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Complexity theory is concerned with the study of the intrinsic di�culty of computationaltasks. It is a central �eld of theoretical computer science. The 15th Oberwolfach Conferenceon Complexity Theory was organized by Joachim von zur Gathen (Paderborn), OdedGoldreich (Rehovot), and Claus Peter Schnorr (Frankfurt).The meeting consisted of �ve general sessions, and in addition special sessions on thefollowing topics:� Algebraic Complexity� Cryptography� Lattices� Pseudorandomness� Proof Complexity� Extractors/Derandomization� List-DecodingThe organizers and participants thank the 'Mathematisches Forschungsinstitut Oberwol-fach' for making this conference possible.The abstracts below are listed in alphabetical order.
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AbstractsPrimes in Pwork by: Agrawal, Kayal and Saxenapresented by: Adi AkaviaThe famous problem "Is PRIMES in P?" was solved in August 2002 by Agrawal, Kayaland Saxena, who devised a polynomial time algorithm for determining whether an integeris prime or composite. In this talk, their algorithm is presented and analyzed.Proving Hard-Core Predicates Using List DecodingAdi Akavia(joint work with Sha� Goldwasser and Muli Safra)We introduce a unifying framework for proving that predicate P is hard-core for a one-wayfunction f , and apply it to a broad family of functions and predicates, reproving old resultsin an entirely di�erent way as well as showing new hard-core predicates for well knownone-way function candidates.Our framework extends the list-decoding method of Goldreich and Levin for showinghard-core predicates. Namely, a predicate will correspond to some error correcting code,predicting a predicate will correspond to access to a corrupted codeword, and the taskof inverting one-way functions will correspond to the task of list decoding a corruptedcodeword.A characteristic of the error correcting codes which emerge and are addressed by ourframework, is that codewords can be approximated by a small number of heavy coe�cientsin their Fourier representation. Moreover, as long as corrupted words are close enough tolegal codewords, they will share a heavy Fourier coe�cient. We list decode such codes, bydevising a learning algorithm applied to corrupted codewords for learning heavy Fouriercoe�cients.For codes de�ned over f0; 1gn domain, a learning algorithm by Kushilevitz and Mansouralready exists. For codes de�ned over ZN , which are the codes which emerge for predicatesbased on number theoretic one-way functions such as the RSA and Exponentiation moduloprimes, we develop a new learning algorithm. This latter algorithm may be of independentinterest outside the realm of hard-core predicates.Proving Integrality Gaps Without Knowing the Linear ProgramSanjeev AroraDuring the past decade we have had much success in proving (using probabilistically check-able proofs or PCPs) that computing approximate solutions to NP-hard optimization prob-lems such as CLIQUE, COLORING, SET-COVER etc. is no easier than computing opti-mal solutions.After the above notable successes, this e�ort is now stuck for many other problems, suchas METRIC TSP, VERTEX COVER, GRAPH EXPANSION, etc.In a recent paper with B�ela Bollob�as and L�aszl�o Lov�asz we argue that NP-hardness ofapproximation may be too ambitious a goal in these cases, since NP-hardness implies alowerbound |assuming P 6= NP| on all polynomial time algorithms. A less ambitious goalmight be to prove a lowerbound on restricted families of algorithms. Linear and semide�nite2



programs constitute a natural family, since they are used to design most approximationalgorithms in practice. A lowerbound result for a large subfamily of linear programs maythen be viewed as a lowerbound for a restricted computational model, analogous say tolowerbounds for monotone circuitsThe above paper showed that three fairly general families of linear relaxations for vertexcover cannot be used to design a 2-approximation for Vertex Cover. Our methods seemrelevant to other problems as well.This talk surveys this work, as well as other open problems in the �eld. The mostinteresting families of relaxations involve those obtained by the so-called lift and projectmethods of Lov�asz-Schrijver and Sherali-Adams.Proving lowerbounds for such linear relaxations involve elements of combinatorics (i.e.,strong forms of classical Erd}os theorems), proof complexity, and the theory of convex sets.References[1] S. Arora, B. Bollob�as, and L. Lov�asz. Proving integrality gaps without knowing the linear program.Proc. IEEE FOCS 2002.[2] S. Arora and C. Lund. Hardness of approximations. In [3].[3] D. Hochbaum, ed. Approximation Algorithms for NP-hard problems. PWS Publishing, Boston, 1996.[4] L. Lov�asz and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. SIAM Journalon Optimization, 1:166{190, 1990.[5] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hullrepresentations for zeroone programming problems. SIAM J. Optimization, 3:411{430, 1990.
How to Go Beyond the Black-Box Simulation BarrierBoaz BarakThe simulation paradigm is central to cryptography. A simulator is an algorithm that triesto simulate the interaction of a (possibly cheating) party with an honest party, withoutknowing the private input of this honest party. Almost all known simulators use thestrategy of the possibly cheating party as a black-box. We present the �rst constructionsof non-black-box simulators. Using these new non-black-box techniques we obtain severalresults that were previously proven to be impossible to obtain using black-box simulators.Speci�cally, assuming the existence of collision resistent hash functions, we construct anew zero-knowledge argument system for NP that satis�es the following properties:1. This system has a constant number of rounds with negligible soundness error.2. It remains zero knowledge even when composed concurrently n times, where n is thesecurity parameter.Simultaneously obtaining 1 and 2 has been proven to be impossible to achieve usingblack-box simulators.3. It is an Arthur-Merlin (public coins) protocol.Simultaneously obtaining 1 and 3 has also been proven to be impossible to achieve witha black-box simulator.4. It has a simulator that runs in strict polynomial time, rather than in expectedpolynomial time.This is the �rst protocol to simultaneously obtain 1 and 4. Following this work it wasshown that obtaining 1 and 4 is also impossible to achieve with a black-box simulator.3



Derandomization in CryptographyBoaz Barak(joint work with Shien Jin Ong and Salil Vadhan)We give two applications of Nisan{Wigderson-type (\non-cryptographic") pseudorandomgenerators in cryptography. Speci�cally, assuming the existence of an appropriate NW-typegenerator, we construct:1. A one-message witness-indistinguishable proof system for every language in NP, basedon any trapdoor permutation. This proof system does not assume a shared random stringor any setup assumption, so it is actually an \NP proof system."2. A noninteractive bit commitment scheme based on any one-way function.The speci�c NW-type generator we need is a hitting set generator fooling nondetermin-istic circuits. It is known how to construct such a generator if ETIME = DTIME(2O(n))has a function of nondeterministic circuit complexity 2
(n) (Miltersen and Vinodchandran,FOCS `99).Our witness-indistinguishable proofs are obtained by using the NW-type generator toderandomize the ZAPs of Dwork and Naor (FOCS `00). To our knowledge, this is the �rstconstruction of an NP proof system achieving a secrecy property.Our commitment scheme is obtained by derandomizing the interactive commitmentscheme of Naor (J. Cryptology, 1991). Previous constructions of noninteractive commit-ment schemes were only known under incomparable assumptions.Formula Caching Proof SystemsPaul Beame(joint work with Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind)A fruitful connection between algorithm design and proof complexity is the formalizationof the DPLL approach to satis�ability testing in terms of tree-like resolution proofs. Weconsider extensions of the DPLL approach that add some version of memorization, re-membering formulas the algorithm has previously shown unsatis�able. Various versionsof such formula caching algorithms have been suggested for satis�ability and stochasticsatis�ability. We formalize this method, and characterize the strength of various versionsin terms of proof systems. These proof systems seem to be both new and simple, and havea rich structure. We compare their strength to several studied proof systems: tree-likeresolution, regular resolution, general resolution, and Res(k). We give both simulationsand separations. Algebras of Minimal Rank over Arbitrary FieldMarkus Bl�aserLet R(A) denote the rank (also called bilinear complexity) of a �nite dimensional associa-tive algebra A. A fundamental lower bound for R(A) is the so-called Alder{Strassen boundR(A) � 2 dimA � t, where t is the number of maximal twosided ideals of A. The classof algebras for which the Alder{Strassen bound is sharp, the so-called algebras of minimalrank, has received a wide attention in algebraic complexity theory. As the main contribu-tion of this work, we characterize all algebras of minimal rank over arbitrary �elds. This4



�nally solves an open problem in algebraic complexity theory. An algebra is of minimalrank, if and only if A �= C1 � � � � � Cs � k2�2 � � � � � k2�2| {z }u times �Bwhere C1; : : : ; Cs are local algebras of minimal rank with dim(C�= radC�) � 2 (as charac-terized by B�uchi and Clausen), that is, C� �= k[X]=(p�(X)d�) for some irreducible polyno-mial p� with deg p� � 2, d� � 1, and #k � 2 dimC� � 2, and B ful�ls B= radB = kq andis minimal rank, that is, there exist w1; : : : ; wm 2 radB with wiwj = 0 for i 6= j such thatradB = LB +Bw1B + � � �+BwmB = RB +Bw1B + � � �+BwmBand #k � 2N(B) � 2. Any of the integers s, u, or m may be zero and the factor B isoptional. Above, LB and RB denote the left and right annihilator of radB and N(B) =maxfs j (radB)s 6= f0gg.Optimal Lower Bound for Polynomial MultiplicationPeter Buergisser(joint work with Martin Lotz)We prove lower bounds of order n logn for both the problem to multiply polynomials ofdegree n, and to divide polynomials with remainder, in the model of bounded coe�cientarithmetic circuits over the complex numbers. These lower bounds are optimal up to orderof magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposedfor matrix multiplication. It reduces the linear problem to multiply a random circulantmatrix with a vector to the bilinear problem of cyclic convolution. We treat the arisinglinear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] ina unitarily invariant way. This establishes a new lower bound on the bounded coe�cientcomplexity of linear forms in terms of the singular values of the corresponding matrix. Inaddition, we extend these lower bounds for linear and bilinear maps to a model of circuitsthat allows a restricted number of unbounded scalar multiplications.Counting Classes and Computational Complexity of Algebraic andTopological InvariantsPeter Buergisser(joint work with Felipe Cucker)We de�ne counting classes #PR and #PC in the BSS-setting of computations over the realand complex numbers, respectively. The problems of counting the number of solutionsof semialgebraic and complex algebraic sets, respectively, are natural complete problemsin these classes. It turns out that these classes capture the complexity of computingsome basic invariants in algebraic topology (over R) and algebraic geometry (over C).In fact, the computation of the Euler characteristic of (certain) real algebraic varietiesis FP#PRR -complete, while the computation of the geometric degree of complex algebraicsets is FP#PCC -complete. We also de�ne new counting complexity classes in the discrete(classical) model via taking Boolean parts of the classes above, and show that the discreteversions of the Euler characteristic and geometric degree problem are complete in theseclasses. 5



Arthur and Merlin Take a WalkAnne Condon(joint work with Michael Saks and Joseph Wong)Arthur-Merlin games model situations in which Merlin must devise a strategy to winagainst Arthur, who merely 
ips a coin to determine his moves. In this talk, we considerthe following very simple example of such a game. Merlin is placed at the left end of a�nite set of points on a line, and will perform a random walk on the points. A �nite set Uof probabilities is given. Before starting, Merlin can choose, for each point r, a probabilityp(r) from the set U . The mapping p from the set of points on the line to U is calledMerlin's strategy; if there are k points, then Merlin has jU jk possible strategies. Once thestrategy is �xed, the walk proceeds as follows. When Merlin is on point r, Arthur 
ips acoin which produces heads with probability p(r). Then Merlin moves left if the outcomeis heads and moves right otherwise.Let's suppose that Merlin's goal is to fall o� the left end of the line before falling o�the right end. Typically, one is interested in knowing what strategy Merlin would use tomaximize his probability of success. If, for example, U = 1=3; 3=4, the answer is easilyfound: obviously Merlin would choose to move left from every point with probability 3=4,and a gambler's ruin analysis would reveal the probability of success.The question we ask is di�erent. We consider the set SU(n) of Merlin's success proba-bilities, taken over all possible strategies on a line with n points. We ask: does SU(n) tendto a limit (suitably de�ned for sets) as n goes to in�nity?In the talk we describe the answer to this question, motivate why we are interested inthis problem, and introduce several related open problems.Relativized Propositional CalculusStephen CookMotivation: Complexity lower bounds and independence results are easier in a relativizedsetting. It seems reasonable to de�ne a relativized setting for the propositional calculus inorder to prove lower bounds.We extend the syntax of ordinary propositional calculus to the language PC(R) byadding a single relation symbol R intended to stand for a unary relation on strings f0; 1g�.We add the formation ruleif A1; :::; An are formulas, n � 0, then R(A1; :::; An) is a formulaAn interpretation � assigns 0 or 1 (false or true) to each atom, and assigns the set R� �f0; 1g� to R. Then R(A1; :::; An)� = 1() A�1 :::A�n 2 R�This syntax and semantics is essentially the same as that de�ned by Ben-David andGringauze in [1].We say that A is valid i� A� = 1 for all structures � , and A is satis�able i� A� = 1 forsome structure � .Theorem 1: The satis�ability problem for PC(R)formulas is in NP (and hence NP-complete).The proof system PK(R) is Gentzen's sequent system PK, except formulas are allowedto be PC(R)formulas, and in addition to the axiom scheme A! A, and the axioms ! 1and 0!, we add the axiom schemeAX : :A _ B;A _ :B;R( ~C;A; ~D)! R( ~C;B; ~D)6



which asserts that if A and B are equivalent, then one can be substituted for the otheras an argument of R.Theorem 2: PK(R) is sound and complete. Further every valid sequent S has aPK(R) proof � with O(2jSj) sequents, where each sequent in � has length O(jSj), wherejSj is the total number of symbols in S.Remark: In counting the number of sequents in a proof, we do not count weakeningsand exchanges.Now we extend the language of PC(R) to QPC(R) by allowing quanti�ers 8x and 9x,for an atom x. The semantics are obtained in the obvious way by letting x range overf0; 1g.Theorem 3: The satis�ability problem for QPC(R) is complete for NEXP. The sameis true for the satis�ability problem restricted to �q1(R) formulas.The proof system G(R) is the system G of quanti�ed propositional calculus describedin section 4.6 of Krajicek's book [2], extended so that formulas are allowed to be QPC(R)formulas, and we allow the axiom scheme AX above. In other words, G(R) is obtainedfrom PK(R) by extending the de�nition of formula, and allowing the four quanti�er rulesof LK ([2], page 58).Theorem 4: G(R) is sound and complete.Example: Krajicek ([2], p 223) shows that the weak pigeonhole principle PHP (R)a2ais not provable in the relativized theory S22(R). By adapting the proof, we can ob-tain a stronger, nonuniform version of this result, asserting that the QPC(R) formulashPHP (R)n2n i do not have polynomial size proofs in the tree-like system G�2(R).References1. Shai Ben-David and Anna Gringauze, On the Existence of Optimal PropositionalProof Systems and Oracle-Relativized Propositional Logic. Manuscript, pp 1-12.2. Jan Krajicek, Bounded Arithmetic, Propositional Logic, and Complexity Theory.Cambridge, 1995.
Vertex Cover InapproximabilityIrit Dinur(joint work with Muli Safra)allowing us to reach the hardness factor of 1.36, but not 2-epsilon.Abstract: In this talk we discuss the hardness of approximating the minimum vertexcover, to within factor 1.36. This result builds upon the PCP theorem and speci�callythe BGS-Hastad paradigm of composing a PCP "outer veri�er" with an "inner veri�er"that is the long-code. We introduce a generalization of the long-code called the biasedlong code and present new techniques for analyzing it, relying on analysis of in
uence ofvariables on Boolean functions and on Erdos-Ko-Rado theorems on intersecting families of�nite sets. We discuss a special `uniqueness' property required from any PCP outer veri�erfor successful composition with the biased-long-code in our setting. We present a systemwhich partially possesses this property,In this talk we discuss the hardness of approximating the7



On the Complexity of Real SolvingMarc Giusti(joint work with Bernd Bank, Joos Heintz and Luis Miguel Pardo)Let F1; : : : ; Fp be n{variate polynomials with rational coe�cients and with degree at mostd. Suppose that they are represented by a division{free arithmetic circuit over the ra-tionals of size L and non{scalar depth `. Furthermore, assume that they form a regularsequence of the polynomial ring, that they generate a radical ideal, and that they de�ne anon{empty and smooth real algebraic variety S.Then there exists an arithmetic network N with "=" and "<" decision gates over therationals, which �nds a (suitably encoded) representative point for each connected com-ponent of S. The size and non{scalar depth of N are bounded by �np�L2(nd�)O(1) andO(n(` + lognd) log �), respectively, where � � dn pn�p is the (suitably de�ned) degree ofthe real interpretation of the polynomial equation system F1 = � � � = Fp = 0.In order to prove this result we introduce new notions of generalized polar varieties ofequidimensional closed algebraic subvarieties of the real and complex a�ne and projectivespaces.Improved Certi�cation of Random Unsatis�able 2k-SAT Instances byApproximation TechniquesAndreas Goerdt(joint work with Andre Lanka, Frank Sch�adlich)Random 4-SAT instances with a linear number of clauses are unsatis�able with high prob-ability. Experiments show that formulas with approximately 10n clauses are unsatis�able,n being the number of variables. However, given such an instance F we only know that Fshould be unsatis�able. We are interested in an e�cient algorithm certifying this. Thatis, we look for an algorithm which either gives the output "unsatis�able" in which case theinput formula is really unsatis�able, or it gives the output "fail" in which case the inputformula either can be satis�able or not. Moreover, to be of any use the algorithm shouldgive the output "unsatis�able" with high probability with respect to the probability spaceconsidered.It is known that random 4-SAT instances with poly(logn) � n2 clauses can be e�cientlycerti�ed as unsatis�able. Here we show that C � n clauses, where C is a su�ciently largeconstant are su�cient.Our algorithm has two stages. In the �rst stage it certi�es the property that an assign-ment can only satisfy the input formula F , if it makes an odd number of literals true inall clauses up to an asymptotically negligible rest. This implies that the graph obtainedfrom F by making each all-positive clause an edge between its two pairs of variables hasa cut comprising almost all edges. However, when F is random the graph is a randomgraph it has only a cut with about one half of all edges. The MAX-CUT approximationalgorthim of Goemans/Williamson certi�es that we have no cut consisting of all edges andthus that F is unsatis�able. Instead of the MAX-CUT algorithm one might also use aMIN-BISECTION approximation algorithm of Krauthgamer and Feige.8



The technique described can be extended to 2k-SAT instances giving a bound of C � nkclauses. For the odd case for example k = 3 we still have the bound of poly(logn) � n3=2clauses. Locally Testable Codes and PCPs of Almost-Linear LengthOded Goldreich(joint work with Madhu Sudan)Locally testable codes are error-correcting codes that admit very e�cient codeword tests.Speci�cally, using a constant number of (random) queries, non-codewords are rejected withprobability proportional to their distance from the code.Locally testable codes are believed to be the combinatorial core of PCPs. However, therelation is less immediate than commonly believed. Nevertheless, we show that certainPCP systems can be modi�ed to yield locally testable codes. On the other hand, weadapt techniques we develop for the construction of the latter to yield new PCPs. Ourmain results are locally testable codes and PCPs of almost-linear length. Speci�cally, wepresent:o Locally testable (linear) codes in which k information bits are encoded by a codewordof length approximately k � exp(plog k). This improves over previous results that eitheryield codewords of exponential length or obtained almost quadratic length codewords forsu�ciently large non-binary alphabet.o PCP systems of almost-linear length for SAT. The length of the proof is approximatelyn � exp(plogn) and veri�cation in performed by a constant number (i.e., 19) of queries, asopposed to previous results that used proof length n1+O(1=q) for veri�cation by q queries.The novel techniques in use include a random projection of certain codewords and PCP-oracles, an adaptation of PCP constructions to obtain \linear PCP-oracles" for provingconjunctions of linear conditions, and a direct construction of locally testable (linear) codesof sub-exponential length.On the (In)security of the Fiat-Shamir ParadigmShafi Goldwasser(joint work with Yael Tauman)In 1986, Fiat and Shamir introduced a general method for transforming secure 3-roundpublic-coin identi�cation schemes into digital signature schemes, which are e�cient andhopefully secure against chosen message attacks. This is signi�cant, because all known con-structions which guarantee such security are substantially more ine�cient and complicatedin design.In 1996, Pointcheval and Stern proved that signature schemes obtained by the Fiat-Shamir transformation are secure in the so-called \Random Oracle Model." The questionis: does the proof of security of the Fiat-Shamir transformation in the Random OracleModel, imply that the transformation yields secure signature schemes in the \real world"?In this paper, we answer this question negatively. We show that if one way functionsexist, then there exist secure 3-round public-coin identi�cation schemes for which the Fiat-Shamir methodology produces insecure digital signature schemes for any implementationof the Random Oracle Model by a function ensemble. Obviously, if one functions do notexist, then all digital signature schemes are insecure.9



Among other things, we make new usage of Barak's technique for taking advantage ofnon black-box access to a program, this time in the context of digital signatures.Homomorphic Public-Key Cryptosystems and Encrypting Boolean CircuitsDimitri Grigoriev(joint work with Ilia Ponomarenko)Homomorphic cryptosystems are designed for the �rst time over any �nite group. ApplyingBarrington's construction we produce for any boolean circuit of the logarithmic depth itsencrypted simulation of a polynomial size over an appropriate �nitely generated group.List Decoding with Side InformationVenkatesan GuruswamiConsider the problem of communicating a binary string over a channel that can corrupt anarbitrarily chosen fraction p of symbols. It is well-known that one can use error-correctingcodes, speci�cally those with relative distance at least 2p, to cope with such channels andensure correct communication. However, this distance requirement imposes a limit p < 1=4on the error threshold that can be handled. For larger values of p (1=4 < p < 1=2), anotion called \list decoding" becomes necessary and appropriate. Under list decoding, thedecoding algorithm is allowed to output a small list of codewords that are close to thenoisy received word. This, however, is not entirely satisfactory when the receiver needsto unambiguously determine the original transmitted message. We consider one possiblescenario that would permit disambiguating between the elements of the list, namely wherethe sender of the message provides some hopefully small amount of side information aboutthe transmitted message on a separate auxiliary channel that is noise-free (or has a noisethreshold less than 1/4). This setting becomes meaningful and useful when the amountof side information that needs to be communicated is much smaller than the length of themessage.We study what kind of side information is necessary and su�cient in the above context.The short, conceptual answer is that the side information must be randomized and themessage recovery is with a small failure probability.Speci�cally, we prove that deterministic schemes which guarantee correct recovery ofthe message provide no savings and essentially the entire message has to be sent as sideinformation. However, there exist randomized schemes which only need side information oflength logarithmic in the message length. In fact, in the limit of repeated communicationof several messages, the amortized amount of side information needed per message can bea constant independent of the message length or the failure probability. Concretely, we cancorrect up to a fraction (1=2� 
) of errors for binary codes using only 2 log(1=
) + O(1)amortized bits of side information per message, and this is in fact the best possible (up toadditive constant terms).Derandomizing Polynomial Identity Tests Means Proving Circuit LowerBoundsValentine Kabanets(joint work with Russell Impagliazzo)We show that derandomizing Polynomial Identity Testing is, essentially, equivalent to10



proving circuit lower bounds for NEXP . More precisely, we prove that if one can test inpolynomial time (or, even, nondeterministic subexponential time, in�nitely often) whethera given arithmetic circuit over integers computes an identically zero polynomial, then either(i) NEXP 6� P=poly or (ii) Permanent is not computable by polynomial-size arithmeticcircuits. We also prove a (partial) converse: If Permanent requires superpolynomial-sizearithmetic circuits, then one can test in subexponential time whether a given arithmeticformula computes an identically zero polynomial.Since Polynomial Identity Testing is a coRP problem, we obtain the following corollary:If RP = P (or, even, coRP � \�>0NTIME(2n�), in�nitely often), then NEXP is notcomputable by polynomial-size arithmetic circuits. Thus, establishing that RP = coRP orBPP = P would require proving superpolynomial lower bounds for Boolean or arithmeticcircuits. We also show that any derandomization of RNC would yield new circuit lowerbounds for a language in NEXP .Our techniques allow us to prove an unconditional circuit lower bound for a languagein NEXPRP : we prove that either (i) Permanent is not computable by polynomial-sizearithmetic circuits, or (ii) NEXPRP 6� P=poly.On the Complexity of the DeterminantErich Kaltofen(joint work with Gilles Villard)We present new algorithms for computing the determinant of an n�n matrix A with integerentries of maximal bit length log kAk:With fastest known matrix multiplication algorithmswe achieve asymptotic running time of (n2:697263 log kAk)1+o(1) bit operations, where theo(1) term in the exponent represents polylogarithmic factors in n and log kAk. A versionthat employs the classical matrix multiplication algorithm and classical greatest commondivisor algorithms on matrix polynomials has bit complexity (n3+1=3 log kAk)1+o(1): Ouralgorithms are randomized of the Las Vegas kind and return either \failure" or the correctdeterminant, the latter with probability no less than 1=2.Our baby steps/giant steps technique in the context of the Wiedemann determinantalgorithm was employed by Kaltofen in 1992 for asymptotically reducing the number ofadditions, subtractions and multiplications required for computing the determinant of amatrix over an arbitrary commutative ring, that is, without divisions. Again by blockingwe can improve the complexity to O(n2:697263) ring operations. The division-free algorithmis deterministic.This work was reported in Oberwolfach in January 2001 at the Finite Field Conference.At that time, due to incomplete analysis our exponents were higher. In the meantime,Arne Storjohann has proposed an algorithm of bit complexity (n2:3755 log kAk)1+o(1). Hisalgorithm seems not lead to an improvement of the division-free complexity of the deter-minant, as it is based on Hensel lifting. For polynomial entries, Jeannerod and Villardachieve the corresponding complexity (n2:3755 degA)1+o(1) �eld operations by diagonaliza-tion. Their algorithm requires an input matrix in generic position, and is thus supersededby Storjohann's method. However, their technique also applies to the matrix inverse with(n3 degA)1+o(1):Our methods yield speedups for other problems on matrices with integer or polynomialentries or with entries from an abstract commutative ring, such as the adjoint matrix, thecharacteristic polynomial (via Hensel lifting), and the Smith normal form.11



Algebraic Attacks against Combiners with MemoryMatthias Krause(joint work with Frederik Armknecht)Recently, algebraic attacks turned out to be surprisingly useful to attack secret key cryp-tosystems, e.g. AES, Serpent and LILI-128. This paper extends the use of algebraic attacksto combiners with memory. A (k; l)-combiner consists of k parallel linear feedback shiftregisters (LFSRs), and the nonlinear �ltering is done via a �nite automaton with k inputbits and l memory bits. It is shown that for (k; l)-combiners, nontrivial canceling relationsof degree at most dk(l+1)=2e exist. This makes algebraic attacks possible. Also, a generalmethod is presented to check for such relations with an even lower degree. This allows toshow the invulnerability of certain (k; l)-combiners against this kind of algebraic attacks.On the other hand, this can also be used as a tool to �nd improved algebraic attacks.Inspired by this method, the E0 keystream generator from the Bluetooth standard isanalyzed. As it turns out, a secret key can be recovered by solving a system of linearequations with 223:07 unknowns. To our knowledge, this is the best published attack onthe E0 keystream generator yet.A preliminary version of this paper will appear in the CRYPTO 2003 proceedings.Almost Perfect LatticesDaniele MicciancioTwo important quantities associated to any point lattice are the packing radius and thecovering radius. The packing (resp. covering) radius is the largest r such that spheresof radius r centered at lattice points do not intersect (resp. cover the entire space.) Inanalogy with perfect codes, we say that a lattice is almost perfect if the covering radiusis not much bigger than the packing radius radius.. (In a perfect code the two radiiare exactly the same, but it is easy to see that for lattices equality can never hold.)It is known that lattices with constant covering-packing ratio exist, but the proof doesnot lead to e�cient constructions. The lattice of all n-dimensional points with integercoordinates has covering radius pn times larger than the packing radius. In this talk wepresent e�cient constructions of in�nite families of lattices with covering-packing ratioasymptotically smaller than pn. In particular, we present 1) an e�ciently constructiblefamily of lattices with ratio pn= logn such that the closest vector problem in the latticescan be solved in polynomial time, and 2) an explicit (and e�ciently constructible) familyof lattices with ratio bounded by n3=8. The bound on the covering ratio in the latter familyis proved giving a (polynomial time) algorithm that for any input point, �nds a latticepoint within distance n3=8. However, our algorithm does not always return the closestlattice point. Finding a polynomial time closest vector point algorithm for this latticewould give improved lattice based cryptographic hash functions with average-case/worst-case connection. The Complexity of Fighting SpamMoni Naor(joint work with Cynthia Dwork and Andrew Goldberg)Consider the following simple technique for combatting spam:12



If I don't know you, and you want your e-mail to appear in my inbox, then you mustattach to your message an easily veri�ed "proof of computational e�ort", just for me andjust for this message.If the proof of e�ort requires, say, 10 seconds to compute on a typical machine, then theeconomics of sending spam are radically altered, as a single machine can send only 8,000messages per day.This talk describes recent work on the choice of functional challenges that can be used toyield easily veri�able proofs of computational e�ort, where most of the work is in retrievinginformation from memory.Combinatorial Principles Based on GamesPavel PudlakWe consider two players A and B playing k copies of the same �nite gameG simultaneously.We shall say that the players play G on k boards. A starts by playing the �rst move onall boards, then B plays second moves on all boards etc.The following is, trivially, a valid principle:There do not exist two strategies f and g such that (1) f is a strategy for A to win onat least one board; (2) g is a strategy for B to win on at least one board.We consider the following computational problem. Given circuits for the strategies fand g and a circuit for the game G (which determines who wins in the �nal position),decide which of the two (1) or (2) above fails (if both fail, we do not care).1. We observe that if the number of games k and the number of rounds are constant,then it can be decided in polynomial time. This follows easily from the provability of theprinciple in S12 and Buss's witnessing theorem for this theory, but to extract an explicitalgorithm from this argument seems di�cult.2. Therefore we construct such a polynomial algorithm directly. Here is the idea. Takethe k �rst moves given by the strategy f . Apply g to all the kk k-tuples obtained from thesek elements. Thus we obtain kk k-tuples for the second moves. Take again all possible ktuples from these elements and apply f to it etc. Thus we eventually obtain exponentiallymany �nal positions, but the exponential function depends only on the number of gamesand rounds, hence it is still �nite. Restrict G to this �nite set; let G0 denote this restriction.Now suppose, w.l.o.g., that A has a winning strategy f 0 in G0. Then by playing f 0 on eachof the k boards we will beat g, because no elements outside of the domain of f 0 will beproduced in this way.3. We note that there are other combinations of games for which the �rst argumentworks, but for which we are not able to apply the second one.4. Due to time constraints the following part was not presented in the talk. It is possibleto further reduce the above principle to a principle saying that an explicit hypergraphcannot be two-colored. The advantage is that we can avoid mentioning circuits; insteadthe hypergraph is parametrized by three numerical parameters (which correspond to thenumber of games, the number of rounds, and the number of possible moves in a round).Pseudo-Random Generators for All HardnessesChris UmansGiven a function f : f0; 1glog n ! f0; 1g with circuit complexity s, we construct a pseudo-random generator that stretches a random seed of length O(logn) into a string ofm = s
(1)13



pseudo-random bits that fool circuits of size m. The construction works for any hardnesss, giving an optimal hardness vs. randomness tradeo� with a direct and self-containedproof. A key element in our construction is an augmentation of the standard low-degreeextension encoding that exploits the �eld structure of the underlying space in a new way.Deterministic Polynomial Identity Testing in Non Commutative ModelsRan Raz(joint work with Amir Shpilka)We give a deterministic polynomial time algorithm for polynomial identity testing in thefollowing two cases:1) Non Commutative Arithmetic Formulas: The algorithm gets as an input an arithmeticformula in the non-commuting variables x1; :::; xn and determines whether or not the outputof the formula is identically 0 (as a formal expression).2) Pure Arithmetic Circuits: The algorithm gets as an input a pure arithmetic circuit(as de�ned by Nisan and Wigderson) in the variables x1; :::; xn and determines whether ornot the output of the circuit is identically 0 (as a formal expression).We also give a deterministic polynomial time identity testing algorithm for non commu-tative algebraic branching programs as de�ned by Nisan. One application is a deterministicpolynomial time identity testing for multilinear arithmetic circuits of depth 3.Finally, we observe an exponential lower bound for the size of pure arithmetic circuits forthe permanent and for the determinant. (Only lower bounds for the depth of pure circuitswere previously known).Vertex Cover Might be Hard to Approximate to within 2� �Oded Regev(joint work with Subhash Khot)Based on a conjecture regarding the power of unique 2-prover-1-round games presented byKhot (STOC'02), we show that vertex cover is hard to approximate within any constantfactor better than 2. We actually show a stronger result, namely, based on the sameconjecture, vertex cover on k-uniform hypergraphs is hard to approximate within anyconstant factor better than k.Private Computations in Networks: Topology versus RandomnessR�udiger Reischuk(joint work with Andreas Jakoby and Maciej Li�skiewicz)In a distributed network, computing a function privately requires that no participant gainsany additional knowledge other than the value of the function. We study this problem forincomplete networks and establish a tradeo� between connectivity properties of the net-work and the amount of randomness needed. First, a general lower bound on the number ofrandom bits is shown. Next, for every k � 2 we design a quite e�cient (with respect to ran-domness) protocol for symmetric functions that works in arbitrary k-connected networks.Finally, for directed cycles that compute threshold functions privately almost matchinglower and upper bounds for the necessary amount of randmoness are proven.14



Analysis of Boolean Functions and Various ApplicationsMuli SafraRepresenting a Boolean function as a polynomial is only natural. It turns out that thisrepresentation, along with some related technology { for example the study of the In
uenceof variables on Boolean functions { gives insight to many aspects of such functions. This�eld was founded in a paper by Kahn, Kalai and Linial from '89, and has since shownapplications in a wide array of �elds, including Game Theory and Social Choice, Economics,Percolation, and Complexity theory.The talk will survey the methodology and some of its applications, to Mechanism De-sign, Graph Properties and Complexity Theory. We would then consider some furtherapplications, show the state of art in terms of known results in the �eld; and suggest openproblems with their relevant applications.Proof Systems and Chosen-Ciphertext SecurityAmit SahaiZero-knowledge proofs, introduced by Goldwasser, Micali, and Racko�, are fascinatingconstructs in which one party (the "prover") convinces another party (the "veri�er") thatsome assertion is true, without revealing anything else to the veri�er.In this talk, we present a connection between the theory of zero-knowledge proofs and oneof the classical notions in cryptography, encryption. In particular, we introduce the notionof simulation-sound zero knowledge, and show how the non-interactive form of this notioncan be used to achieve a strong notion of security for encryption, namely adaptive chosen-ciphertext security, in a simple manner. We also present constructions of simulation-soundnon-interactive zero-knowledge proofs for all NP languages, and discuss other applicationsof this notion.LLL-type Lattice Reduction in O(n3logn) Arithmetic StepsClaus SchnorrWe modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra,Lov�asz (1982) towards a faster reduction algorithm. We introduce SLLL-bases and a corre-sponding algorithm of SLLL-reduction that organizes the reduction reduction in segmentsof size k. Local reduction of segments is done using local coordinates of dimension 2k.Our SLLL-bases approximate the successive minima of the lattice in the same way asLLL-bases. For integer lattices of dimension n given by a basis of length 2O(n) SLLL-reduction runs in O(n5+") bit operations for every " > 0, compared to O(n7+") for theoriginal LLL and to O(n6+") for the LLL-algorithms of Schnorr (1988) and Storjohann(1996). SLLL-reduction via iterated subsegments runs in O(n3 logn) arithmetic steps andO(n4:5+") bit operations.Uniform Hardness Versus Randomness Tradeo�s for Arthur-MerlinRonen Shaltiel(joint work with Danny Gutfreund and Amnon Ta-Shma)Arthur-Merlin games are interactive protocols in which Merlin (who is all-powerful) con-vinces Arthur (who is probabilistic polynomial time) that an input x belongs to some15



language L. The class AM is the class of all languages L which have a convincing Arthur-Merlin protocol. It is a big open problem whether AM=NP, or in other words, whetherArthur can be "derandomized" and made deterministic. (Note that if Arthur is determin-istic then the Arthur-Merlin protocol becomes an NP proof.) This problem is analogousto the BPP versus P question which asks whether any probabilistic poly-time algorithmcan be "derandomized" and made deterministic.Impagliazzo and Wigderson addressed the second question and showed that probabilisticalgorithms are either very strong or very weak. We show an analogous result for Arthur-Merlin games: Either Arthur-Merlin protocols are very strong (and any language in E =dtime(2O(n)) can be proved to a sub-exponential time Arthur) or Arthur-Merlin protocolsare weak and "AM=NP on real life inputs". (More precisely, every language in AM hasan NP procedure. This procedure does not necessarily answer correctly on every input.However, it is infeasible to come up with inputs on which the procedure fails.)I'll start the talk by giving a survey on hardness versus randomness tradeo�s for bothBPP and AM.Simple Extractors for All Min-Entropies and a New Pseudo-RandomGeneratorRonen Shaltiel(joint work with Chris Umans)We present a simple, self-contained extractor construction that produces good extractorsfor all min-entropies (min-entropy measures the amount of randomness contained in aweak random source). Our construction is algebraic and builds on a new polynomial-based approach introduced by Ta-Shma, Zuckerman, and Safra and avoids complicatedrecursions, iterations, and compositions that characterized much of the previous work.Applying similar ideas to the problem of building pseudo-random generators, we obtain anew pseudo-random generator construction that is not based on the Nisan-Wigderson gen-erator, and turns worst-case hardness directly into pseudo-randomness. The parameters ofthis generator match those of previous constructions and in particular are strong enough toobtain a new proof that P = BPP if E requires exponential size circuits. Our constructionalso yields optimal hitting set generators closing the gap left by previous constructions.The problem we solve can be thought of as (list)-decoding the Reed-Muller in a anunusual setup, and in particular we get a new list-decoding algorithm for the Reed-Mullercode. Lower Bounds for Matrix ProductAmir Shpilka(joint work with Amir Shpilka)We prove lower bounds on the number of product gates in bilinear and quadratic circuitsthat compute the product of two n� n matrices over �nite �elds. In particular we obtainthe following results:1. We show that the number of product gates in any bilinear (or quadratic) circuit thatcomputes the product of two n� n matrices over GF (2) is at least 3n2� o(n2).2. We show that the number of product gates in any bilinear circuit that computes theproduct of two n� n matrices over GF (q) is at least (2:5 + 1:5q3�1)n2� o(n2).16



These results improve the former results of Bshouty from '89 and of Bl�aser from '99 whoproved lower bounds of 2:5n2� o(n2).Locally Testable Cyclic CodesAmir Shpilka(joint work with L�aszl�o Babai, Amir Shpilka and Daniel �Stefankovi�c)? We consider binary linear codes, i. e., subspaces C � GF (2n). A family of codes C isgood if dim(C) = 
(n) and the weight of each nonzero codeword is 
(n).The code C is r-testable if there exists a randomized algorithm which, given a wordx 2 GF (2n), adaptively selects r positions, checks the bits of x in the selected position,and makes a decision (accept or reject x) based on the bits found on the positions selected,such that(i) if x 2 C then x is surely accepted;(ii) if dist(x; C) � �n then x is probably rejected. (\dist" refers to Hamming distance.)A family of codes is locally testable if there exists a constant r such that all members ofthe family are r-testable. This concept arose from holographic proofs/PCPs.A cyclic code is a linear code which is invariant under the cyclic shift of the coordinates.Cyclic codes play an important role in classical coding theory. It is a long-standing openproblem whether there exist good cyclic codes. It is a more recent question whether thereexist good, locally testable codes.In this paper we address the intersection of these two questions.Theorem. There are no good, locally testable cyclic codes.In fact our result is stronger in that it replaces condition (ii) of local testability by thecondition(ii') if dist(x; C) � �n then x has a positive chance of being rejected.The proof involves methods from Galois theory, cyclotomy, and diophantine approxima-tion. On the Power of Quantum ProofsAmir Shpilka(joint work with Ran Raz and Amir Shpilka)We study the power of quantum proofs, or more precisely, the power of Quantum Merlin-Arthur (QMA) protocols, in two well studied models of quantum computation: the blackbox model and the communication complexity model.Our main results are obtained for the communication complexity model. For this model,we identify a complete promise problem for QMA protocols, the Linear Subspaces Distanceproblem. The problem is of geometrical nature: Each player gets a linear subspace of Rmand considers the sphere of unit vectors in that subspace. Their goal is to output 1 if thedistance between the two spheres is very small (say, smaller than 0:1 � p2) and 0 if thedistance is very large (say, larger than 0:9 � p2). We show that:1. The QMA communication complexity of the problem is O(logm).2. The (classical) MA communication complexity of the problem is 
(m�) (for some� > 0).3. The (standard) quantum communication complexity of the problem is 
(pm).17



In particular, this gives an exponential separation between QMA communication complex-ity and MA communication complexity.For the black box model we give several observations. First, we observe that the blocksensitivity method, as well as the polynomial method for proving lower bounds for thenumber of queries, can both be extended to QMA protocols. We use these methods toobtain lower bounds for the QMA black box complexity of functions. In particular, weobtain a tight lower bound of 
(N) for the QMA black box complexity of a randomfunction, and a tight lower bound of 
(pN) for the QMA black box query complexityof NOR(X1; :::; XN). In particular, this shows that any attempt to give short quantumproofs for the class of languages Co�NP will have to go beyond black box arguments.We also observe that for any boolean function G(X1; :::; XN), if for both G and :G thereare QMA black box protocols that make at most T queries to the black box, then thereis a classical deterministic black box protocol for G that makes O(T 6) queries to the blackbox. In particular, this shows that in the black box model QMA \ Co�QMA = P .On the positive side, we observe that any (total or partial) boolean functionG(X1; :::; XN)has a QMA black box protocol with proofs of length N that makes only O(pN) queriesto the black box.Finally, we observe a very simple proof for the exponential separation (for promiseproblems) between QMA black box complexity and (classical) MA black box complexity(�rst obtained by Watrous).On Worst-Case to Average-Case Reductions for NP ProblemsLuca Trevisan(joint work with Andrej Bogdanov)We formalize a general notion of \worst-case to average-case" reduction that, in particular,contains the notion of random self-reduction as a special case.We show that if an NP-complete problem had a non-adaptive worst-case to average-casereduction then NP would be contained in non-uniform AM, and the polynomial hierarchywould collapse to the third level. Feigenbaum and Fortnow show the same conclusion fromthe assumption that an NP-complete problem had a random self-reduction.List Decoding Using the XOR LemmaLuca TrevisanWe show that Yao's XOR Lemma, and its essentially equivalent rephrasing as a DirectProduct Lemma, can be re-interpreted as a way of obtaining error-correcting codes withgood list-decoding algorithms from error-correcting codes having weak unique-decodingalgorithms. To get codes with good rate and e�cient list decoding algorithms one needs aproof of the Direct Product Lemma that, respectively, is strongly derandomized, and usesvery small advice.We show how to reduce advice in Impagliazzo's proof of the Direct Product Lemma forpairwise independent inputs, which leads to error-correcting codes with O(n2) encodinglength, O(n2) encoding time, and probabilistic O(n) list-decoding time. (Note that thedecoding time is sub-linear in the length of the encoding.)Back to complexity theory, our advice-e�cient proof of Impagliazzo's \hard-core set"results yields a (weak) uniform version of O'Donnell results on ampli�cation of hardness inNP. We show that if there is a problem in NP that cannot be solved by BPP algorithms on18



more than a 1� 1=(logn)c fraction of inputs, then there is a problem in NP that cannot besolved by BPP algorithms on more than a 3=4 + 1=(logn)c fraction of inputs, where c > 0is an absolute constant. On Converting CNF to DNFIngo Wegener(joint work with Peter Bro Miltersen and Jaikumar Radhakrishnan)The best-known representations of boolean functions f are those as disjunction of terms(DNFs) and as conjunction of clauses (CNFs). It is convenient to de�ne the DNF sizeof f as the minimal number of terms in a DNF representing f and the CNF size as theminimal number of clauses in a CNF representing f . This leads to the problem to estimatethe largest gap between CNF size and DNF size. More precisely, what is the largestpossible DNF size of a function f with polynomial CNF size? We show the answer to be2n��(n= log n).Expander Graphs - Where Combinatorics and Algebra Compete andCooperateAvi WigdersonExpansion of graphs can be given equivalent de�nitions in combinatorial and algebraicterms. This is the most basic connection between combinatorics and algebra illuminatedby expanders and the quest to construct them. The talk will survey how fertile thisconnection has been to both �elds, focusing on recent results.Extractors - Optimal to Constant FactorsAvi Wigderson(joint work with Chi-Jen Lu, Omer Reingold and Salil Vadhan)Randomness extractors are functions which extract almost uniform bits from sources ofbiased and correlated bits, using a short, truely random seed as a catalyst. Extractorsplay a fundamental role in the theory of pseudorandomness, and have a wide variety ofapplications. Thus coming up with explicit constructions of extractors has been the focusof a large body of work over the past decade.This paper gives an explicit construction of extractors which work for sources on strings oflength n that contain any min-entropy k. These extractors can extract any constant fractionof the min-entropy using a seed of length O(logn), and has an arbitrarily small constanterror. This is the �rst construction that works for any min-entropy and is simultaneouslyoptimal up to a constant factor in both the seed length and output length.I will explain some of the old and new ideas which lead to the new construction. Inparticular we'll see new constructions of "mergers" from locally decodable error correctingcodes, new constructions of "condensers" which have constant seed length, and how tocompose these a non-constant number of steps via error reduction.19



Derandomized "Low Degree" Tests via "Epsilon-Biased" Sets, withApplications to Short Locally Testable Codes and PCPsAvi Wigderson(joint work with Eli Ben-Sasson, Madhu Sudan and Salil Vadhan)We present the �rst explicit construction of Probabilistically Checkable Proofs (PCPs)and Locally Testable Codes (LTCs) of �xed constant query complexity which have almost-linear size. Such objects were recently shown to exist (nonconstructively) by Goldreichand Sudan.The key to these constructions is a nearly optimal randomness-e�cient version of theRubinfeld-Sudan low degree test. The original test uses a random line in the given vectorspace. The number of such lines is quadratic in the size of the space, which implied asimilar blow up in previous constructions of LTCs. Goldreich and Sudan showed that thereexists a nearly linear sized sample space of lines such that running the low-degree test ona random line from this collection is a good test. We give an explicit sample space withthis property.In a similar way we give a randomness-e�cient version of the Blum-Rubinfeld-Sudanlinearity test (which is used, for instance, in locally testing the Hadamard code).Both derandomizations are obtained through epsilon-biased sets for vector spaces over�nite �elds. The sample space consists of the lines de�ned by the edges of the Cayleyexpander graph generated by the epsilon-biased set.The analysis of the derandomized tests rely on alternative views of epsilon-biased sets| as generating sets of Cayley expander graphs for the low degree test, and as de�ninggood linear error-correcting codes for the linearity test.Deterministic Extractors for Bit-Fixing Sources and Exposure-ResilientCryptographyDavid Zuckerman(joint work with Jesse Kamp)We give a linear-time deterministic algorithm which extracts 
(n2
) almost-random bitsfrom sources where n 12+
 of the n bits are uniformly random and the rest are �xed inadvance. This improves on the previous constructions which required that at least n=2of the bits be random. Our construction also gives explicit adaptive exposure-resilientfunctions and in turn adaptive all-or-nothing transforms. For sources where instead of bitsthe values are chosen from [d], we show that for d > 2 we can extract a constant fractionof the randomness. We also give bounds on extracting randomness for sources where the�xed bits can depend on the random bits.
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