and running the algo-rithm, while the algorithm internally ips its coins. In the second case, it means choosingboth inputs, and running the algorithm (the second input serves as the outcome of randomcoin tosses). Both these approaches extend naturally to probabilistic algorithms which alsointeract with other machines, as in our case. We choose to adopt the second approach,that is, when using V � as a blackbox, the simulator Mu will choose both inputs to V �. Allknown zero-knowledge protocols were proved zero-knowledge using this approach. It is notclear if they could also be proved zero-knowledge when adopting the �rst approach.De�nition (Black-box Simulation Zero-Knowledge): Denote by T imeV �P (x) the runningtime of machine V � when interacting with P on input x. An interactive proof system for alanguage L is black-box simulation zero-knowledge if there exists a probabilistic polynomial-time machineMu such that for every polynomialQ the distribution ensembles fP (x); V �(x)gx;V �2D2and fMV �u (x)gx;V �2D2 are polynomially indistinguishable even when the distinguishers areallowed blackbox access to V �, where D2 = f(x; V �)jx 2 L and T imeV �P (x) � Q(x)g.All known zero-knowledge protocols are in fact blackbox-simulation zero-knowledge. Itseems likely that in order to prove an interactive proof system zero-knowledge with respectto any "veri�er" V �, one would have to present such a universal simulator. Thus thisde�nition is reasonable and not too restrictive.Remark 3.3: In remark 3.2 of this section we claimed that the "history-based" and the"output-based" versions of the [GMR1] zero-knowledge de�nitions are equivalent. Thisclaim was established by pointing out that the distinguisher, given a history description,can generate V �'s output by using a built-in version of V �. The same reasoning holds forthe auxiliary-input de�nition. However the distinguishers in the case of blackbox-simulationcannot have a built-in version of what may be an in�nite number of V �'s. Therefore onemust allow the distinguishers running on a history description of an interaction by somemachine V � blackbox access to V �. This will clearly allow the distinguisher to reconstructV �'s output given the history of the interaction.Remark 3.4: We stress that saying that (P; V ) is an auxiliary input zero-knowledge proof



system does not mean that the honest veri�er V may use auxiliary input as a legitimatestage in its operation (it may not). Rather, we mean that the prover does not revealknowledge even to cheating veri�ers which do use an auxiliary input.3.2 Relationship Between the De�nitions Let Cl(def) denote the class of all interactiveproof systems satisfying the requirements of de�nition def . The following relationships seemrather obvious:Theorem 3.1:(1) Cl(auxiliary � input) � Cl([GMR1])(2) Cl(blackbox� simulation) � Cl([GMR1])Proof: In both case (1) and case (2) the [GMR1] de�nition is less restrictive than the otherde�nitions in terms of its requirements from the simulation. In case (1) the simulation isrequired by the [GMR1] de�nition to be valid only when the auxiliary-input is empty. Incase (2) the blackbox de�nition requires that all veri�ers be simulated by one machine Muwhereas the [GMR1] de�nition allows each such veri�er to have its own, specially tailoredsimulator. 2Next, we establish the relationship between the two new de�nitions:Theorem 3.2: Cl(blackbox� simulation) � Cl(auxiliary � input).Proof: Let P; V be an interactive proof system and assume P; V 2 Cl(blackbox�simulation).That is, there exists a polynomial machineMu such that for every x 2 L and V 0machineMusimulates the interaction of V 0 with P on input x. We show P; V 2 Cl(auxilary � input),by demonstrating how to construct a simulator MV � for every probabilistic polynomial-time V � having auxiliary input. For every V � we construct MV � as follows: Let Q be apolynomial such that 8xT imeV �P (x) � Q(x). The simulator MV � will be a multiple-tapeTuring machine. It will have the code of V � built-in. MV � will also have access to Mu, theuniversal simulator guaranteed by the blackbox de�nition. Given x and auxiliary-input y,machine MV � "incorporates" a pre�x of y of length � Q(x) into the code of V �, forming amachine V �y . On input x, machine V �y behaves as follows: it copies y to its input tape andruns V �(x; y). Also, upon receiving a message "SEND AUXILIARY INPUT", V �y sends amessage containing y (this feature is not required by the simulation, but will later be usedby the distinguishers). Having constructed V �y , machine MV � now simulates the computa-tion of Mu while having the "blackbox" V �y . It then outputs the output of Mu. Observethat the output of Mu will be of the form [x; r;m] while the output of MV � must be of theform [x; y; r;m]. Therefore MV � adds y to the output of Mu.



Claim 3.2.1: MV �(x; y) runs time polynomial in jxj, as required by the de�nition ofauxiliary-input zero-knowledge.Proof: The time required to simulate one step of V �y (x; y) is O(jV �j + jyj). The value ofjV �j is constant as far as MV � is concerned, and therefore one step requires O(jyj). Since ywas truncated to length Q(jxj), it follows that jyj 2 O(Q(jxj)). We know that V �y (x), whichis essentially the same as V �(x; y), runs at most Q(jxj) steps. All in all, simulating thecomputation of V �y (x) can be achieved in time bounded by some polynomial QV (jxj). MV �simulates the computation of Mu having a blackbox V �y . The number of steps required byMu is guaranteed to be polynomial in jxj, when counting the activations of the blackbox V �yat unit cost. Let QM (jxj) be the running time of Mu. The running time of MV � is boundedby QM (jxj) �QV (jxj) and is clearly polynomial in jxj. 2Claim 3.2.2: The distribution ensemble fP (x); V �(x; y)gx;y2D1 is polynomially indistin-guishable from fMV �(x; y)gx;y2D1 , where D1 = f(x; y)jx 2 Lg.Proof: Assume there exist a constant c, an algorithm A and an in�nite sequence S of pairs(x; y) 2 D1 such that 8 (x; y) 2 S : pP (x);V �(x;y)A � pMV �(x;y)A 1jxjcWe show that in such a case there exist a polynomial Q, an algorithm A0 and an in�nitesequence S0 of pairs (x; V �y ) such thatS0 � f(x; V �y ) jx 2 L ; T imeV �yP (x) � Q(jxj)gand8 (x; V �y ) 2 S0pP (x);V �y (x)A0 � pMV �yu (x)A0 1jxjccontrary to the assumption thatMu is a valid blackbox simulator. Let S0 = f(x; V �y ) j (x; y) 2Sg, where V �y is as described above. Clearly8 (x; V �y ) 2 S0T imeV �yP (x) = Q(jxj):We construct A0, the "blackbox-simulation" distinguisher, as follows: On input [x; r;m] anda blackbox V �y (recall that blackbox distinguishers have blackbox access to the veri�ers),A0 �rst sends a message "SEND AUXILIARY INPUT" to V �y , to obtain y. It then runsA([x; y; r;m]) and outputs the outcome of this computation. It is easy to see that A0 willdistinguish for any pair (x; V �y ) for which A distinguishes the corresponding pair (x; y). Theclaim follows. 2 This completes the proof of Theorem 3.2. 2This is the most important result of this section, due to its e�ect: all known zero-knowledge protocols, having been proved zero-knowledge under the blackbox simulationde�nition, are shown to be auxiliary-input zero-knowledge, and as such can be used for allcryptographic applications such as [GMW2].



Remark 3.5: The relationships derived in the above theorems hold also for perfect zero-knowledge and almost-perfect zero-knowledge.Remark 3.6: It follows from [GK, Thm. 4.1] that Cl(auxiliary � input) � Cl([GMR1]).We don't know whether Cl(auxiliary � input) equals Cl(blackbox � simulation). Thefollowing states clearly what is known:Cl(blackbox� simulation) � Cl(auxiliary � input) � Cl([GMR1]).3.3 Proof of the Sequential Composition Theorem for Auxiliary-Input Zero-Knowledge We �rst de�ne the notion of a sequential composition of interactive proofsystems:De�nition: Let P1; V1, ... , Pk; Vk be interactive proof systems for languages L1, L2,...,Lk, respectively. A sequential composition of the k protocols, denoted P; V is de�ned asfollows: The common input to P; V , x, will be a string of the form x1%x2%:::%xk%, where'%' is a delimiter. The execution of P; V consists, at stage i, of P and V activating Pi andVi, respectively, as subroutines on xi. V accepts if all Vi's have accepted.In a similar manner we can de�ne concurrent compositions:De�nition: Let P1; V1, ... , Pk; Vk be interactive proof systems for languages L1, L2, ...,Lk,respectively. Without loss of generality, assume that all protocols are m-step protocols. Aconcurrent composition of the k protocols, P; V is de�ned as follows: P; V will also be anm-step protocol. The common input to P; V , x, will be a string of the form x1%x2%:::%xk%,where '%' is a delimiter. The i'th message in P; V will consist of the i'th message of P1; V1,... , Pk; Vk. V accepts if all Vi's have accepted.Remark 3.7: Clearly, the case in which a single protocol P̂ ; V̂ is iterated k times, possi-bly on the same input x̂, is merely a restricted version of the above de�nitions, in which8iPi; Vi = P̂ ; V̂ and 8ixi = x̂. It is easy to see that both compositions (sequential and con-current) constitute interactive proofs for L. We now prove that a sequential composition ofauxiliary-input zero-knowledge protocols yields a auxiliary-input zero-knowledge protocol.Recently it was shown in [GK] that the same is not true for concurrent compositions.Remark 3.8: In the following proofs k, the number of protocols, is assumed to be constant.We will later demonstrate how a slightly altered version of the proof can be applied in themeaningful cases for which k is not a constant.Theorem 3.3 (Sequential Composition Theorem): Let P1; V1, P2; V2, ... ,Pk; Vk be auxiliary-input zero-knowledge proof systems for



languages L1, L2, ... , Lk, respectively. Let L = fx1%x2%:::%xk%j8i(xi 2 Li)g.De�ne P; V to be the composition of P1; V1, P2; V2, ... , Pk; Vk. Then P; V is anauxiliary-input zero-knowledge proof system for L.Proof: It is easy to see that P; V is an interactive proof system for L. We thereforeconcentrate on showing that P; V is auxiliary-input zero-knowledge. Recall that we areusing the history-based notion of zero-knowledge. A history description in the case ofauxiliary-input is of the form [x; y; r;m], where y is the veri�er's auxiliary input, r is theveri�er's random string and m is the sequence of prover messages.The objective of the indented small-print paragraphs throughout the proof is to provideinsight and intuition to the otherwise rather formal proof.In order to prove that P; V is auxiliary-input zero-knowledge we must show how to constructa simulator MV � for each polynomial-time probabilistic V �. We will assume without loss ofgenerality that V � initially copies the contents of all its input tapes (common input, randominput, auxiliary input) to its work tape and never attempts to access these tapes again.V �'s interaction with P can be conceptually divided into V �'s interaction with P1, V �'sinteraction with P2, and so on. Since the k individual protocols are auxiliary-input zero-knowledge, there must exist machinesM1V � ,M2V � , ...,MkV � , which simulate the interactionof V � with P1, P2, ..., Pk, respectively. Basicly, MV � will activate these simulators insequence. However, in order for the overall simulation to be valid, the initial state of V �when being simulated by M i+1V � should be its �nal state in the simulation by M iV � . Thiscan be achieved by giving V � as its auxiliary input to the i + 1-th stage informationwhich will enable it to reconstruct the �nal state of the i-th stage. Obviously, we cannotguarantee that any V � will in fact behave as described above (i.e. reconstruct its statewhen having past history as its auxiliary input). Therefore, and instead of making anytechnical assumptions on V �, we consider for every V � a modi�ed veri�er V 0 which willexhibit the required behavior.As a �rst step we will consider a veri�er V 0 that has a built-in version of V � and the followingadditional property: On auxiliary input h, where h = [x; y; r;m] is a history description ofV �'s interaction with the prover, V 0 brings its built-in version of V � to the con�guration(state, work-tape contents and head position) corresponding to this description, and pro-ceeds from that point. In particular, if m = � (the empty string) and y is not itself a historydescription then V 0 only copies x, y, r to the work tape of its built-in version of V � andthen "behaves" like V �. Machine V 0 actually always ignores its "real" random string. In allother senses V 0 is exactly like V �. In particular, for every x, y, the probability distributionof prover messages sequences generated by running P (x); V �(x; y) is exactly that generatedby randomly choosing a string r and running P (x); V 0(x; [x; y; r; �]).Construction of the simulator for V �: Since the individual protocols are assumed to beauxiliary-input zero-knowledge, there exists machines M1V 0 , M2V 0, ... , MkV 0 which simulate



the history of V 0's interaction with P1 , P2, ...,Pk , respectively. The output produced byM iV 0 on input pair (x; h) will be of the form [x; h; r;m], where r is V 0's random string (whichis actually ignored) in this simulation and m is the sequence of messages sent "on behalf" ofthe prover. Let s1s2 denote the concatenation of strings s1 and s2. We now describe MV � .On input x = x1%x2% � � � xk% and y, machine MV � runschoose random string rh0 � [x; y; r; �]h1 �M1V 0(x1; h0)h2 �M2V 0(x2; h1)...hk �MkV 0(xk; hk�1)m�m1m2:::mkOUTPUT ([x; y; r;m]).(Themi's are obtained from the hi's.) We will now show thatMV � is indeed a "good" simulatorfor P; V �.Lemma 3.3.1: The distribution ensembles fMV �(x; y)gx;y, where MV � is as described above,and fP (x); V �(x; y)gx;y are polynomially indistinguishable.Proof: Suppose they are not. That is, there exists a constant c0 and a test A that for in�nitelymany pairs (x; y) will c-distinguish between MV �(x; y) and P (x); V �(x; y)We will show that in such a case there exists another constant c0 and another test A(i) thatfor some i and for in�nitely many pairs (xi; yi) c0-distinguishes between M iV 0(xi; yi) andPi(xi); V 0(xi; yi), contrary to the assumption that M iV 0 correctly simulates the historyof V 0's interaction with Pi.We consider the following hybrids of the probability distributionsMV �(x; y) and P (x); V �(x; y).The i-th hybrid, denoted Hi(x; y), is de�ned by the following process:choose a random string rh0 � [x; y; r; �]h1 � P1(x1); V 0(x1; h0)h2 � P2(x2); V 0(x2; h1)...hi � Pi(xi); V 0(xi; hi�1)hi+1 �M i+1V 0 (xi+1; hi)...hk �MkV 0(xk; hk�1),m�m1m2:::mkOUTPUT ([x; y; r;m]).As before, each hi is of the form [x; hi�1; ri;mi]. The extreme hybrids , H0 and Hk, correspond



to MV �(x; y) and P (x); V �(x; y), respectively. Clearly if we can c-distinguish between theextreme hybrids, then there must exist a constant c0 and two adjacent hybrids which canbe c0-distinguished, say Hi�1 and Hi. It is not hard to see that for su�ciently large n, c0is approximately equal to c. Let prefi(x; y) be the probability distribution de�ned by theprocesschoose a random string rh0 � [x; y; r; �]h1 � P1(x1); V 0(x1; h0)h2 � P2(x2); V 0(x2; h1)...hi�1 � Pi�1(xi�1); V 0(xi�1; hi�2)OUTPUT (hi�1).Let h be a string which may occur with non-zero probability in either of the distributionsM iV 0(xi; hi�1), and Pi(xi); V 0(xi; hi�1), where hi�1 is a string assigned non-zero probabilityby prefi(x; y). Any such string h will contain m1, m2, ..., mi and x, y and r. For strings hof this type we de�ne suffi(h) to be the probability distribution generated by runninghi+1 �M i+1V 0 (xi+1; h)hi+2 �M i+2V 0 (xi+2; hi+1)...hk �MkV 0(xk; hk�1)m�m1m2:::mkOUTPUT ([x; y; r;m]).The distribution prefi(x; y) is actually a distribution on all the possible auxiliary inputsto the i-th stage, given that the initial input is x and the initial auxiliary input is thestring y. The distribution suffi can be regarded as an operator which on input a stagei history applies the remaining k � i simulation stages. If the input to suffi comesfrom M iV 0(xi; hi�1) then the e�ect of suffi will correspond to a string coming fromHi�1(x; y). If the input comes from Pi(xi); V 0(xi; hi�1), then the e�ect of suffi willcorrespond to a string coming from Hi(x; y). Our aim is to show that if (x; y) are suchthat A c-distinguishes between H0(x; y) and Hk(x; y) then there exists some i and someh� such that the A(i) we construct will c0-distinguish between between M iV 0(xi; h�) andPi(xi); V 0(xi; h�). A(i) will actually activate the suffi operator on its input text, h, toobtain a text in a format suitable for A, and then "let A do the distinguishing".We use the following notational shorthands:PRi[h] = Probfprefi(x; y) = hgsuffi(M [h]) = suffi(M iV 0(xi; h))suffi(P [h]) = suffi(Pi(xi); V 0(xi;h))Recall that pDA denotes the probability that algorithm A outputs 1 on input of an element



chosen according to the probability distribution D. The following relationship holds:pHi�1(x;y)A =Xh PRi[h] � psuffi(M [h])AThe probability pHi�1(x;y)A is written above as a weighted average over all the possible h's,of the probability that A outputs 1 on input an element chosen according to suffi(M [h]).The weight is assigned by the probability of h to be an i� 1 stage history.Similarly: pHi(x;y)A =Xh PRi[h] � psuffi(P [h])AIt was assumed that the values pHi�1(x;y)A and pHi(x;y)A di�er c0-non-negligibly. Since both areweighted averages over the same probability space, there must be some element h� forwhich there will be a c0-non-negligible di�erence between psuffi(M [h�])A and psuff i(P [h�])A .Since pHi�1(x;y)A � pHi(x;y)A > = < 1jxjc0 there exists some h� for whichpsuffi(M [h�])A � psuffi(P [h�])A 1jxjc0We conclude that for every (x; y) for which H0(x; y) and Hk(x; y) can be c-distinguishedthere exists (xi; yi) such that Pi(xi); V 0(xi; yi) and M iV 0(xi; yi) can be c0-distinguished.The auxiliary input yi will be the string h� corresponding to x and y. On input a textT = [xi; yi; ri;mi] chosen either according to Pi(xi); V 0(xi; yi) or to M iV 0(xi; yi), the test A(i)extracts m1, m2, ...,mi�1, x , y and r (which are contained in T since they were containsin yi = h�) and mi from T . It then runshi+1 �M i+1V 0 (xi+1; T )hi+2 �M i+2V 0 (xi+2; hi+1)...hk �MkV 0(xk; hk�1)m�m1m2:::mkOUTPUT ([x; y; r;m])to obtain a text T 0 = [x; y; r;m]. The test A(i) then runs A on T 0 and outputs the output ofA. By our construction it is clear that A(i)(z) will c0-distinguish between Pi(xi); V 0(xi; yi)and M iV 0(xi; yi). This contradicts the fact the M iV 0 is a "good" simulator for Pi; V 0. 2 Weconclude that fMV �(x; y)gx;y is polynomially indistinguishable from fP (x); V �(x; y)gx;y andthe theorem follows. 2Remark 3.9: The assumption that k, the number of protocols, is constant was required inorder to argue that if H0 and Hk can be distinguished for in�nitely many pairs (x; y) then



there exists some i such that Hi�1 and Hi can also be distinguished in�nitely many times,thus contradicting the assumption that M iV 0 is a good simulator. Observe, however, that inthe case where a single protocol P̂ ; V̂ is iterated, it is no longer essential to assume that kis a constant. Clearly we could no longer claim that for some i the distributions Hi�1 andHi can be distinguished in�nitely many times. However, distinguishing any two adjacenthybrids Hi�1 and Hi means in every case distinguishing MV 0̂ from P̂ ; V 0̂, contrary to theassumption that MV 0̂ is a good simulator for P̂ ; V 0̂. Therefore the Sequential CompositionTheorem holds also in this case. More generally, the Sequential Composition Theorem holdsfor non-constant k whenever in each of the k stages one of a �nite set of protocol is run.Remark 3.10: An analogous Sequential Composition Theorem can be proved for the blackbox-simulation zero-knowledge de�nition.4. ESSENTIAL PROPERTIES OF ZERO-KNOWLEDGE PROOFS In this sectionwe show that certain properties are essential to zero-knowledge proof systems. We do soby demonstrating the triviality of zero-knowledge proof systems lacking these properties.By a class of interactive proof systems we mean, for example, all proof systems in whichthe veri�er is deterministic, all proof systems in which only one message is sent, and so on.Let us �rst discuss the meaning of triviality in this context. The complexity class BPPencompasses our notion of e�cient computation. Recall that a language L is in BPP ifthere exists a probabilistic polynomial time machine M such that for every constant c0 andlarge enough x,if x 2 L Prob (M(x) = ACC) � 1� jxj�c (Completeness condition)if x =2 L Prob (M(x) = REJ) � 1� jxj�c (Soundness condition)Since V can recognize by itself any language in BPP , it follows that any language in BPPhas a trivial zero-knowledge proof system: one in which the veri�er checks by itself if x 2 Lor not. Accordingly, we consider any class of zero-knowledge interactive proofs trivial ifproof systems of this class can be zero-knowledge only for languages in BPP .4.1 General Framework of Triviality Proofs Basicly, our proof method will be the fol-lowing: to prove the triviality of some class C, we will assume that some language L has azero-knowledge proof system of class C. By the de�nition of zero-knowledge there exists asimulatorMV which generates history descriptions of the interaction of V with the prover P(in some cases we will consider the simulator with respect to some cheating veri�er V �, thatis MV �). We will build a BPP machine for L, that uses MV (MV �). Let H = [x; r;m] be ahistory description (H = [x; y; r;m] in the case of auxiliary-input), where x is the common



input, (y is the auxiliary input), r is the random input and m is the sequence of messagessent in the protocol. The stringm is of the form (�0; �1; � � �; �k) where the �'s are the provermessages and the �'s are the veri�er messages (m will be of the form (�1; �1; � � �; �k) if inthe protocol V "speaks" �rst). We will denote by V �(x; r; �0; � � �; �i�1) the deterministicpolynomial-time computation that a veri�er V � uses to determine �i (in the case of auxiliaryinput �i = V �(x; y; r; �0; � � �; �i�1)). Similarly, P (x; �1; � � �; �i) will denote the probabilisticcomputation used by P to determine �i. The computation used by the honest veri�er, V ,to determine whether to accept or to reject will be denoted �(x; r; �1; � � �; �k).De�nition: A history description (or "conversation") H = [x; r;m] (H = [x; y; r;m] in thecase of auxiliary-input), is legal with respect to a veri�er V � if the messages contained in msatisfy the following requirement:8i1 � i � k�i = V �(x; r; �0; � � �; �i�1)(In the case of auxiliary-input: �i = V �(x; y; r; �0; � � �; �i�1) ). For convenience, we will simplysay "H is legal" when the identity of V � is clear from the context. H is accepting if it islegal with respect to V and if �(x; r; �0; :::; �k) = ACCAccepting conversations are only de�ned with respect to V . Recall that the texts producedby MV on input x 2 L must be polynomially indistinguishable from the texts of realinteraction between V and P . Therefore, and since a real conversation between P and Von x 2 L will be with very high probability legal and accepting, it follows that MV mustalso produce legal and accepting conversations with very high probability for x 2 L, and doso within polynomial time. Otherwise a distinguisher which simply outputs 1 if the givenconversation is accepting will clearly distinguish between real interactions and simulationtexts. The de�nition(s) of zero-knowledge require nothing of MV in the case x =2 L. Theresult of running MV on x =2 L may be one of the following:1) MV may run for too long.2) MV may produce a non-accepting (though perhaps legal) conversation.3) MV may produce an accepting conversation.The third case is indeed possible: in all protocols demonstrated to be zero-knowledge (e.g.[GMR1, GMW1]) the simulator presented in the proof generates accepting conversationsregardless of whether x is in the language or not. In fact, if this case were not possible, thenfor any language which has a zero-knowledge proof system we could easily build a BPP ma-chine: the machine would runMV on x and accept if and only if MV produces an acceptingconversation. We conclude that a BPP machine which runsMV can "safely" reject if either



case 1 or case 2 occurs, because they are guaranteed to occur with negligible probabilityfor x 2 L. The hard case to handle is the third case. In the proofs throughout this sectionwe will for each instance use the special structure of the speci�c class of interactive proofsunder consideration to handle this case. While using MV (MV �) in the proofs that followwe will usually claim that some property, existing in the texts of real interaction on x 2 L,must also exist with very high probability in the texts produced by the simulator on inputx 2 L (For example, a property such as "the text constitutes an accepting conversation").If the protocol is perfect or almost-perfect zero-knowledge, this claim follows immediately.However, if the two probability distributions are "only" polynomially-indistinguishable (fol-lowing [AH1], we will refer to this case as computational zero-knowledge), the proof maybecome more involved. In each case we will �rst present a proof for perfect zero-knowledge,and then adapt it to computational zero-knowledge. Each formal proof will be preceded byan intuitive discussion of the main ideas underlying it.Remark 4.1: In the proofs that follow the BPP machines built are actually shown tosatisfy the requirements of BPP for all but perhaps a �nite set of x's. Clearly any suchmachine can be transformed into a "true" BPP machine.4.2 Zero-Knowledge Proofs Which Never Err and Zero-Knowledge Proofs withDeterministic Veri�ers M. Blum proposed the concept of "Las Vegas" interactive proofs.Informally, these are interactive proof systems that never err, that is never cause V to acceptwhen x =2 L. In [GMS] these protocols are referred to as "interactive proofs with perfectsoundness". In this section we show that no protocol of this type can be zero-knowledge,even with respect to the [GMR1] de�nition. A formal de�nition of "Las-Vegas InteractiveProofs" can be obtained from the de�nition of general interactive proofs simply by replacingthe soundness condition with: "whenever x =2 L, and for every program P � run by theprover, either V rejects or the protocol does not terminate".Theorem 4.1: Let L be a language for which there exists a zero-knowledge Las Vegas interactiveproof system. Then L 2 RP .Proof: The idea is to show that in this case accepting conversations simply do not exist forx =2 L, while (as always) for x 2 L the simulator MV will produce accepting conversationswith very high probability. Let us �rst recall the de�nition of Random Polynomial Time: Alanguage L is in RP if there exists a probabilistic polynomial time algorithm M such thaton input x 2 L machine M accepts with probability > 1/2 (completeness)on input x =2 L machine M always rejects (soundness)Construction of the RP machine:



Since L has a Las Vegas zero-knowledge proof system, there exists a probabilistic polynomialtime machine MV that simulates the membership proofs of P and V . Let Q(jxj) denote anupper bound for the running time of MV on input x 2 L (where Q is some polynomial).The Random Polynomial Time machine we build, M , will use MV . On input x, machineM runs MV on x, maintaining a step count. If MV runs more than Q(jxj) steps, or doesnot produce an accepting conversation, M rejects. Otherwise (if the conversation producedby MV is accepting) M accepts.Soundness of M :Claim 4.1.1: On input x =2 L, machineMV cannot possibly generate an accepting conversation.Proof: Assume it could, that is there exists a random string r and a set of prover messagessuch that V running with random string r and receiving the appropriate messages acceptson x. Then the conversation could occur in a real interaction with non-zero probability,violating the conditions of Las Vegas protocols. 2 Note that this claim follows only fromthe fact that accepting conversations cannot exist for x =2 L, and not from the fact that theconversation was generated by MV . Therefore it is valid regardless of the "quality" of thetexts produced by MV . It is clear that M will never accept on x =2 L, and therefore thesoundness condition is established.Completeness of M : The completeness property of interactive proofs requires that conver-sations on x 2 L be accepting with very high probability. The same is clearly true of theconversations produced by MV in the case of perfect zero-knowledge. Adapting the argu-ment to computational zero-knowledge is simple in this case: note that �, the predicateused by V to decide whether to accept or reject, must be computable in polynomial time.Consequently, if MV does not produce accepting conversations on x 2 L with very highprobability, then � will distinguish the texts of the simulator from those of real interaction.2We conclude that the error probability on x =2 L instances, existing in all known zero-knowledge proofs, is inevitable and essential to the non-triviality of these proof systems.Another essential property of non-trivial zero-knowledge proofs is the randomness of theveri�er. We prove this by demonstrating that any language which has a zero-knowledgeinteractive proof in which the veri�er is deterministic, has a zero-knowledge Las Vegasinteractive proof.Lemma 4.1.1: Let P; V be a (zero-knowledge) interactive proof system for a language L, inwhich the veri�er is deterministic. Then L has a (zero-knowledge) Las Vegas interactiveproof.Proof: We will show that if P; V is not itself Las Vegas, then either it can be slightly modi�edto become Las Vegas, or it cannot constitute an interactive proof system for L. Suppose



the protocol is not Las Vegas. Then there exists a prover P � and a set of x =2 L such thatV , when interacting with P � on such an x accepts with non-zero probability. If this setis �nite, then the protocol can be modi�ed in the following way to become Las Vegas: oninput x, the veri�er �rst checks if x belongs to the "problematic" set, and if it does, Vrejects immediately. Otherwise the original protocol is carried out. Clearly the modi�edprotocol is Las Vegas. If the original protocol was zero-knowledge, so will be the modi�edprotocol, since with respect to x 2 L both protocols are the same (recall that the de�nitionsof zero-knowledge require nothing if x =2 L). We will now show that the "problematic" setmust be �nite: assume it is not, and there exists an in�nite sequence Seq of x 2 L suchthat V , when interacting with P � on x 2 Seq accepts with non-zero probability. Since V isdeterministic, it follows that for every x 2 Seq there exists a sequence of prover messagesthat cause V to accept (that is V will accept with probability 1 when receiving this sequenceof messages). Clearly there exists some P̂ that for every x 2 Seq can �nd this sequenceand always cause V to accept. One such P̂ is a machine that given x simply tries out everypossible set of messages to see on which of them, if any, V accepts. P̂ can check this easily asthe computation of V is completely determined by x and by the prover messages, and doesnot depend on some hidden random string. Therefore the protocol cannot be an interactiveproof system for L. 2 The following theorem is an immediate corollary of Theorem 4.1 andLemma 4.1.1:Theorem 4.2: Let L be any language and assume that L has a zero-knowledge interactive proof inwhich the veri�er is deterministic. Then L 2 RP .4.3 One-Step Zero-Knowledge Proofs One-step interactive proof systems do exist andcontain NP proof systems as a special case. However, NP -like proof systems give out alarge amount of knowledge much of which is not essential for the proof. It was pointed out in[GMW1] that a one-step protocol cannot be zero- knowledge if it constitutes an interactiveproof system for a language not in BPP . Here we present a formal proof of this statement.The proof holds even under the original [GMR1] de�nition of zero-knowledge.Theorem 4.3: Let L be a language for which there exists a one-step zero-knowledge interactive proofsystem. Then L 2 BPP .Proof: As before, we will be using MV , the simulator for the honest veri�er V . The ideais to simulate the process of the interactive proof by ensuring that the message � generatedby the simulator "on behalf" of the prover is not based on prior knowledge of the veri�er'srandom string. V 's decision on whether to accept or reject is obtained by evaluating adeterministic polynomial time predicate �(x; �; r), where x is the (common) input to P; V ,



� is the prover's message to V and r is V 's random string. If x 2 L then there exists some� such that for most r's the predicate must evaluate to ACC. In cases where x =2 L, forevery � there may be a only few random strings r that cause � to evaluate to ACC, but thesimulator may be such that on x =2 L it always generates conversations in which � evaluatesto ACC, using these few existing strings. (Recall that the de�nition of zero-knowledgerequires nothing of the simulator in case x =2 L, and therefore this kind of behavior ispossible). For that purpose we substitute the random string r produced by the simulatorwith a truly randomly chosen r0. In this way we simulate not the text but the process ofthe interactive proof, retaining its desired soundness property.Construction of the BPP machine:Following is a description of M , the BPP machine for L:On input x, machine M runs MV on x, maintaining a step count. If MV runs too longor does not produce an accepting conversation, M rejects. Otherwise, if [x; r; �] is anaccepting conversation, where r is V 's random string and � is the prover's message, Mdiscards r, chooses a new, random string r0, and outputs �(x; r0; �).Soundness of M : We claim that if x =2 L and r0 is randomly chosen, then �(x; r0; �) willalmost certainly evaluate to REJ , regardless of the value of �. Otherwise, if it evaluates toACC with non-negligible probability for an in�nite number of x =2 L, then the soundnesscondition of interactive proofs is violated.Completeness of M : In the case of perfect zero-knowledge, the completeness of M followsdirectly from the completeness condition of interactive proofs. If x 2 L then the prover isguaranteed to produce (with high probability) an � that will cause V to accept for nearlyall random strings r. The �'s produced by the simulator will have the same property. Thefollowing lemma will adapt the proof to computational zero-knowledge.Let lr(n) be the length of the random string used by V when interacting on input of lengthn.Lemma 4.3.1: Let fP (x); V (x)gx and fMV (x)gx be polynomially indistinguishable and let�(x) be the string output by MV as the "prover message" when running on input x. Thenfor all but perhaps a �nite set of x 2 L with very high probability �(x; r; �) = ACC whenx 2 L, if r 2R f0; 1glr(jxj).Proof: In a manner similar to the proof of Theorem 4, we will use � to distinguish the text ofsimulation from those of real interaction. More formally: Assume there exists a constant c0and an in�nite sequence Seq of x 2 L for which the � produced by running MV (x), causes�(x; r; �) to evaluate to REJ with c-non-negligible probability, where r 2R f0; 1glr(jxj).Consider the following distinguisher, A: on input H = [x; r; �], the algorithm chooses r0 2Rf0; 1glr(jxj) and computes �(x; r0; �). It then outputs 1 if the result is ACC and 0 otherwise.



If H is a description of a real conversation, then it follows from the completeness propertyof interactive proofs that A will output 1 with very high probability. We assumed that if His a simulation text then A will output 0 with c-non-negligible probability. Therefore A willc-distinguish between fP (x); V (x)gx and fMV (x)gx, and the two distribution ensemblescannot be polynomially indistinguishable. 2 The Theorem follows. 24.4 Two-Step Auxiliary-Input Zero-Knowledge ProofsWe proceed to show that no two-step protocol can be auxiliary-input zero-knowledge ina non-trivial manner. Note that while one-step protocols cannot be (non-trivially) zero-knowledge even with respect to the prespeci�ed veri�er V , two-step protocols may be zero-knowledge (in a non-trivial manner) with respect to the prespeci�ed veri�er. In fact, suchprotocols (i.e., which are zero-knowledge with respect to V ) are known for languages believednot to be in BPP (e.g., Quadratic Non-Residuosity [GMR1] and Graph Non-Isomorphism[GMW1]). Consequently, in order to prove our result we will have to make use of the fullpower of the de�nition of zero-knowledge, speci�cally the requirement that for all V �'s thereexists a simulator MV � . To prove an adapting lemma for this case we will need to assumea stronger de�nition of polynomial-indistinguishability, one in which the distinguishers arenon-uniform (polynomial time machines). Let us present this de�nition:De�nition (non-uniform polynomial indistinguishability): For every algorithm A which hasan auxiliary input tape, let pD(x;y)A(z) denote the probability that A outputs 1 on input anelement chosen according to the probability distribution D(x; y) while having the string z asits auxiliary input. Denote by Dom the domain from which the pairs x; y are chosen. Thedistribution ensembles fD(x; y)gx;y2Dom and fD0(x; y)gx;y2Dom are non-uniformly polyno-mially indistinguishable if for every probabilistic algorithm (with auxiliary-input) A whichruns in time polynomial in the length of its input, and for every constant c0, there existsN0 such that for every x, jxj > N0, for every y such that (x; y) 2 Dom, and every z,jpD(x;y)A(z) � pD0(x;y)A(z) j � jxj�c:We will refer to the de�nition of computational auxiliary-input zero-knowledge obtained whenusing the above de�nition of polynomial-indistinguishability as "non-uniform computationalauxiliary-input zero-knowledge".Remark 4.2: If we apply this de�nition of polynomial indistinguishability to blackbox-simulation zero-knowledge, the relationship demonstrated in section 3 still holds. Also,the proof of the Composition Theorem for the auxiliary-input de�nition (presented in sec-tion 3) can be carried out almost unaltered when using the above de�nition of polynomialindistinguishability.



We begin by an informal discussion: Two-step protocols can in general be viewed as onesin which the veri�er generates questions which the prover can answer with non-negligibleprobability if and only if x 2 L. When V follows the protocol, it "knows" the answer toits questions (and will therefore gain no knowledge from the answers), but this is no longerguaranteed for arbitrary V �'s. The proof presented in this sub-section makes use of thisobservation to demonstrate the triviality of 2-step auxiliary-input protocols. It seems thatthe same reasoning should apply to the original [GMR1] de�nition. However, in view of theresult of [AH2] discussed in the introduction (relativized 2-step [GMR1] zero-knowledge isnot contained in relativized BPP ), it is clear that the argument presented in this subsectionwill not extend to the [GMR1] de�nition, as it relativizes. In spite of that, it can be shown[O1] that the 2-step protocols mentioned above (for Quadratic Non-Residuosity and GraphNon-Isomorphism) cannot be [GMR1]-zero-knowledge unless these languages are in BPP .Both known two-step protocols mentioned above were modi�ed by letting the veri�er �rst"prove" to the prover that it "knows" the answers to its queries, resulting in protocolswith more rounds which are zero-knowledge (with respect to any veri�er)[GMR1, GMW1].Returning to auxiliary-input zero-knowledge, we intend to prove:Theorem 4.4: Let L be a language for which there exists a two-step perfect or non-uniformly com-putational auxiliary input zero-knowledge proof system. Then L 2 BPP .Proof: Let P; V be the 2-step proof system for L. Without loss of generality, we candescribe P; V in the following way:computes � = V(x,r)where r is V 's random stringV ! P : �computes � = P(x,�)P ! V : �computes �(x; r; �) 2 fACC;REJg and stops.The construction of the BPP machine in this case will run along the same general lines asin the one-step case, i.e. M will simulate the process of the interactive proof rather thanmerely its text. In a real interaction P must answer the "question" � without having accessto the random string r used to compute �. The prover's ability to provide, under theseconditions, an answer � for which �(x; r; �) = ACC is considered su�cient evidence that



x 2 L. The completeness property of interactive proofs guarantees that the prover willbe able to come up with such an � for almost any � = V (x; r), if x 2 L. The soundnesscondition of interactive proofs ensures that no prover could generate from � = V (x; r) an �such that �(x; r; �) = ACC for any but a negligible fraction of the r's. Note that the proveris expected to generate such an � given only � = V (x; r), wheras this � is tested againtsr itself. As in our proof we intend to substitute the simulator for the prover as a meansof generating �, it is essential that the random string r remain hidden from the simulator.Otherwise we could not rely on the soundness of the underlying interactive proof. Askingthe simulator to "answer" our "question" � without giving away out secret r is achievedusing the auxiliary input to the veri�er.Construction of the BPP machine: Consider a veri�er V �, that given a string ��as its auxiliary input sets � = �� (and sends � to P ) instead of choosing a random rand computing � = V(x,r). Provided that the length of �� is polynomial in the lengthof x, a veri�er V � as described above is clearly a polynomial time machine, for which asimulator MV � is guaranteed. Machine MV � , given as input x 2 L and any auxiliary input�� simulates the interaction between P and V �. Using MV � we now build M , the BPPmachine for L. The idea is to generate a message � which is based on a truly random stringr, and then to use MV � to obtain the prover message � corresponding to this �, withoutgiving MV � access to r. The machine M will operate as follows:On input x, machine M performs the following actions:(1) Choose a random string r and compute �� = V(x,r).(2) Run MV �(x; ��). If MV � produces a legal conversation [x; ��; r0; (��; �)] (r0 is therandom string generated by the simulator to emulate V �'s random input in a realinteraction), discard r0 and goto (3). Otherwise reject.(3) Output �(x; r; �).Soundness of M : Note that as far as V (or its simulated version) is concerned, we areexactly imitating the process of the interactive proof: a random string r is chosen anda message � = V (x; r) computed. This message is sent to some other machine, whichreturns a message �. Then �(x; r; �) is used to determine whether to accept or reject.All we have done is substitute the simulator for the prover as a means of generating themessage �. Therefore the soundness of M follows directly from the soundness condition ofInteractive Proofs: if x =2 L and MV � could generate an � for which �(x; r; �) = ACC withnon-negligible probability, then a prover P � using MV � could do the same, violating thesoundness of the underlying interactive proof. It is clear therefore that M will reject anyx =2 L with very high probability.Completeness of M : If x 2 L then P , when interacting with the prespeci�ed V , is



guaranteed to be able to generate an "answer" � such that �(x; r; �) = ACC for almostany random string r. Suppose now that P interacts with V �, and that V � has as auxiliaryinput a string � such that � = V (x; r) for some randomly chosen r. Since r is randomlychosen and � is computed according to the protocol, a prover P has no way of knowingthat it is interacting with a machine other than V , and will therefore behave exactly aswhen interacting with V , that is will attempt to generate an � such that �(x; r; �) = ACC.The simulator in the case of perfect auxiliary-input zero-knowledge generates the samedistribution as P , and will therefore also generate a suitable �. The completeness conditionof interactive proofs can therefore be used here to establish the completeness of M . Thefollowing adapting lemma will show that this is true even for non-uniform computationalzero-knowledge. Let lr(n) be the length of the random string used by V when interactingon input of length n.Lemma 4.4.1: If fP (x); V �(x; y)gx;y and fMV �(x; y)gx;y are non-uniformly polynomiallyindistinguishable then for all but perhaps a �nite set of x 2 L, if �� = V (x; r) for r 2Rf0; 1glr(jxj) and � is obtained from the output ofMV �(x; ��), then with very high probability�(x; r; �) = ACC.Proof: A history descriptionH, originating either from fP (x); V �(x; y)gx;y or from fMV �(x; y)gx;y,will be of the form H = [x; ��; r0; (��; �)], where �� is the auxiliary input to V � (used asthe veri�er's �rst message) and r0 is V �'s random string. Observe that r0 almost certainlyis not the random string r used to compute ��, and is actually ignored by V �. As statedearlier, the � generated by the prover is guaranteed by the completeness condition of In-teractive Proofs to have the following property: � will cause �(x; r; �) to evaluate to ACCwith very high probability, provided that r is the random string used to generate the ��.If this property does not hold for the �'s obtained from the output of MV �(x; ��), then adistinguisher testing for this property should be able to distinguish fP (x); V �(x; y)gx;y fromfMV �(x; y)gx;y. However, given only H, the distinguisher has no idea which random stringr was used to create �� and therefore has no way to perform the required test. We will usethe auxiliary input to the distinguisher, z, as a means to supply the distinguisher with the"true" random string corresponding to the conversation on its main input. Assume thereexists a constant c0 and an in�nite sequence Seq of x 2 L for which the � produced by run-ning MV �(x; ��), where �� = V (x; r) and r 2R f0; 1glr(jxj), causes �(x; r; �) to evaluate toREJ with c-non-negligible probability. Denote by pMacc(x; r) the probability that �(x; r; �)evaluates to ACC where �� = V (x; r) and � is obtained by running MV �(x; ��). SimilarlypPacc(x; r) will denote the probability that �(x; r; �) evaluates to ACC where �� = V (x; r)and � is obtained by running P (x); V �(x; ��). Let pMacc(x) be de�ned bypMacc(x) =Xr 12lr(jxj) � pMacc(x; r)and pPacc(x) by pPacc(x) =Xr 12lr(jxj) � pPacc(x; r)



By our assumption there exists some c0 such that for every x 2 SeqpPacc(x)� pMacc(x) � 1jxjcIt follows that for every x 2 Seq there exists some r such thatpPacc(x; r)� pMacc(x; r) � 1jxjcConsider the following distinguisher A: on input a conversation [x; ��; r0; (��; �)] and aux-iliary input r, A computes �(x; r; �) and outputs 1 if the computation results in ACC.Clearly, for every x 2 Seq there exists some r and �� = V (x; r) such that A (runningwith auxiliary input r) will c-distinguish between MV �(x; ��) and P (x); V �(x; ��). Weconclude that fMV �(x; y)gx;y and fP (x); V �(x; y)gx;y are not non-uniformly polynomiallyindistinguishable. 2The Theorem follows. 24.5 Auxiliary-Input Zero-Knowledge Proof Systems With Deterministic ProversIn this subsection we show that any language which has an auxiliary-input zero-knowledgeproof system in which the prover is deterministic belongs to BPP . The proof generalizesthe proof method (but not the results) of the one-step and two-step cases. As in those cases,we intend to simulate the process of the interactive proof. Our proof relativizes, and thusin view of [AH2] will not extend to [GMR1] zero-knowledge.Theorem 4.5: Let L be any language. If L has an auxiliary-input zero-knowledge proof system inwhich the prover is deterministic, then L 2 BPP .Proof: If P is deterministic, then the following holds: the entire conversation between Pand V is fully determined by x and by r, the veri�er's random string. Furthermore, P 'si-th message �i depends only on x and on �1; � � �; �i. We will exploit this property in ourproof. As in the one-step and two-step cases, we will imitate V 's view of the interactiveproof, using the simulator to generate the prover messages. We will begin by choosing arandom string r, and construct the unique conversation corresponding to r and x round-by-round. At �rst, we will use the simulator to generate �0 (and ignore the rest of the text).Once we have �0, we can compute �1 as V would, using the random string r. We will nowrun the simulator again, this time "forcing" the veri�er to use the computed �1 as its �rstmessage. This is achieved by placing �1 on the veri�er's auxiliary-input. Since the prover isdeterministic (and the simulator must also be "deterministic in some sense" as we shall see)we can be sure that the same �0 will be computed for the new conversation, and therefore



the �1 we computed will be a legal veri�er message in the new conversation (that is, thereexists a string r such that �1 = V (x; r; �0) ). From the new conversation we will obtain�1, and so on. We thus reconstruct the entire conversation, while not revealing r to thesimulator throughout the process. Once we have all the prover messages, we will use � todecide whether to accept or reject. It is easy to see that this method would not work if theprover were not deterministic. Consider for example a three-step protocol: we could �rstrun the simulator to obtain (some) �0. We could then compute a suitable �1 and "force"the veri�er to use it as its message. However, in the new conversation we would probablyhave a completely di�erent �0 (because P is not deterministic and may have more than onepossible �0) and the computed �1 would no longer be a legal message in that conversation.As a result, we could not use the new conversation to obtain a meaningful �1.Construction of the BPP machine: consider a "veri�er" V � in the auxiliary inputmodel, which when having a string [��1 ; ��2 ; :::; ��i ] on its auxiliary input uses ��1 ; ��2 ; :::; ��i asits i �rst messages to the prover, and then computes the rest of its messages in an arbitrarymanner. Since the protocol is auxiliary-input zero-knowledge, there exists a probabilisticpolynomial time machine MV � which simulates the interaction of V � and P . We use MV �to build a BPP machine denoted M for the language L:On input x, machine M proceeds as follows:Choose random r.Run MV �(x) with empty auxiliary input (or simply MV (x), the simulator with respect tothe prespeci�ed veri�er V ) to obtain �0 (discard the rest of the text).For i := 1 to k doCompute �i � V (x; r; �0; :::; �i�1).Run MV � with auxiliary input [�1; �2; :::; �i] to obtain �i (which is our "guess" forP (x; �1; :::; �i) ) . Discard the rest of the text.enddooutput �(x; r; �0; :::; �k)Soundness of M : As was the case for the 1-step and 2-step proofs, in this case we exactlyimitate the process of the interactive proof as far as V is concerned, only substituting thesimulator for the prover as a means of generating �0; � � �; �k. The simulator computes �iat stage i while having no knowledge of the random string used to compute �1; � � �; �i,precisely the conditions under which P must compute �i in a real interaction. It followsthatMV � 's ability to generate, under these conditions, a set of messages �0; � � �; �k for which�(x; r; �0; � � �; �k) evaluates to ACC with non-negligible probability implies the ability ofsome prover P � to do the same in a real interaction. The soundness of M therefore followsfrom the soundness of the underlying interactive proof. Note that the soundness conditiondoes not depend in any way on the "zero-knowledge-ness" of the protocol.



Completeness of M : Consider an interaction on input x. Let �1; � � �; �i be the �rst i veri�ermessages of the unique conversation corresponding to x and to some random string r. Theprover P , when interacting on x with a veri�er that uses �1; � � �; �i as its �rst i messages,will output the messages �0; � � �; �i corresponding to x and r. This is true in particular forthe previously described veri�er V �. Not until it receives the message �i+1 can P (perhaps)realize it is interacting with a cheater V � and not with the well behaved V . Therefore allits messages up to that point will be as speci�ed by the protocol. In the case of perfectzero-knowledge, the texts of MV � will have the same property. In particular, at roundi the message �i obtained from the simulation text will be the unique P (x; �1; � � �; �i)corresponding to x and the random string r chosen. In all, the set �0; � � �; �k of provermessages generated by M will be the unique set corresponding to x and r, and thereforethe completeness of M follows from the completeness of P; V . We now proceed to adaptthe argument to computational zero-knowledge. We need to prove that at round i, themessages �0; � � �; �i generated by MV � on input x and auxiliary input [�1; � � �; �i] are withvery high probability P (x); P (x; �1); � � �; P (x; �1; � � �; �i). We will �rst address the followingquestion:Single Element Question:Let f�x1gx2D be a distribution ensemble having the following property: for every largeenough x the probability distribution �x1 assigns high probability to one element, denoted�x (in our case, the distribution created by the prover is totally deterministic, that isassigns probability 1 to some text �x). Let f�x2gx2D be a distribution ensemble whichis polynomially indistinguishable from f�x1gx2D. Must f�x2gx have essentially the sameproperty (i.e. for every large enough x the distribution �x2 assigns high probability to�x) ?Before attempting to answer this question, let us examine more closely the notion of polyno-mial indistinguishability. In the de�nition of polynomial indistinguishability used through-out the paper, two distribution ensembles f�x1gx and f�x2gx claimed to be polynomiallyindistinguishable, must satisfy the following condition: any polynomial time probabilisticalgorithm, on input a single string sampled from f�x1gx, must behave approximately thesame as when given a string sampled from f�x2gx. Another, possibly stricter, de�nition is thefollowing: any polynomial time algorithm, on input a sequence (of constant or polynomialsize) of strings sampled from f�x1gx must behave approximately the same as when given asequence of strings sampled from f�x2gx. We will refer to the �rst version of the de�nition assingle-sample polynomial indistinguishability, and to the second as multiple-sample polyno-mial indistinguishability. Multiple-sample polynomial indistinguishability bears relevanceto our discussion due to the following fact: when using the multiple-sample de�nition onecan easily prove a positive answer to the Single Element Question posed earlier, providedthat f�x2gx can be sampled in polynomial time. The following two claims will demonstrate



this.Claim 4.5.1: Let f�x1gx assign high probability (say � 3=4) to �x for every large enough xand let f�x1gx and f�x2gx be multiple-sample polynomially indistinguishable. Then f�x2gxmust for every large enough x assign very high probability (say 3=5) to exactly one string,denoted �x0.Proof: Assume to the contrary that no string appears in �x2 with high probability (i.e. higherthan 3=5). Consider the following two-sample distinguisher A: on input two strings, s1 ands2, algorithm A outputs 1 if s1 = s2 and 0 otherwise. I f s1; s2 were sampled from f�x1gxthen s1 = s2 with very high probability (namely, � (3=4)2). On the other hand, if s1; s2were sampled from f�x2gx then s1 = s2 with too low probability (namely, 13=25 9=16).Therefore A will distinguish f�x1gx from f�x2gx. 2 The above claim guarantees that f�x2gxassigns very high probability to a single string. We now show that this string must be �x(single-sample polynomial indistinguishability su�ces to prove the following claim).Claim 4.5.2: Let f�x1gx2D be a distribution ensemble such that 8x 2 D the distribution �x1assigns probability at least 12 + � to one string, denoted �x. Let f�x2gx2D be a distributionensemble such that 8x 2 D the distribution �x2 assigns probability at least 12 + � to onestring, denoted �x0. If f�x1gx and f�x2gx are polynomially indistinguishable and f�x2gx canbe sampled in polynomial time, then for all but �nitely many x 2 D the string �x equalsthe string �x0.Proof: If otherwise, consider the following distinguisher A: on input a string s, algorithmA samples �x2 to obtain, with overwhelmingly high probability, the string �x0 (which byhypothesis is di�erent from �x). (The number of sample points is polynomial in 1=�.) Thealgorithm outputs 1 if s = �x0 and 0 otherwise. If s comes from �x2 , then with probability� 12 + � we have s = �x0. If, on the other hand, s comes from �x1 then with probability� 12 + � we have s = �x and hence (assuming �x0 6= �x) s 6= �x0 (with probability� 12 + �). Therefore A will distinguish f�x1gx from f�x2gx. 2 All that remains in order toanswer the Single Element Question for single-sample polynomial indistinguishability is toshow, if we can, that single-sample polynomial indistinguishability is equivalent to multiple-sample polynomial indistinguishability. But can we? Polynomial indistinguishability wasoriginally discussed in the context of probabilistic encryption [GM] and pseudorandomgenerators [Y]. In these cases the distributions of both the ensembles which are assumedto be polynomially indistinguishable can be sampled in polynomial time. This fact can beused to prove that in these contexts single-sample polynomial indistinguishability (the usualde�nition) and multiple-sample polynomial indistinguishability are equivalent (intuitively,because the distinguisher can generate additional samples by itself):� The same proof cannotbe applied, however, in general and in particular in the context of zero-knowledge, because inthis case one of the distribution ensembles, mainly P; V , is not polynomial time samplable.1 We return to our original question. Since we cannot demonstrate the equivalence single-1� In [GGM] Goldreich, Goldwasser and Micali de�ne multiple-sample polynomial indistinguishabilityand prove its equivalence to single-sample polynomial indistinguishability in the context of pseudorandomgenerators.



sample polynomial indistinguishability to multiple-sample polynomial indistinguishability,we must adopt a di�erent approach. We now demonstrate that even under single-samplepolynomial-indistinguishability, f�x2gx must assign very high probability to �x (the stringassigned high probability by �x1 ). For any distribution � and string s, we denote by �(s)the probability assigned by � to s.Single Element Lemma: Let � � 1=5. Let f�x1gx2D and f�x2gx2D be polynomially indis-tinguishable distribution ensembles such that �x1 and �x2 are probability distributions overstrings of length polynomial in jxj. Assume that for every large enough x there exists somestring, denoted �x, such that �x1 assigns to �x probability � 1 � �. Assume further thatf�x2gx2D is polynomial-time samplable (though f�x1gx2D may not be). Then �x2 (�x)1� 2�,for all but �nitely many x.Proof: Assume there exist an in�nite sequence Seq of x's such that �x2 assigns �x probabilityat most 1� 2�. For any x 2 Seq there must be one or more strings s such that �x2 (s) 0 (�xmay or may not be one of them). These strings can be arranged in lexicographical order.For any two strings s1; s2, we will write s1 s2 to mean that s1 precedes s2 in lexicographicalorder. s1 � s2 will mean s1 s2 or s1 = s2. Let P�x be de�ned byP�x = Xfs j s �xg �x2 (s)and P+x by P+x = Xfs j s��xg�x2 (s)Example: Let �x = 100 and �x2 assign probability 1=5 to each of the following strings:00, 01, 000, 100, 1001. Then P�x = 3=5 and P+x = 4=5. If (�x = 100 and) �x2 assignsprobability 1=4 to each of the strings 00, 01, 000, 1001, then P�x = P+x = 3=4.For any x 2 Seq, we have three possible cases (not necessarily distinct):(1) P+x 0:8(2) P�x 0:2(3) P+x � 0:8 and P�x � 0:2Denote by Si, 1 � i � 3, the subsequence of Seq such that x 2 Si if case i holds for x.Clearly, at least one of the subsequences must be in�nite. We will now show how to handleeach of the corresponding cases.Case (1): Assume S1 is in�nite. Let us �rst prove the following claim:



Claim 4.5.3: Let � be any probability distribution on strings. A k�experiment on � willconsist of sampling k times the distribution �. Denote by si, i � k, the result of the i-thsampling in the k-experiment. Let Pi denote the probability that the sample si is larger orequal to all of the samples (i.e. Pi = Prob(8 jsi � sj)). Then P1 � 1k .Proof: For reasons of symmetry, 8 i; j � kPi = Pj . Since in every k-experiment there mustbe at least one maximal value, it follows that Pki=1 Pi � 1, and therefore 8i � k; Pi � 1k . 2Consider now the following distinguisher, A: on input a string s, the distinguisher A �rstsamples �x2 for k � 1 times (k is a constant to be determined latter). It then outputs 1 if sis greater than or equal to each of the k � 1 sampled strings. Suppose s was sampled from�x2 . We can view the whole process as a k-experiment on �x2 , in which s is the �rst sample.By the above claim, the probability that A outputs 1 in this case is greater than or equalto 1k . On the other hand, if s was sampled from �x1 (in which case s = �x with probability� 1 � �), then (for every x 2 S1) the probability of a single sample being smaller thanor equal to s is less than (1 � �) � 0:8 + �0:9 (the �rst term is for the case s = �x). Theprobability that all k�1 samples will be smaller than or equal to s, is thus less than 0:9k�1.A suitable choice of k (say k = 50) yields 0:9k�1 1=(2k). Clearly, for any x 2 S1, algorithmA will distinguish between �x1 and �x2 , and therefore the distribution ensembles cannot bepolynomially indistinguishable.Case (2): Assume S2 is in�nite. This case is symmetric to the previous case, since if wereverse the lexicographical order we obtain P+x 0:8. It can therefore be handled in the sameway.Case (3): Assume S3 is in�nite. In this case reversing the lexicographical order will stillleave us in the same case. Observe however, that if P+x � 0:8 and P�x � 0:2, it must bethat �x2 (�x) � 0:6. In such a case we can �nd �x with su�cient con�dence by sampling�x2 a polynomial number of times. Consider a distinguisher A which on input a string ssamples �x2 enough times to pick out with very high probability (say 1 � �=3) a string s0for which �x2 (s0) � 0:6, and then outputs 1 if s = s0. We have Prob(s0 = �x) � 1 � �=3.For any x, x 2 S3, if s was sampled from �x1 then Prob�x1 (s = s0) � 1 � � � �=3. Westarted out the proof by assuming that for any x 2 Seq (and therefore for any x 2 S3)�x2 (�x) � 1 � 2� and hence Prob�x2 (s = s0) � 1 � 2� + �=3. Clearly, A will distinguishbetween f�x1gx2D and f�x2gx2D (with gap �=3). The lemma follows. 2The adapting lemma we need to prove is an easy consequence of the Single ElementLemma.Lemma 4.5.1: Let D be the set of all pairs (x; y) for which x 2 L and y = [�1; � � �; �i],such that for some random string r�1 = V (x; r; [�0 = P (x)])�2 = V (x; r; [�0 = P (x); �1 = P (x; �1)]):::



�i = V (x; r; [�0 = P (x); �1 = P (x; �1); � � �; �i�1 = P (x; �1; �2; � � �; �i�1)])If the distribution ensembles fMV �(x; y)g(x;y)2D and fP (x); V �(x; y)g(x;y)2D are polynomi-ally indistinguishable then in the texts produced by MV � on input x and y with very highprobability 8j � i�j = P (x; �1; �2; � � �; �j)Proof: Let �(x;y)1 be the distribution of the �rst i+ 1 prover messages in P 's interaction withV � on input x and auxiliary input y = [�1; ���; �i] (note that this distribution depends solelyon x and y and not on V �'s random string). Let �(x;y)2 be the distribution of the �rst i+ 1"prover messages" produced by MV � on input x and y. Clearly, if fP (x); V �(x; y)g(x;y)2Dand fMV �(x; y)g(x;y)2D are polynomially indistinguishable, then so are f�(x;y)1 g(x;y)2D andf�(x;y)2 g(x;y)2D. The ensemble f�(x;y)2 g(x;y)2D clearly is polynomial-time samplable, and�(x;y)1 assigns one string (namely [P (x); P (x; �1); � � �; P (x; �1 ; � � �; �i)] ) probability 1 for any(x; y) 2 D. We can thus apply the Determinicity Lemma. We conclude that at round i,machineMV � will produce with very high probability the messages P (x); � � �; P (x; �1 ; � � �; �i)corresponding to x and the string r used to compute �1; � � �; �i. 2 The Theorem follows. 2Remark 4.3 The fact that single-sample and multiple sample polynomial indistinguishabilitymay not be equivalent in the context of zero-knowledge raises the following questions, whichdeserve further investigation: can single-sample and multiple-sample polynomial indistin-guishability be proved equivalent or strictly di�erent in the context of zero-knowledge (i.e.when one ensemble is not polynomial-time samplable) ? And if they are di�erent, whichshould be used in a "correct" cryptographic de�nition of zero-knowledge ? Observe thatthe two de�nitions are equivalent if the distinguisher is allowed to have auxiliary input, asin the de�nition of "non-uniform" polynomial indistinguishability presented in the previoussub-section.4.6 A Remark on Extension to Zero-Knowledge ArgumentsThe results of the previous subsections extend to the zero-knowledge arguments introducedin [BCC]. In these protocols it is guaranteed that there exists no e�cient way of foolingthe veri�er to accept false statements. This is a relaxion of the soundness condition ininteractive proofs where it is required that there exists no way of fooling the veri�er (toaccept false statements). In the extensions we use exactly the same constructions of BPPmachines, and the same reasoning for the completeness condition (i.e. that the machineaccepts, with high probability, inputs in the language). For the soundness of the BPPmachine (i.e. showing that it rejects, with high probability, inputs not in the language)



we use a slightly more careful reasoning. Recall that the soundness of the BPP machineis proved by relying on the soundness of the protocol. In fact, in all cases we have shownthat a violation of the soundness of the BPP machine yields violation of the soundnesscondition for interactive proofs. This, in turn, was done by incorporating the \cheatingBPP machine" inside of a \cheating prover". Hence, the \cheating prover" constructed inall cases is indeed e�cient and thus contradicts the soundness condition of zero-knowledgearguments as well.ACKNOWLEDGEMENTS We would like to thank Shimon Even for making useful com-ments on the paper. The concept of Las Vegas interactive proofs was raised by ManuelBlum and communicated through Silvio Micali. The question of triviality of proof systemswith deterministic provers was raised by Shimon Even.



REFERENCES[B] Babai, L., \Trading Group Theory for Randomness", Proc. 17th STOC, 1985, pp.421-429.[BCC] Brassard, G., D. Chaum, and C. Crepeau, \MinimumDisclosure Proofs of knowledge",JCSS, Vol. 37, No. 2, Oct. 1988, pp. 156-189.[F] Fortnow, L., \The Complexity of Perfect Zero-Knowledge", Proc. of 19th STOC,1987, pp. 204-209.[FS] Feige, U., and A. Shamir, personal communication.[GGM] Goldreich, O., S. Goldwasser, and S. Micali, \How to Construct Random Functions",Jour. of ACM, Vol. 33, No. 4, 1986, pp. 792-807.[GK] Goldreich, O., and H. Krawczyk, \On the Composition of Zero-Knowledge ProofSystems", to appear in the proceedings of 17th ICALP, 1990.[GMS] Goldreich, O., Y. Mansour, and M. Sipser, \Interactive Proof Systems: Provers thatNever Fail and Random Selection", Proc 28th FOCS, 1987.[GMW1] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing But theirValidity and a Methodology of Cryptographic Protocol Design", Proc. 27th FOCS,1986, pp. 174-187.[GMW2] Goldreich, O., S. Micali, and A. Wigderson, \How to Play Any Mental Game or ACompleteness Theorem for Protocols with Honest Majority", Proc. of 19th STOC,1987, pp. 218-229.[GMR1] Goldwasser, S., S. Micali, and C. Racko�, \Knowledge Complexity of InteractiveProofs", Proc. 17th STOC, 1985, pp. 291-304.[GMR2] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of InteractiveProof Systems", SIAM J. on Comput., Vol. 18, No. 1, 1989, pp. 186-208.[GM] Goldwasser, S., and S. Micali, \Probabilistic Encryption", JCSS, Vol. 28, No. 2,1984, pp. 270-299.[GS] Goldwasser, S., and M. Sipser, \Arthur Merlin Games versus Interactive Proof Sys-tems", Proc. 18th STOC, 1986, pp. 59-68.[O1] Oren,Y., \Properties of Zero-Knowledge Proofs", M.Sc. Thesis, Computer ScienceDept., Technion, Israel, Nov. 1987 (in Hebrew).



[O2] Oren, Y., \On the Cunning Power of Cheating Veri�ers: Some Observations AboutZero-Knowledge Proofs", Proc. 28th FOCS, 1987, pp. 462-471.[TW] Tompa, M., and H. Woll, \Random Self-Reducibility and Zero-Knowledge InteractiveProofs of Possession of Information", Proc. 28th FOCS, 1987, pp. 472-482.[Y] Yao, A.C., \Theory and Applications of Trapdoor Functions", Proc. 23rd FOCS,1982, pp. 80-91.[AH1] Aiello, W., and J. Hastad, \Perfect Zero-Knowledge Languages Can Be Recognizedin Two Rounds", 28th FOCS, 1987, pp. 439-448.[AH2] Aiello, W., and J. Hastad, \Relativized Perfect Zero-Knowledge is not BPP", Infor-mation and Computation, Vol. 93, 1992, pp. 223-240.[IY] Impagliazzo, R. and Yung, M., \Direct Minimum-Knowledge Computations", Ad-vances in Cryptology { Crypto87 (proceedings), Lecture Notes in Computer Science,Vol. 293, Springer-Verlag, New-York, 1987, pp. 40-51.[S] A. Shamir, IP=PSPACE, 31st FOCS, 1990, pp. 11-15.


